WO2011064102A2 - Aufladestation für elektrisch betriebene fahrzeuge - Google Patents

Aufladestation für elektrisch betriebene fahrzeuge Download PDF

Info

Publication number
WO2011064102A2
WO2011064102A2 PCT/EP2010/067275 EP2010067275W WO2011064102A2 WO 2011064102 A2 WO2011064102 A2 WO 2011064102A2 EP 2010067275 W EP2010067275 W EP 2010067275W WO 2011064102 A2 WO2011064102 A2 WO 2011064102A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging station
flywheel
electrical energy
energy
storage
Prior art date
Application number
PCT/EP2010/067275
Other languages
English (en)
French (fr)
Other versions
WO2011064102A3 (de
Inventor
Matthias Bandorf
Wolfgang Hill
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Publication of WO2011064102A2 publication Critical patent/WO2011064102A2/de
Publication of WO2011064102A3 publication Critical patent/WO2011064102A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/56Mechanical storage means, e.g. fly wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention relates to a charging station according to claim 1 for electrically operated vehicles, ie vehicles with an electric drive or with an electric auxiliary drive and a memory for electrical energy, and a method according to claim 4 for operating a charging station.
  • Vehicles are known from the prior art, which have an electric drive, or at least one if necessary switchable electric auxiliary drive. Such vehicles require the inclusion of electrical energy at charging stations at regular intervals.
  • the electrical energy provided at the charging stations can be taken, for example, from the public power grid or generated on site, for example by providing a solar system at the charging station whose generated electrical energy can be delivered to the vehicles. It is also known to store the energy in a buffer for electrical energy, such as an electric battery, so that in the case of charging the vehicle, the cached in the battery electrical energy can be retrieved at short notice.
  • DE 92 12 818 U1 proposes to provide on the vehicle an energy storage or an energy buffer, for example in the form of a trailer. However, this increases the mass and thus the energy requirements of the vehicle.
  • This object is achieved for said charging station according to the invention according to claim 1 by a arranged at the removal point flywheel storage as a buffer for the electrical energy. Since known flywheel accumulators are generally suitable as temporary storage for the removal parts of the charging station, this object is achieved, in particular, by the use of a flywheel accumulator as intermediate storage for electrical energy at the charging station for supplying electrically operated vehicles with electrical energy.
  • the solution of the object according to the invention allows a method according to claim 4 for operating a charging station.
  • Flywheel storage units offer the possibility of electrical energy in a short time To convert time into mechanical energy by rotating a flywheel in the flywheel storage, and to keep the energy stored largely without loss by keeping the rotating flywheel in rotation, for example, in a contact bearing the flywheel in a sliding or rolling bearings, or at a non-contact mounting of the flywheel in an active or passive magnetic bearing.
  • the flywheel storage further offers the possibility of converting the electrical energy stored in a mechanical manner by braking the rotating flywheel into electrical energy in a short period of time and, for example, supplying it to the vehicle. Due to the low response times flywheel storage are suitable to intercept an overload of the public power grid and continue to perform an energy delivery to the electrically powered vehicle in a short period of about a few minutes.
  • the charging station thus offers the possibility of carrying out the charging of the vehicle in a period of time which corresponds substantially to the usual time span for filling the vehicle with liquid fuels such as gasoline.
  • the flywheel storage takes up little space, which essentially corresponds to the space requirement of a known fuel pump for liquid fuel and is preferably arranged sunk in the ground below the sampling point.
  • the flywheel accumulator can easily be retrofitted into already existing charging stations by connecting between the removal point, on which, for example, an electrically conductive connection to the vehicle is produced, and the supply of the charging station with electrical energy, for example, the connection of the charging station to the public power grid
  • the flywheel storage is installed.
  • everyone is At least one Schwungrad Mrs. assigned to individual sampling point.
  • the receiving station is connected to the at least one sampling point by interposing at least one flywheel storage of the public power grid.
  • the flywheel storage preferably has a communication unit that can exchange information with external communication units located outside the charging station.
  • the communication unit of the flywheel storage device can be addressed, for example, by an external communication unit of an electric vehicle whose driver dials the communication unit of the flywheel storage device like a mobile telephone.
  • the driver or, advantageously, the navigation device installed in the vehicle can inform the flywheel storage device of its energy requirement and the estimated time of arrival.
  • the communication unit of the flywheel accumulator can notify the driver or his navigation device of the availability of the energy and / or the expected waiting time.
  • the communication unit of the energy accumulator provides the driver with better supply security, since the charge delay is confirmed before or during the drive to the charging station.
  • the flywheel storage can save considerable stand-by losses due to the communication unit, since in times without advance notification, the rotational speed of the flywheel and thus friction losses can be reduced.
  • a reduction in idle speed in stand-by times can significantly reduce the annual self-consumption of the flywheel accumulator and thus increase cost-efficiency, given the low capacity utilization of many charging stations.
  • the usage option for the network operator to use the power storage to improve the network quality if necessary can also increase the economy of the charging station by reducing the energy consumption.
  • FIG. 1 shows schematically an embodiment of a charging station according to the invention
  • Fig. 2 shows schematically a modification of that shown in Fig. 1
  • the charging station 1 shows a charging station 1 for supplying electrically operated vehicles, for example motor vehicles 2 provided with an electrical energy store, with electrical energy.
  • the charging station 1 comprises a removal point 3 for the electrical energy, wherein the removal point 3 has an electrical line 4, at the end of an electrically conductive connection to the motor vehicle 2 can be made to store the electrical energy in the motor vehicle 2.
  • the charging station 1 further comprises a flywheel storage 5, which at the Removal point 3 is arranged so that via the electrical line 4, the electrical energy that was previously cached in the flywheel storage 5 as kinetic energy, can be delivered to the vehicle 2.
  • a flywheel storage 5 which at the Removal point 3 is arranged so that via the electrical line 4, the electrical energy that was previously cached in the flywheel storage 5 as kinetic energy, can be delivered to the vehicle 2.
  • the flywheel accumulator 5 is thus stationary in spatial proximity to the removal point 3 for the vehicle 2, in particular underneath the base and thus invisible, arranged, wherein electrical conduction losses between the output of the flywheel 5 and the vehicle 2 can be kept low.
  • the flywheel accumulator 5 comprises a flywheel 6, that is to say a mass which has a specific moment of inertia relative to a defined axis of rotation.
  • the flywheel 6 is rotatably mounted in a housing, for example by means of a contact bearing (in particular a Wälzoder a plain bearing) or by means of a substantially non-contact storage (for example, an active or passive magnetic storage or aerodynamic storage).
  • the flywheel 6 is set in rotation or kept in rotation by supplying electrical energy into the electric drive of the flywheel storage device 5, the energy supplied to the flywheel storage device 5 being taken from an energy source, in particular a power supply network.
  • the first energy source of the charging station 1 is an AC voltage network 7, to which an input of the flywheel storage device 5 is connected, wherein between the AC voltage network 7 are provided at a connection point of the power supply inverter, which transform the AC voltage.
  • the alternating voltage network 7 can be, for example, a high-voltage network or a network which supplies a three-phase rotary voltage, wherein the sum of the amplitudes of the three phases increases provides a voltage of zero volts at each instant.
  • the second energy source of the charging station 1 is a DC voltage network 8, to which the input of the flywheel storage device 5 is connected, wherein at a connection point with the DC voltage network 8, a further converter is provided, which makes an AC voltage from the DC voltage.
  • the DC voltage of the DC voltage network 8 can be dispensed, for example, from a battery that is powered by solar power during the day and can be switched to the AC power supply 7 when needed.
  • the flywheel storage device 5 can be fed either by the DC voltage network 8 and by the AC voltage network 7. It goes without saying that the flywheel feed 5 can also be supplied exclusively by the DC voltage network 8 or exclusively by the AC voltage network 7.
  • the invention works in such a way that when the vehicle 2 is charged at the removal point 3, the flywheel accumulator 5 releases its mechanical energy as electrical energy to the vehicle 2, wherein the energy requirement of the vehicle 2 can be transmitted within a few minutes.
  • the subsequently energetically emptied flywheel accumulator 5 is charged again in the following, for example by the AC voltage network 7 or the DC voltage network 8.
  • the flywheel accumulator 5 thus acts as a buffer, which generates a short-term high energy demand during charging of the vehicle 2 with respect to the voltage networks 7, 8 buffers, so that a short-term overload of the voltage grids 7, 8 is prevented.
  • the single extraction point 3 was assigned a single flywheel storage 5. It is understood that a sampling point can be assigned to several flywheel storage, of which only one is discharged during the charging of the vehicle 2. If the charging station 1 includes more than just one removal point 3, several removal points can access a common flywheel storage.
  • a flywheel 5 is shown schematically, in the control electronics 9, a communication unit 1 0 is integrated, which can exchange information via radio with other, external communication units 1 1.
  • These other external communication units 11 are those of vehicles 2 whose drivers can communicate or query information via SMS, or navigation devices of vehicles 2 with which information packets are exchanged according to specific protocols.
  • the information includes, for example, an indication of the anticipated demand for electrical energy and an indication of the time at which the electrical energy is to be transmitted to the vehicle 2.
  • the communication unit 1 0 of the flywheel 5 is integrated into the control electronics 9 of the flywheel 5 and has transmitting and receiving units 12 for radio signals.
  • a process control computer 13 of a local grid operator of the power grid, whose electrical energy is temporarily stored in the flywheel feed 5, is shown schematically.
  • the process control computer 1 3 detects the energy requirements of all vehicles 2 and controls the feeding of electrical energy into the network so that the network is optimally utilized is, in particular so that no overload in the network occurs and the energy needs of all consumers of the network, including all powered by the network flywheel storage 5, can be met.
  • the flywheel 6 of the flywheel accumulator 5 is operated by the control electronics 9 in a "standby mode" at a reduced speed (for example, from 30,000 to 6,000 rpm) and thereby also
  • a reduced speed for example, from 30,000 to 6,000 rpm
  • the charging station 1 By the demand-driven driving the speed of the flywheel 6 of the flywheel 5, the charging station 1 can be operated so that the losses due to the friction of the flywheel 6 in the storage can be significantly reduced
  • the annual inherent losses of the flywheel can be with an ef For example, reduce the useful life of 10% (876 h / a) by about 72%.
  • the exchange of electric energy between the flywheel storage 5 and the vehicle 2 was provided by an electric wire 4. It is understood that a non-contact exchange of electrical energy between see the flywheel 5 and the vehicle 2 may be provided, for example by means of an inductive energy transfer. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft eine Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen (2) mit elektrischer Energie, umfassend eine Entnahmestelle (3) für die elektrische Energie. Die Aufgabe, eine Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen mit elektrischer Energie anzugeben, wobei die Aufladestation in mehreren Zyklen in kurzer Zeit eine hohe Energie mit geringen Verlusten abgeben kann, insbesondere, ohne das öffentliche Stromnetz zu stark zu belasten, wird erfindungsgemäß gelöst durch einen an der Entnahmestelle (3) angeordneten Schwungradspeicher (5) als Zwischenspeicher für die elektrische Energie. Die Erfindung betrifft weiter ein Verfahren zum Betreiben einer Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen (2).

Description

Bezeichnung der Erfindung
Aufladestation für elektrisch betriebene Fahrzeuge
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft eine Aufladestation nach Anspruch 1 für elektrisch be- triebene Fahrzeuge, also Fahrzeuge mit einem elektrischen Antrieb bzw. mit einem elektrischen Hilfsantrieb sowie einem Speicher für elektrische Energie, und ein Verfahren nach Anspruch 4 zum Betreiben einer Aufladestation.
Aus dem Stand der Technik sind Fahrzeuge bekannt, die einen elektrischen Antrieb aufweisen, oder zumindest einen bei Bedarf zuschaltbaren elektrischen Hilfsantrieb. Derartige Fahrzeuge erfordern in regelmäßigen Abständen die Aufnahme von elektrischer Energie an Aufladestationen. Die an den Aufladestationen bereitgestellte elektrische Energie kann beispielsweise dem öffentlichen Stromnetz entnommen werden oder an Ort und Stelle er- zeugt werden, beispielsweise, indem an der Aufladestation eine Solaranlage vorgesehen wird, deren erzeugte elektrische Energie an die Fahrzeuge abgegeben werden kann . Es ist weiter bekannt, die Energie in einem Zwischenspeicher für elektrische Energie, beispielsweise eine elektrische Batterie, zu speichern, so dass im Fall der Aufladung des Fahrzeugs die in der Batterie zwischengespeicherte elektrische Energie kurzfristig abgerufen werden kann.
Für die Abgabe einer elektrischen Energie von beispielsweise ca. 10 kWh in einer kurzen Zeit, beispielsweise ca. 5 Minuten, sind bestehende Aufladestationen kaum geeignet, da die betreffenden Batterien längere Lade- bzw. Entladezeiten aufweisen. Auch stellt eine Energieentnahme in der angegebenen Größenordnung binnen weniger Minuten eine hohe Belastung des öffentlichen Stromnetzes dar, so dass in ungünstigen Fällen das Stromnetz zusammenbrechen kann.
Der Anforderung einer Abgabe einer hohen Energie (ca. 10 kWh) in einer kurzen Zeitspanne (ca. 5 Minuten) mit einer hohen Wiederholrate kann nur auf unzureichende Weise entsprochen werden.
DE 10 2006 047 654 A1 beschreibt eine Aufladestation für elektrisch betriebene Fahrzeuge, wobei das jeweilige Fahrzeug einen Energiespeicher aufweist. Das Aufladen des Fahrzeuges geschieht durch einfaches Austau- sehen des leeren Energiespeichers gegen einen aufgefüllten Energiespeicher. Hierzu ist eine mechanische Greifervorrichtung vorgesehen. Ungünstig ist, dass aufgefüllte Energiespeicher in größerer Zahl vorrätig gehalten werden müssen, sowie weiter, dass leere Energiespeicher anfallen, wodurch ein großer Platzbedarf entsteht.
DE 295 05 733 U1 beschreibt eine Aufladestation für ein elektrisch betriebenes Fahrzeug, wobei innerhalb von bis zu vier Stunden eine Leistung von maximal 5 kW abgegeben wird. Dabei wird ein innerhalb des Fahrzeuges vorhandener Akku aufgeladen.
DE 92 12 818 U1 schlägt vor, an dem Fahrzeug einen Energiespeicher bzw. einen Energiepuffer vorzusehen, beispielsweise in Form eines Anhängers. Hierbei erhöht sich allerdings die Masse und damit der Energiebedarf des Fahrzeuges.
DE 10 2006 006 692 A1 beschreibt eine Aufladestation mit einer induktiven Abgabe der elektrischen Energie an ein Fahrzeug. In dem Fahrzeug ist ein Energiespeicher, beispielsweise ein Schwungrad, angeordnet, das die von der Aufladestation abgegebene elektrische Energie zwischenspeichert, so dass das Fahrzeug eine größere Reichweite erhält. Nachteilig ist auch hier, dass der Energiespeicher, insbesondere das an dem Fahrzeug befestigte Schwungrad, die Masse und damit den Energiebedarf des Fahrzeuges erhöht.
Aufgabe der Erfindung
Es ist die Aufgabe der Erfindung, eine Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen mit elektrischer Energie anzugeben, wobei die Aufladestation in mehreren Zyklen in kurzer Zeit eine hohe Energie mit geringen Verlusten abgeben kann, insbesondere, ohne das öffentliche Stromnetz zu stark zu belasten.
Zusammenfassung der Erfindung
Diese Aufgabe wird für die genannte Aufladestation erfindungsgemäß nach Anspruch 1 gelöst durch einen an der Entnahmestelle angeordneten Schwungradspeicher als Zwischenspeicher für die elektrische Energie. Da an sich bekannte Schwungradspeicher als Zwischenspeicher für die Ent- nahmesteile der Aufladestation grundsätzlich geeignet sind, wird diese Aufgabe insbesondere gelöst durch die Verwendung eines Schwungradspeichers als Zwischenspeicher für elektrische Energie an der Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen mit elektrischer Energie. Die Lösung der Aufgabe ermöglicht erfindungsgemäß ein Verfahren nach Anspruch 4 zum Betreiben einer Aufladestation.
Schwungradspeicher bieten die Möglichkeit, elektrische Energie in kurzer Zeit in mechanische Energie umzuwandeln, indem ein Schwungrad in dem Schwungradspeicher in Drehung versetzt wird, sowie die Energie weitgehend ohne Verluste gespeichert zu halten , indem das sich drehende Schwungrad in Drehung gehalten wird, beispielsweise bei einer berühren- den Lagerung des Schwungrades in einem Gleit- oder Wälzlager, bzw. bei einer berührungsfreien Lagerung des Schwungrades in einem aktiven oder passiven Magnetlager. Der Schwungradspeicher bietet weiter die Möglichkeit, die auf mechanische Weise gespeicherte elektrische Energie durch Abbremsen des sich drehenden Schwungrades in einer kurzen Zeitspanne in elektrische Energie umzuwandeln und beispielsweise dem Fahrzeug zuzuführen. Aufgrund der geringen Ansprechzeiten sind Schwungradspeicher geeignet, eine Überlastung des öffentlichen Stromnetzes abzufangen sowie weiter, eine Energieabgabe an das elektrisch betriebene Fahrzeug in einer kurzen Zeitspanne von ca. einigen Minuten auszuführen.
Die Aufladestation bietet damit die Möglichkeit, die Aufladung des Fahrzeuges in einer Zeitspanne durchzuführen, die im wesentlichen der gewohnten Zeitspanne für die Befüllung des Fahrzeuges mit flüssigen Kraftstoffen wie Benzin entspricht.
Der Schwungradspeicher nimmt nur wenig Raum, der im wesentlichen dem Platzbedarf einer an sich bekannten Zapfsäule für flüssigen Kraftstoff entspricht und ist vorzugsweise im Boden versenkt unterhalb der Entnahmestelle angeordnet.
Der Schwungradspeicher lässt sich in bereits bestehende Aufladestationen leicht nachträglich einbauen, indem zwischen der Entnahmestelle, an der beispielsweise eine elektrisch leitende Verbindung zu dem Fahrzeug herge- stellt wird, und der Versorgung der Aufladestation mit elektrischer Energie, beispielsweise dem Anschluss der Aufladestation an das öffentliche Stromnetz, der Schwungradspeicher eingebaut wird. Insbesondere ist jeder ein- zelnen Entnahmestelle mindestens ein Schwungradspeicher zugeordnet. Weiter ist die Aufnahmestation mit der mindestens einen Entnahmestelle durch Zwischenschalten mindestens eines Schwungradspeichers von dem öffentlichen Stromnetz verbunden.
Der Schwungradspeicher weist vorzugsweise eine Kommunikationseinheit auf, die mit externen Kommunikationseinheiten, die sich außerhalb der Aufladestation befinden, Informationen austauschen kann. Die Kommunikationseinheit des Schwungradspeichers kann beispielsweise von einer exter- nen Kommunikationseinheit eines Elektrofahrzeugs angesprochen werden, dessen Fahrer die Kommunikationseinheit des Schwungradspeichers wie ein Mobiltelefon anwählt. Über den Kommunikationseinheit kann der Fahrer oder vorteilhaft das im Fahrzeug installierte Navigationsgerät dem Schwungradspeicher seinen Energiebedarf und die voraussichtliche Ankunftszeit mit- teilen. Als Rückmeldung kann die Kommunikationseinheit des Schwungradspeichers dem Fahrer oder dessen Navigationsgerät die Verfügbarkeit der Energie und/oder die voraussichtliche Wartezeit mitteilen.
Durch die Kommunikationseinheit des Energiespeichers wird dem Fahrer eine bessere Versorgungssicherheit vermittelt, da schon vor oder bei der Fahrt zu der Aufladestation d ie Lademög l ich keit bestätigt wird . Der Schwungradspeicher kann durch die Kommunikationseinheit erhebliche Stand-by-Verluste einsparen, da in Zeiten ohne Voranmeldung die Rotationsgeschwindigkeit des Schwungrades und damit Reibverluste vermindert werden können. Weiter ist es möglich, die Kommunikation nicht nur mit Kunden, sondern auch mit dem Betreiber des Versorgungsnetzes zu nutzen, um in Zeiten mit wenig Stromladekunden (denen Vorrang eingeräumt wird) für den Netzbetreiber kurzzeitige Schwankungen im Netz abzupuffern. Eine Drehzahlabsenkung in Stand-by-Zeiten kann bei der geringen Auslastung vieler Aufladestationen den jährlichen Eigenverbrauch des Schwungradspeichers erheblich reduzieren und damit die Wirtschaftlichkeit erhöhen. Auch die Nutzungsoption für den Netzbetreiber, bei Bedarf den Leistungsspeicher zur Verbesserung der Netzqualität einzusetzen, kann durch Vergünstigungen beim Energiebezug die Wirtschaftlichkeit der Aufladestation erhöhen.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ansprüchen sowie aus der Beschreibung eines bevorzugten Ausführungsbeispiels.
Die Erfindung wird im folgenden unter Bezugnahme auf die anliegende Zeichnung näher beschrieben und erläutert.
Kurze Beschreibung der Zeichnungen Fig. 1 zeigt schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Aufladestation, und
Fig. 2 zeigt schematisch eine Abwandlung des in Fig. 1 dargestellten
Ausführungsbeispiels.
Detaillierte Beschreibung der Zeichnungen
Fig. 1 zeigt eine Aufladestation 1 zur Versorgung von elektrisch betriebenen Fahrzeugen, beispielsweise von mit einem elektrischen Energiespeicher versehenen Kraftfahrzeugen 2, mit elektrischer Energie. Die Aufladestation 1 umfasst eine Entnahmestelle 3 für die elektrische Energie, wobei die Entnahmestelle 3 eine elektrische Leitung 4 aufweist, an deren Ende eine elektrisch leitende Verbindung zu dem Kraftfahrzeug 2 hergestellt werden kann, um die elektrische Energie in dem Kraftfahrzeug 2 zu speichern.
Die Aufladestation 1 umfasst weiter einen Schwungradspeicher 5, der an der Entnahmestelle 3 angeordnet ist, so dass über die elektrische Leitung 4 die elektrische Energie, die zuvor in dem Schwungradspeicher 5 als kinetische Energie zwischengespeichert war, an das Fahrzeug 2 abgegeben werden kann. Zwischen dem Ausgang des Schwungradspeichers 5, in dem die kine- tische Energie in elektrische Energie umgewandelt wird, und dem Kraftfahrzeug 2 liegt eine Strecke, die im wesentlichen der Länge der elektrischen Leitung 4 entspricht und maximal nur einige Meter beträgt. Der Schwungradspeicher 5 ist damit in räumlicher Nähe zu der Entnahmestelle 3 für das Fahrzeug 2 ortsfest, insbesondere unterhalb des Bodens und damit unsicht- bar, angeordnet, wobei sich elektrische Leitungsverluste zwischen dem Ausgang des Schwungradspeichers 5 und dem Fahrzeug 2 gering halten lassen.
Der Schwungradspeicher 5 umfasst ein Schwungrad 6, also eine Masse, die bezogen auf eine definierte Drehachse ein bestimmtes Trägheitsmoment aufweist. Das Schwungrad 6 ist in einem Gehäuse drehbar gelagert, beispielsweise mittels einer berührenden Lagerung (insbesondere einer Wälzoder einer Gleitlagerung) bzw. mittels einer im wesentlichen berührungsfreien Lagerung (beispielsweise einer aktiven oder passiven magnetischen La- gerung oder einer aerodynamischen Lagerung) . Das Schwungrad 6 wird in Drehung versetzt bzw. in Drehung gehalten durch Zufuhr von elektrischer Energie in den Elektroantrieb des Schwungradspeichers 5, wobei die dem Schwungradspeicher 5 zugeführte Energie einer Energiequelle, insbesondere einem Stromversorgungsnetz, entnommen ist.
Die erste Energiequelle der Aufladestation 1 ist ein Wechselspannungsnetz 7, mit dem ein Eingang des Schwungradspeichers 5 verbunden ist, wobei zwischen dem Wechselspannungsnetz 7 an einem Anschlusspunkt der Netzeinspeisung Umrichter vorgesehen sind, die die Wechselspannung transformieren . Das Wechselspannungsnetz 7 kann beispielsweise ein Hochspann u ngsnetz sein oder ein Netz, das eine Dreiphasen- Drehspannung liefert, wobei die Summe der Amplituden der drei Phasen zu jeden Zeitpunkt eine Spannung von Null Volt liefert.
Die zweite Energiequelle der Aufladestation 1 ist ein Gleichspannungsnetz 8, mit dem der Eingang des Schwungradspeichers 5 verbunden ist, wobei bei einem Anschlusspunkt mit dem Gleichspannungsnetz 8 ein weiterer Umrichter vorgesehen ist, der aus der Gleichspannung eine Wechselspannung macht. Die Gleichspannung des Gleichspannungsnetzes 8 kann beispielsweise von einer Batterie abgegeben werden, die tagsüber mit Solarstrom gespeist wird und bei Bedarf zu dem Wechselspannungsnetz 7 zugeschaltet werden kann.
Insbesondere ist vorgesehen, dass der Schwungradspeicher 5 wahlweise von dem Gleichspannungsnetz 8 und von dem Wechselspannungsnetz 7 gespeist werden kann. Es versteht sich dabei, dass der Schwungradspei- eher 5 auch ausschl ießl ich von dem Gleichspannungsnetz 8 oder ausschließlich von dem Wechselspannungsnetz 7 gespeist werden kann.
Die Erfindung funktioniert derart, dass bei Aufladen des Fahrzeuges 2 an der Entnahmestelle 3 der Schwungradspeicher 5 seine mechanische Ener- gie als elektrische Energie an das Fahrzeug 2 abgibt, wobei der Energiebedarf des Fahrzeuges 2 binnen einiger Minuten übertragen werden kann. Der danach energetisch entleerte Schwungradspeicher 5 wird im folgenden wiederum aufgeladen, beispielsweise durch das Wechselspannungsnetz 7 oder das Gleichspannungsnetz 8. Der Schwungradspeicher 5 wirkt damit als Puf- fer, der einen kurzfristig entstehenden hohen Energiebedarf bei der Aufladung des Fahrzeuges 2 gegenüber den Spannungsnetzen 7, 8 abpuffert, so dass eine kurzfristige Überlastung der Spannungsnetze 7, 8 verhindert wird. Bei dem vorstehend beschriebenen Ausführungsbeispiel war der einzigen Entnahmestelle 3 ein einziger Schwungradspeicher 5 zugeordnet. Es ver- steht sich, dass einer Entnahmestelle mehrere Schwungradspeicher zugeordnet sein können, von denen bei der Aufladung des Fahrzeuges 2 jeweils nur einer entladen wird. Umfasst die Aufladestation 1 mehr als nur eine Entnahmestelle 3, können mehrere Entnahmestellen auf einen gemeinsamen Schwungradspeicher zugreifen.
Es versteht sich, dass diese Optionen kombiniert werden können, indem die Aufladestation 1 mittels eines ersten Schwungradspeichers gegenüber den Spannungsnetzen 7, 8 abgepuffert ist, während die mehreren Entnahmestellen der Aufladestation ihrerseits mindestens einen Schwungradspeicher aufweisen. Der Schwungradspeicher der jeweiligen Entnahmestelle bezieht seine elektrische Energie dann nicht unmittelbar aus den Spannungsnetzen 7, 8, sondern von dem gemeinsamen Schwungradspeicher der Aufladestation 1 . In Fig. 2 ist schematisch ein Schwungradspeicher 5 dargestellt, in dessen Steuer-Elektronik 9 eine Kommunikationseinheit 1 0 integriert ist, die über Funk mit anderen, externen Kommunikationseinheiten 1 1 Informationen austauschen kann. Diese anderen externen Kommunikationseinheiten 1 1 sind solche von Fahrzeugen2, deren Fahrer Informationen über SMS mitteilen oder abfragen kann, oder Navigationsgeräte von Fahrzeugen 2, mit denen Informationspakete nach bestimmten Protokollen ausgetauscht werden. Die Information umfasst beispielsweise eine Angabe über den voraussichtlichen Bedarf an elektrischer Energie sowie eine Angabe über den Zeitpunkt, an dem die elektrische Energie auf das Fahrzeug 2 übertragen werden soll. Die Kommunikationseinheit 1 0 des Schwungradspeichers 5 ist in die Steuer- Elektronik 9 des Schwungradspeichers 5 integriert und weist Sende- und Empfangseinheiten 12 für Funksignale auf. Als weiterer Kommunikationspartner ist schematisch ein Prozessleitrechner 13 eines lokalen Netzbetreibers des Stromnetzes, dessen elektrische Energie in dem Schwungradspei- eher 5 zwischengespeichert ist, dargestellt. Der Prozessleitrechner 1 3 er- fasst den Energiebedarf sämtlicher Fahrzeuge 2 und steuert die Einspeisung von elektrischer Energie in das Netz so, dass das Netz optimal ausgelastet ist, insbesondere so, dass keine Überlast in dem Netz auftritt und dem Energiebedarf sämtlicher Verbraucher des Netzes, einschließlich sämtlicher von dem Netz gespeisten Schwungradspeicher 5, entsprochen werden kann. Ist kein konkreter Bedarf an elektrischer Energie ermittelt, wird von der Steuer-Elektronik 9 das Schwungrad 6 des Schwungradspeichers 5 in einem „Ruhezustand" (Stand-by-Betrieb) mit einer verminderten Drehzahl (beispielsweise von 30.000 auf 6.000 rpm) betrieben und hierdurch auch drehzahlabhängigen Reibverluste im Beispiel um ca. 80% herabgesetzt. Sobald e i n Kunde ü ber d ie externe Kom m unikationseinheit 1 1 und die dem Schwungradspeicher 5 zugeordnete Kommunikationseinheit 10 einen Bedarf an elektrischer Energie ankündigt, wird, angepasst zum voraussichtlichen Bedarfszeitpunkt und der Bedarfsmenge an elektrischer Energie, die Drehzahl des Schwungrades 6 erhöht. Durch das bedarfsgerechte Ansteuern der Drehzahl des Schwungrades 6 des Schwungradspeichers 5 lässt sich die Aufladestation 1 so betreiben, dass die Verluste aufgrund der Reibung des Schwungrades 6 in der Lagerung deutlich reduziert werden. Die jährlichen Eigenverluste des Schwungradspeichers lassen sich bei einer effektiven Nutzungsdauer von 10 % (876 h/a) zum Beispiel um ca. 72% senken.
Bei dem vorstehend beschriebenen Ausführungsbeispiel war der Austausch von elektrischer Energie zwischen dem Schwungradspeicher 5 und dem Fahrzeug 2 durch eine elektrische Leitung 4 vorgesehen. Es versteht sich, dass auch ein berührungsfreier Austausch der elektrischen Energie zwi- sehen dem Schwungradspeicher 5 und dem Fahrzeug 2 vorgesehen sein kann, beispielsweise mittels einer induktiven Energieübertragung. Bezugszeichenliste
I Aufladestation
2 Fahrzeug
3 Entnahmestelle
4 elektrische Leitung
5 Schwungradspeicher
6 Schwungrad
7 Wechselspannungsnetz
8 Gleichspannungsnetz
9 Steuer-Elektronik
10 Kommunikationseinheit des Schwungradspeichers 5
I I externe Kommunikationseinheit an Fahrzeug 2
12 Sende- und Empfangseinheit der Kommunikationseinheit 10
13 Prozessleitrechner

Claims

Patentansprüche
Aufladestation zur Versorgung von elektrisch betriebenen Fahrzeugen (2) mit elektrischer Energie, umfassend eine Entnahmestelle (3) für die elektrische Energie,
gekennzeichnet durch einen an der Entnahmestelle (3) angeordneten Schwungradspeicher (5) als Zwischenspeicher für die elektrische Energie.
Aufladestation gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Schwungradspeicher (5) eine Kommunikationseinheit (10) aufweist, die mit externen Kommunikationseinheiten (1 1 ), die sich außerhalb der Aufladestation befinden, Informationen austauscht.
Aufladestation gemäß Anspruch 2, dadurch gekennzeichnet dass die Komm un i kationsein heit (1 0) in eine Steuer-Elektronik (9) des Schwungradspeichers (5) integriert ist und Sende- und Empfangseinheiten (12) für Funksignale aufweist.
4. Verfahren zum Betreiben einer Aufladestation gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass eine Drehzahl des Schwungrades (6) bedarfsgerecht angesteuert wird.
Verwendung eines Schwungradspeichers (5) als Zwischenspeicher für elektrische Energie an einer Aufladestation (1 ) zur Versorgung von elektrisch betriebenen Fahrzeugen (2) mit elektrischer Energie.
PCT/EP2010/067275 2009-11-26 2010-11-11 Aufladestation für elektrisch betriebene fahrzeuge WO2011064102A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055845.4 2009-11-26
DE102009055845A DE102009055845A1 (de) 2009-11-26 2009-11-26 Aufladestation für elektrisch betriebene Fahrzeuge

Publications (2)

Publication Number Publication Date
WO2011064102A2 true WO2011064102A2 (de) 2011-06-03
WO2011064102A3 WO2011064102A3 (de) 2011-11-10

Family

ID=43927092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067275 WO2011064102A2 (de) 2009-11-26 2010-11-11 Aufladestation für elektrisch betriebene fahrzeuge

Country Status (2)

Country Link
DE (1) DE102009055845A1 (de)
WO (1) WO2011064102A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11034255B2 (en) 2016-10-30 2021-06-15 Chakratec Ltd. System and method for a station providing grid support
DE102019005071A1 (de) * 2019-04-27 2020-10-29 Deutz Aktiengesellschaft Schnellladestation und Verfahren zum Laden von elektrisch betriebenen Land-, Wasser-, Luftfahrzeugen und/oder Arbeitsmaschinen und/oder Batterien
US20220348099A1 (en) * 2019-10-07 2022-11-03 Honda Motor Co., Ltd. Charging system
DE102021209916A1 (de) 2021-09-08 2023-03-09 Adaptive Balancing Power GmbH Booster Funktionalität fur eine Ladestation zum Laden von Elektrofahrzeugen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9212818U1 (de) 1992-09-21 1993-03-04 Manthey, Erik
DE29505733U1 (de) 1995-04-03 1995-08-24 Schwarz Peter Schnelladesystem für Elektroautos
DE102006006692A1 (de) 2006-02-14 2007-08-23 Alois Schrimpf Kraftfahrzeug mit Kurzzeitenergiespeicher und Verfahren zu dessen Betrieb
DE102006047654A1 (de) 2006-10-09 2008-04-10 Robert Bosch Gmbh Tankstelle für Elektro-Fahrzeuge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594318A (en) * 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US5803215A (en) * 1997-01-22 1998-09-08 Schott Power Systems Incorporated Method and apparatus for charging a plurality of electric vehicles
FR2819759B1 (fr) * 2001-01-24 2003-05-23 Alstom Systeme d'alimentation d'un vehicule a traction electrique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9212818U1 (de) 1992-09-21 1993-03-04 Manthey, Erik
DE29505733U1 (de) 1995-04-03 1995-08-24 Schwarz Peter Schnelladesystem für Elektroautos
DE102006006692A1 (de) 2006-02-14 2007-08-23 Alois Schrimpf Kraftfahrzeug mit Kurzzeitenergiespeicher und Verfahren zu dessen Betrieb
DE102006047654A1 (de) 2006-10-09 2008-04-10 Robert Bosch Gmbh Tankstelle für Elektro-Fahrzeuge

Also Published As

Publication number Publication date
WO2011064102A3 (de) 2011-11-10
DE102009055845A1 (de) 2011-06-01

Similar Documents

Publication Publication Date Title
EP1646526B1 (de) Kraftfahrzeug
EP1470627B1 (de) Elektrofahrzeug als spitzenlastversorgungseinheit
EP2531367B1 (de) Vorrichtung und verfahren zum speichern elektrischer energie
EP2178186B1 (de) Verfahren zum Betrieb eines Produktionssystems und/oder einer lokalen Anlage im Inselbetrieb
WO2010023033A1 (de) Vorrichtung zur energieversorgung eines bahnnetzes
WO2011064102A2 (de) Aufladestation für elektrisch betriebene fahrzeuge
EP3642071A1 (de) Verfahren zum betrieb einer ladevorrichtung
WO2017021488A1 (de) Elektrofahrzeug-ladestation und verfahren zum steuern einer elektrofahrzeug-ladestation
DE102017100219A1 (de) Steuern des betriebs eines elektrifizierten fahrzeugs, das auf einer induktionsfahrbahn fährt, um ein stromnetz zu beeinflussen
DE102019202448A1 (de) Ladeeinrichtung zum Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs, System und Verfahren zum Steuern einer Ladeeinrichtung
DE102017218947A1 (de) Ladevorrichtung
DE102010017417A1 (de) Elektrisches Versorgungs- und Startsystem für ein Kraftfahrzeug und Verfahren zum Betrieb des elektrischen Versorgungs- und Startsystems
DE102010011704A1 (de) Verfahren und Anordnung zum Laden und/oder Entladen einer Fahrbatterie eines elektrisch antreibbaren Straßenfahrzeugs
DE102011087407A1 (de) Verfahren zum dezentralen Energiemanagement für Ladestationen für Elektrofahrzeuge
WO2020043654A1 (de) Verfahren zur koordination von auf- und/oder entladevorgängen mobiler speichereinheiten und portal zur durchführung des verfahrens
DE202015101557U1 (de) Ladevorrichtung und Ladesystem für Elektrofahrzeuge
EP3549814B1 (de) Verfahren zur zuordnung einer anschlussinformation und ladeeinrichtung
DE102011082623B3 (de) Verfahren zum Laden eines in ein Elektrokraftfahrzeug eingebauten Akkumulators
WO2022023020A1 (de) Elektrisches ladesystem zum laden eines elektrischen akkumulators
DE102018009568B3 (de) Elektromobilitätssystem mit Energiestationen, Elektromobilen und Erweiterungsaggregaten
DE102020126369A1 (de) Ladesteuerungsvorrichtung, Fahrzeug, Ladesystem und Ladesteuerungsverfahren
DE102018207048A1 (de) Verfahren zum Verbessern einer Nutzung in einem elektrischen Versorgungsnetz bereitstellbarer elektrischer Energie und Servereinrichtung
DE102012008678B4 (de) Elektromobilitätssystem mit Energiestationen und getrennten Antriebs- und Energieerzeugungseinheiten
DE102019204109A1 (de) Energieversorgungsstation geeignet zur Abgabe elektrischer Energie an einen Verbraucher
DE102016223595A1 (de) Vorrichtung zum Verbringen von elektrischer Ladung innerhalb eines Versorgungssystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10787045

Country of ref document: EP

Kind code of ref document: A2