WO2019024417A1 - 无数级电流输出的led照明驱动电路 - Google Patents

无数级电流输出的led照明驱动电路 Download PDF

Info

Publication number
WO2019024417A1
WO2019024417A1 PCT/CN2017/119908 CN2017119908W WO2019024417A1 WO 2019024417 A1 WO2019024417 A1 WO 2019024417A1 CN 2017119908 W CN2017119908 W CN 2017119908W WO 2019024417 A1 WO2019024417 A1 WO 2019024417A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
output
anode
filter capacitor
cathode
Prior art date
Application number
PCT/CN2017/119908
Other languages
English (en)
French (fr)
Inventor
彭国允
贺林波
Original Assignee
深圳市暗能量电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市暗能量电源有限公司 filed Critical 深圳市暗能量电源有限公司
Publication of WO2019024417A1 publication Critical patent/WO2019024417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to the field of LED driving, and in particular to an LED lighting driving circuit for a myriad of current output.
  • FIG. 4 shows that the primary windings of a plurality of high-frequency transformers are connected in series, and the secondary side is obtained by capacitor rectification to obtain DC, and the multiple load currents are the same.
  • This technology utilizes the principle of the turns ratio of the original secondary current of the ideal transformer, and realizes that the average current of the secondary side is equal under the condition that the multiple turns of the transformer are the same.
  • Mainly include: 1) Since each transformer bears the requirement of high insulation, each transformer must meet the safety requirements, the cost is greatly increased, the window utilization rate is also reduced, and the efficiency of the converter is affected.
  • the technical problem to be solved by the present invention is to provide an infinite current that can achieve accurate constant current between countless stages of output, simple circuit, easy expansion, low cost, and reduced volume, in view of the above-mentioned drawbacks of the prior art.
  • Output LED lighting drive circuit is to provide an infinite current that can achieve accurate constant current between countless stages of output, simple circuit, easy expansion, low cost, and reduced volume, in view of the above-mentioned drawbacks of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem is: constructing an LED lighting driving circuit with a myriad of current output, comprising a high frequency alternating current source AC and a transformer T1, wherein the high frequency alternating current source AC is connected in parallel to the transformer Both ends of the primary winding Np of T1; the transformer T1 includes a plurality of secondary windings, one end of each adjacent secondary winding is respectively connected to one end of each DC blocking capacitor Cbn, and one end of the adjacent secondary winding has the same name The end and the non-identical end alternately appear; the other end of each DC blocking capacitor Cbn passes through the diode D(n+1)1 and the DC blocking capacitor Cb(n+1) on the side of the next-stage secondary winding Ns(n+1) Connected at the other end, the n is an integer greater than 0;
  • the other end of the DC blocking capacitor Cb1 disposed on the secondary winding Ns1 side of the transformer T1 is further connected to the anode of the diode D11, the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, and the cathode of the output filter capacitor CO11 is connected.
  • the output of the output filter capacitor CO11 has a load LED1 connected in parallel; the other end of the DC blocking capacitor Cbn disposed on the secondary winding Nsn side of the transformer T1 is connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected.
  • each of the output rectifier circuits includes a diode Dn2, a diode Dn3, an output filter capacitor COn2, and a load LED (n+1), and a secondary winding of the transformer T1.
  • Nsn is respectively connected to the anode of the diode Dn2 and the cathode of the diode Dn3, the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2, the anode of the diode Dn3 and the output filter capacitor COn2
  • the negative pole is connected, the negative pole of the output filter capacitor COn2 is connected to the output ground, and the load LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • each DC blocking capacitor Cbn is connected to the cathode of the diode D(n+1)1, and the diode D(n+1)1
  • the anode is connected to the other end of the DC blocking capacitor Cb(n+1) on the side of the next-stage secondary winding Ns(n+1).
  • the invention also relates to an LED illumination driving circuit for a myriad of current output, comprising a high frequency alternating current source AC and a plurality of transformers, the high frequency alternating current source AC being connected in parallel at both ends of the primary winding of each transformer; One end of the secondary winding is respectively connected to one end of each DC blocking capacitor Cbn, and one end of the adjacent secondary winding alternates with the same name end and the non-identical end; the other end of each DC blocking capacitor Cbn passes through the diode D(n+1)1 Connected to the other end of the DC blocking capacitor Cb(n+1) of the next-stage secondary winding, the n being an integer greater than 0;
  • the other end of the DC blocking capacitor Cb1 disposed on the side of the secondary winding Ns1 is further connected to the anode of the diode D11, the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, and the cathode of the output filter capacitor CO11 is connected to the output ground.
  • the output filter capacitor CO11 has a load LED1 connected in parallel at both ends thereof, and the other end of the DC blocking capacitor Cbn disposed on the secondary winding Nsn side is connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected to the output ground;
  • each of the output rectifier circuits includes a diode Dn2, a diode Dn3, an output filter capacitor COn2, and a load LED (n+1), and a secondary winding of the transformer T1.
  • Nsn is respectively connected to the anode of the diode Dn2 and the cathode of the diode Dn3, the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2, the anode of the diode Dn3 and the output filter capacitor COn2
  • the negative pole is connected, the negative pole of the output filter capacitor COn2 is connected to the output ground, and the load LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • each DC blocking capacitor Cbn is connected to the cathode of the diode D(n+1)1, and the diode D(n+1)1
  • the anode is connected to the other end of the DC blocking capacitor Cb(n+1) on the side of the next-stage secondary winding Ns(n+1).
  • the invention also relates to an LED illumination driving circuit for a myriad of current output, comprising a high frequency alternating current source AC and a transformer T1, the high frequency alternating current source AC being connected in parallel at both ends of the primary winding Np of the transformer T1;
  • the transformer T1 includes a plurality of secondary windings, one end of each adjacent secondary winding is respectively connected to a first output rectifier circuit;
  • the first output rectifier circuit includes a DC blocking capacitor Cbn, a diode Dn1, and an output filter capacitor COn1.
  • a load LED (2n-1) wherein n is an integer greater than 0, one end of the DC blocking capacitor Cbn is connected to one end of the secondary winding Nsn of the transformer T1, and the other end of the DC blocking capacitor Cbn
  • the anode of the diode Dn1 is connected, the cathode of the diode Dn1 is connected to the anode of the output filter capacitor COn1, and the cathode of the output filter capacitor COn1 is connected to the diode D (n-1) of the first output rectifier circuit of the previous stage.
  • An anode of the 1 , the load LED (2n-1) is connected in parallel at both ends of the output filter capacitor COn1;
  • the anode of the output filter capacitor CO11 in the first output rectifier circuit of the first stage is connected to the output ground, and the anode of the diode Dn1 in the first output rectifier circuit of the last stage is also connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected.
  • the other ends of the secondary windings are respectively connected to a second output rectifying circuit, and the second output rectifying circuit comprises a diode Dn2, a diode Dn3, an output filter capacitor COn2 and a load LED (n+1), and the pair of the transformer T1
  • the other end of the side winding Nsn is respectively connected to the anode of the diode Dn2 and the cathode of the diode Dn3, the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2, the anode of the diode Dn3 and the output filter capacitor
  • the negative electrode of COn2 is connected, the negative electrode of the output filter capacitor COn2 is connected to the output ground, and the load LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • the high frequency alternating current source AC is a switching inversion topology of any double-ended excitation.
  • the LED illumination driving circuit embodying the innumerable current output of the present invention has the following beneficial effects: accurate constant current between countless stages of output is achieved by the principle of charge exchange between a plurality of capacitors and the balance of the amperage of each capacitor By adding a plurality of windings on the output side of the main transformer, and adding a small number of rectifying elements, it is possible to realize countless stages of output, the circuit is simple, easy to expand, and the cost is low, compared with the conventional scheme of achieving secondary side current sharing, the present invention No additional magnetic components for current sharing, no capacitors, transformers can be extended to countless stages, and countless stages of current sharing, thus enabling accurate constant current between countless stages of output, simple circuit, easy expansion, and cost Low, can reduce the volume.
  • FIG. 1 is a schematic diagram of a circuit structure of a current sharing circuit of a diode series coupled inductor in a conventional technology
  • FIG. 2 is a schematic diagram showing the circuit structure of a two-way current sharing circuit of a secondary side series blocking capacitor in the conventional technology
  • FIG. 3 is a schematic diagram showing the circuit structure of a four-way current sharing output rectifier circuit using an auxiliary coupling inductor in the conventional technology
  • FIG. 4 is a schematic diagram of a circuit structure of a secondary side current sharing circuit for realizing a primary side of a transformer in a conventional technology
  • FIG. 5 is a schematic circuit diagram of a rectifier circuit of a three-way constant current output in the first embodiment of the LED illumination driving circuit of the present invention
  • FIG. 6 is a schematic circuit diagram of a rectifier circuit of a modified three-way constant current output in the second embodiment
  • FIG. 7 is a schematic circuit diagram of a rectifier circuit of a four-way constant current output in a third embodiment
  • Fig. 8 is a circuit diagram showing the circuit configuration of a rectifier circuit of a modified n+1-channel constant current output in the fourth embodiment.
  • FIG. 5 is a schematic diagram showing the circuit structure of a rectifier circuit for three-way constant current output in the first embodiment of the LED illumination driving circuit of the present invention.
  • the LED lighting driving circuit of the innumerable stage current output comprises a high frequency alternating current source AC and a transformer T1, and the high frequency alternating current source AC is connected in parallel at both ends of the primary winding Np of the transformer T1;
  • the transformer T1 includes several The secondary windings Ns1, Ns2, ..., Nsn, one end (connecting capacitor end) of each adjacent secondary winding is respectively connected to one end of each DC blocking capacitor Cbn, and one end of the adjacent secondary winding has the same name and the same name The terminals alternately appear; the other end of each DC blocking capacitor Cbn is connected to the other end of the DC blocking capacitor Cb(n+1) on the side of the next-stage secondary winding Ns(n+1) through the diode D(n+1)1.
  • n is an integer greater than 0; specifically, the other end of each DC blocking capacitor Cbn is connected to the cathode of the diode D(n+1)1, and the anode of the diode D(n+1)1 is connected to the next-stage secondary winding The other end of the DC blocking capacitor Cb(n+1) on the Ns(n+1) side is connected.
  • the other end of the DC blocking capacitor Cb1 disposed on the side of the first-stage secondary winding Ns1 of the transformer T1 is also connected to the anode of the diode D11, the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, and the cathode of the output filter capacitor CO11 is connected to the output ground.
  • the output filter capacitor CO11 has a load LED1 connected in parallel at both ends thereof; the other end of the DC blocking capacitor Cbn disposed on the secondary winding Nsn side of the transformer T1 is connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected to the output ground;
  • each of the output rectifier circuits includes a diode Dn2, a diode Dn3, an output filter capacitor COn2, and a load LED (n+1), and the other end of the secondary winding Nsn of the transformer T1.
  • the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2
  • the anode of the diode Dn3 is connected to the cathode of the output filter capacitor COn2
  • the cathode of the output filter capacitor COn2 is connected to the output.
  • the load LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • FIG. 5 is a circuit diagram of the above technical solution when there are three load outputs, that is, the circuit of FIG. 5 can realize the current sharing output of the load LED1, the load LED2, and the load LED3).
  • the rectifier circuit of the three-way constant current output in FIG. 5 includes a high-frequency AC source AC, a transformer T1, a primary winding Np and two secondary windings Ns1 and Ns2, and a high-frequency AC source AC is connected in parallel at both ends of the primary winding Np.
  • the first-stage secondary winding Ns1 has the same name terminated with one end of the DC capacitor Cb1, the other end of the first-stage secondary winding Ns1 is connected to the anode of the diode D12 and the cathode of D13, and the cathode of the diode D12 is connected to the anode of the output filter capacitor CO12.
  • the anode of the diode D13 is connected to the negative terminal of the output filter capacitor CO12.
  • the load LED2 is connected in parallel at both ends of the output filter capacitor CO12, and the negative pole of the output filter capacitor CO12 is used as an output ground.
  • the other end of the DC blocking capacitor Cb1 is connected to the anode of the diode D11, and is connected to the cathode of the diode D21.
  • the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, and the cathode of the output filter capacitor CO11 is connected to the output ground.
  • the load LED1 is connected in parallel across the output filter capacitor CO11.
  • One end of the second-stage secondary winding Ns2 is connected to one end of the DC blocking capacitor Cb2, and the same-name end of the second-stage secondary winding Ns2 is respectively connected to the anode of the diode D22 and the cathode of the diode D23, and the cathode of the diode D22 is connected to the anode of the output filter capacitor CO22.
  • the negative pole of the output filter capacitor CO22 is connected to the output ground, and the load LED3 is connected in parallel at both ends of the output filter capacitor CO22.
  • the other end of the DC blocking capacitor Cb2 is connected to the anode of D21 and the cathode of diode D24, respectively, and the anode of diode D24 is connected to the output ground.
  • the cathode of diode D21 is connected to the anode of diode D11.
  • the high frequency AC source AC is a switch-inverting topology of any double-ended excitation, which makes the circuit construction easier.
  • the DC blocking capacitor Cbn and the secondary winding of the transformer connected in series are interchangeable positions, which do not affect the performance of the circuit, thereby eliminating the need to change the connection manner of other components in the circuit.
  • the present invention does not require an additional magnetic component for current sharing, and requires only a capacitor, which is low in cost and high in efficiency.
  • the use of capacitors reduces volume and density.
  • Transformers can be scaled to innumerable stages and achieve countless levels of current sharing. Modularly designed transformers can also be used to achieve modularization of countless stages of output.
  • the LED illumination driving circuit of the infinite current output includes a high frequency AC source AC and a plurality of transformers.
  • the high frequency AC source AC is connected in parallel at both ends of the primary winding of each transformer; one end of each adjacent secondary winding (connecting capacitor end) is respectively connected to one end of each DC blocking capacitor Cbn, and one end of the adjacent secondary winding is The same name end and the non-identical end alternately appear; the other end of each DC blocking capacitor Cbn is connected to the other end of the DC blocking capacitor Cb(n+1) of the next-stage secondary winding through the diode D(n+1)1, n is An integer greater than 0.
  • each DC blocking capacitor Cbn is connected to the cathode of the diode D(n+1)1, and the anode of the diode D(n+1)1 is connected to the lower primary winding Ns ( The other end of the DC blocking capacitor Cb(n+1) on the n+1) side is connected.
  • the other end of the DC blocking capacitor Cb1 disposed on the side of the first-stage secondary winding Ns1 is also connected to the anode of the diode D11, the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, the cathode of the output filter capacitor CO11 is connected to the output ground, and the output filter capacitor is output.
  • the load LED 1 is connected in parallel to both ends of the CO11, and the other end of the DC blocking capacitor Cbn provided on the secondary winding Nsn side is connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected to the output ground.
  • each of the output rectifier circuits includes a diode Dn2, a diode Dn3, an output filter capacitor COn2, and a load LED (n+1), and the other end of the secondary winding Nsn of the transformer T1.
  • the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2
  • the anode of the diode Dn3 is connected to the cathode of the output filter capacitor COn2
  • the cathode of the output filter capacitor COn2 is connected to the output ground.
  • the LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • FIG. 6 The technical solution in FIG. 6 is an improvement of FIG. 5.
  • the primary windings Np1 and Np2 of two independent transformers T1 and T2 are respectively connected in parallel at both ends of the high-frequency AC source AC to facilitate the module of the transformer.
  • the standardized and standardized design flexibly meets the change of the number of output channels by the number of parallel transformers and the increase or decrease of the corresponding auxiliary components, without modifying the parameters of the main transformer.
  • the rectifier circuit of the improved three-way constant current output in FIG. 6 includes a high frequency AC source AC, a transformer T1 and a transformer T2, a primary winding Np1 of the transformer T1, a primary winding Np2 of the transformer T2, and a secondary winding of the transformer T1.
  • the high frequency AC source AC is connected in parallel between the primary winding Np1 of the transformer T1 and the primary winding Np2 of the transformer T2, and the secondary winding of the transformer T1 is the same name of the Ns1.
  • One end of the straight capacitor Cb1 is connected to the anode of the diode D12 and the cathode of the diode D12, the cathode of the diode D12 is connected to the anode of the output filter capacitor CO12, and the anode of the diode D13 is connected to the cathode of the output filter capacitor CO12.
  • the load LED2 is connected in parallel at both ends of the output filter capacitor CO12, and the negative pole of the output filter capacitor CO12 is used as an output ground.
  • the other end of the DC blocking capacitor Cb1 is connected to the anode of the diode D11, and is connected to the cathode of the diode D21.
  • the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, the cathode of the output filter capacitor CO11 is connected to the output ground, and the load LED1 is connected in parallel to the output filter capacitor. Both ends of the CO11.
  • One end of the secondary winding Ns2 of the transformer T2 is connected to one end of the DC blocking capacitor Cb2, the same end of the secondary winding Ns2 of the transformer T2 is connected to the anode of the diode D22 and the cathode of the diode D23, and the cathode of the diode D22 is connected to the anode of the output filter capacitor CO22.
  • the negative terminal of the output filter capacitor CO22 is connected to the output ground, and the load LED3 is connected in parallel at both ends of the output filter capacitor CO22.
  • the other end of the DC blocking capacitor Cb2 is connected to the anode of the diode D21 and the cathode of the diode D24.
  • the anode of the diode D24 is connected to the output
  • the cathode of the diode D21 is connected to the anode of the diode D11.
  • the LED illumination driving circuit of the infinite current output includes a high frequency AC source AC and a transformer T1.
  • the frequency AC source AC is connected in parallel at both ends of the primary winding Np of the transformer T1;
  • the transformer T1 includes a plurality of secondary windings Ns1, Ns2, ..., Nsn, and one end of each adjacent secondary winding is respectively connected to a first output rectifier circuit
  • the first output rectifier circuit comprises a DC blocking capacitor Cbn, a diode Dn1, an output filter capacitor COn1 and a load LED (2n-1), n is an integer greater than 0, and one end of the DC blocking capacitor Cbn is connected to the secondary winding Nsn of the transformer T1.
  • the other end of the DC blocking capacitor Cbn is connected to the anode of the diode Dn1
  • the cathode of the diode Dn1 is connected to the anode of the output filter capacitor COn1
  • the cathode of the output filter capacitor COn1 is connected to the diode D of the first output rectifier circuit of the previous stage.
  • the anode of (n-1)1, the load LED (2n-1) is connected in parallel across the output filter capacitor COn1.
  • the anode of the output filter capacitor CO11 in the first output rectifier circuit of the first stage is connected to the output ground, and the anode of the diode Dn1 in the first output rectifier circuit of the last stage is also connected to the cathode of the diode Dn4, and the anode of the diode Dn4 is connected to the output ground. .
  • the other ends of the secondary windings are respectively connected to a second output rectifying circuit, and the second output rectifying circuit comprises a diode Dn2, a diode Dn3, an output filter capacitor COn2 and a load LED (n+1), and a secondary winding Nsn of the transformer T1.
  • the other end is connected to the anode of the diode Dn2 and the cathode of the diode Dn3, the cathode of the diode Dn2 is connected to the anode of the output filter capacitor COn2, the anode of the diode Dn3 is connected to the cathode of the output filter capacitor COn2, and the cathode of the output filter capacitor COn2 is connected to the output.
  • the load LED (n+1) is connected in parallel with the output filter capacitor COn2.
  • the technical solution in FIG. 7 is another improvement of FIG. 5, which solves the current sharing problem of the four-way load, that is, solves the current sharing problem of the load LED 1, the load LED 2, the load LED 3, and the load LED 4.
  • the rectifier circuit of the four-channel constant current output of FIG. 7 includes a high-frequency AC source AC, a transformer T1, a primary winding Np and two secondary windings Ns1 and Ns2, and the high-frequency AC source AC is connected in parallel to the primary winding of the transformer T1.
  • the same-side end of the secondary winding Ns1 of the transformer T1 is connected to one end of the DC blocking capacitor Cb1, and the other end of the secondary winding Ns1 of the transformer T1 is connected to the anode of the diode D12 and the cathode of the diode D13, respectively, and the cathode of the diode D12 is connected.
  • the anode of the output filter capacitor CO12, the anode of the diode D13 is connected to the cathode of the output filter capacitor CO12.
  • the load LED2 is connected in parallel at both ends of the output filter capacitor CO12, and the negative pole of the output filter capacitor CO12 is used as an output ground.
  • the other end of the DC blocking capacitor Cb1 is connected to the anode of the diode D11; the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, the cathode of the output filter capacitor CO11 is connected to the ground, and the load LED1 is connected in parallel at both ends of the output filter capacitor CO11.
  • One end of the secondary winding Ns2 of the transformer T1 is connected to one end of the DC blocking capacitor Cb2, and the same end of the secondary winding Ns2 of the transformer T1 is connected to the anode of the diode D22 and the cathode of the diode D23, respectively, and the cathode of the diode D22 is connected to the anode of the output filter capacitor CO22.
  • the output capacitor CO22 has a negative terminal connected to the output ground, and the load LED3 is connected in parallel at both ends of the output filter capacitor CO22.
  • the other end of the DC blocking capacitor Cb2 is respectively connected to the anode of the diode D21 and the cathode of the diode D24, and the anode of the diode D24 is connected to the ground.
  • the cathode of the diode D21 is connected to the anode of the output filter capacitor CO21, and the cathode of the output filter capacitor CO21 is connected to the anode of the diode D11.
  • the load LED3 is connected in parallel across the output filter capacitor CO21.
  • the rectifier circuit of the improved n+1 way constant current output in FIG. 8 includes a high frequency AC source AC, n transformers T1, T2, ..., Tn, a primary winding Np1 of the transformer T1, and a primary winding Np2 of the transformer T2.
  • the high frequency AC source AC is connected in parallel across the primary windings Np1, Np2, ..., Npn of all transformers.
  • the same end of the secondary winding Ns1 of the transformer T1 is connected to one end of the DC blocking capacitor Cb1, and the other end of the secondary winding Ns1 of the transformer T1 is respectively connected to the anode of the diode D12 and the cathode of the diode D13, and the cathode of the diode D12 is connected to the output filter capacitor CO12.
  • the anode of the diode D13 is connected to the negative electrode of the CO12.
  • the load LED2 is connected in parallel at both ends of the output filter capacitor CO12, and the negative pole of the output filter capacitor CO12 is used as an output ground.
  • the other end of the DC blocking capacitor Cb1 is connected to the anode of the diode D11, and is connected to the cathode of the diode D21.
  • the cathode of the diode D11 is connected to the anode of the output filter capacitor CO11, and the cathode of the output filter capacitor CO11 is connected to the output ground.
  • the load LED1 is connected in parallel across the output filter capacitor CO11.
  • the non-identical end of the secondary winding Ns2 of the transformer T2 is connected to one end of the DC blocking capacitor Cb2, and the same end of the secondary winding Ns2 of the transformer T2 is connected to the anode of the diode D22 and the cathode of the diode D23, respectively, and the cathode of the diode D22 is connected to the output filter capacitor CO22.
  • the anode of the output filter capacitor CO22 is connected to the output ground, and the load LED3 is connected in parallel at both ends of the output filter capacitor CO22.
  • the other end of the DC blocking capacitor Cb2 is connected to the anode of the diode D21 and the cathode of the diode Dn1 in the next stage circuit.
  • connection of the n+1th output corresponding to the nth winding is analogized, and the secondary winding Nsn of the transformer Tn and the secondary winding Ns(n-1) of the transformer Tn-1 are connected to the DC blocking capacitor Cbn and One end of the DC blocking capacitor Cb(n-1) alternates between the same name end and the non-identical end; the anode of the diode Dn1 in the last stage circuit is connected to the cathode of the diode Dn4 in the last stage circuit, and the anode of the diode Dn4 is connected to the output ground.
  • the load in the first output rectifier circuit is an LED (2n-1); as a variant of the previously described solution, the load LED (2n-1) can be swapped with the diode Dn1.
  • the present invention achieves accurate constant current between countless stages of output by the principle of charge exchange between multiple capacitors and the amperometric balance of each capacitor.

Abstract

一种多级电流输出的LED照明驱动电路,包括高频交流源(AC)和变压器(T1),高频交流源(AC)并联在变压器(T1)的原边绕组(Np)的两端;变压器(T1)包括若干个副边绕组(Ns1,Ns2),各相邻副边绕组(Ns1,Ns2)的一端与各自隔直电容(Cb1,Cb2)一端连接,相邻副边绕组(Ns1,Ns2)的一端以同名端与非同名端交替出现;各隔直电容(Cb1)的另一端通过二极管(D21)与下一级副边绕组(Ns2)侧的隔直电容(Cb2)的另一端连接,第一级隔直电容(Cb1)的另一端还连接另一二极管(D11)的阳极,另一二极管(D11)的阴极连接输出滤波电容(CO11)的正极。该电路能实现多级输出之间的精确恒流、电路简单、容易扩展、成本较低、且能减小电路体积。

Description

无数级电流输出的LED照明驱动电路 技术领域
本发明涉及LED驱动领域,特别涉及一种无数级电流输出的LED照明驱动电路。
背景技术
很多电能转换的应用场合需要变流器能够实现直流恒流输出,如电池充电器、LED驱动电源等。除了需要无数级输出外,还需要实现高压隔离,以满足安规的要求和高强度电气绝缘的要求。为了获得实现隔离的无数级输出直流电流源,一般都采用两级DC-DC的方案,前级采用隔离的DC-DC获得恒定的电压源,然后跟随多个不隔离的DC-DC实现无数级独立的恒流输出。该方案灵活多变,可靠性较高。但是由于需要多个独立的后级DC-DC,因此需要独立的控制芯片和开关器件,大大增加了成本。
为了降低成本,有很多采用无源方式进行无数级恒流,并且可以实现无数级电流之间比较准确的均流。图1中利用隔离的高频交流源的整流二极管中串联耦合电感的方式,实现两路直流输出的电流的均流。并且,利用多个耦合电感的互相耦合,可以扩展到多路恒定的直流输出。但是由于二极管串联了耦合电感,而且多路的耦合电感绕组很多,这些绕组的接口都必须串联在副边整流二极管中,导致副边的PCB布线很复杂,增加了很多PCB的高频交流损耗。
图2中利用电容的电荷平衡原理,在交流电源与整流电路之间串入隔直电容C B,实现正、负两个极性的电荷的平衡,从而获得直流侧电流的相等。虽然电容成本低、实现简单,但是,该方法用于更多路输出时需要配合辅助耦合电感的技术实现,如图3。
另外还有一种技术如图4所示,图4是将多个高频变压器的原边绕组串联,副边利用电容整流获得直流,并实现多路负载电流相同。该技术利用理想变压器的原副边电流取决于匝比的原理,在保证多个变压器匝比相同的条件下,实 现副边的平均电流相等。该技术虽然简单,但是存在一些严重影响其应用范围的缺点。主要包括:1)由于每个变压器都承担了高绝缘的要求,因此每个变压器都必须要符合安规要求,成本大大增加,也降低了窗口利用率,影响变流器的效率。2)由于串联原边励磁电流不反映到副边回路,因此,励磁电流比较大的拓扑结构,如串、并联谐振变流器等,其变压器的励磁电流与负载电流的比例比较接近,考虑到励磁电感的离散性较大,因此无数级输出电流的均流度受到影响。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种能实现无数级输出之间的精确恒流、电路简单、容易扩展、成本较低、能减小体积的无数级电流输出的LED照明驱动电路。
本发明解决其技术问题所采用的技术方案是:构造一种无数级电流输出的LED照明驱动电路,包括一个高频交流源AC和一个变压器T1,所述高频交流源AC并联在所述变压器T1的原边绕组Np的两端;所述变压器T1包括若干个副边绕组,各相邻副边绕组的一端分别与各自隔直电容Cbn的一端连接,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容Cbn的另一端通过二极管D(n+1)1与下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接,所述n为大于0的整数;
设置于所述变压器T1的副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,所述二极管D11的阴极连接输出滤波电容CO11的正极,所述输出滤波电容CO11的负极接输出地,所述输出滤波电容CO11的两端并联有负载LED1;设置于所述变压器T1的副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
各副边绕组的另一端分别连接一个输出整流电路,每个所述输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出 滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
在本发明所述的无数级电流输出的LED照明驱动电路中,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,所述二极管D(n+1)1的阳极连接所述下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
本发明还涉及一种无数级电流输出的LED照明驱动电路,包括一个高频交流源AC和若干个变压器,所述高频交流源AC并联在各变压器的原边绕组的两端;各相邻副边绕组的一端分别接各自隔直电容Cbn的一端,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容Cbn的另一端通过二极管D(n+1)1与下一级副边绕组的隔直电容Cb(n+1)的另一端连接,所述n为大于0的整数;
设置于副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,所述二极管D11的阴极连接输出滤波电容CO11的正极,所述输出滤波电容CO11的负极接输出地,所述输出滤波电容CO11的两端并联有负载LED1,设置于副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
各副边绕组的另一端分别连接一个输出整流电路,每个所述输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
在本发明所述的无数级电流输出的LED照明驱动电路中,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,所述二极管D(n+1)1的阳极连接所述下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
本发明还涉及一种无数级电流输出的LED照明驱动电路,包括一个高频交流源AC和一个变压器T1,所述高频交流源AC并联在所述变压器T1的原边绕组Np的两端;所述变压器T1包括若干个副边绕组,各相邻副边绕组的一端 为分别连接一个第一输出整流电路;所述第一输出整流电路均包括隔直电容Cbn、二极管Dn1、输出滤波电容COn1和负载LED(2n-1),所述n为大于0的整数,所述隔直电容Cbn的一端连接所述变压器T1的副边绕组Nsn的一端,所述隔直电容Cbn的另一端与所述二极管Dn1的阳极连接,所述二极管Dn1的阴极与所述输出滤波电容COn1的正极连接,所述输出滤波电容COn1的负极接到上一级的第一输出整流电路中二极管D(n-1)1的阳极,所述负载LED(2n-1)并联在所述输出滤波电容COn1的两端;
第一级的第一输出整流电路中的输出滤波电容CO11的负极接输出地,最后一级的第一输出整流电路中的二极管Dn1的阳极还连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
各副边绕组的另一端分别接一个第二输出整流电路,所述第二输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
在本发明所述的无数级电流输出的LED照明驱动电路中,所述高频交流源AC是任意双端励磁的开关逆变拓扑。
实施本发明的无数级电流输出的LED照明驱动电路,具有以下有益效果:由于通过多个电容之间的电荷互换和各电容的安秒平衡的原理,实现无数级输出之间的精确恒流,只需在主变压器的输出侧增加多个绕组,加上少量整流元件,就可以实现无数级输出,电路简单,容易扩展,成本低,与传统实现副边均流的方案相比,本发明无需额外的用于均流的磁元件,只需电容,变压器可以扩展到无数级,并实现无数级均流,因此能实现无数级输出之间的精确恒流、电路简单、容易扩展、成本较低、能减小体积。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统技术中二极管串联耦合电感的均流电路的电路结构示意图;
图2为传统技术中副边串联隔直电容的两路均流电路的电路结构示意图;
图3为传统技术中采用辅助耦合电感的四路均流输出整流电路的电路结构示意图;
图4为传统技术中变压器原边串联的实现副边均流电路的电路结构示意图;
图5为本发明无数级电流输出的LED照明驱动电路第一实施例中三路恒流输出的整流电路的电路结构示意图;
图6为第二实施例中改进型三路恒流输出的整流电路的电路结构示意图;
图7为第三实施例中四路恒流输出的整流电路的电路结构示意图;
图8为第四实施例中改进型n+1路恒流输出的整流电路的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图5为本发明无数级电流输出的LED照明驱动电路第一实施例中三路恒流输出的整流电路的电路结构示意图。第一实施例中,该无数级电流输出的LED照明驱动电路包括一个高频交流源AC和一个变压器T1,高频交流源AC并联在变压器T1的原边绕组Np的两端;变压器T1包括若干个副边绕组Ns1、Ns2、…、Nsn,各相邻副边绕组的一端(接电容端)分别与各自隔直电容Cbn的一端连接,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容 Cbn的另一端通过二极管D(n+1)1与下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接,n为大于0的整数;具体的,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,二极管D(n+1)1的阳极连接下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
设置于变压器T1的第一级副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,二极管D11的阴极连接输出滤波电容CO11的正极,输出滤波电容CO11的负极接输出地,输出滤波电容CO11的两端并联有负载LED1;设置于变压器T1的副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,二极管Dn4的阳极接输出地;
各副边绕组的另一端分别连接一个输出整流电路,每个输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,二极管Dn2的阴极与输出滤波电容COn2的正极连接,二极管Dn3的阳极与输出滤波电容COn2的负极连接,输出滤波电容COn2的负极接输出地,负载LED(n+1)与输出滤波电容COn2并联。
图5中是上述技术方案中当有三路负载输出时的电路图,即图5中的电路能实现负载LED1、负载LED2和负载LED3)的均流输出。图5中的三路恒流输出的整流电路包括一个高频交流源AC、变压器T1、原边绕组Np和两个副边绕组Ns1、Ns2,高频交流源AC并联在原边绕组Np的两端,第一级副边绕组Ns1的同名端接隔直电容Cb1的一端,第一级副边绕组Ns1的另一端接二极管D12的阳极和D13的阴极,二极管D12的阴极连接输出滤波电容CO12的正极,二极管D13的阳极连接输出滤波电容CO12的负极。负载LED2并联在输出滤波电容CO12的两端,输出滤波电容CO12的负极作为输出地。隔直电容Cb1的另一端连接二极管D11的阳极,同时连接二极管D21的阴极;二极管D11的阴极连接输出滤波电容CO11的正极,输出滤波电容CO11的负极接输出地。负载LED1并联在输出滤波电容CO11的两端。
第二级副边绕组Ns2的一端连接隔直电容Cb2的一端,第二级副边绕组Ns2的同名端分别连接二极管D22的阳极和二极管D23的阴极,二极管D22的阴极连接输出滤波电容CO22的正极,输出滤波电容CO22的负极接输出地, 负载LED3并联在输出滤波电容CO22的两端。隔直电容Cb2的另一端分别连接D21的阳极和二极管D24的阴极,二极管D24的阳极接输出地。二极管D21的阴极接二极管D11的阳极。
值得一提的是,高频交流源AC是任意双端励磁的开关逆变拓扑,这样会使电路构建变得较为简单。本第一实施例中,隔直电容Cbn和与之串联的变压器的副边绕组可以互换位置,其不影响电路的性能,从而无需改变电路中其它元件的连接方式。
本发明与传统实现副边均流的方案相比,其无需额外的用于均流的磁元件,只需电容,成本较低,效率较高。采用电容能减小体积,密度高。变压器可以扩展到无数级,并实现无数级均流。也可以采用模块化设计的变压器,实现无数级输出的模块化。
图6为第二实施例中改进型三路恒流输出的整流电路的电路结构示意图,第二实施例中,该无数级电流输出的LED照明驱动电路包括一个高频交流源AC和若干个变压器,高频交流源AC并联在各变压器的原边绕组的两端;各相邻副边绕组的一端(接电容端)分别接各自隔直电容Cbn的一端,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容Cbn的另一端通过二极管D(n+1)1与下一级副边绕组的隔直电容Cb(n+1)的另一端连接,n为大于0的整数,具体的,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,二极管D(n+1)1的阳极连接下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
设置于第一级副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,二极管D11的阴极连接输出滤波电容CO11的正极,输出滤波电容CO11的负极接输出地,输出滤波电容CO11的两端并联有负载LED1,设置于副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,二极管Dn4的阳极接输出地。
各副边绕组的另一端分别连接一个输出整流电路,每个输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),变压器T1的副边绕组Nsn的另一端分别与二极管Dn2的阳极和二极管Dn3的阴极连接,二极管Dn2的阴极与输出滤波电容COn2的正极连接,二极管Dn3的阳极 与输出滤波电容COn2的负极连接,输出滤波电容COn2的负极接输出地,负载LED(n+1)与输出滤波电容COn2并联。
图6中的技术方案是为图5的一种改进,图6中,两个独立的变压器T1和T2的原边绕组Np1和Np2各自并联在高频交流源AC的两端,便于变压器的模块化和标准化设计,通过并联变压器的数量和相应辅助元件的增减来灵活满足输出路数的改变,无需修改主变压器的参数。
图6中的改进型三路恒流输出的整流电路包括一个高频交流源AC、变压器T1和变压器T2,变压器T1的原边绕组Np1,变压器T2的原边绕组Np2,变压器T1的副边绕组为Ns1和变压器T2的副边绕组Ns2,高频交流源AC并联在变压器T1的原边绕组Np1和变压器T2的原边绕组Np2的两端,变压器T1的副边绕组为Ns1的同名端连接隔直电容Cb1的一端,另一端接连接二极管D12的阳极和二极管D12的阴极,二极管D12的阴极连接输出滤波电容CO12的正极,二极管D13的阳极连接输出滤波电容CO12的负极。负载LED2并联在输出滤波电容CO12的两端,输出滤波电容CO12的负极作为输出地。隔直电容Cb1的另一端连接二极管D11的阳极,同时连接二极管D21的阴极;二极管D11的阴极连接输出滤波电容CO11的正极,输出滤波电容CO11的负极接到输出地,负载LED1并联在输出滤波电容CO11的两端。
变压器T2的副边绕组Ns2的一端连接隔直电容Cb2的一端,变压器T2的副边绕组Ns2的同名端连接二极管D22的阳极和二极管D23的阴极,二极管D22的阴极连接输出滤波电容CO22的正极,输出滤波电容CO22的负极接输出地,负载LED3并联在输出滤波电容CO22的两端。隔直电容Cb2的另一端连接二极管D21的阳极和二极管D24的阴极,二极管D24的阳极接输出地,二极管D21的阴极连接二极管D11的阳极。
图7为第三实施例中四路恒流输出的整流电路的电路结构示意图,第三实施例中,该无数级电流输出的LED照明驱动电路包括一个高频交流源AC和一个变压器T1,高频交流源AC并联在变压器T1的原边绕组Np的两端;变压器T1包括若干个副边绕组Ns1、Ns2、…、Nsn,各相邻副边绕组的一端为分别连接一个第一输出整流电路;第一输出整流电路均包括隔直电容Cbn、二极管Dn1、输出滤波电容COn1和负载LED(2n-1),n为大于0的整数,隔直电容Cbn的 一端连接变压器T1的副边绕组Nsn的一端,隔直电容Cbn的另一端与二极管Dn1的阳极连接,二极管Dn1的阴极与输出滤波电容COn1的正极连接,输出滤波电容COn1的负极接到上一级的第一输出整流电路中二极管D(n-1)1的阳极,负载LED(2n-1)并联在输出滤波电容COn1的两端。
第一级的第一输出整流电路中的输出滤波电容CO11的负极接输出地,最后一级的第一输出整流电路中的二极管Dn1的阳极还连接二极管Dn4的阴极,二极管Dn4的阳极接输出地。
各副边绕组的另一端分别接一个第二输出整流电路,第二输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),变压器T1的副边绕组Nsn的另一端分别与二极管Dn2的阳极和二极管Dn3的阴极连接,二极管Dn2的阴极与输出滤波电容COn2的正极连接,二极管Dn3的阳极与输出滤波电容COn2的负极连接,输出滤波电容COn2的负极接输出地,负载LED(n+1)与输出滤波电容COn2并联。
图7中的技术方案作为图5的另一种改进,解决四路负载的均流问题,即解决负载LED1、负载LED2、负载LED3和负载LED4的均流问题。图7的中四路恒流输出的整流电路包括一个高频交流源AC、变压器T1、原边绕组Np和两个副边绕组Ns1、Ns2,高频交流源AC并联在变压器T1的原边绕组Np的两端,变压器T1的副边绕组Ns1的同名端连接隔直电容Cb1的一端,变压器T1的副边绕组Ns1的另一端分别连接二极管D12的阳极和二极管D13的阴极,二极管D12的阴极连接输出滤波电容CO12的正极,二极管D13的阳极连接输出滤波电容CO12的负极。负载LED2并联在输出滤波电容CO12的两端,输出滤波电容CO12的负极作为输出地。隔直电容Cb1的另一端连接二极管D11的阳极;二极管D11的阴极接到输出滤波电容CO11的正极,输出滤波电容CO11的负极接到出地,负载LED1并联在输出滤波电容CO11的两端。
变压器T1的副边绕组Ns2的一端连接隔直电容Cb2的一端,变压器T1的副边绕组Ns2的同名端分别连接二极管D22的阳极和二极管D23的阴极,二极管D22的阴极连接输出滤波电容CO22的正极,输出滤波电容CO22的负极接输出地,负载LED3并联在输出滤波电容CO22的两端。隔直电容Cb2的另一端分别二极管D21的阳极和二极管D24的阴极,二极管D24的阳极接输 出地。二极管D21的阴极连接输出滤波电容CO21的正极,输出滤波电容CO21的负极连接二极管D11的阳极。负载LED3并联在输出滤波电容CO21的两端。
图8为第四实施例中改进型n+1路恒流输出的整流电路的电路结构示意图,图8中的技术方案作为图6的一种改进,解决n+1路负载LED输出的均流问题。图8中的改进型n+1路恒流输出的整流电路包括一个高频交流源AC、n个变压器T1、T2、…、Tn,变压器T1的原边绕组Np1,变压器T2的原边绕组Np2,变压器Tn的原边绕组Npn,变压器T1的副边绕组Ns1,变压器T2的副边绕组Ns2,以及变压器Tn的副边绕组Nsn。高频交流源AC并联在所有变压器的原边绕组Np1、Np2、…、Npn的两端。
变压器T1的副边绕组Ns1的同名端连接隔直电容Cb1的一端,变压器T1的副边绕组Ns1的另一端分别连接二极管D12的阳极和二极管D13的阴极,二极管D12的阴极连接输出滤波电容CO12的正极,二极管D13的阳极连接CO12的负极。负载LED2并联在输出滤波电容CO12的两端,输出滤波电容CO12的负极作为输出地。隔直电容Cb1的另一端连接二极管D11的阳极,同时连接二极管D21的阴极;二极管D11的阴极连接输出滤波电容CO11的正极,输出滤波电容CO11的负极接输出地。负载LED1并联在输出滤波电容CO11的两端。变压器T2的副边绕组Ns2的非同名端连接隔直电容Cb2的一端,变压器T2的副边绕组Ns2的同名端分别连接二极管D22的阳极和二极管D23的阴极,二极管D22的阴极连接输出滤波电容CO22的正极,输出滤波电容CO22的负极接输出地,负载LED3并联在输出滤波电容CO22的两端。隔直电容Cb2的另一端连接二极管D21的阳极和下一级电路中二极管Dn1的阴极。
以此连接方式类推第n个绕组对应的第n+1路输出的连接,同时变压器Tn的副边绕组Nsn与变压器Tn-1的副边绕组Ns(n-1)的连接隔直电容Cbn与隔直电容Cb(n-1)的一端是同名端与非同名端交替出现;最后一级电路中的二极管Dn1的阳极连接最后一级电路中二极管Dn4的阴极,二极管Dn4的阳极接输出地。
第一输出整流电路中的负载为LED(2n-1);作为一种对此前所述的方案的变形,可以将该负载LED(2n-1)与二极管Dn1互换位置。
总之,本发明通过多个电容之间的电荷互换和各电容的安秒平衡的原理,实现无数级输出之间的精确恒流。只需在主变压器的输出侧增加多个绕组,加上少量整流元件,就可以实现无数级输出,电路较为简单,容易扩展,成本较低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种无数级电流输出的LED照明驱动电路,其特征在于,包括一个高频交流源AC和一个变压器T1,所述高频交流源AC并联在所述变压器T1的原边绕组Np的两端;所述变压器T1包括若干个副边绕组,各相邻副边绕组的一端分别与各自隔直电容Cbn的一端连接,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容Cbn的另一端通过二极管D(n+1)1与下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接,所述n为大于0的整数;
    设置于所述变压器T1的副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,所述二极管D11的阴极连接输出滤波电容CO11的正极,所述输出滤波电容CO11的负极接输出地,所述输出滤波电容CO11的两端并联有负载LED1;设置于所述变压器T1的副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
    各副边绕组的另一端分别连接一个输出整流电路,每个所述输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
  2. 根据权利要求1所述的无数级电流输出的LED照明驱动电路,其特征在于,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,所述二极管D(n+1)1的阳极连接所述下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
  3. 一种无数级电流输出的LED照明驱动电路,其特征在于,包括一个高频交流源AC和若干个变压器,所述高频交流源AC并联在各变压器的原边绕组的两端;各相邻副边绕组的一端分别接各自隔直电容Cbn的一端,且相邻副边绕组的一端以同名端与非同名端交替出现;各隔直电容Cbn的另一端通过二极管D(n+1)1与下一级副边绕组的隔直电容Cb(n+1)的另一端连接,所述n为大于0的整数;
    设置于副边绕组Ns1侧的隔直电容Cb1的另一端还连接二极管D11的阳极,所述二极管D11的阴极连接输出滤波电容CO11的正极,所述输出滤波电容CO11的负极接输出地,所述输出滤波电容CO11的两端并联有负载LED1,设置于副边绕组Nsn侧的隔直电容Cbn的另一端连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
    各副边绕组的另一端分别连接一个输出整流电路,每个所述输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
  4. 根据权利要求3所述的无数级电流输出的LED照明驱动电路,其特征在于,各隔直电容Cbn的另一端与所述二极管D(n+1)1的阴极连接,所述二极管D(n+1)1的阳极连接所述下一级副边绕组Ns(n+1)侧的隔直电容Cb(n+1)的另一端连接。
  5. 一种无数级电流输出的LED照明驱动电路,其特征在于,包括一个高频交流源AC和一个变压器T1,所述高频交流源AC并联在所述变压器T1的原边绕组Np的两端;所述变压器T1包括若干个副边绕组,各相邻副边绕组的一端为分别连接一个第一输出整流电路;所述第一输出整流电路均包括隔直电容Cbn、二极管Dn1、输出滤波电容COn1和负载LED(2n-1),所述n为大于0的整数,所述隔直电容Cbn的一端连接所述变压器T1的副边绕组Nsn的一端,所述隔直电容Cbn的另一端与所述二极管Dn1的阳极连接,所述二极管Dn1的阴极与所述输出滤波电容COn1的正极连接,所述输出滤波电容COn1的负极接到上一级的第一输出整流电路中二极管D(n-1)1的阳极,所述负载LED(2n-1)并联在所述输出滤波电容COn1的两端;
    第一级的第一输出整流电路中的输出滤波电容CO11的负极接输出地,最后一级的第一输出整流电路中的二极管Dn1的阳极还连接二极管Dn4的阴极,所述二极管Dn4的阳极接输出地;
    各副边绕组的另一端分别接一个第二输出整流电路,所述第二输出整流电路均包括二极管Dn2、二极管Dn3、输出滤波电容COn2和负载LED(n+1),所述变压器T1的副边绕组Nsn的另一端分别与所述二极管Dn2的阳极和二极管Dn3的阴极连接,所述二极管Dn2的阴极与所述输出滤波电容COn2的正极连接,所述二极管Dn3的阳极与所述输出滤波电容COn2的负极连接,所述输出滤波电容COn2的负极接输出地,所述负载LED(n+1)与所述输出滤波电容COn2并联。
  6. 根据权利要求5所述的无数级电流输出的LED照明驱动电路,其特征在于,所述高频交流源AC是任意双端励磁的开关逆变拓扑。
PCT/CN2017/119908 2017-08-02 2017-12-29 无数级电流输出的led照明驱动电路 WO2019024417A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710652301.6A CN109392210A (zh) 2017-08-02 2017-08-02 无数级电流输出的led照明驱动电路
CN201710652301.6 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019024417A1 true WO2019024417A1 (zh) 2019-02-07

Family

ID=65232691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119908 WO2019024417A1 (zh) 2017-08-02 2017-12-29 无数级电流输出的led照明驱动电路

Country Status (2)

Country Link
CN (1) CN109392210A (zh)
WO (1) WO2019024417A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896798A (zh) * 2020-08-04 2020-11-06 中车青岛四方车辆研究所有限公司 辅助变流器输出不平衡功率检测方法及装置
CN113179568A (zh) * 2021-04-09 2021-07-27 深圳市立创普电源技术有限公司 一种多输出恒流控制电路及驱动电源
CN113709941A (zh) * 2021-09-09 2021-11-26 深圳市优仕拓科技有限公司 一种高pf值非隔离多路智能电源的电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772246A (zh) * 2010-02-24 2010-07-07 英飞特电子(杭州)有限公司 适用于多路led精确恒流驱动的多谐振电路
CN101778506A (zh) * 2009-12-28 2010-07-14 英飞特电子(杭州)有限公司 一种实现多路led精确恒流的驱动电路
CN102299633A (zh) * 2010-06-24 2011-12-28 英飞特电子(杭州)有限公司 一种dc-dc变换电路
CN102548151A (zh) * 2012-01-13 2012-07-04 浙江大学 实现多路恒定电流输出的led驱动器
CN102595725A (zh) * 2012-02-13 2012-07-18 浙江大学 一种实现精确均流的多路led驱动电路
WO2016028224A1 (en) * 2014-08-18 2016-02-25 National University Of Singapore Single-stage multi-string led driver with dimming

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778506A (zh) * 2009-12-28 2010-07-14 英飞特电子(杭州)有限公司 一种实现多路led精确恒流的驱动电路
CN101772246A (zh) * 2010-02-24 2010-07-07 英飞特电子(杭州)有限公司 适用于多路led精确恒流驱动的多谐振电路
CN102299633A (zh) * 2010-06-24 2011-12-28 英飞特电子(杭州)有限公司 一种dc-dc变换电路
CN102548151A (zh) * 2012-01-13 2012-07-04 浙江大学 实现多路恒定电流输出的led驱动器
CN102595725A (zh) * 2012-02-13 2012-07-18 浙江大学 一种实现精确均流的多路led驱动电路
WO2016028224A1 (en) * 2014-08-18 2016-02-25 National University Of Singapore Single-stage multi-string led driver with dimming

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896798A (zh) * 2020-08-04 2020-11-06 中车青岛四方车辆研究所有限公司 辅助变流器输出不平衡功率检测方法及装置
CN111896798B (zh) * 2020-08-04 2022-12-09 中车青岛四方车辆研究所有限公司 辅助变流器输出不平衡功率检测方法及装置
CN113179568A (zh) * 2021-04-09 2021-07-27 深圳市立创普电源技术有限公司 一种多输出恒流控制电路及驱动电源
CN113709941A (zh) * 2021-09-09 2021-11-26 深圳市优仕拓科技有限公司 一种高pf值非隔离多路智能电源的电路
CN113709941B (zh) * 2021-09-09 2024-03-08 深圳市优仕拓科技有限公司 一种高pf值非隔离多路智能电源的电路

Also Published As

Publication number Publication date
CN109392210A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
US8836228B2 (en) Non-isolated resonant converter
US8847506B2 (en) Multi-output current-balancing circuit
Tang et al. Hybrid switched-inductor converters for high step-up conversion
US9155141B2 (en) Multi-path constant current driving circuit
US8866394B2 (en) Drive circuit for realizing accurate constant current of multiple LEDs
US8760063B2 (en) Multi-output self-balancing power circuit
EP2884646B1 (en) Multiple-output DC/DC converter and power supply having the same
CN105720840B (zh) 功率变换装置及其设置方法
CN101707838B (zh) 一种适用于非隔离变换器的多路led恒流驱动电路
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
CN109842299B (zh) 组合式直流变换系统及其控制方法
WO2019024417A1 (zh) 无数级电流输出的led照明驱动电路
CN112054687A (zh) 一种多路均流的llc谐振变换器
US20140192562A1 (en) Single stage ac/dc converter
CN103337968A (zh) 单级高频ac/ac变换器
de Paula et al. An extensive review of nonisolated DC-DC boost-based converters
CN107171563B (zh) 紧调整输出的组合变流器
CN102548151B (zh) 实现多路恒定电流输出的led驱动器
CN111525821A (zh) 一种新型pfc整流电路
CN102595725B (zh) 一种实现精确均流的多路led驱动电路
CN113890380B (zh) 一种dc-dc变换电路
CN110012574A (zh) 一种混合控制单级无桥Sepic和LLC的LED驱动电路
CN201585179U (zh) 一种适用于非隔离变换器的多路led恒流驱动电路
CN113691141A (zh) 一种dc-dc变换器拓扑结构
CN112165266A (zh) 开关电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920258

Country of ref document: EP

Kind code of ref document: A1