WO2011068182A1 - 植物栽培システム - Google Patents

植物栽培システム Download PDF

Info

Publication number
WO2011068182A1
WO2011068182A1 PCT/JP2010/071634 JP2010071634W WO2011068182A1 WO 2011068182 A1 WO2011068182 A1 WO 2011068182A1 JP 2010071634 W JP2010071634 W JP 2010071634W WO 2011068182 A1 WO2011068182 A1 WO 2011068182A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
cultivation
plant
light emitting
emitting diode
Prior art date
Application number
PCT/JP2010/071634
Other languages
English (en)
French (fr)
Inventor
聖一 岡崎
Original Assignee
Okazaki Seiichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Seiichi filed Critical Okazaki Seiichi
Priority to CN2010800631121A priority Critical patent/CN102740681B/zh
Publication of WO2011068182A1 publication Critical patent/WO2011068182A1/ja
Priority to HK13104600.9A priority patent/HK1177099A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means

Definitions

  • the present invention relates to a plant cultivation system for cultivating plants indoors.
  • FIG. 16 is a block diagram showing the configuration of the plant cultivation system 101 in Patent Document 1.
  • the plant cultivation system 101 includes a cultivation room 103 and a management room 105.
  • the light-shielding part 147 and the heat insulation part 149 block the influence of the external environment on the cultivation environment in the cultivation room 103.
  • the light source 125 that irradiates light to the plant 111 to be cultivated
  • the adjustment unit 151 that adjusts the cultivation environment in the cultivation room 103
  • the control unit 153 that includes various control means for controlling the adjustment unit 151, the cultivation environment in the cultivation room 103 Set artificially.
  • the observation unit 161 observes the growing state of the plant 111 and transmits it to the management room 105.
  • the reception unit 179 transfers the observation data received from the observation unit 161 to the library 181 and the calculation unit 183.
  • the library 181 stores observation data as a database.
  • the calculation unit 183 analyzes the observation data and processes the data.
  • FIG. 17 is a block diagram showing the configuration of the plant cultivation system 201 in Patent Document 2.
  • the plant cultivation system 201 includes a fixed cultivation rack 207 and a management room 205.
  • the cultivation rack 207 includes a plurality of cultivation shelves 209, an adjustment unit 251, a control unit 253, and an observation unit 261.
  • the cultivation rack 207 has the cultivation shelf 209 three-dimensionally, and can effectively use a limited land area.
  • Patent Documents 1 and 2 neither describe nor suggest a light source that realizes plant growth evenly or a light source that achieves both plant growth and observation.
  • the light source described in Patent Document 3 is neither described nor suggested as a light source that achieves both plant growth and observation.
  • the observation part 161 and the management part 177 perform the observation and analysis for finding out the influence which the specific cultivation environment has on the cultivation of the specific plant 111 for the purpose of the plant growth test. . There is no mention or suggestion of observations or data processing to predict the harvest time of individual plants.
  • Patent Document 2 describes that the observation unit 261 observes and transmits the observation data to the management unit 277, there is no description or suggestion regarding the processing of the observation data.
  • the present invention provides a plant in a plant cultivation system that has a light source suitable for achieving both growth and observation in a plant cultivation system that artificially completely controls the cultivation environment of the plant, and that completely controls the cultivation environment. It aims at providing the plant cultivation system which can predict the harvest time using the observation data.
  • the invention which concerns on Claim 1 is a plant cultivation system which grows a plant indoors, Comprising: The cultivation cell which is the partitioned space for growing the said plant, and the management means which manages cultivation of the said plant
  • the cultivation cell includes a cultivation rack that is a movable rack for cultivating the plant, and a light shielding unit that blocks sunlight from entering the partitioned space.
  • a cultivation shelf for cultivating and a light control means for controlling light applied to the plant, the cultivation shelf is configured to control an irradiation amount of a light emitter module having a plurality of light emitting diodes under the control of the light control means.
  • M (m is an integer of 2 or more) second light emitting diodes that emit light and n (n) that emit light of the third spectrum, arranged on the circumference of a second circle centered on the first light emitting diodes Is an integer greater than or equal to 2), and the first spectrum, the second spectrum, and the third spectrum are different from each other, and the second light emitting diode includes the first light emitting diode.
  • the number of the arcs of the first circle divided by a half line passing through each of the third light emitting diodes starting from a diode is set to be equal to each other, and the management unit is configured to monitor the observation data.
  • a receiving means for obtaining From means A receiving means for obtaining, a library for storing the observation data obtained by the receiving means, the observation data obtained by the receiving means, and past observation data of the same kind of plant as the plant stored in the library. In comparison, a calculation means for predicting the harvest date of the plant is provided.
  • the invention according to claim 2 is the plant cultivation system according to claim 1, wherein the first light emitting diode emits white or green light, and there are three second light emitting diodes, blue There are three third light emitting diodes that emit red light, and the three second light emitting diodes and the three third light emitting diodes form isosceles triangles, respectively. It is located so that it may do.
  • the invention according to claim 3 is the plant cultivation system according to claim 2, further comprising a storage device for storing the light emitting diode, wherein the storage device is configured to dissipate heat to the outside and the light emitting diode to the outside air.
  • the third light emitting diode has an emission peak that coincides with an absorption peak of phytochrome in the plant, and the light emitting diode is housed in the housing device and is It is characterized by being thermally connected to the heat radiating means.
  • Invention of Claim 4 is a plant cultivation system of Claim 3, Comprising: It is in the said cultivation rack, The container for hold
  • the water temperature in the container is maintained while cooling the light emitting diode by heat exchange performed by the liquid heat exchange means.
  • the light control means includes pattern selection means for controlling light emission patterns of a plurality of light emitting diodes, and light quantity control means for controlling the light quantity of each of the plurality of light emitting diodes.
  • the light amount control means may control light emitted from the light source for observation by the observation means.
  • the first light emitting diode may include a white light emitting diode including yellow or / and green wavelengths. Furthermore, the white light emitting diode including yellow or / and green wavelengths may be incorporated in the light emitter module with a light amount smaller than that of the red light source.
  • the first light emitting diode is mainly for observation, but it not only facilitates observation but also increases the cost when yellow light and / or green light is necessary for plant growth. It can be suppressed, and it can have a great significance in terms of growth while maintaining uniform irradiation.
  • the plant 11 is irradiated with only red light during the germination period, irradiated with red light and blue light during the cotyledon development period, and further irradiated with red light, blue light and white light during the main leaf development period.
  • Appropriate irradiation can be performed according to the breeding situation.
  • the observation means is the observation data of the plant in order to perform observation and data processing for predicting the harvest time of the plant Observing current data and transferring it to the calculation means (observation step), wherein the calculation means calls past data that is past observation data of a plant of the same kind as the plant from the library (calling step), The calculation means may compare the current data with the past data (comparison step), and the calculation means may predict the harvest date of the plant from the comparison result (prediction step).
  • reliable observation data can be obtained using a light source that enables both growth and observation in an artificially completely controlled environment, so it is not proficient in plant cultivation Even the person can predict the harvest time objectively.
  • the present invention may be regarded as a plant growing method in a plant cultivation system, a program for causing a computer to execute the growing method, or a computer-readable recording medium recording the program.
  • the method for growing plants with the plant cultivation system may be hydroponics, so-called hydroponics in which gas is forcibly given to plants in hydroponics, or soil cultivation.
  • a culture medium peat moss made from peat may be used, and other culture media such as rock wool, which is one of artificial mineral fibers, may be used.
  • an ideal cultivation environment could not be easily set according to the individual growth situation of a plurality of plants. That is, when it is necessary to change the cultivation environment in accordance with each growing situation of a plurality of plants grown in the cultivation room, a plurality of cultivation environments are set for the plurality of plants 111 in one cultivation room 101. When it is necessary to do this, it is a normal means to provide a partition in one cultivation room 101.
  • Patent Document 1 does not describe a specific method for easily setting a plurality of cultivation environments. Even in Patent Document 2, the cultivation rack 207 is uniform with respect to the cultivation environment such as temperature and humidity. Because of this, it is impossible to set up an ideal cultivation environment.
  • the present invention has a plurality of cultivation cells, and each cultivation cell includes a coupling means for coupling a partitioned space and a partitioned space of another cultivation cell other than the cultivation cell, and a cultivation rack May be provided with a moving means for moving.
  • a coupling means for coupling a partitioned space and a partitioned space of another cultivation cell other than the cultivation cell
  • a cultivation rack May be provided with a moving means for moving.
  • germinating plants are placed in a cultivation cell that emits only red light. Subsequently, the plants that have reached the cotyledon development stage are transferred to a cultivation cell that emits red light and blue light. Furthermore, it transfers to the cultivation cell which irradiates with red light, blue light, and white light (green light may be sufficient) in the main leaf expansion period. Thus, it becomes possible to grow in the cultivation cell which performs suitable irradiation according to the growth situation, without taking out a plant from a cultivation cell.
  • the installation location of the cultivation facility is determined based on its shape. Therefore, in order to install a cultivation facility, it was necessary to prepare a land of a predetermined area.
  • the cultivation cell of the present invention may be assembled and dismantled.
  • the size of each cell may be changed using a prefabricated method, or a method of joining and dissociating cultivation cells 3 having a predetermined size may be combined.
  • the size of the cultivation cell which is the minimum unit of the cultivation environment, according to the area and / or shape of various lands.
  • the light source in the cultivation cell which is a plant cultivation system that artificially completely controls the cultivation environment of the plant, is observed with the light emission pattern and observation for the growth in the same light emitter module. It is possible to realize a light emission pattern for the above.
  • the same number of second light emitting diodes are arranged on the n arcs of the first circle divided by the half line passing through the first light emitting diode and the third light emitting diode.
  • a light emitting module in which the first light emitting diodes, the second light emitting diodes, and the third light emitting diodes are arranged substantially uniformly is obtained. It is possible to irradiate light from each light emitting diode without any unevenness. Therefore, in a plant cultivation system that artificially completely controls the plant cultivation environment, it is possible to achieve both growth and observation while maintaining uniform light irradiation.
  • a red light emitting diode suitable for growth and a light emitting pattern for emitting blue light emitting diodes are used for growing, and a red light emitting diode suitable for observation is used for observation.
  • a white light emitting diode having a high color rendering property that emits light from a white or green light emitting diode it is possible to more appropriately balance growth and observation.
  • the first light emitting diode is a green light emitting diode having high visibility for human eyes, it becomes easy to obtain an emission spectrum in a natural appearance under sunlight. Therefore, when the apparatus which applied this invention in the restaurant is installed, it becomes easy to show the plant used for cooking more attractively to a visitor.
  • 3W-class high-power red light-emitting diodes have been mainly used with a light emission peak of 625 nm. This is because the demand for a wavelength of 660 nm has not been recognized. Further, conventional high-power light emitting diodes manufactured in a ternary system could not be technically manufactured with an emission peak at 660 nm.
  • the light emitting diode can be accommodated in an accommodation tool capable of efficiently radiating the outside while protecting the light emitting diode from the outside air. It is possible to use a chip having a size and an output of 3 W. Compared with the case of using a light-emitting diode with a small output, a sufficient output can be obtained with a small number of light-emitting diodes, so that the risk of failure of the light-emitting diode can be reduced.
  • the heat radiating means and the liquid flowing in the flow path are thermally connected. For this reason, compared with the case where a thermal radiation means radiates in air, it becomes possible to radiate efficiently.
  • the heat exchanger between liquids exchanges heat between the liquid in the flow path and the liquid in the container, the liquid in the flow path can be quickly removed compared to the case where the liquid in the flow path is air-cooled. It becomes possible to cool. Therefore, it becomes easier to cool the light emitting diode. At the same time, the heat generated from the light emitting diode can be diverted to maintain the water temperature in the hydroponics container.
  • FIG. It is a schematic diagram which shows the cultivation rack in the plant cultivation system of FIG. It is a schematic diagram which shows the cooling facility of the light source in the cultivation rack of FIG. It is a schematic diagram which shows the cooling mechanism of the light source in the cultivation rack of FIG. It is a mimetic diagram of storage instrument 56 which promotes heat dissipation of a light emitting diode. It is a schematic diagram which shows the cultivation rack in the plant cultivation system which concerns on Example 2.
  • FIG. It is the 6th page figure which shows the product example of another cultivation rack which concerns on this invention, Comprising: (a) Front view, (b) Top view, (c) It is a left view.
  • FIG. 6 is a six-sided view showing a product example of a light source cooling system according to the present invention, wherein (a) a front view, (b) a bottom view, (c) a rear view, (d) a right side view, and (e) a left side view.
  • FIG. It is a block diagram which shows the structure of the plant cultivation system in the conventional patent document 1.
  • FIG. It is a block diagram which shows the structure of the plant cultivation system in the conventional patent document 2.
  • hydroponic cultivation will be mentioned as an example unless otherwise specified, but the cultivation method is not limited to hydroponic cultivation, soil cultivation may be used, and other media such as peat moss and rock wool were used. A cultivation method may be used.
  • the plant cultivation system 1 includes a plurality of cultivation cells 3 and a management room 5.
  • the cultivation cell 3 includes a plurality of cultivation racks 7, a light shielding unit 47 that is a light shielding unit, a heat insulation unit 49 that is a heat insulation unit, an adjustment unit 51 that is an adjustment unit that adjusts the cultivation environment in the cultivation cell 3, and a cultivation
  • the control part 53 which is a control means which controls adjustment of an environment
  • the connection part 55 which is a connection means which connects the partitioned space of the some cultivation cell 3 are provided.
  • the cultivation cell 3 can be assembled and disassembled, for example, by changing the size of each cell using a prefabricated method, or by coupling / dissociating the cultivation cells 3 having a predetermined size. Therefore, the size can be changed according to the number of cultivation racks 7. Moreover, the cultivation cell 3 can also be easily moved as needed.
  • the cultivation rack 7 includes the cultivation shelf 9 as a plurality of stages, and includes a light control unit 57 that is a light control unit and a movement unit 59 that is a movement unit.
  • the cultivation shelf 9 includes a plant 11, a container 37 for storing the plant 11, a light source 25 that irradiates light to the plant 11, and a liquid-to-liquid heat exchanging unit 44 that exchanges heat between the liquids.
  • the light control unit 57 includes a pattern selection unit 63 that controls a light emission pattern of light emitted from the light source 25 and a light amount control unit 65 that controls the amount of light emitted from the light source 25.
  • the control unit 53 includes a temperature control unit 67 that controls the room temperature in the cultivation cell 3 and the water temperature in the container 37, a humidity control unit 69 that controls the humidity in the cultivation cell 3, and a water amount that controls the amount of water in the container 37.
  • the control part 71, the air quantity control part 73 which controls the air quantity in the water in the container 37, and the fertilizer quantity control part 75 which controls the fertilizer quantity in the water in the container 37 are provided.
  • the management room 5 includes a management unit 77 that manages plant cultivation in the cultivation cell 3.
  • the management unit 77 predicts the harvest date of the observed plant, the reception unit 79 that acquires observation data from each observation unit 61 of the plurality of cultivation cells, the library 81 that stores the observation data acquired by the reception unit 79
  • the calculation part 83 which performs is provided.
  • FIG. 2 is a diagram showing a flow of predicting the harvest time by observing the growing condition of the plant 11 in the plant cultivation system 1 of FIG.
  • step ST1 the light source 25 irradiates the plant 11 with the observation light emission pattern under the control of the pattern selection unit 63 of the light control unit 57. Subsequently, in step ST2, the observation unit 61 acquires current observation data of the plant 11 (hereinafter referred to as “current data”).
  • the light source 25 can irradiate seven patterns of light except when not irradiating light only by turning ON / OFF various kinds of light of red, blue, and white (or green). Different photographs can be taken depending on the protein distribution of the plant 11.
  • patterning based on the pulse width is also possible.
  • a method of controlling the brightness with the pulse width is called a PWM (pulse wise modulation) control method.
  • PWM pulse wise modulation
  • 2 8 256 lighting patterns are possible even with the same color light and constant light intensity, and an optimal light irradiation pattern can be realized for each plant.
  • step ST3 the observation unit 61 transmits the current data to the reception unit 79 of the management unit 77.
  • the receiving unit 79 that has received the current data stores the current data in the library 81 and transfers it to the calculation unit 83.
  • step ST ⁇ b> 4 the calculation unit 83 calls the past observation data (hereinafter referred to as “past data”) of the same kind of plant as the observation target plant 11 from the library 81.
  • the past data includes observation data from past sowing to harvesting regarding plants of the same kind as the plant 11.
  • step ST5 compares the current data with the past data.
  • the form such as the shape, color, and size of the plant 11 in the current data substantially matches the form of the day after sowing in the past data. If it is determined from the comparison result which day form in the past data corresponds to, in step ST6, the harvest date of the plant 11 in the current data is predicted from the harvest date in the past data, and the flow ends. To do.
  • a light emitting pattern for irradiating the red light emitting diode 87 and the blue light emitting diode 89 may be used for the growth by controlling the pattern selection unit 63 and the light amount control unit 65 of the light control unit 57.
  • the amount of red light is three times the amount of blue light for growth.
  • the amount of red light is preferably 10 to 15% of the amount of white (or green) light.
  • FIG. 4 shows (a) emission spectrum, (b) directivity, (c) current-temperature characteristics, (d) output-current characteristics, (e) current-voltage characteristics, ( f) It is a figure which shows a relative output-temperature characteristic.
  • the light used for the growth be as close as possible to the absorption peak of the chromoprotein of the plant chlorophyll.
  • red light emitting diodes 87 of 625 nm to 635 nm existed.
  • the applicant has developed a red light-emitting diode 87 having a wavelength that matches the absorption peak (660 nm) of phytochrome, which is a chromoprotein of chlorophyll. As shown in FIG. 4A, the emission peak of the red light emitting diode 87 is at 660 nm.
  • the red light emitting diode 87 it becomes possible to cultivate the plant 11 more efficiently by reducing energy consumption in the red light emitting diode 87 and suppressing heat generation that adversely affects the plant.
  • the directivity of the red light emitting diode 87 is wide, and it is easy to make the plant 11 uniformly irradiated. As shown in FIG. 4 (c), it can withstand practical use at about room temperature. As shown in FIG. 4D, the linearity of the output with respect to the current is good.
  • FIG. 4 (e) it can be used at a low voltage.
  • FIG. 4E shows only up to 300 mW, but it is possible to pass a current of about 1000 mA and output 3 W class light.
  • the high-power red light-emitting diode 87 in this way, a sufficient output can be obtained with a small number of light-emitting diodes compared to the case of using a small-power light-emitting diode, and thus the risk of failure of the light-emitting diode can be reduced. It becomes possible.
  • the white light emitting diode 93 including yellow and green wavelengths into the light emitter module with a light amount smaller than that of the red light source.
  • the white light emitting diode 93 whose main purpose is observation has great significance in terms of growth.
  • the plant 11 is irradiated with only red light during the germination period, irradiated with red light and blue light during the cotyledon development period, and further irradiated with red light, blue light and white light during the main leaf development period. It is possible to perform appropriate irradiation according to the breeding situation.
  • the light emitter module 91 uses only three kinds of light emitting diodes of red, blue, and white that are set to an appropriate amount of light so that both growth and observation can be achieved.
  • the light emission pattern is also a light source that enables uniform irradiation.
  • a light emitting diode blue light emitting diode 89
  • the light emitting diode white (or green) light emitting diode 93
  • the light emitting diode red light emitting diode 87
  • Uniform light irradiation can be achieved because the light emitting diode elements are arranged symmetrically in relation to the light emitting diode elements of different colors while taking the distance between the light emitting diode elements of the same color.
  • the arrangement constituting the isosceles triangle is an example of an arrangement with improved symmetry.
  • the red light emitting diode 87 is arranged on the circumference of a circle centering on the white light emitting diode 93 (referred to as “red circle”.
  • red circle An example of “first circle” in the claims)
  • the blue light emitting diode 89 may be arranged on the circumference of a circle centered on the white (or green) light emitting diode 93 (“blue circle”, an example of “second circle” in the claims). It is done.
  • the blue light emitting diodes 89 may be arranged one by one in the arc of a blue circle divided by a half line passing through the red light emitting diode 87 starting from the white (or green) light emitting diode 93. .
  • the red light emitting diode 87 may be arranged similarly.
  • the place where the white (or green) light emitting diode 93 is disposed is preferably included in an isosceles triangle formed by each of the red light emitting diode 87 and the blue light emitting diode 89.
  • the light emitter module 91 shown in FIG. 3B is an example of the arrangement of the light emitting diodes described above.
  • FIG. 5 is a six-sided view of the light source 25 in the plant cultivation system 1 of FIG. 1, (a) front view, (b) rear view, (c) plan view, (d) bottom view, (e) left side view.
  • the figure and (f) right side view are represented.
  • the light source 25 includes a plurality of light emitter modules 91.
  • FIG. Figure 6 is an enlarged view of the adjacent light emitting element module 91 1 and 91 2 shown in FIG.
  • light module 91 1 and 91 2 are arranged mutually inverted.
  • light emitter modules 91 in the light source 25 and arranging a plurality of the light emitter modules 91, it is possible to further enhance the symmetry of light irradiation to the plant 11.
  • FIG. 7 is an overall perspective view of the plant cultivation system 1.
  • Fig.8 (a) is a side view when the plant cultivation system 1 is seen from the I side in FIG.
  • FIG.8 (b) is sectional drawing when the plant cultivation system 1 is seen from the II-II line in Fig.8 (a).
  • the plant cultivation system 1 includes a plurality of cultivation cells 3 that are partitioned spaces for growing plants, and a management room 5 that manages plant cultivation.
  • the plant cultivation system 1 is usually installed indoors. This is to reduce the influence on the outside cultivation environment such as sunlight and solar heat.
  • the cultivation cell 3 is partitioned by a wall 4 that blocks incident light and heat conduction from the outside.
  • a plurality of movable cultivation racks 7 for hydroponics are installed in the cultivation cell 3.
  • the cultivation rack 7 includes a cultivation shelf 9 over a plurality of stages.
  • a light source 25 is installed for each cultivation shelf 9, and the plant 11 is hydroponically cultivated on the cultivation shelf 9.
  • Water is supplied to the cultivation shelf 9 from the water supply port 31.
  • an air conditioner 15, a ventilation fan 17, a circulator 29 that generates a beam-like air current, and a humidity device 33 are provided in order to adjust the cultivation environment such as room temperature and humidity in the cultivation cell 3.
  • an air conditioner 15, a ventilation fan 17, a circulator 29 that generates a beam-like air current, and a humidity device 33 are provided in order to adjust the cultivation environment such as room temperature and humidity in the cultivation cell 3.
  • a temperature gradient can be easily formed in the cultivation cell 3 only by air blowing from the air conditioner 15.
  • the cultivation rack 7 has a caster 13 and a handle 27, and the grower can easily move the cultivation rack 7. Furthermore, the door 23 provided on the wall 4 is an example of the connecting portion 55, and the cultivation cell 3 communicates with another cultivation cell 3 through the door 23. The size of the door 23 is large enough to allow the cultivation rack 7 to pass through. In addition, this door 23 may be directly connected to the door 23 of another cultivation cell 3.
  • the management room 5 is provided with a personal computer 21 for managing the growth status of the plants 11 in the cultivation cell 3.
  • the management unit 77 is realized by the personal computer 21, the reception unit 79, the library 81, and the calculation unit 83.
  • the management room 5 communicates with the cultivation cell 3 through the door 23.
  • FIG. 9 is a schematic diagram showing an example of a cultivation rack in the plant cultivation system according to the present invention.
  • the cultivation rack 7 includes a plurality of cultivation shelves 9, and the plants 11 are hydroponically cultivated in the containers 37 in each cultivation shelf 9.
  • a light source 25 is installed for each cultivation shelf, and power is supplied from the AC adapter 39.
  • the LED controller 41 controls the amount of light emitted from these light sources 25 and the light emission pattern.
  • a glass door 43 is connected to the cultivation rack 7 via a connector 45, and the inside of the cultivation rack 7 can be observed while preventing the container 37 from dropping when the cultivation rack 7 is moved.
  • the air amount control unit 73 promotes plant growth by forcibly mixing air with the liquid fertilizer used as a fertilizer.
  • a minute hole through which air having a diameter of about 1 mm passes is provided in a portion where the liquid fertilizer flows into the container 37 and is exposed to the air.
  • a propeller that forcibly mixes air and liquid fertilizer is provided at a location closer to the container 37 than the container 37.
  • FIG. 10 is a schematic diagram showing a cooling facility for the light source 25 in the cultivation rack 7.
  • FIG. 11 is a schematic diagram showing a cooling mechanism of the light source 25 in the cultivation rack 7.
  • FIGS. 12A and 12B are a view from the front, (b) a cross-sectional view taken along line III-III, and a view from the back of the storage device 56 that promotes heat dissipation of the light emitting diode.
  • housing device 56 for accommodating the light-emitting diodes in the light source 25 an example of “receiving device” of the claims
  • a flow path 461 that is covered with copper tubes, aluminum frame 52 and is thermally connected via the heat sink body 54 (an aluminum block), the water flowing along the channel 46 1 to cool the accommodation tool 56.
  • the receiving device 56 includes a package 58, the electrodes 60 1 and 60 2, the chip 62 of the light emitting diode.
  • the chip 62 is thermally connected to a heat radiating portion 64 (an example of “heat radiating means” in the claims of the present application).
  • the heat radiating portion 64 radiates the heat of the chip 62 to the outside.
  • heat radiating portion 64 because it is connected aluminum frame 52 in thermal heat of the chip 62 becomes a to be cooled by the water in the flow channel 46 in one, and if the heat radiating portion 64 radiates heat into the air And is cooled efficiently.
  • the package 58 is made of a material having high heat dissipation, such as ceramic or PPA resin. Further, the inside of the package 58 is sealed by a sealing portion (an example of “sealing means” in the claims of the present application) having high transparency and excellent heat resistance, so that the chip 62 is protected from the outside air.
  • a sealing portion an example of “sealing means” in the claims of the present application
  • silicon resin or the like is used as the sealing portion.
  • the heat radiation part 64 is made of, for example, aluminum.
  • the water in the container 37 by obtaining heat from the water in the channel 46 2, it is easy to keep the water temperature in the container 37 to an appropriate temperature.
  • the container 37 of each cultivation shelf 9 is good also as what is supplied with water and liquid fertilizer by the large tank connected to the water supply port 31 which is not shown in FIG. 10, and the pump which is not shown in FIG. .
  • These tanks and pumps can be arranged under the rack 7 or can be installed in another place. By making it possible to vaporize the water in the tank, it is possible to supply cold water into the container 37, so that it is possible to control the water temperature in the container 37 to be lowered. In other words, without including a temperature controller costly, large tank, the pump and the flow path 46 2, it is possible to control the water temperature in the container 37 to rise and drop both.
  • the flow path 461 and the flow path 46 2 may be connected through any cultivation rack 9. At this time, one reservoir tank 48 and one pump 50 for supplying water to the flow path 46 are sufficient for the cultivation rack 7.
  • the water in the flow path 46 may be discharged after passing through the flow path 46 without being circulated, or a liquid other than water may be used.
  • the pump 50 may include a power source for driving the pump 50.
  • the light source 25 and the flow path 461 only need to be connected via a material having good thermal conductivity, and the aluminum frame 52, the heat sink body 54, and the heat radiating portion 64 are made of a material having high thermal conductivity other than aluminum. It may be used.
  • FIG. 13 is a schematic diagram illustrating the cultivation rack 93 in the plant cultivation system 1 according to the second embodiment.
  • 13A and 13B are a front view and a perspective view of the cultivation rack 93, respectively.
  • the cultivation rack 93 is a miniaturized version of the cultivation rack 7.
  • the cultivation rack 93 reflects the light by covering the side surface of the light source 94 that covers the inner surface of the cultivation rack 93 and reflects the light, and the light source 94 that is not covered by the reflection plate 95.
  • a cultivation shelf 97 having a culture medium for cultivating the plant 11.
  • the reflection plates 95 and 96 facilitate the realization of uniform and efficient light irradiation on the plant 11 by reflecting the light from the light source 94 irradiated on the inner surface of the cultivation rack 93 toward the plant 11.
  • the number of stages of the cultivation shelf 97 may be one when priority is given to downsizing the cultivation rack 93 or when growing tall plants. However, in order to efficiently cultivate the plant 11 in a limited space, it is preferable to have a plurality of stages as shown in FIG.
  • the size of the cultivation rack 93 and the cultivation shelf 97 can be flexibly set in accordance with the purpose of raising seedlings and the installation space. As an example of the size of the cultivation shelf 97, if the width is set to about 275 mm ⁇ depth of 330 mm, the cultivation rack 93 can be installed on a desk, but other sizes may be used.
  • the culture medium (not shown in FIG. 13) of the cultivation shelf 97 may be a sponge, a cell tray having a plurality of holes into which the plants 11 are inserted, or any kind such as rock wool.
  • a system in which pot seedlings are installed on the cultivation shelf 97 may be used.
  • the material of the cultivation shelf 97 itself is made of a material that does not allow water to pass through, such as vinyl chloride, and the bottom irrigation is possible by installing a culture medium thereon. This makes it easy to supply water to the plant 11.
  • the cultivation shelf 97 can be pulled out from the cultivation rack 93 together with the culture medium and the plant 11. Therefore, it is easy to replenish water and liquid fertilizer, and it is also easy to visually confirm the growth status of the plant 11.
  • the cultivation cell 3 may be used alone.
  • the cultivation system 1 can be easily expanded and reduced.
  • the wall 4 may be made of glass so that the state of cultivation can be observed from the outside.
  • the case where the plant cultivation system 1 is installed in a station premises is assumed.
  • the glass is a heat insulating glass.
  • using the circulator 29 to promote convection in the cultivation cell 3 controls the temperature and humidity in the cultivation cell 3. Therefore, it is preferable.
  • the cultivation cell 3 and the other cultivation cell 3 communicate with each other through a door 23 as a connecting portion 55 that is a connecting means.
  • a part or all of the wall 4 may be removable as the connecting portion 55.
  • a green light emitting diode may be used instead of the white light emitting diode 93.
  • a green light emitting diode By using a green light emitting diode, it becomes easy to obtain a light emission spectrum in a natural appearance under sunlight. Therefore, for example, light emission optimal for observation can be realized as in the case where the plant used for cooking is most attractively shown to customers in restaurants.
  • white light can be obtained by appropriately adjusting the balance of red, blue, and green as necessary.
  • the light control unit 57 is installed in each cultivation rack 7, one light control unit 57 may be installed in each cultivation cell 3 or each cultivation shelf 9.
  • the adjustment part 51 or the control part 53, or the observation part 61 you may install one in the cultivation cell 3, may install in each cultivation rack 7, and install it in each cultivation shelf 9. Also good.
  • the management room 5 is provided adjacent to the cultivation cell 3, it is only necessary that the observation data from the observation unit 61 can be received by the reception unit 79 of the management unit 77, and may be provided separately from the cultivation cell 3.
  • the cultivation rack 7 of Example 1 may include a reflector corresponding to the reflectors 95 and 96.
  • FIG. 15 is a six-sided view illustrating a product example of the light source cooling system 326 according to the present invention, in which (a) a front view, (b) a bottom view, (c) a rear view, (d) a right side view, (E) It is a left view.
  • the cooling system 326 includes a flow path 346 and a metal frame 352.
  • the channel 346 is designed to cool the two rows of light sources.
  • the channel 346 may cool three or more rows of light sources.
  • each accommodation tool in a light source may accommodate a some chip

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

 栽培環境を人工的に制御し、育成と観測とを両立する光源を備えた植物栽培システムを提供する。 植物を栽培する植物栽培システム(1)であって、仕切られた空間である栽培セル(3)と、植物の栽培を管理する管理部(5)を備え、栽培セル(3)は、移動可能なラックである栽培ラック(7)と、遮光部を備え、栽培ラック(7)は、栽培棚(9)と、光制御部とを備え、栽培棚は、複数の発光ダイオードを有する発光体モジュールの照射量を調整することにより植物に光を照射する光源と、発光体モジュールの照射の下で植物を観測して観測データを取得し、管理部に送信する観測手段とを備える。発光体モジュールは、第1発光ダイオードと、第2発光ダイオードと、第3発光ダイオードとを有し、それぞれ均一照射を可能とするように配置され、管理手段は、現在と過去の観測データとを比較して、植物の収穫日を予測する計算手段を備える。

Description

植物栽培システム
 本発明は、屋内で植物を栽培する植物栽培システムに関する。
 植物を栽培するためには、植物の種類や育成状況に合わせて栽培環境を適切に整えることが不可欠であり、そのための手段として様々な栽培施設が提案されている。
 例えば、外部環境の影響を遮断して人工的に栽培環境を作り、その中で植物を栽培する完全制御型の植物栽培が行われている。また、植物の育成状況を把握するために画像データを解析することも行われている(特許文献1参照)。
 図16は、特許文献1における植物栽培システム101の構成を示すブロック図である。植物栽培システム101は、栽培室103と管理室105とを備える。栽培室103において、遮光部147及び断熱部149が外部環境による栽培室103内の栽培環境への影響を遮断する。栽培する植物111に光を照射する光源125、栽培室103内の栽培環境を調整する調整部151、調整部151を制御する各種制御手段を備える制御部153が、栽培室103内の栽培環境を人工的に設定する。また、観測部161が植物111の育成状況を観測し、管理室105に送信する。管理室105が備える管理部177において、受信部179は、観測部161から受信した観測データをライブラリ181及び計算部183に転送する。ライブラリ181は、観測データをデータベースとして保管する。計算部183は、観測データを解析し、データ処理する。
 また、栽培する土地面積の有効利用のために、複数段の栽培棚を有する立体的な栽培施設を用いることも行われている(特許文献2参照)。
 図17は、特許文献2における植物栽培システム201の構成を示すブロック図である。植物栽培システム201は、固定式の栽培ラック207と管理室205とを備える。栽培ラック207は、複数段の栽培棚209と、調整部251と、制御部253と、観測部261とを備える。栽培ラック207は、立体的に栽培棚209を有しており、限られた土地面積を有効に利用することができる。
 さらに、植物の栽培のために人工的に作る栽培環境のうち、照射する光については赤色と青色の光が有効であることが知られている。本発明者は、実験に基づいて赤色と青色の適切な発光比率を見出し、それぞれの光をムラなく照射する発光体モジュールを提案している(特許文献3参照)。
特開2003-47340号公報 特開2000-209970号公報 特開2009-125007号公報
 人工的な栽培環境における植物の育成状況を観測するためには、植物の育成に適した光源を用いると共に、植物の観測についても太陽光の下で観測するのと同様の観測データが得られることが求められる。これまでの観測データの多くは太陽光の下で観測されたものであり、比較を可能とするためには照射条件を合わせる必要があるためである。
 しかし、特許文献1及び2には、植物の育成をムラなく実現する光源についても、植物の育成及び観測を両立させる光源についても記載も示唆もされていない。また、特許文献3に記載の光源は、植物の育成及び観測を両立させる光源については記載も示唆もされていない。
 また、特許文献1においては、観測部161及び管理部177は、植物の育成試験を目的として特定の栽培環境が特定の植物111の育成に与える影響を見出すための観測及び解析を行うものである。個々の植物の収穫時期を予測するための観測やデータ処理については記載も示唆もされていない。特許文献2には、観測部261が観測して管理部277に観測データを送信することは記載されているものの、観測データの処理については記載も示唆もない。
 以上のように、従来の植物栽培システムによっては、植物の栽培環境を人工的に完全に制御する植物栽培システムにおいて、植物の育成と観測を両立させることができなかった。また、植物の栽培環境を人工的に完全に制御する植物栽培システムにおける観測データを具体的に活用する手法は知られていない。
 ゆえに、本発明は、植物の栽培環境を人工的に完全に制御する植物栽培システムにおいて、育成と観測とを両立するのに適した光源を備え、栽培環境を完全に制御する植物栽培システムにおける植物の観測データを用いて収穫時期を予測可能な植物栽培システムを提供することを目的とする。
 請求項1に係る発明は、屋内で植物を栽培する植物栽培システムであって、前記植物を栽培するための仕切られた空間である栽培セルと、前記植物の栽培を管理する管理手段とを備え、前記栽培セルは、前記植物を栽培するための移動可能なラックである栽培ラックと、前記仕切られた空間への太陽光の入射を遮断する遮光手段を備え、前記栽培ラックは、前記植物を栽培する栽培棚と、前記植物に照射する光を制御する光制御手段とを備え、前記栽培棚は、前記光制御手段の制御の下で、複数の発光ダイオードを有する発光体モジュールの照射量を調整することにより前記植物に光を照射する光源と、前記発光体モジュールの照射の下で前記植物を観測して観測データを取得し、取得した前記観測データを前記管理部に送信する観測手段とを備え、前記発光体モジュールは、第1のスペクトルの光を発する1つの第1発光ダイオードと、前記第1発光ダイオードを中心とする第1円の円周上に配置され、第2のスペクトルの光を発するm(mは2以上の整数)個の第2発光ダイオードと前記第1発光ダイオードを中心とする第2円の円周上に配置され、第3のスペクトルの光を発するn(nは2以上の整数)個の第3発光ダイオードとを有し、前記第1のスペクトルと前記第2のスペクトルと前記第3のスペクトルとは互いに異なり、前記第2発光ダイオードは、前記第1発光ダイオードを始点として前記各第3発光ダイオードを通る半直線で分割された前記第1円のn個の弧のそれぞれに数が等しくなるように配置され、前記管理手段は、前記観測データを前記観測手段から取得する受信手段と、前記受信手段が取得した前記観測データを記憶するライブラリと、前記受信手段が取得した前記観測データと前記ライブラリが記憶している前記植物と同種の植物の過去の観測データとを比較して、前記植物の収穫日を予測する計算手段を備える。
 請求項2に係る発明は、請求項1記載の植物栽培システムであって、前記第1発光ダイオードは、白色又は緑色に発光するものであり、前記第2発光ダイオードは、3つ存在し、青色に発光するものであり、前記第3発光ダイオードは、3つ存在し、赤色に発光するものであり、前記3つの第2発光ダイオード及び前記3つの第3発光ダイオードは、それぞれ二等辺三角形を形成するように位置することを特徴とする。
 請求項3に係る発明は、請求項2記載の植物栽培システムであって、前記発光ダイオードを収容する収容器具をさらに備え、前記収容器具は、外部に放熱する放熱手段と、前記発光ダイオードを外気から保護する封止手段とを有し、前記第3発光ダイオードは、発光ピークが前記植物内のフィトクロームの吸収ピークと一致するものであり、前記発光ダイオードは、前記収容器具に収容されて前記放熱手段と熱的に接続されることを特徴とする。
 請求項4に係る発明は、請求項3記載の植物栽培システムであって、前記栽培ラック内にあり、前記植物を保持して水耕栽培を行うための容器と、前記発光ダイオードを冷却するための液体が流れる流路と、前記容器内の水の熱と前記流路内の液体の熱とを交換する液体間熱交換手段とをさらに備え、前記流路と前記放熱手段とは、熱的に接続されており、前記液体間熱交換手段が行う熱交換により、前記発光ダイオードを冷却しつつ、前記容器内の水温を保つことを特徴とする。
 なお、本願発明において、複数の発光ダイオードの発光パターンを制御するパターン選択手段と、前記複数の発光ダイオードのそれぞれの光量を制御する光量制御手段とを有する光制御手段を備え、前記パターン選択手段及び前記光量制御手段が、前記観測手段の観測のために、前記光源が照射する光を制御するようにしてもよい。
 また、本願発明において、第1発光ダイオードには、黄色又は/及び緑色の波長を含む白色発光ダイオードが含まれるようにしてもよい。さらに、黄色又は/及び緑色の波長を含む白色発光ダイオードは、赤色光源よりも小さい光量で発光体モジュールに組み込むようにしてもよい。これにより、第1発光ダイオードは、観測を主とするものであるが、観測を容易にするだけでなく、黄色光及び/又は緑色光が植物の育成に必要である場合に、コスト増加をなるべく抑えて、均一照射を維持したまま、育成上も大きな意義を有するようにすることができる。例えば、発芽期には赤色光のみを照射し、子葉展開期には赤色光と青色光を照射し、さらに本葉展開期には赤色光と青色光と白色光とを照射するといった、植物11の育成状況に応じて適切な照射を行うことが可能となる。
 さらに、植物の観測データを用いてより具体的に収穫時期を予測するため、植物の収穫時期を予測するための観測やデータ処理を行うために、前記観測手段が、前記植物の観測データである現在データを取得して前記計算手段に転送する観測し(観測ステップ)、前記計算手段が、前記植物と同種の植物の過去の観測データである過去データを前記ライブラリから呼び出し(呼出ステップ)、前記計算手段が、前記現在データと前記過去データを比較し(比較ステップ)、前記計算手段が、前記比較の結果から前記植物の収穫日を予測する(予測ステップ)ようにしてもよい。このような構成により、人工的に完全に制御された環境下で育成と観測の両立を可能とした光源を用いて、信頼性の高い観測データが得られるため、植物の栽培に習熟していない者でも客観的に収穫時期を予測可能となる。
 さらに、本願発明を、植物栽培システムにおける植物の育成方法や、コンピュータに育成方法を実行させるためのプログラムや、当該プログラムを記録したコンピュータ読み取り可能な記録媒体として捉えてもよい。
 さらに、植物栽培システムで植物を育てる方式は、水耕栽培でもよいし、水耕栽培において気体を強制的に植物に与えるいわゆる水気耕栽培でもよいし、土耕栽培であってもよい。また、培地として、泥炭から作ったピートモスを用いてもよいし、人造の鉱物繊維の1つであるロックウールなどその他の培地を用いてもよい。
 さらに、従来の植物栽培システムによっては、複数の植物の個々の育成状況に応じて理想的な栽培環境を容易に設定することができなかった。すなわち、栽培室で栽培する複数の植物の各育成状況に応じて栽培環境を変化させていくことが必要な場合、1つの栽培室101内で複数の植物111に対して複数の栽培環境を設定する必要が生じた場合には、1つの栽培室101内で区切りを設けることが通常の手段である。特許文献1には複数の栽培環境を容易に設定する具体的手法について記載されておらず、特許文献2においても、栽培ラック207は温度や湿度といった栽培環境について画一的であり、個々の植物のために理想的な栽培環境を設定することはできない。
 そこで、本願発明を、栽培セルを複数有し、各栽培セルは、仕切られた空間と当該栽培セル以外の他の栽培セルの仕切られた空間とを連結するための連結手段を備え、栽培ラックは、移動するための移動手段を備えるものとしてもよい。このような連結手段を備えることにより、栽培環境を人工的に完全に制御したまま、複数の植物の個々の育成状況に応じて理想的な栽培環境を容易に設定することができる。すなわち、大きな栽培セルを用意する代わりに栽培セルを複数設けて、栽培セル毎に異なる栽培環境を設定し、個々の植物の育成状況に応じて栽培ラックを異なる栽培セルに移動させることが可能となる。これにより、栽培する多様な植物の多様な育成状況に合わせて柔軟に栽培環境を変更することが可能となる。例えば、発芽期の植物は赤色光のみを照射する栽培セルに置く。続いて、子葉展開期を迎えた植物は赤色光と青色光を照射する栽培セルに移す。さらに、本葉展開期には赤色光と青色光と白色光(緑色光でも良い)とを照射する栽培セルに移す。このように、栽培セルから植物を出すことなく、育成状況に応じて適切な照射を行う栽培セルで栽培することが可能となる。
 さらに、従来の植物栽培システムによっては、栽培施設は、その形状を基準として設置場所が決定されるものであった。そのため、栽培施設を設置するためには、所定の広さの土地を用意することが必要であった。
 そこで、本願発明の栽培セルを組立・解体可能なものとしてもよい。ここで、組立及び分解の方式としては、プレハブ工法を用いて個々のセルの大きさを変更することとしてもよいし、所定の大きさの栽培セル3同士を結合・解離させる方式としてもよい。組立・解体可能なものとすることにより、様々な土地の面積及び/又は形状に合わせて栽培環境の最小単位である栽培セルのサイズを変更することが可能となる。これにより、例えば、狭い土地でも、栽培ラックの数を少なくして栽培セルを小さく設けることによって完全制御型の栽培環境下で植物を栽培することが可能となる。逆に、広い土地であっても、栽培ラックの数を多くして栽培セルを設けることも可能となる。すなわち、土地のサイズや形状に合わせて完全制御型の栽培施設を設けることが可能となる。よって、土地の面積及び/又は形状に合わせた栽培施設を設置することができ、さらに、栽培セルを設置する土地の拡大などの変更に伴い栽培セルを移動させることを容易にして、土地の有効利用をさらに促進することができる。
 本願の各請求項に係る発明によれば、植物の栽培環境を人工的に完全に制御する植物栽培システムである栽培セル内の光源は、同一の発光体モジュールにおいて育成のための発光パターンと観測のための発光パターンを実現することが可能となる。しかも、第2発光ダイオードは、第1発光ダイオードと第3発光ダイオードとを通る半直線が分割する第1円のn個の弧上に等しい数ずつ配置される。このとき、第3発光ダイオードを第2円の円周上で略等間隔に配置することにより、第1発光ダイオード、第2発光ダイオード、第3発光ダイオードをほぼ均一に配置した発光体モジュールとすることが可能となり、各発光ダイオードからムラなく光を照射することができる。したがって、植物の栽培環境を人工的に完全に制御する植物栽培システムにおいて、ムラのない光照射としつつ、育成と観測とを両立することが可能となる。
 また、本願の請求項2に係る発明によれば、育成の際は育成に適した赤色の発光ダイオードと青色の発光ダイオードを発光させる発光パターンとし、観測の際は観測に適した赤色の発光ダイオードと白色又は緑色の発光ダイオードを発光させる高演色性の発光パターンとすることにより、育成と観測の両立をさらに適切に行うことが可能となる。特に、人間の目にとって視感度が高い緑色の発光ダイオードを第1発光ダイオードとすることにより、太陽光の下での自然な見え方での発光スペクトルとすることが容易となる。したがって、飲食店内で本発明を応用した装置を設置した際に、来店客に対して、料理に用いる植物をより魅力的に見せることも容易となる。
 さらに、本願の請求項3に係る発明によれば、葉緑素内の色素タンパク室であるフィトクロームの吸収ピークと一致する発光ピークを有する赤色光を植物に高出力で照射することが可能となる。フィトクロームの吸収ピークは、660nmである。660nmを発光ピークとする本願の発光ダイオードを用いることにより、625nm~635nmを発光ピークとする従来の赤色発光ダイオードを用いる場合と比べて、発光ダイオードの消費エネルギーを削減し、植物に悪影響を及ぼす発熱を抑制することが可能となる。
 ここで、従来、3W級の高出力の赤色発光ダイオードは、625nmの発光ピークのものが主流であった。660nmの波長を要求する需要が認識されていなかったためである。また、3元系で製造されていた従来の高出力発光ダイオードは、技術的に660nmを発光ピークとするものを製造できなかった。
 一方、660nmを発光ピークとする4元系(AlGaInP)のチップが一部には製造されていたものの、20mW程度の小出力しか実現されていなかった。このように小出力では、植物を栽培するための均一照射を実現するために数百数千ものチップを必要とする。しかし、1つ1つのチップに故障リスクが存在するため、チップの数が増えるとそれだけデバイス全体としての故障リスクが高まることとなっていた。
 しかも、高出力のチップを製造した場合、発熱量が増すことによりチップが受ける熱的ダメージが大きく、寿命が短くなる。そのため、故障リスクがさらに高まることとなっていた。
 そこで、本願の請求項3に係る発明により、発光ダイオードを外気から保護しつつ効率よく外部に放熱することが可能である収容器具に発光ダイオードを収容することが可能となり、例えば0.5mm角の大きさで出力が3W級のチップを用いることが可能となる。小出力の発光ダイオードを用いる場合と比べて、少数の発光ダイオードで十分な出力が得られるため、発光ダイオードの故障リスクを低減することも可能となる。
 さらに、本願の請求項4に係る発明によれば、本願植物栽培システムを用いて水耕栽培する場合において、放熱手段と流路に流れる液体とが熱的に接続される。このため、放熱手段が空気中に放熱する場合と比べて、効率よく放熱することが可能となる。また、液体間熱交換手段が、流路内の液体と容器内の水との液体間で熱交換を行うため、流路内の液体を空冷する場合と比べて速やかに流路内の液体を冷却することが可能となる。よって、発光ダイオードの冷却がさらに容易となる。それと同時に、発光ダイオードからの発熱を水耕栽培の容器内の水温維持に転用することが可能となる。
実施の形態に係る植物栽培システム1の構成を示すブロック図である。 図1の植物栽培システムにおいて、植物の育成状況を観測して収穫時期を判断するフローを示す。 (a)従来の発光体モジュールと(b)図1の植物栽培システムにおける発光体モジュールを示す図である。 実施の形態に係る赤色発光ダイオードの発光特性を示す図である。 図1の植物栽培システムにおける光源の六面図である。 図5に示す隣接した発光体モジュールの拡大図である。 実施例1における植物栽培システムの全体斜視図である。 図7の植物栽培システムの側面図及び断面図である。 図7の植物栽培システムにおける栽培ラックを示す模式図である。 図9の栽培ラックにおける光源の冷却設備を示す模式図である。 図9の栽培ラックにおける光源の冷却機構を示す模式図である。 発光ダイオードの放熱を促進する収容器具56の模式図である。 実施例2に係る植物栽培システムにおける栽培ラックを示す模式図である。 本願発明に係るさらに別の栽培ラックの製品例を示す六面図であって、(a)正面図、(b)平面図、(c)左側面図である。 本願発明に係る光源の冷却システムの製品例を示す六面図であって、(a)正面図、(b)底面図、(c)背面図、(d)右側面図、(e)左側面図である。 従来の特許文献1における植物栽培システムの構成を示すブロック図である。 従来の特許文献2における植物栽培システムの構成を示すブロック図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下では、特に断らない限り水耕栽培を例として挙げるが、栽培方式は水耕栽培に限定されるものではなく、土耕栽培でもよいし、ピートモス、ロックウールなどその他の培地を用いた栽培方式であってもよい。
 まず、図1を参照して、本発明に係る植物栽培システムの概要を説明する。図1は、本発明に係る植物栽培システムの構成を示すブロック図である。
 植物栽培システム1は、複数の栽培セル3と、管理室5とを備える。栽培セル3は、複数の栽培ラック7と、遮光手段である遮光部47と、断熱手段である断熱部49と、栽培セル3内の栽培環境を調整する調整手段である調整部51と、栽培環境の調整を制御する制御手段である制御部53と、複数の栽培セル3の仕切られた空間を連結する連結手段である連結部55を備える。
 栽培セル3は、例えば、プレハブ工法を用いて個々のセルの大きさを変更したり、所定の大きさの栽培セル3同士を結合・解離させたりすることにより、組立及び分解が可能である。そのため、栽培ラック7の数に合わせてサイズを変更することができる。また、必要に応じて栽培セル3を容易に移動することもできる。
 栽培ラック7は、栽培棚9を複数の段として有し、光制御手段である光制御部57と、移動手段である移動部59とを備える。栽培棚9は、植物11と、植物11を入れる容器37と、植物11に光を照射する光源25と、液体間で熱を交換させる液体間熱交換部44(本願請求項の「液体間熱交換手段」の一例)と、光源を冷却する液体が流れる流路46と、植物11の育成状況を観測して管理室5に観測データを送信する観測部61とを備える。光制御部57は、光源25が照射する光の発光パターンを制御するパターン選択部63と、光源25が照射する光の光量を制御する光量制御部65を備える。
 制御部53は、栽培セル3内の室温及び容器37内の水温を制御する温度制御部67と、栽培セル3内の湿度を制御する湿度制御部69と、容器37内の水量を制御する水量制御部71と、容器37内の水中の空気量を制御する空気量制御部73と、容器37内の水中の肥料量を制御する肥料量制御部75を備える。
 管理室5は、栽培セル3における植物の栽培を管理する管理部77を備える。管理部77は、複数の栽培セルのそれぞれの観測部61から観測データを取得する受信部79と、受信部79が取得した観測データを記憶するライブラリ81と、観測された植物の収穫日を予測する計算部83を備える。
 遮光部47と断熱部49と調整部51と光源25と制御部53と光制御部57により、栽培棚9にて水耕栽培される植物11の栽培環境は完全に人工的に制御される。しかも、複数の栽培セル3において異なる栽培環境として、栽培ラック7を動かして連結部を通って異なる栽培セルへと移動させることにより、植物11を適宜異なる栽培環境の下で栽培することが容易である。
 植物11を異なる栽培環境に移す時期や収穫の時期を適切に判断するためには、植物11の育成状況を的確に把握することが必要である。そこで、以下では、植物栽培システム1において、植物の育成状況を観測して収穫日を予測する処理について説明する。
 図2は、図1の植物栽培システム1において、植物11の育成状況を観測して収穫時期を予測するフローを示す図である。
 ステップST1において、光源25が光制御部57のパターン選択部63の制御の下、観測用の発光パターンにて植物11を照射する。続いて、ステップST2において、観測部61が植物11の現在の観測データ(以下、「現在データ」という)を取得する。
 ここで、タンパク質によっては特定の光を吸収するものがある。本実施例に係る光源25は、赤、青、白(又は緑)の各種の光のON/OFFだけでも全く光を照射しない場合を除いて7パターンの光照射が可能である。それぞれ植物11が有するタンパク質の分布に応じて異なる写真を撮影可能である。
 なお、発光色のON/OFFによるパターンの他にも、パルス幅によるパターニングも可能である。パルス幅で明るさを制御する方式をPWM(pulse wise modulation)制御方式という。8ビット制御の場合、同色光、光強度一定であっても2=256通りの点灯パターンが可能であり、植物ごとに最適な光照射パターンを実現することが可能となる。
 ステップST3において、観測部61が現在データを管理部77の受信部79へと送信する。現在データを受信した受信部79は、現在データをライブラリ81へ記憶させ、計算部83へ転送する。続いてステップST4において、計算部83は、観測対象の植物11と同種の植物の過去の観測データ(以下、「過去データ」という)をライブラリ81から呼び出す。過去データには植物11と同種の植物に関する過去の播種から収穫までの観測データが含まれている。ステップST5において、計算部83は、現在データと、過去データとを比較する。この比較により、現在データにおける植物11の形状や色や大きさといった形態が過去データにおいて播種から何日目の形態とがほぼ一致しているかが特定される。比較結果から過去データにおける何日目の形態に相当するかが特定されれば、ステップST6において、現在データにおける植物11の収穫日を過去データにおける収穫日から逆算することにより予測してフローを終了する。
 上記の観測・予測フローを経ることにより、例えば「ポリフェノールが葉っぱの表面に多く発現してきているので、5日後には収穫できる」といった判断が可能となる。すなわち、非破壊検査によって植物11の収穫時期が予測できるものであり、習熟度の低い生産者でも、従来は暗黙知であった収穫時期の予測を高い確率で行うことが可能となる。
 ここで、図1の植物栽培システム1において、育成用の発光パターンと観測用の発光パターンを照射する光源25について図3を用いて説明する。図3は、従来の発光体モジュールと本発明に係る植物栽培システムにおける発光体モジュールとを示す図である。図3(a)は、本願発明者の意匠権(登録意匠第1353556号)に係る発光モジュールを示す図である。図3(b)は、本発明に係る発光体モジュールを示す図である。
 図3(a)における発光体モジュール85において、赤色光を発する赤色発光ダイオード87が青色光を発する青色発光ダイオード89の周囲に配置されていることにより、赤色光及び青色光ともに、植物11に対してムラのない照射が可能となるが、観測のための発光パターンは考慮されていなかった。
 図3(b)における本発明に係る植物栽培システム1における発光体モジュール91において、新たに観測のための発光ダイオードとして白色発光ダイオード93が追加されている。白色(又は緑色)発光ダイオード93を単に従来の発光体モジュール85に付加した構成と比較して、観測のための白色(又は緑色)光を植物11の真上から照射することが可能となる。
 光制御部57のパターン選択部63及び光量制御部65の制御により、育成の際は例えば赤色発光ダイオード87及び青色発光ダイオード89を照射する発光パターンとするとよい。観測の際は、太陽光の下での観測に近い観測となる光(高演色性の光)とするために、例えば赤色発光ダイオード87及び白色(又は緑色)発光ダイオード93を照射する発光パターンとするとよい。
 ここで、育成のためには赤色光の光量が青色光の光量の3倍とすることが好ましい。また、高演色性の光とするためには、赤色光の光量を白色(又は緑色)光の光量の10~15%とすることが好ましい。
 また、図4を参照して、出願人が開発した赤色発光ダイオード87の特性について以下に述べる。図4は、出願人が開発した赤色発光ダイオードの(a)発光スペクトル、(b)指向性、(c)電流‐温度特性、(d)出力‐電流特性、(e)電流‐電圧特性、(f)相対出力‐温度特性を示す図である。
 育成に用いられる光は、植物の葉緑素が有する色素タンパクの吸収ピークにできるだけ一致していることが望ましい。しかし、従来、赤色発光ダイオード87としては、625nm~635nmのものしか存在しなかった。
 そこで、出願人は、葉緑素が有する色素タンパクであるフィトクロームの吸収ピーク(660nm)に一致する波長の赤色発光ダイオード87を開発した。図4(a)に示すように、この赤色発光ダイオード87の発光ピークは、660nmにある。この赤色発光ダイオード87を用いることにより、赤色発光ダイオード87における消費エネルギーを削減し、植物に悪影響を及ぼす発熱を抑制する等により、さらに効率よく植物11を栽培することが可能となる。
 また、図4(b)に示すように、この赤色発光ダイオード87の指向性は広く、植物11に対して均一な照射とすることが容易である。図4(c)に示すように、室温程度において実用に耐えうる。図4(d)に示すように、電流に対する出力の線形性が良い。
 さらに、図4(e)に示すように、低電圧での使用が可能である。図4(e)には、300mWまでしか記載していないが、1000mA程度の電流を流すことが可能であり、3W級の光を出力することが可能である。このように高出力の赤色発光ダイオード87を用いることにより、小出力の発光ダイオードを用いる場合と比べて、少数の発光ダイオードで十分な出力が得られるため、発光ダイオードの故障リスクを低減することも可能となる。
 さらに、図4(f)に示すように、室温付近での温度に対する出力はほぼ一定であり、安定した発光を実現することが可能である。
 なお、黄色光や緑色光が植物11の育成に必要であるとする説がある。そこで、黄色発光ダイオードや緑色発光ダイオードを発光体モジュールに組み込む場合を考える。コストパフォーマンスを考えると光の種類が増えた分だけ他の色の発光ダイオードの数を減らすこととなる。結果として、植物11の全体に光が届かなくなってしまい、植物11への均一照射が困難となる。
 一方、近年の研究から黄色や緑色の光は、シグナルとして存在することが重要であり、光量が問題ではないことが示唆されている。したがって、黄色や緑色の波長を含む白色発光ダイオード93を赤色光源よりも小さい光量で発光体モジュールに組み込むことにより、均一かつ効率的な光源を実現できる。すなわち、観測を主な目的とする白色発光ダイオード93は、育成上も大きな意義が存在する。例えば、発芽期には赤色光のみを照射し、子葉展開期には赤色光と青色光を照射し、さらに本葉展開期には赤色光と青色光と白色光とを照射するといった、植物11の育成状況に応じて適切な照射を行うことが可能である。
 上記のように、本実施例の発光体モジュール91は、適切な光量に設定した赤、青、白の3種類のみの発光ダイオードを用いることで、育成と観測を両立することに加えて、いずれの発光パターンの場合も、均一な照射を可能とした光源である。
 さらに、従来の発光体モジュール85と同様に、発光ダイオード(白色(又は緑色)発光ダイオード93)の周囲に二等辺三角形を構成する発光ダイオード(青色発光ダイオード89)を配置し、さらにその周りに別の二等辺三角形を構成する発光ダイオード(赤色発光ダイオード87)を配置する構成とした。同色の発光ダイオード素子間の距離をそれぞれとりつつ、異色の発光ダイオード素子との関係においても対称的に配置されているため、均一な光照射を図ることができる。
 なお、発光体モジュール91からの均一な光照射を実現するために、発光ダイオードの配置の対称性を高めることが望ましい。上記のように、二等辺三角形を構成する配置は対称性を高めた配置の一例である。また、発光体モジュール91において、赤色発光ダイオード87を白色発光ダイオード93を中心とする円(「赤円」とする。本願請求項の「第1円」の一例)の円周上に配置し、かつ、青色発光ダイオード89も白色(又は緑色)発光ダイオード93を中心とする円(「青円」とする。本願請求項の「第2円」の一例)の円周上に配置することが考えられる。さらに、青色発光ダイオード89が適度に分散される配置として、例えば白色(又は緑色)発光ダイオード93を始点として赤色発光ダイオード87を通る半直線で分割された青円の孤に1つずつ配置するとよい。赤色発光ダイオード87についても、同様に配置するとよい。また、白色(又は緑色)発光ダイオード93が配置される場所は、赤色発光ダイオード87及び青色発光ダイオード89のそれぞれが構成する二等辺三角形に含まれることが好ましい。図3(b)に示す発光体モジュール91は、上記に述べた発光ダイオードの配置の一例となっている。
 続いて、光源25の構成を図5を用いて説明する。図5は、図1の植物栽培システム1における光源25の六面図であり、(a)正面図、(b)背面図、(c)平面図、(d)底面図、(e)左側面図、(f)右側面図を表す。図5(a)に示すように、光源25は、発光体モジュール91を複数有する。
 さらに、光源25における発光体モジュール91の配置について、図6を用いて説明する。図6は、図5に示す隣接した発光体モジュール91及び91の拡大図である。
 図6に示すように、発光体モジュール91及び91は、互いに反転して配置されている。このように、光源25に発光体モジュール91を交互に反転させて複数配置することにより、植物11への光照射の対称性をさらに高めることが可能である。
 以下では、植物栽培システム1の具体的な構成について説明する。まず、図7及び図8を用いて実施例1に係る植物栽培システム1の全体像について概説する。
 図7は、植物栽培システム1の全体斜視図である。図8(a)は、植物栽培システム1を図7におけるI側から見たときの側面図である。図8(b)は、植物栽培システム1を図8(a)におけるII‐IIラインから見たときの断面図である。
 植物栽培システム1は、植物を栽培するための仕切られた空間である複数の栽培セル3と、植物の栽培を管理する管理室5とを備える。植物栽培システム1は、通常は屋内に設置される。太陽光や太陽熱といった外部からの栽培環境への影響を軽減するためである。
 栽培セル3は、外部からの入射光及び熱伝導を遮断する壁4で仕切られている。栽培セル3内には、移動可能な水耕栽培用の栽培ラック7が複数設置されている。栽培ラック7は、栽培棚9を複数の段にわたって備えている。栽培棚9ごとに光源25が設置されており、この栽培棚9にて植物11が水耕栽培される。栽培棚9へは給水口31から水が供給される。栽培セル3内の室温や湿度といった栽培環境を調整するために、エアコン15、換気扇17、ビーム状の気流を生じさせるサーキュレータ29、湿度器33が設けられている。エアコン15からによる送風のみでは栽培セル3内に温度勾配ができやすい。しかし、サーキュレータ29が気流を生じさせて栽培セル3内で対流を起こすことで1つの栽培セル内の室温や湿度を一定に保つことが容易となる。なお、図8(b)では簡便のために管理室5に近い方のサーキュレータ29の図示を省略している。また、栽培セル3内での作業時のために照明19が設けられている。栽培セル3内の栽培環境を調整する各種調整手段を制御するためにコントロールパネル35が備えられており、栽培セル3内の栽培環境を完全に制御することが可能である。観測部61は、本実施例では図示されていないが、ビデオカメラなどの撮影機器を用いて実現できる。ビデオカメラのような撮影機器は、植物を観測できる限り栽培棚ごと、栽培ラックごと、栽培セルごとのいずれに設置してもよい。
 栽培ラック7はキャスター13及び取っ手27を有しており、栽培者は栽培ラック7を簡単に移動させることが可能である。さらに、壁4に設けられた扉23は、連結部55の一例であり、栽培セル3は、この扉23を介して別の栽培セル3とも通じている。この扉23のサイズは、栽培ラック7が通り抜けられるだけの大きさである。なお、この扉23は、他の栽培セル3の扉23と直接連結するものであってもよい。
 管理室5には、栽培セル3内の植物11の育成状況を管理するためのパソコン21が設置されている。本実施例において管理部77は、受信部79もライブラリ81も計算部83もパソコン21で実現されている。管理室5は、扉23を介して栽培セル3と通じている。
 続いて、図9を用いて栽培ラック7について、さらに説明する。図9は、本発明に係る植物栽培システムにおける栽培ラックの一例を示す模式図である。
 栽培ラック7は、複数段の栽培棚9を備え、各栽培棚9において植物11が容器37にて水耕栽培されている。栽培棚毎に光源25が設置されており、ACアダプタ39から電源を供給されている。これらの光源25から照射される光の光量や発光パターンは、LEDコントローラ41が制御する。栽培ラック7には、ガラス扉43が接続具45を介して接続されており、栽培ラック7内を観察可能としつつ、栽培ラック7の移動時における容器37の落下を防いでいる。
 ここで、水気耕栽培と呼ばれる栽培方法について説明する。空気量制御部73が、肥料として用いる液肥と共に空気を強制的に混入させることにより、植物の成長を促進する。液肥に空気を強制的に混入させるために、液肥を容器37に流入させるパイプに空気に曝されている部分に直径1mm程度の空気が通り抜けられる微小孔を設けられており、パイプ内の微小孔よりも容器37に近い箇所に空気と液肥を強制的に混ぜるプロペラが備えられている。
 続いて、図10、図11及び図12を用いて栽培ラック7が備える機能について、さらに説明する。図10は、栽培ラック7における光源25の冷却設備を示す模式図である。図11は、栽培ラック7における光源25の冷却機構を示す模式図である。図12は、発光ダイオードの放熱を促進する収容器具56の(a)正面からみた図、(b)III-III線断面図、(c)背面からみた図である。
 図10に示すように、栽培ラック7は、水が流れる流路46(本願請求項の「流路」の一例)と、流路46に水を供給するリザーバタンク48と、流路46内の水を移動させるポンプ50とを備える。流路46は、光源25と接する部分の流路46と、容器37内の水中を通る部分である流路46とに分けられる。流路46及び流路46は流路46内の水が移動可能であるように接続されている。また、容器37、流路46、46、リザーバタンク48及びポンプ50は、図10中に破線で示す栽培棚9ごとに設置されている。流路46は、液体間熱交換部44を兼ねる。
 ここで、図11に示すように、光源25内の発光ダイオードを収容する収容器具56(本願請求項の「収容器具」の一例)と銅管で覆われた流路46とは、アルミニウムフレーム52及びヒートシンク本体54(アルミニウムブロック)を介して熱的に接続されており、流路46の内部に流れる水が収容器具56を冷却する。
 また、図12(a)を参照して、収容器具56は、パッケージ58と、電極60及び60と、発光ダイオードのチップ62とを備える。図12(b)に示すように、チップ62は、放熱部64(本願請求項の「放熱手段」の一例)と熱的に接続されている。さらに、図12(c)に示すように、放熱部64は、外部にチップ62の熱を放射する。
 放熱部64は、アルミニウムフレーム52と熱的に接続されているため、チップ62の熱は、流路46内の水によって冷却されることとなり、放熱部64が空気中に放熱する場合と比べて効率よく冷却される。
 なお、パッケージ58は、例えばセラミックやPPA樹脂といった放熱性の高い材質で作られる。また、パッケージ58内は、透明度が高く、耐熱性に優れた封止部(本願請求項の「封止手段」の一例)により封止されてチップ62が外気から保護されている。封止部としては、例えばシリコン樹脂等が用いられる。放熱部64は、例えばアルミニウムからなる。
 光源25によって温められた流路46内の水は、流路46へと移動する。流路46内の水は、容器37内の水と銅管を通じて熱交換を行って冷却される。流路46は、水冷されることにより、空冷される場合よりも速やかに冷却される。冷却された流路46内の水は、再び光源25を冷却することが可能となる。流路46にはリザーバタンク48から水が供給されるが、冷水を使わずとも、水道水を流すことで十分に光源25を冷却し続けることが可能である。そのため、水を冷やすための設備コストを軽減することが可能となる。流路46内の水は、一定時間循環させた後、水温が高くなったときに交換することとすればよい。
 一方、容器37内の水は流路46内の水から熱を得ることにより、容器37内の水温を適温に保つことが容易となる。
 なお、各栽培棚9の容器37には、図10に示されていない給水口31に接続された大型のタンク及び図10に示されていないポンプにより水、液肥が供給されるものとしてもよい。このタンク及びポンプは、ラック7の下に配置することもできるし、別の場所に設置することもできる。このタンク内の水を気化可能とすることにより、容器37内に冷えた水を供給可能となるため、容器37内の水温を低下させる制御も可能となる。すなわち、コストのかかる水温制御装置を備えずとも、大型のタンク、ポンプ及び流路46により、容器37内の水温を上昇・低下共に制御することが可能となる。
 また、流路46及び流路46は、全ての栽培棚9を通して接続されていてもよい。このとき、流路46に水を供給するリザーバタンク48及びポンプ50は、栽培ラック7に1つあれば十分である。
 さらに、流路46内の水は、循環させずに一度流路46を通った後に排出されることとしてもよいし、水以外の液体を用いてもよい。
 さらに、ポンプ50は、ポンプ50を駆動するための電源を備えるものであってもよい。
 さらに、光源25と流路46とは、熱伝導のよい物質を介して接続されていればよく、アルミニウムフレーム52、ヒートシンク本体54及び放熱部64は、アルミニウム以外の熱伝導性の高い物質を用いてもよい。
 続いて、図13を参照して、実施例1とは異なる形態の栽培ラック93について説明する。図13は、実施例2に係る植物栽培システム1における栽培ラック93を示す模式図である。図13(a)及び(b)は、それぞれ栽培ラック93の正面図及び斜視図である。
 栽培ラック93は、栽培ラック7を小型化したものである。栽培ラック93は、光源25を小型化した光源94と、栽培ラック93の内面を覆って光を反射する反射板95と、反射板95に覆われていない光源94の側面を覆って光を反射する反射板96と、植物11を栽培するための培地を有する栽培棚97とを備える。
 反射板95及び96は、栽培ラック93の内面に照射された光源94からの光を植物11に向けて反射することにより、植物11への均一かつ効率的な光照射の実現を容易とする。
 栽培棚97の段数は、栽培ラック93の小型化を優先する場合や、背の高い植物を育てる場合には一段としてもよい。しかし、限られたスペースに効率よく植物11を栽培するためには、図13に示すように複数の段数とすることが好ましい。ここで、栽培ラック93及び栽培棚97のサイズは、育苗目的や設置スペースに合わせて柔軟に設定できる。栽培棚97のサイズの例として、幅275mm×奥行330mm程度に設定すれば栽培ラック93を机上にも設置可能となるが、他のサイズとしてもよい。
 また、栽培棚97が有する培地(図13には示していない)は、スポンジでもよいし、植物11が入る複数の穴を有するセルトレーを用いてもよいし、ロックウールなど種類を問わない。栽培棚97の上にポット苗を設置する方式でもよい。
 栽培棚97自体の素材は、例えば塩化ビニルのような水を通さない材質からなり、この上に培地を設置することで底面潅水が可能である。このことにより、水を植物11に補給することが容易となる。また、栽培棚97は培地及び植物11と共に栽培ラック93から引き出すことが可能である。したがって、水や液肥を補給することが容易であり、目視で植物11の生育状況を確認することも容易である。
 なお、上記実施例において、植物栽培システム1は、屋内に設置されるとしたが、遮光部47及び断熱部49が栽培セル3への入射光及び熱伝導を遮断する限り、屋外に設置してもよい。
 また、栽培セル3は、単独で用いるとしてもよい。本発明に係る栽培セル3は、単独で用いることができることを前提とし、容易に栽培システム1の拡張及び縮小可能である。
 さらに、栽培セル3は、屋内に設置されて入射光の植物11への影響が無視できる程度に小さい場合、壁4をガラスで構成して外部から栽培の様子を観察可能であるとしてもよい。例えば、駅構内に植物栽培システム1を設置する場合を想定する。壁4の1つの面をガラスで構成して通行人から植物が栽培される様子が観察可能とすることにより、自然に恵まれた駅としてイメージ向上を図ることも可能である。このような場合、栽培セル3の外部の気温が栽培セル3内の栽培環境に与える影響を軽減するために、ガラスを断熱ガラスとすることが望ましい。また、ガラス付近はどうしても栽培セル3内の室温が変化しやすいことが想定されるため、サーキュレータ29を用いて栽培セル3内の対流を促進することが栽培セル3内の温度・湿度を制御するために好ましい。
 さらに、栽培セル3と別の栽培セル3とは、連結手段である連結部55としての扉23を介して通じているとした。しかし、栽培セルごとに異なる栽培環境を設定する必要がなく、単純に栽培セル3を拡張する目的で足りる場合、連結部55として壁4の一部又は全部が取り外し可能であるとしてもよい。
 さらに、白色発光ダイオード93の代わりに、緑色発光ダイオードを用いることとしてもよい。緑色発光ダイオードを用いることにより、太陽光の下での自然な見え方での発光スペクトルとすることが容易となる。したがって、例えば飲食店内で来店客に対して料理に用いる植物を最も魅力的に見せる場合のように、観測に最適な発光を実現することができる。また、必要に応じて、赤、青、緑のバランスを適切に調整することにより、白色光を得ることも可能である。
 さらに、光制御部57を各栽培ラック7に設置するとしたが、栽培セル3に1つ設置するとしてもよいし、各栽培棚9に設置するとしてもよい。同様に、調整部51又は制御部53又は観測部61についても、栽培セル3に1つ設置するとしてもよいし、各栽培ラック7に設置するとしてもよいし、各栽培棚9に設置するとしてもよい。
 さらに、管理室5を栽培セル3と隣接して設けるとしたが、観測部61からの観測データが管理部77の受信部79で受信できればよく、栽培セル3と隔離して設けてもよい。
 さらに、実施例1の栽培ラック7は、反射板95及び96に相当する反射板を備えるものとしてもよい。
 さらに、本願発明に係る栽培ラックは、図14に示すものであってもよい。図14は、本願発明に係るさらに別の栽培ラック307の製品例を示す六面図であって、(a)正面図、(b)平面図、(c)左側面図である。図14(c)に示すように、栽培ラック307は、リザーバタンク348と、それに接続されたポンプ350を備える。ここで、ポンプ350は、ポンプ350を駆動するための電源を備えるものであってもよい。
 さらに、本願発明に係る光源の冷却システムは、図15に示すものであってもよい。図15は、本願発明に係る光源の冷却システム326の製品例を示す六面図であって、(a)正面図、(b)底面図、(c)背面図、(d)右側面図、(e)左側面図である。図15(a)に示すように、冷却システム326は、流路346と金属フレーム352とを備える。また、流路346は、2列の光源を冷やすように設計されている。流路346は、3列以上の光源を冷やすものであってもよい。また、光源における各収容器具は、複数のチップを収容するものであってもよい。
 1 植物栽培システム、3 栽培セル、7 栽培ラック、9 栽培棚、25 光源、44 液体間熱交換部、46 流路、47 遮光部、56 収容器具、57 光制御部、59 移動部、63 パターン制御部、64 放熱部、65 光量制御部、77 管理部、79 受信部、81 ライブラリ、83 計算部、87 赤色発光ダイオード、89 青色発光ダイオード、91 発光体モジュール、93 白色発光ダイオード

Claims (4)

  1.  屋内で植物を栽培する植物栽培システムであって、
     前記植物を栽培するための仕切られた空間である栽培セルと、前記植物の栽培を管理する管理手段とを備え、
     前記栽培セルは、
      前記植物を栽培するための移動可能なラックである栽培ラックと、
      前記仕切られた空間への太陽光の入射を遮断する遮光手段を備え、
      前記栽培ラックは、
       前記植物を栽培する栽培棚と、
       前記植物に照射する光を制御する光制御手段とを備え、
       前記栽培棚は、
        前記光制御手段の制御の下で、複数の発光ダイオードを有する発光体モジュールの照射量を調整することにより前記植物に光を照射する光源と、
        前記発光体モジュールの照射の下で前記植物を観測して観測データを取得し、取得した前記観測データを前記管理部に送信する観測手段とを備え、
        前記発光体モジュールは、
         第1のスペクトルの光を発する1つの第1発光ダイオードと、
         前記第1発光ダイオードを中心とする第1円の円周上に配置され、第2のスペクトルの光を発するm(mは2以上の整数)個の第2発光ダイオードと
         前記第1発光ダイオードを中心とする第2円の円周上に配置され、第3のスペクトルの光を発するn(nは2以上の整数)個の第3発光ダイオードとを有し、
         前記第1のスペクトルと前記第2のスペクトルと前記第3のスペクトルとは互いに異なり、
     前記第2発光ダイオードは、前記第1発光ダイオードを始点として前記各第3発光ダイオードを通る半直線で分割された前記第1円のn個の弧のそれぞれに数が等しくなるように配置され、
     前記管理手段は、
      前記観測データを前記観測手段から取得する受信手段と、
      前記受信手段が取得した前記観測データを記憶するライブラリと、
      前記受信手段が取得した前記観測データと前記ライブラリが記憶している前記植物と同種の植物の過去の観測データとを比較して、前記植物の収穫日を予測する計算手段を備える、
    植物栽培システム。
  2.  前記第1発光ダイオードは、白色又は緑色に発光するものであり、
     前記第2発光ダイオードは、3つ存在し、青色に発光するものであり、
     前記第3発光ダイオードは、3つ存在し、赤色に発光するものであり、
     前記3つの第2発光ダイオード及び前記3つの第3発光ダイオードは、それぞれ二等辺三角形を形成するように位置することを特徴とする、請求項1記載の植物栽培システム。
  3.  前記発光ダイオードを収容する収容器具をさらに備え、
     前記収容器具は、
      外部に放熱する放熱手段と、
      前記発光ダイオードを外気から保護する封止手段とを有し、
     前記第3発光ダイオードは、発光ピークが前記植物内のフィトクロームの吸収ピークと一致するものであり、
     前記発光ダイオードは、前記収容器具に収容されて前記放熱手段と熱的に接続されることを特徴とする、請求項2記載の植物栽培システム。
  4.  前記栽培ラック内にあり、前記植物を保持して水耕栽培を行うための容器と、
     前記発光ダイオードを冷却するための液体が流れる流路と、
     前記容器内の水の熱と前記流路内の液体の熱とを交換する液体間熱交換手段とをさらに備え、
     前記流路と前記放熱手段とは、熱的に接続されており、
     前記液体間熱交換手段が行う熱交換により、前記発光ダイオードを冷却しつつ、前記容器内の水温を保つことを特徴とする、請求項3記載の植物栽培システム。
PCT/JP2010/071634 2009-12-03 2010-12-03 植物栽培システム WO2011068182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800631121A CN102740681B (zh) 2009-12-03 2010-12-03 植物栽培系统
HK13104600.9A HK1177099A1 (en) 2009-12-03 2013-04-16 Plant cultivation system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-275103 2009-12-03
JP2009275103 2009-12-03
JP2010-162591 2010-07-20
JP2010162591 2010-07-20

Publications (1)

Publication Number Publication Date
WO2011068182A1 true WO2011068182A1 (ja) 2011-06-09

Family

ID=44115028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071634 WO2011068182A1 (ja) 2009-12-03 2010-12-03 植物栽培システム

Country Status (4)

Country Link
JP (2) JP5531934B2 (ja)
CN (1) CN102740681B (ja)
HK (1) HK1177099A1 (ja)
WO (1) WO2011068182A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059350A (ja) * 2012-12-26 2013-04-04 Sharp Corp 植物栽培用の発光装置
JP2013078336A (ja) * 2012-12-26 2013-05-02 Sharp Corp 植物栽培用の発光装置
JP2015213491A (ja) * 2014-05-13 2015-12-03 富士機械製造株式会社 栽培装置及び栽培セル
EP3075231A1 (en) * 2015-03-31 2016-10-05 Xiaomi Inc. Plant growth control system and method
EP3269231A1 (en) * 2016-07-11 2018-01-17 Heliospectra AB (publ) Lightingsystem for storehouse cultivation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814775B (zh) * 2014-02-19 2016-01-27 福建农林大学 一种密集型高光能利用率植物工厂
KR101463982B1 (ko) * 2014-04-25 2014-11-26 진영화 Led조명을 구비한 식물재배장치
CN104296011B (zh) * 2014-10-24 2016-12-07 深圳莱特光电股份有限公司 一种led植物光照系统
CA2979513A1 (en) * 2015-03-19 2016-09-22 Rokeha Ltd. A system for indoor cultivation of plants with simulated natural lighting conditions
JP2016208853A (ja) * 2015-04-30 2016-12-15 株式会社小糸製作所 実験装置
KR101723154B1 (ko) * 2016-07-05 2017-04-06 (주)에프제이테크 종자용기 수납케이스
JP6487482B2 (ja) * 2017-03-29 2019-03-20 西日本電信電話株式会社 情報処理装置、情報処理方法、及びプログラム
JP2018201497A (ja) * 2017-05-31 2018-12-27 株式会社キーストーンテクノロジー 葉菜類野菜の生産方法及び葉菜類野菜の生産装置
CA3090781A1 (en) * 2018-02-09 2019-08-15 Freight Farms, Inc. Hub and spoke modular farm system
US11632914B2 (en) * 2018-08-30 2023-04-25 Sk Magic Co., Ltd. Smart plant cultivation device and smart plant cultivation system using IoT
EP3837968A1 (en) 2019-12-19 2021-06-23 Leaf Learn s.r.o. Indoor plant cultivation system
JP2020177679A (ja) * 2020-07-06 2020-10-29 パイオニア株式会社 プログラム、収穫判断装置、及び収穫判断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086860A (ja) * 1999-09-22 2001-04-03 Matsushita Electronics Industry Corp 植物栽培用の半導体発光照明設備
JP2003047340A (ja) * 2001-08-08 2003-02-18 Hitachi Ltd 作物観察用模擬環境装置及び制御方法
JP2005192517A (ja) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd 植物育成方法
JP2008167704A (ja) * 2007-01-12 2008-07-24 Nikkei Panel System Kk 育苗装置及びそれに用いられる育苗床

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000209970A (ja) * 1999-01-26 2000-08-02 Shin Meiwa Ind Co Ltd 立体式水耕栽培設備
CN2492904Y (zh) * 2001-02-28 2002-05-22 方大集团股份有限公司 一体化发光二极管交通信号灯
JP2004113160A (ja) * 2002-09-27 2004-04-15 Toorin:Kk Led光源による植物育成装置
JP2006271374A (ja) * 2005-03-04 2006-10-12 Sanko Seiki Kk 水稲出穂遅延防止装置および水稲出穂遅延防止方法
DE102005022832A1 (de) * 2005-05-11 2006-11-16 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Scheinwerfer für Film- und Videoaufnahmen
CN2829093Y (zh) * 2005-09-22 2006-10-18 广州市雅江光电设备有限公司 发光二极管组合模块及由其构成的灯
JP2009125007A (ja) * 2007-11-25 2009-06-11 Seiichi Okazaki 育成方法、生産方法及び照明装置
CN201221695Y (zh) * 2008-05-28 2009-04-15 中国农业科学院农业环境与可持续发展研究所 一种针对组培容器的led光源装置
JP2010231938A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd Led照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086860A (ja) * 1999-09-22 2001-04-03 Matsushita Electronics Industry Corp 植物栽培用の半導体発光照明設備
JP2003047340A (ja) * 2001-08-08 2003-02-18 Hitachi Ltd 作物観察用模擬環境装置及び制御方法
JP2005192517A (ja) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd 植物育成方法
JP2008167704A (ja) * 2007-01-12 2008-07-24 Nikkei Panel System Kk 育苗装置及びそれに用いられる育苗床

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059350A (ja) * 2012-12-26 2013-04-04 Sharp Corp 植物栽培用の発光装置
JP2013078336A (ja) * 2012-12-26 2013-05-02 Sharp Corp 植物栽培用の発光装置
JP2015213491A (ja) * 2014-05-13 2015-12-03 富士機械製造株式会社 栽培装置及び栽培セル
EP3075231A1 (en) * 2015-03-31 2016-10-05 Xiaomi Inc. Plant growth control system and method
EP3269231A1 (en) * 2016-07-11 2018-01-17 Heliospectra AB (publ) Lightingsystem for storehouse cultivation
WO2018010946A1 (en) * 2016-07-11 2018-01-18 Heliospectra Ab (Publ) Lighting system for storehouse cultivation

Also Published As

Publication number Publication date
JP5531934B2 (ja) 2014-06-25
JP2012039996A (ja) 2012-03-01
CN102740681B (zh) 2013-06-12
JP2014144013A (ja) 2014-08-14
CN102740681A (zh) 2012-10-17
HK1177099A1 (en) 2013-08-16
JP5773401B2 (ja) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5773401B2 (ja) 植物栽培システム
US8568009B2 (en) Compact high brightness LED aquarium light apparatus, using an extended point source LED array with light emitting diodes
JP5850534B2 (ja) 冷却装置を備えた照明システム
US20160360712A1 (en) Grow lighting and agricultural systems and methods
JP5971623B2 (ja) 光照射装置、イチゴ栽培システムおよびイチゴ栽培方法
CA3091297A1 (en) Controlled agricultural system and method for agriculture
US20090116224A1 (en) Marine led lighting system and method
US11154039B2 (en) LED terrarium light for reptiles, amphibians, and birds, using an extended point source LED array with light emitting diodes of multiple wavelengths
KR20030005023A (ko) 식물생육장치 및 그 제어 시스템
JP2006304610A (ja) チシャ栽培方法及びチシャ栽培装置
WO2016175122A1 (ja) 実験装置
KR20200089429A (ko) Led 식물 성장램프 및 led 식물 성장램프가 장착된 수경재배기
KR101463982B1 (ko) Led조명을 구비한 식물재배장치
US20210007308A1 (en) Energy-efficient closed plant system and method
JPH0998665A (ja) 植物栽培装置
CN106171592A (zh) 植物栽培裝置
JP6485966B2 (ja) 植物栽培装置
KR20110071637A (ko) Led발광장치가 적용된 폐쇄형 자동조절육묘장치
KR101167177B1 (ko) 식물공장의 인공광원 냉각 시스템
WO2016109356A1 (en) Light and heat management system for indoor horticulture
KR20190016729A (ko) 식물 생장 환경 조절 장치
EP3777520A1 (en) Indoor agriculture system
JP2005000155A (ja) 植物苗保存技術
CN211345000U (zh) 一种led可调节植物生长光源模组
TW201328588A (zh) 植物培育系統及其發光模組

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063112.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10834632

Country of ref document: EP

Kind code of ref document: A1