WO2011065389A1 - 高脂血症治療剤のスクリーニング方法 - Google Patents

高脂血症治療剤のスクリーニング方法 Download PDF

Info

Publication number
WO2011065389A1
WO2011065389A1 PCT/JP2010/070959 JP2010070959W WO2011065389A1 WO 2011065389 A1 WO2011065389 A1 WO 2011065389A1 JP 2010070959 W JP2010070959 W JP 2010070959W WO 2011065389 A1 WO2011065389 A1 WO 2011065389A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthase
substance
level
sat
blood lipid
Prior art date
Application number
PCT/JP2010/070959
Other languages
English (en)
French (fr)
Inventor
仁一 井ノ口
正和 永福
博考 速水
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to EP10833235.4A priority Critical patent/EP2505660B1/en
Priority to JP2011543277A priority patent/JP5077901B2/ja
Priority to US13/511,028 priority patent/US9090932B2/en
Publication of WO2011065389A1 publication Critical patent/WO2011065389A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/61Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving triglycerides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91091Glycosyltransferases (2.4)
    • G01N2333/91148Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids
    • G01N2405/10Glycosphingolipids, e.g. cerebrosides, gangliosides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/044Hyperlipemia or hypolipemia, e.g. dyslipidaemia, obesity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/324Coronary artery diseases, e.g. angina pectoris, myocardial infarction

Definitions

  • the present invention provides a screening method for a novel therapeutic agent for hyperlipidemia. More specifically, the present invention provides a screening method for a substance that has an effect of lowering blood lipid level by inhibiting the production or function of ganglioside, particularly GM3, or inhibiting the activity or expression of GM3 synthase. The present invention also provides a pharmaceutical composition that specifically inhibits the production of gangliosides, particularly GM3, and the like, and is effective in treating hyperlipidemia.
  • Cardiovascular diseases related to arteriosclerosis such as myocardial infarction and cerebral infarction are increasing year by year, which is one of the main causes of death in adults.
  • hyperlipidemia hypercholesterolemia, hypertriglyceridemia, etc.
  • drugs such as HMG-CoA reductase inhibitors (particularly statins) and anion exchange resin preparations are used.
  • statins particularly statins
  • anion exchange resin preparations are used for the treatment of hypercholesterolemia.
  • these drugs also inhibit biosynthesis of components necessary for maintaining the functions of living bodies such as ubiquinone, dolichol, and heme A in addition to the biosynthesis of cholesterol, there are concerns about side effects caused by this.
  • GSL glycosphingolipid
  • GSL having sialic acid is called ganglioside family, and originates from GM3 synthesized from lactosylceramide (LacCer) by GM3 synthase (sialic acid transferase I: SAT-I) (Fig. 1).
  • Inhibitors of glucosylceramide (GlcCer) biosynthetic enzyme include D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol-1- (D-threo-PDMP) ( Non-patent document 1), (1R, 2R) -nonanoic acid [2- (2,3-dihydro-benzo [1,4] dioxin-6-yl) -2-hydroxy-, which is an analog of D-threo-PDMP 1-pyrrolidin-1-ylmethyl-ethyl] -amide-l-tartaric acid salt (Genz-123346), N- (5-adamantane-1-yl-methoxy) -pentyl-1-deoxynojirimycin (AMP-DNM) Can be mentioned.
  • D-threo-PDMP D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol-1-
  • Non-Patent Documents 2 to 7 The promotion of excretion of cholesterol and the like (that is, activation of the reverse cholesterol transfer system) has been reported (Non-Patent Documents 2 to 7), and development aimed at clinical application is ongoing.
  • Non-patent Document 8 since it has been reported that knockout mice of glucosylceramide synthase were embryonic lethal (Non-patent Document 8), there is a concern about the potential side effects of inhibitors of this enzyme. On the other hand, since the lifetime of GM3 synthase knockout mice is equivalent to that of the wild type (Non-patent Document 9), it is expected that side effects caused by inhibition of GM3 synthase are small.
  • GSL expressed in insulin responsible organs is diverse as glucosylceramide (GlcCer), lactosylceramide (LacCer), ganglioside GM3 and GM2.
  • GlcCer glucosylceramide
  • LacCer lactosylceramide
  • Yamashita et al. Produced a gene-deficient mouse for GM3 synthase (SAT-I), in which the normally expressed a- and b-series gangliosides shown in FIG.
  • SAT-I GM3 synthase
  • the present inventors verified dyslipidemia as a target disease for treatment based on the control of GM3 synthase, a novel safer antihyperlipidemic agent, and prevention / treatment of hyperlipidemia Means are provided for providing a method.
  • the inventors of the present invention have made extensive efforts to solve the above-mentioned problems, and have a gene deficient in a gene involved in ganglioside biosynthesis (GM3 synthase gene) and apolipoprotein E (apoE) (SAT-I / apoE KO mouse).
  • GM3 synthase gene a gene involved in ganglioside biosynthesis
  • apoE apolipoprotein E
  • SAT-I / apoE KO mouse apolipoprotein E
  • the present invention selectively produces a ganglioside (especially GM3), a method for screening a substance effective in treating hyperlipidemia, which lowers blood lipid levels (blood cholesterol levels and / or triglyceride levels).
  • a ganglioside especially GM3
  • a method for screening a substance effective in treating hyperlipidemia which lowers blood lipid levels (blood cholesterol levels and / or triglyceride levels).
  • blood lipid levels blood cholesterol levels and / or triglyceride levels.
  • pharmaceutical compositions effective for the treatment of inhibiting hyperlipidemia and the like.
  • a screening method for a substance exhibiting an action of lowering blood lipid level comprising: (i) A screening method comprising the steps of administering a test substance to a non-human animal, and (ii) measuring the blood lipid level of the non-human animal.
  • a screening method for a substance exhibiting a blood lipid level lowering action comprising the following: (i) contacting the GM3 synthase with its substrate in the presence or absence of the test substance; (ii) selecting a test substance that reduces the amount of GM3 synthesis; (iii) a screening method comprising the steps of: administering a selected test substance to a non-human animal; and (iv) measuring the blood lipid level of the non-human animal.
  • a method for screening a substance exhibiting a blood lipid level lowering action comprising: (i) contacting the test substance with a cell expressing GM3 synthase, (ii) selecting a test substance that reduces the expression level of GM3 synthase, (iii) a screening method comprising the steps of: administering a selected test substance to a non-human animal; and (iv) measuring the blood lipid level of the non-human animal.
  • [4] A group in which the cells expressing the GM3 synthase are adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, neurons, fibroblasts, monocytes, macrophages
  • a pharmaceutical composition effective for treating hyperlipidemia comprising an antibody against GM3, a GM3 synthase inhibitor, or a substance that inhibits expression of GM3 synthase.
  • a method for treating hyperlipidemia wherein blood lipid levels are reduced by administering an effective amount of a pharmaceutical composition effective for treating hyperlipidemia to a non-human animal.
  • the pharmaceutical composition decreases blood cholesterol level and / or triglyceride level.
  • the pharmaceutical composition comprises a substance that selectively inhibits the production of ganglioside.
  • the ganglioside is GM3.
  • the pharmaceutical composition of the present invention lowers blood lipid levels (blood cholesterol level and / or triglyceride level) by inhibiting the biosynthesis of ganglioside GM3, clinically new treatment for hyperlipidemia is also possible.
  • a method can be provided.
  • FIG. 1 shows the ganglioside biosynthesis pathway.
  • FIG. 2 shows a method for producing a GM3 synthase gene-deficient mouse (SAT-I KO).
  • FIG. 3 shows the generation of a SAT-I / apoE double deficient (DKO) mouse and confirmation of its gene.
  • FIG. 4 shows the measurement results of the body weight and blood lipid level of the SAT-I / apoE double-deficient mouse of FIG.
  • FIG. 5 shows plasma lipoprotein profiles of ApoE-deficient mice and SAT-I / ApoE double-deficient mice fractionated by gel filtration high performance liquid chromatography.
  • FIG. 1 shows the ganglioside biosynthesis pathway.
  • FIG. 2 shows a method for producing a GM3 synthase gene-deficient mouse (SAT-I KO).
  • FIG. 3 shows the generation of a SAT-I / apoE double deficient (DKO) mouse and confirmation of its gene.
  • FIG. 4 shows the measurement
  • FIG. 6 shows changes in lipid composition in the livers of ApoE-deficient mice and SAT-I / ApoE double-deficient mice.
  • FIG. 7 shows the results of analysis of glycosphingolipids in plasma from SAT-I-deficient mice, ApoE-deficient mice, and SAT-I / ApoE double-deficient mice.
  • FIG. 8 shows the results of analysis of glycosphingolipids in the livers of SAT-I-deficient mice, ApoE-deficient mice, and SAT-I / ApoE double-deficient mice.
  • FIG. 9 shows the results of measuring the ganglioside composition in the heart, liver and muscle of SAT-I deficient mice and wild type mice.
  • FIG. 10 shows the measurement results of plasma lipids in SAT-I-deficient mice loaded with a high cholesterol diet.
  • the present invention comprises a blood lipid level lowering action comprising the steps of (i) administering a test substance to a non-human animal, and (ii) measuring the blood lipid level of the non-human animal,
  • a screening method for a substance exhibiting an action of lowering blood cholesterol level and / or triglyceride level include peptides, proteins, non-peptidic compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, plasma and the like.
  • the test substance to be administered may be one kind or a combination of plural kinds.
  • the blood lipid level can be measured using a known method such as the above-described measuring method.
  • “substance exhibiting blood lipid level lowering action” refers to a substance that lowers blood cholesterol level and / or triglyceride level. More specifically, the “substance exhibiting a blood lipid level lowering effect” used in the present invention is based on the cholesterol level and / or triglyceride level in a sample (plasma) obtained from a subject to which it is administered. When measured by the method described in Biochemical Experimental Method Vol.5, Lipids, Carbohydrates, Complex Carbohydrates (Edited by the Japanese Biochemical Society), 10% or more, preferably 20% or more, more preferably compared to the control The substance is 40% or more, more preferably 60% or more, and still more preferably 80% or more. However, it is limited to a decrease to the normal blood lipid level.
  • the blood lipid level can be measured according to a known method using an enzyme method, an immunodiffusion method, or the like for a sample collected from a subject.
  • a measuring method for example, the method described in the above-mentioned basic biochemical experiment method, Vol. 5, phospholipid, carbohydrate, complex carbohydrate (edited by the Japanese Biochemical Society) can be mentioned.
  • Triglyceride and cholesterol measurement kits are also commercially available from various companies.
  • cholesterol E-Test Wako (Wako Pure Chemical Industries, Ltd.), as a triglyceride measurement kit, TG-EN Kainos (Kainos), as a free fatty acid measurement kit, NEFA C-Test Wako ( Wako Pure Chemical Industries, Ltd.).
  • the screening method of the present invention may be any method developed so far as a method for measuring cholesterol and triglycerides. More specifically, the screening method of the present invention may include a high performance liquid chromatography (HPLC) or gas chromatography step.
  • HPLC high performance liquid chromatography
  • gas chromatography step For details of the principle, refer to, for example, Basic Biochemical Experimental Method Vol.5, Lipids, Carbohydrates, Complex Carbohydrates (Edited by the Japanese Biochemical Society).
  • reducing blood cholesterol level and / or triglyceride level means that when the blood cholesterol level and / or triglyceride level is measured by the above-mentioned standard method, at least of these concentrations compared to the control. It means that one is reduced by 10% or more, preferably 20% or more, more preferably 40% or more, more preferably 60% or more, and further preferably 80% or more. However, it is limited to a decrease to the normal blood lipid level.
  • hyperlipidemia is also called hyperlipoproteinemia and refers to a state in which plasma lipids other than free fatty acids increase. Healthy adult plasma contains 150-220 mg / dl cholesterol, 50-140 mg / dl triacylglycerol, and 150-220 mg / dl phospholipid, which binds to apolipoprotein and lipoproteins As distributed.
  • Hyperlipidemia is mainly hyperlipidemia (eg, type I hyperlipidemia, type IV hyperlipidemia, and type V hyperlipidemia), and mainly cholesterol increases. (E.g., familial hypercholesterolemia, familial combined hyperlipidemia, and type III hyperlipidemia) (Mariko Sonami et al. Lipids and lipoproteins ", Tokyo Kagaku Dojin, 1993, Chapter 11).
  • Such substances that lower blood lipid levels are not only effective in the treatment or prevention of hyperlipidemia, but also include, for example, arteriosclerosis, atherosclerosis, peripheral vascular disease, hyper-LDL, HDL, hypercholesterolemia, hypertriglyceridemia, familial hypercholesterolemia, cardiovascular disorder, angina, ischemia, cardiac ischemia, thrombosis, myocardial infarction, reperfusion injury, angiogenic restenosis And effective for treating or preventing one or more diseases selected from hypertension.
  • Non-human animals as subjects used in the above screening methods include monkeys, chimpanzees, dogs, cats, guinea pigs, rats, mice, rabbits, pigs, sheep, horses, and other animals that are commonly used in pharmaceutical tests. It is done. Preferably, they are monkeys, chimpanzees, rabbits, rats, and mice, more preferably mice or rats.
  • the substance exhibiting a blood lipid level lowering action may be a substance that specifically inhibits the function of GM3, or a substance that can selectively inhibit a specific function among various functions of GM3.
  • the glycosphingolipid refers to a lipid containing a sugar, a fatty acid and a long-chain base sphingosine in the molecule.
  • ganglioside is a generic term for the glycosphingolipid family containing sialic acid, and is a molecule in which a sugar chain containing sialic acid is covalently bound to a lipid called ceramide.
  • GM3 is the first ganglioside molecule in its biosynthetic pathway (see FIG. 1). That is, all endogenous ganglio gangliosides are biosynthesized by a series of enzymatic reactions starting with ceramide and starting with GM3 synthase.
  • GM3 is a molecule that is the starting point of all gangliosides, and is synthesized from lactosylceramide by GM3 biosynthetic enzyme (SAT-I).
  • the sugar chain moiety is sequentially synthesized from a glycosyltransferase using a sugar nucleotide as a donor in the Golgi lumen in the cell.
  • GM3 is generated from Gal-Glc-Cer by GM3 biosynthetic enzyme (SAT-I), and a-series (GM3, Various gangliosides such as GM2, GM1, GD1a and GT1a), b-series (GD3, GD2, GD1b, GT1b and GQ1b) are produced. From this figure, it is understood that the generation of these ganglioside molecules depends on GM3 synthase. Therefore, GM3 has a function as a raw material for other gangliosides.
  • SAT-I GM3 biosynthetic enzyme
  • GM3 controls the functions of various growth factor receptors (Inokuchi J. and Kabayama K. (2007) Receptor Modifications in Glycobiology. Comprehensive Glycoscience 3, 733-744. (Elsevier Science & Technology)) (Glaros EN., Et al. Glycosphingolipid Accumulation Inhibits Cholesterol Efflux via the ABCA1 / Apolipoprotein AI Pathway J. Biol. Chem. 280, 24515-24523, 2005).
  • the substance exhibiting a blood lipid level lowering action may be an antibody against GM3 that specifically or selectively inhibits the function of GM3.
  • antibodies include known monoclonal antibodies having specificity for GM3 (Kotani, M., et al .: Biochem. Biophys. Acta, 1117, 97-103 (1992)). .
  • Such antibodies are primarily cultured cells obtained from adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, epithelial cells, fibroblasts, monocytes, macrophages and the like, and various Cell lines such as mouse 3T3-L1 for adipocytes; human HepG2 for hepatocytes; immortalized vascular endothelial cell lines with acetylated LDL uptake activity for vascular endothelial cells; RAW264.7 for macrophages, etc. It is possible to inhibit the action of GM3 in the cell membrane of cells such as (but not limited to).
  • antibodies include monoclonal antibodies, polyclonal antibodies, anti-idiotype antibodies, antibody fragments (eg, Fab and F (ab ′) 2 , Fv variable regions, or complementarity determining regions). Understood. It is understood that an antibody is specific for an antigen, ie GM3 or GM3 synthase, if it binds with a Ka of 10 ⁇ 7 M or higher, preferably 10 ⁇ 8 M or higher. The affinity of a monoclonal antibody can be readily determined by one skilled in the art (see Scatchard, Ann. NY. Acad. Sci. 51: 660-672, 1949).
  • the substance exhibiting a blood lipid level lowering action may be a “GM3 synthase inhibitor”, that is, a substance that specifically suppresses biosynthesis of GM3.
  • GM3 synthase (SAT-I) in the present specification has the amino acid sequence of SEQ ID NO: 2 or 4, or 1 to several (1-9, 1-8, 1-7, 1-6) of these sequences. 1 to 5, 1 to 4, 1 to 3, 1 to 2, or 1) refers to a protein containing an amino acid sequence having a deletion, substitution, insertion and / or addition mutation of amino acids.
  • glucosylceramide synthase acts on ceramide (Cer) to synthesize glucosylceramide (GlcCer) and then lactosylceramide synthase (LacCer) Generate.
  • the GM3 synthase recognizes this LacCer as a substrate and synthesizes GM3. That is, those that can reduce the amount of GM3 synthesis non-competitively by competitive inhibition of enzyme reaction by substrate analogs of glucosylceramide synthase, lactosylceramide synthase, and GM3 synthase. .
  • a substance exhibiting a blood lipid level lowering action can be specifically a “substance that inhibits the expression of GM3 synthase”.
  • the cDNA of GM3 synthase (SAT-I) in this specification is represented by SEQ ID NO: 1 or 3, for example.
  • examples of such a substance that specifically inhibits the expression of GM3 synthase include antisense nucleic acids, ribozymes, dsRNA having RNAi effect, and the like.
  • nucleic acid is used interchangeably with “polynucleotide”, “gene” or “nucleic acid molecule” and is intended to be a polymer of nucleotides.
  • base sequence is used interchangeably with “nucleic acid sequence” or “nucleotide sequence” and refers to the sequence of deoxyribonucleotides (abbreviated A, G, C, and T). As shown.
  • polynucleotide containing the base sequence of SEQ ID NO: 1 or a fragment thereof intends the polynucleotide containing the sequence represented by each deoxynucleotide A, G, C and / or T of SEQ ID NO: 1 or a fragment thereof. Is done.
  • the nucleic acid according to the present invention may exist in the form of RNA (for example, mRNA) or in the form of DNA (for example, cDNA or genomic DNA).
  • DNA can be double-stranded or single-stranded.
  • Single-stranded DNA or RNA can be the coding strand (also known as the sense strand) or it can be the non-coding strand (also known as the antisense strand).
  • “substance that inhibits the expression of GM3 synthase” includes suppression of transcription of GM3 synthase gene and suppression of translation into protein. Also included is a decrease in expression as well as complete cessation of DNA expression.
  • One embodiment of the “substance inhibiting the expression of GM3 synthase” is a nucleic acid encoding an antisense strand complementary to the GM3 synthase gene.
  • Antisense technology is known as a method for specifically suppressing the expression of a specific endogenous gene, and is described in various literatures (for example, Hirashima and Inoue: Acupuncture Chemistry Laboratory 2 (See pp. 319-347, 1993, etc.)
  • An antisense nucleic acid can be prepared, for example, by the phosphorothioate method (Stein, Nucleic Acids Res., 16: 3209-3221, 1988) based on the sequence information of the cDNA described in SEQ ID NO: 1 or 3. Is possible.
  • the prepared nucleic acid can be used in a known method, which can be directly applied to cells, and can be transformed into a suitable expression by incorporating it into a vector equipped with a known expression system. it can.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the transcription product of the endogenous gene possessed by the cell to be transformed, but may not be completely complementary as long as the gene expression can be effectively inhibited.
  • the transcribed RNA preferably has a complementarity of 90% or more (eg, 95%, 96%, 97%, 98%, 99% or more) to the transcript of the target gene.
  • the length of the antisense nucleic acid is at least 15 bases, preferably 100 bases or more, more preferably 500 bases or more. is there. Usually, the length of the antisense nucleic acid used is shorter than 5 kb, preferably shorter than 2.5 kb.
  • suppression of the expression of the endogenous GM3 synthase gene can also be performed using DNA encoding a ribozyme.
  • a ribozyme is an RNA molecule having catalytic activity, which inhibits the function of the gene by cleaving the target DNA transcript.
  • Various known literatures can also be referred to for ribozyme design (eg, FEBSFELett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323). : 349, 1986; Nucl. Acids. Res. 19: 6751, 1991; Protein Eng 3: 733, 1990; Nucl. Acids Res.
  • polynucleotide encoding RNA that suppresses DNA expression by co-suppression refers to a nucleotide that inhibits the function of the target DNA by “co-suppression”.
  • suppression of endogenous gene expression in the present invention can also be achieved by transforming a desired cell with a gene having a dominant negative trait of the target gene.
  • a gene having a dominant negative trait refers to a gene having a function of eliminating or reducing the activity of an endogenous wild type gene inherent in a desired cell by expressing the gene.
  • RNA that suppresses DNA expression by the RNAi effect.
  • RNAi refers to a phenomenon in which, when a double-stranded RNA having the same or similar sequence as a target gene sequence is introduced into a cell, expression of the introduced foreign gene and target endogenous gene are both suppressed.
  • Examples of RNA used herein include double-stranded RNA that causes RNA interference of 21 to 25 bases in length, such as dsRNA (double strand RNA), siRNA (small interfering RNA), or shRNA (short hairpin RNA). .
  • RNA can be locally delivered to a desired site by a delivery system such as a liposome, and can also be locally expressed using a vector capable of producing the double-stranded RNA.
  • dsRNA, siRNA or shRNA double-stranded RNA
  • Methods for preparing and using such double-stranded RNA are known from many literatures (Japanese translations of PCT publication No. 2002-516062; U.S. Publication No. 2002 / 086356A; Nature Genetics , 24 (2), 180-183, 2000 Feb .; Genesis, 26 (4), 240-244, 2000 April; Nature, 407: 6802, 319-20, 2002 Sep. 21; Genes & Dev., Vol. 16, (8), 948-958, 2002 Apr.15; Proc Natl.
  • the screening method of the present invention may include a step of first screening a test substance in vitro before administering the test substance to a non-human animal. More specifically, the method may include a step of bringing a glycosphingolipid synthase and its substrate into contact with each other in the presence or absence of a test substance, and a step of selecting a test substance that reduces the amount of the product synthesized.
  • the combination of glycosphingolipid synthase and glycosphingolipid is preferably a combination of ganglioside synthase and ganglioside, more preferably a combination of GM3 synthase and GM3. Examples of combinations of other ganglioside synthases and gangliosides include the combinations shown in FIG.
  • GM3 synthase used in the above screening method includes adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, neurons, fibroblasts, monocytes, macrophages
  • Primary cultured cells and various cell lines obtained from eg, mouse 3T3-L1 for adipocytes; human HepG2 for hepatocytes; immortalized vascular endothelial cell lines having acetylated LDL uptake activity for vascular endothelial cells;
  • macrophages include RAW264.7 and the like, but not limited thereto, and methods using enzymes expressed by genetic engineering techniques, chemical synthesis, and the like.
  • the enzyme is derived from the nucleotide sequence shown in SEQ ID NO: 1 or 3.
  • the produced GM3 synthase in this case may be in an isolated state or not in an isolated state.
  • the GM3 synthase may use the above-described cell having the same, or may be purified from the above-described cell.
  • GM3 synthase is prepared by introducing an appropriate expression vector into a host of various cultured cells, such as E. coli, yeast, insect cells, and mammalian cells, by genetic recombination techniques. May be.
  • Such known methods include, for example, Molecular ⁇ Cloning 3rd Ed. (J. Sambrook, et al, Cold Spring Harbour Laboratory Press, 2001), Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997, etc. You can refer to the method.
  • the test substance is treated in vitro with cells expressing a suitable level of glycosphingolipid synthase, such as adipocytes, hepatocytes, vascular endothelial cells.
  • a suitable level of glycosphingolipid synthase such as adipocytes, hepatocytes, vascular endothelial cells.
  • vascular smooth muscle cells obtained from vascular smooth muscle cells, skeletal muscle cells, epithelial cells, nerve cells, fibroblasts, monocytes, macrophages and the like and various cell lines (for example, mouse 3T3-L1 for adipocytes; Human hepG2 in hepatocytes; immortalized vascular endothelial cell line with acetylated LDL uptake activity in vascular endothelial cells; RAW264.7 in macrophages but not limited to this), or by genetic recombination techniques
  • the combination of glycosphingolipid synthase and glycosphingolipid measured in this case is preferably a combination of ganglioside synthase and ganglioside, and more preferably a combination of GM3 synthase and GM3.
  • the expression level at a suitable level means a normal level or higher expression level in the organ from which each cell is derived. See Figure 1 for other ganglioside synthase and ganglioside combinations.
  • known methods such as MolecularMCloning 3rd Ed. (J. Sambrook, et al, Cold Spring Harbour Laboratory Press, 2001), Current Protocols in Molecular Biology, The methods described in John ⁇ Wiley & Sons 1987-1997 can be used.
  • gangliosides include, for example, Macher BA and Klock JC (J. Biol. Chem. 255, 2092-2096, 1980) and Ledeen et al. (J. Neurochem. 21, 829-839, 1973).
  • quantitative detection using an antibody that specifically acts on various gangliosides such as GM3 is also possible.
  • the decrease in GM3 production by the test substance is at least 10% or more, 20% or more, more preferably 40% or more, more preferably 60% or more, and even more preferably 80% or more compared to the control. 90% or more, 100%.
  • the decrease in the amount of ganglioside produced by the test substance is at least 10% or more, preferably 20% or more, more preferably 40% or more, more preferably 60% or more, and even more preferably 80% compared to the control. % Or more, 90% or more, 100%.
  • the test substance is a cell that expresses a suitable level of glycosphingolipid synthase, for example, adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, nerves.
  • a suitable level of glycosphingolipid synthase for example, adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, nerves.
  • GM3 synthase Primary cultured cells obtained from cells, fibroblasts, monocytes, macrophages, and various cell lines (eg mouse 3T3-L1 for adipocytes; human HepG2 for hepatocytes; acetylated LDL for vascular endothelial cells
  • a method is mentioned. Examples of a method for measuring the expression level of GM3 synthase include a method using hybridization using a sequence of GM3 synthase.
  • the suppression of the expression of GM3 synthase by the test substance is 10% or more, preferably 20% or more, more preferably 40% or more, more preferably 60% or more, still more preferably 80% or more, 90% or more, 100%.
  • the test substance in the screening method of the present specification includes a polynucleotide that specifically inhibits the expression of GM3 synthase.
  • GM3 synthase expression-inhibiting polynucleotide examples include forms of the aforementioned antisense nucleic acid, ribozyme, double-stranded RNA, and the like.
  • These GM3 synthase expression-inhibiting polynucleotides can be prepared by known methods. Furthermore, these nucleic acids may be subjected to various chemical modifications.
  • a test substance is brought into contact with a cell using a genetically modified animal-derived cell or a genetically modified cell in which a reporter gene is linked downstream of the promoter of GM3 synthase, and the reporter in the cell is used.
  • the method of measuring the expression level of a gene is mentioned.
  • adipocytes hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, nerve cells, fibers
  • Primary cultured cells obtained from blasts, monocytes, macrophages, and various cell lines (eg mouse 3T3-L1 for adipocytes; human HepG2 for hepatocytes; acetylated LDL uptake activity for vascular endothelial cells)
  • An immortalized vascular endothelial cell line such as RAW264.7 for macrophages, but not limited thereto).
  • the gene sequence 5 ′ upstream of the GM3 synthase gene is described in Kim JW., Et al., Gene 273, 163-171, 2001, and the promoter thereof is Kim SW., Et al., Biochim. Biophys. Acta 1578, 84-89, 2002 .; Choi HJ., Et al., Biochem. Biophys. Res. Commun. 313, 142-147, 2004.
  • putative binding sites of transcription factors AP4, MZF1, SP1, ATF / CREB, NFY, IK2 and LYF1 have been found, and CREB functioning as a PMA-inducible promoter is mentioned.
  • the protein encoded by the reporter gene used preferably includes various known proteins such as firefly luciferase, Renilla luciferase, green fluorescent protein (GFP), ⁇ -galactosidase, alkaline phosphatase and the like. These reporter proteins can be detected using known detection methods or kits. In such a screening method, for example, suppression of reporter protein expression upon stimulation with a test substance is 10% or more, preferably 20% or more, more preferably 40% or more, 60% or more, more preferably 80% or more, 90% or more, 100%.
  • GFP green fluorescent protein
  • composition of the present invention provides a pharmaceutical composition useful for the treatment and / or prevention of hyperlipidemia, comprising a substance exhibiting a blood lipid level lowering effect.
  • the pharmaceutical composition of the present invention has a blood lipid level lowering action, and can be preferably used for treatment or prevention of hyperlipidemia and the like.
  • the pharmaceutical composition of the present invention is a disease that can be treated by a blood lipid level lowering action, such as arteriosclerosis, atherosclerosis, peripheral vascular disease, hyper-LDL, hypo-HDL, hypercholesterolemia
  • a blood lipid level lowering action such as arteriosclerosis, atherosclerosis, peripheral vascular disease, hyper-LDL, hypo-HDL, hypercholesterolemia
  • hypertriglyceridemia familial hypercholesterolemia
  • cardiovascular disorder angina, ischemia, cardiac ischemia, thrombosis, myocardial infarction, reperfusion injury, angiogenic restenosis and hypertension
  • the pharmaceutical composition of the present invention lowers abnormal blood lipid levels in patients to normal levels.
  • the pharmaceutical composition of the present invention may contain a substance that specifically inhibits the function of ganglioside.
  • the ganglioside is GM3, and the substance that specifically inhibits the function of ganglioside may be an anti-GM3 antibody.
  • the pharmaceutical composition of the present invention may contain a substance that selectively inhibits the function of ganglioside.
  • a specific function is selectively selected from various functions such as a function of controlling growth of various growth factor receptors, transport proteins, adhesion molecule receptors and functional proteins in the cell membrane by GM3, and a function of supplying raw materials to various other gangliosides. And substances such as antibodies that can be inhibited.
  • the pharmaceutical composition of the present invention may contain a substance that selectively inhibits the production of ganglioside.
  • substances may include substances obtained by the above-described screening method of the present invention, such as inhibitors of ganglioside synthase and substances that suppress the expression of this enzyme.
  • the pharmaceutical composition of the present invention when used, for example, oral, intravenous, oral mucosa, rectal, vaginal, transdermal, nasal or inhalation can be used, but oral administration is preferable.
  • the active ingredients of the pharmaceutical composition of the present invention may be blended singly or in combination.
  • a pharmaceutically acceptable carrier or a pharmaceutical additive may be blended with the active ingredient and provided in the form of a pharmaceutical preparation. it can.
  • the active ingredient of the present invention can be contained in the preparation in an amount of 0.1 to 99.9% by weight.
  • Examples of pharmaceutically acceptable carriers or additives include excipients, disintegrants, disintegration aids, binders, lubricants, coating agents, dyes, diluents, solubilizers, solubilizers, isotonic agents. Agents, pH adjusters, stabilizers and the like can be used.
  • preparations suitable for oral administration include powders, tablets, capsules, fine granules, granules, liquids or syrups.
  • various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dipotassium phosphate, glycine are added to starch, preferably corn, potato or tapioca starch, and alginic acid and certain species. It can be used with various disintegrants such as silicate double salts and granulating binders such as polyvinylpyrrolidone, sucrose, gelatin, gum arabic.
  • lubricants such as magnesium stearate, sodium lauryl sulfate, and talc are often very effective for tablet formation.
  • the same kind of solid composition can also be used by filling gelatin capsules.
  • suitable substances in this connection include lactose or lactose as well as high molecular weight polyethylene glycols.
  • the active ingredient is used in combination with various sweeteners or flavors, colorants or dyes, and if necessary, an emulsifier and / or suspending agent is also used.
  • an emulsifier and / or suspending agent is also used.
  • preparations suitable for parenteral administration include injections and suppositories.
  • a solution in which the active ingredient of the present invention is dissolved in either sesame oil or peanut oil or dissolved in an aqueous propylene glycol solution can be used.
  • the aqueous solution should be appropriately buffered as necessary (preferably pH 8 or more), and the liquid diluent must first be made isotonic.
  • Such aqueous solutions are suitable for intravenous injection and oily solutions are suitable for intra-articular, intramuscular and subcutaneous injection. All these solutions can be prepared aseptically by standard pharmaceutical techniques well known to those skilled in the art.
  • the active ingredient of the present invention can also be administered locally such as on the skin. In this case, topical administration in the form of creams, jellies, pastes, ointments is desirable according to standard pharmaceutical practice.
  • the dose of the pharmaceutical composition of the present invention is not particularly limited, and an appropriate dose is selected according to various conditions such as the type of disease, the age and symptoms of the patient, the route of administration, the purpose of treatment, the presence or absence of a concomitant drug, etc. Is possible.
  • the dosage of the pharmaceutical composition of the present invention is, for example, 1 to 5000 mg, preferably 10 to 1000 mg per day for an adult (for example, body weight 60 kg). These daily doses may be administered in two to four divided doses.
  • the substance exhibiting a blood lipid level lowering action is a substance that lowers the blood lipid level to a normal level as described above.
  • Such substances include primary cultured cells obtained from adipocytes, hepatocytes, vascular endothelial cells, vascular smooth muscle cells, skeletal muscle cells, epithelial cells, neurons, fibroblasts, monocytes, macrophages and the like.
  • Various cell lines eg mouse 3T3-L1 for adipocytes; human HepG2 for hepatocytes; immortalized vascular endothelial cell lines with acetylated LDL uptake activity for vascular endothelial cells; RAW264.7 for macrophages, etc.
  • a substance that suppresses the production of glycosphingolipids expressed in, etc. a substance that suppresses the production of gangliosides expressed in these cells, and the production of GM3 expressed in these cells
  • Examples include substances, GM3 synthase inhibitors, substances that inhibit the expression of GM3 synthase, and the like.
  • a pharmaceutical composition containing such a substance exhibiting a blood lipid level lowering effect can be produced as described above and administered to a subject in need thereof.
  • the dose, the number of administrations, and the like can be appropriately adjusted in consideration of the age, medical history, currently used drug, etc. of the subject.
  • prevention / treatment of hyperlipidemia or the like, or control of blood lipid level of a subject can be achieved.
  • FIG. 2A and FIG. 2B show a schematic diagram of the targeting vector used for the production of SAT-I KO mice and confirmation of gene deletion in knockout mice, respectively.
  • FIG. 2A shows a targeting vector at the top, a wild-type gene at the second, and a mutant gene at the third.
  • FIG. 2B determination of SAT-I genotype by PCR is shown.
  • 5′-GGAATCCATCCCTTTTCTCACAGAG-3 SEQ ID NO: 5′-TGAACTCACTTGGCATTGCTGG-3 ′ (SEQ ID NO: 6) were used as primers.
  • FIG. 2C shows the results of TLC analysis of brain ganglioside.
  • wild-type mice (+ / +) and heterozygous mice (+/-) GM1, GD1a, GD1b, GT1b, etc. were expressed, but in knockout mice (-/-), all of these disappeared and were compensated.
  • GM1b and GD1a were expressed (see FIG. 1).
  • apoE constitutes lipoproteins such as chylomicron (CM), very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL)
  • CM chylomicron
  • VLDL very low density lipoprotein
  • IDL intermediate density lipoprotein
  • LDL low density lipoprotein
  • apoE is mainly produced in hepatocytes and functions as a ligand when lipoproteins bind to LDL receptors, VLDL receptors, LDL-recepter related protein (LRP) receptors, etc., and carry extracellular lipids into the cells. ing.
  • SAT-I deficient mice Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, et al. (2009) Proc Natl Acad Sci USA 106, 9483-9488. Epub 2009 May 9422) (Fig. 2) and a spontaneous apoE deficient hyperlipidemia model mouse (hereinafter apoE deficient mouse) established by Matsushima et al.
  • SAT-I / apoE double-deficient mice were prepared (FIG. 3). In more detail, it is as follows. By crossing SAT-I and apoE single-deficient mice (F0 generation), heterogeneous F1 generation was obtained.
  • FIG. 3A the F1 generations were crossed to obtain SAT-I / apoE double-deficient mice in the F2 generation (FIG. 3A).
  • expression of apoE protein was confirmed by Western blotting.
  • FIG. 3B the band at the position of the arrow is apoE protein
  • lane C1 represents a normal mouse
  • lane C2 represents a control sample of apoE alone-deficient mouse.
  • the expression of SAT-I gene was confirmed by PCR. The specific method is the same as in FIG. 2B.
  • FIG. 3C lane C3 represents a control sample of a SAT-I-deficient mouse
  • Ex2 attached to the arrow represents normal SAT-I gene exon 2
  • Neo represents a neomycin resistance gene.
  • lipid levels in the liver PBS was added to the liver collected from each mouse and minced finely with scissors, and then homogenized using a polytroton homogenizer 3100. After the homogenized suspension was transferred to a centrifuge tube, lipid extraction was performed by adding chloroform / methanol (1: 2, v / v) and incubating at 40 ° C. Subsequently, the supernatant was collected by centrifugation, chloroform / methanol (2: 1, v / v) was added to the centrifugal precipitate, the same incubation was performed, and the supernatant was collected by centrifugation.
  • hexane was added to the centrifugal precipitate and incubated at 40 ° C. Thereafter, the supernatant was collected by centrifugation, and all the supernatants were mixed to obtain a total lipid extract, which was then dried with nitrogen.
  • CHCl 3 was added and dried by ultrasonic crushing after nitrogen drying, and then purified water was added and mixed, followed by centrifugation. After centrifugation, an upper layer (aqueous layer), an intermediate layer (protein layer), and a lower layer (chloroform layer) were observed, and only the lower layer of these three layers was collected and nitrogen-dried.
  • the cholesterol level is cholesterol E-Test Wako (Wako Pure Chemical Industries, Ltd.), and the triglyceride level is TG-EN.
  • the measurement was performed using Kinos (Kainos Co., Ltd.) (FIG. 6). Both cholesterol and triglycerides showed a significant increase in apoE-deficient mice compared to wild-type mice (Fig. 6; *: p ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001), but SAT-I No significant difference was seen in / apoE double deficient mice compared to apoE deficient mice (FIG. 6; indicated by ns).
  • glycosphingolipid analysis method is described below.
  • acidic lipid was eluted by flowing chloroform / methanol / 1N aqueous sodium acetate solution (30: 60: 8, v / v). Each eluate was nitrogen-dried.
  • alkaline methanolysis was performed to decompose the lipid having a glycero skeleton contained in each lipid fraction.
  • a 0.1M sodium hydroxide methanol solution was added, sonicated and incubated at 40 ° C., and then 1N hydrogen chloride methanol solution was added to neutralize the solution.
  • FIG. 1 the analysis result of glycosphingolipid in the liver is shown in FIG. It was confirmed that the major glycosphingolipid in the liver was GM2 in wild type mice. On the other hand, GM2 was detected in the acid fraction of SAT-I-deficient mice, although it was less compared to the wild type. A compensatory increase in LacCer and GA2 was also observed in the neutral fraction of SAT-I-deficient mice. In addition, apoE-deficient mice and SAT-I / apoE double-deficient mice showed similar expression patterns to wild-type mice and SAT-I-deficient mice, respectively, and there was no difference in the expression level between the two groups. . FIG.
  • FIG. 9 shows the results of ganglioside analysis in SAT-I-deficient mice and wild-type heart, liver and muscle. GM2 expression is only observed in the liver.
  • exon 2 of the SAT-I gene and its surrounding site have been replaced with a neomycin resistance gene (FIG. 2).
  • FOG. 2 neomycin resistance gene
  • GM2 was not expressed in the liver in another SAT-I-deficient mouse deficient in exon 6 encoding the enzyme catalytic site of SAT-I, which indicates that SAT-I synthesizes GM3. It also shows that it is the only enzyme. Based on the above, it is considered that GM2 found in plasma and liver of SAT-I-deficient mice is derived from the liver.
  • Plasma total cholesterol and plasma triglyceride levels were reduced by about half in SAT-I / apoE double-deficient mice compared to apoE-deficient mice. The decrease was attributed to the CM, VLDL, and LDL fractions.
  • SAT-I-deficient mice were loaded with a high cholesterol diet and the serum cholesterol and triglyceride levels were compared with wild-type mice. Serum was collected after 10 weeks of high-cholesterol diet loading on wild-type and SAT-I KO mice. Quantification of total cholesterol and free fatty acids was performed using a Wako Pure Chemical kit. Statistical processing of total cholesterol was performed by Sheffe's F test, and statistical processing of free fatty acids was performed by Tukey-Kramer method. As a result, no increase in serum cholesterol level observed when wild type mice were loaded with a high cholesterol diet was observed at all when SAT-I KO mice were loaded with a high cholesterol diet (FIG. 10). The above results revealed for the first time the possibility of treating hyperlipidemia by controlling ganglioside biosynthesis by controlling SAT-I gene expression (rather than controlling the overall expression of GSL).
  • the present invention is an unprecedented invention that can reduce blood lipid level to a normal level by selective control of ganglioside GM3.
  • a novel method for preventing and treating hyperlipidemia based on the present invention, as well as atherosclerosis, hyper-LDL, hypo-HDL, hypercholesterolemia, hypertriglyceridemia and familial hypercholesterol.
  • atherosclerosis hyper-LDL, hypo-HDL
  • hypercholesterolemia hypertriglyceridemia
  • familial hypercholesterol familial hypercholesterol

Abstract

本発明は、より安全性の高い高脂血症の治療方法、および高脂血症の治療薬を提供する。より具体的には、本発明は、新規の高脂血症治療剤のスクリーニング方法を提供する。より詳細には、ガングリオシド、特にGM3の産生もしくは機能を阻害すること、またはGM3合成酵素の活性もしくは発現を阻害することにより血中脂質レベル低下作用を奏する物質のスクリーニング方法を提供する。本発明はまた、ガングリオシド、特にGM3の産生などを特異的に阻害する、高脂血症の治療に有効な医薬組成物などを提供する。

Description

高脂血症治療剤のスクリーニング方法
 本発明は、新規の高脂血症治療剤のスクリーニング方法を提供する。より詳細には、ガングリオシド、特にGM3の産生もしくは機能を阻害すること、またはGM3合成酵素の活性もしくは発現を阻害することにより血中脂質レベル低下作用を奏する物質のスクリーニング方法を提供する。本発明はまた、ガングリオシド、特にGM3の産生などを特異的に阻害する、高脂血症の治療に有効な医薬組成物などを提供する。
 心筋梗塞、脳梗塞などの動脈硬化に関する循環器疾患が年々増加しており、成人の主な死亡原因の1つとなっている。動脈硬化を引き起こす原因としては様々なものがあるが、高脂血症(高コレステロール血症、高トリグリセリド血症など)が最も重要な原因の1つとされている。この高コレステロール血症の治療には、HMG-CoA還元酵素阻害剤(特にスタチン系薬剤)、陰イオン交換樹脂製剤などの薬剤が用いられている。しかし、これらの薬剤はコレステロールの生合成以外にユビキノンやドリコール、ヘムAのような生体の機能維持に必要な成分の生合成も阻害するため、これに起因する副作用が懸念されている。
 近年、肥満により誘導される種々の代謝性疾患(インスリン抵抗性、2型糖尿病、高脂血症、動脈硬化、脂肪肝など)におけるスフィンゴ糖脂質(glycosphingolipid: GSL)の重要性が明らかになってきている。GSLはセラミドを基本骨格として種々の糖鎖が付加された分子群であり、血液中あるいはすべての細胞の細胞膜に存在している。体内においてGSLはセミラドを起点として一連の酵素反応によって生合成される(図1)。シアル酸を有するGSL はガングリオシドファミリーと呼ばれ、GM3合成酵素(sialic acid transferase I: SAT-I)によってラクトシルセラミド(LacCer)から合成されるGM3を起点としている(図1)。GSL生合成経路の初発段階であるグルコシルセラミド(GlcCer)生合成酵素に対する阻害剤としては、D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP)(非特許文献1)、D-threo-PDMPのアナログである(1R,2R)-nonanoic acid[2-(2,3-dihydro-benzo [1,4] dioxin-6-yl)-2-hydroxy-1-pyrrolidin-1-ylmethyl-ethyl]-amide-l-tartaric acid salt (Genz-123346)、N-(5-adamantane-1-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM)などが挙げられる。これら阻害剤は、in vitroおよび肥満モデル動物でインスリン抵抗性を改善すること、脂肪肝改善効果を有すること、さらには血清中のトリグリセリド、遊離脂肪酸(およびコレステロールを低下させて肝臓から胆汁中へのコレステロールなどの排泄を促進すること(すなわちコレステロール逆転送系の活性化)などが報告され(非特許文献2~7)、臨床応用を目指した開発が進行中である。
 しかしながら、グルコシルセラミド合成酵素のノックアウトマウスが胎生致死であったことが報告されているので(非特許文献8)、この酵素の阻害剤の潜在的な副作用も懸念される。一方、GM3合成酵素のノックアウトマウスの寿命は野生型と同等であることから(非特許文献9)、GM3合成酵素の阻害によって起こる副作用は少ないと期待される。
 インスリン責任臓器(筋肉、肝臓および脂肪組織)に発現するGSLは、グルコシルセラミド(GlcCer)、ラクトシルセラミド(LacCer)、ガングリオシドGM3およびGM2のように多種多様である。YamashitaらはGM3合成酵素(SAT-I)の遺伝子欠損マウスを作製し、このマウスにおいて、図1に示す通常発現しているa-およびb-シリーズのガングリオシドが発現していないこと、ならびに高脂肪食負荷によるインスリン抵抗性の発症を野生型マウスと比較したところ、SAT-I欠損マウスではインスリン抵抗性が軽減していることを報告した(非特許文献9)。
Inokuchi J & Radin N (1987) J. Lipid Res. 28, 565-571 Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, et al. (2002) J Biol Chem 277, 3085-3092 Zhao H, Przybylska M, Wu IH, Zhang J, Siegel C, Komarnitsky S, Yew NS, & Cheng SH (2007) Diabetes 56, 1210-1218 Zhao H, Przybylska M, Wu IH, Zhang J, Maniatis P, Pacheco J, Piepenhagen P, Copeland D, Arbeeny C, Shayman JA, et al. (2009) Hepatology 50, 85-93 Aerts JM, Ottenhoff R, Powlson AS, Grefhorst A, van Eijk M, Dubbelhuis PF, Aten J, Kuipers F, Serlie MJ, Wennekes T, et al. (2007) Diabetes 56, 1341-1349 van Eijk M, Aten J, Bijl N, Ottenhoff R, van Roomen CP, Dubbelhuis PF, Seeman I, Ghauharali-van der Vlugt K, Overkleeft HS, Arbeeny C, et al. (2009) PLoS One 4, e4723. Epub 2009 Mar 4723 Bijl N, van Roomen CP, Triantis V, Sokolovic M, Ottenhoff R, Scheij S, van Eijk M, Boot RG, Aerts JM, & Groen AK (2009) Hepatology 49, 637-645 YAMASHITA, T., et al, Proc. Natl. Acad. Sci. USA, Vol. 96, pp. 9142-9147, 1999 Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, et al. (2003) Proc Natl Acad Sci U S A 100, 3445-3449
 そこで本発明者らは、GM3合成酵素の制御に基づく治療の標的疾患として脂質代謝異常症を検証し、より安全性の高い新規の高脂血症治療薬、および高脂血症の予防・治療方法を提供するための手段を提供する。
 本発明者らは上記課題を解決するために鋭意努力し、ガングリオシド生合成に関与する遺伝子(GM3合成酵素遺伝子)およびアポリポタンパク質E(apoE)の二重欠損マウス(SAT-I/apoE KOマウス)を作製し、このマウスを用いて種々の肥満誘導性代謝疾患におけるガングリオシドの機能的役割を個体レベルで解析した。その結果、GM3合成酵素を阻害することによって、血中脂質レベル(血中コレステロールレベルおよび/またはトリグリセリドレベル)を低下できることを確認し、本発明を完成させた。
 したがって、本発明は、血中脂質レベル(血中コレステロールレベルおよび/またはトリグリセリドレベル)を低下させる、高脂血症の治療に有効な物質のスクリーニング方法、ガングリオシド(特にGM3)の産生を選択的に阻害する高脂血症の治療に有効な医薬組成物、などを提供する。
 本発明は具体的には、以下に記載のスクリーニング方法、医薬組成物、治療方法などに関する:
[1] 血中脂質レベル低下作用を示す物質のスクリーニング方法であって、以下:
 (i)  被験物質を非ヒト動物に投与する工程、および
 (ii) 非ヒト動物の血中脂質レベルを測定する工程
を含む、スクリーニング方法。
[2] 血中脂質レベル低下作用を示す物質のスクリーニング方法であって、以下:
 (i)  被験物質の存在下または非存在下で、GM3合成酵素とその基質とを接触させる工程、
 (ii) GM3合成量を低下させる被験物質を選択する工程、
 (iii)選択された被験物質を非ヒト動物に投与する工程、および
 (iv) 非ヒト動物の血中脂質レベルを測定する工程
を含む、スクリーニング方法。
[3] 血中脂質レベル低下作用を示す物質のスクリーニング方法であって、以下:
 (i)  被験物質とGM3合成酵素を発現する細胞とを接触させる工程、
 (ii) GM3合成酵素の発現量を低下させる被験物質を選択する工程、
 (iii)選択された被験物質を非ヒト動物に投与する工程、および
 (iv) 非ヒト動物の血中脂質レベルを測定する工程
を含む、スクリーニング方法。
[4] 前記GM3合成酵素を発現する細胞が、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージからなる群より選択される、[3]に記載の方法。
[5] 前記GM3合成酵素を発現する細胞が、遺伝子組み換えにより作製された形質転換細胞である、[3]に記載の方法。
[6] さらに、血中コレステロールレベルおよび/またはトリグリセリドレベルを低下させる被験物質を選択する工程を含む、[1]~[5]のいずれか1項に記載のスクリーニング方法。
[7] 前記非ヒト動物が通常よりも高い血中脂質レベルを有する、[1]~[6]のいずれか1項に記載の方法。
[8] 前記非ヒト動物がマウスである、[1]~[7]のいずれか1項に記載の方法。
[9] ガングリオシドの産生を特異的に抑制する物質を含有する、高脂血症の治療に有効な医薬組成物。
[9a] ガングリオシドの機能を選択的に抑制する物質を含有する、高脂血症の治療に有効な医薬組成物。
[10] 前記ガングリオシドがGM3である、[9]に記載の組成物。
[11] GM3に対する抗体、GM3合成酵素阻害剤またはGM3合成酵素の発現を阻害する物質を含有する、高脂血症の治療に有効な医薬組成物。
[12] 高脂血症の治療に有効な医薬組成物の有効量を非ヒト動物に投与することにより血中脂質レベルを低下させる、高脂血症の治療方法。
[13] 前記医薬組成物が、血中コレステロールレベルおよび/またはトリグリセリドレベルを低下させる、[12]に記載の方法。
[14] 前記医薬組成物が、ガングリオシドの産生を選択的に阻害する物質を含む、[12]または[13]に記載の方法。
[15] 前記ガングリオシドがGM3である、[14]に記載の方法。
[16] 前記ガングリオシドの産生を選択的に阻害する物質が、GM3に対する抗体、GM3合成酵素阻害剤またはGM3合成酵素の発現を阻害する物質である、[15]に記載の方法。
[17] GM3に対する抗体、GM3合成酵素活性またはGM3合成酵素発現を制御することにより血中脂質レベルを制御する方法。
 本発明の医薬組成物は、ガングリオシドGM3の生合成を阻害することによって血中脂質レベル(血中コレステロールレベルおよび/またはトリグリセリドレベル)を低下させるので、臨床的にも新たな高脂血症の治療方法を提供することができる。
図1は、ガングリオシド生合成経路を示す。 図2は、GM3合成酵素遺伝子欠損マウス(SAT-I KO)の作製方法を示す。 図3は、SAT-I/apoE二重欠損(DKO)マウスの作成およびその遺伝子の確認を示す。 図4は、図3のSAT-I/apoE二重欠損マウスの体重および血中脂質量の測定結果を示す。 図5は、ゲルろ過高速液体クロマトグラフィーにより分画した、ApoE欠損マウスおよびSAT-I/ApoE二重欠損マウスの血漿リポタンパクのプロファイルを示す。 図6は、ApoE欠損マウスおよびSAT-I/ApoE二重欠損マウスの肝臓における脂質組成の変化を示す。 図7は、SAT-I欠損マウス、ApoE欠損マウス、およびSAT-I/ApoE二重欠損マウスの血漿中のスフィンゴ糖脂質の分析結果を示す。 図8は、SAT-I欠損マウス、ApoE欠損マウスおよびSAT-I/ApoE二重欠損マウスの肝臓中のスフィンゴ糖脂質の分析結果を示す。 図9は、SAT-I欠損マウスおよび野生型マウスの心臓、肝臓および筋肉におけるガングリオシド組成を測定した結果を示す。 図10は、高コレステロール食負荷したSAT-I欠損マウスにおける血漿脂質の測定結果を示す。
1.本発明のスクリーニング方法
 本発明は、(i) 被験物質を非ヒト動物に投与する工程、および(ii) 非ヒト動物の血中脂質レベルを測定する工程を含む、血中脂質レベル低下作用、すなわち血中コレステロールレベルおよび/またはトリグリセリドレベルの低下作用を示す物質のスクリーニング方法を提供する。被験物質としては、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などが挙げられる。投与される被験物質は、1種でも複数種の組合せであってもよい。血中脂質レベルの測定は、上記の測定方法などの公知の方法を利用することができる。
 本発明において使用される「血中脂質レベル低下作用を示す物質」とは、血中コレステロールレベルおよび/またはトリグリセリドレベルを低下させる物質をいう。より具体的には、本発明において使用される「血中脂質レベル低下作用を示す物質」は、これを投与した被験体より得られたサンプル中(血漿)のコレステロールレベルおよび/またはトリグリセリドレベルを基礎生化学実験法第5巻 脂質・糖質・複合糖質(日本生化学会編)に記載された方法によって測定される場合、対照と比較して10%以上、好ましくは20%以上、より好ましくは40%以上、より好ましくは60%以上、さらに好ましくは、80%以上の物質である。ただし、通常の血中脂質レベル程度までの低下を限度とする。
 血中脂質レベルの測定は、被験体より採取したサンプルについて、酵素法、免疫拡散法などを利用する公知の方法に従って測定できる。このような測定方法としては、例えば、上記の基礎生化学実験法第5巻 脂質・糖質・複合糖質(日本生化学会編)に記載の方法が挙げられる。また、各社よりトリグリセリドおよびコレステロールの測定キットも市販されている。例えば、コレステロール測定キットとしては、コレステロールE-テストワコー(和光純薬工業株式会社)、トリグリセリド測定キットとしてはTG-ENカイノス(株式会社カイノス)、遊離脂肪酸測定キットとしては、NEFA C-テストワコー(和光純薬工業株式会社)が挙げられる。
 また、本発明のスクリーニング方法は、コレステロールおよびトリグリセリドの測定法として現在までに開発されたいずれの方法であってもよい。より詳細には、本発明のスクリーニング方法は、高速液体クロマトグラフィー(HPLC)やガスクロマトグラフィーの工程を含むことができる。詳細な原理などについては、例えば、基礎生化学実験法第5巻 脂質・糖質・複合糖質(日本生化学会編)を参照のこと。
 本発明において、「血中コレステロールレベルおよび/またはトリグリセリドレベルを低下させる」とは、血中コレステロールレベルおよび/またはトリグリセリドレベルを、上記の定法により測定する場合、対照と比較して、これら濃度の少なくとも1つを、10%以上、好ましくは20%以上、より好ましくは40%以上、より好ましくは60%以上、さらに好ましくは80%以上低下させることをいう。ただし、通常の血中脂質レベル程度までの低下を限度とする。
 このような血中脂質レベル(血中コレステロールレベルおよび/またはトリグリセリドレベル)を低下させる物質は、高脂血症の治療又は予防に有効である。本明細書中で使用される「高脂血症」とは、高リポタンパク質血症ともいい、遊離脂肪酸以外の血漿脂質が増加する状態を指す。健常成人の血漿中には、150~220mg/dlのコレステロール、50~140mg/dlのトリアシルグリセロールおよび150~220mg/dlのリン脂質が含まれており、これらはアポリポタンパク質と結合してリポタンパク質として分散されている。高脂血症は、主にトリアシルグリセロールが増加する高脂血症(例えば、I型高脂血症、IV型高脂血症、およびV型高脂血症)、および主にコレステロールが増加する高脂血症(例えば、家族性高コレステロール血症、家族性複合型高脂血症、およびIII型高脂血症)に分類できる(斯波真理子ら、新生化学実験講座4「脂質I 中性脂質とリポタンパク質」、東京化学同人、1993年、第11章)。
 このような血中脂質レベルを低下させる物質は、高脂血症の治療又は予防に有効であるだけでなく、例えば動脈硬化症、アテローム性動脈硬化症、末梢血管疾患、高LDL血症、低HDL血症、高コレステロール血症、高トリグリセリド血症、家族性高コレステロール血症、心臓血管障害、狭心症、虚血、心虚血、血栓症、心筋梗塞、再灌流障害、血管形成性再狭窄及び高血圧から選ばれる1種以上の疾患の治療又は予防にも有効である。
 上記のスクリーニング方法において用いられる被験体としての非ヒト動物は、サル、チンパンジー、イヌ、ネコ、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウマなど、医薬品の試験において一般に利用される動物が挙げられる。好ましくはサル、チンパンジー、ウサギ、ラット、マウスであり、より好ましくはマウスまたはラットである。
 本発明において、血中脂質レベル低下作用を示す物質は、特異的にGM3の機能を阻害する物質であってもよいし、GM3の種々の機能のうち特定の機能を選択的に阻害できる物質であってもよい。本明細書において使用されるスフィンゴ糖脂質とは、分子内に糖、脂肪酸及び長鎖塩基であるスフィンゴシンを含む脂質をいう。本明細書において使用されるガングリオシドは、シアル酸を含むスフィンゴ糖脂質ファミリーの総称であって、シアル酸を含む糖鎖がセラミドと呼ばれる脂質に共有結合で結合している分子である。今日では、様々な糖鎖構造のガングリオシドが知られており、GM3はその生合成経路における最初のガングリオシド分子である(図1を参照)。すなわち、すべての内在性のガングリオ系ガングリオシドは、セラミドを出発物質として、GM3合成酵素を最初とする一連の酵素反応によって生合成される。この中でGM3はすべてのガングリオシドの起点となる分子であり、ラクトシルセラミドからGM3生合成酵素(SAT-I)によって合成される。糖鎖部分は、細胞内のゴルジ体内腔で糖ヌクレオチドを供与体としてグリコシルトランスフェラーゼよりに逐次合成される。
 具体的なガングリオ系ガングリオシドの生合成経路について、図1に示されるように、GM3生合成酵素(SAT-I)によってGal-Glc-CerからGM3が生成され、このGM3よりa-シリーズ(GM3、GM2、GM1、GD1aおよびGT1a)、b-シリーズ(GD3、GD2、GD1b、GT1bおよびGQ1b)などの種々のガングリオシドが生成される。この図から、これらのガングリオシド分子群の生成がGM3合成酵素に依存していることが理解される。このことから、GM3は他のガングリオシドの原料としての機能を有している
 また、GM3が種々の増殖因子受容体の機能(Inokuchi J. and Kabayama K. (2007) Receptor Modifications in Glycobiology. Comprehensive Glycoscience 3, 733-744. (Elsevier Science & Technology)や分子輸送体を制御する機能(Glaros EN., et al. Glycosphingolipid Accumulation Inhibits Cholesterol Efflux via the ABCA1/Apolipoprotein A-I Pathway J. Biol. Chem. 280, 24515-24523, 2005)を担うことが報告されている。さらに,GM3の機能に関して、GM3がインスリン受容体をカベオラから乖離させるというインスリンシグナルの不応答に関する新たな分子機序が最近提唱されている(Kabayama K, et al., Glycobiology (2005) 15, 21-29、Kabayama K, et al., Proc Natl Acad Sci U S A (2007) 104, 13678-13683)。
 本発明において血中脂質レベル低下作用を示す物質は、特異的または選択的にGM3の機能を阻害する、GM3に対する抗体であってもよい。このような抗体としては、GM3に対して特異性を有する公知のモノクローナル抗体を挙げることができる(Kotani, M., et al.,:Biochem. Biophys. Acta,1117,97-103(1992))。このような抗体は、特定の実施態様において、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、上皮細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞、および種々の株化細胞(例えば、脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)などの細胞の細胞膜においてGM3の作用を阻害し得る。本発明の文脈において、抗体は、モノクローナル抗体、ポリクローナル抗体、抗イディオタイプ抗体、抗体フラグメント(例えば、Fab、およびF(ab')2、Fv可変領域、または相補性決定領域)を包含することが理解される。抗体は、10-7M以上、好ましくは10-8M以上のKaで結合するならば、抗原、すなわちGM3またはGM3合成酵素に対して特異的であることが理解される。モノクローナル抗体のアフィニティーは、当業者により容易に決定され得る(Scatchard,Ann.N.Y.Acad.Sci.51:660-672,1949を参照のこと)。
 本発明において、血中脂質レベル低下作用を示す物質は、「GM3合成酵素阻害剤」、すなわちGM3の生合成を特異的に抑制する物質であってもよい。本明細書中のGM3合成酵素(SAT-I)は、配列番号:2若しくは4のアミノ酸配列、またはそれらの配列に1~数個(1~9、1~8、1~7、1~6、1~5、1~4、1~3、1~2または1個)のアミノ酸の欠失、置換、挿入および/または付加の変異を有するアミノ酸配列を含有するタンパク質のことをいう。GM3の生合成について、図1に示したように、セラミド(Cer)にグルコシルセラミド合成酵素が作用してグルコシルセラミド(GlcCer)が合成され,次にラクトシルセラミド合成酵素によってラクトシルセラミド(LacCer)生成する。GM3合成酵素はこのLacCerを基質として認識し,GM3を合成する。すなわち、グルコシルセラミド合成酵素、ラクトシルセラミド合成酵素およびGM3合成酵素の基質アナログによる酵素反応の競合的阻害により、またはこれらの酵素に結合して非競合的にGM3合成量を低下できるものが挙げられる。
 本発明において、血中脂質レベル低下作用を示す物質は、特異的に「GM3合成酵素の発現を阻害する物質」であり得る。本明細書中のGM3合成酵素(SAT-I)のcDNAは、例えば配列番号:1又は3に示される。このようなGM3合成酵素の発現を特異的に阻害する物質としては、アンチセンス核酸、リボザイム、RNAi効果を有するdsRNA等が挙げられる。
 本明細書中で使用される場合、用語「核酸」は、「ポリヌクレオチド」、「遺伝子」または「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。本明細書中で使用される場合、用語「塩基配列」は、「核酸配列」または「ヌクレオチド配列」と交換可能に使用され、デオキシリボヌクレオチド(A、G、CおよびTと省略される)の配列として示される。また、「配列番号1の塩基配列を含むポリヌクレオチドまたはそのフラグメント」とは、配列番号1の各デオキシヌクレオチドA、G、Cおよび/またはTによって示される配列を含むポリヌクレオチドまたはその断片部分が意図される。
 本発明に係る核酸は、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖または一本鎖であり得る。一本鎖DNAまたはRNAは、コード鎖(センス鎖としても知られる)であり得るか、またはそれは、非コード鎖(アンチセンス鎖としても知られる)であり得る。
 本明細書における「GM3合成酵素の発現を阻害する物質」には、GM3合成酵素遺伝子の転写の抑制およびタンパク質への翻訳の抑制が含まれる。また、DNAの発現の完全な停止のみならず発現の減少も含まれる。
 「GM3合成酵素の発現を阻害する物質」の一つの態様は、GM3合成酵素遺伝子と相補的なアンチセンス鎖をコードする核酸である。アンチセンス技術は、特定の内在性遺伝子の発現を特異的に抑制する方法として公知であり、種々の文献に記載されている(例えば、平島および井上: 新生化学実験講座2 核酸IV 遺伝子の複製と発現 (日本生化学会編, 東京化学同人) pp.319-347, 1993などを参照)。アンチセンス核酸は、例えば、配列番号:1または3に記載のcDNAの配列情報を基にホスホロチオネート法(Stein, Nucleic Acids Res., 16: 3209-3221, 1988)などにより調製することが可能である。調製された核酸は、公知の方法で、直接的に細胞に適用される形態を利用でき、また公知の発現系を備えたベクターに組み込まれて適切に発現される形態で所望の細胞を形質転換できる。アンチセンス核酸の配列は、形質転換する細胞が持つ内因性遺伝子の転写産物と相補的な配列であることが好ましいが、遺伝子の発現を有効に阻害できる限り、完全に相補的でなくてもよい。転写されたRNAは、標的とする遺伝子の転写産物に対して好ましくは90%以上(例えば、95%、96%、97%、98%、99%以上)の相補性を有する。アンチセンス配列を用いて、効果的に標的遺伝子の発現を阻害するには、アンチセンス核酸の長さは、少なくとも15塩基以上であり、好ましくは100塩基以上であり、さらに好ましくは500塩基以上である。通常、用いられるアンチセンス核酸の長さは5kbよりも短く、好ましくは2.5kbよりも短い。
 本発明において、内在性のGM3合成酵素遺伝子の発現の抑制は、リボザイムをコードするDNAを利用して行うことも可能である。リボザイムとは触媒活性を有するRNA分子のことをいい、ターゲットとするDNAの転写産物を切断することにより、その遺伝子の機能を阻害する。リボザイムの設計についても種々の公知文献を参照することができる(例えば、FEBS Lett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323: 349, 1986; Nucl. Acids. Res. 19: 6751, 1991; Protein Eng 3: 733, 1990; Nucl. Acids Res. 19: 3875, 1991; Nucl. Acids Res. 19: 5125, 1991; Biochem Biophys Res Commun 186: 1271, 1992など参照)。また、「DNAの発現を共抑制効果により抑制するRNAをコードするポリヌクレオチド」とは、「共抑制」によって、ターゲットとなるDNAの機能を阻害するヌクレオチドをいう。
 さらに、本発明における内在性遺伝子の発現の抑制は、標的遺伝子のドミナントネガティブの形質を有する遺伝子で所望の細胞を形質転換することによっても達成することができる。ドミナントネガティブの形質を有する遺伝子とは、該遺伝子を発現させることによって、所望の細胞が本来持つ内在性の野生型遺伝子の活性を消失もしくは低下させる機能を有する遺伝子のことをいう。
 GM3合成酵素遺伝子の発現を抑制するために用いる核酸の他の一つの態様は、DNAの発現をRNAi効果により抑制するRNAである。「RNAi」とは、標的遺伝子配列と同一もしくは類似した配列を有する二重鎖RNAを細胞内に導入すると、導入した外来遺伝子および標的内在性遺伝子の発現がいずれも抑制される現象のことを指す。ここで用いられるRNAとしては、例えば、21~25塩基長のRNA干渉を生ずる二重鎖RNA、例えば、dsRNA (double strand RNA)、siRNA(small interfering RNA)又はshRNA(short hairpin RNA)が挙げられる。このようなRNAは、リポソームなどの送達システムにより所望の部位に局所送達させることも可能であり、また上記二重鎖RNAが生成されるようなベクターを用いてこれを局所発現させることができる。このような二重鎖RNA(dsRNA、siRNA又はshRNA)の調製方法、使用方法などは、多くの文献から公知である(特表2002-516062号公報; 米国公開許第2002/086356A号; Nature Genetics, 24(2), 180-183, 2000 Feb.; Genesis, 26(4), 240-244, 2000 April; Nature, 407:6802, 319-20, 2002 Sep. 21; Genes & Dev., Vol.16, (8), 948-958, 2002 Apr.15; Proc. Natl. Acad. Sci. USA., 99(8), 5515-5520, 2002 Apr. 16; Science, 296(5567), 550-553, 2002 Apr. 19; Proc Natl. Acad. Sci. USA, 99:9, 6047-6052, 2002 Apr. 30; Nature Biotechnology, Vol.20 (5), 497-500, 2002 May; Nature Biotechnology, Vol. 20(5), 500-505, 2002 May; Nucleic Acids Res., 30:10, e46,2002 May 15等参照)。
 本発明のスクリーニング方法としては、非ヒト動物に被験物質を投与する前に、インビトロにおいて被験物質を一次スクリーニングする工程を含み得る。より詳細には、被験物質の存在下または非存在下で、スフィンゴ糖脂質合成酵素とその基質とを接触させる工程、およびその生成物の合成量を低下させる被験物質を選択する工程を含んでもよい。スフィンゴ糖脂質合成酵素およびスフィンゴ糖脂質の組合せとしては、好ましくはガングリオシド合成酵素およびガングリオシドの組合せであり、さらに好ましくはGM3合成酵素およびGM3の組合せである。その他のガングリオシド合成酵素とガングリオシドとの組合せは、図1に記載の組合せが挙げられる。
 例えば、上記のスクリーニング方法において使用されるGM3合成酵素としては、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞および種々の株化細胞(例えば,脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)などが発現する酵素を利用する方法、または遺伝子工学的手法、化学合成などより作製した酵素を利用する方法が挙げられる。好ましくは、配列番号1又は3に記載のヌクレオチド配列に由来する酵素である。作製されたこの場合のGM3合成酵素は、単離した状態であっても単離されていない状態であってもよい。例えば、GM3合成酵素は、これを有する上記の細胞を用いてもよいし、上記の細胞から精製されてもよい。また例えば、GM3合成酵素は、遺伝子組み換え手法により、種々の培養細胞、例えば大腸菌、酵母、昆虫細胞、哺乳動物細胞などをの宿主に、その宿主に対して適切な発現ベクターを導入することにより作製されてもよい。このような公知の方法としては、例えば、Molecular Cloning 3rd Ed.(J.Sambrook, et al, Cold Spring Harbour Laboratory Press, 2001)、Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997などに記載の方法を参照できる。
 本発明のスクリーニング方法としては、非ヒト動物に被験物質を投与する前に、インビトロにおいて被験物質を、好適なレベルのスフィンゴ糖脂質合成酵素を発現する細胞、例えば脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞および種々の株化細胞(例えば,脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)など、または遺伝子組み換え手法により作製された形質転換細胞に接触させ、これら細胞における選択的なスフィンゴ糖脂質の産生量を測定する工程を含むことができる。この場合に測定されるスフィンゴ糖脂質合成酵素およびスフィンゴ糖脂質の組合せとしては、好ましくはガングリオシド合成酵素およびガングリオシドの組合せであり、さらに好ましくはGM3合成酵素およびGM3の組合せである。好適なレベルの発現量とは、各細胞が由来する臓器において正常レベルまたはそれ以上の発現量をいう。その他のガングリオシド合成酵素とガングリオシドとの組合せは、図1を参照のこと。上記の形質転換細胞を作製するための遺伝子組み換え手法については、公知の方法、例えば、Molecular Cloning 3rd Ed.(J.Sambrook, et al, Cold Spring Harbour Laboratory Press, 2001)、Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997などに記載の方法を利用できる。
 ガングリオシドの精製や定量的検出については公知の方法が挙げられ、例えば、Macher BA and Klock JC (J. Biol. Chem. 255, 2092-2096, 1980)やLedeen et al. (J. Neurochem. 21, 829-839, 1973)の方法を参照できる。また例えば、GM3などの種々のガングリオシドに特異的に作用する抗体を使用する定量的検出も可能である。このようなスクリーニング方法において被験物質によるGM3産生量の低下は、対照と比較して少なくとも10%以上、20%以上、より好ましくは40%以上、より好ましくは60%以上、さらに好ましくは80%以上、90%以上、100%である。
 上記のスクリーニング方法において、図1に記載されるガングリオシド、具体的には、GM3、GM2、GM1、GD1aおよびGT1a(a-シリーズ)、ならびにGD3、GD2、GD1b、GT1bおよびGQ1b(b-シリーズ)からなる群より選択される少なくとも1つのガングリオシドと、それぞれのガングリオシド合成酵素との選択的な組合せであってもよい。このようなスクリーニング方法において被験物質によるガングリオシド生成量の低下は、対照と比較して少なくとも10%以上、好ましくは20%以上、より好ましくは40%以上、より好ましくは60%以上、さらに好ましくは80%以上、90%以上、100%である。
 本発明のスクリーニング方法としては、被験物質を好適なレベルのスフィンゴ糖脂質合成酵素を発現する細胞、例えば、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞および種々の株化細胞(例えば,脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)などと接触させて、この細胞における選択的なGM3合成酵素の発現量を測定する方法が挙げられる。GM3合成酵素の発現量を測定する方法として、GM3合成酵素の配列を利用したハイブリダイゼーションを介する方法が挙げられ、例えば、ノーザンブロット、担体上に固定化されたプローブを利用する方法、遺伝子チップを用いた方法、定量的PCRなどが挙げられる。このようなスクリーニング方法において、被験物質によるGM3合成酵素の発現抑制は、10%以上、好ましくは20%以上、より好ましくは40%以上、より好ましくは60%以上、さらに好ましくは、80%以上、90%以上、100%である。
 本明細のスクリーニング方法における被験物質として、GM3合成酵素の発現を特異的に阻害するポリヌクレオチドが挙げられる。このようなGM3合成酵素発現阻害ポリヌクレオチドの形態としては、前述のアンチセンス核酸、リボザイム、二本鎖RNAなどの形態が挙げられる。これらのGM3合成酵素発現阻害ポリヌクレオチドは、公知の方法によって作製できる。さらにこれら核酸は、種々の化学修飾を受けてもよい。
 本発明のスクリーニング方法としてはまた、GM3合成酵素のプロモーターの下流にレポーター遺伝子を繋いだ、遺伝子組み換え動物由来の細胞または遺伝子組み換え細胞を用いて、被験物質をその細胞に接触させ、その細胞におけるレポーター遺伝子の発現量を測定する方法が挙げられる。この方法において使用される遺伝子組み換え細胞としては種々の細胞を用いることができるが、好ましくは、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞および種々の株化細胞(例えば,脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)などである。GM3合成酵素遺伝子の5’上流の遺伝子配列は、Kim J-W., et al., Gene 273, 163-171, 2001に記載され、そのプロモーターについては、Kim S-W., et al., Biochim. Biophys. Acta 1578, 84-89, 2002.; Choi H-J., et al., Biochem. Biophys. Res. Commun. 313, 142-147, 2004に記載されている。具体的には、例えば転写因子AP4、MZF1、SP1、ATF/CREB、NFY、IK2およびLYF1の推定結合部位が見出されており、またPMA誘導性プロモーターとして機能するCREBが挙げられている。使用されるレポーター遺伝子がコードするタンパク質としては、好ましくはホタルルシフェラーゼ、ウミシイタケルシフェラーゼ、緑色蛍光タンパク質(GFP)、β-ガラクトシダーゼ、アルカリホスファターゼなど、種々の公知のものが挙げられる。これらレポータータンパク質は、公知の検出方法またはキットを用いて検出できる。このようなスクリーニング方法において、例えば、被験物質による刺激時のレポータータンパク質発現の抑制は、10%以上、好ましくは20%以上、より好ましくは40%以上、60%以上、さらに好ましくは80%以上、90%以上、100%である。
2.本発明の医薬組成物
 本発明は、血中脂質レベル低下作用を示す物質を含有する、高脂血症の治療および/または予防に有用な医薬組成物を提供する。
 本発明の医薬組成物は血中脂質レベル低下作用を有し、好ましくは高脂血症などの治療又は予防に用いることができる。あるいは本発明の医薬組成物は、血中脂質レベル低下作用によって治療できる疾患、例えば、動脈硬化症、アテローム性動脈硬化症、末梢血管疾患、高LDL血症、低HDL血症、高コレステロール血症、高トリグリセリド血症、家族性高コレステロール血症、心臓血管障害、狭心症、虚血、心虚血、血栓症、心筋梗塞、再灌流障害、血管形成性再狭窄及び高血圧から選ばれる1種以上の疾患、好ましくは、アテローム性動脈硬化症、高LDL血症、低HDL血症、高コレステロール血症、高トリグリセリド血症及び家族性高コレステロール血症などの治療又は予防に用いることができる。ただし、本発明の医薬組成物は、患者の異常な血中脂質レベルを通常レベル程度に低下させるものである。
 本発明の医薬組成物は、ガングリオシドの機能を特異的に阻害する物質を含有し得る。好ましくは、ガングリオシドとしてはGM3であり、ガングリオシドの機能を特異的に阻害する物質は抗GM3抗体であり得る。また、本発明の医薬組成物は、ガングリオシドの機能を選択的に阻害する物質を含み得る。例えば、GM3による細胞膜における種々の増殖因子受容体、輸送タンパク質、接着分子受容体や機能タンパク質の機能制御機能、他の種々のガングリオシドに対する原料供給機能の種々の機能のうちの特定の機能を選択的に阻害できる、抗体などの物質が挙げられる。
 本発明の医薬組成物は、ガングリオシドの産生を選択的に阻害する物質を含有し得る。このような物質としては、ガングリオシド合成酵素の阻害剤、この酵素の発現抑制物質など、上記の本発明のスクリーニング方法により得られる物質を含み得る。
 本発明の医薬組成物を使用する場合、例えば、経口、静脈、口腔粘膜、直腸、膣、経皮、鼻腔経由または吸入経由などですることができるが、経口的に投与するのが好ましい。本発明の医薬組成物の有効成分は単独で、あるいは組み合わせて配合されても良いが、これに製薬学的に許容しうる担体あるいは製剤用添加物を配合して製剤の形態で提供することもできる。この場合、本発明の有効成分は、例えば、製剤中、0.1~99.9重量%含有することができる。
 製薬学的に許容しうる担体あるいは添加剤としては、例えば賦形剤、崩壊剤、崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、溶解剤、溶解補助剤、等張化剤、pH調整剤、安定化剤等を用いることが出来る。
 経口投与に適する製剤の例としては、例えば散剤、錠剤、カプセル剤、細粒剤、顆粒剤、液剤またはシロップ剤等を挙げることが出来る。経口投与の場合、微晶質セルロース、クエン酸ナトリウム、炭酸カルシウム、リン酸ジカリウム、グリシンのような種々の賦形剤を、澱粉、好適にはとうもろこし、じゃがいもまたはタピオカの澱粉、およびアルギン酸やある種のケイ酸複塩のような種々の崩壊剤、およびポリビニルピロリドン、蔗糖、ゼラチン、アラビアゴムのような顆粒形成結合剤と共に使用することができる。また、ステアリン酸マグネシウム、ラウリル硫酸ナトリウム、タルク等の滑沢剤も錠剤形成に非常に有効であることが多い。同種の固体組成物をゼラチンカプセルに充填して使用することもできる。これに関連して好適な物質としてラクトースまたは乳糖の他、高分子量のポリエチレングリコールを挙げることができる。経口投与用として水性懸濁液および/またはエリキシルにしたい場合、活性成分を各種の甘味料または香味料、着色料または染料と併用する他、必要であれば乳化剤および/または懸濁化剤も併用し、水、エタノール、プロピレングリコール、グリセリン等、およびそれらを組み合わせた希釈剤と共に使用することができる。
 非経口投与に適する製剤としては、例えば注射剤、坐剤等を挙げることが出来る。非経口投与の場合、本発明の有効成分をゴマ油または落花生油のいずれかに溶解するか、あるいはプロピレングリコール水溶液に溶解した溶液を使用することができる。水溶液は必要に応じて適宜に緩衝し(好適にはpH8以上)、液体希釈剤をまず等張にする必要がある。このような水溶液は静脈内注射に適し、油性溶液は関節内注射、筋肉注射および皮下注射に適する。これらすべての溶液を無菌状態で製造するには、当業者に周知の標準的な製薬技術で容易に達成することができる。さらに、本発明の有効成分は皮膚など局所的に投与することも可能である。この場合は標準的な医薬慣行によりクリーム、ゼリー、ペースト、軟膏の形で局所投与するのが望ましい。
 本発明の医薬組成物の投与量は特に限定されず、疾患の種類、患者の年齢や症状、投与経路、治療の目的、併用薬剤の有無等の種々の条件に応じて適切な投与量を選択することが可能である。本発明の医薬組成物の投与量は、例えば、成人(例えば、体重60kg)1日当たり1~5000mg、好ましくは10~1000mgである。これらの1日投与量は2回から4回に分けて投与されても良い。
3.本発明の治療方法
 本発明の治療方法において、血中脂質レベル低下作用を示す物質は、上述のとおり、血中脂質レベルを正常レベル程度に低下させる物質である。このような物質としては、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージなどから得られた初代培養細胞および種々の株化細胞(例えば,脂肪細胞ではマウス3T3-L1;肝細胞ではヒトHepG2;血管内皮細胞ではアセチル化LDLの取り込み活性を有する不死化血管内皮細胞株;マクロファージではRAW264.7などであるがこれに限定されるものではない)などに発現するスフィンゴ糖脂質の産生量を抑制する物質、これら細胞に発現するガングリオシドの産生量を抑制する物質、これら細胞に発現するGM3の産生量を抑制する物質、GM3合成酵素阻害剤、GM3合成酵素の発現を阻害する物質などが挙げられる。このような血中脂質レベル低下作用を示す物質を含む医薬組成物を上述のように製造して、これを必要とする被験体に投与できる。この場合、投与量および投与回数などについては、被験体の年齢、病歴、現在使用している薬剤などを医師が考慮した上で、適宜調整され得る。これによって、高脂血症などの予防・治療、または被験体の血中脂質レベルの制御が達成できる。
 以下、本発明を実施例によりさらに具体的に説明するが、これらは単なる例示であり、本発明はこれらの例に制限されるものではない。
1.SAT-I KOマウスの作製
 SAT-I KOマウスの作製に用いたターゲティングベクターの模式図およびノックアウトマウスにおける遺伝子欠損の確認をそれぞれ図2Aおよび図2Bに示す。図2Aの一番上にtargetting vector、2番目に野生型の遺伝子、3番目に変異体の遺伝子を示す。また、図2Bでは、PCRによるSAT-I ジェノタイプの決定を示す。野生型のSAT-I遺伝子アレル(エキソン2)の同定には、5’-GGAATCCATCCCTTTTCTCACAGAG-3(配列番号:5)および5’-TGAACTCACTTGGCATTGCTGG-3’(配列番号:6)をプライマーとして用いた。SAT-I ノックアウトの確認には、挿入されたネオマイシン耐性遺伝子を、5’-GGAATCCATCCCTTTTCTCACAGAG-3’(配列番号:7) と 5’-TGAACTCACTTGGCATTGCTGG-3’(配列番号:8)のプライマーをもちいた。図2Cにおいて、脳ガングリオシドのTLC分析の結果を示す。野生型マウス(+/+)およびヘテロマウス(+/-)では、GM1, GD1a, GD1b, GT1bなどが発現していたが、ノックアウトマウス(-/-)では、これらが全て消失し、代償的にGM1bおよびGD1aが発現していた(図1を参照)。
2.SAT-I/apoE 二重欠損マウスの作製 apoEはカイロミクロン(CM)、超低比重リポタンパク(VLDL)、中間比重リポタンパク(IDL)、低比重リポタンパク(LDL)などのリポタンパク質を構成する主要なアポリポタンパク質の1つでコレステロールやトリグリセリドの運搬に関与している。apoEは主に肝細胞で産生され、リポタンパク質がLDL受容体、VLDL受容体、LDL-recepter related protein(LRP)受容体などに結合し細胞外の脂質を細胞内へ運び込む際のリガンドとして機能している。
 独自に作成したSAT-I欠損マウス(Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, et al. (2009) Proc Natl Acad Sci U S A 106, 9483-9488. Epub 2009 May 9422)(図2)と、Matsushimaらによって樹立された自然発症型apoE欠損高脂血症モデルマウス(以下、apoE欠損マウス)(Matsushima Y, Hayashi S, & Tachibana M (1999) Mamm Genome 10, 352-357; Matsushima Y, Sakurai T, Ohoka A, Ohnuki T, Tada N, Asoh Y, & Tachibana M (2001) J Atheroscler Thromb 8, 71-79)とを交配させることによって、SAT-I/apoE二重欠損マウスを作成した(図3)。より詳細には、以下のとおりである。
 SAT-IおよびapoEの各単独欠損マウス同士(F0世代)を交配することによって、両遺伝子ヘテロのF1世代を得た。続いてF1世代同士を交配して、F2世代においてSAT-I/apoE二重欠損マウスを得た(図3A)。
 得られたSAT-I/apoE二重欠損マウスにおいて、ウエスタンブロット法によりapoEタンパク質の発現確認を行った。図3Bにおいて、矢印の位置のバンドがapoEタンパク質であり、レーンC1は正常マウス、レーンC2はapoE単独欠損マウスのコントロールサンプルを表す。
 また、PCR法によるSAT-I遺伝子の発現確認も行った。具体的な方法は、図2Bと同様である。図3Cにおいて、レーンC3はSAT-I単独欠損マウスのコントロールサンプルを表し、矢印に付されたEx2は正常SAT-I遺伝子エキソン2、Neoはネオマイシン耐性遺伝子を表す。
3.SAT-I/apoE二重欠損マウスの体重および血中脂質量の測定
 野生型、SAT-IおよびapoE各単独欠損、SAT-I/apoE二重欠損マウス(すべて通常食を負荷した16-18週齢の雄)における体重および血中脂質レベルを検討した。具体的には、野生型、SAT-IおよびapoEの各単独欠損、SAT-I/apoE二重欠損マウス(すべて16-18週齢の雄)を16時間絶食した後、体重を計測してからへパリン採血を行った。脂質の分析は血漿を用いて行った。分析の結果、体重はすべての系統間で有意な差は認められなかった(図4A)。血漿中のコレステロール値およびTG値は、apoE単独欠損マウスでは既報のように489 mg/dlおよび89 mg/dlであり、野生型マウスのそれら(コレステロール値:63 mg/dl、TG値:72 mg/dl)に比べて著しい高値を示した(図4AとC)。一方、SAT-I/apoE二重欠損マウスでは、血漿中コレステロールおよびTG値は、それぞれ284 mg/dlおよび51 mg/dlのようにapoE単独欠損マウスのそれらの値と比して著しく低下していた(図4BとC)。特に、TG値は野生型と同じレベルまで正常化していた。このように、高脂血症モデルマウスにおける異常なコレステロール値およびTG値は、SAT-Iを欠損させることによって正常レベルに改善されることが判明した。また、血中遊離脂肪酸レベルはすべての系統間で有意な変動は認められなかった(図4D)。
 そこで,これらのマウスから回収した血清のリポタンパク質プロファイルを比較した。回収した血中リポタンパク質を、ゲルろ過高速液体クロマトグラフィーによりを粒子サイズによって分画(Usui S et al., J. Lipid Res. 43,805-814, 2002 に記載の方法で行った)し、各分画のコレステロールおよびトリグリセリドを定量し、波形グラフ(図5)および以下の表1に示した。SAT-I/apoE二重欠損(DKO)マウスではapoE欠損(apoE KO)マウスと比較して、血漿総コレステロールおよびトリグリセリドの減少が認められ、それらの減少は、主として、CM、VLDLおよびLDLのリポタンパク質の減少に起因することが明らかになった。
Figure JPOXMLDOC01-appb-T000001
 
apoE KO の各値に対するDKO値の有意差を*: p<0.05,**: p<0.01, ***: p<0.001で示した。
 次に,肝臓中の脂質レベルを検討した。各マウスより採取した肝臓にPBSを加えハサミで細かく切り刻んだ後、ポリトロトン ホモジナイザー 3100を用いてホモジネイトを行った。ホモジネイトした懸濁液を遠沈管に移した後、クロロホルム/メタノール(1:2,v/v)を加えて40℃でインキュベートすることによって脂質抽出を行った。続いて、遠心分離して上清を回収して、遠心沈殿物にクロロホルム/メタノール(2:1,v/v)を加えて 同様のインキュベートを行った後、遠心して上清を回収した。さらに、遠心沈殿物にヘキサンを加え40℃でインキュベートした。その後、遠心して上清を回収し、すべての上清を混合して総脂質抽出物とし、窒素乾固させた。総脂質抽出物から脂質成分をさらに精製するために、窒素乾固後にCHCl3 を加えて超音波破砕を行った後、精製水を加えて混和してから遠心分離を行った。遠心分離後、上層(水層)、中間層(タンパク質層)、下層(クロロホルム層)が見られ、この3層のうち下層のみ回収し、窒素乾固を行った。精製した総脂質抽出物を2%トリトンX-100および2%コール酸ナトリウムを含む水溶液に溶解した後、コレステロール量はコレステロールE-テストワコー(和光純薬工業株式会社)、トリグリセリド量はTG-ENカイノス(株式会社カイノス)を使用して測定した(図6)。コレステロールおよびトリグリセリドともにapoE欠損マウスでは野生型マウスと比べ有意な増加が見られたが(図6;*: p<0.05,**: p<0.01, ***: p<0.001)、SAT-I/apoE二重欠損マウスではapoE欠損マウスと比較して有意な差は見られなかった(図6;n.s.により示す)。
 次に,apoE欠損マウス,SAT-I/apoE二重欠損マウスおよび野生型マウスの血漿中および肝臓中のスフィンゴ糖脂質の発現を解析した。スフィンゴ糖脂質分析法を以下に記す。マウス血漿1mlに対してクロロホルム/メタノール(1 : 1, v/v) を8 mL加えて水浴超音波装置にて超音波処理を行い、40℃でインキュベートした後、遠心分離して上清を回収した。遠心沈殿物に再度クロロホルム/メタノール(1 : 2, v/v) を8 mL加えて超音波処理し,40℃でインキュベートをした後、遠心分離して上清を回収し、先の上清と混合して窒素乾固して総脂質抽出物とした。総脂質抽出物を中性脂質と酸性脂質とに分離するため,グラスフィルター付きカラム (φ10mm) にDEAE-SephadexA-25 (GE Healthcare) を詰めたDEAEカラムを使用した。総脂質抽出物をクロロホルム/メタノール/精製水 (30 : 60 : 8, v/v) に溶解してDEAEカラムに添加した後、クロロホルム/メタノール/精製水(30 : 60 : 8, v/v) を流すことによって中性脂質を溶出した。続いて、クロロホルム/メタノール/1規定酢酸ナトリウム水溶液(30 : 60 : 8, v/v) を流すことによって酸性脂質を溶出した。それぞれの溶出物を窒素乾固した。次に、各脂質分画に含まれるグリセロ骨格を有する脂質を分解するためアルカリメタノリシスを行った。0.1Mの水酸化ナトリウムメタノール溶液を加えて超音波処理して40℃でインキュベートした後,1規定の塩化水素メタノール溶液を添加して溶液を中和した。続いて、50mM塩化ナトリウム水溶液を加えて混和してSep-Pak C18カートリッジ(Waters Associates社)に通した後、精製水を通して脱塩し、メタノールで1回目の脂質を溶出した。さらに、中性脂質画分ではクロロホルム/メタノール(2 : 1, v/v)を用いて、酸性脂質画分ではクロロホルム/メタノール(1 : 2, v/v) を用いて2回目の溶出を行った。溶出後,乾固させて,少量のクロロホルム/メタノールに溶かし、TLC用シリカゲルプレート (Merck社) にスポットした。脂質の分離は、まずクロロホルムのみで1回目の展開を行い、プレートを乾燥させた後、酸性脂質分画は、クロロホルム/メタノール/0.2%塩化カルシウム水溶液(55 : 45 : 10, v/v)で2回目の展開を行った。中性脂質分画は、クロロホルム/メタノール/精製水(60 : 40 : 10, v/v)で2回目の展開を行った。展開後、オルシノール硫酸試薬(糖鎖構造を有する化合物を呈色する試薬)を噴霧して120℃程度に加熱して発色させた。検出されたバンドはネットワークスキャナと画像処理ソフトウェア(Image J)により定量した。
 図7に示すように,野生型マウスにおいて血漿中の主要なスフィンゴ糖脂質はGM2であり、apoE欠損マウスの中性画分ではGM2、GlcCer、LacCerが増加することが確認された。一方、SAT-I欠損マウスの酸性画分においても野生型と比較して少ないながらもGM2が検出された。また、SAT-I欠損マウスの中性画分においてLacCer、GA2の代償的な増加が認められた。SAT-I/apoE二重欠損マウスの酸性画分および中性画分においてもSAT-I欠損マウスと同様の発現パターンが見出された。
 次に肝臓中のスフィンゴ糖脂質の解析結果を図8に示す。野生型マウスにおいて肝臓中の主要なスフィンゴ糖脂質はGM2であることが確認された。一方、SAT-I欠損マウスの酸性画分において野生型と比較して少ないながらもGM2が検出された。また、SAT-I欠損マウスの中性画分において、LacCerおよびGA2の代償的な増加が認められた。また、apoE欠損マウスおよびSAT-I/apoE二重欠損マウスでは、それぞれ野生型マウスおよびSAT-I欠損マウスと同様の発現パターンが見られ、発現量には両群間に差は認められなかった。
 図9にSAT-I欠損マウスおよび野生型の心臓、肝臓および筋肉におけるガングリオシドの解析結果を示す。GM2の発現が肝臓でのみ認められる。本研究に用いたSAT-I欠損マウスはSAT-I遺伝子のエキソン2およびその周辺部位がネオマイシン耐性遺伝子に置換されている(図2)。SAT-I遺伝子の肝臓での遺伝子解析の結果、肝臓特異的にエキソン2を必要とないSAT-I変異体が発現している可能性が示唆された。さらに、SAT-Iの酵素触媒部位をコードするエキソン6を欠損させた別のSAT-I欠損マウスでは肝臓にGM2が発現しないことが確認されており、このことはSAT-IがGM3を合成する唯一の酵素であることも示している。以上より、SAT-I欠損マウスの血漿および肝臓で認められるGM2については肝臓由来のものであると考えられる。
 以上の結果をまとめると,以下のとおりである。
 1) 血漿総コレステロールおよび血漿トリグリセリド量は、apoE欠損マウスと比べてSAT-I/apoE二重欠損マウスでは約半分に減少していた。その減少はCM、VLDL、LDL分画に起因した。
 2) 血漿および肝臓中のスフィンゴ糖脂質組成について、SAT-I遺伝子欠損によりガングリオシド量は減少し、代償的にGlcCer、LacCer、GA2、GA1など中性スフィンゴ糖脂質が増加した。
 3) 内因性のコレステロールおよびトリグリセリド合成やそれらを輸送するVLDLの合成が行われる臓器である肝臓において、コレステロールおよびトリグリセリド量に違いがあるかを検討した。その結果、SAT-I/apoE二重欠損マウスではapoE欠損マウスと比較して有意な差が認められなかった。
 1)と2)より、血漿や肝臓において、減少したガングリオシドまたは代償的に増加した中性スフィンゴ糖脂質により、コレステロールやトリグリセリドの合成、代謝、排出およびVLDLの合成、放出、組織への取り込みなどが影響を受けている可能性が示唆された。3)より、肝臓のコレステロールやトリグリセリド量に差が見られなくても、それらの合成、代謝、排出などには差があり、これらの総合的な結果として、血漿総コレステロールおよび血漿トリグリセリドの増加が抑制されていると考えられた。
 この結果をさらに確認するために,SAT-I欠損マウスに対して高コレステロール食を負荷して,血清中のコレステロールやトリグリセリド量について野生型マウスと比較した。
 野生型マウスおよびSAT-I KOマウスに高コレステロール食負荷を10週間行った後、血清を採取した。総コレステロールおよび遊離脂肪酸の定量を和光純薬のキットを用いた実施した。総コレステロールの統計処理はSheffe’s F test、遊離脂肪酸の統計処理はTukey-Kramer法にて行った。その結果,野生型マウスに高コレステロール食負荷した際に認められる血清コレステロール値の上昇がSAT-I KOマウスに高コレステロール食負荷した際には全く認められなかった(図10)。
 以上の結果より、SAT-I遺伝子発現制御によりガングリオシドの生合成を制御することによって(GSL全体の発現制御ではなく)、高脂血症を治療できる可能性が初めて明らかとなった。
 本発明は、ガングリオシドGM3の選択的な制御により血中脂質レベルを正常レベル程度に低下できる、今までにない画期的な発明である。この発明に基づいた、高脂血症の新規の予防・治療方法、さらにはアテローム性動脈硬化症、高LDL血症、低HDL血症、高コレステロール血症、高トリグリセリド血症及び家族性高コレステロール血症の新規の予防・治療法の開発が期待できる。

Claims (10)

  1.  血中脂質レベル低下作用を示す物質のスクリーニング方法であって、以下:
     (i)  被験物質の存在下または非存在下で、GM3合成酵素とその基質とを接触させる工程、
     (ii) GM3合成量を低下させる被験物質を選択する工程、
     (iii)選択された被験物質を非ヒト動物に投与する工程、および
     (iv) 非ヒト動物の血中脂質レベルを測定する工程
    を含む、スクリーニング方法。
  2.  血中脂質レベル低下作用を示す物質のスクリーニング方法であって、以下:
     (i)  被験物質とGM3合成酵素を発現する細胞とを接触させる工程、
     (ii) GM3合成酵素の発現量を低下させる被験物質を選択する工程、
     (iii)選択された被験物質を非ヒト動物に投与する工程、および
     (iv) 非ヒト動物の血中脂質レベルを測定する工程
    を含む、スクリーニング方法。
  3.  前記GM3合成酵素を発現する細胞が、脂肪細胞、肝細胞、血管内皮細胞、血管平滑筋細胞、骨格筋細胞、上皮細胞、神経細胞、繊維芽細胞、単球細胞、マクロファージからなる群より選択される、請求項2に記載の方法。
  4.  前記GM3合成酵素を発現する細胞が、遺伝子組み換えにより作製された形質転換細胞である、請求項2に記載の方法。
  5.  さらに、血中コレステロールレベルおよび/またはトリグリセリドレベルを低下させる被験物質を選択する工程を含む、請求項1~4のいずれか1項に記載のスクリーニング方法。
  6.  前記非ヒト動物が通常よりも高い血中脂質レベルを有する、請求項1~5のいずれか1項に記載の方法。
  7.  前記非ヒト動物がマウスである、請求項1~6のいずれか1項に記載の方法。
  8.  ガングリオシドの産生を特異的に抑制する物質を含有する、高脂血症の治療に有効な医薬組成物。
  9.  前記ガングリオシドがGM3である、請求項8に記載の組成物。
  10.  GM3に対する抗体、GM3合成酵素阻害剤またはGM3合成酵素の発現を阻害する物質を含有する、高脂血症の治療に有効な医薬組成物。
PCT/JP2010/070959 2009-11-27 2010-11-25 高脂血症治療剤のスクリーニング方法 WO2011065389A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10833235.4A EP2505660B1 (en) 2009-11-27 2010-11-25 Method for screening of therapeutic agent for hyperlipemia
JP2011543277A JP5077901B2 (ja) 2009-11-27 2010-11-25 高脂血症治療剤のスクリーニング方法
US13/511,028 US9090932B2 (en) 2009-11-27 2010-11-25 Method for screening of therapeutic agent for hyperlipemia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269593 2009-11-27
JP2009269593 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065389A1 true WO2011065389A1 (ja) 2011-06-03

Family

ID=44066494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070959 WO2011065389A1 (ja) 2009-11-27 2010-11-25 高脂血症治療剤のスクリーニング方法

Country Status (4)

Country Link
US (1) US9090932B2 (ja)
EP (1) EP2505660B1 (ja)
JP (1) JP5077901B2 (ja)
WO (1) WO2011065389A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523925A (ja) * 2011-07-29 2014-09-18 コー ハンソン ヨーラン 高脂血症及びその心血管系の合併症の予防及び治療のための3−ヒドロキシアントラニル酸(3−haa)による治療
WO2016072364A1 (ja) * 2014-11-05 2016-05-12 公益財団法人野口研究所 疾患を検出する方法
WO2017204319A1 (ja) * 2016-05-27 2017-11-30 公益財団法人野口研究所 グルコシルセラミド合成酵素阻害剤
JP2022062178A (ja) * 2017-10-27 2022-04-19 学校法人北里研究所 慢性腎臓病の予防又は治療剤のスクリーニング方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516062A (ja) 1997-12-23 2002-06-04 ザ カーネギー インスチチューション オブ ワシントン 二本鎖rnaによる遺伝子阻害
US20020086356A1 (en) 2000-03-30 2002-07-04 Whitehead Institute For Biomedical Research RNA sequence-specific mediators of RNA interference
JP2003238410A (ja) * 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk インスリン抵抗性解除剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084301A2 (en) * 2001-04-12 2002-10-24 Xenon Genetics, Inc. Screening assay for agents modulating activity of the abca1 protein
US20070161586A1 (en) * 2004-01-16 2007-07-12 Takeda Pharmaceutical Company Limited Drug for preventing and treating atherosclerosis
ES2375626T3 (es) * 2004-05-07 2012-03-02 Merck Patent Gmbh Gm3 sintetasa como diana terapéutica en las complicaciones microvasculares de la diabetes.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516062A (ja) 1997-12-23 2002-06-04 ザ カーネギー インスチチューション オブ ワシントン 二本鎖rnaによる遺伝子阻害
US20020086356A1 (en) 2000-03-30 2002-07-04 Whitehead Institute For Biomedical Research RNA sequence-specific mediators of RNA interference
JP2003238410A (ja) * 2002-02-21 2003-08-27 Seibutsu Yuki Kagaku Kenkyusho:Kk インスリン抵抗性解除剤

Non-Patent Citations (54)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS
"Molecular Cloning", 2001, COLD SPRING HARBOUR LABORATORY PRESS
"Shishitsu, Toshitsu, Fukugotoshitsu", vol. 5, article "KISO SEIKAGAKU JIKKENHO"
AERTS J. M.; OTTENHOFF R.; POWLSON A.S.; GREFHORST A.; VAN EIJK M.; DUBBELHUIS P.F.; ATEN J.; KUIPERS F.; SERLIE M. J.; WENNEKES T, DIABETES, vol. 56, 2007, pages 1341 - 1349
BIJL N.; VAN ROOMEN C.P.; TRIANTIS V; SOKOLOVIC M.; OTTENHOFF R.; SCHEIJ S.; VAN EIJK M.; BOOT R.G; AERTS J.M.; GROEN A.K., HEPATOLOGY, vol. 49, 2009, pages 637 - 645
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 186, 1992, pages 1271
CHOI H-J. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 313, 2004, pages 142 - 147
FEBS LETT., vol. 228, 1988, pages 228
FEBS LETT., vol. 239, 1988, pages 285
GARNER, B. ET AL.: "Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice", J. LIPID RES., vol. 43, 2002, pages 205 - 214 *
GENES & DEV., vol. 16, no. 8, 15 April 2002 (2002-04-15), pages 948 - 958
GENESIS, vol. 26, no. 4, April 2000 (2000-04-01), pages 240 - 244
GLAROS EN. ET AL.: "Glycosphingolipid Accumulation Inhibits Cholesterol Efflux via the ABCAI/Apolipoprotein A-I Pathway", J. BIOL. CHEM., vol. 280, 2005, pages 24515 - 24523, XP002538895, DOI: doi:10.1074/JBC.M413862200
HIRASHIMA; INOUE: "Shin Seikagaku Jikken Koza 2, Kakusan IV, Idenshi No Fukusei To Hatsugen", 1993, TOKYO KAGAKU DOJIN CO., LTD., pages: 319 - 347
INOKUCHI J.; KABAYAMA K.: "Comprehensive Glycoscience", vol. 3, 2007, ELSEVIER SCIENCE & TECHNOLOGY, article "Receptor Modifications in Glycobiology", pages: 733 - 744
INOKUCHI J.; RADIN N., J. LIPID RES., vol. 28, 1987, pages 565 - 571
JIN'ICHI INOKUCHI ET AL.: "Insulin resistance in type 2 diabetes as a microdomain syndrome, Ganglioside GM3 no Kan'yo o Chushin to shite", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 48, no. 8, 2003, pages 1179 - 1183 *
JIN'ICHI INOKUCHI ET AL.: "Microdomain Kino Ijo ni Motozuku 2-Gata Tonyobyo no Byotai Kaimei", CORE RESEARCH FOR EVOLUTIONAL SCIENCE AND TECHNOLOGY CREST RESEARCH AREAS, vol. 64, no. 1, 2009, pages 65 - 105 *
KABAYAMA K. ET AL., GLYCOBIOLOGY, vol. 15, 2005, pages 21 - 29
KABAYAMA K. ET AL., PROC. NATL. ACAD. SCI. U S A, vol. 104, 2007, pages 13678 - 13683
KIM J-W ET AL., GENE, vol. 273, 2001, pages 163 - 171
KIM S-W. ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1578, 2002, pages 84 - 89
KOTANI, M. ET AL., BIOCHEM. BIOPHYS. ACTA, vol. 1117, 1992, pages 97 - 103
LEDEEN ET AL., J. NEUROCHEM., vol. 21, 1973, pages 829 - 839
MACHER, B. A.; KLOCK, J. C., J. BIOL. CHEM., vol. 255, 1980, pages 2092 - 2096
MARIKO SHIBA ET AL.: "SHIN SEIKAGAKU JIKKEN KOZA", vol. 4, 1993, TOKYO KAGAKU DOJIN PUBLISHING CO., article "Shishitsu I: Chusei Shishitsu-to-III Gata Koshiketsusho"
MATSUSHIMA Y; HAYASHI S.; TACHIBANA M., MAMM. GENOME, vol. 10, 1999, pages 352 - 357
MATSUSHIMA Y; SAKURAI T.; OHOKA A.; OHNUKI T.; TADA N.; ASOH Y; TACHIBANA M., J. ATHEROSCLER. THROMB., vol. 8, 2001, pages 71 - 79
NATURE BIOTECHNOLOGY, vol. 20, no. 5, May 2002 (2002-05-01), pages 497 - 500
NATURE BIOTECHNOLOGY, vol. 20, no. 5, May 2002 (2002-05-01), pages 500 - 505
NATURE GENETICS, vol. 24, no. 2, February 2000 (2000-02-01), pages 180 - 183
NATURE, vol. 323, 1986, pages 349
NATURE, vol. 407, no. 6802, 21 September 2002 (2002-09-21), pages 319 - 20
NUCL. ACIDS RES., vol. 17, 1989, pages 7059
NUCL. ACIDS RES., vol. 19, 1991, pages 3875
NUCL. ACIDS RES., vol. 19, 1991, pages 5125
NUCL. ACIDS RES., vol. 19, 1991, pages 6751
NUCLEIC ACIDS RES., vol. 30, no. 10, 15 May 2002 (2002-05-15), pages E46
PROC NATL. ACAD. SCI. USA, vol. 99, no. 9, 30 April 2002 (2002-04-30), pages 6047 - 6052
PROC. NATL. ACAD. SCI. USA., vol. 99, no. 8, 16 April 2002 (2002-04-16), pages 5515 - 5520
PROTEIN ENG, vol. 3, 1990, pages 733
SCATCHARD, ANN. N.Y ACAD. SCI., vol. 51, 1949, pages 660 - 672
SCIENCE, vol. 296, no. 5567, 19 April 2002 (2002-04-19), pages 550 - 553
See also references of EP2505660A4 *
STEIN, NUCLEIC ACIDS RES., vol. 16, 1988, pages 3209 - 3221
TAGAMI S.; INOKUCHI J.; KABAYAMA K.; YOSHIMURA H.; KITAMURA F.; UEMURA S.; OGAWA C.; ISHII A.; SAITO M.; OHTSUKA Y ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 3085 - 3092
USUI, S. ET AL., J. LIPID RES., vol. 43, 2002, pages 805 - 814
VAN EIJK M.; ATEN J.; BIJL N.; OTTENHOFF R.; VAN ROOMEN C.P.; DUBBELHUIS P.F.; SEEMAN I.; GHAUHARALI-VAN DER VLUGT K.; OVERKLEEFT, PLOS ONE, vol. 4, March 2009 (2009-03-01), pages E4723
YAMASHITA T.; HASHIRAMOTO A; HALUZIK M.; MIZUKAMI H.; BECK S.; NORTON A.; KONO M.; TSUJI S.; DANIOTTI J.L.; WERTH N. ET AL., PROC. NATL. ACAD. SCI. U S A, vol. 100, 2003, pages 3445 - 3449
YAMASHITA, T. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 9142 - 9147
YAMASHITA, T. ET AL.: "Enhanced insulin sensitivity in mice lacking ganglioside GM3", PROC. NATL. ACAD. SCI. U.S.A., vol. 100, no. 6, 2003, pages 3445 - 3449, XP002998994, DOI: doi:10.1073/pnas.0635898100 *
YOSHIKAWA M; GO S; TAKASAKI K; KAKAZU Y; OHASHI M; NAGAFUKU M; KABAYAMA K; SEKIMOTO J; SUZUKI S; TAKAIWA K ET AL., PROC. NATL. ACAD. SCI. U S A, vol. 106, May 2009 (2009-05-01), pages 9483 - 9488
ZHAO H.; PRZYBYLSKA M.; WU I.H.; ZHANG J.; MANIATIS P.; PACHECO J.; PIEPENHAGEN P.; COPELAND D.; ARBEENY C.; SHAYMAN J.A. ET AL., HEPATOLOGY, vol. 50, 2009, pages 85 - 93
ZHAO H.; PRZYBYLSKA M.; WU I.H.; ZHANG J.; SIEGEL C.; KOMAMITSKY S.; YEW N.S.; CHENG S.H., DIABETES, vol. 56, 2007, pages 1210 - 1218

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523925A (ja) * 2011-07-29 2014-09-18 コー ハンソン ヨーラン 高脂血症及びその心血管系の合併症の予防及び治療のための3−ヒドロキシアントラニル酸(3−haa)による治療
WO2016072364A1 (ja) * 2014-11-05 2016-05-12 公益財団法人野口研究所 疾患を検出する方法
JPWO2016072364A1 (ja) * 2014-11-05 2017-08-17 公益財団法人野口研究所 疾患を検出する方法
WO2017204319A1 (ja) * 2016-05-27 2017-11-30 公益財団法人野口研究所 グルコシルセラミド合成酵素阻害剤
JP2022062178A (ja) * 2017-10-27 2022-04-19 学校法人北里研究所 慢性腎臓病の予防又は治療剤のスクリーニング方法

Also Published As

Publication number Publication date
EP2505660A4 (en) 2013-01-02
EP2505660A1 (en) 2012-10-03
JPWO2011065389A1 (ja) 2013-04-18
US9090932B2 (en) 2015-07-28
EP2505660B1 (en) 2014-05-21
US20120244539A1 (en) 2012-09-27
JP5077901B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
Choi et al. Glutamate signaling in hepatic stellate cells drives alcoholic steatosis
Sasako et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism
Vanier Complex lipid trafficking in Niemann-Pick disease type C
Parkes et al. Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo
Hornemann et al. Sphingolipids and atherosclerosis
Muraoka et al. Ezetimibe decreases SREBP-1c expression in liver and reverses hepatic insulin resistance in mice fed a high-fat diet
EP2972399B1 (en) Lipids that increase insulin sensitivity and methods of using the same
Jennemann et al. Hepatic glycosphingolipid deficiency and liver function in mice
JP5077901B2 (ja) 高脂血症治療剤のスクリーニング方法
JP2007061093A (ja) ペルオキシソーム増殖活性化受容体モジュレーター
Zhou et al. Orosomucoid 2 maintains hepatic lipid homeostasis through suppression of de novo lipogenesis
US7491381B2 (en) Method of evaluating compound efficacious in treating obesity
Masuda et al. Impact of glycosylphosphatidylinositol-specific phospholipase D on hepatic diacylglycerol accumulation, steatosis, and insulin resistance in diet-induced obesity
Kinchen et al. Long-chain acylcholines link butyrylcholinesterase to regulation of non-neuronal cholinergic signaling
Zhang et al. MicroRNA-185 modulates CYP7A1 mediated cholesterol-bile acid metabolism through post-transcriptional and post-translational regulation of FoxO1
Fujinuma et al. FOXK1 promotes nonalcoholic fatty liver disease by mediating mTORC1-dependent inhibition of hepatic fatty acid oxidation
US20110262441A1 (en) Method for selective control of helper t cell function
Buccinnà et al. Alterations of myelin‐specific proteins and sphingolipids characterize the brains of acid sphingomyelinase‐deficient mice, an animal model of Niemann–Pick disease type A
Honke Biological functions of sulfoglycolipids and the EMARS method for identification of co-clustered molecules in the membrane microdomains
US20120315658A1 (en) Amelioration of metabolic syndrome using physiological functions of sphingomyelin synthase sms2, or screening methods for ameliorating agents
Augustus et al. Substrate uptake and metabolism are preserved in hypertrophic caveolin-3 knockout hearts
Varadharajan et al. Membrane-bound O-acyltransferase 7 (MBOAT7) shapes lysosomal lipid homeostasis and function to control alcohol-associated liver injury
Watanabe et al. Genistein enhances NAD+ biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes
JP6984854B2 (ja) ニーマン・ピック病c型を予防または治療するための医薬組成物
US20220143185A1 (en) Orally active small molecule inhibitor of pai-1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833235

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13511028

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011543277

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010833235

Country of ref document: EP