WO2011060701A1 - 多路恒流驱动电路 - Google Patents

多路恒流驱动电路 Download PDF

Info

Publication number
WO2011060701A1
WO2011060701A1 PCT/CN2010/078716 CN2010078716W WO2011060701A1 WO 2011060701 A1 WO2011060701 A1 WO 2011060701A1 CN 2010078716 W CN2010078716 W CN 2010078716W WO 2011060701 A1 WO2011060701 A1 WO 2011060701A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
rectifying
power supply
winding
circuit
Prior art date
Application number
PCT/CN2010/078716
Other languages
English (en)
French (fr)
Inventor
葛良安
姚晓莉
华桂潮
吴新科
任丽君
Original Assignee
英飞特电子(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200910225966A external-priority patent/CN101702854A/zh
Priority claimed from CN2009202733529U external-priority patent/CN201585177U/zh
Application filed by 英飞特电子(杭州)有限公司 filed Critical 英飞特电子(杭州)有限公司
Priority to US13/511,049 priority Critical patent/US9155141B2/en
Publication of WO2011060701A1 publication Critical patent/WO2011060701A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges

Definitions

  • the invention relates to the field of constant current driving technology, and in particular to a multi-channel constant current driving circuit.
  • Figure 1 shows a multi-channel LED driven LED constant current control circuit in the prior art.
  • the input voltage Vac passes through the constant voltage module as the input of the multi-channel non-isolated DC/DC constant current module, and each non-isolated DC/DC constant current module performs constant current control alone.
  • the efficiency of the non-isolated DC/DC constant current module of the latter stage is not too high, and the multi-channel non-isolated DC/DC is constant.
  • the stream module has a complicated structure and high cost.
  • the first inductance Leal of the coupled inductor Lea is connected in series in the DC circuit after diode D1 and D2 rectification, and is coupled.
  • the second inductance Lca2 of the inductor Lea is connected in series in the DC circuit rectified by the diodes D3 and D4, thereby balancing the two LED loads by the coupled inductor Lea.
  • the technical problem to be solved by the present invention is to provide a multi-channel constant current driving circuit with good current sharing; and, in addition, the volume of the current sharing transformer can be reduced, and the cost can be reduced.
  • the embodiment of the present invention adopts the following technical solutions:
  • the invention provides a multi-channel constant current driving circuit, comprising: a DC/AC converter, a main transformer and at least two rectifying and filtering units;
  • the DC/AC converter supplies an alternating voltage to the primary winding of the main transformer
  • the at least two rectifying and filtering units respectively form a power supply loop with the secondary winding of the main transformer;
  • the power supply loop is: the first end of the secondary winding is connected to the first input end of the corresponding rectifying and filtering unit, and the secondary side The second end of the winding is connected to the second input end of the corresponding rectifying and filtering unit;
  • a current sharing transformer is disposed between the power supply circuits of the adjacent rectifying and filtering units, and the first winding of the current sharing transformer is disposed between the first end of the secondary winding of the first power supply circuit and the rectifying and filtering unit, and the current sharing transformer
  • the second winding is disposed between the first end of the secondary winding of the second power supply circuit and the rectifying and filtering unit; the same-name end of the first winding of the current sharing transformer and the different-name end of the second winding flow current in the same phase
  • the current sharing transformer is configured to implement current sharing between power supply circuits in which adjacent rectification and filtering units are located.
  • the same end of the first winding of the current sharing transformer is connected to the first end of the secondary winding in the first power supply circuit, and the different end is connected to the first input end of the rectifying and filtering unit in the first power supply circuit;
  • the different end of the second winding of the current sharing transformer is connected to the first end of the secondary winding in the second power supply circuit, and the same end is connected to the first input end of the rectifying and filtering unit in the second power supply circuit.
  • the main transformer is:
  • a transformer comprising a primary winding and a secondary winding
  • a transformer comprising a primary winding and at least two secondary windings
  • It includes at least two primary windings and at least two secondary windings, and a primary winding and a secondary winding - corresponding transformers.
  • the rectifying and filtering unit includes a first diode, a second diode, a first capacitor, and a second capacitor, where
  • the first diode and the first capacitor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit; the second diode and the second capacitor are sequentially connected in series to the first input end of the rectifying and filtering capacitor And between the second input; and, the anode of the first diode is connected to the first input, and the cathode of the second diode is connected to the first input.
  • the rectifying and filtering unit includes a third diode, a fourth diode, a third capacitor, and a fourth capacitor, where
  • the third capacitor, the third diode, and the fourth capacitor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit; the cathode of the fourth diode is connected to the anode of the third diode, The anode of the fourth diode is coupled to the second input of the rectifying and filtering unit.
  • the rectifying and filtering unit includes: a fifth diode, a sixth diode, a first inductor, a second inductor, and a fifth capacitor;
  • the fifth diode and the sixth diode are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit, and the anode of the fifth diode is connected to the anode of the sixth diode;
  • the inductor and the second inductor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering circuit; the first end of the fifth capacitor is connected to the anode of the fifth diode, and the second end is connected to the first inductor and the second end The connection point of the two inductors.
  • the rectifying and filtering unit includes: a seventh diode, an eighth diode, a ninth diode, and a tenth diode, wherein
  • the seventh diode and the eighth diode are connected in series between the first input end and the second input end of the rectifying and filtering unit, and the cathode of the seventh diode is connected with the imprint of the eighth diode;
  • the pole tube and the tenth diode are connected in series between the first input end and the second input end of the rectifying and filtering unit, and the anode of the ninth diode is connected to the anode of the tenth diode.
  • the rectifying and filtering unit includes an eleventh diode, a twelfth diode, and a sixth capacitor; wherein the eleventh diode and the twelfth diode are sequentially connected in series to the first input of the rectifying and filtering unit Between the terminal and the second input, the anode of the eleventh diode is connected to the anode of the twelfth diode; the sixth capacitor is connected in series with the anode of the first input terminal and the twelfth diode between.
  • the DC/AC converter is any one of a bridge circuit, a push-pull circuit, a flyback circuit, a forward circuit, a series resonant circuit, a LLC type resonant circuit, or a soft switching circuit.
  • the present invention also provides a multi-channel constant current driving circuit, comprising: a DC/AC converter, a main transformer, and further comprising: at least two power supply circuits corresponding to each secondary winding of the main transformer;
  • the DC/AC converter supplies an alternating voltage to the primary winding of the main transformer
  • the power supply circuits of each secondary winding include: the first end of the secondary winding sequentially passes through the second winding of all the current sharing transformers disposed on the power supply circuits of the stage before the power supply circuit of the stage, and the power is supplied back to the stage
  • the first winding of the current sharing transformer corresponding to the circuit and the power supply circuit of the latter stage, and the rectifying and filtering unit of the power supply circuit of the stage are connected to the second end of the secondary winding;
  • the same-name end of the first winding of the current sharing transformer and the different-name end of the second winding flow through the in-phase current, and the current sharing transformer is used to achieve current sharing between two adjacent power supply circuits.
  • the rectifying and filtering unit includes: a first diode, a second diode, a first capacitor, and a second capacitor, wherein
  • the first diode and the first capacitor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit; the second diode and the second capacitor are sequentially connected in series to the first input end of the rectifying and filtering capacitor And between the second input; and, the anode of the first diode is connected to the first input, and the cathode of the second diode is connected to the first input.
  • the rectifying and filtering unit includes a third diode, a fourth diode, a third capacitor, and a fourth capacitor, where
  • the third capacitor, the third diode, and the fourth capacitor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit; the cathode of the fourth diode is connected to the anode of the third diode, The anode of the fourth diode is coupled to the second input of the rectifying and filtering unit.
  • the rectifying and filtering unit includes: a fifth diode, a sixth diode, a first inductor, a second inductor, and a fifth capacitor;
  • the fifth diode and the sixth diode are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit, and the anode of the fifth diode is connected to the anode of the sixth diode;
  • the inductor and the second inductor are sequentially connected in series between the first input end and the second input end of the rectifying and filtering circuit; the first end of the fifth capacitor is connected to the anode of the fifth diode, and the second end is connected to the first inductor and the second end The connection point of the two inductors.
  • the rectifying and filtering unit includes: a seventh diode, an eighth diode, a ninth diode, and a tenth diode, wherein
  • the seventh diode and the eighth diode are connected in series between the first input end and the second input end of the rectifying and filtering unit, and the cathode of the seventh diode is connected with the imprint of the eighth diode;
  • the pole tube and the tenth diode are connected in series between the first input end and the second input end of the rectifying and filtering unit, and the anode of the ninth diode is connected to the anode of the tenth diode.
  • the rectifying and filtering unit includes an eleventh diode, a twelfth diode, and a sixth capacitor; wherein The eleventh diode and the twelfth diode are sequentially connected in series between the first input end and the second input end of the rectifying and filtering unit, the anode of the eleventh diode and the anode of the twelfth diode Connecting; the sixth capacitor is connected in series between the first input end and the anode of the twelfth diode.
  • the main transformer is:
  • a transformer comprising a primary winding and a secondary winding
  • a transformer comprising a primary winding and at least two secondary windings
  • a transformer comprising at least two primary windings and at least two secondary windings, the primary winding and the secondary winding - corresponding.
  • the DC/AC converter is any one of a bridge circuit, a push-pull circuit, a flyback circuit, a forward circuit, a series resonant circuit, a LLC type resonant circuit, or a soft switching circuit.
  • the invention also provides a multi-channel constant current driving circuit, comprising: a DC/AC converter, a main transformer and at least two power supply branch groups;
  • the DC/AC converter supplies an alternating voltage to the main transformer
  • the main transformer includes at least one secondary winding
  • Each power supply branch group and the secondary winding of the main transformer form a main power supply circuit
  • a current sharing transformer is disposed between two adjacent main power supply circuits; a first winding of the current sharing transformer is disposed in one main power supply circuit of the two main power supply circuits, and a second winding is disposed on the two main circuits
  • the other main power supply circuit of the power supply circuit is used to perform current sharing between the two main power supply circuits.
  • At least one of the at least two main power supply circuits includes:
  • each of the power supply circuits includes: a first end corresponding to the secondary winding of the main transformer and a first input end corresponding to the rectifying and filtering unit, the secondary winding The second end is connected to the second input end of the rectifying and filtering unit; and a current sharing transformer is disposed between the power supply circuits where the adjacent rectifying and filtering units are located, and the first winding of the current sharing transformer is disposed in the first power supply circuit Between the first end of the secondary winding and the rectifying and filtering unit, the second winding of the current sharing transformer is disposed between the first end of the secondary winding of the second power supply circuit and the rectifying and filtering unit; the first winding of the current sharing transformer The opposite end of the same name end and the second winding flows through the same phase current, and the current sharing transformer is used to achieve current sharing between the power supply loops where adjacent rectifying and filtering units are located.
  • At least one of the two main power supply circuits includes: At least two levels of power supply loops, each stage of the power supply loop includes: a first winding corresponding to the secondary winding of the primary transformer and a second winding of the current sharing circuit disposed on the power supply circuit of each stage before the power supply loop of the stage a first winding of the current sharing transformer corresponding to the power supply circuit of the latter stage, and a rectifying and filtering unit of the power supply circuit of the same stage are connected to the second end of the secondary winding; the same name and the second end of the first winding of the current sharing transformer The opposite end of the winding flows through the in-phase current, and the current sharing transformer is used to achieve current sharing between two adjacent power supply circuits.
  • the first winding and the second winding of the current sharing transformer are both connected in series in the alternating current power supply circuit, and the direct current component is not flowed, even in the case where the difference between the two load voltages is large, current sharing The degree is also very good; and the current sharing transformer does not need to open the air gap, therefore, the size of the transformer can be small and the cost is low.
  • FIG. 1 is a schematic structural view of a prior art LED constant current control circuit
  • 3 and 3a are schematic diagrams showing the structure of a multi-channel constant current driving circuit according to the present invention.
  • FIG. 4 and FIG. 4a are schematic diagrams showing the structure of a second multi-channel constant current driving circuit according to the present invention.
  • 5 and 5a are schematic structural diagrams of a third multi-channel constant current driving circuit according to the present invention.
  • FIGS. 6 and 6a are schematic structural diagrams of a fourth multi-channel constant current driving circuit according to the present invention.
  • FIG. 7 and 7a are schematic structural diagrams of a fifth multi-channel constant current driving circuit according to the present invention.
  • FIGS. 8 to 9e are schematic diagrams showing the structure of a multi-channel constant current driving circuit under different main transformer structures of the present invention.
  • 10a ⁇ 10d are schematic diagrams showing the structure of a sixth multi-channel constant current driving circuit in the structure of different rectifying and filtering units of the present invention.
  • Figure 11a is a schematic view showing the structure of a sixth multi-channel constant current driving circuit of the present invention.
  • 12 to 12f are schematic diagrams showing the structure of a multi-channel constant current driving circuit in the structure of different DC/AC converters of the present invention.
  • the cylinder should introduce the current sharing principle of the current sharing transformer:
  • the excitation current of the current sharing transformer is not zero, and the alternating current generated by the excitation current at both ends of the current sharing transformer will automatically balance the two paths.
  • the voltage difference of the load balances the ratio of the two winding currents II and 12 of the current sharing transformer to m:n, thereby achieving current sharing of the two load currents.
  • the multi-channel constant current driving circuit of the embodiment of the invention comprises the following structures: a DC/AC converter, a main transformer, and at least two rectifying and filtering units;
  • the DC/AC converter supplies an alternating voltage to the primary winding of the main transformer
  • the at least two rectifying and filtering units respectively form a power supply loop with the secondary winding of the main transformer;
  • the power supply loop is: the first end of the secondary winding is connected to the first input end of the corresponding rectifying and filtering unit, and the secondary side The second end of the winding is connected to the second input end of the corresponding rectifying and filtering unit;
  • a current sharing transformer is disposed between the power supply circuits of the adjacent rectifying and filtering units, and the first winding of the current sharing transformer is disposed between the first end of the secondary winding of the first power supply circuit and the rectifying and filtering unit, and the current sharing transformer
  • the second winding is disposed between the first end of the secondary winding of the second power supply circuit and the rectifying and filtering unit; the same-name end of the first winding of the current sharing transformer and the different-name end of the second winding flow current in the same phase
  • the current sharing transformer is configured to implement current sharing between power supply circuits in which adjacent rectification and filtering units are located.
  • the DC/AC converter may be any one of a bridge circuit, a push-pull circuit, a flyback circuit, a forward circuit, a series resonant circuit, a LLC resonant circuit, or a soft switching circuit.
  • the main transformer may be: a transformer composed of a primary winding and a secondary winding, or a transformer composed of a primary winding and at least two secondary windings, or at least two primary windings and at least two secondary windings.
  • the implementation of the rectifying and filtering unit is also not limited.
  • the above multi-channel constant current driving circuit supplies power to each power supply loop through one load, such as an LED load.
  • the multi-channel constant current driving circuit is compared with the multi-channel constant current driving circuit in the prior art, as shown in FIG. 5, and the first winding and the second winding of the current sharing transformer are connected in series in an alternating current.
  • the DC component does not flow, even in the case where the load voltage difference between the two is large, the current sharing is good; and the current sharing transformer does not need to open the air gap, and the volume can be small and the cost is low.
  • the driving circuit includes a DC/AC converter, a main transformer Ta3, and n-1 current sharing transformers T31.
  • the main transformer Tal includes a primary winding and a secondary winding; the primary winding is connected to the output of the DC/AC converter to receive the AC voltage output by the DC/AC converter.
  • a first end of the secondary winding of the main transformer is respectively connected to a first input terminal t1 of each rectifying and filtering unit, and a second end of the secondary winding is respectively connected to a second input terminal t2 of each rectifying and filtering unit, so that The secondary windings form a power supply loop with each of the rectifying and filtering units.
  • a current sharing transformer is disposed between the power supply loops of the adjacent two rectifying and filtering units, for example, a current sharing transformer T31 is disposed between the rectifying and filtering unit Z31 and the rectifying and filtering unit Z32.
  • the first end of the first winding of the current sharing transformer T31 is connected to the first end of the secondary winding, the different end is connected to the first input end of the rectifying and filtering unit Z31; the second winding of the current sharing transformer T31 is connected with the different name
  • the first end of the edge winding is connected to the first input terminal t1 of the rectifying and filtering unit Z32; thus, the same name end of the first winding of the current sharing transformer T31 and the different end of the second winding flow through the same phase current, the first winding
  • each rectifying and filtering unit includes: a first diode D1, a second diode D2, a first capacitor C1, and a second capacitor C2, wherein the first diode D1 and the first capacitor C1 is sequentially connected in series between the first input terminal t1 and the second input terminal t2 of the rectifying and filtering unit; the second diode D2 and the second capacitor C2 are sequentially connected in series to the first input terminal tl and the second of the rectifying and filtering capacitor Between the input terminals t2; further, the anode of the first diode D1 is connected to the first input terminal t1, and the cathode of the second diode D2 is connected to the first input terminal tl.
  • the cathode of the first diode D1 and the anode of the second diode D2 are respectively used as the first output terminal 01 and the second output terminal 02 of the rectifying and filtering unit, and are connected to the corresponding load branches. , power the corresponding load branch.
  • the minimum number of branches of the multi-channel constant current driving circuit may be two.
  • the structure of the multi-channel constant current driving circuit shown in FIG. 3 is as shown in FIG. 3a, and only two rectifications are included.
  • the filtering unit and the two load branches, the specific connection relationship is similar to that of FIG. 3, and details are not described herein again.
  • rectifying and filtering unit in FIG. 3 can also be implemented by other structures, for example:
  • the structure of the other portions is the same as that of FIG. 3, except that the structure of the rectifying and filtering unit includes: a third diode D3, a fourth diode D4, and a third capacitor.
  • the third capacitor C3, the third diode D3, and the fourth capacitor C4 are sequentially connected in series between the first input terminal t1 and the second input terminal t2 of the rectifying and filtering unit;
  • the cathode of the pole tube D4 is connected to the anode of the third diode D3, and the anode of the fourth diode D4 is connected to the second input terminal t2 of the rectifying and filtering unit; in the rectifying and filtering unit, the third diode D3 is connected
  • the cathode and the anode of the fourth diode D4 are respectively used as the first output terminal 01 and the second output terminal 02 of the rectifying and filtering unit, and are connected to the corresponding load branch to supply power to the load branch.
  • the structure of the other portions is also the same as that of FIG. 3, except that the structure of the rectifying and filtering unit includes: a fifth diode D5, a sixth diode D6, The first inductor L1, the second inductor L2, and the fifth capacitor C5; wherein, the fifth diode D5 and the sixth diode D6 are sequentially connected in series to the first input terminal t1 and the second input terminal t2 of the rectifying and filtering unit The anode of the fifth diode D5 is connected to the anode of the sixth diode D6.
  • the first inductor L1 and the second inductor L2 are sequentially connected in series to the first input terminal t1 and the second input terminal t2 of the rectifier filter circuit.
  • the first end of the fifth capacitor C5 is connected to the anode of the fifth diode D5, and the second end is connected to the first inductor L1 and the second inductor L2.
  • a connection point; in the rectifying and filtering unit, the anode of the fifth diode D5 and the connection point of the first inductor L1 and the second inductor L2 are respectively used as the first output terminal 01 and the second output terminal 02 of the rectifying and filtering unit, Connect to the corresponding load branch to supply power to the load branch.
  • the structure of the other portions is the same as that of FIG. 3, except that the structure of the rectifying and filtering unit includes: a seventh diode D7, an eighth diode D8, a ninth diode D9 and a tenth diode D10, wherein the seventh diode D7 and the eighth diode D8 are connected in series between the first input terminal t1 and the second input terminal t2 of the rectifying and filtering unit, The cathode of the seventh diode D7 is connected to the cathode of the eighth diode D8; the ninth diode D9 and the tenth diode D10 are connected in series to the first input t1 end and the second input end t2 of the rectifying and filtering unit Between the anode of the ninth diode D9 and the anode of the tenth diode D10.
  • the cathode of the seventh diode D7 and the anode of the ninth diode D9 are respectively used as the first output terminal 01 and the second output terminal 02 of the rectifying and filtering unit, and are connected to the corresponding load branches. , power the load branch.
  • the structure of the other portions is also the same as that of FIG. 3, except that the structure of the rectifying and filtering unit includes: the eleventh diode D11, the twelfth diode D12 and a sixth capacitor C6; wherein, the eleventh diode D11 and the twelfth diode D12 are sequentially connected in series between the first input terminal tl and the second input terminal t2 of the rectifying and filtering unit, The anode of the pole tube D11 is connected to the anode of the twelfth diode D12; the sixth capacitor C6 is connected in series between the first input terminal t1 and the anode of the twelfth diode D12; in the rectifying and filtering unit The cathode of the eleventh diode D11 and the anode of the eleventh diode D11 are respectively used as the first output terminal 01 and the second output terminal 02 of the rectifying and filtering unit, and
  • the main transformer includes a primary winding and a secondary winding
  • the structure of the main transformer may further include: a primary winding and at least two secondary windings.
  • the number of secondary windings is the same as the number of rectifier filtering units or load branches. Winding, rectifying and filtering unit, load branch - corresponding.
  • FIGS. 8a to 8e the multiple constant current driving circuits shown in FIG. 3 to FIG. 7 are sequentially replaced, respectively, except that the main transformer in the above circuit is replaced with one primary winding and at least two secondary windings.
  • each secondary winding is connected to the first input end of the rectifying and filtering unit corresponding to the secondary winding, and the second end of the secondary winding is connected to the rectifying and filtering unit corresponding to the secondary winding Two inputs to form the power supply loop.
  • the structure of the main transformer may further include: including at least two primary windings and at least two secondary windings; preferably, the primary winding, the secondary winding, the rectifying and filtering unit, and the load branch— -correspond.
  • the multiple constant current driving circuits shown in FIG. 3 to FIG. 7 are sequentially replaced, respectively, except that the main transformer in the above circuit is replaced with at least two primary windings and at least two secondary windings.
  • each secondary winding is connected to the first input end of the rectifying and filtering unit corresponding to the secondary winding, and the second end of the secondary winding is connected to the rectifying and filtering unit corresponding to the secondary winding a second input to form the power supply loop.
  • the embodiment of the present invention further provides a multi-channel constant current driving circuit.
  • the driving circuit includes: a DC/AC converter and a main transformer, and further includes: at least two stages of power supply corresponding to each secondary winding of the main transformer Loop; among them,
  • the DC/AC converter supplies an alternating voltage to the primary winding of the main transformer
  • the power supply circuits of each secondary winding include: the first end of the secondary winding sequentially passes through the second winding of all the current sharing transformers disposed on the power supply circuits of the previous stage of the power supply circuit, the power supply circuit of the stage and the latter
  • the first winding of the current sharing transformer corresponding to the power supply circuit and the rectifying and filtering unit of the power supply circuit of the same stage are connected to the second end of the secondary winding;
  • the same-name end of the first winding of the current sharing transformer and the different-name end of the second winding flow through the in-phase current, and the current sharing transformer is used to achieve current sharing between two adjacent power supply circuits.
  • a current sharing transformer is provided between adjacent two-stage power supply circuits.
  • a current sharing transformer between each stage power supply circuit and its subsequent primary power supply circuit is used.
  • a current sharing transformer corresponding to the two-stage power supply circuit.
  • the second circuit of the current sharing transformer provided on all the previous power supply circuits, specifically, for example, the second stage power supply circuit includes: a secondary winding of the main transformer Ta3, a second winding of the current sharing transformer Till, a first winding of the current sharing transformer T112, and a rectifying and filtering unit corresponding to the power supply circuit of the stage, specifically, the first end of the secondary winding of the main transformer Ta3 Passing through the second winding of the equalizing transformer Till, the first winding of the current sharing transformer T112, and the first input end and the second input end of the rectifying and filtering unit Z112 are connected to the second end of the secondary winding, thereby forming the second stage Power supply loop.
  • the N-1th power supply circuit includes: the first end of the secondary winding sequentially passes through the second winding of the equalizing transformer T11, the second winding of the current sharing transformer Tl12, the current sharing transformer Til ( a second winding of the N-2), a first winding of the current sharing transformer Til (N-1), a finishing filter unit Z11 (N-1) connected to the second end of the secondary winding;
  • the Nth power supply circuit includes: a secondary side The first end of the winding passes through the second winding of the current sharing transformer Till, the second winding of the second winding current sharing transformer Til (N-1) of the current sharing transformer T112, and the rectifying and filtering unit Z11N is connected to the second end of the secondary winding (The N-th power supply loop does not have a next-stage power supply loop, so there is no current-sharing transformer T11N).
  • FIG. 10a and FIG. 10d The difference between FIG. 10a and FIG. 10d is mainly due to the difference in the structure of the rectifying and filtering unit.
  • the specific structure connection is the same as that of the rectifying and filtering unit in FIG. 2 to FIG. 9e, and details are not described herein again.
  • the main transformer has the following structure: a transformer including a primary winding and a secondary winding.
  • the structure of the main transformer may further be: a transformer including a primary winding and at least two secondary windings; or a transformer including at least two primary windings and at least two secondary windings, Side windings and secondary windings - corresponding.
  • a multi-stage power supply circuit may be included for each of the secondary windings to form a constant current driving circuit.
  • different rectifying and filtering units can be used to implement rectification filtering in the power supply circuits corresponding to different secondary windings, and the present invention is not limited thereto.
  • the multi-stage power supply circuit may be a part (at least one of) all of the secondary windings.
  • Each of the secondary windings corresponds to at least two stages of power supply circuits, and the power is supplied to perform current.
  • the current sharing, or the various power supply circuits in the present invention such as FIG. 3 to FIG. 9e can also be used to supply power to the load, and the current sharing is performed, which is not limited herein.
  • the circuit structure shown in FIG. 3 and FIG. 10a is combined in the same multi-channel constant current driving circuit.
  • all the paths connected to the secondary windings and connected in parallel to each other to form a constant current driving circuit may be referred to as a first power supply branch.
  • all the power supply branches constituting the multi-stage constant current driving circuit connected to the secondary windings may be referred to as a second power supply branch group;
  • the main transformer includes a primary winding and a secondary winding, and then the input ends of the first power supply branch group and the second power supply branch group are respectively connected to the secondary winding of the main transformer The two ends are connected, that is, the first power supply branch group and the second power supply branch group are connected in parallel to the same secondary winding, and the power supply circuit formed by connecting the first power supply branch group and the secondary winding is referred to as a first main power supply.
  • the circuit, the power supply circuit formed by connecting the second power supply branch group and the secondary side winding is referred to as a second main power supply circuit; at this time, in order to realize the total current I of the first main power supply circuit and the total current In of the second main power supply circuit
  • a current sharing transformer can be arranged between the two main power supply circuits, wherein the first winding is disposed between the secondary winding of the first main power supply circuit and the input end of the first power supply branch group The second winding is disposed between the secondary winding of the second main power supply loop and the input of the second power supply branch group.
  • the circuit can also be extended to various situations in which the multi-channel constant current driving circuit of the present invention includes at least one first power supply branch group and at least one second power supply branch group, or can be extended to The invention of the multi-channel constant current driving circuit includes at least two first power supply branch groups or at least two second power supply branch groups.
  • Figure 1 lb is shown in Figure 11c.
  • the circuit shown in Figure 11a can be extended to include a primary winding and a plurality of secondary windings, or a plurality of primary windings and a plurality of secondary windings. As shown in Figure l ld ⁇ l li, it is not mentioned here.
  • the implementation of the DC/AC converter in the multi-channel constant current driving circuit may be: a bridge circuit, a push-pull circuit, a flyback circuit, a forward circuit, a series resonant circuit, a LLC resonant circuit or a soft switching circuit Any of these circuit configurations.
  • the structure of the DC/AC converter is a flyback circuit, a LLC resonant circuit, a symmetric half bridge circuit, an asymmetric half bridge circuit, a full bridge circuit,
  • the push-pull circuit and the forward circuit are not described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

多路恒流驱动电路
本申请要求于 2009 年 11 月 21 日提交中国专利局、 申请号为 200910225966.4、发明名称为"一种适用于多路 LED恒流驱动的电路"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中;
本申请要求于 2009 年 11 月 21 日提交中国专利局、 申请号为
200920273352.9、发明名称为"一种适用于多路 LED恒流驱动的电路"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及恒流驱动技术领域, 尤其涉及多路恒流驱动电路。
背景技术
目前, 对于多路发光二极管 (LED )驱动的 LED恒流控制, 最常用的方 案是恒压模块 +多路非隔离 DC/DC恒流模块。
如图 1所示为现有技术中多路 LED驱动的 LED恒流控制电路。在该电路 中, 输入电压 Vac经过恒压模块后作为多路非隔离 DC/DC恒流模块的输入, 每路非隔离 DC/DC恒流模块单独做恒流控制。 但是, 由于恒压模块的电压和 LED的电压一般有较大的压差, 因此后级多路非隔离 DC/DC恒流模块的效率 都不会太高, 并且多路非隔离 DC/DC恒流模块结构复杂, 成本较高。
申请号为 200810085227.5的中国专利中, 提供了一种多组发光二极管电 流平衡供电电路, 如图 2所示, 耦合电感 Lea的第一电感 Leal串联在二极管 D1和 D2整流后的直流回路中, 耦合电感 Lea的第二电感 Lca2串联在二极管 D3和 D4整流后的直流回路中, 从而通过耦合电感 Lea起到均衡两路 LED负 载的作用。 但是, 对于图 2所示的电路, 由于耦合电感 Lea的两个线圈串联在 直流回路中, 有直流分量, 而耦合电感中激磁电流是单向的, 因此, 当两路负 载支路的电压不平衡时, 两路负载支路的电流误差较大, 均流度差; 而且, 耦 合电感存在直流分量时, 会造成磁芯饱和, 需要开气隙, 因此电感量大时, 耦 合电感体积大且成本高。
发明内容
有鉴于此, 本发明要解决的技术问题是, 提供一种多路恒流驱动电路, 均 流度好; 而且, 能够减小均流变压器的体积, 降低成本。 为此, 本发明实施例采用如下技术方案:
本发明提供一种多路恒流驱动电路, 包括: DC/AC变换器、 主变压器以 及至少两个整流滤波单元;
DC/AC变换器为主变压器的原边绕组提供交流电压;
所述至少两个整流滤波单元分别与主变压器的副边绕组形成供电回路;所 述供电回路为: 所述副边绕组的第一端连接对应整流滤波单元的第一输入端, 所述副边绕组的第二端连接对应整流滤波单元的第二输入端;
相邻的整流滤波单元所在的供电回路之间设置一个均流变压器,所述均流 变压器的第一绕组设置于第一供电回路的副边绕组第一端与整流滤波单元之 间,均流变压器的第二绕组设置于第二供电回路的副边绕组第一端与整流滤波 单元之间;所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相 的电流,所述均流变压器用于实现相邻的整流滤波单元所在的供电回路之间的 均流。
所述均流变压器第一绕组的同名端连接所述第一供电回路中副边绕组的 第一端, 异名端连接所述第一供电回路中整流滤波单元的第一输入端;
所述均流变压器第二绕组的异名端连接所述第二供电回路中副边绕组的 第一端, 同名端连接所述第二供电回路中整流滤波单元的第一输入端。
所述主变压器为:
包括一个原边绕组和一个副边绕组的变压器; 或者,
包括一个原边绕组和至少两个副边绕组的变压器; 或者,
包括至少两个原边绕组和至少两个副边绕组,且原边绕组和副边绕组—— 对应的变压器。
所述整流滤波单元包括第一二极管、第二二极管、第一电容以及第二电容, 其中,
第一二极管和第一电容依次串接于整流滤波单元的第一输入端和第二输 入端之间;第二二极管和第二电容依次串接于整流滤波电容的第一输入端和第 二输入端之间; 而且, 第一二极管的阳极与所述第一输入端连接, 第二二极管 的阴极与所述第一输入端连接。 所述整流滤波单元包括第三二极管、第四二极管、第三电容以及第四电容, 其中,
第三电容、第三二极管以及第四电容依次串接于整流滤波单元的第一输入 端和第二输入端之间; 第四二极管的阴极与第三二极管的阳极连接, 第四二极 管的阳极与整流滤波单元的第二输入端连接。
所述整流滤波单元包括: 第五二极管、 第六二极管、 第一电感、 第二电感 以及第五电容; 其中,
第五二极管和第六二极管依次串接于整流滤波单元的第一输入端与第二 输入端之间, 第五二极管的阳极与第六二极管的阳极连接; 第一电感和第二电 感依次串接于整流滤波电路的第一输入端和第二输入端之间;第五电容的第一 端连接第五二极管的阳极, 第二端连接第一电感与第二电感的连接点。
所述整流滤波单元包括: 第七二极管、 第八二极管、 第九二极管以及第十 二极管, 其中,
第七二极管和第八二极管串接于整流滤波单元的第一输入端与第二输入 端之间, 第七二极管的阴极与第八二极管的印记连接; 第九二极管和第十二极 管串接于整流滤波单元的第一输入端和第二输入端之间,第九二极管的阳极与 第十二极管的阳极连接。
所述整流滤波单元包括第十一二级管、第十二二极管以及第六电容;其中, 第十一二极管、第十二二极管依次串接于整流滤波单元的第一输入端和第 二输入端之间, 第十一二极管的阳极与第十二二极管的阳极连接; 第六电容串 接于第一输入端与所述第十二二极管的阳极之间。
所述 DC/AC变换器为桥式电路、 推挽电路、 反激电路、 正激电路、 串联 谐振电路、 LLC类谐振电路或者软开关电路其中的任何一种电路结构。
本发明还提供一种多路恒流驱动电路, 包括: DC/AC变换器、 主变压器, 还包括: 主变压器的每一个副边绕组对应的至少两级供电回路; 其中,
DC/AC变换器为主变压器的原边绕组提供交流电压;
每一个副边绕组的各级供电回路包括:该副边绕组的第一端依次通过该级 供电回路之前各级供电回路上设置的所有均流变压器的第二绕组、该级供电回 路与其后一级供电回路共同对应的均流变压器的第一绕组、以及该级供电回路 的整流滤波单元连接副边绕组的第二端;
所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相的电 流, 所述均流变压器用于实现相邻的两个供电回路之间的均流。
所述整流滤波单元包括: 第一二极管、 第二二极管、 第一电容以及第二电 容, 其中,
第一二极管和第一电容依次串接于整流滤波单元的第一输入端和第二输 入端之间;第二二极管和第二电容依次串接于整流滤波电容的第一输入端和第 二输入端之间; 而且, 第一二极管的阳极与所述第一输入端连接, 第二二极管 的阴极与所述第一输入端连接。
所述整流滤波单元包括第三二极管、第四二极管、第三电容以及第四电容, 其中,
第三电容、第三二极管以及第四电容依次串接于整流滤波单元的第一输入 端和第二输入端之间; 第四二极管的阴极与第三二极管的阳极连接, 第四二极 管的阳极与整流滤波单元的第二输入端连接。
所述整流滤波单元包括: 第五二极管、 第六二极管、 第一电感、 第二电感 以及第五电容; 其中,
第五二极管和第六二极管依次串接于整流滤波单元的第一输入端与第二 输入端之间, 第五二极管的阳极与第六二极管的阳极连接; 第一电感和第二电 感依次串接于整流滤波电路的第一输入端和第二输入端之间;第五电容的第一 端连接第五二极管的阳极, 第二端连接第一电感与第二电感的连接点。
所述整流滤波单元包括: 第七二极管、 第八二极管、 第九二极管以及第十 二极管, 其中,
第七二极管和第八二极管串接于整流滤波单元的第一输入端与第二输入 端之间, 第七二极管的阴极与第八二极管的印记连接; 第九二极管和第十二极 管串接于整流滤波单元的第一输入端和第二输入端之间,第九二极管的阳极与 第十二极管的阳极连接。
所述整流滤波单元包括第十一二级管、第十二二极管以及第六电容;其中, 第十一二极管、第十二二极管依次串接于整流滤波单元的第一输入端和第 二输入端之间, 第十一二极管的阳极与第十二二极管的阳极连接; 第六电容串 接于第一输入端与所述第十二二极管的阳极之间。
所述主变压器为:
包括一个原边绕组和一个副边绕组的变压器; 或者,
包括一个原边绕组和至少两个副边绕组的变压器; 或者,
包括至少两个原边绕组和至少两个副边绕组的变压器,原边绕组和副边绕 组——对应。
所述 DC/AC变换器为桥式电路、 推挽电路、 反激电路、 正激电路、 串联 谐振电路、 LLC类谐振电路或者软开关电路其中的任何一种电路结构。
本发明还提供一种多路恒流驱动电路, 包括: DC/AC变换器、 主变压器 以及至少两个供电支路组;
DC/AC变换器为主变压器提供交流电压;
所述主变压器包括至少一个副边绕组;
每一供电支路组与主变压器的副边绕组构成一主供电回路;
相邻的两个主供电回路之间设置一个均流变压器;均流变压器的第一绕组 设置于所述两个主供电回路的一个主供电回路中,而第二绕组设置于所述两个 主供电回路的另一个主供电回路中, 用于进行两个主供电回路之间的均流。
所述至少两个主供电回路中的至少一个主供电回路包括:
至少两个由整流滤波单元与对应的副边绕组构成的供电回路,每一供电回 路包括: 对应主变压器副边绕组的第一端连接对应整流滤波单元的第一输入 端, 所述副边绕组的第二端连接对应整流滤波单元的第二输入端; 且, 相邻的 整流滤波单元所在的供电回路之间设置一个均流变压器,所述均流变压器的第 一绕组设置于第一供电回路的副边绕组第一端与整流滤波单元之间,均流变压 器的第二绕组设置于第二供电回路的副边绕组第一端与整流滤波单元之间;所 述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相的电流,所述 均流变压器用于实现相邻的整流滤波单元所在的供电回路之间的均流。
所述两个主供电回路中的至少一个主供电回路包括: 至少两级供电回路,每一级供电回路包括: 对应主变压器副边绕组的第一 端依次通过该级供电回路之前各级供电回路上设置的所有均流变压器的第二 绕组、 该级供电回路与其后一级供电回路共同对应的均流变压器的第一绕组、 以及该级供电回路的整流滤波单元连接副边绕组的第二端;所述均流变压器的 第一绕组的同名端和第二绕组的异名端流过同相的电流,所述均流变压器用于 实现相邻的两个供电回路之间的均流。
对于上述技术方案的技术效果分析如下:
上述的多路恒流驱动电路中,均流变压器的第一绕组和第二绕组均串联在 交流供电回路中, 不流过直流分量, 即使在两路负载电压差较大的情况下, 均 流度也很好; 而且均流变压器不需要开气隙, 因此, 变压器的体积可以很小, 成本低。
附图说明
图 1为现有技术 LED恒流控制电路结构示意图;
图 2为现有技术一种多组发光二极管电流平衡供电电路;
图 3和图 3a为本发明一种多路恒流驱动电路结构示意图;
图 4和图 4a为本发明第二种多路恒流驱动电路结构示意图;
图 5和图 5a为本发明第三种多路恒流驱动电路结构示意图;
图 6和图 6a为本发明第四种多路恒流驱动电路结构示意图;
图 7和图 7a为本发明第五种多路恒流驱动电路结构示意图;
图 8 ~图 9e为本发明不同主变压器结构下的多路恒流驱动电路结构示意 图;
图 10a~® 10d为本发明不同整流滤波单元结构下第六种多路恒流驱动电 路结构示意图;
图 lla 图 lli为本发明第六种多路恒流驱动电路结构示意图;
图 12 ~图 12f为本发明不同 DC/AC变换器结构下的多路恒流驱动电路结 构示意图。
具体实施方式
首先, 筒要介绍均流变压器的均流原理:
设两路负载 A1和 A2的所需的电流 II: 12=1:1 , 则用于进行两路负载 A1 和 A2之间均流的均流变压器的匝比应为: W1: W2=l: 1;
当两路负载 A1和 A2两端的电压 Uol与 Uo2不相等时,流过两路负载的 电流 II和 12也不相等, 则流过均流变压器两个绕组的电流 iwl和 iw2不相等 时, 均流变压器的激磁电流不为零, 激磁电流在均流变压器两端产生的交流电 压将自动平衡两路负载 Uol与 Uo2的电压差, 使均流变压器中两个绕组的电 流 iwl和 iw2相等, 也即实现了两路负载电流 II和 12相等。
设两路负载 A1和 A2的所需的电流 II: I2=m:n, 则用于进行两路负载 A1 和 A2之间均流的均流变压器的匝比应为 W1: W2=n:m; 此时,
当流过均流变压器中两个绕组的电流 iwl和 iw2不等于 m:n时,则均流变 压器的激磁电流不为零,激磁电流在均流变压器两端产生的交流电压将自动平 衡两路负载的电压差,使均流变压器的两个绕组电流 II和 12之比平衡为 m:n, 从而实现对两路负载电流的均流。
以下, 结合附图详细说明本发明实施例多路恒流驱动电路的实现。
本发明实施例的多路恒流驱动电路包括以下结构: DC/AC变换器、 主变 压器以及至少两个整流滤波单元;
DC/AC变换器为主变压器的原边绕组提供交流电压;
所述至少两个整流滤波单元分别与主变压器的副边绕组形成供电回路;所 述供电回路为: 所述副边绕组的第一端连接对应整流滤波单元的第一输入端, 所述副边绕组的第二端连接对应整流滤波单元的第二输入端;
相邻的整流滤波单元所在的供电回路之间设置一个均流变压器,所述均流 变压器的第一绕组设置于第一供电回路的副边绕组第一端与整流滤波单元之 间,均流变压器的第二绕组设置于第二供电回路的副边绕组第一端与整流滤波 单元之间;所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相 的电流,所述均流变压器用于实现相邻的整流滤波单元所在的供电回路之间的 均流。
其中, 所述 DC/AC变换器可以为桥式电路、 推挽电路、 反激电路、 正激 电路、 串联谐振电路、 LLC类谐振电路或者软开关电路其中的任何一种电路 结构。 所述主变压器可以为:一个原边绕组和一个副边绕组构成的变压器,或者, 一个原边绕组和至少两个副边绕组构成的变压器, 或者, 至少两个原边绕组和 至少两个副边绕组构成的变压器等。
所述整流滤波单元的实现也并不限定。
以上的多路恒流驱动电路通过每个供电回路为一路负载, 例如 LED负载 提供电能。
上述的多路恒流驱动电路相对于现有技术中的多路恒流驱动电路如图 5 所示的多路 LED恒流驱动电路, 均流变压器的第一绕组和第二绕组均串联在 交流供电回路中, 不流过直流分量, 即使在两路负载电压差较大的情况下, 均 流度也很好; 而且均流变压器不需要开气隙, 体积可以很小, 成本也低。
以下, 分别通过图 3~图 9e对本发明实施例多路恒流驱动电路的实现进行 更为详细的说明。
图 3为本发明实施例一种多路恒流驱动电路的实现结构,如图 3所示, 在 该驱动电路中, 包括 DC/AC变换器、主变压器 Ta3、 n-1个均流变压器 T31~T3 ( η-1 )、 η个整流滤波单元 Ζ31~Ζ3η以及 η个负载支路 Α31~Α3η;
其中, 主变压器 Tal包括一个原边绕组和一个副边绕组; 原边绕组与 DC/AC变换器的输出端相连, 接收 DC/AC变换器输出的交流电压。
主变压器的副边绕组的第一端分别与每个整流滤波单元的第一输入端 tl 连接, 副边绕组的第二端分别与每个整流滤波单元的第二输入端 t2连接, 从 而所述副边绕组分别与每个整流滤波单元构成一供电回路。
在相邻的两个整流滤波单元所在的供电回路之间设置一个均流变压器,例 如整流滤波单元 Z31和整流滤波单元 Z32之间设置一均流变压器 T31。该均流 变压器 T31的第一绕组的同名端连接副边绕组的第一端,异名端连接整流滤波 单元 Z31的第一输入端 tl; 均流变压器 T31的第二绕组的异名端连接副边绕 组的第一端, 同名端连接整流滤波单元 Z32的第一输入端 tl; 从而, 均流变 压器 T31第一绕组的同名端与第二绕组的异名端流过同相电流,第一绕组的同 名端与第二绕组的同名端流过方向相反的电流, 实现了对于整流滤波单元 Z31 和整流滤波单元 Z32所在的两个供电回路之间的均流。 在图 3中, 每个整流滤波单元的结构包括: 第一二极管 Dl、 第二二极管 D2、 第一电容 C1以及第二电容 C2, 其中, 第一二极管 D1和第一电容 C1依 次串接于整流滤波单元的第一输入端 tl和第二输入端 t2之间;第二二极管 D2 和第二电容 C2依次串接于整流滤波电容的第一输入端 tl和第二输入端 t2之 间; 而且, 第一二极管 D1的阳极与所述第一输入端 tl连接, 第二二极管 D2 的阴极与所述第一输入端 tl连接。 在该整流滤波单元中, 将第一二极管 D1 的阴极以及第二二极管 D2的阳极分别作为整流滤波单元的第一输出端 01和 第二输出端 02, 与对应的负载支路连接, 为对应的负载支路供电。
如图 3a所示, 上述多路恒流驱动电路的最小支路数可以为 2, 此时, 所 述图 3所示的多路恒流驱动电路结构如图 3a所示, 仅包括两个整流滤波单元 以及两个负载支路, 具体的连接关系与图 3类似, 这里不再赘述。
另外, 图 3中的整流滤波单元还可以通过其他结构实现, 例如:
在图 4所示的多路恒流驱动电路中,其他部分的结构与图 3相同, 区别仅 在于整流滤波单元的结构包括: 第三二极管 D3、 第四二极管 D4、 第三电容 C3以及第四电容 C4, 其中, 第三电容 C3、 第三二极管 D3以及第四电容 C4 依次串接于整流滤波单元的第一输入端 tl和第二输入端 t2之间; 第四二极管 D4的阴极与第三二极管 D3的阳极连接,第四二极管 D4的阳极与整流滤波单 元的第二输入端 t2连接; 在该整流滤波单元中,将第三二极管 D3的阴极以及 第四二极管 D4的阳极分别作为整流滤波单元的第一输出端 01和第二输出端 02, 与对应的负载支路连接, 为负载支路供电。
当图 4所示的多路恒流驱动电路中支路数为 2时,该多路恒流驱动电路的 结构如图 4a所示, 这里不再赘述。
或者,在图 5所示的多路恒流驱动电路中,其他部分的结构也与图 3相同, 区别仅在于整流滤波单元的结构包括: 第五二极管 D5、 第六二极管 D6、 第一 电感 Ll、 第二电感 L2以及第五电容 C5; 其中, 第五二极管 D5和第六二极管 D6依次串接于整流滤波单元的第一输入端 tl与第二输入端 t2之间,第五二极 管 D5的阳极与第六二极管 D6的阳极连接; 第一电感 L1和第二电感 L2依次 串接于整流滤波电路的第一输入端 tl和第二输入端 t2之间; 第五电容 C5的 第一端连接第五二极管 D5的阳极,第二端连接第一电感 L1与第二电感 L2的 连接点; 在该整流滤波单元中, 将第五二极管 D5的阳极以及第一电感 L1和 第二电感 L2的连接点分别作为整流滤波单元的第一输出端 01和第二输出端 02, 与对应的负载支路连接, 为负载支路供电。
当图 5所示的多路恒流驱动电路中支路数为 2时,该多路恒流驱动电路的 结构如图 5a所示, 这里不再赘述。
或者,在图 6所示的多路恒流驱动电路中,其他部分的结构也与图 3相同, 区别仅在于整流滤波单元的结构包括: 第七二极管 D7、 第八二极管 D8、 第九 二极管 D9以及第十二极管 D10, 其中, 第七二极管 D7和第八二极管 D8串 接于整流滤波单元的第一输入端 tl与第二输入端 t2之间, 第七二极管 D7的 阴极与第八二极管 D8的阴极连接; 第九二极管 D9和第十二极管 D10串接于 整流滤波单元的第一输入 tl端和第二输入端 t2之间, 第九二极管 D9的阳极 与第十二极管 D10的阳极连接。 在该整流滤波单元中, 将第七二极管 D7的阴 极以及第九二极管 D9的阳极分别作为整流滤波单元的第一输出端 01和第二 输出端 02, 与对应的负载支路连接, 为负载支路供电。
当图 6所示的多路恒流驱动电路中支路数为 2时,该多路恒流驱动电路的 结构如图 6a所示, 这里不再赘述。
或者,在图 7所示的多路恒流驱动电路中,其他部分的结构也与图 3相同, 区别仅在于整流滤波单元的结构包括: 第十一二级管 Dll、 第十二二极管 D12 以及第六电容 C6; 其中, 第十一二极管 Dll、 第十二二极管 D12依次串接于 整流滤波单元的第一输入端 tl和第二输入端 t2之间, 第十一二极管 D11的阳 极与第十二二极管 D12的阳极连接; 第六电容 C6串接于第一输入端 tl与所 述第十二二极管 D12的阳极之间;在该整流滤波单元中,将第十一二极管 D11 的阴极以及第十一二极管 D11的阳极分别作为整流滤波单元的第一输出端 01 和第二输出端 02, 与对应的负载支路连接, 为负载支路供电。
当图 7所示的多路恒流驱动电路中支路数为 2时,该多路恒流驱动电路的 结构如图 7a所示, 这里不再赘述。
另外, 在图 3~图 7a所示的多路恒流驱动电路中, 主变压器包括一个原边 绕组和一个副边绕组, 在实际应用中, 所述主变压器的结构还可以为: 包括一个原边绕组以及至少两个副边绕 组, 优选地, 所述副边绕组的数量与整流滤波单元或负载支路的数量相同, 此 时, 副边绕组、 整流滤波单元、 负载支路——对应。 如图 8a~8e所示, 依次分 别对应图 3~图 7所示的多路恒流驱动电路, 区别仅在于将上述电路中的主变 压器替换为包括一个原边绕组和至少两个副边绕组的变压器, 此时,每一副边 绕组的第一端连接该副边绕组对应的整流滤波单元的第一输入端,副边绕组的 第二端连接该副边绕组对应的整流滤波单元的第二输入端,以形成所述供电回 路。
或者, 所述主变压器的结构还可以为: 包括至少两个原边绕组和至少两个 副边绕组; 优选地, 所述原边绕组、 副边绕组、 整流滤波单元、 负载支路之间 ——对应。 如图 9a~9e所示, 依次分别对应图 3~图 7所示的多路恒流驱动电 路,区别仅在于将上述电路中的主变压器替换为包括至少两个原边绕组和至少 两个副边绕组的变压器, 此时,每一副边绕组的第一端连接该副边绕组对应的 整流滤波单元的第一输入端,副边绕组的第二端连接该副边绕组对应的整流滤 波单元的第二输入端, 以形成所述供电回路。
本发明实施例还提供了一种多路恒流驱动电路,具体的,该驱动电路包括: DC/AC变换器、 主变压器, 还包括: 主变压器的每一个副边绕组对应的至少 两级供电回路; 其中,
DC/AC变换器为主变压器的原边绕组提供交流电压;
每一个副边绕组的各级供电回路包括:该副边绕组的第一端依次通过该级 供电回路之前各级供电回路上设置的所有均流变压器的第二绕组、该级供电回 路与其后一级供电回路共同对应的均流变压器的第一绕组、以及该级供电回路 的整流滤波单元连接副边绕组的第二端;
所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相的电 流, 所述均流变压器用于实现相邻的两个供电回路之间的均流。
具体举例如下:
如图 10a~® 10d所示, 相邻的两级供电回路之间对应一个均流变压器, 在本发明的描述中,将每一级供电回路与其后一级供电回路之间的均流变压器 作为两级供电回路对应的均流变压器。在每一级供电回路中, 除了包括该级供 电回路与其后一级供电回路对应的均流变压器的第一绕组之外,还包括之前所 有级供电回路上设置的均流变压器的第二绕组, 具体的,例如第二级供电回路 中包括: 主变压器 Ta3的副边绕组、 均流变压器 Till的第二绕组、 均流变压 器 T112的第一绕组以及该级供电回路对应的整流滤波单元, 具体的, 主变压 器 Ta3的副边绕组的第一端依次通过均流变压器 Till的第二绕组、 均流变压 器 T112的第一绕组以及整流滤波单元 Z112的第一输入端、 第二输入端连接 副边绕组的第二端, 从而形成所述第二级供电回路。 以下的第三级乃至第 N 级供电回路的连接与此类似。 例如, 第 N-1级供电回路包括: 副边绕组的第一 端依次通过均流变压器 Tl 11的第二绕组、均流变压器 Tl 12的第二绕组 ......均 流变压器 Til ( N-2 ) 的第二绕组、 均流变压器 Til ( N-1 ) 的第一绕组、 整理 滤波单元 Zll ( N-1 )连接副边绕组的第二端; 第 N级供电回路包括: 副边绕 组的第一端依次通过均流变压器 Till的第二绕组、均流变压器 T112的第二绕 组 均流变压器 Til ( N-1 ) 的第二绕组、 整流滤波单元 Z11N连接副边绕 组的第二端 (第 N级供电回路没有下一级供电回路, 因此不存在均流变压器 T11N )。
图 10a~® 10d的区别主要在于整流滤波单元结构的不同, 具体结构连接 与图 2~图 9e中不同的整流滤波单元的结构相同, 这里不再赘述。
另外, 在图 10a~10d所示的多路恒流驱动电路中, 主变压器的结构为: 包 括一个原边绕组和一个副边绕组的变压器。在实际应用中, 所述主变压器的结 构还可以为: 包括一个原边绕组和至少两个副边绕组的变压器; 或者, 包括至 少两个原边绕组和至少两个副边绕组的变压器, 原边绕组和副边绕组——对 应。 此时, 对于每一个副边绕组都可以包括多级供电回路, 从而形成恒流驱动 电路。 而且, 不同副边绕组对应的供电回路中可以使用不同的整流滤波单元实 现整流滤波, 本发明并不限制。
另外,在实际应用中, 上述的多级供电电路可以是全部副边绕组中的一部 分(至少一个) 副边绕组中的每一个副边绕组分别对应着至少两级供电回路, 载供电, 进行电流的均流, 或者也可以使用图 3~图 9e等本发明中的各种供电 回路为负载供电, 进行电流的均流, 这里并不限制。 例如, 图 3和图 10a所示的电路结构即结合在同一多路恒流驱动电路中, 此时,
对于图 3所示的驱动电路, 可以将与副边绕组连接的、相互并联构成恒流 驱动电路的所有路(设为 M个(M>=2 ) )供电支路称为第一供电支路组; 而 对于图 10a所示的驱动电路, 可以将与副边绕组连接的、构成多级恒流驱动电 路的所有路供电支路称为第二供电支路组;
贝 |J , 如图 11a所示, 主变压器包括一个原边绕组和一个副边绕组, 则, 第 一供电支路组和第二供电支路组的输入端分别与主变压器的副边绕组的两端 连接,也即第一供电支路组和第二供电支路组并联于同一副边绕组上, 这里将 第一供电支路组与副边绕组连接构成的供电回路称为第一主供电回路,将第二 供电支路组与副边绕组连接构成的供电回路称为第二主供电回路; 此时, 为了 实现第一主供电回路总电流 Im和第二主供电回路中总电流 In之间的均流,则 可以在两个主供电回路之间再设置一个均流变压器, 其中, 第一绕组设置于第 一主供电回路中副边绕组与第一供电支路组的输入端之间;第二绕组设置于第 二主供电回路中副边绕组与第二供电支路组的输入端之间。
相应的,该电路也可以扩展到本发明的多路恒流驱动电路中包括至少一个 第一供电支路组和至少一个第二供电支路组的各种情况下, 或者,也可以扩展 到本发明的多路恒流驱动电路中包括至少两个第一供电支路组或者至少两个 第二供电支路组的情况。 例如, 图 l lb 图 11c所示, 进而, 图 11a所示的电路 还可以扩展为主变压器包括一个原边绕组和多个副边绕组,或者多个原边绕组 和多个副边绕组的情况, 如图 l ld~l li所示, 这里不再赞述。
优选地, 上述多路恒流驱动电路中的 DC/AC变换器的实现可以为: 桥式 电路、 推挽电路、 反激电路、 正激电路、 串联谐振电路、 LLC类谐振电路或 者软开关电路其中的任何一种电路结构。
例如, 如图 12a~12f所示的多路恒流驱动电路中, DC/AC变换器的结构 分别为反激电路、 LLC谐振电路、 对称半桥电路、 不对称半桥电路、 全桥电 路、 推挽电路和正激电路, 这里不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种多路恒流驱动电路, 其特征在于, 包括: DC/AC变换器、 主变压 器以及至少两个整流滤波单元;
DC/AC变换器为主变压器的原边绕组提供交流电压;
所述至少两个整流滤波单元分别与主变压器的副边绕组形成供电回路;所 述供电回路为: 所述副边绕组的第一端连接对应整流滤波单元的第一输入端, 所述副边绕组的第二端连接对应整流滤波单元的第二输入端;
相邻的整流滤波单元所在的供电回路之间设置一个均流变压器,所述均流 变压器的第一绕组设置于第一供电回路的副边绕组第一端与整流滤波单元之 间,均流变压器的第二绕组设置于第二供电回路的副边绕组第一端与整流滤波 单元之间;所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相 的电流,所述均流变压器用于实现相邻的整流滤波单元所在的供电回路之间的 均流。
2、 根据权利要求 1所述的电路, 其特征在于, 所述均流变压器第一绕组 的同名端连接所述第一供电回路中副边绕组的第一端,异名端连接所述第一供 电回路中整流滤波单元的第一输入端;
所述均流变压器第二绕组的异名端连接所述第二供电回路中副边绕组的 第一端, 同名端连接所述第二供电回路中整流滤波单元的第一输入端。
3、 根据权利要求 1或 2所述的电路, 其特征在于, 所述主变压器为: 包括一个原边绕组和一个副边绕组的变压器; 或者,
包括一个原边绕组和至少两个副边绕组的变压器; 或者,
包括至少两个原边绕组和至少两个副边绕组,且原边绕组和副边绕组—— 对应的变压器。
4、 根据权利要求 1或 2所述的电路, 其特征在于, 所述整流滤波单元包 括第一二极管、 第二二极管、 第一电容以及第二电容, 其中,
第一二极管和第一电容依次串接于整流滤波单元的第一输入端和第二输 入端之间;第二二极管和第二电容依次串接于整流滤波电容的第一输入端和第 二输入端之间; 而且, 第一二极管的阳极与所述第一输入端连接, 第二二极管 的阴极与所述第一输入端连接。
5、 根据权利要求 1或 2所述的电路, 其特征在于, 所述整流滤波单元包 括第三二极管、 第四二极管、 第三电容以及第四电容, 其中,
第三电容、第三二极管以及第四电容依次串接于整流滤波单元的第一输入 端和第二输入端之间; 第四二极管的阴极与第三二极管的阳极连接, 第四二极 管的阳极与整流滤波单元的第二输入端连接。
6、 根据权利要求 1或 2所述的电路, 其特征在于, 所述整流滤波单元包 括: 第五二极管、 第六二极管、 第一电感、 第二电感以及第五电容; 其中, 第五二极管和第六二极管依次串接于整流滤波单元的第一输入端与第二 输入端之间, 第五二极管的阳极与第六二极管的阳极连接; 第一电感和第二电 感依次串接于整流滤波电路的第一输入端和第二输入端之间;第五电容的第一 端连接第五二极管的阳极, 第二端连接第一电感与第二电感的连接点。
7、 根据权利要求 1或 2所述的电路, 其特征在于, 所述整流滤波单元包 括: 第七二极管、 第八二极管、 第九二极管以及第十二极管, 其中,
第七二极管和第八二极管串接于整流滤波单元的第一输入端与第二输入 端之间, 第七二极管的阴极与第八二极管的印记连接; 第九二极管和第十二极 管串接于整流滤波单元的第一输入端和第二输入端之间,第九二极管的阳极与 第十二极管的阳极连接。
8、 根据权利要求 1或 2所述的电路, 其特征在于, 所述整流滤波单元包 括第十一二级管、 第十二二极管以及第六电容; 其中,
第十一二极管、第十二二极管依次串接于整流滤波单元的第一输入端和第 二输入端之间, 第十一二极管的阳极与第十二二极管的阳极连接; 第六电容串 接于第一输入端与所述第十二二极管的阳极之间。
9、根据权利要求 1或 2所述的电路, 其特征在于, 所述 DC/AC变换器为 桥式电路、 推挽电路、 反激电路、 正激电路、 串联谐振电路、 LLC类谐振电 路或者软开关电路其中的任何一种电路结构。
10、 一种多路恒流驱动电路, 其特征在于, 包括: DC/AC变换器、 主变 压器, 还包括: 主变压器的每一个副边绕组对应的至少两级供电回路; 其中,
DC/AC变换器为主变压器的原边绕组提供交流电压; 每一个副边绕组的各级供电回路包括:该副边绕组的第一端依次通过该级 供电回路之前各级供电回路上设置的所有均流变压器的第二绕组、该级供电回 路与其后一级供电回路共同对应的均流变压器的第一绕组、以及该级供电回路 的整流滤波单元连接副边绕组的第二端;
所述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相的电 流, 所述均流变压器用于实现相邻的两个供电回路之间的均流。
11、 根据权利要求 10所述的电路, 其特征在于, 所述整流滤波单元包括: 第一二极管、 第二二极管、 第一电容以及第二电容, 其中,
第一二极管和第一电容依次串接于整流滤波单元的第一输入端和第二输 入端之间;第二二极管和第二电容依次串接于整流滤波电容的第一输入端和第 二输入端之间; 而且, 第一二极管的阳极与所述第一输入端连接, 第二二极管 的阴极与所述第一输入端连接。
12、 根据权利要求 10所述的电路, 其特征在于, 所述整流滤波单元包括 第三二极管、 第四二极管、 第三电容以及第四电容, 其中,
第三电容、第三二极管以及第四电容依次串接于整流滤波单元的第一输入 端和第二输入端之间; 第四二极管的阴极与第三二极管的阳极连接, 第四二极 管的阳极与整流滤波单元的第二输入端连接。
13、 根据权利要求 10所述的电路, 其特征在于, 所述整流滤波单元包括: 第五二极管、 第六二极管、 第一电感、 第二电感以及第五电容; 其中,
第五二极管和第六二极管依次串接于整流滤波单元的第一输入端与第二 输入端之间, 第五二极管的阳极与第六二极管的阳极连接; 第一电感和第二电 感依次串接于整流滤波电路的第一输入端和第二输入端之间;第五电容的第一 端连接第五二极管的阳极, 第二端连接第一电感与第二电感的连接点。
14、 根据权利要求 10所述的电路, 其特征在于, 所述整流滤波单元包括: 第七二极管、 第八二极管、 第九二极管以及第十二极管, 其中,
第七二极管和第八二极管串接于整流滤波单元的第一输入端与第二输入 端之间, 第七二极管的阴极与第八二极管的印记连接; 第九二极管和第十二极 管串接于整流滤波单元的第一输入端和第二输入端之间,第九二极管的阳极与 第十二极管的阳极连接。
15、 根据权利要求 10所述的电路, 其特征在于, 所述整流滤波单元包括 第十一二级管、 第十二二极管以及第六电容; 其中,
第十一二极管、第十二二极管依次串接于整流滤波单元的第一输入端和第 二输入端之间, 第十一二极管的阳极与第十二二极管的阳极连接; 第六电容串 接于第一输入端与所述第十二二极管的阳极之间。
16、 根据权利要求 10至 15任一项所述的电路, 其特征在于, 所述主变压 器为:
包括一个原边绕组和一个副边绕组的变压器; 或者,
包括一个原边绕组和至少两个副边绕组的变压器; 或者,
包括至少两个原边绕组和至少两个副边绕组的变压器,原边绕组和副边绕 组——对应。
17、 根据权利要求 9至 15任一项所述的电路, 其特征在于, 所述 DC/AC 变换器为桥式电路、 推挽电路、 反激电路、 正激电路、 串联谐振电路、 LLC 类谐振电路或者软开关电路其中的任何一种电路结构。
18、 一种多路恒流驱动电路, 其特征在于, 包括: DC/AC变换器、 主变 压器以及至少两个供电支路组;
DC/AC变换器为主变压器提供交流电压;
所述主变压器包括至少一个副边绕组;
每一供电支路组与主变压器的副边绕组构成一主供电回路;
相邻的两个主供电回路之间设置一个均流变压器;均流变压器的第一绕组 设置于所述两个主供电回路的一个主供电回路中,而第二绕组设置于所述两个 主供电回路的另一个主供电回路中, 用于进行两个主供电回路之间的均流。
19、 根据权利要求 18所述的电路, 其特征在于, 所述至少两个主供电回 路中的至少一个主供电回路包括:
至少两个由整流滤波单元与对应的副边绕组构成的供电回路,每一供电回 路包括: 对应主变压器副边绕组的第一端连接对应整流滤波单元的第一输入 端, 所述副边绕组的第二端连接对应整流滤波单元的第二输入端; 且, 相邻的 整流滤波单元所在的供电回路之间设置一个均流变压器,所述均流变压器的第 一绕组设置于第一供电回路的副边绕组第一端与整流滤波单元之间,均流变压 器的第二绕组设置于第二供电回路的副边绕组第一端与整流滤波单元之间;所 述均流变压器的第一绕组的同名端和第二绕组的异名端流过同相的电流,所述 均流变压器用于实现相邻的整流滤波单元所在的供电回路之间的均流。
20、 根据权利要求 18所述的电路, 其特征在于, 所述两个主供电回路中 的至少一个主供电回路包括:
至少两级供电回路,每一级供电回路包括: 对应主变压器副边绕组的第一 端依次通过该级供电回路之前各级供电回路上设置的所有均流变压器的第二 绕组、 该级供电回路与其后一级供电回路共同对应的均流变压器的第一绕组、 以及该级供电回路的整流滤波单元连接副边绕组的第二端;所述均流变压器的 第一绕组的同名端和第二绕组的异名端流过同相的电流,所述均流变压器用于 实现相邻的两个供电回路之间的均流。
PCT/CN2010/078716 2009-11-21 2010-11-15 多路恒流驱动电路 WO2011060701A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/511,049 US9155141B2 (en) 2009-11-21 2010-11-15 Multi-path constant current driving circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910225966A CN101702854A (zh) 2009-11-21 2009-11-21 一种适用于多路led恒流驱动的电路
CN200920273352.9 2009-11-21
CN2009202733529U CN201585177U (zh) 2009-11-21 2009-11-21 一种适用于多路led恒流驱动的电路
CN200910225966.4 2009-11-21

Publications (1)

Publication Number Publication Date
WO2011060701A1 true WO2011060701A1 (zh) 2011-05-26

Family

ID=43719355

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/078716 WO2011060701A1 (zh) 2009-11-21 2010-11-15 多路恒流驱动电路
PCT/CN2010/078714 WO2011060700A1 (zh) 2009-11-21 2010-11-15 多路恒流驱动电路

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078714 WO2011060700A1 (zh) 2009-11-21 2010-11-15 多路恒流驱动电路

Country Status (3)

Country Link
US (2) US9155141B2 (zh)
CN (2) CN201766747U (zh)
WO (2) WO2011060701A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152368A1 (de) * 2012-04-13 2013-10-17 Tridonic Gmbh & Co Kg Verfahren zum betreiben eines llc-resonanzwandlers für ein leuchtmittel, wandler und led-konverter
US8629664B2 (en) 2009-11-21 2014-01-14 Inventronics (Hangzhou), Inc. Multi-path constant current driving circuit
US9072126B2 (en) 2010-08-16 2015-06-30 Inventronics (Hangzhou), Inc. Open-circuit protection circuit of constant current driving circuit for light emitting diodes

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
WO2012151170A1 (en) * 2011-05-03 2012-11-08 Microsemi Corporation High efficiency led driving method
TWI468070B (zh) 2011-11-28 2015-01-01 Niko Semiconductor Co Ltd 發光二極體電流平衡驅動電路
CN103260293A (zh) * 2012-02-20 2013-08-21 尼克森微电子股份有限公司 发光二极管电流平衡驱动电路
CN102612235B (zh) * 2012-04-07 2014-03-12 李桂宏 一种含多级恒流驱动电路的led照明装置
US9022602B2 (en) * 2012-08-28 2015-05-05 Osram Sylvania Inc. Modular multichannel connector system and method
CN103780081B (zh) * 2012-10-22 2019-09-13 山特电子(深圳)有限公司 交错式llc均流变换器
TWI511606B (zh) * 2013-04-16 2015-12-01 Power Forest Technology Corp 發光二極體驅動裝置
CN104066252B (zh) * 2014-07-03 2016-03-30 东南大学 Clc恒流网络型led自均流电路及其控制方法
EP3207628B1 (de) * 2014-10-17 2021-09-15 Tridonic GmbH & Co. KG Betriebsschaltung zur versorgung eines leuchtmittels, led-konverter und verfahren zum betreiben einer betriebsschaltung
US9837925B1 (en) * 2016-11-01 2017-12-05 Jacobo Aguillón-García Capacitor-less power supply
CN110024275B (zh) * 2017-04-01 2022-03-01 Abb瑞士股份有限公司 Dc到dc变流器
US10218173B2 (en) * 2017-04-18 2019-02-26 Javad Jamali AC/DC converter for feeding non-linear high-power loads (e.g. electrolyzers) with reducing current harmonics
EP3767811A1 (en) * 2019-07-15 2021-01-20 Tridonic GmbH & Co. KG Switched power converter
US11381153B1 (en) * 2019-09-06 2022-07-05 Universal Douglas Lighting America Method to balance the secondary winding current to improve the current control stability
CN111865118A (zh) * 2020-08-28 2020-10-30 卓科(广州)技术有限公司 一种多路输出电源
CN113194569A (zh) * 2021-04-09 2021-07-30 深圳市立创普电源技术有限公司 一种多路恒流驱动电路及驱动电源
CN114430596A (zh) * 2021-12-23 2022-05-03 深圳市崧盛电子股份有限公司 Led电源的均流控制系统和方法、多功能灯杆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124265A (ja) * 1984-11-21 1986-06-12 Hitachi Ltd 多出力型のスイツチング電源
CN2044477U (zh) * 1988-08-02 1989-09-20 中国医科大学 测定人体锥体路传导时间的电子刺激器
CN2082947U (zh) * 1990-01-20 1991-08-14 浙江工艺毛绒厂 荧光灯电容式电子镇流器
CN2385469Y (zh) * 1999-08-04 2000-06-28 深圳永达辉科技有限公司 移相谐振型开关电源装置
CN101064475A (zh) * 2006-04-28 2007-10-31 台达电子工业股份有限公司 具有改善交叉调整性能的多重输出直流-直流转换器
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
CN201585177U (zh) * 2009-11-21 2010-09-15 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3016491A (en) * 1958-01-20 1962-01-09 Northrop Corp Phase detector having negative feedback for null rebalancing
US4562338A (en) * 1983-07-15 1985-12-31 Osaka Titanium Co., Ltd. Heating power supply apparatus for polycrystalline semiconductor rods
US4567379A (en) 1984-05-23 1986-01-28 Burroughs Corporation Parallel current sharing system
CN2777899Y (zh) 2005-02-24 2006-05-03 达方电子股份有限公司 变压器及应用此变压器的多灯管驱动电路
US7196483B2 (en) 2005-06-16 2007-03-27 Au Optronics Corporation Balanced circuit for multi-LED driver
US7362596B2 (en) 2005-06-17 2008-04-22 Eltek Valere As Transformer balance circuit
US7439685B2 (en) * 2005-07-06 2008-10-21 Monolithic Power Systems, Inc. Current balancing technique with magnetic integration for fluorescent lamps
TWI284332B (en) * 2005-07-06 2007-07-21 Monolithic Power Systems Inc Equalizing discharge lamp currents in circuits
TW200723959A (en) * 2005-12-02 2007-06-16 Hon Hai Prec Ind Co Ltd Multi-lamp driving system
KR20070074999A (ko) 2006-01-11 2007-07-18 삼성전자주식회사 램프 구동 장치 및 이를 갖는 액정 표시 장치
TWI328918B (en) * 2006-04-25 2010-08-11 Delta Electronics Inc Multi-output dc-dc converter with improved cross-regulation performance
US20080252222A1 (en) * 2007-04-16 2008-10-16 Texas Instruments Incorporated Systems and methods for driving light-emitting diodes
KR101364585B1 (ko) 2007-08-18 2014-02-19 주식회사 뉴파워 프라즈마 멀티 램프 구동을 위한 전류 균형 회로
US8072785B2 (en) * 2007-12-27 2011-12-06 Tdk Corporation Switching power supply unit
CN101511136B (zh) 2008-02-14 2013-02-20 台达电子工业股份有限公司 多组发光二极管的电流平衡供电电路
CN201766747U (zh) 2009-11-21 2011-03-16 英飞特电子(杭州)有限公司 多路恒流驱动电路
CN101778506B (zh) * 2009-12-28 2013-07-03 英飞特电子(杭州)股份有限公司 一种实现多路led精确恒流的驱动电路
KR101197934B1 (ko) * 2010-07-12 2012-11-05 삼성전기주식회사 발광 다이오드 구동용 전원 공급 장치
CN102378435B (zh) * 2010-08-16 2015-02-18 英飞特电子(杭州)股份有限公司 一种发光二极管恒流驱动电路的开路保护电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124265A (ja) * 1984-11-21 1986-06-12 Hitachi Ltd 多出力型のスイツチング電源
CN2044477U (zh) * 1988-08-02 1989-09-20 中国医科大学 测定人体锥体路传导时间的电子刺激器
CN2082947U (zh) * 1990-01-20 1991-08-14 浙江工艺毛绒厂 荧光灯电容式电子镇流器
CN2385469Y (zh) * 1999-08-04 2000-06-28 深圳永达辉科技有限公司 移相谐振型开关电源装置
CN101064475A (zh) * 2006-04-28 2007-10-31 台达电子工业股份有限公司 具有改善交叉调整性能的多重输出直流-直流转换器
CN101702854A (zh) * 2009-11-21 2010-05-05 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路
CN201585177U (zh) * 2009-11-21 2010-09-15 英飞特电子(杭州)有限公司 一种适用于多路led恒流驱动的电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629664B2 (en) 2009-11-21 2014-01-14 Inventronics (Hangzhou), Inc. Multi-path constant current driving circuit
US9155141B2 (en) 2009-11-21 2015-10-06 Inventronics (Hangzhou), Inc. Multi-path constant current driving circuit
US9072126B2 (en) 2010-08-16 2015-06-30 Inventronics (Hangzhou), Inc. Open-circuit protection circuit of constant current driving circuit for light emitting diodes
WO2013152368A1 (de) * 2012-04-13 2013-10-17 Tridonic Gmbh & Co Kg Verfahren zum betreiben eines llc-resonanzwandlers für ein leuchtmittel, wandler und led-konverter
US9516708B2 (en) 2012-04-13 2016-12-06 Tridonic Gmbh & Co Kg Method for operating an LLC resonant converter for a light-emitting means, converter, and LED converter device

Also Published As

Publication number Publication date
US9155141B2 (en) 2015-10-06
CN201766747U (zh) 2011-03-16
US20120274291A1 (en) 2012-11-01
US8629664B2 (en) 2014-01-14
WO2011060700A1 (zh) 2011-05-26
CN201766748U (zh) 2011-03-16
US20120274136A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2011060701A1 (zh) 多路恒流驱动电路
CN101902860B (zh) 多路恒流驱动电路
US8866394B2 (en) Drive circuit for realizing accurate constant current of multiple LEDs
CN101707838B (zh) 一种适用于非隔离变换器的多路led恒流驱动电路
US8847506B2 (en) Multi-output current-balancing circuit
US8836228B2 (en) Non-isolated resonant converter
KR101920624B1 (ko) 스위치 전원 및 상기 스위치 전원을 제어하는 방법
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
US8598807B2 (en) Multi-channel constant current source and illumination source
CN110168896A (zh) Dc到dc变流器和控制方法
US20120044722A1 (en) Isolated switching converter
US20110316430A1 (en) Multi-transformer llc resonant converter circuits and methods
EP2321894A1 (en) Generalized ac-dc synchronous rectification techniques for single- and multi-phase systems
WO2011017449A2 (en) Multiple independently regulated parameters using a single magnetic circuit element
WO2019024417A1 (zh) 无数级电流输出的led照明驱动电路
CN102208872B (zh) 共用rcd磁复位支路正激直流变换器
CN112770451A (zh) 一种隔离型ac-dc恒流驱动器及led照明设备
CN201585179U (zh) 一种适用于非隔离变换器的多路led恒流驱动电路
CN110012574A (zh) 一种混合控制单级无桥Sepic和LLC的LED驱动电路
CN102595725B (zh) 一种实现精确均流的多路led驱动电路
CN214627431U (zh) 宽电压隔离ac-dc多通道驱动器及led照明设备
CN214627436U (zh) 宽电压非隔离ac-dc多通道驱动器及led照明设备
JP6729196B2 (ja) 電力変換装置
CN214627432U (zh) 一种隔离型ac-dc恒流驱动器及led照明设备
CN112532049B (zh) 电源转换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13511049

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10831116

Country of ref document: EP

Kind code of ref document: A1