WO2011065270A1 - コモンモードフィルタ - Google Patents

コモンモードフィルタ Download PDF

Info

Publication number
WO2011065270A1
WO2011065270A1 PCT/JP2010/070532 JP2010070532W WO2011065270A1 WO 2011065270 A1 WO2011065270 A1 WO 2011065270A1 JP 2010070532 W JP2010070532 W JP 2010070532W WO 2011065270 A1 WO2011065270 A1 WO 2011065270A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
differential
series
differential delay
mode noise
Prior art date
Application number
PCT/JP2010/070532
Other languages
English (en)
French (fr)
Inventor
雅明 亀谷
Original Assignee
エルメック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルメック株式会社 filed Critical エルメック株式会社
Priority to JP2011543217A priority Critical patent/JPWO2011065270A1/ja
Publication of WO2011065270A1 publication Critical patent/WO2011065270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1708Comprising bridging elements, i.e. elements in a series path without own reference to ground and spanning branching nodes of another series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1716Comprising foot-point elements
    • H03H7/1725Element to ground being common to different shunt paths, i.e. Y-structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path

Definitions

  • the present invention relates to a common mode filter, and more particularly to a common mode filter that allows an ultrahigh-speed differential signal propagating through an ultrahigh-speed differential line to pass while blocking unwanted common mode noise and hardly causing electromagnetic interference.
  • Patent Document 2 a configuration in which the lower limit of the frequency band of the normal mode signal is 2 MHz, as disclosed in Japanese Patent Application Laid-Open No. 2004-266634, or Japanese Patent Application Laid-Open No. 2000-58343 (Patent Document 2).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-266634, or Japanese Patent Application Laid-Open No. 2000-58343
  • an ideal common mode choke coil is composed of a pair of coils wound around a magnetic core and having a coupling coefficient close to “1”, as shown in the equivalent circuit of FIG.
  • the transmission line is formed by the inter-coil capacitance with a low impedance, and the characteristic impedance is managed.
  • the equivalent inductance inserted on the transmission line is a large value with respect to the common mode noise, and the common mode noise can be prevented from passing as shown by the characteristic indicated by Scc21 in FIG. It is.
  • the common mode choke coil has an inductance close to zero with respect to the differential signal (normal mode signal) and forms a low-loss transmission line in combination with the inter-line capacitance. Like characteristics, it passes with little loss.
  • FIG. 17 is shown for comparison with the effect of the present invention by setting the passband to 15 GHz.
  • the transmission speed will be increased to 5 to 10 gigabits / second. Since the clock frequency in that case is 2.5 to 5 GHz, in order to prevent waveform deterioration in the common mode choke coil, a differential signal of 7.5 to 15 GHz, which is at least three times higher harmonics, It is necessary to pass through with a flat group delay characteristic without amplitude deterioration. Moreover, common mode noise in the same band must be blocked.
  • a common mode choke coil that must maintain a coupling coefficient between coils wound around a magnetic material at a value close to 1 has a limit to improving its performance.
  • the common mode choke coil blocks the common mode noise with a large inductance, that is, a high series impedance, when viewed from the common mode noise, the inside of the input terminal section is close to the terminal open and applied to the input terminal.
  • the common mode noise shows a response similar to that of the open terminal line at the input terminal portion.
  • the applied common mode noise and the reflected common mode noise reflected at the open end are superimposed, and the peak voltage of the common mode noise at the input terminal portion increases.
  • the input terminal is bare for easy mounting, and it is difficult to shield it. Therefore, it is easy to radiate electromagnetic waves from this, and it can cause electromagnetic interference. Therefore, the peak voltage of common mode noise at the input terminal increases. Is not preferred.
  • an object of the present invention is to provide a common mode filter that prevents the passage of common mode noise and suppresses the generation of a reflective common mode, and can be further reduced in size.
  • a common mode filter includes a passive series element including an inductor arranged in series in a differential line and a parallel arrangement between the differential lines.
  • Mutual induction is provided between the inductors, and for differential signals, the difference between the inductance of the inductor and the mutual inductance of the mutual induction functions as a series element, and for common mode noise, the inductance and mutual inductance Of two capacitors connected in series with the same value as the capacitor equivalent to the capacitor.
  • a common mode noise attenuation inductor that is connected between a connection point between the capacitors connected in series and the ground potential and forms an attenuation pole for common mode noise attenuation together with the capacitors.
  • the characteristic impedance of the lumped constant differential delay line is matched with the differential signal, and the characteristic impedance is mismatched with the common mode noise.
  • the circuit constant is set.
  • the lumped constant differential delay line has a constant K-type configuration.
  • the lumped constant differential delay line has an induction m-type configuration.
  • the lumped constant differential delay line has an all-pass configuration.
  • a common mode filter includes the lumped constant differential delay line, the inductor for attenuating the common mode noise, a resistor for absorbing the common mode noise, or a series or parallel circuit of the inductor and the resistor.
  • a differential delay element of one section is formed, and a plurality of differential delay elements are arranged in series on the differential line in a ladder shape to form a plurality of sections.
  • a common mode filter according to a seventh aspect of the present invention is configured such that a lumped constant differential delay line is arranged in series in a ladder shape between the differential delay elements.
  • the common mode filter according to claim 8 of the present invention is configured by connecting resistors between a plurality of connection points of the capacitors.
  • the lumped constant differential delay line is composed of two or three different differential delay elements of the constant K type, induction m type and all-pass type. Configured.
  • the common mode filter according to claim 10 of the present invention is configured by varying the attenuation pole frequency in the differential delay element.
  • the frequency of the attenuation pole in the differential delay element on the input / output side of the differential line is set higher than the frequency of the attenuation pole in the differential delay element between them. Configured.
  • a passive series element including an inductor disposed in series in a differential line and a passive including a capacitor disposed in parallel in the differential line.
  • a ladder-type lumped-constant differential delay line consisting of parallel elements is used, and a passive series element is formed to provide mutual induction between those inductors that are paired between differential lines in the same section.
  • the difference between the inductance of the inductor and the mutual inductance of the mutual induction functions as a series element.
  • common mode noise the sum of the inductance and the mutual inductance functions as a series element.
  • the lumped constant differential delay line matches the characteristic impedance with respect to the differential signal, and does not match the characteristic impedance with respect to the common mode noise. Therefore, it is possible to obtain an effect that the differential signal passes with good matching and the common mode noise does not match and obstructs the passage.
  • the lumped constant differential delay line is configured as an induction m type, the above-described effect can be obtained in the induction m type configuration.
  • the lumped constant differential delay line is configured as an all-pass type, the above-described effect can be obtained in the all-pass type configuration.
  • the lumped constant differential delay line, the inductor for attenuating the common mode noise, the resistor for absorbing the common mode noise, or a series or parallel circuit of these inductor and the resistor is 1 Since a plurality of differential delay elements are arranged in series in a ladder shape on the differential line, and a plurality of sections are configured, it is possible to obtain various characteristics in addition to the above-described effects.
  • the common mode filter according to claim 7 of the present invention is configured by lumped constant differential delay lines arranged in series in a ladder shape between the differential delay elements, in addition to the above-described effects, Characteristics can be obtained.
  • the common mode filter according to claim 8 of the present invention is configured by connecting resistors between a plurality of connection points of the capacitors, the lumped-constant differential delay line has one section or a constant K ⁇ type configuration.
  • various characteristics can be obtained in the section configuration of two or more sections including other configurations.
  • the common mode filter according to the tenth aspect of the present invention since the attenuation pole frequency in the differential delay element is made different, it is easy to form the pass characteristic of the common mode noise to a desired characteristic, and the common in the input terminal portion It is possible to obtain various characteristics such that the peak voltage of mode noise is dispersed for each frequency component, and it is difficult to reliably cause electromagnetic interference.
  • the frequency of the attenuation pole in the differential delay element on the input / output side of the differential line is set higher than the frequency of the attenuation pole in the differential delay element between them. Therefore, it is possible to suppress the increase in the value of the noise attenuating inductor and to easily align these values.
  • FIG. 1 is a circuit diagram showing a first embodiment of a common mode filter according to the present invention. It is an equivalent circuit diagram with respect to the differential signal of the common mode filter of this invention shown in FIG. It is an equivalent circuit diagram with respect to the common mode noise of the common mode filter of this invention shown in FIG. It is a characteristic view of the common mode filter of this invention shown in FIG. It is a circuit diagram which shows 2nd Embodiment of the common mode filter which concerns on this invention. It is an equivalent circuit diagram with respect to the differential signal of the common mode filter of this invention shown in FIG.
  • FIG. 17 is a characteristic diagram of the conventional common mode choke coil shown in FIG. 16.
  • FIG. 1 is a circuit diagram showing an example of a lumped constant differential delay line applied to the common mode filter of the present invention.
  • a ladder-type differential four-terminal network 5 is formed on the differential lines 1 and 3 between the differential input terminals 1A and 1B and the differential output terminals 2A and 2B.
  • the ladder-type differential four-terminal network 5 is a combination of passive series elements arranged in series in the differential lines 1 and 3 and passive parallel elements arranged in parallel between the differential lines 1 and 3. Connected and configured in a ladder shape.
  • a plurality of, for example, three inductors Lo as passive series elements are connected in series.
  • Capacitors Co / 4 and Co / 2 are connected to both ends of each inductor Lo as passive parallel elements.
  • Capacitors Co / 4 and Co / 2 are connected between both ends of each inductor Lo at the same position in the differential lines 1 and 3, and a constant K ⁇ type lumped constant differential delay line DL having three sections is formed. Yes.
  • the differential delay elements dl1, dl2, and dl3 for one section in the lumped constant differential delay line DL are ladder-type differential four-terminal circuits, and a pair of inductors Lo in the differential lines 1 and 3 and 2 at both ends thereof. It is formed by capacitors Co / 4 and Co / 2. Adjacent differential delay elements dl1 and dl2 and capacitors Co / 2 of dl2 and dl3 are shared.
  • Equation 2 The characteristic impedance Zd of each of the differential delay elements dl1 to dl3 is expressed as “Equation 2”.
  • the capacitance of one section of the differential delay elements dl1 to dl3 is also expressed as Co / 4 and Co / 2, so that the expression of the delay time td is generally expressed in a single-end delay line. Match.
  • the symbols + vd and ⁇ vd on the differential input terminals 1A and 1B are a differential power source having an impedance Zo
  • the symbol Zo on the differential output terminals 2A and 2B is a terminal impedance.
  • FIG. 2 is a circuit diagram illustrating a first configuration according to the common mode filter of the present invention, which is an improvement of the lumped constant differential delay line of FIG. Reference Vc is a common mode noise source.
  • a pair of inductors Ls on the differential lines 1 and 3 in each differential delay element dl1 to dl3 corresponds to the inductor Lo in FIG. 1, and one differential line (positive phase side) in the same section.
  • the inductors Ls located on the first differential line 3 and the other differential line 3 (negative phase side) 3 are electromagnetically coupled by mutual induction m according to the polarity shown in the figure. That is, the inductors Ls paired between the differential lines in the same section have a relationship of mutual induction with a polarity that is a negative coupling for the differential signal and a positive coupling for the common mode noise. ing.
  • the inductor Ls has a larger value than the inductor Lo, and is represented by “Equation 3”.
  • the capacitors Co / 4 and Co / 2 connecting both ends of the inductor Ls are divided into two capacitors Co / 2 and Co / 2 or Co and Co connected in series as shown in FIG. Moreover, the series combined capacitance of the capacitors Co / 2 and Co / 2 is equivalent to the capacitor Co / 4, and similarly, the series combined capacitance of the capacitors Co and Co is equivalent to the capacitor Co / 2.
  • the capacitance of the two divided capacitors Co / 2 and Co has twice the capacitance value of the one capacitor Co / 4 and Co / 2 before the division.
  • each of the differential delay elements dl1 to dl3 there is a common mode noise attenuation between the capacitors Co / 2 and Co / 2, or between the connection points T1, T2, T3 and T4 of Co and Co and the ground potential.
  • Inductors L1, L2, L3, and L4 are connected.
  • the common mode noise attenuating inductors L1 to L4 each form a series resonance circuit in combination with the capacitors Co / 2 and Co connected thereto, and this resonance frequency is set to the common mode noise attenuation pole frequency.
  • Other configurations are the same as those in FIG.
  • the ladder-type differential four-terminal network 5 formed in the differential lines 1 and 3 includes the lumped constant-type differential delay elements dl1 to dl3 which are the ladder-type four-terminal circuits described above.
  • the differential signal propagating through the differential lines 1 and 3 can be passed with the amplitude characteristic and the group delay characteristic as designed.
  • the differential signals transmitted through the differential lines 1 and 3 are opposite phase signals, so that they reach the connection points T1 to T4 between the capacitors Co / 2 and Co. Even if they cancel each other, they disappear. Therefore, the series resonance circuit does not contribute to the differential signal, and the differential signal is transmitted without deterioration as designed by the differential delay elements dl1 to dl3.
  • the inductors Ls paired between the differential lines in the same section have negative polarities for differential signals and positive polarities for common mode noise. Since the relationship is inductive, the circuit functions differently for differential signals and common mode noise.
  • circuit constants are set so that the configuration shown in the figure has exactly the same characteristics for the differential signal, and the characteristic impedance is also a matching condition.
  • the inductance Lc in the case of the common mode noise is larger than that in the case of the differential signal, and the attenuation ratio increases with respect to the common mode noise by increasing the reactance ratio of the series element and the parallel element. .
  • the characteristic impedance becomes mismatched with respect to common mode noise, which also has the effect of increasing the reflection of common mode noise and hindering passage.
  • the reflected common mode noise propagates through the differential delay elements dl1 to dl3, and returns to the differential input terminals 1A and 1B with a propagation delay time different for each double frequency component in a round trip.
  • the delay time also increases because the inductance is larger than that for differential signals, so the common mode noise applied to the differential input terminals 1A and 1B is reflected and returned.
  • Common mode noise is superimposed in a state in which the phase is greatly different for each frequency component, that is, in a time-distributed state.
  • FIG. 5 is a characteristic diagram of the common mode filter of the present invention shown in FIG. 2, where symbol Sdd21 represents differential signal passing characteristics and symbol Scc21 represents common mode noise passing characteristics.
  • each series resonance circuit is fc1 is a series resonance determined by L3 and 2? Co
  • 2.5GHz fc2 is a series resonance determined by L2 and 2? Co
  • 2.84GHz fc3 is a series resonance determined by L4 and Co.
  • 3.75 GHz fc4 is a series resonance determined by L1 and Co.
  • 5.8 GHz As a result, the attenuation of the common mode noise was ⁇ 27 dB or more at a frequency of 2.45 GHz or more.
  • the common mode filter of the present invention shown in FIG. 2 needs to be placed close to each other in order to electromagnetically couple between the inductors Ls constituting the positive phase side and negative phase side series elements in the same section. This is advantageous in that the volume space occupied by the inductor Ls can be reduced, and the common mode filter can be reduced in size.
  • the common mode filter of the present invention has a longer delay time for one section with respect to the common mode noise, the temporal dispersion of the frequency components of the common mode noise is further increased to effectively reflect the common mode noise. Peak voltage can be suppressed.
  • the common mode filter of the present invention if the circuit constant is determined so as to match the characteristic impedance to the differential signal, the inductance Ls as a series element increases with respect to the common mode noise. Impedance also increases and no longer matches. This also increases the reflection of the circuit for common mode noise, which contributes to blocking common mode noise.
  • FIG. 6 shows a second embodiment of the common mode filter according to the present invention, which is based on an induction mT type lumped constant differential delay line having four sections.
  • this common mode filter is composed of four differential delay elements dl1 to dl4.
  • the inductor Ls forming the passive series element is divided into two equal parts.
  • Inductors Ls / 2 are connected in series and coupled to each other by mutual induction m1, and the connection points of the equally divided inductors Ls / 2 are connected by the above-described series circuit of capacitors. .
  • each inductor Ls / 2 in the same section is coupled by mutual induction m2 between the positive phase and the negative phase on the input side and between the positive phase and the negative phase on the output side, and the positive phase input side and the negative phase output Coupling is performed between the sides and between the positive phase output side and the negative phase input side by mutual induction m3.
  • the three types of couplings in the configuration of FIG. 6 are four inductors forming one differential delay element of each of the differential delay elements dl1 to dl4 in order to realize miniaturization which is one of the gist of the present invention.
  • the coupling coefficient for the mutual induction m1 is k1
  • the coupling coefficient for the mutual induction m2 is k2.
  • the coupling coefficients k1 to k3 are expressed by “Formula 6”, “Formula 7”, and “Formula 8”.
  • FIG. 6 functions with the circuit constants of FIG. 7 for differential signals when the polarity of the inductor Ls / 2 is determined as shown in FIG. That is, assuming that the inductance of the inductor as a series element for the differential signal is Lo / 2, this Lo / 2 is located between the positive phase and the negative phase on the input side or between the positive phase and the negative phase on the output side in the same section. This is the difference from the mutual induction m2 between the inductors, and is represented by “Equation 9”.
  • the configuration of FIG. 6 functions with the circuit constants of FIG. 8 for common mode noise. That is, assuming that the inductance of the inductor as a series element with respect to common mode noise is Lc / 2, Lc / 2 is located between the positive phase and the negative phase on the input side or between the positive phase and the negative phase on the output side in the same section. This is the sum of the mutual induction m2 between the inductors, and is expressed by “Equation 11”.
  • the ratio between the mutual induction md and the inductor Lo / 2 that is, the coupling coefficient is generally used also in the case of the mutual induction md. ".
  • FIG. 9 is a characteristic diagram with respect to the differential signal and common mode noise in the configuration of FIG. 6.
  • Equation 14 the mathematical formula for obtaining the coupling coefficient k1 for the mutual induction m1 from the above conditions is represented by “Equation 14”.
  • the series resonance frequency that determines fc1 to fc4 in the figure is determined by a value obtained by subtracting mc / 2 from each value of the common mode noise attenuating inductors L1 to L4 and 2 ⁇ Co. Therefore, the resonance frequencies of the differential delay elements dl1 to dl4 are set as follows.
  • fc1 is a series resonance frequency determined by (L4-mc / 2) and 2 ⁇ Co
  • 2.39 GHz fc2 is a series resonance frequency determined by (L3-mc / 2) and 2 ⁇ Co
  • 2.53 GHz fc3 is a series resonance frequency determined by (L2-mc / 2) and 2 ⁇ Co
  • 2.93 GHz fc4 is a series resonance frequency determined by (L1-mc / 2) and 2 ⁇ Co, which is 4.1 GHz here.
  • the attenuation of common mode noise is -34 dB or more at a frequency of 2.36 GHz or more.
  • FIG. 10 shows a third embodiment according to the common mode filter of the present invention, which is a configuration of an all-pass lumped constant differential delay line having four sections.
  • the common mode filter according to FIG. 10 includes four differential delay elements dl1 to dl4.
  • the inductor Ls forming the passive series element is divided into two equal parts.
  • Inductors Ls / 2 are connected in series and coupled with each other by mutual induction m1, and the connection points of the equally divided inductors Ls / 2 are connected by the above-described series circuit of capacitors. Yes.
  • the inductor Ls / 2 in the same section is coupled between the positive phase and the negative phase on the input side and between the positive phase and the negative phase on the output side by mutual induction m2, and the positive phase input side and the negative phase output side And between the positive phase output side and the negative phase input side by mutual induction m3, and both ends of the inductor Ls / 2 connected in series are bridged by a capacitor Ca.
  • this configuration also realizes four inductors Ls that form one differential delay element of each of the differential delay elements dl1 to dl4 in order to realize the miniaturization that is one of the gist of the present invention.
  • / 2 are arranged close to each other and have mutual induction, and three types of mutual induction are defined as shown in FIG.
  • FIG. 10 The configuration of FIG. 10 is the same as that of FIG. 6 except that the bridging capacitance Ca is added. Therefore, the inductance, the mutual induction, and the coupling coefficient of the inductor Ls / 2 are “Formula 6” to “Formula 14” described above. It will be the same.
  • FIG. 10 functions with the circuit constants of FIG. 11 for differential signals and functions with the circuit constants of FIG. 12 for common mode noise.
  • the coupling coefficient kd is used instead of the mutual induction md, the coupling coefficient kd is 0.42, and the delay time of one section in FIG. 11 is 37.5 ps.
  • the characteristic impedance is determined to be 100 ⁇ , the coupling coefficient k2 for the mutual induction m2 is 0.1, and the coupling coefficient k3 for the mutual induction m3 is 0.1.
  • the coupling coefficient kd is set to a value larger than that of the induction m type.
  • the bridging capacitance Ca is arranged, when the coupling coefficient k is 0.42, the bridging capacitance Ca is about 1/10 of the capacitor Co.
  • FIG. 13 is a characteristic diagram of the common mode filter shown in FIG. 10, where Sdd21 is a differential signal passing characteristic and Scc21 is a common mode noise passing characteristic.
  • the series resonance frequency for determining each resonance frequency fc1 to fc4 is determined by a value obtained by subtracting mc / 2 from each value of the common mode noise attenuating inductors L1 to L4 and 2 ⁇ Co.
  • each resonance frequency is set as follows, the attenuation of the common mode noise is -32 dB or more at a frequency of 2.36 GHz or more.
  • fc1 is a series resonance frequency determined by (L4-mc / 2) and 2 ⁇ Co
  • 2.39 GHz fc2 is a series resonance frequency determined by (L3-mc / 2) and 2 ⁇ Co
  • 2.51 GHz fc3 is a series resonance frequency determined by (L2-mc / 2) and 2 ⁇ Co
  • fc4 is a series resonance frequency determined by (L1 ⁇ mc / 2) and 2 ⁇ Co.
  • the influence of the bridging capacitance Ca needs to be taken into account, but the influence is negligible and is ignored here for simplicity.
  • the amplitude characteristic of the differential signal is very flat, there is almost no amplitude fluctuation, and the flatness of the group delay characteristic is excellent.
  • the configuration of FIG. 10 allows common mode noise to pass through at 13 GHz or higher, but usually hits a harmonic of 5 times or higher at 2.5 GHz, so that there is usually almost no problem. If there is a problem, it is possible to combine an all-pass lumped constant differential delay line with other low-pass delay lines.
  • the inductive m-type configuration has mutual induction in the adjacent section of the inductor which is a series element of the ladder type lumped constant differential delay line, while not illustrated, but between the inductors in the sections separated by two or more sections.
  • a configuration with mutual induction is also known. Even in such a configuration, the configuration according to the present invention can be applied, and similar effects can be obtained.
  • the lumped-constant differential delay line is, for example, two constant K-type differential delay elements and three inductive m-type differentials among the constant K-type, induction m-type and all-pass type differential delay elements
  • the object of the present invention can be achieved with a configuration in which two or three different delay elements are combined, such as connecting delay elements in a ladder shape.
  • the common mode filter of the present invention which is configured based on a lumped constant differential delay line in which a ladder-type differential four-terminal circuit has an inductor in its passive series element and a capacitor in its passive parallel element, While desirable ultra-high-speed differential signals propagating through ultra-high-speed differential transmission lines are passed, undesirable common mode noise is attenuated and difficult to pass. Furthermore, the peak value of the reflected common mode noise can be suppressed, and the electromagnetic radiation intensity of the blocked reflected common mode noise can be kept low.
  • the lumped constant differential delay line has a plurality of sections.
  • the lumped constant differential delay line of FIG. 6 may be configured with only one section of the induction mT type, and one attenuation pole frequency may be matched with the frequency of the common mode noise.
  • resistors R1 and R10 are connected in series or in parallel to the common mode noise attenuating inductors L1 to L4.
  • a structure in which resistors R10 and R40 are connected between the connection points T1 to T4 and the ground, or a configuration in which resistors R12 to R34 are connected between the connection points T1 to T4 is possible. With this configuration, the common mode power can be absorbed and attenuated by these resistors.
  • connection points T1 and T2 are formed even in a one-section configuration.
  • a resistor can be connected between the connection points.
  • an inductor for attenuating common mode noise, a resistor for absorbing common mode noise, or a series or parallel circuit of these inductors and resistors may be arranged as an attenuation pole forming circuit.
  • a conventional differential delay line for example, common mode noise attenuating inductors L1 to L4 may be partially omitted and connected in series. It is.

Landscapes

  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】 超高速差動信号を通過させ、コモンモードノイズを通過させ難くする。 【解決手段】 集中定数差動遅延線DLは、差動線路1、3中に配置された受動直列素子および受動並列素子からなる梯子型の差動4端子回路において、受動直列素子にインダクタ Lsを、受動並列素子にキャパシタCoを配置して形成される。受動直列素子のインダクタLsは、同一区間内の差動線路間で対をなすインダクタ間で相互誘導を持たせ、差動信号に対してはインダクタLsのインダクタンスと相互誘導mの相互インダクタンスの差分を直列素子として機能させ、コモンモードノイズに対しては上記インダクタンスと上記相互インダクタンスの和分を直列素子として機能させる。集中定数差動遅延線DLは、キャパシタCo/2どうし又はCoどうしの接続点T1~T4とグランド電位との間にインダクタL1~L4や抵抗を接続し、コモンモードノイズ減衰用減衰極を形成する。

Description

コモンモードフィルタ
 本発明はコモンモードフィルタに係り、特に、超高速差動線路を伝搬する超高速差動信号を通過させる一方、望ましくないコモンモードノイズを遮断し、電磁障害も引き起こし難いコモンモードフィルタに関する。
 電子機器においてノイズは有害な存在であることから、ノイズを除去するための多くの提案がなされている。
 特に、最近の高速シリアル伝送では、伝送速度がGHz帯と速くなり、波長が短くなることから、その波長が回路パターン長の整数倍と一致する確率が高まり、回路パターンがアンテナとなって信号が空間に放射される電磁放射ノイズが問題となっている。
 もっとも、高速シリアル伝送では、ほとんどの場合、差動線路を用いるため、電磁界が差動線路間で結合し、ノイズが外部へ放射され難い。
 しかしながら、差動線路のわずかな非対称性や、ICでのわずかな位相ずれ等に起因して生じるコモンモードノイズは、差動線路間を同相信号で伝播し、差動線路間の結合がないため外部へ放射され易く、電磁放射ノイズとなり易い。
そのため、差動線路を用いた高速シリアル伝送の分野では、コモンモードノイズ対策が必須のものとなっており、コモンモードノイズの除去手段としてコモンモード・チョークコイルが使用されることが多い。
 この種の公知例として、特開2004-266634号公報(特許文献1)のように、ノーマルモード信号の周波数帯域の下限を2MHzとした構成や、特開2000-58343号公報(特許文献2)のように、差動信号伝送用のコモンモード・チョークコイルをトロイダルコアに巻線する構成がある。
 ところで、理想的なコモンモード・チョークコイルは、図16の等価回路に示すように、磁性体磁芯に巻かれ結合係数が「1」に近い1対のコイルと、入出力間の線間容量を低く抑えたコイル間容量とによって伝送線路を形成し、特性インピーダンスを管理する構成である。
 このコモンモード・チョークコイルでは、コモンモードノイズに対して、伝送線路上に挿入される等価なインダクタンスが大きい値となり、図17の符号Scc21に示す特性のように、コモンモードノイズの通過阻止が可能である。
 他方、コモンモード・チョークコイルは、差動信号(ノーマルモード信号)に対して、インダクタンスが零に近く、しかもライン間容量と組み合わせて低損失伝送線路を形成するため、図17の符号Sdd21に示す特性のように、少ない損失で通過する。
 このような理想的なコモンモード・チョークコイルは、現状では製品化されていないので、図17は通過帯域を15GHzに設定し、本発明の効果と比較するために図示したものである。
特開2004-266634号公報 特開2000-58343号公報
 今後、伝送速度が5~10ギガビット/秒と高速化することは必至である。その場合のクロック周波数は2.5~5GHzとなるため、コモンモード・チョークコイルでの波形劣化を防ぐには、少なくともその3倍の高調波である7.5~15GHzまでの差動信号を、振幅劣化なく、平坦な群遅延特性で通過させる必要がある。しかも、同じ帯域のコモンモードノイズを遮断させねばならない。
 しかし、上述した図16の構成では、扱う周波数が5GHzを超えると磁性体の透磁率の低下により、差動信号回路に直列に等価的なインダクタンスが挿入されることが避けられなくなる。それに分布容量が加わり、差動信号の振幅特性の劣化と、それに伴う群遅延特性の直線性劣化が避けられない。
 具体的にシミュレーションしてみると、そのやり方にもよるが、図17においてインダクタ間の結合係数が0.98から0.97に下がるだけで、差動信号に対する通過帯域は半分に激減する。
 従って、5GHzを超える周波数範囲においても、磁性体に巻かれたコイル間の結合係数を1に近い値に維持しなければならないコモンモード・チョークコイルは、その性能向上への限界がある。
 さらに、コモンモード・チョークコイルは、コモンモードノイズを、大きなインダクタンスすなわち高い直列インピーダンスで遮断するため、コモンモードノイズから見ると、入力端子部の内部は終端開放に近くなり、入力端子に印加されたコモンモードノイズが、入力端子部で終端開放線路と同様の応答を示す。
 そのため、入力端子部においては、印加されたコモンモードノイズと、これが開放終端的に反射した、反射コモンモードノイズとが重畳され、入力端子部でのコモンモードノイズのピーク電圧が上昇する。
 入力端子部は、実装を容易にするためむき出しで、シールドすることが困難なため、ここから電磁放射され易く、電磁障害を引き起こす要因となり得るから、入力端子部でのコモンモードノイズのピーク電圧上昇は好ましくない。
 本発明はそのような問題を解決するために、コモンモードノイズの通過を阻止するとともに反射コモンモードの発生を抑え、一層小型化の容易なコモンモードフィルタの提供を目的とする。
 そのような課題を解決するために本発明の請求項1に係るコモンモードフィルタは、差動線路中に直列的に配置されたインダクタを含む受動直列素子および当該差動線路間に並列的に配置されたキャパシタを含む受動並列素子からなる梯子型の差動4端子回路を有してなる集中定数差動遅延線であって、前記直列素子を構成し同一区間内の差動線路間で対をなすインダクタ間に相互誘導を持たせ、差動信号に対してはそのインダクタのインダクタンスとその相互誘導の相互インダクタンスの差分を直列素子として機能させ、コモンモードノイズに対してはそれらインダクタンスと相互インダクタンスとの和分を直列素子として機能させるとともに、そのキャパシタが当該キャパシタと等価にして値の等しい2個の直列接続されたキャパシタからなる集中定数差動遅延線と、直列接続された当該キャパシタどうしの接続点とグランド電位との間に接続され、それらのキャパシタとともにコモンモードノイズ減衰用減衰極を形成するコモンモードノイズ減衰用インダクタ、コモンモードノイズ吸収用の抵抗、又はインダクタと抵抗の直列若しくは並列回路と、を具備している。
 本発明の請求項2に係るコモンモードフィルタは、上記集中定数差動遅延線が、その差動信号に対して特性インピーダンスが整合し、そのコモンモードノイズに対しては特性インピーダンスが不整合となる回路定数を設定した構成となっている。
 本発明の請求項3に係るコモンモードフィルタは、上記集中定数差動遅延線が、定K型構成となっている。
 本発明の請求項4に係るコモンモードフィルタは、上記集中定数差動遅延線が、誘導m型構成となっている。
 本発明の請求項5に係るコモンモードフィルタは、上記集中定数差動遅延線が、全域通過型構成となっている。
 本発明の請求項6に係るコモンモードフィルタは、上記集中定数差動遅延線と、それらコモンモードノイズ減衰用インダクタ、コモンモードノイズを吸収する抵抗、又はこれらインダクタと抵抗の直列若しくは並列回路とを1区間の差動遅延素子とし、その差動線路にその差動遅延素子が梯子状に複数直列配置され、複数区間を構成している。
 本発明の請求項7に係るコモンモードフィルタは、上記差動遅延素子の間に集中定数差動遅延線が梯子状に直列配置されて構成されている。
 本発明の請求項8に係るコモンモードフィルタは、上記キャパシタどうしの複数の接続点間に抵抗が接続されて構成されている。
 本発明の請求項9に係るコモンモードフィルタは、上記集中定数差動遅延線が、定K型、誘導m型および全域通過型のそれら差動遅延素子中から異なる2個又は3個を複合して構成されている。
 本発明の請求項10に係るコモンモードフィルタは、上記差動遅延素子における減衰極周波数を異ならせて構成されている。
 本発明の請求項11に係るコモンモードフィルタは、上記差動線路の入出力側の差動遅延素子における減衰極の周波数を、これらの間の差動遅延素子における減衰極の周波数より高く設定して構成されている。
 このような本発明の請求項1に係るコモンモードフィルタでは、差動線路中に直列的に配置されたインダクタを含む受動直列素子および当該差動線路中に並列的に配置されたキャパシタを含む受動並列素子からなる梯子型の集中定数差動遅延線を用い、その受動直列素子を形成し同一区間内の差動線路間で対をなすそれらインダクタ間に相互誘導を持たせ、差動信号に対しては上記インダクタのインダクタンスと上記相互誘導の相互インダクタンスとの差分を直列素子として機能させ、コモンモードノイズに対してはそれらインダクタンスと相互インダクタンスとの和分を直列素子として機能させるとともに、そのキャパシタが、当該キャパシタと等価にして値の等しい2個の直列接続されたキャパシタで形成されるとともに、直列接続されたキャパシタどうしの接続点とグランド電位との間にコモンモードノイズ減衰用インダクタ、コモンモードノイズ吸収用の抵抗、又はインダクタと抵抗の直列若しくは並列回路を接続した。そのため、超高速差動信号を通過させる一方、望ましくないコモンモードノイズの遮断特性を一層向上し、入力端子部におけるコモンモードノイズのピーク電圧を低減し、電磁障害も引き起こし難くするとともに、直列素子として差動的に同位置にあるインダクタ間に相互誘導を持たせるべく接近した配置が可能となり、小型にして高機能のコモンモードフィルタの実現が可能となる。
 本発明の請求項2に係るコモンモードフィルタでは、上記集中定数差動遅延線が、差動信号に対して特性インピーダンスを整合させ、コモンモードノイズに対しては特性インピーダンスを不整合となる回路定数に設定したから、差動信号は整合よく通過させ、コモンモードノイズは不整合で通過を阻害する効果を得ることが可能である。
 本発明の請求項3に係るコモンモードフィルタでは、上記集中定数差動遅延線を定K型で構成するから、定K型構成において上述した効果を得ることが可能である。
 本発明の請求項4に係るコモンモードフィルタでは、上記集中定数差動遅延線を誘導m型で構成するから、誘導m型構成において上述した効果を得ることが可能である。
 本発明の請求項5に係るコモンモードフィルタでは、上記集中定数差動遅延線を全域通過型で構成するから、全域通過型構成において上述した効果を得ることが可能である。
 本発明の請求項6に係るコモンモードフィルタでは、上記集中定数差動遅延線と、コモンモードノイズ減衰用インダクタ、コモンモードノイズを吸収する抵抗、又はこれらインダクタと抵抗の直列若しくは並列回路とを1区間の差動遅延素子とし、その差動線路に差動遅延素子を梯子状に複数直列配置し複数区間を構成するから、上述した効果に加えて、種々の特性を得ることが可能である。
 本発明の請求項7に係るコモンモードフィルタは、上記差動遅延素子の間に集中定数差動遅延線が梯子状に直列配置されて構成されているから、上述した効果に加えて、種々の特性を得ることができる。
 本発明の請求項8に係るコモンモードフィルタは、上記キャパシタどうしの複数の接続点間に抵抗が接続されて構成されているから、上記集中定数差動遅延線が定Kπ型構成の1区間又は他の構成も含めた2区間以上の区間構成において、上述した効果に加えて、種々の特性を得ることができる。
 本発明の請求項9に係るコモンモードフィルタでは、上記集中定数差動遅延線として、定K型、誘導m型および全域通過型の差動遅延素子中から異なる2個又は3個を複合して構成するから、種々の通過型構成において上述した効果を得ることが可能である。
 本発明の請求項10に係るコモンモードフィルタでは、上記差動遅延素子における減衰極周波数を異ならせてなるから、コモンモードノイズの通過特性を所望の特性に形成し易く、さらに入力端子部におけるコモンモードノイズのピーク電圧が周波数成分毎に分散される等、種々の特性を得ることが可能で、確実に電磁障害も引き起こし難い。
 本発明の請求項11に係るコモンモードフィルタでは、上記差動線路の入出力側の差動遅延素子における減衰極の周波数を、これらの間の差動遅延素子における減衰極の周波数より高く設定してなるから、ノイズ減衰用インダクタの値が大きくなるのを抑え、これらの値を揃え易い。
本発明のコモンモードフィルタの基となる集中定数差動遅延線の例を示す回路図である。 本発明に係るコモンモードフィルタの第1の実施の形態を示す回路図である。 図2に示す本発明のコモンモードフィルタの差動信号に対する等価回路図である。 図2に示す本発明のコモンモードフィルタのコモンモードノイズに対する等価回路図である。 図2に示す本発明のコモンモードフィルタの特性図である。 本発明に係るコモンモードフィルタの第2の実施の形態を示す回路図である。 図6に示す本発明のコモンモードフィルタの差動信号に対する等価回路図である。 図6に示す本発明のコモンモードフィルタのコモンモードノイズに対する等価回路図である。 図6に示す本発明のコモンモードフィルタの特性図である。 本発明に係るコモンモードフィルタの第3の実施の形態を示す回路図である。 図10に示す本発明のコモンモードフィルタの差動信号に対する等価回路図である。 図10に示す本発明のコモンモードフィルタのコモンモードノイズに対する等価回路図である。 図10に示す本発明のコモンモードフィルタの特性図である。 本発明のコモンモードフィルタに係る他の応用例を説明する図である。 本発明のコモンモードフィルタに係る他の応用例を説明する図である。 従来のコモンモード・チョークコイルの等価回路である。 図16に示す従来のコモンモード・チョークコイルの特性図である。
 以下、本発明に係るコモンモードフィルタの実施の形態を図面を参照して説明する。
 まず、本発明のコモンモードフィルタの基となる集中定数差動遅延線を説明する。
 図1は本発明のコモンモードフィルタに適用する集中定数差動遅延線の一例を示す回路図である。
 図1において、差動入力端子1A、1Bと差動出力端子2A、2B間の差動線路1、3には梯子型差動4端子網5が形成されている。
 梯子型差動4端子網5は、それら差動線路1、3中に直列的に配置された受動直列素子と、これら差動線路1、3間に並列的に配置された受動並列素子を組合せ接続して梯子状に構成されている。
 すなわち、差動入出力端子1A、2A間の差動線路1および差動入出力端子1B、2B間の差動線路3において、受動直列素子としてのインダクタLoが複数個、例えば3個ずつ直列接続され、個々のインダクタLoの両端には受動並列素子としてキャパシタCo/4、Co/2が接続されている。
 差動線路1、3における同位置の各インダクタLoの両端間には、それらキャパシタCo/4、Co/2が接続され、3区間からなる定Kπ型集中定数差動遅延線DLが構成されている。
 この集中定数差動遅延線DLにおける1区間分の差動遅延素子dl1、dl2、dl3は、梯子型差動4端子回路であり、差動線路1、3における一対のインダクタLoとこの両端の2個のキャパシタCo/4、Co/2によって形成されている。隣合う差動遅延素子dl1とdl2、dl2とdl3のキャパシタCo/2は、共用されている。
 しかも、差動入出力端子1A、1B、2A、2B側の差動遅延素子dl1、dl3におけるキャパシタCo/4の容量値は、中間の差動遅延素子dl2との共用がないため、中間の差動遅延素子dl2のキャパシタCo/2に比べて半分になっている。各差動遅延素子dl1~dl3の遅延時間tdは、「数1」のように示される。
Figure JPOXMLDOC01-appb-M000001
 各差動遅延素子dl1~dl3の特性インピーダンスZdは、「数2」のように示される。
Figure JPOXMLDOC01-appb-M000002
 図1において、差動遅延素子dl1~dl3の1区間分のキャパシタの容量もCo/4、Co/2と表記することで、遅延時間tdの表記が一般に知られたシングルエンド遅延線における数式に一致している。
 なお、図1中、差動入力端子1A、1B側の符号+vdと-vdはインピーダンスZoの差動電源であり、差動出力端子2A、2B側の符号Zoは終端インピーダンスである。
 次に、本発明に係るコモンモードフィルタを詳細に説明する。
 図2は、本発明のコモンモードフィルタに係る第1の構成を説明する回路図であり、図1の集中定数差動遅延線を改良したものである。符号Vcはコモンモードノイズ源である。
 図2において、各差動遅延素子dl1~dl3における差動線路1、3上の一対のインダクタLsは、図1中のインダクタLoに相当し、同一区間内の一方の差動線路(正相側)1および他方の差動線路(負相側)3に位置するインダクタLs間が図に示す極性によって相互誘導mで電磁的に結合されている。すなわち、同一区間内の差動線路間で対をなすインダクタLs間が、差動信号に対しては負結合、コモンモードノイズに対しては正結合となる極性の相互誘導を持った関係になっている。
 インダクタLsは、インダクタLoよりは大きい値になっており、「数3」で示される。
Figure JPOXMLDOC01-appb-M000003
 インダクタLs両端間を結ぶキャパシタCo/4、Co/2は、図2に示すように、直列接続された2個のキャパシタCo/2とCo/2、又はCoとCoに分割されている。しかも、キャパシタCo/2とCo/2の直列合成容量がキャパシタCo/4と等価的に、同様に、キャパシタCoとCoの直列合成容量がキャパシタCo/2と等価的になっている。
 すなわち、分割された2個のキャパシタCo/2、Coの容量は、分割前の1個のキャパシタCo/4、Co/2の2倍の容量値を有している。
 各差動遅延素子dl1~dl3において、キャパシタCo/2とCo/2どうし、又はCoとCoどうしの各接続点T1、T2、T3、T4とグランド電位との間には、コモンモードノイズ減衰用インダクタL1、L2、L3、L4が接続されている。
 コモンモードノイズ減衰用インダクタL1~L4は、各々これに接続されたキャパシタCo/2、Coとの組合せによって直列共振回路を形成し、この共振周波数がコモンモードノイズ減衰極周波数に設定されている。その他の構成は図1と同様である。
 このようなコモンモードフィルタでは、差動線路1、3中に形成する梯子型の差動4端子網5として、上述した梯子型4端子回路である集中定数型の差動遅延素子dl1~dl3を用い、差動線路1、3を伝搬する差動信号を、設計目標通りの振幅特性と群遅延特性で通過させることが可能である。
 すなわち、この第1の構成では、差動線路1、3を伝送する差動信号が、互いに逆位相信号であるから、これらがキャパシタCo/2どうしやCoどうしの各接続点T1~T4に達しても互いに打ち消し合って消失する。そのため、差動信号に対しては、直列共振回路は寄与しないことになり、差動遅延素子dl1~dl3の設計通り、劣化なく差動信号が伝送される。
 他方、第1の構成では、差動遅延素子dl1~dl3を形成する並列素子である2個のキャパシタCo/2やCoと、これらの接続点T1~T4に接続されたコモンモードノイズ減衰用インダクタL1~L4とにより、コモンモードノイズに対する直列共振回路が形成されるから、コモンモードノイズが減衰遮断され、コモンモードノイズを設計通りに減衰させることが容易である。
 このような図2の構成では、同一区間内の差動線路間で対をなすインダクタLs間が、差動信号に対しては負結合、コモンモードノイズに対しては正結合となる極性の相互誘導を持った関係になっているから、差動信号に対する場合とコモンモードノイズに対する場合では異なった回路定数で機能する。
 すなわち、差動信号に対する回路定数で表現する図3から分かるように、差動信号に対しては、図2と全く等価である。
 これは、図に示す構成が、差動信号に対しては全く同じ特性となるように回路定数を設定したためであり、特性インピーダンスも整合条件であることを意味する。
 他方、図2の構成をコモンモードノイズに対する場合の回路定数で表現すると、図4のようになる。
 コモンモードノイズに対する直列素子としてのインダクタのインダクタンスをLcとすると、LcはインダクタLsと相互インダクタンスmの和となり、「数4」で示される関係となる。
Figure JPOXMLDOC01-appb-M000004
 従って、コモンモードノイズに対する場合のインダクタンスLcは、差動信号に対する場合のLoより大きい値となり、直列素子と並列素子のリアクタタンス比が増加することでコモンモードノイズに対しては減衰比が増加する。
 それに加えて、コモンモードノイズに対しては特性インピーダンスが不整合となり、これもコモンモードノイズの反射を多くして通過を阻害する効果がある。
 さらに、この反射コモンモードノイズは、差動遅延素子dl1~dl3中を伝播し、往復で2倍の周波数成分毎に異なる伝播遅延時間をもって差動入力端子1A、1Bに戻る。しかし、コモンモードノイズに対しては差動信号に対する場合よりもインダクタンスが大きくなった分、遅延時間も増加するので、差動入力端子1A、1Bに印加されたコモンモードノイズと、反射して戻ってきたコモンモードノイズとは、周波数成分毎に位相が大きく異なる状態、すなわち時間分散された状態で重畳される。
 そのため、差動入力端子1A、1Bにおいてコモンモードノイズのピーク電圧上昇が回避可能になり、差動入力端子1A、1Bの部分においてノイズが電磁放射され難い。
図5は、図2に示す本発明のコモンモードフィルタの特性図であり、符号Sdd21は差動信号通過特性、符号Scc21はコモンモードノイズ通過特性である。
 一般に回路解析では相互誘導mに代わって、結合係数kで表現した方が結合の程度が理解し易く、結合係数kは「数5」で示される。
Figure JPOXMLDOC01-appb-M000005
 すなわち、図5の特性は、k=0.5とし、差動信号に対する1区間の遅延時間が30ps、特性インピーダンスは100Ωとなるよう各素子の定数を設定した場合である。
 さらに、各直列共振回路の共振周波数を、
 fc1はL3と2?Coで決まる直列共振で、ここでは2.5GHz
 fc2はL2と2?Coで決まる直列共振で、ここでは2.84GHz
 fc3はL4とCoで決まる直列共振で、ここでは3.75GHz
 fc4はL1とCoで決まる直列共振で、ここでは5.8GHz
となるように設定した結果、2.45GHz以上の周波数でコモンモードノイズの減衰は-27dB以上とすることができた。
 図2に示した本発明のコモンモードフィルタは、同一区間内で正相側および負相側の直列素子を構成するインダクタLs間で電磁的に結合させるために接近して配置する必要があるが、このことはインダクタLsが占める体積空間を小さくすることが可能となり、コモンモードフィルタを小型にできる利点がある。
 また、コモンモードノイズの良好な減衰特性を実現するために、必要な集中定数差動遅延線の区間数を少なくすることが可能となり、このこともコモンモードフィルタを小型にできる利点がある。
 さらに、本発明のコモンモードフィルタは、コモンモードノイズに対しては1区間の遅延時間が大きくなるので、コモンモードノイズの周波数成分の時間的な分散をより大きくし、有効に反射コモンモードノイズのピーク電圧を抑制できる。
 さらにまた、本発明のコモンモードフィルタは、差動信号に対して特性インピーダンスを整合するように回路定数を定めれば、コモンモードノイズに対しては直列素子としてのインダクタンスLsが増加するので、特性インピーダンスも増加し、整合しなくなる。このこともコモンモードノイズに対しては回路の反射が多くなり、コモンモードノイズの遮断に寄与する。
 図6は本発明のコモンモードフィルタに係る第2の実施の形態であり、4区間からなる誘導mT型集中定数差動遅延線を基にしたものである。
 すなわち、このコモンモードフィルタは、4個の差動遅延素子dl1~dl4からなり、各差動遅延素子dl1~dl4において、受動直列素子を形成するインダクタLsを2等分し、2等分されたインダクタLs/2どうしを直列接続するとともに互いに相互誘導m1で結合させ、2等分されたインダクタLs/2どうしの接続点の間を、上述したキャパシタの直列回路で接続した構成を有している。
 さらに、同一区間内の各インダクタLs/2は、入力側の正相と負相間、および出力側の正相と負相間で相互誘導m2にて結合されており、正相入力側と負相出力側間、および正相出力側と負相入力側間で相互誘導m3にて結合されている。
 この図6の構成における3種類の結合は、本発明の主旨の1つである小型化を実現するために、各差動遅延素子dl1~dl4の1つの差動遅延素子を形成する4つのインダクタLs/2を互いに接近して配置させることにより、形成された相互誘導である。
 なお、回路解析においては、相互誘導m1、m2、m3それぞれを結合係数で表示した方が、結合の程度が理解し易いから、相互誘導m1に対する結合係数をk1、相互誘導m2に対する結合係数をk2、相互誘導m3に対する結合係数をk3とすると、それら結合係数k1~k3は「数6」、「数7」、「数8」で示される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 従って、図6の構成は、この図のようにインダクタLs/2の極性を定めると、差動信号に対しては図7の回路定数で機能する。すなわち、差動信号に対する直列素子としてのインダクタのインダクタンスをLo/2とすると、このLo/2は、同一区間内で入力側の正相と負相間、又は出力側の正相と負相間に位置するインダクタ間の相互誘導m2との差分となり、「数9」で示される。
Figure JPOXMLDOC01-appb-M000009
 さらに、誘導m型として機能する相互誘導をmdとすると、mdは「数10」で示される。
Figure JPOXMLDOC01-appb-M000010
 他方、図6の構成は、コモンモードノイズに対しては図8の回路定数で機能する。すなわち、コモンモードノイズに対する直列素子としてのインダクタのインダクタンスをLc/2とすると、Lc/2は、同一区間内で入力側の正相と負相間、又は出力側の正相と負相間に位置するインダクタ間の相互誘導m2との和となり、「数11」で示される。
Figure JPOXMLDOC01-appb-M000011
 さらに、コモンモードノイズに対して、誘導m型として機能する相互誘導mcは「数12」で示される。
Figure JPOXMLDOC01-appb-M000012
 さらに、回路解析においては、相互誘導mdの場合も、相互誘導mdとインダクタLo/2に対する比、すなわち結合係数を用いることが一般的であり、その結合係数をkdとすると、kdは「数13」で示される。
Figure JPOXMLDOC01-appb-M000013
 図9は、図6の構成における差動信号およびコモンモードノイズに対する特性図であり、kd=0.24とし、図7において、1区間の遅延時間が37.5psで、特性インピーダンスが100Ωとなるように定め、相互誘導m2に対する結合係数k2=0.2、相互誘導m3に対する結合係数k3=0.2とした場合の特性である。
 なお、以上の条件から相互誘導m1に対する結合係数k1を求める数式は「数14」で示される。
Figure JPOXMLDOC01-appb-M000014
 そのため、結合係数k1はk1=0.392となる。
 この場合、図中のfc1~fc4を決める直列共振周波数は、コモンモードノイズ減衰用インダクタL1~L4の各値からmc/2を差し引いた値と2×Coで決定される。そこで差動遅延素子dl1~dl4の各共振周波数を以下のように設定する。
fc1は 、(L4-mc/2)と2×Co決まる直列共振周波数で、ここでは2.39GHz
fc2は (L3-mc/2)と2×Coで決まる直列共振周波数で、ここでは2.53GHz
fc3は (L2-mc/2)と2×Coで決まる直列共振周波数で、ここでは2.93GHz
fc4は (L1-mc/2)と2×Coで決まる直列共振周波数で、ここでは4.1GHz
 すると、2.36GHz以上の周波数でコモンモードノイズの減衰は-34dB以上が得られる。
 図10は本発明のコモンモードフィルタに係る第3の実施の形態であり、4区間からなる全域通過型集中定数差動遅延線の構成である。
 図10に係るコモンモードフィルタは、4個の差動遅延素子dl1~dl4からなり、各差動遅延素子dl1~dl4において、受動直列素子を形成するインダクタLsを2等分し、2等分されたインダクタLs/2どうしを直列接続するとともに互いに相互誘導m1で結合させ、2等分されたインダクタLs/2どうしの接続点の間を、上述したキャパシタの直列回路で接続した構成を有している。
 さらに、同一区間内のインダクタLs/2は、入力側の正相と負相間、および出力側の正相と負相間で相互誘導m2にて結合されており、正相入力側と負相出力側間、および正相出力側と負相入力側間で相互誘導m3にて結合されているうえ、直列接続されたインダクタLs/2の両端をキャパシタCaで橋絡したものである。
 この構成も、図6の構成と同様に、本発明の主旨の1つである小型化を実現するため、各差動遅延素子dl1~dl4の1つの差動遅延素子を形成する4つのインダクタLs/2を互いに接近して配置させ、互いに相互誘導を持たせ、図10のように3種の相互誘導を定めている。
 図10の構成では、図6と比べて橋絡容量Caが追加されている以外は同じなので、インダクタLs/2のインダクタンス、相互誘導および結合係数は上述した「数6」~「数14」と同様になる。
 従って、図10の構成は、差動信号に対しては図11の回路定数で機能し、コモンモードノイズに対しては図12の回路定数で機能する。
 この図10の構成においても、図6の構成と同様に、相互誘導mdの代わりに結合係数kdを用い、この結合係数kdを0.42とし、図11において1区間の遅延時間を37.5ps、特性インピーダンスは100Ωとなるように定め、さらに、相互誘導m2に対する結合係数k2を0.1、相互誘導m3に対する結合係数k3を0.1としている。
 このような条件下で、相互誘導m1に対する結合係数k1が「数14」によって求められ、k1=0.478となる。
 図10の全域通過型集中定数差動遅延線においては、結合係数kdを誘導m型の場合より大きい値にすることが好ましい。
 さらに、橋絡容量Caが配置されているが、結合係数kが0.42の場合、橋絡容量CaはキャパシタCoの1/10程度の値が使用される。
 図13は、図10に示すコモンモードフィルタの特性図であり、符号Sdd21は差動信号通過特性、符号Scc21はコモンモードノイズ通過特性である。
 この場合、各共振周波数fc1~fc4を決める直列共振周波数は、コモンモードノイズ減衰用インダクタL1~L4の各値からmc/2を差し引いた値と2×Coとで決定される。
 そこで、各共振周波数を以下のように設定すると、2.36GHz以上の周波数でコモンモードノイズの減衰は-32dB以上が得られる。
 fc1は (L4-mc/2)と2×Co決まる直列共振周波数で、ここでは2.39GHz
 fc2は (L3-mc/2)と2×Coで決まる直列共振周波数で、ここでは2.51GHz
 fc3は (L2-mc/2)と2×Coで決まる直列共振周波数で、ここでは2.82GHz
 fc4は (L1-mc/2)と2×Coで決まる直列共振周波数で、ここでは3.66GHz
 なお、より正確には、橋絡容量Caの影響も加味する必要があるが、その影響はごくわずかであり、簡単化のためここでは無視している。
 図示はしないが、全域通過型集中定数遅延線では差動信号の振幅特性が非常に平坦であり、殆ど振幅変動がなく、また群遅延特性の平坦性にも優れている。
 図10の構成は、図13から分かるように、13GHz以上ではコモンモードノイズが通過するようになるが、2.5GHzに対しては5倍以上の高調波に当たるので通常は殆ど問題とならない。もし問題となる場合には、全域通過型集中定数差動遅延線とその他の低域通過型の遅延線を組合わせることも可能である。
 さらに、上述した本発明のコモンモードフィルタは、集中定数差動遅延線として定K型、誘導m型又は全域通過型の3種で説明したが、その他の構成でも可能である。
 例えば、誘導m型の構成は、梯子型集中定数差動遅延線の直列素子であるインダクタの隣接区間で相互誘導を持つのに対し、例示はしないが、2区間以上離れた区間のインダクタ間に相互誘導を持たせた構成も知られている。このような構成においても本発明に係る構成の応用が可能であり、同様の効果を得ることが可能である。
 要は、集中定数差動遅延線が、定K型、誘導m型および全域通過型の差動遅延素子中から、例えば2個の定K型差動遅延素子と3個の誘導m型差動遅延素子を梯子状に接続する等、異なる2個又は3個を複合した構成であれば、本発明の目的達成が可能である。
 以上のことから、梯子型の差動4端子回路でその受動直列素子にインダクタを、その受動並列素子にキャパシタを配置した集中定数差動遅延線を基に構成した本発明のコモンモードフィルタは、超高速差動伝送線路を伝搬する望ましい超高速差動信号を通過させる一方、望ましくないコモンモードノイズを減衰させて通過させ難い。さらに反射コモンモードノイズのピーク値を抑圧して、遮断された反射コモンモードノイズの電磁放射強度を低く抑えることが可能である。
 さらに、本発明の実施例は、全て集中定数差動遅延線が複数区間構成の場合で説明した。しかし、コモンモードノイズが特定の周波数にしか存在しない場合もあり得る。その場合、例えば、図6の集中定数差動遅延線として誘導mT型1区間だけの構成とし、1つ存在する減衰極周波数をコモンモードノイズの周波数に一致させればよい。
 また、本発明のコモンモードフィルタにおいては、図14A、Bに示すように、コモンモードノイズ減衰用インダクタL1~L4に対し抵抗R1、R10を直列接続又は並列接続した構成、更には、図15に示すように、接続点T1~T4とグランド間に抵抗R10、R40を接続した構造や、接続点T1~T4間に抵抗R12~R34を接続した構成でも可能である。このように構成することにより、コモンモード電力をこれらの抵抗で吸収減衰させることが可能である。
 特に、図15の構成では、複数区間の例を示しているが、定Kπ型集中定数差動遅延線の場合は、1区間構成でも接続点T1とT2が形成されるので、1区間構成において接続点間に抵抗を接続することが可能となる。
 要は、コモンモードノイズ減衰用インダクタ、コモンモードノイズを吸収する抵抗、又はこれらインダクタと抵抗の直列若しくは並列回路を減衰極形成回路として配置すれば良い。
 なお、本発明のコモンモードフィルタにおいて、複数区間を構成する場合、従来の差動遅延線、例えばコモンモードノイズ減衰用インダクタL1~L4を省略したものを一部に用いて直列接続することも可能である。
1 差動線路(正相側)
1A、1B 差動入力端子(入力側)
2A、2B 差動出力端子(出力側)
3 差動線路(負相側)
5 梯子型差動4端子網
Co、Co/2、Co/4、Ca キャパシタ
DL 集中定数差動遅延線
dl1、dl2、dl3、dl4 差動遅延素子(差動4端子回路)
Lo、Lo/2 インダクタ
L1、L2、L3、L4 コモンモードノイズ減衰用インダクタ
R1、R10、R12、R23、R34 抵抗
T1、T2、T3、T4 接続点
+vd、-vd     差動電源
Vc          コモンモードノイズ源

Claims (11)

  1. 差動線路中に直列的に配置されたインダクタを含む受動直列素子および前記差動線路間に並列的に配置されたキャパシタを含む受動並列素子からなる梯子型の差動4端子回路を有してなる集中定数差動遅延線であって、前記直列素子を形成し同一区間内の差動線路間で対をなす前記インダクタ間に相互誘導を持たせ、差動信号に対しては前記インダクタのインダクタンスと該相互誘導の相互インダクタンスとの差分を前記直列素子として機能させ、コモンモードノイズに対しては前記インダクタンスと前記相互インダクタンスの和分を前記直列素子として機能させるとともに、前記キャパシタが当該キャパシタと等価にして値の等しい2個の直列接続されたキャパシタからなる集中定数差動遅延線と、
     直列接続された前記キャパシタどうしの接続点とグランド電位との間に接続され、前記キャパシタとともにコモンモードノイズ減衰用減衰極を形成するコモンモードノイズ減衰用インダクタ、コモンモードノイズを吸収する抵抗、又はこれらインダクタと抵抗の直列若しくは並列回路と、
     を具備することを特徴とするコモンモードフィルタ。
  2. 前記集中定数差動遅延線は、前記差動信号に対して特性インピーダンスを整合させ、前記コモンモードノイズに対して特性インピーダンスを不整合とする回路定数が設定された請求項1記載のコモンモードフィルタ。
  3. 前記集中定数差動遅延線は、定K型構成である請求項1又は2記載のコモンモードフィルタ。
  4. 前記集中定数差動遅延線は、誘導m型構成である請求項1又は2記載のコモンモードフィルタ。
  5. 前記集中定数差動遅延線は、全域通過型構成である請求項1又は2記載のコモンモードフィルタ。
  6. 前記集中定数差動遅延線と、前記コモンモードノイズ減衰用インダクタ、コモンモードノイズを吸収する抵抗、又はこれらインダクタと抵抗の直列若しくは並列回路とを1区間の差動遅延素子とし、前記差動線路に前記差動遅延素子が梯子型に複数直列配置され複数区間が構成された請求項1~5いずれか1記載のコモンモードフィルタ。
  7. 前記差動差動遅延素子の間に前記集中定数差動遅延線が梯子状に直列配置されて構成された請求項6記載のコモンモードフィルタ。
  8. 前記集中定数差動遅延線における前記キャパシタどうしの複数の接続点間に抵抗が接続された請求項3、6又は7いずれか1記載のコモンモードフィルタ。
  9. 前記集中定数差動遅延線は、定K型、誘導m型および全域通過型の差動遅延素子中から異なる2個又は3個を複合した構成である請求項6~8いずれか1記載のコモンモードフィルタ。
  10. 前記差動遅延素子における前記減衰極の周波数を異ならせてなる請求項3又は6~9いずれか1記載のコモンモードフィルタ。
  11. 前記差動線路の入出力側の前記差動遅延素子における前記減衰極の周波数を、これらの間の前記差動遅延素子における前記減衰極の周波数より高く設定してなる請求項10記載のコモンモードフィルタ。


     
PCT/JP2010/070532 2009-11-27 2010-11-18 コモンモードフィルタ WO2011065270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543217A JPWO2011065270A1 (ja) 2009-11-27 2010-11-18 コモンモードフィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270079 2009-11-27
JP2009270079 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065270A1 true WO2011065270A1 (ja) 2011-06-03

Family

ID=44066374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070532 WO2011065270A1 (ja) 2009-11-27 2010-11-18 コモンモードフィルタ

Country Status (2)

Country Link
JP (1) JPWO2011065270A1 (ja)
WO (1) WO2011065270A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233074A (ja) * 2012-10-19 2014-12-11 株式会社村田製作所 コモンモードフィルタ
WO2020031838A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 バンドパスフィルタ
CN116470253A (zh) * 2023-04-23 2023-07-21 南通至晟微电子技术有限公司 一种紧凑型平衡式宽带滤波器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865741A (zh) * 2021-01-04 2021-05-28 诺思(天津)微系统有限责任公司 多工器和改善多工器隔离度的方法以及通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159187U (ja) * 1983-04-12 1984-10-25 ティーディーケイ株式会社 スイッチング電源装置
JPH059023U (ja) * 1991-07-12 1993-02-05 リヨービ株式会社 電動機の雑音防止回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159187U (ja) * 1983-04-12 1984-10-25 ティーディーケイ株式会社 スイッチング電源装置
JPH059023U (ja) * 1991-07-12 1993-02-05 リヨービ株式会社 電動機の雑音防止回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233074A (ja) * 2012-10-19 2014-12-11 株式会社村田製作所 コモンモードフィルタ
WO2020031838A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 バンドパスフィルタ
JPWO2020031838A1 (ja) * 2018-08-10 2021-08-02 株式会社村田製作所 バンドパスフィルタ
US11201599B2 (en) 2018-08-10 2021-12-14 Murata Manufacturing Co., Ltd. Band pass filter
JP7006795B2 (ja) 2018-08-10 2022-01-24 株式会社村田製作所 バンドパスフィルタ
CN116470253A (zh) * 2023-04-23 2023-07-21 南通至晟微电子技术有限公司 一种紧凑型平衡式宽带滤波器
CN116470253B (zh) * 2023-04-23 2023-10-31 南通至晟微电子技术有限公司 一种紧凑型平衡式宽带滤波器

Also Published As

Publication number Publication date
JPWO2011065270A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5341201B2 (ja) コモンモードフィルタ
JP5352881B2 (ja) コモンモードフィルタ
US9985682B2 (en) Broadband isolation low-loss ISM/MB-HB tunable diplexer
US9761367B2 (en) Multiplexers using weakly-coupled networks in RF front end circuitry
US8570119B2 (en) Ultra wide pass-band, absorptive band-reject filter
WO2011013543A1 (ja) コモンモードフィルタ
US6300849B1 (en) Distributed element filter
US20120194298A1 (en) Filter Circuit Having Improved Filter Characteristic
JP4627791B2 (ja) 平衡−不平衡変換回路
WO2011065270A1 (ja) コモンモードフィルタ
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
JP2011228824A (ja) コモンモードフィルタ
WO2011086822A1 (ja) コモンモードフィルタおよびコモンモードフィルタ用インダクタ
JP2011119492A (ja) コモンモードフィルタ
WO2015098240A1 (ja) フィルタ装置およびデュプレクサ
JP2002217670A (ja) バラントランス
US7256666B2 (en) Band rejection filter with attenuation poles
US11509278B2 (en) Common-mode noise filter
CN116743109A (zh) 一种包含匹配结构的滤波器电路
CN117713747A (zh) 一种双向吸收式超宽带共模滤波器电路拓扑结构
JP2016144056A (ja) ノイズフィルタ部品、及び、吸収型ノイズフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011543217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833116

Country of ref document: EP

Kind code of ref document: A1