WO2011058941A1 - Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module - Google Patents

Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module Download PDF

Info

Publication number
WO2011058941A1
WO2011058941A1 PCT/JP2010/069803 JP2010069803W WO2011058941A1 WO 2011058941 A1 WO2011058941 A1 WO 2011058941A1 JP 2010069803 W JP2010069803 W JP 2010069803W WO 2011058941 A1 WO2011058941 A1 WO 2011058941A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
light
frame
mounting substrate
conversion element
Prior art date
Application number
PCT/JP2010/069803
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 川畑
植田 義明
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009257374A external-priority patent/JP2011103351A/en
Priority claimed from JP2009262670A external-priority patent/JP2011108866A/en
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2011058941A1 publication Critical patent/WO2011058941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion device, a photoelectric conversion element storage package, and a photoelectric conversion module using the photoelectric conversion device.
  • the photoelectric conversion element is a solar cell element that converts solar energy into electric power.
  • a structure for efficiently irradiating condensed solar light onto a solar cell element is disclosed.
  • the solar cell device proposed in Patent Document 1 includes a substrate on which a photovoltaic cell for photoelectric conversion is mounted, a condensing lens that collects sunlight on the photovoltaic cell on the substrate, and an outer periphery of the photovoltaic cell. And a solar cell device provided with a lens support frame connected to a condensing lens.
  • the lens support frame and the like may be affected by heat due to the generation of heat of the substrate on which the solar cells are mounted.
  • a photoelectric conversion device includes an element mounting substrate over which a conductive layer is provided, and a plurality of photoelectric transistors provided on the element mounting substrate and electrically connected to the conductive layer.
  • FIG. 3 is a cross-sectional view of the photoelectric conversion device shown in FIG. 2 taken along line AA.
  • the photoelectric conversion apparatus shown in FIG. 2 the light condensing material and the frame are omitted, and the photoelectric conversion element is mounted in a plan view.
  • FIG. 8 is a cross-sectional view of the photoelectric conversion device shown in FIG. 7 taken along line BB. It is a general-view perspective view of the photoelectric conversion apparatus which concerns on the modification 3 of 1st Embodiment. It is a disassembled perspective view which shows the external appearance of the photoelectric conversion apparatus shown in FIG.
  • FIG. 1 is an exploded perspective view showing an overview of the photoelectric conversion module 1 according to the first embodiment of the present invention.
  • 2 is a schematic perspective view of the photoelectric conversion device 2 shown in FIG.
  • FIG. 3 is a schematic perspective view of the photoelectric conversion device 2 showing a state where the condensing member is unbonded.
  • FIG. 4 is a cross-sectional view of the photoelectric conversion device 2.
  • FIG. 5 is a plan view of the photoelectric conversion device 2 in a state in which the light condensing material and the frame are omitted and a photoelectric conversion element is mounted.
  • the photoelectric conversion module 1 is a solar power generation module that converts solar energy into electric power.
  • the photoelectric conversion apparatus 2 includes a photoelectric conversion element 9 that converts light energy into electric power.
  • the photoelectric conversion element 9 is a solar cell element having a function of converting solar energy into electric power.
  • the photoelectric conversion module 1 includes a plurality of photoelectric conversion devices 2, a light receiving material 3 provided above the plurality of photoelectric conversion devices 2, and an external substrate 4.
  • the light receiving material 3 has a function of collecting light received from the outside and collecting the received light on the light collecting material 10.
  • the light receiving member 3 is configured by fixing a plurality of lens members 3b to a rectangular frame member 3a.
  • the lens member 3b of the light receiving material 3 is, for example, a dome-shaped Fresnel lens, and is made of a resin material having excellent optical characteristics such as acrylic resin.
  • the plurality of photoelectric conversion devices 2 are fixed to the external substrate 4.
  • the light receiving material 3 covers the plurality of photoelectric conversion devices 2 fixed to the external substrate 4.
  • the external substrate 4 has a function of dissipating heat generated from the element mounting substrate 5 of the photoelectric conversion device 2.
  • the external substrate 4 is made of a metal material such as aluminum, copper, or a carbon-metal composite material.
  • the thermal conductivity of the external substrate 4 is set to, for example, 100 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the light incident on the light receiving material 3 is collected at the upper end of the light collecting material 10 of the photoelectric conversion device 2. That is, the light condensing material 10 has a function of guiding the light collected by the light receiving material 3 to the photoelectric conversion element 9.
  • the light incident on the light collecting material 10 travels from the upper part to the lower part of the light collecting material 10 while being repeatedly reflected inside the light collecting material 10, and passes from the lower part of the light collecting material 10 to the light receiving surface on the upper surface of the photoelectric conversion element 9. Incident.
  • the photoelectric conversion element 9 converts light energy into electric power.
  • the photoelectric conversion device 2 is provided on the element mounting substrate 5 provided with the conductive layer 7, and provided on the element mounting substrate 5 and electrically connected to the conductive layer 7.
  • a light collecting material 10 disposed so as to correspond to each of the elements 9.
  • the element mounting substrate 5 is a member formed in a rectangular shape when seen in a plan view.
  • the element mounting substrate 5 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or glass.
  • Made of ceramic material such as ceramic. Alternatively, it is composed of a composite system in which a plurality of these materials are mixed.
  • the thermal conductivity of the element mounting substrate 5 is set to, for example, 15 W / (m ⁇ K) or more and 250 W / (m ⁇ K) or less.
  • the element mounting substrate 5 can be composed of an aluminum oxide sintered body, an aluminum nitride sintered body, or the like having a high thermal conductivity in order to suppress heat conduction to the frame body 6. Note that the shape when viewed in plan is not limited to a rectangular shape, and may be a circular shape or the like.
  • a conductive layer 7 on which the photoelectric conversion element 9 is mounted is provided on the element mounting substrate 5 so as to extend in the longitudinal direction of the element mounting substrate 5.
  • the conductive layer 7 is provided so as to extend to the inner and outer regions of the frame 6.
  • One photoelectric conversion element 9 is mounted on one conductive layer 7 and at least one of the electrodes on the upper surface is connected to the adjacent conductive layer 7 by a conductive wire.
  • the conductive layer 7 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, chromium, tungsten, molybdenum, or manganese, or an alloy thereof, for example, using a screen printing method. Is formed.
  • the frame body 6 is provided so as to surround the element mounting substrate 5 on which the photoelectric conversion element 9 is mounted in an annular shape. Further, the frame body 6 has frame portions 6 b that surround the plurality of photoelectric conversion elements 9.
  • the frame 6 has an opening A1 formed by the frame 6b. At least a part of the light collector 10 is fitted into the opening A1.
  • the frame bodies 6 each having one frame portion 6b are arranged for the three photoelectric conversion elements 9, but the present invention is not limited thereto. For example, one frame body 6 having a plurality of frame portions 6b surrounding each of the plurality of photoelectric conversion elements 9 may be arranged.
  • the frame 6 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic. It consists of ceramic materials such as. Alternatively, the frame 6 is composed of a composite system in which a plurality of these materials are mixed.
  • the thermal conductivity of the frame 6 is set to, for example, 15 W / (m ⁇ K) or more and 30 W / (m ⁇ K) or less.
  • the element mounting substrate 5 can suppress the heat conduction to the frame body 6 by making the thermal conductivity larger than the thermal conductivity of the frame body 6, and the joint portion between the frame body 6 and the light collector 10. Is less susceptible to heat.
  • the thermal expansion coefficient of the frame 6 is set to, for example, 3 (ppm / ° C.) or more and 10 (ppm / ° C.) or less.
  • the frame 6 is a member formed in a rectangular shape when viewed in plan, but is not limited to a rectangular shape, and may be formed in a circular shape or the like.
  • the frame 6 has a function of supporting the light collector 10. At least a part of the light collector 10 is fitted into the opening A1 of the frame 6 and joined by the frame 6b.
  • the frame body 6 has a support portion 6 a having an inclined surface that is inclined in a direction in which the inner wall surface of the frame body 6 is lowered from the upper surface of the frame body 6 to the entire circumference of the frame body 6. And it is joined to the side surface of the light collector 10.
  • the shape of the inclined surface of the support portion 6 a of the frame body 6 is formed in accordance with the inclined shape of the light collector 10.
  • the frame body 6 and the light collector 10 are joined to each other at the inclined surface of the support portion 6a of the frame body 6, the both sides are smoothly joined, and the light collector 10 is scratched. It is difficult, and both can be favorably joined. As a result, the condensing material 10 can suppress the change in the traveling direction of the light guided to the photoelectric conversion element 9 due to scratches or the like, and can improve the light condensing property.
  • the support part 6a of the frame 6 is not limited to the inclined surface, and may have a notch from the upper surface of the frame 6 to the inner wall surface.
  • the support portion 6 a of the frame body 6 is provided with a metallized layer for joining with the light collector 10.
  • the metallized layer is formed of a metal material such as tungsten, molybdenum, or manganese by using, for example, a screen printing method. The detailed configuration of the light collector 10 will be described later.
  • the photoelectric conversion element 9 is, for example, a solar cell element containing a III-V group compound semiconductor.
  • the photoelectric conversion element 9 can immediately convert the received light energy into electric power and output it by the photovoltaic effect.
  • the solar cell element has an InGaP / GaAs / Ge3 junction type cell structure.
  • the indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less.
  • the gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm.
  • the germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm.
  • the three cells are connected in series via a tunnel junction.
  • the open circuit voltage is the sum of the electromotive voltages of the three cells.
  • the lower surface electrode of the photoelectric conversion element 9 is formed on the lower surface of the photoelectric conversion element 9.
  • the lower surface electrode is formed of, for example, silver, aluminum or the like, and is mounted on the conductive layer 7 provided on the element mounting substrate 5 via a bonding material such as low melting point solder or conductive epoxy resin. 7 is electrically connected.
  • three photoelectric conversion elements 9 are mounted on one element mounting substrate 5, but the number of photoelectric conversion elements 9 is not limited to this, and the number of photoelectric conversion elements 9 is two or more. It is good.
  • the upper surface electrode of the photoelectric conversion element 9 is provided on the upper surface of the photoelectric conversion element 9.
  • the conductive layer 7 is provided so as to extend in the longitudinal direction of the element mounting substrate 5, and further branched into two regions in the longitudinal direction.
  • the upper surface electrode of the photoelectric conversion element 9 is formed of, for example, silver, aluminum or the like, and is electrically connected in series with the conductive layer 7 and the conductive wire in the first connection region S1 and the second connection region S2 of the conductive layer 7. It may be connected to. Since the conductive layer 7 is formed of two regions, the first connection region S1 and the second connection region S2, the photoelectric conversion device 2 radiates heat generated in the photoelectric conversion element 9 to the two regions. Therefore, the generated heat can be effectively radiated.
  • the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 are connected to the first connection region S1 and the second connection region S2 at a total of six locations, each with a conductive wire.
  • the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 may be connected in a total of four places, each of two places in the first connection region S1 and the second connection region S2.
  • the connection location between the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 can be appropriately selected. By making the number of connection points more than one, the current per wire of the conductive wire is reduced and the generation of heat is suppressed. As a result, the conductive wire can improve reliability.
  • the conductive layer 7 is provided with a region connected by a conductive wire branched into two regions, a first connection region S1 and a second connection region S2.
  • the photoelectric conversion device 2 is electrically connected to the photoelectric conversion element 9 at the connection location of the second connection region S2. Since it is maintained, it is suppressed that it becomes a defect.
  • the photoelectric conversion device 2 can have a plurality of connection points between the upper electrode of the photoelectric conversion element 9 and the conductive layer 7.
  • the conductive layer 7 is electrically connected to the first output terminal 8a and the second output terminal 8b through a bonding material.
  • the first output terminal 8 and the second output terminal 8b are made of, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy.
  • the bonding material is made of, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
  • the first output terminal 8a functions as a positive electrode.
  • the second output terminal 8b functions as a negative electrode.
  • the photoelectric conversion element 9 is electrically connected to the first output terminal 8a and the second output terminal 8b, and electricity is output to the outside through the first output terminal 8a and the second output terminal 8b. It can be taken out.
  • the light condensing material 10 has a function of condensing light on the photoelectric conversion element 9, and in cross-section, the width becomes narrower from the upper part of the light condensing material 10 toward the photoelectric conversion element 9, and the cross-sectional area becomes larger. It is an inverted truncated pyramid shape.
  • the light reaching the light collector 10 is repeatedly reflected at the interface between the inside and the outside of the light collector 10.
  • the light collector 10 has a function of equalizing the intensity distribution of the light energy in the cross-sectional area by reflection in the process toward the photoelectric conversion element 9.
  • a metal thin film may be provided around the light collecting member 10 as a reflective member having a function of reflecting sunlight by, for example, a thin film forming technique such as vapor deposition.
  • the light collecting material 10 includes a first light collecting material 10a, a second light collecting material 10b, and a third light collecting material 10c.
  • the light condensing material 10 has translucency and has a function of guiding light from the light receiving material 3 to the photoelectric conversion element 9.
  • the translucency of the condensing material 10 means that light contained in at least a part of the wavelength region of sunlight can be transmitted when the photoelectric conversion element 9 is a solar cell element.
  • the light collector 10 is made of, for example, borosilicate glass, plastic, or translucent resin.
  • the side surfaces of the first to third light collecting materials 10 a, 10 b, and 10 c of the light collecting material 10 are formed with metal layers over the entire circumference at positions where they are joined to the support portion 6 a of the frame 6.
  • the metal layer is formed by a thin film forming technique such as a vapor deposition method or a sputtering method.
  • the metal layer is made of a metal material such as titanium, platinum, gold, chromium, nickel, gold, silver, copper, or an alloy thereof.
  • the first to third light-collecting materials 10a, 10b, and 10c of the light-collecting material 10 have side surface metal layers, for example, via a bonding member 11 made of a brazing material, solder, low-melting glass, epoxy resin, or the like.
  • the entire periphery of the frame body 6 is joined by the inclined surface of the support portion 6 a of the frame body 6.
  • the joining method is, for example, a method such as brazing, solder joining, or resin joining.
  • the brazing material is made of, for example, silver-copper brazing.
  • the solder is made of gold-tin, gold-germanium, tin-lead, or the like.
  • the low melting point glass means a glass having a glass transition point of 600 ° C. or lower.
  • the joining area of the frame 6 and the condensing material 10 can be made small by joining the frame 6 and the condensing material 10 only by the support part 6a of the frame 6.
  • the condensing material 10 can reduce the compressive stress from the frame 6 to the condensing material 10 and suppress the positional deviation of the irradiation light to the photoelectric conversion element 9 due to the change in the refractive index of the condensing material 10. Light condensing property can be improved.
  • the light collector 10 is fitted into the opening A1 of the frame 6b of the frame 6 and arranged.
  • the light collecting member 10 is joined by the support portion 6 a of the frame portion 6 b of the frame body 6.
  • the frame 6 can adjust the height from the photoelectric conversion element 9 to the light condensing material 10 by adjusting the diameter of the opening A1, and the height from the photoelectric conversion element 9 to the lower surface of the light condensing material 10 can be adjusted. Can be easily set to a predetermined height.
  • the light condensing material 10 can suppress the positional shift in the height direction of the irradiation light to the photoelectric conversion element 9, and can improve the light condensing efficiency.
  • the photoelectric conversion device 2 may raise the height from the photoelectric conversion element 9 to the light condensing material 10 to a predetermined height in order to efficiently collect the irradiation light incident on the photoelectric conversion element 9 from the light condensing material 10. it can.
  • the light collector 10 is joined over the entire circumference of the frame 6b of the frame 6. And the some condensing material 10 is arrange
  • the plurality of photoelectric conversion elements 9 are provided in a space SP surrounded by the element mounting base 5, the frame body 6, and the plurality of light collectors 10 and hermetically sealed. Since the photoelectric conversion device 2 is hermetically sealed by providing the photoelectric conversion element 9 in the space SP, the moisture resistance is improved, and the photoelectric conversion element 9 can be operated with reliability over a long period of time.
  • the light collector 10 only needs to have a function of equalizing the intensity distribution of the light energy in the cross-sectional area by reflection of light.
  • the shape of the light collector 10 may be an inverted truncated cone shape whose cross-sectional area decreases from the upper part toward the lower part toward the photoelectric conversion element 9. Condensing efficiency can be improved by forming the shape of the condensing material 10 according to the shape of the light receiving surface of the photoelectric conversion element 9. For example, if the light receiving surface of the photoelectric conversion element 9 is circular, the shape of the light condensing material 10 can be an inverted truncated cone shape.
  • the shape of the condensing material 10 can be an inverted truncated pyramid shape. That is, the condensing material 10 has a lower outer edge shape similar to the outer edge shape of the photoelectric conversion element 9, and when viewed in plan, the photoelectric conversion element 9 has an inner shape of the lower outer edge shape of the light collecting material 10. The outer edge shape should just be located. Note that the shape of the frame 6 can be formed in accordance with the shape of the light collector 10.
  • the photoelectric conversion device 2 since the photoelectric conversion device 2 has the plurality of photoelectric conversion elements 9 mounted on the same element mounting substrate 5, the heat generated by each photoelectric conversion element 9 is effectively reduced. It can dissipate heat. In addition, a uniform temperature distribution can be obtained throughout the element mounting substrate 5.
  • the bonding member 11 between the frame body 6 and the light collecting material 10 is affected by local heat. As a result, the bonded state is impaired, and the light collector 10 may be displaced.
  • the photoelectric conversion device 2 has a plurality of photoelectric conversion elements 9 mounted on the same element mounting substrate 5. Therefore, the heat around the plurality of photoelectric conversion elements 9 is effectively radiated to the entire element mounting substrate 5, and a uniform temperature distribution can be obtained throughout the element mounting substrate 5.
  • the photoelectric conversion device 2 can effectively dissipate local heat generation to the element mounting substrate 5, the joint between the frame body 6 and the light condensing material 10 is not easily affected by heat, and the light condensing material 10 Is suppressed. As a result, the photoelectric conversion device 2 can suppress the positional deviation of the irradiation light from the light condensing material 10 to the photoelectric conversion element 9, and can improve the light condensing property.
  • the photoelectric conversion device 2 when the sunlight that has been collected by the light condensing material 10 is irradiated in a large amount locally in a state that is shifted in the region other than the photoelectric conversion element 9, the photoelectric conversion device 2 has a local region. As a result, the temperature of the element mounting substrate 5 rises.
  • the photoelectric conversion device 2 since the photoelectric conversion device 2 is composed of the same element mounting substrate 5, the sunlight condensed by the light condensing material 10 is shifted in a region other than the photoelectric conversion element 9. Even if it is irradiated locally, the heat is effectively radiated to the element mounting substrate 5, so that the temperature rise can be suppressed. As a result, the photoelectric conversion device 2 can suppress an increase in the temperature of the element mounting substrate 5 and a decrease in the conversion efficiency of the photoelectric conversion element 9 due to the heat generated due to the misalignment of the concentrated sunlight.
  • the photoelectric conversion element storage package is composed of the element mounting substrate 5 and the frame body 6, and the photoelectric conversion element 9 and the light condensing material 10 are not mounted. That is, the photoelectric conversion element storage package includes an element mounting substrate 5 having a mounting portion on which a plurality of photoelectric conversion elements 9 are mounted, and a frame portion 6b provided so as to surround each mounting portion on the element mounting substrate 5. And a frame body 6 having. The frame 6 is joined to a light condensing material 10 that is to be provided at a position above the planned mounting position of the photoelectric conversion element 9.
  • the photoelectric conversion device 2 a plurality of photoelectric conversion elements 9 are mounted on the conductive layer 7 of the element mounting substrate 5 via a bonding material such as solder or resin, and the photoelectric conversion elements 9 are further mounted on the frame 6.
  • the light condensing material 10 is provided above through a space.
  • the photoelectric conversion device 2 is provided with the photoelectric conversion element 9 and the light condensing material 10.
  • the photoelectric conversion device 2 is composed of a plurality of photoelectric conversion elements 9, so that the photoelectric conversion module 1 can be composed of a small number of photoelectric conversion devices 2. And the connection location of the photoelectric conversion apparatuses 2 can be reduced.
  • the element mounting substrate 5 and the frame 6 are prepared.
  • Element mounting substrate 5 and frame 6 are prepared.
  • the element mounting substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Mix to obtain a mixture. And after filling and drying the mixture in the molds of the element mounting substrate 5 and the frame 6, the element mounting substrate 5 and the frame 6 before sintering can be taken out.
  • a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent or the like is added to and mixed with the powder to obtain a metal paste.
  • a metal paste is applied onto the uncured element mounting substrate 5 before firing taken out using, for example, a screen printing method, and the photoelectric conversion element 9, the first output terminal 8a, and the second output terminal 8b.
  • a conductive layer 7 is formed for connection to the.
  • a metal layer is applied to the inclined surface of the support 6a of the uncured frame body 6 before being taken out by applying a metal paste by using, for example, a screen printing method, and joining the side surface of the light collecting material 10.
  • the uncured frame body 6 before firing is placed on the uncured element mounting substrate 5 before firing on which the conductive layer 7 is formed, and the both are brought into close contact with each other. And by baking both at the temperature of about 1600 degreeC simultaneously, the molded object which integrated the element mounting board
  • the photoelectric conversion element 9 is mounted on the conductive layer 7 of the element mounting substrate 5 with, for example, a conductive epoxy resin, and the lower electrode of the photoelectric conversion element 9 is electrically connected. Connect to. Further, the conductive layer 7 surrounded by the frame body 6 is electrically connected to the upper surface electrode of the photoelectric conversion element 9 through a conductive wire.
  • the light collecting material 10 can be produced by a molding technique. Specifically, borosilicate glass is put into the mold of the light collector 10 and heated and pressed to form. Furthermore, the condensing material 10 can be produced by cooling the molded product and taking out the molded product from the mold. And the chromium metal layer is formed in the side surface of the condensing member 10 over the perimeter of the position joined with the support part 6a of the frame 6, for example by a vapor deposition method.
  • first output terminal 8a and the second output terminal 8b made of, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy are electrically connected to the conductive layer 7 with solder or the like. In this way, the photoelectric conversion device 2 can be manufactured.
  • a method for manufacturing the photoelectric conversion module 1 will be described.
  • a plurality of photoelectric conversion devices 2 and an external substrate 4 are prepared.
  • a method of connecting the two photoelectric conversion devices 2 will be described.
  • the first output terminal 8a of one photoelectric conversion element 2 and the second output terminal 8b of the other photoelectric conversion device 2 are fixed on the external substrate 4 with, for example, resin or the like. .
  • the two arranged photoelectric conversion devices 2 are electrically connected through a connection member such as a conductive wire, for example. In this way, the two photoelectric conversion devices are fixed and connected to the external substrate 4.
  • a plurality of photoelectric conversion devices 2 are arranged and fixed on the external substrate 4.
  • the photoelectric conversion module 1 can be produced by providing the light receiving material 3 on the plurality of photoelectric conversion devices 2 arranged on the external substrate 4.
  • the photoelectric conversion device 2 has a configuration in which three photoelectric conversion elements 9 are mounted on the element mounting substrate 5 and each photoelectric conversion element 9 is electrically connected in series. Not limited to this. As shown in FIG. 6, the photoelectric conversion device 2 is provided with a conductive layer 7 on which the photoelectric conversion element 9 is mounted extending in the longitudinal direction of the element mounting substrate 5. The photoelectric conversion device 2 has three photoelectric conversion elements 9 mounted thereon, and the photoelectric conversion elements 9 are electrically connected in parallel in the two areas of the first connection area S1 and the second connection area S2. It is good also as composition to do.
  • each photoelectric conversion element 9 is electrically connected to the conductive layer 7 in parallel with a conductive wire. Therefore, since the photoelectric conversion device 2 can widely form the region of the conductive layer 7 on which the photoelectric conversion element 9 is mounted in the longitudinal direction of the element mounting substrate 5, the heat generated in the photoelectric conversion element 9 can be effectively absorbed. It can dissipate heat. Further, in the photoelectric conversion device 2, since the photoelectric conversion elements 9 are mounted on the same conductive layer 7, the heat generated in the photoelectric conversion elements 9 can be made to have a uniform temperature distribution over the entire element mounting substrate 5. Thus, local heat generation can be effectively radiated to the element mounting substrate 5.
  • the photoelectric conversion device 2 according to the first embodiment has a configuration in which three photoelectric conversion elements 9 are mounted on the element mounting substrate 5 and a frame body 6 is provided for each photoelectric conversion element 9.
  • the photoelectric conversion device 12 has three photoelectric conversion elements 9 mounted on the element mounting substrate 5 and one frame body 16 having three frame portions 16 b.
  • the frame body 16 has a plurality of frame portions 16b.
  • the photoelectric conversion device 12 surrounds the plurality of photoelectric conversion elements 9 with a plurality of frame portions 16 b provided in one frame body 16.
  • the photoelectric conversion apparatus 12 can reduce a manufacturing process by providing one frame body 16 having a plurality of frame portions 16b for a plurality of photoelectric conversion elements 9.
  • the photoelectric conversion device 12 since the photoelectric conversion device 12 includes the single frame body 16, when the frame body 16 is mounted on the element mounting substrate 5, the mounting position of the frame body 16 with respect to the photoelectric conversion element 9 is adjusted by one. Can be done in a single time.
  • the photoelectric conversion device 22 has nine photoelectric conversion elements 9 mounted on the element mounting substrate 5 and one frame body 26 having nine frame portions 26 b. It is good also as a structure. That is, the frame body 26 has a plurality of frame portions 26b.
  • the light collecting material 10 includes a first light collecting material 10a to a ninth light collecting material 10i. Since the pattern of the conductive layer 27 is provided so as to be folded back on the element mounting substrate 25, a plurality of photoelectric conversion elements 9 can be effectively connected. Since the photoelectric conversion module 1 can be comprised with a small number of photoelectric conversion apparatuses 22, the location which connects the photoelectric conversion apparatuses 22 can be reduced. As a result, the photoelectric conversion module 1 can improve connection reliability.
  • the shape of the light collector 10 is changed as compared with the photoelectric conversion device 2 according to the first embodiment.
  • symbol is attached
  • the condensing material 20 has an inverted frustoconical shape in which the outer edge shape of the lower portion 20 a is similar to the outer edge shape of the photoelectric conversion element 9, and the upper portion 20 b is wide from below to above.
  • the outer edge shape of the lower portion 20a of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 are set so as to overlap each other when seen through the plane.
  • the cross section of the upper part 20b of the light condensing material 20 is deformed from a circular shape to a polygonal shape from the upper side to the lower side.
  • the light condensing material 20 has a cross section of the upper part 20b of the light condensing material 20 from a circular shape to a polygonal shape from the top to the bottom so that the upper part 20b has an inverted truncated cone shape and the lower part 20a has a polygonal columnar shape.
  • the lower portion 20a has a polygonal columnar shape.
  • the condensing material 20 can be made into a desired shape by setting the metal mold
  • the lower part 20a of the light condensing material 20 has a polygonal column shape, and is set to a shape that matches the outer edge shape of the photoelectric conversion element 9 when seen through the plane.
  • the upper part 20b of the light condensing material 20 is formed in an inverted truncated cone shape, and the light gathered on the light condensing material 20 via the light receiving material 3 first enters the upper part 20b of the light condensing material 20. As shown in FIG. 11, the light LC that has entered the upper portion 20 b of the light collector 20 converges toward the lower portion 20 a in the upper portion 20 b of the light collector 20 having a circular cross section.
  • the cross section of the upper part 20b of the light condensing material 20 has a corner such as a rectangle, the light LC that has entered the interior of the light condensing material 20 travels toward the lower part 20a.
  • the light condensing member 20 may leak from the inside of the light condensing material 20 to the outside by making the cross section of the upper portion 20b circular. Can be reduced.
  • the photoelectric conversion element Since the light converged on the lower part 20a of the light condensing material 20 is radiated from the entire lower surface of the lower part 20a to the photoelectric conversion element 9, the photoelectric conversion element is located within the outer periphery of the lower part 20a of the light condensing material 20 when viewed in plan. By arranging 9, the entire upper surface of the photoelectric conversion element 9 can be illuminated by the light emitted from the lower portion 20 a.
  • the photoelectric conversion element 9 is disposed within the outer periphery of the lower portion 20a of the light condensing material 20 when seen through the plane, and the photoelectric conversion element 9 and the lower portion 20a of the light collecting material 20 are matched when seen through the plane. be able to.
  • positioning so that both may correspond, the condensing material 20 can irradiate the photoelectric conversion element 9 with the light radiated
  • the light condensing material 20 is excellent in the photoelectric conversion efficiency of the photoelectric conversion device 2 by determining the shape and location of the lower part 20a of the light condensing material 20 according to the shape of the light receiving surface of the photoelectric conversion element 9. Can be a thing.
  • the element mounting substrate 5 can maintain good heat dissipation characteristics.
  • the junction part of the condensing material 20 and the support part 6a is a side surface of the upper part 20b of the condensing material 20, since the cross section of the upper part 20b of the condensing material 20 is circular, from the support part 6a.
  • the stress concentration applied to the light collector 20 can be dispersed.
  • the light collecting material 20 can alleviate the local concentration of stress from the support portion 6a to the upper portion 20b of the light collecting material 20, and as a result, the light collecting material 20 can be effectively damaged. It is suppressed.
  • the condensing material 20 has a shape in which the outer edge shape of the lower portion 20a is similar to the outer edge shape of the photoelectric conversion element 9 when viewed through the plane, and the upper portion 20b is a wide reverse from the lower side to the upper side.
  • the outer edge shape of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 overlap when viewed through the plane.
  • the light condensing material 20 suppresses leakage of the light traveling in the light condensing material 20 to the outside, and efficiently converts the light traveling from the lower end of the light condensing material 20 toward the photoelectric conversion element 9.
  • the conversion element 9 can be irradiated, and the photoelectric conversion efficiency can be effectively improved.
  • the condensing material 20 can reduce the amount of light that illuminates the periphery of the photoelectric conversion element 9, and can suppress the element mounting substrate 5 from becoming unnecessarily high. A large change can be suppressed. Thereby, the condensing material 20 can improve the photovoltaic effect of the photoelectric conversion element 9.
  • the light condensing material 20 when the outer edge of the photoelectric conversion element 9 is rectangular, the light condensing material 20 has the lower portion 20a formed in a rectangular column shape, but this is not restrictive. If the outer edge shape of the photoelectric conversion element 9 and the outer edge shape of the lower part 20a of the light collecting material 20 are similar to each other in the light condensing material 20, for example, as shown in FIG.
  • the outer edge shape of the lower part 20a of the condensing material 20 may be formed in a hexagonal shape. Further, if the outer edge shape of the lower part 20a of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 are similar, as shown in FIG. 13, the outer edge shape of the photoelectric conversion element 9 is collected when seen through a plane. You may make it locate inside the outer edge shape of the lower part 20a of the optical material 20.
  • FIG. 13 the outer edge shape of the photoelectric conversion element 9 is collected when seen through a plane. You may make it locate inside the outer edge shape of the
  • the lower part 20a of the condensing material 20 is set to the magnitude
  • the light collector 20 may be formed so that the lower part 20 ay of the light collector 20 protrudes toward the inner wall surface of the frame 6 when viewed in cross section.
  • the frame body 6 is formed on the element mounting substrate 5 and functions as a base, and the second frame is formed on the first frame body 6c and supports the light collecting material 20. It is composed of a body 6d.
  • the inner wall surface of the frame body 6 is formed to be a facing surface that faces the side surface of the lower portion 20ay of the light collecting material 20 in a state where the light collecting material 20 is joined to the frame body 6. Therefore, the frame body 6 and the light collector 20 are aligned with each other when the light collector 20 is joined to the frame body 6, and the inner wall surface of the frame body 6 and the lower portion 20 ay of the light collector 20 are aligned. By adjusting the distance between the side surfaces, alignment can be easily performed. As a result, the condensing material 20 can make the positional relationship of the condensing material 20 with respect to the frame 6 into a desired state, and can improve condensing efficiency.
  • the lower surface facing the photoelectric conversion element 9 below the condensing material 20 is formed in a planar shape facing the upper surface of the photoelectric conversion element 9, but is not limited thereto.
  • the lower surface facing the photoelectric conversion element 9 in the lower part 20az of the light condensing material 20 may be formed as a convex curved surface protruding toward the photoelectric conversion element 9.
  • the light traveling from the upper part 20b to the lower part 20az of the light condensing material 20 is condensed on the convex emission surface of the lower surface of the light condensing material 20
  • the light condensed from the emission surface can be advanced toward the photoelectric conversion element 9.
  • the light condensing material 20 can effectively improve the photoelectric conversion efficiency of the photoelectric conversion device 2.
  • the photoelectric conversion device according to the third embodiment As compared with the photoelectric conversion device 2 according to the first embodiment, the configuration of the element mounting substrate 5, the shape and constituent materials of the frame body 6, and the condensing material 10 The shape has been changed. Note that, in the photoelectric conversion device according to the third embodiment, the same portions as those of the photoelectric conversion device 2 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the photoelectric conversion device 2 is provided on the element mounting substrate 5, the photoelectric conversion element 9 provided in the central region of the upper surface of the element mounting substrate 5, and the upper surface of the element mounting substrate 5. 9, a lower portion extends from the central region toward a peripheral region located on the outer periphery of the central region, and is joined to the upper surface of the element mounting substrate 5, and is joined to the upper portion of the frame 36.
  • a light collecting member 30 provided in a region overlapping with the photoelectric conversion element 9 is provided.
  • the photoelectric conversion device 2 includes a conductive member 12 that is provided on the lower surface of the element mounting substrate 5 and is provided in a region that overlaps the frame body 36 as seen through the plane.
  • the element mounting substrate 5 is provided with a conductive layer 7 so that the photoelectric conversion element 9 and the conductive member 12 are electrically connected. That is, the conductive layer 7 is provided in the central region of the upper surface of the element mounting substrate 5 and is electrically connected to the photoelectric conversion element 9, and is provided in the via portion inside the element mounting substrate 5 to be the conductive member 12. And are electrically connected.
  • the photoelectric conversion device 2 has a configuration in which one photoelectric conversion element 9 is mounted on the element mounting substrate 5.
  • the condensing material 30 is a member formed in a rectangular shape when seen through the plane.
  • the light condensing material 30 is joined to the upper part of the frame body 36 and provided in a region overlapping the photoelectric conversion element 9.
  • the frame body 36 is a member formed in a rectangular shape when viewed in plan. Further, the frame body 36 is provided on the upper surface of the element mounting substrate 5 and surrounds the photoelectric conversion element 9, and the lower portion extends from the central region toward the peripheral region located on the outer periphery of the central region to extend the element mounting substrate 5. It is joined to the upper surface of.
  • the frame body 36 has an upper portion extending above the element mounting substrate 5, and an inclined portion 36 a joined to the light condensing material 30, and a lower portion toward a peripheral region located on the outer periphery of the central region of the element mounting substrate 5. And an extending portion 36 b that extends and is joined to the upper surface of the element mounting substrate 5.
  • the inclined portion 36a becomes a frame portion surrounding the photoelectric conversion element 9.
  • the frame body 36 has a function of supporting the light collecting member 30.
  • the light condensing material 30 is joined to the upper part of the inclined portion 36 a of the frame 36.
  • the frame 36 is a member formed in a rectangular shape when seen through on a plane, but is not limited to a rectangular shape, and may be formed in a circular shape or the like.
  • the frame 36 is provided on a metal material such as aluminum, copper or silver, an alloy containing these metal materials, a composite material in which sintered tungsten is impregnated with copper, or copper-impregnated tungsten. It consists of a composite material in which a plurality of through holes are filled with copper or a composite material in which various metals are laminated in layers.
  • the thermal conductivity of the frame 36 is set to, for example, 100 (W / m ⁇ K) or more and 500 (W / m ⁇ K) or less.
  • the thermal expansion coefficient of the frame 36 is set to 10 (ppm / ° C.) or more and 25 (ppm / ° C.) or less. Thereby, the heat generated around the photoelectric conversion element 9 is conducted to the frame body 36 and efficiently radiated to the outside.
  • the frame 36 has a mirror-finished inner surface of an inclined portion 36 a extending above the element mounting substrate 5.
  • the frame body 36 can improve the light reflection efficiency by mirror finishing.
  • the frame body 36 can suppress a temperature rise.
  • the mirror surface processing may be processed so as to be finished smoothly by grinding or may be processed by plating.
  • the thickness of the inclined portion 36a of the frame body 36 is set to, for example, 0.3 mm or more and 3.0 mm or less in order to suppress light leakage to the outside of the light reflected by the photoelectric conversion element 9.
  • the thickness of the extension part 36b of the frame 36 is set to 0.3 mm or more and 3.0 mm or less, for example.
  • the frame body 36 is joined only by the side surface of the light condensing material 30, the joining area between the frame body 36 and the light condensing material 30 can be reduced. As a result, the compressive stress from the frame body 36 to the light condensing material 30 can be reduced, and the displacement of the irradiation light on the light receiving surface 9a of the photoelectric conversion element 9 due to the change in the refractive index of the light condensing material 30 can be suppressed. Condensability can be improved.
  • the frame body 36 is joined to the light collecting material 30 over the entire circumference of the frame body 36 and is provided above the photoelectric conversion element 9 via a space SP.
  • the photoelectric conversion element 9 is provided in a space SP surrounded by the element mounting substrate 5, the frame body 36, and the light collector 30 and hermetically sealed. Since the photoelectric conversion device 9 can hermetically seal the photoelectric conversion element 9 by providing the photoelectric conversion element 9 in the internal space SP, the moisture resistance of the photoelectric conversion element 9 is improved. Can be operated reliably over a long period of time.
  • the conductive member 12 includes, for example, a metal material such as aluminum, copper or silver, an alloy containing these metal materials, a composite material in which copper is impregnated with sintered tungsten, or a plurality of copper impregnated tungsten. It is made of a composite material in which copper is filled in the through-hole or a composite material in which various metals are laminated in layers.
  • the conductive member 12 is provided on the lower surface of the element mounting substrate 5, and is provided in a region that overlaps the frame body 36 when seen in a plan view. Further, the conductive member 12 has a function of improving heat conductivity and efficiently radiating heat generated from the photoelectric conversion element 9 mounted on the element mounting substrate 5 to the outside. That is, the heat around the photoelectric conversion element 9 is conducted to the conductive member 12 and efficiently radiated to the outside.
  • the thermal conductivity of the conductive member 12 is set to, for example, 100 (W / m ⁇ K) or more and 500 (W / m ⁇ K) or less.
  • the thermal expansion coefficient of the conductive member 12 is set to 10 (ppm / ° C.) or more and 25 (ppm / ° C.) or less.
  • the thickness of the conductive member 12 is set to 0.3 mm or more and 3 mm or less, for example.
  • the thermal expansion coefficients of the frame body 36 and the conductive member 12 are set larger than the thermal expansion coefficient of the element mounting substrate 5.
  • the electroconductive member 12 is provided with the function of the output terminal for the photoelectric conversion apparatus 2 to take out electricity outside.
  • first conductive member 12a and the second conductive member 12b are electrically connected to the conductive layer 7 through a bonding material.
  • the bonding material is made of, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
  • first conductive member 12a functions as a positive electrode, for example.
  • the second conductive member 12b functions as, for example, a negative electrode.
  • the photoelectric conversion element 7 is electrically connected to the first conductive member 12a and the second conductive member 12b, and is connected via the first conductive member 12a and the second conductive member 12b. Electricity can be taken out to the outside.
  • the conductive member 12 is formed in a predetermined shape by using a known metal working method such as cutting or punching, for example, an ingot produced by casting a molten metal material into a mold.
  • the upper surface of the element mounting substrate 5 is provided in contact with the extending portion 30 b of the frame 30, and the lower surface of the element mounting substrate 5 is provided in contact with the conductive member 12. Therefore, the photoelectric conversion device 2 can efficiently dissipate heat around the photoelectric conversion element 9 to the outside of the photoelectric conversion device 2 through the frame body 30 and the conductive member 12, and the element mounting substrate 5 and the photoelectric conversion can be performed. The temperature rise of the element 9 can be suppressed. As a result, the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
  • the extending portion 30b of the frame 30 and the conductive member 12 are provided in contact with the upper surface and the lower surface of the element mounting substrate 5, and the conductive member 12 is seen through the plane and the extending portion 30b of the frame 30.
  • the upper surface of the element mounting substrate 5 are provided in a region overlapping with a region where the element mounting substrate 5 is joined, so that warpage of the element mounting substrate 5 can be suppressed. That is, since the extension part 30b of the frame 30 has a larger thermal expansion coefficient than that of the element mounting board 5 and the conductive member 11 has a larger thermal expansion coefficient than that of the element mounting board 5, it is bonded to the element mounting board 5.
  • the thermal deformation that is deformed toward the upper side of the element mounting substrate 5 by the extending portion 30b of the frame body 30 is deformed toward the lower side of the element mounting substrate 5 by the conductive member 12 bonded to the element mounting substrate 5.
  • the photoelectric conversion device 2 can suppress the stress balance of the element mounting substrate 5 from being lost, and consequently the warpage of the element mounting substrate 5 can be reduced.
  • the photoelectric conversion device 2 since the thermal deformation of the element mounting substrate 5 is suppressed, the warp of the light receiving surface 9 a of the photoelectric conversion element 9 is suppressed, and the positional deviation of the light collecting material 30 with respect to the photoelectric conversion element 9 is reduced. And the light collection efficiency can be improved.
  • the thickness of the extension part 30b and the electroconductive member 11 is the point of suppressing the curvature of the element mounting substrate 5.
  • the region of the extended portion 30b and the conductive member 12 bonded to the element mounting substrate 5 can be set to be the same. Accordingly, the photoelectric conversion device 2 can suppress the warp of the light receiving surface 9a of the photoelectric conversion element 9, and can improve the light collection efficiency.
  • the thickness with the larger thermal expansion coefficient is the coefficient of thermal expansion in that the warpage of the element mounting substrate 5 is suppressed. It is set to be thinner than the smaller thickness. The warpage of the element mounting substrate 5 is suppressed by bonding the extending portion 30b of the frame 30 and the conductive member 12 to the element mounting substrate 5 so that the stress on the element mounting substrate 5 is balanced.
  • the photoelectric conversion device 2 efficiently conducts heat around the photoelectric conversion element 9 to the conductive member 12 via the conductive layer 7 in the via portion provided in the element mounting substrate 5, and to the outside. It can dissipate heat.
  • ⁇ Variation 1 of the third embodiment In the photoelectric conversion device 2 according to the first modification of the third embodiment, the thickness of the extending portion 30b of the frame 30 is changed as compared with the photoelectric conversion device 2 according to the present embodiment. Yes.
  • the extending portion 30b of the frame body 30 extends from the central region of the element mounting substrate 5 of the element mounting substrate 5 toward all directions of the peripheral region.
  • the heat around the photoelectric conversion element 9 can be efficiently radiated to the outside.
  • the temperature rise of the photoelectric conversion element 9 can be suppressed.
  • the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
  • each thickness of the extension part 36b and the electroconductive member 12 is each set in the range of 0.3 mm or more and 3 mm or less, for example so that the thickness of the electroconductive member 12 may become thicker than the extension part 36b. ing.
  • the photoelectric conversion device 2 has the thickness of the extending portion 36b or the conductive member 12 of the frame body 36, or the extending portion 36b of the frame body 36 or the conductive material so that the effect on the element mounting substrate 5 is balanced. By adjusting the region where the member 12 and the element mounting substrate 5 are joined, the warpage of the element mounting substrate 5 can be suppressed.
  • the frame body 36 includes the inclined portion 36a and the extending portion 36b of the frame body 36, but is not limited thereto. As shown in FIG. 18, when viewed in cross section, the frame body 36 is positioned higher than the photoelectric conversion element 9 so as to surround the photoelectric conversion element 9 between the inclined portion 36 a and the extending portion 36 b of the frame body 36. It is good also as a structure which has the bending part 36c provided close to the photoelectric conversion element 9 while it bends toward the outer side of the photoelectric conversion element 9. FIG.
  • the bent portion 36c of the frame body 36 is bent to deform the inclined portion 36a of the frame body 36. Can be suppressed. As a result, it is possible to suppress a decrease in light collection efficiency on the photoelectric conversion element 9 due to the deformation of the inclined portion 36a of the frame 36.
  • the photoelectric conversion device 2 since the photoelectric conversion device 2 has the bent portion 36c, the heat around the photoelectric conversion element 9 can be conducted to the frame 36 through the bent portion 36c and efficiently radiated to the outside. it can.
  • the shape of the region of the light incident part 36 d where light enters the photoelectric conversion element 9 from the light condensing material 30 may be configured to match the shape of the region of the light receiving surface 9 a of the photoelectric conversion element 9. That is, when viewed through, the shape of the light incident part 36 d may be formed in accordance with the shape of the light receiving surface 9 a of the photoelectric conversion element 9. Thereby, the photoelectric conversion apparatus 2 can improve light condensing property.
  • the photoelectric conversion device 2 includes an element mounting substrate 5 provided with a conductive layer 7, and a photoelectric conversion element 9 provided on the element mounting substrate 5 and electrically connected to the conductive layer 7. And a frame body 46 that surrounds the photoelectric conversion element 9 on the element mounting substrate 5 and has an inclined surface that is inclined inward toward the photoelectric conversion element 9 on the inner periphery, and is joined to the frame body 46. And a light condensing material 40 for condensing light on the photoelectric conversion element 9.
  • the frame body 46 is a member formed in a circular shape when viewed in plan. As shown in FIG. 19, the frame 46 surrounds the photoelectric conversion element 9 on the element mounting substrate 5, and is an inclined surface inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion of the frame 46. B2. That is, the frame 46 is bent and inclined at the bent portion B1 toward the photoelectric conversion element 9 side, has an inclined surface B2, and has an opening B3 above the photoelectric conversion element 8 when viewed in plan. ing. Moreover, the opening B3 of the frame 46 can visually recognize the photoelectric conversion element 9 when viewed in plan.
  • the frame body 46 includes a first frame body 46a provided on the element mounting substrate 5 and a second frame body 46b that is joined to the first frame body 46a and has an inclined surface B1. Yes. That is, the first frame body 46a is joined to the second frame body 46b having a function of supporting the light collector 40.
  • the photoelectric conversion device 2 is shown in FIG. 19 as a configuration in which one photoelectric conversion element 9 is mounted on the element mounting substrate 5.
  • the first frame 46a has an insulating function and is made of an insulating material, such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, It is made of a ceramic material such as a silicon nitride sintered body or glass ceramic. Or the 1st frame 46a consists of a composite system which mixed several materials among these materials. Alternatively, the first frame 46a is made of glass or a resin such as an epoxy resin or an acrylic resin.
  • the thermal conductivity of the first frame 46a is set to, for example, 15 W / (m ⁇ K) or more and 30 W / (m ⁇ K) or less. Further, the thermal conductivity of the element mounting substrate 5 is set to be larger than the thermal conductivity of the frame body 46, whereby the heat conduction to the first frame body 6a can be suppressed, and the first frame body. The second frame 46b joined to 46a is less affected by heat, and the influence of heat on the light collector 40 can be suppressed.
  • the thermal expansion coefficient of the first frame 46a is set to 3 (ppm / ° C.) or more and 10 (ppm / ° C.) or less, for example.
  • the first frame 46a is a member formed in a circular shape when seen in a plan view, but is not limited to a circular shape and may be formed in a rectangular shape or the like.
  • the first frame 46a is provided with a metallized layer on the upper surface facing the second frame 46b for joining with the second frame 46b.
  • a metallized layer for example, a metal material such as tungsten, molybdenum, or manganese is formed using, for example, a screen printing method.
  • the second frame body 46b is a member formed in a circular shape when viewed in plan.
  • the second frame body 46b has an inclined surface B2 that is inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion. That is, the frame 6b is bent and inclined at the bent portion B1 toward the photoelectric conversion element 9 side, and has an inclined surface B2 and an opening A1 above the photoelectric conversion element 8 when viewed in plan. ing. Moreover, the opening B3 of the frame 46b can visually recognize the photoelectric conversion element 9 when viewed in plan.
  • one of the second frame bodies 46 b is joined to the first frame body 46 a, and the other is arranged above the photoelectric conversion element 9. Further, the second frame body 46 b has a function of supporting the light collecting member 40. The light collector 40 is joined to the inclined surface B2 of the second frame 46b.
  • the second frame body 46b is a member formed in a circular shape when viewed in plan, but is not limited to a circular shape but a rectangular shape or the like in accordance with the shape of the first frame body 46a. Can do.
  • the inclination angle ⁇ of the inclined surface B2 of the second frame 46b inclined inward toward the photoelectric conversion element 9 can be set to 10 ° to 60 °. By setting such an inclination angle ⁇ , the condensed light from the condensing material 40 can be effectively guided to the photoelectric conversion element 8.
  • the second frame 46b is made of a metal material such as aluminum, copper, or silver.
  • the thermal conductivity of the second frame 46b is set to, for example, 20 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less. Thereby, the heat generated in the vicinity of the photoelectric conversion element 9 is thermally conducted to the second frame 46b and effectively radiated to the outside.
  • the frame 46 is mirror-finished with an inclined surface B2 that is inclined inward of the frame 46 toward the photoelectric conversion element 8 side. As a result, the frame 46 can improve the light reflection efficiency. Moreover, the frame 46 can suppress a temperature rise.
  • the mirror surface processing may be processed so as to be finished smoothly by grinding or may be processed by plating. Further, the thickness of the frame body 46 is set to, for example, 0.1 mm or more and 2 mm or less in order to suppress light leakage to the outside of the light reflected by the photoelectric conversion element 9.
  • the frame body 46 has the inclined surface B ⁇ b> 2 inclined inward toward the photoelectric conversion element 9 side at the inner periphery, and the opening B ⁇ b> 3 of the frame body 46 is formed on the photoelectric conversion element 9. It is comprised so that it may be arrange
  • the frame body 46 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
  • the frame 46 has an inclined surface B2 inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion and is arranged above the photoelectric conversion element 9, the light collecting material When the incident light from 10 is reflected around the photoelectric conversion element 9 or the photoelectric conversion element 9, the reflected light can be prevented from leaking outside the photoelectric conversion device 2.
  • one of the frame bodies 46 is bonded to the element mounting substrate 5 and the other is an open end at the opening B3, the frame body 46 is caused by a difference in thermal expansion coefficient between the frame body 46 and the light condensing material 40. Bonding stress can be relaxed.
  • the light condensing material 40 is joined at the position of the bent portion B1 of the frame 46, the area of the light condensing material 40 can be increased and a large amount of light can be received from the light receiving material 3. As a result, the conversion efficiency of the photoelectric conversion element 9 can be improved.
  • the frame body 46 includes the first frame body 46a made of an insulating material and the second frame body 46b made of a metal material, the frame body 46 is made conductive by the first frame body 46a made of an insulating material. An electrical short circuit with the layer 7 can be effectively prevented.
  • the frame body 46 conducts heat generated in the photoelectric conversion element 9 to the first frame body 46a and further to the second frame body 46b made of a metal material, effectively outside. It can dissipate heat.
  • the first frame 46a is made of an insulating material
  • the second frame 46b is not easily affected by heat, and the light collecting material 40 joined to the second frame 46b. The influence of heat can be suppressed.
  • the frame 46 is joined to the first frame 46a provided on the element mounting substrate 5 and the first frame 46a, and has the inclined surface B2.
  • the present invention is not limited to this.
  • the frame 46 may have a configuration in which a first frame 46 a and a second frame 46 b are integrated. That is, the frame body 46 is composed of one member, and has an inclined surface B1 inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion, and above the photoelectric conversion element 8 when viewed in plan. It is good also as a structure which has the opening part B3 arrange
  • the frame body 46 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body or It is made of a ceramic material such as glass ceramic. Alternatively, it is composed of a composite system in which a plurality of these materials are mixed. Or it consists of resin, such as glass or an epoxy resin, an acrylic resin.
  • the thermal conductivity of the frame 46 is set to, for example, 15 W / (m ⁇ K) or more and 30 W / (m ⁇ K) or less.
  • the element mounting substrate 5 can suppress heat conduction to the frame 46 by making the thermal conductivity larger than that of the frame 46. As a result, the frame 46 is less susceptible to heat, and the influence of heat on the light collecting member 40 can be suppressed.
  • the frame body 4 may be a material made of a metal material such as aluminum, copper, or silver, for example, and the frame body 46 is disposed between the frame body 46 and the conductive layer 7 via an insulating layer. .
  • the thermal conductivity is set to, for example, 20 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less. Since the frame 46 is made of a metal material, the area of the region where the frame 46 can dissipate heat to the outside can be increased. As a result, the temperature rise of the element mounting substrate 5 due to the heat generated in the photoelectric conversion element 9 can be suppressed. Further, the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a photovoltaic conversion device comprising: an element-mounting substrate (5) which is provided with a conductive layer (7); a plurality of photovoltaic conversion elements (9) which are provided on the element-mounting substrate (5), and are electrically connected to the conductive layer (7); a frame body (6) which is arranged on the element-mounting substrate (5), and has frame sections that respectively surround the plurality of photovoltaic conversion elements (9); and light-collecting members (10) which are joined to the frame sections, and are arranged respectively corresponding to the plurality of photovoltaic conversion elements (9).

Description

光電変換装置、光電変換素子収納用パッケージおよび光電変換モジュールPhotoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
 本発明は、光電変換装置、光電変換素子収納用パッケージおよびその光電変換装置を用いる光電変換モジュールに関する。 The present invention relates to a photoelectric conversion device, a photoelectric conversion element storage package, and a photoelectric conversion module using the photoelectric conversion device.
 近年、光電変換素子を有する光電変換装置の開発が進められている。例示的な光電変換装置としては、太陽エネルギーを電力に変換する太陽電池装置がある。特に、発電効率の向上を目的として、集光型の太陽電池装置の開発が進められている。この太陽電池装置の場合、光電変換素子は、太陽エネルギーを電力に変換する太陽電池素子である。集光された太陽光を効率良く太陽電池素子に照射する構造が開示されている。(例えば、特許文献1参照) In recent years, development of photoelectric conversion devices having photoelectric conversion elements has been promoted. As an exemplary photoelectric conversion device, there is a solar cell device that converts solar energy into electric power. In particular, for the purpose of improving the power generation efficiency, a concentrating solar cell device is being developed. In the case of this solar cell device, the photoelectric conversion element is a solar cell element that converts solar energy into electric power. A structure for efficiently irradiating condensed solar light onto a solar cell element is disclosed. (For example, see Patent Document 1)
 上記特許文献1で提案されている太陽電池装置は、光電変換する太陽電池セルが実装された基板と、基板上の太陽電池セルへ太陽光を集光する集光レンズと、太陽電池セルの外周を囲むように基板に設けられ、集光レンズが接続されたレンズ支持枠とを備える太陽電池装置と、を含んで構成されている。 The solar cell device proposed in Patent Document 1 includes a substrate on which a photovoltaic cell for photoelectric conversion is mounted, a condensing lens that collects sunlight on the photovoltaic cell on the substrate, and an outer periphery of the photovoltaic cell. And a solar cell device provided with a lens support frame connected to a condensing lens.
 しかしながら、上記特許文献1で提案された太陽電池装置の構造では、太陽電池セルが実装された基板の熱の発生によって、レンズ支持枠等が熱の影響を受ける可能性がある。 However, in the structure of the solar cell device proposed in Patent Document 1, the lens support frame and the like may be affected by heat due to the generation of heat of the substrate on which the solar cells are mounted.
特開2009-147155号公報JP 2009-147155 A
 本発明の一態様に係る光電変換装置は、導電層が設けられている素子搭載基板と、前記素子搭載基板上に設けられているとともに、前記導電層と電気的に接続されている複数の光電変換素子と、前記素子搭載基板上に配置された、複数の前記光電変換素子をそれぞれ囲む枠部を有する枠体と、前記枠部体に接合されているとともに、複数の前記光電変換素子とそれぞれ対応するように配置されている集光材とを備えている。 A photoelectric conversion device according to one embodiment of the present invention includes an element mounting substrate over which a conductive layer is provided, and a plurality of photoelectric transistors provided on the element mounting substrate and electrically connected to the conductive layer. A conversion element, a frame body disposed on the element mounting substrate and having a frame portion surrounding each of the plurality of photoelectric conversion elements, and a plurality of the photoelectric conversion elements respectively bonded to the frame body body And a condensing material arranged so as to correspond.
第1の実施形態に係る光電変換モジュールの概観を示す分解斜視図である。It is a disassembled perspective view which shows the external appearance of the photoelectric conversion module which concerns on 1st Embodiment. 第1の実施形態に係る光電変換装置の概観斜視図である。It is a general-view perspective view of the photoelectric conversion apparatus which concerns on 1st Embodiment. 第1の実施形態に係る光電変換装置の集光材の接合状態を解いた状態を示す概観斜視図である。It is a general-view perspective view which shows the state which solved the joining state of the condensing material of the photoelectric conversion apparatus which concerns on 1st Embodiment. 図2に示す光電変換装置をA-A線で切断したときの断面図である。FIG. 3 is a cross-sectional view of the photoelectric conversion device shown in FIG. 2 taken along line AA. 図2に示す光電変換装置において、集光材と枠体を省略し、光電変換素子を搭載した状態の平面図である。In the photoelectric conversion apparatus shown in FIG. 2, the light condensing material and the frame are omitted, and the photoelectric conversion element is mounted in a plan view. 第1の実施形態の変形例1に係る光電変換装置の集光材と枠体を省略し、光電変換素子を搭載した状態の平面図である。It is a top view of the state which omitted the condensing material and frame of the photoelectric conversion apparatus which concerns on the modification 1 of 1st Embodiment, and mounted the photoelectric conversion element. 第1の実施形態の変形例2に係る光電変換装置の概観斜視図である。It is a general-view perspective view of the photoelectric conversion apparatus which concerns on the modification 2 of 1st Embodiment. 図7に示す光電変換装置をB-B線で切断したときの断面図である。FIG. 8 is a cross-sectional view of the photoelectric conversion device shown in FIG. 7 taken along line BB. 第1の実施形態の変形例3に係る光電変換装置の概観斜視図である。It is a general-view perspective view of the photoelectric conversion apparatus which concerns on the modification 3 of 1st Embodiment. 図9に示す光電変換装置の概観を示す分解斜視図である。It is a disassembled perspective view which shows the external appearance of the photoelectric conversion apparatus shown in FIG. 第2の実施形態に係る光電変換装置の集光材と光電変換素子との関係を示す概観斜視図である。It is a general-view perspective view which shows the relationship between the condensing material of the photoelectric conversion apparatus which concerns on 2nd Embodiment, and a photoelectric conversion element. 第2の実施形態に係る他の光電変換装置の集光材と光電変換素子との関係を示す概観斜視図である。It is a general-view perspective view which shows the relationship between the condensing material and photoelectric conversion element of the other photoelectric conversion apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る他の光電変換装置の集光材と光電変換素子との関係を示す概観斜視図である。It is a general-view perspective view which shows the relationship between the condensing material and photoelectric conversion element of the other photoelectric conversion apparatus which concerns on 2nd Embodiment. 第2の実施形態の変形例1に係る光電変換装置の集光材を示す断面図である。It is sectional drawing which shows the condensing material of the photoelectric conversion apparatus which concerns on the modification 1 of 2nd Embodiment. 第2の実施形態の変形例2に係る光電変換装置の集光材を示す断面図である。It is sectional drawing which shows the condensing material of the photoelectric conversion apparatus which concerns on the modification 2 of 2nd Embodiment. 第3の実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 3rd Embodiment. 第3の実施形態の変形例1に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 1 of 3rd Embodiment. 第3の実施形態の変形例2に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 2 of 3rd Embodiment. 第4の実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 4th Embodiment. 第4の実施形態の変形例1に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 1 of 4th Embodiment.
 以下、本発明の実施形態に係る光電変換装置、光電変換素子収納用パッケージおよび光電変換モジュールについて、図面を参照しながら説明する。 Hereinafter, a photoelectric conversion device, a photoelectric conversion element storage package, and a photoelectric conversion module according to an embodiment of the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、本発明の第1の実施形態に係る光電変換モジュール1の概観を示す分解斜視図である。また、図2は、図1に示す光電変換装置2の概観斜視図である。また、図3は、集光材の接合を解いた状態を示す光電変換装置2の概観斜視図である。また、図4は、光電変換装置2の断面図である。また、図5は、集光材と枠体とを省略し、光電変換素子を搭載した状態の光電変換装置2の平面図である。
<First Embodiment>
FIG. 1 is an exploded perspective view showing an overview of the photoelectric conversion module 1 according to the first embodiment of the present invention. 2 is a schematic perspective view of the photoelectric conversion device 2 shown in FIG. FIG. 3 is a schematic perspective view of the photoelectric conversion device 2 showing a state where the condensing member is unbonded. FIG. 4 is a cross-sectional view of the photoelectric conversion device 2. FIG. 5 is a plan view of the photoelectric conversion device 2 in a state in which the light condensing material and the frame are omitted and a photoelectric conversion element is mounted.
 本実施形態に係る光電変換モジュール1は、太陽光エネルギーを電力に変換する太陽光発電モジュールである。また、本実施形態に係る光電変換装置2は、光エネルギーを電力に変換する光電変換素子9を含んでいる。かかる光電変換素子9は、例えば、太陽光エネルギーを電力に変換する機能を備えている太陽電池素子である。 The photoelectric conversion module 1 according to the present embodiment is a solar power generation module that converts solar energy into electric power. Moreover, the photoelectric conversion apparatus 2 according to the present embodiment includes a photoelectric conversion element 9 that converts light energy into electric power. For example, the photoelectric conversion element 9 is a solar cell element having a function of converting solar energy into electric power.
 光電変換モジュール1は、図1に示すように、複数の光電変換装置2と、複数の光電変換装置2の上方に設けられた受光材3と外部基板4を含んで構成されている。受光材3は、外部からの光を受光するとともに、受光した光を集光材10に集める機能を備えている。また、受光材3は、複数個のレンズ部材3bが矩形のフレーム部材3aに固定されることにより構成されている。受光材3のレンズ部材3bは、例えば、ドーム状のフレネルレンズであり、例えば、アクリル樹脂等の光学的特性に優れた樹脂材料からなる。複数の光電変換装置2は、外部基板4に固定されている。そして、受光材3は、外部基板4に固定された複数の光電変換装置2を覆っている。 As shown in FIG. 1, the photoelectric conversion module 1 includes a plurality of photoelectric conversion devices 2, a light receiving material 3 provided above the plurality of photoelectric conversion devices 2, and an external substrate 4. The light receiving material 3 has a function of collecting light received from the outside and collecting the received light on the light collecting material 10. The light receiving member 3 is configured by fixing a plurality of lens members 3b to a rectangular frame member 3a. The lens member 3b of the light receiving material 3 is, for example, a dome-shaped Fresnel lens, and is made of a resin material having excellent optical characteristics such as acrylic resin. The plurality of photoelectric conversion devices 2 are fixed to the external substrate 4. The light receiving material 3 covers the plurality of photoelectric conversion devices 2 fixed to the external substrate 4.
 また、外部基板4は、光電変換装置2の素子搭載基板5から発せられる熱を放散させる機能を備えている。外部基板4は、例えば、アルミニウム、銅、炭素-金属複合材等の金属材料からなる。なお、外部基板4の熱伝導率は、例えば、100W/(m・K)以上500W/(m・K)以下に設定されている。 Further, the external substrate 4 has a function of dissipating heat generated from the element mounting substrate 5 of the photoelectric conversion device 2. The external substrate 4 is made of a metal material such as aluminum, copper, or a carbon-metal composite material. The thermal conductivity of the external substrate 4 is set to, for example, 100 W / (m · K) or more and 500 W / (m · K) or less.
 受光材3に入射された光は、光電変換装置2の集光材10の上端部に集められる。すなわち、集光材10は、受光材3によって集められた光を光電変換素子9に導く機能を備えている。集光材10に入射された光は、集光材10の内部で反射を繰り返しながら集光材10の上部から下部へ進み、集光材10の下部から光電変換素子9の上面の受光面に入射される。そして、光電変換素子9は、光エネルギーを電力に変換する。 The light incident on the light receiving material 3 is collected at the upper end of the light collecting material 10 of the photoelectric conversion device 2. That is, the light condensing material 10 has a function of guiding the light collected by the light receiving material 3 to the photoelectric conversion element 9. The light incident on the light collecting material 10 travels from the upper part to the lower part of the light collecting material 10 while being repeatedly reflected inside the light collecting material 10, and passes from the lower part of the light collecting material 10 to the light receiving surface on the upper surface of the photoelectric conversion element 9. Incident. The photoelectric conversion element 9 converts light energy into electric power.
 光電変換装置2は、図2乃至図4に示すように、導電層7が設けられている素子搭載基板5と、素子搭載基板5上に設けられて、導電層7に電気的に接続されている複数の光電変換素子9と、素子搭載基板5上に配置された、複数の光電変換素子9をそれぞれ囲む枠部6bを有する枠体6と、枠部6bに接合されて、複数の光電変換素子9にそれぞれ対応するように配置されている集光材10と、を備えている。 As shown in FIGS. 2 to 4, the photoelectric conversion device 2 is provided on the element mounting substrate 5 provided with the conductive layer 7, and provided on the element mounting substrate 5 and electrically connected to the conductive layer 7. A plurality of photoelectric conversion elements 9, a frame body 6 having a frame portion 6 b surrounding each of the plurality of photoelectric conversion elements 9 disposed on the element mounting substrate 5, and a plurality of photoelectric conversion elements joined to the frame portion 6 b. And a light collecting material 10 disposed so as to correspond to each of the elements 9.
 素子搭載基板5は、平面視したとき、矩形状に形成された部材である。素子搭載基板5は、絶縁性の材料からなり、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミック等のセラミックス材料からなる。または、これらの材料のうちの複数の材料を混合した複合系からなる。また、素子搭載基板5の熱伝導率は、例えば、15W/(m・K)以上250W/(m・K)以下に設定されている。素子搭載基板5は、枠体6への熱伝導を抑制するために、熱伝導率の高い材料の酸化アルミニウム質焼結体、窒化アルミニウム質焼結体等で構成することができる。なお、平面視したときの形状は、矩形状に限らず、円形状等の形状にすることができる。 The element mounting substrate 5 is a member formed in a rectangular shape when seen in a plan view. The element mounting substrate 5 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or glass. Made of ceramic material such as ceramic. Alternatively, it is composed of a composite system in which a plurality of these materials are mixed. Further, the thermal conductivity of the element mounting substrate 5 is set to, for example, 15 W / (m · K) or more and 250 W / (m · K) or less. The element mounting substrate 5 can be composed of an aluminum oxide sintered body, an aluminum nitride sintered body, or the like having a high thermal conductivity in order to suppress heat conduction to the frame body 6. Note that the shape when viewed in plan is not limited to a rectangular shape, and may be a circular shape or the like.
 また、素子搭載基板5上には、図4に示すように、光電変換素子9が搭載される導電層7が、素子搭載基板5の長手方向に延在して設けられている。また、導電層7は、枠体6の内外の領域にまで延在するように設けられている。1つの光電変換素子9は、1つの導電層7に搭載されているとともに、上面の電極の少なくとも1つが隣接する導電層7に導電ワイヤで接続されている。また、導電層7は、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト、クロム、タングステン、モリブデンまたはマンガン等の金属材料、あるいはそれらの合金からなり、例えば、スクリーン印刷法を用いて形成されている。 Further, as shown in FIG. 4, a conductive layer 7 on which the photoelectric conversion element 9 is mounted is provided on the element mounting substrate 5 so as to extend in the longitudinal direction of the element mounting substrate 5. The conductive layer 7 is provided so as to extend to the inner and outer regions of the frame 6. One photoelectric conversion element 9 is mounted on one conductive layer 7 and at least one of the electrodes on the upper surface is connected to the adjacent conductive layer 7 by a conductive wire. The conductive layer 7 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, chromium, tungsten, molybdenum, or manganese, or an alloy thereof, for example, using a screen printing method. Is formed.
 枠体6は、光電変換素子9が搭載されている素子搭載基板5上を環状に取り囲むように設けられている。また、枠体6は、複数の光電変換素子9をそれぞれ囲む枠部6bを有している。枠体6は、枠部6bによって形成される開口部A1を有している。集光材10の少なくとも一部が、開口部A1に嵌め込まれて配置されている。なお、本実施形態では、3個の光電変換素子9に対して、1個の枠部6bを有する枠体6をそれぞれ配置しているが、これに限らない。例えば、複数の光電変換素子9に対して、それぞれを囲む複数個の枠部6bを有する枠体6を1個配置してもよい。枠体6は、絶縁性の材料からなり、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミック等のセラミックス材料からなる。または、枠体6は、これらの材料のうちの複数の材料を混合した複合系からなる。 The frame body 6 is provided so as to surround the element mounting substrate 5 on which the photoelectric conversion element 9 is mounted in an annular shape. Further, the frame body 6 has frame portions 6 b that surround the plurality of photoelectric conversion elements 9. The frame 6 has an opening A1 formed by the frame 6b. At least a part of the light collector 10 is fitted into the opening A1. In the present embodiment, the frame bodies 6 each having one frame portion 6b are arranged for the three photoelectric conversion elements 9, but the present invention is not limited thereto. For example, one frame body 6 having a plurality of frame portions 6b surrounding each of the plurality of photoelectric conversion elements 9 may be arranged. The frame 6 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic. It consists of ceramic materials such as. Alternatively, the frame 6 is composed of a composite system in which a plurality of these materials are mixed.
 また、枠体6の熱伝導率は、例えば、15W/(m・K)以上30W/(m・K)以下に設定されている。素子搭載基板5は、熱伝導率を枠体6の熱伝導率よりも大きくすることによって、枠体6への熱伝導を抑制することができ、枠体6と集光材10との接合部が熱の影響を受けにくくなる。 The thermal conductivity of the frame 6 is set to, for example, 15 W / (m · K) or more and 30 W / (m · K) or less. The element mounting substrate 5 can suppress the heat conduction to the frame body 6 by making the thermal conductivity larger than the thermal conductivity of the frame body 6, and the joint portion between the frame body 6 and the light collector 10. Is less susceptible to heat.
 また、枠体6の熱膨張係数は、例えば、3(ppm/℃)以上10(ppm/℃)以下に設定されている。枠体6は、平面視したときに矩形状に形成された部材であるが、矩形状に限らず、円形状等の形状にすることができる。 The thermal expansion coefficient of the frame 6 is set to, for example, 3 (ppm / ° C.) or more and 10 (ppm / ° C.) or less. The frame 6 is a member formed in a rectangular shape when viewed in plan, but is not limited to a rectangular shape, and may be formed in a circular shape or the like.
 枠体6は、集光材10を支持する機能を備えている。集光材10は、少なくとも一部が枠体6の開口部A1に嵌め込まれて枠部6bで接合されている。枠体6は、図4に示すように、枠体6の上面から枠体6の全周にわたって、枠体6の内壁面が低くなる方向に傾斜している傾斜面を有する支持部6aを有し、集光材10の側面に接合されている。枠体6の支持部6aの傾斜面の形状は、集光材10の傾斜の形状に合わせて形成されている。枠体6と集光材10は、集光材10の側面が枠体6の支持部6aの傾斜面で接合されているため、両者が滑らかに接合され、集光材10に傷等が付きにくく、両者を良好に接合することができる。結果として、集光材10は、傷等によって、光電変換素子9に導かれる光の進行方向の変化を抑制することができ、集光性を向上することができる。なお、枠体6の支持部6aは、傾斜面に限らず、枠体6の上面から内壁面にかけて切り欠き部を有してもよい。 The frame 6 has a function of supporting the light collector 10. At least a part of the light collector 10 is fitted into the opening A1 of the frame 6 and joined by the frame 6b. As shown in FIG. 4, the frame body 6 has a support portion 6 a having an inclined surface that is inclined in a direction in which the inner wall surface of the frame body 6 is lowered from the upper surface of the frame body 6 to the entire circumference of the frame body 6. And it is joined to the side surface of the light collector 10. The shape of the inclined surface of the support portion 6 a of the frame body 6 is formed in accordance with the inclined shape of the light collector 10. Since the frame body 6 and the light collector 10 are joined to each other at the inclined surface of the support portion 6a of the frame body 6, the both sides are smoothly joined, and the light collector 10 is scratched. It is difficult, and both can be favorably joined. As a result, the condensing material 10 can suppress the change in the traveling direction of the light guided to the photoelectric conversion element 9 due to scratches or the like, and can improve the light condensing property. In addition, the support part 6a of the frame 6 is not limited to the inclined surface, and may have a notch from the upper surface of the frame 6 to the inner wall surface.
 また、枠体6の支持部6aは、集光材10との接合のために、メタライズ層が設けられている。メタライズ層は、例えば、タングステン、モリブデンまたはマンガン等の金属材料が、例えば、スクリーン印刷法を用いて形成されている。なお、集光材10の詳細な構成については後述する。 Further, the support portion 6 a of the frame body 6 is provided with a metallized layer for joining with the light collector 10. The metallized layer is formed of a metal material such as tungsten, molybdenum, or manganese by using, for example, a screen printing method. The detailed configuration of the light collector 10 will be described later.
 光電変換素子9は、例えば、III-V族化合物半導体を含んでいる太陽電池素子である。光電変換素子9は、光起電力効果により、受けた光エネルギーを即時に電力に変換して出力することができる。例えば、太陽電池素子は、InGaP/GaAs/Ge3接合型セルの構造を有している。インジウムガリウムリン(InGaP)トップセルは、660nm以下の波長領域に含まれる光をエネルギー変換する。ガリウムヒ素(GaAs)ミドルセルは、660nmから890nmまでの波長領域に含まれる光をエネルギー変換する。ゲルマニウム(Ge)ボトムセルは、890nmから2000nmまでの波長領域に含まれる光をエネルギー変換する。3つのセルは、トンネル接合を介して直列に接続されている。開放電圧は、3つのセルの起電圧の和である。 The photoelectric conversion element 9 is, for example, a solar cell element containing a III-V group compound semiconductor. The photoelectric conversion element 9 can immediately convert the received light energy into electric power and output it by the photovoltaic effect. For example, the solar cell element has an InGaP / GaAs / Ge3 junction type cell structure. The indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less. The gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm. The germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm. The three cells are connected in series via a tunnel junction. The open circuit voltage is the sum of the electromotive voltages of the three cells.
 また、光電変換素子9の下面には、光電変換素子9の下面電極が形成されている。かかる下面電極は、例えば、銀、アルミニウム等により形成され、低融点半田、導電性エポキシ樹脂等の接合材を介して、素子搭載基板5に設けられている導電層7上に搭載され、導電層7と電気的に接続される。なお、本実施形態では、1つの素子搭載基板5に対して、搭載されている光電変換素子9を3個としているが、これに限らず、光電変換素子9の個数は、2以上の複数個としてもよい。 Further, the lower surface electrode of the photoelectric conversion element 9 is formed on the lower surface of the photoelectric conversion element 9. The lower surface electrode is formed of, for example, silver, aluminum or the like, and is mounted on the conductive layer 7 provided on the element mounting substrate 5 via a bonding material such as low melting point solder or conductive epoxy resin. 7 is electrically connected. In this embodiment, three photoelectric conversion elements 9 are mounted on one element mounting substrate 5, but the number of photoelectric conversion elements 9 is not limited to this, and the number of photoelectric conversion elements 9 is two or more. It is good.
 また、光電変換素子9の上面には、光電変換素子9の上面電極が設けられている。導電層7は、図5に示すように、素子搭載基板5の長手方向に延在して設けられ、さらに、長手方向に2つの領域に分岐して設けられている。光電変換素子9の上面電極は、例えば、銀、アルミニウム等により形成され、導電層7の第1の接続領域S1および第2の接続領域S2で、導電層7と導電性ワイヤで電気的に直列に接続されていてもよい。導電層7は、第1の接続領域S1および第2の接続領域S2の2つの領域で形成されているため、光電変換装置2は、光電変換素子9で発生した熱が2つの領域に放熱されるので、発生した熱を効果的に放熱することができる。 Further, the upper surface electrode of the photoelectric conversion element 9 is provided on the upper surface of the photoelectric conversion element 9. As shown in FIG. 5, the conductive layer 7 is provided so as to extend in the longitudinal direction of the element mounting substrate 5, and further branched into two regions in the longitudinal direction. The upper surface electrode of the photoelectric conversion element 9 is formed of, for example, silver, aluminum or the like, and is electrically connected in series with the conductive layer 7 and the conductive wire in the first connection region S1 and the second connection region S2 of the conductive layer 7. It may be connected to. Since the conductive layer 7 is formed of two regions, the first connection region S1 and the second connection region S2, the photoelectric conversion device 2 radiates heat generated in the photoelectric conversion element 9 to the two regions. Therefore, the generated heat can be effectively radiated.
 また、光電変換素子9の上面電極と導電層7は、図5に示すように、第1の接続領域S1および第2の接続領域S2で、それぞれ3箇所の合計6箇所を導電性ワイヤで接続されているが、これに限らない。例えば、光電変換素子9の上面電極と導電層7は、第1の接続領域S1および第2の接続領域S2でそれぞれ2箇所の合計4箇所で接続されていてもよい。光電変換素子9の上面電極と導電層7との接続箇所は、適宜選択することができる。接続箇所を複数箇所以上にすることにより、導電性ワイヤは、1本当たりの電流が低減し、熱の発生が抑制される。結果として、導電性ワイヤは信頼性を向上することができる。 Further, as shown in FIG. 5, the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 are connected to the first connection region S1 and the second connection region S2 at a total of six locations, each with a conductive wire. However, it is not limited to this. For example, the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 may be connected in a total of four places, each of two places in the first connection region S1 and the second connection region S2. The connection location between the upper surface electrode of the photoelectric conversion element 9 and the conductive layer 7 can be appropriately selected. By making the number of connection points more than one, the current per wire of the conductive wire is reduced and the generation of heat is suppressed. As a result, the conductive wire can improve reliability.
 また、導電層7は、図5に示すように、導電性ワイヤで接続される領域が、第1の接続領域S1および第2の接続領域S2と2つの領域に分岐されて設けられている。例えば、第1の接続領域S1の接続箇所の全ての導電性ワイヤが断線しても、光電変換装置2は、第2の接続領域S2の接続箇所で光電変換素子9との電気的な接続が維持されるため、不良となることが抑制される。光電変換装置2は、電気的な接続を確保するために、光電変換素子9の上面電極と導電層7との接続箇所を複数箇所とすることができる。 Further, as shown in FIG. 5, the conductive layer 7 is provided with a region connected by a conductive wire branched into two regions, a first connection region S1 and a second connection region S2. For example, even if all the conductive wires at the connection location of the first connection region S1 are disconnected, the photoelectric conversion device 2 is electrically connected to the photoelectric conversion element 9 at the connection location of the second connection region S2. Since it is maintained, it is suppressed that it becomes a defect. In order to ensure electrical connection, the photoelectric conversion device 2 can have a plurality of connection points between the upper electrode of the photoelectric conversion element 9 and the conductive layer 7.
 導電層7は、接合材を介して第1の出力端子8aおよび第2の出力端子8bに電気的に接続されている。第1の出力端子8および第2の出力端子8bは、例えば、鉄-ニッケル-コバルト(Fe-Ni-Co)合金等からなる。また、接合材は、例えば、銀-銅ロウ、低融点半田または導電性エポキシ樹脂等からなる。 The conductive layer 7 is electrically connected to the first output terminal 8a and the second output terminal 8b through a bonding material. The first output terminal 8 and the second output terminal 8b are made of, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy. The bonding material is made of, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
 ここで、例えば、第1の出力端子8aは、正極として機能している。また、第2の出力端子8bは、負極として機能している。そして、光電変換素子9は、第1の出力端子8aおよび第2の出力端子8bに電気的に接続されており、第1の出力端子8aおよび第2の出力端子8bを介して外部に電気を取り出すことができる。 Here, for example, the first output terminal 8a functions as a positive electrode. Further, the second output terminal 8b functions as a negative electrode. The photoelectric conversion element 9 is electrically connected to the first output terminal 8a and the second output terminal 8b, and electricity is output to the outside through the first output terminal 8a and the second output terminal 8b. It can be taken out.
 集光材10は、光電変換素子9に光を集光する機能を備え、断面視して、集光材10の上部より下部が光電変換素子9に向かうに従って幅が狭くなって、断面積が小さくなる逆角錐台形状である。集光材10に届いた光は、集光材10の内部と外部との界面において繰り返し反射される。集光材10は、光電変換素子9に向かう過程で反射によって断面積内の光エネルギーの強度分布を均等化するという機能を備えている。なお、集光材10の周囲は、例えば、蒸着法等の薄膜形成技術によって、太陽光を反射する機能を有する反射部材として、金属の薄膜を設けてもよい。なお、本実施形態では、集光材10は、第1の集光材10a、第2の集光材10b、第3の集光材10cから構成されている。 The light condensing material 10 has a function of condensing light on the photoelectric conversion element 9, and in cross-section, the width becomes narrower from the upper part of the light condensing material 10 toward the photoelectric conversion element 9, and the cross-sectional area becomes larger. It is an inverted truncated pyramid shape. The light reaching the light collector 10 is repeatedly reflected at the interface between the inside and the outside of the light collector 10. The light collector 10 has a function of equalizing the intensity distribution of the light energy in the cross-sectional area by reflection in the process toward the photoelectric conversion element 9. Note that a metal thin film may be provided around the light collecting member 10 as a reflective member having a function of reflecting sunlight by, for example, a thin film forming technique such as vapor deposition. In the present embodiment, the light collecting material 10 includes a first light collecting material 10a, a second light collecting material 10b, and a third light collecting material 10c.
 また、集光材10は、透光性を有しており、受光材3から届いた光を光電変換素子9に導く機能を備えている。集光材10の透光性とは、光電変換素子9が、太陽電池素子である場合は、太陽光の少なくとも一部の波長領域に含まれる光が透過できることをいう。なお、集光材10は、例えば、ホウ珪酸ガラス、プラスチックまたは透光性樹脂等からなる。 Further, the light condensing material 10 has translucency and has a function of guiding light from the light receiving material 3 to the photoelectric conversion element 9. The translucency of the condensing material 10 means that light contained in at least a part of the wavelength region of sunlight can be transmitted when the photoelectric conversion element 9 is a solar cell element. The light collector 10 is made of, for example, borosilicate glass, plastic, or translucent resin.
 集光材10の第1乃至第3の集光材10a、10b、10cの側面は、枠体6の支持部6aと接合される位置に全周にわたって金属層が形成されている。また、金属層は、蒸着法やスパッタリング法等の薄膜形成技術によって形成される。金属層は、例えば、チタン、白金、金、クロム、ニッケル、金、銀、銅、あるいはそれらの合金等の金属材料からなる。集光材10の第1乃至第3の集光材10a、10b、10cは、側面の金属層が、例えば、ロウ材、半田、低融点ガラスまたはエポキシ樹脂等からなる接合部材11を介して、枠体6の全周にわたって、枠体6の支持部6aの傾斜面で接合されている。接合方法は、例えば、ロウ材接合、半田接合または樹脂接合等の方法である。ロウ材は、例えば、銀-銅ロウ等からなる。また、半田は、金-錫系、金-ゲルマニウム系、錫-鉛系等からなる。また、低融点ガラスとは、ガラス転移点が600℃以下のガラスのことをいう。 The side surfaces of the first to third light collecting materials 10 a, 10 b, and 10 c of the light collecting material 10 are formed with metal layers over the entire circumference at positions where they are joined to the support portion 6 a of the frame 6. The metal layer is formed by a thin film forming technique such as a vapor deposition method or a sputtering method. The metal layer is made of a metal material such as titanium, platinum, gold, chromium, nickel, gold, silver, copper, or an alloy thereof. The first to third light-collecting materials 10a, 10b, and 10c of the light-collecting material 10 have side surface metal layers, for example, via a bonding member 11 made of a brazing material, solder, low-melting glass, epoxy resin, or the like. The entire periphery of the frame body 6 is joined by the inclined surface of the support portion 6 a of the frame body 6. The joining method is, for example, a method such as brazing, solder joining, or resin joining. The brazing material is made of, for example, silver-copper brazing. The solder is made of gold-tin, gold-germanium, tin-lead, or the like. The low melting point glass means a glass having a glass transition point of 600 ° C. or lower.
 また、枠体6と集光材10は、枠体6の支持部6aのみで接合されることによって、枠体6と集光材10の接合面積が小さくできる。その結果、集光材10は、枠体6から集光材10への圧縮応力が低減でき、集光材10の屈折率の変化による光電変換素子9への照射光の位置ずれを抑制し、集光性を向上することができる。 Moreover, the joining area of the frame 6 and the condensing material 10 can be made small by joining the frame 6 and the condensing material 10 only by the support part 6a of the frame 6. FIG. As a result, the condensing material 10 can reduce the compressive stress from the frame 6 to the condensing material 10 and suppress the positional deviation of the irradiation light to the photoelectric conversion element 9 due to the change in the refractive index of the condensing material 10. Light condensing property can be improved.
 また、集光材10の少なくとも一部は、枠体6の枠部6bの開口部A1に嵌め込まれて配置さている。そして、集光材10は、枠体6の枠部6bの支持部6aで接合されている。枠体6は、開口部A1の径を調整することで光電変換素子9から集光材10までの高さを調整することができ、光電変換素子9から集光材10の下面までの高さを予め決められた所定の高さに集光材10を容易に設定することができる。結果として、集光材10は、光電変換素子9への照射光の高さ方向の位置ずれが抑制され、集光効率を向上させることができる。すなわち、光電変換装置2は、集光材10から光電変換素子9へ入射される照射光を効率良く集光させるために、光電変換素子9から集光材10までを所定の高さすることができる。 Further, at least a part of the light collector 10 is fitted into the opening A1 of the frame 6b of the frame 6 and arranged. The light collecting member 10 is joined by the support portion 6 a of the frame portion 6 b of the frame body 6. The frame 6 can adjust the height from the photoelectric conversion element 9 to the light condensing material 10 by adjusting the diameter of the opening A1, and the height from the photoelectric conversion element 9 to the lower surface of the light condensing material 10 can be adjusted. Can be easily set to a predetermined height. As a result, the light condensing material 10 can suppress the positional shift in the height direction of the irradiation light to the photoelectric conversion element 9, and can improve the light condensing efficiency. That is, the photoelectric conversion device 2 may raise the height from the photoelectric conversion element 9 to the light condensing material 10 to a predetermined height in order to efficiently collect the irradiation light incident on the photoelectric conversion element 9 from the light condensing material 10. it can.
 集光材10は、枠体6の枠部6bの全周にわたって接合されている。そして、複数の集光材10は、複数の光電変換素子9とそれぞれ対応するように、光電変換素子9の上方に空間SPを介して配置されている。結果として、複数の光電変換素子9は、素子搭載基体5、枠体6および複数の集光材10で囲まれる空間SPに設けられ、気密封止される。光電変換装置2は、光電変換素子9が空間SPに設けられることによって気密封止されるため、耐湿性が向上し、光電変換素子9を長期にわたって信頼性良く作動させることができる。 The light collector 10 is joined over the entire circumference of the frame 6b of the frame 6. And the some condensing material 10 is arrange | positioned via the space SP above the photoelectric conversion element 9 so that it may each correspond with the some photoelectric conversion element 9. FIG. As a result, the plurality of photoelectric conversion elements 9 are provided in a space SP surrounded by the element mounting base 5, the frame body 6, and the plurality of light collectors 10 and hermetically sealed. Since the photoelectric conversion device 2 is hermetically sealed by providing the photoelectric conversion element 9 in the space SP, the moisture resistance is improved, and the photoelectric conversion element 9 can be operated with reliability over a long period of time.
 また、集光材10は、光の反射によって断面積内の光エネルギーの強度分布を均等化する機能を有していればよい。集光材10の形状は、上部から下部へ光電変換素子9に向かうに従って断面積が小さくなる逆円錐台形状であってもよい。集光材10の形状は、光電変換素子9の受光面の形状に合わせて形成されることによって、集光効率を向上させることができる。例えば、光電変換素子9の受光面が円状で有れば、集光材10の形状は、逆円錐台形状とすることができる。また、光電変換素子9の受光面が矩形状であれば、集光材10の形状は、逆角錐台形状とすることができる。すなわち、集光材10は、下部の外縁形状が光電変換素子9の外縁形状と相似形であるとともに、平面視したときに、集光材10の下部の外縁形状の内側に光電変換素子9の外縁形状が位置していればよい。なお、枠体6の形状は、集光材10の形状に合わせて形成することができる。 Further, the light collector 10 only needs to have a function of equalizing the intensity distribution of the light energy in the cross-sectional area by reflection of light. The shape of the light collector 10 may be an inverted truncated cone shape whose cross-sectional area decreases from the upper part toward the lower part toward the photoelectric conversion element 9. Condensing efficiency can be improved by forming the shape of the condensing material 10 according to the shape of the light receiving surface of the photoelectric conversion element 9. For example, if the light receiving surface of the photoelectric conversion element 9 is circular, the shape of the light condensing material 10 can be an inverted truncated cone shape. Moreover, if the light-receiving surface of the photoelectric conversion element 9 is rectangular, the shape of the condensing material 10 can be an inverted truncated pyramid shape. That is, the condensing material 10 has a lower outer edge shape similar to the outer edge shape of the photoelectric conversion element 9, and when viewed in plan, the photoelectric conversion element 9 has an inner shape of the lower outer edge shape of the light collecting material 10. The outer edge shape should just be located. Note that the shape of the frame 6 can be formed in accordance with the shape of the light collector 10.
 本実施形態によれば、光電変換装置2は、同一の素子搭載基板5上に、複数の光電変換素子9が搭載されているので、各々の光電変換素子9で発生する熱を、効果的に放熱することができる。また、素子搭載基板5の全体で均一な温度分布とすることができる。 According to the present embodiment, since the photoelectric conversion device 2 has the plurality of photoelectric conversion elements 9 mounted on the same element mounting substrate 5, the heat generated by each photoelectric conversion element 9 is effectively reduced. It can dissipate heat. In addition, a uniform temperature distribution can be obtained throughout the element mounting substrate 5.
 例えば、光電変換装置2は、局所的な発熱によって、枠体6から集光材10に多くの熱が伝導すると、枠体6と集光材10との接合部材11が局所的な熱の影響を受けて、接合状態が損なわれ、集光材10の位置ずれが発生する虞がある。本実施形態では、各々の光電変換素子9で発熱の状態が異なって温度分布が生じたとしても、光電変換装置2は、複数の光電変換素子9が同一の素子搭載基板5に搭載されているので、複数の光電変換素子9の周辺の熱が素子搭載基板5の全体に効果的に放熱され、素子搭載基板5の全体で均一な温度分布とすることができる。光電変換装置2は、局所的な発熱を効果的に素子搭載基板5に放熱することができるため、枠体6と集光材10との接合部が熱の影響を受けにくく、集光材10の位置ずれが抑制される。結果として、光電変換装置2は、集光材10から光電変換素子9への照射光の位置ずれを抑制することができ、集光性を向上することができる。 For example, in the photoelectric conversion device 2, when a large amount of heat is conducted from the frame body 6 to the light collecting material 10 due to local heat generation, the bonding member 11 between the frame body 6 and the light collecting material 10 is affected by local heat. As a result, the bonded state is impaired, and the light collector 10 may be displaced. In the present embodiment, even if each photoelectric conversion element 9 has a different heat generation state and has a temperature distribution, the photoelectric conversion device 2 has a plurality of photoelectric conversion elements 9 mounted on the same element mounting substrate 5. Therefore, the heat around the plurality of photoelectric conversion elements 9 is effectively radiated to the entire element mounting substrate 5, and a uniform temperature distribution can be obtained throughout the element mounting substrate 5. Since the photoelectric conversion device 2 can effectively dissipate local heat generation to the element mounting substrate 5, the joint between the frame body 6 and the light condensing material 10 is not easily affected by heat, and the light condensing material 10 Is suppressed. As a result, the photoelectric conversion device 2 can suppress the positional deviation of the irradiation light from the light condensing material 10 to the photoelectric conversion element 9, and can improve the light condensing property.
 また、例えば、光電変換装置2は、集光材10で集光された太陽光が、光電変換素子9以外の領域に、位置ずれした状態で局所的に多く照射されると、局所的な領域で素子搭載基板5の温度が上昇する。本実施形態では、光電変換装置2は、同一の素子搭載基板5で構成されているため、集光材10で集光された太陽光が、光電変換素子9以外の領域に、位置ずれした状態で局所的に照射されても、素子搭載基板5に効果的に放熱されるため、温度上昇を抑制することができる。結果として、光電変換装置2は、集光された太陽光の位置ずれに起因して発生する熱による素子搭載基板5の温度上昇および光電変換素子9の変換効率の低下を抑制することができる。 In addition, for example, when the sunlight that has been collected by the light condensing material 10 is irradiated in a large amount locally in a state that is shifted in the region other than the photoelectric conversion element 9, the photoelectric conversion device 2 has a local region. As a result, the temperature of the element mounting substrate 5 rises. In the present embodiment, since the photoelectric conversion device 2 is composed of the same element mounting substrate 5, the sunlight condensed by the light condensing material 10 is shifted in a region other than the photoelectric conversion element 9. Even if it is irradiated locally, the heat is effectively radiated to the element mounting substrate 5, so that the temperature rise can be suppressed. As a result, the photoelectric conversion device 2 can suppress an increase in the temperature of the element mounting substrate 5 and a decrease in the conversion efficiency of the photoelectric conversion element 9 due to the heat generated due to the misalignment of the concentrated sunlight.
 ここで、光電変換素子収納用パッケージについて説明する。光電変換素子収納用パッケージは、素子搭載基板5および枠体6で構成され、光電変換素子9および集光材10が未搭載の状態である。すなわち、光電変換素子収納用パッケージは、複数の光電変換素子9が搭載される搭載部を有した素子搭載基板5と、素子搭載基板5上のそれぞれの搭載部を取り囲むように設けられる枠部6bを有する枠体6と、を備えている。枠体6は、光電変換素子9の搭載予定位置より上方の位置に設けられる予定の集光材10が接合される。 Here, the photoelectric conversion element storage package will be described. The photoelectric conversion element storage package is composed of the element mounting substrate 5 and the frame body 6, and the photoelectric conversion element 9 and the light condensing material 10 are not mounted. That is, the photoelectric conversion element storage package includes an element mounting substrate 5 having a mounting portion on which a plurality of photoelectric conversion elements 9 are mounted, and a frame portion 6b provided so as to surround each mounting portion on the element mounting substrate 5. And a frame body 6 having. The frame 6 is joined to a light condensing material 10 that is to be provided at a position above the planned mounting position of the photoelectric conversion element 9.
 光電変換装置2は、素子搭載基板5の導電層7上に、例えば、半田や樹脂等の接合材を介して複数の光電変換素子9を搭載し、さらに、枠体6に、光電変換素子9の上方に空間を介して集光材10が設けられる。これによって、光電変換装置2は、光電変換素子9および集光材10が設けられる。このような光電変換素子収納用パッケージとすることにより、光電変換装置2は、複数の光電変換素子9で構成されるため、少ない数の光電変換装置2で光電変換モジュール1を構成することができ、光電変換装置2同士の接続箇所を低減することができる。 In the photoelectric conversion device 2, a plurality of photoelectric conversion elements 9 are mounted on the conductive layer 7 of the element mounting substrate 5 via a bonding material such as solder or resin, and the photoelectric conversion elements 9 are further mounted on the frame 6. The light condensing material 10 is provided above through a space. Thus, the photoelectric conversion device 2 is provided with the photoelectric conversion element 9 and the light condensing material 10. By adopting such a package for storing photoelectric conversion elements, the photoelectric conversion device 2 is composed of a plurality of photoelectric conversion elements 9, so that the photoelectric conversion module 1 can be composed of a small number of photoelectric conversion devices 2. And the connection location of the photoelectric conversion apparatuses 2 can be reduced.
 ここで、図1に示す光電変換モジュール1および図2に示す光電変換装置2の製造方法を説明する。 Here, a method for manufacturing the photoelectric conversion module 1 shown in FIG. 1 and the photoelectric conversion device 2 shown in FIG. 2 will be described.
 まず、素子搭載基板5および枠体6をそれぞれ準備する。 First, the element mounting substrate 5 and the frame 6 are prepared.
 素子搭載基板5および枠体6を準備する。素子搭載基板5および枠体6が、例えば、酸化アルミニウム質焼結体からなる場合は、酸化アルミニウム、酸化珪素、酸化マグネシウムおよび酸化カルシウム等の原料粉末に、有機バインダー、可塑剤または溶剤等を添加混合して混合物を得る。そして、素子搭載基板5および枠体6の型枠内に、混合物を充填して乾燥させた後、焼結前の素子搭載基板5および枠体6を取り出すことで作製することができる。 Element mounting substrate 5 and frame 6 are prepared. When the element mounting substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Mix to obtain a mixture. And after filling and drying the mixture in the molds of the element mounting substrate 5 and the frame 6, the element mounting substrate 5 and the frame 6 before sintering can be taken out.
 また、タングステンまたはモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤または溶剤等を添加混合して金属ペーストを得る。 Also, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent or the like is added to and mixed with the powder to obtain a metal paste.
 そして、取り出した焼成前の未硬化の素子搭載基板5上に、例えば、スクリーン印刷法を用いて、金属ペーストを塗って、光電変換素子9、第1の出力端子8aおよび第2の出力端子8bと接続するための導電層7を形成する。また、取り出した焼成前の未硬化の枠体6の支持部6aの傾斜面に、例えば、スクリーン印刷法を用いて、金属ペーストを塗って、集光材10の側面と接合するための金属層を形成する。 Then, a metal paste is applied onto the uncured element mounting substrate 5 before firing taken out using, for example, a screen printing method, and the photoelectric conversion element 9, the first output terminal 8a, and the second output terminal 8b. A conductive layer 7 is formed for connection to the. In addition, a metal layer is applied to the inclined surface of the support 6a of the uncured frame body 6 before being taken out by applying a metal paste by using, for example, a screen printing method, and joining the side surface of the light collecting material 10. Form.
 さらに、導電層7が形成された焼成前の未硬化の素子搭載基板5上に、焼成前の未硬化の枠体6を載せて圧着して、両者を密着させる。そして、両者を約1600℃の温度で同時に焼成することにより、焼成後に、素子搭載基板5および枠体6を一体化した成型体を作製することができる。 Further, the uncured frame body 6 before firing is placed on the uncured element mounting substrate 5 before firing on which the conductive layer 7 is formed, and the both are brought into close contact with each other. And by baking both at the temperature of about 1600 degreeC simultaneously, the molded object which integrated the element mounting board | substrate 5 and the frame 6 can be produced after baking.
 次に、枠体6で取り囲まれる領域であって、素子搭載基板5の導電層7上に、例えば、導電性エポキシ樹脂で光電変換素子9を搭載し、光電変換素子9の下面電極を電気的に接続する。また、枠体6で囲まれる導電層7上から、光電変換素子9の上面電極に対して、導電性ワイヤを介して電気的に接続する。 Next, in a region surrounded by the frame 6, the photoelectric conversion element 9 is mounted on the conductive layer 7 of the element mounting substrate 5 with, for example, a conductive epoxy resin, and the lower electrode of the photoelectric conversion element 9 is electrically connected. Connect to. Further, the conductive layer 7 surrounded by the frame body 6 is electrically connected to the upper surface electrode of the photoelectric conversion element 9 through a conductive wire.
 集光材10は、モールド成形技術によって作製することができる。具体的には、集光材10の金型内に、ホウ珪酸ガラスを投入し、加熱、プレスして成形する。さらに、当該成形品を冷却して金型から成形品を取り出すことで、集光材10を作製することができる。そして、枠体6の支持部6aと接合する位置の全周にわたって、集光部材10の側面に、例えば、蒸着法によって、クロムの金属層を形成する。 The light collecting material 10 can be produced by a molding technique. Specifically, borosilicate glass is put into the mold of the light collector 10 and heated and pressed to form. Furthermore, the condensing material 10 can be produced by cooling the molded product and taking out the molded product from the mold. And the chromium metal layer is formed in the side surface of the condensing member 10 over the perimeter of the position joined with the support part 6a of the frame 6, for example by a vapor deposition method.
 そして、集光材10は、半田等を介して、枠体6の支持部6aと接合する。 And the condensing material 10 joins with the support part 6a of the frame 6 through solder etc. As shown in FIG.
 さらに、導電層7に、例えば、鉄-ニッケル-コバルト(Fe-Ni-Co)合金からなる第1の出力端子8aおよび第2の出力端子8bを半田等で電気的に接続する。このようにして、光電変換装置2を作製することができる。 Furthermore, the first output terminal 8a and the second output terminal 8b made of, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy are electrically connected to the conductive layer 7 with solder or the like. In this way, the photoelectric conversion device 2 can be manufactured.
 光電変換モジュール1の作製方法について説明する。複数個の光電変換装置2と、外部基板4とを準備する。ここで、2つの光電変換装置2の接続方法について説明する。 A method for manufacturing the photoelectric conversion module 1 will be described. A plurality of photoelectric conversion devices 2 and an external substrate 4 are prepared. Here, a method of connecting the two photoelectric conversion devices 2 will be described.
 まず、一方の光電変換素子2の第1の出力端子8aと他方の光電変換装置2の第2の出力端子8bとが隣り合うように、例えば、樹脂等によって両者を外部基板4上に固定する。そして、配置した2つの光電変換装置2を、例えば、導電性ワイヤ等の接続部材を介して電気的に接続する。このようにして、2つの光電変換装置が外部基板4に固定され、接続される。同様にして、複数の光電変換装置2を外部基板4に配置して固定する。そして、外部基板4に配置した複数の光電変換装置2上に受光材3を設けることで、光電変換モジュール1を作製することができる。 First, the first output terminal 8a of one photoelectric conversion element 2 and the second output terminal 8b of the other photoelectric conversion device 2 are fixed on the external substrate 4 with, for example, resin or the like. . Then, the two arranged photoelectric conversion devices 2 are electrically connected through a connection member such as a conductive wire, for example. In this way, the two photoelectric conversion devices are fixed and connected to the external substrate 4. Similarly, a plurality of photoelectric conversion devices 2 are arranged and fixed on the external substrate 4. And the photoelectric conversion module 1 can be produced by providing the light receiving material 3 on the plurality of photoelectric conversion devices 2 arranged on the external substrate 4.
 <第1の実施形態の変形例>
 本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。以下、第1の実施形態の変形例について説明する。なお、第1の実施形態の変形例に係る光電変換装置のうち、第1の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification of First Embodiment>
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. Hereinafter, modifications of the first embodiment will be described. Note that, in the photoelectric conversion device according to the modification of the first embodiment, the same parts as those of the photoelectric conversion device 2 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <第1の実施形態の変形例1>
 上記第1の実施形態に係る光電変換装置2は、素子搭載基板5に対して、光電変換素子9を3個搭載し、各々の光電変換素子9を電気的に直列に接続する構成としているが、これに限らない。光電変換装置2は、図6に示すように、光電変換素子9が搭載される導電層7が素子搭載基板5の長手方向に延在して設けられている。そして、光電変換装置2は、光電変換素子9を3個搭載し、第1の接続領域S1および第2の接続領域S2の2つの領域で、各々の光電変換素子9を電気的に並列に接続する構成としてもよい。すなわち、光電変換装置2は、各々の光電変換素子9が導電性ワイヤで導電層7と電気的に並列に接続されている。したがって、光電変換装置2は、光電変換素子9が搭載される導電層7の領域を素子搭載基板5の長手方向に広く形成することができるため、光電変換素子9で発生した熱を効果的に放熱することができる。また、光電変換装置2は、光電変換素子9が同一の導電層7に搭載されているので、光電変換素子9で発生した熱を素子搭載基板5の全体で均一な温度分布とすることができ、局所的な発熱を効果的に素子搭載基板5に放熱することができる。
<Variation 1 of the first embodiment>
The photoelectric conversion device 2 according to the first embodiment has a configuration in which three photoelectric conversion elements 9 are mounted on the element mounting substrate 5 and each photoelectric conversion element 9 is electrically connected in series. Not limited to this. As shown in FIG. 6, the photoelectric conversion device 2 is provided with a conductive layer 7 on which the photoelectric conversion element 9 is mounted extending in the longitudinal direction of the element mounting substrate 5. The photoelectric conversion device 2 has three photoelectric conversion elements 9 mounted thereon, and the photoelectric conversion elements 9 are electrically connected in parallel in the two areas of the first connection area S1 and the second connection area S2. It is good also as composition to do. That is, in the photoelectric conversion device 2, each photoelectric conversion element 9 is electrically connected to the conductive layer 7 in parallel with a conductive wire. Therefore, since the photoelectric conversion device 2 can widely form the region of the conductive layer 7 on which the photoelectric conversion element 9 is mounted in the longitudinal direction of the element mounting substrate 5, the heat generated in the photoelectric conversion element 9 can be effectively absorbed. It can dissipate heat. Further, in the photoelectric conversion device 2, since the photoelectric conversion elements 9 are mounted on the same conductive layer 7, the heat generated in the photoelectric conversion elements 9 can be made to have a uniform temperature distribution over the entire element mounting substrate 5. Thus, local heat generation can be effectively radiated to the element mounting substrate 5.
 <第1の実施形態の変形例2>
 上記第1の実施形態に係る光電変換装置2は、素子搭載基板5に対して、光電変換素子9を3個搭載し、各々の光電変換素子9に対してそれぞれに枠体6を設ける構成としているが、これに限らない。光電変換装置12は、図7および図8に示すように、3個の光電変換素子9を素子搭載基板5上に搭載し、3個の枠部16bを有する枠体16を1個設けている。すなわち、枠体16は複数の枠部16bを有している。結果として、光電変換装置12は、1個の枠体16に設けられている複数の枠部16bで複数の光電変換素子9をそれぞれ囲んでいる。光電変換装置12は、複数の光電変換素子9に対して、複数の枠部16bを有する枠体16を1個設けることにより、製造プロセスを削減することができる。また、光電変換装置12は、枠体16を1個で構成しているため、素子搭載基板5上に枠体16を搭載する際、光電変換素子9に対する枠体16の搭載位置の調整を1回で済ませることができる。
<Modification 2 of the first embodiment>
The photoelectric conversion device 2 according to the first embodiment has a configuration in which three photoelectric conversion elements 9 are mounted on the element mounting substrate 5 and a frame body 6 is provided for each photoelectric conversion element 9. However, it is not limited to this. As shown in FIGS. 7 and 8, the photoelectric conversion device 12 has three photoelectric conversion elements 9 mounted on the element mounting substrate 5 and one frame body 16 having three frame portions 16 b. . In other words, the frame body 16 has a plurality of frame portions 16b. As a result, the photoelectric conversion device 12 surrounds the plurality of photoelectric conversion elements 9 with a plurality of frame portions 16 b provided in one frame body 16. The photoelectric conversion apparatus 12 can reduce a manufacturing process by providing one frame body 16 having a plurality of frame portions 16b for a plurality of photoelectric conversion elements 9. In addition, since the photoelectric conversion device 12 includes the single frame body 16, when the frame body 16 is mounted on the element mounting substrate 5, the mounting position of the frame body 16 with respect to the photoelectric conversion element 9 is adjusted by one. Can be done in a single time.
 <第1の実施形態の変形例3>
 さらに、光電変換装置22は、図9および図10に示すように、9個の光電変換素子9を素子搭載基板5上に搭載し、9個の枠部26bを有する枠体26を1個設ける構成としてもよい。すなわち、枠体26は複数の枠部26bを有している。なお、集光材10は、第1の集光材10a~第9の集光材10iを有して構成されている。導電層27のパターンは、素子搭載基板25上で折り返すように設けられているので、複数の光電変換素子9を効果的に接続することができる。光電変換モジュール1は、少ない数の光電変換装置22で構成することができるので、光電変換装置22同士を接続する箇所を低減することができる。結果として、光電変換モジュール1は、接続の信頼性を向上させることができる。
<Modification 3 of the first embodiment>
Further, as shown in FIGS. 9 and 10, the photoelectric conversion device 22 has nine photoelectric conversion elements 9 mounted on the element mounting substrate 5 and one frame body 26 having nine frame portions 26 b. It is good also as a structure. That is, the frame body 26 has a plurality of frame portions 26b. The light collecting material 10 includes a first light collecting material 10a to a ninth light collecting material 10i. Since the pattern of the conductive layer 27 is provided so as to be folded back on the element mounting substrate 25, a plurality of photoelectric conversion elements 9 can be effectively connected. Since the photoelectric conversion module 1 can be comprised with a small number of photoelectric conversion apparatuses 22, the location which connects the photoelectric conversion apparatuses 22 can be reduced. As a result, the photoelectric conversion module 1 can improve connection reliability.
 <第2の実施形態>
 第2の実施形態に係る光電変換装置では、第1の実施形態に係る光電変換装置2と比較して、集光材10の形状が変更されたものとなっている。なお、第2の実施形態に係る光電変換装置のうち、第1の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Second Embodiment>
In the photoelectric conversion device according to the second embodiment, the shape of the light collector 10 is changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 2nd Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 集光材20は、図11に示すように、下部20aの外縁形状が光電変換素子9の外縁形状の相似形であるとともに、上部20bが下方から上方に向かって幅広の逆円錐台状であって、平面透視したときに集光材20の下部20aの外縁形状と光電変換素子9の外縁形状とが重なるように設定されている。集光材20の上部20bの横断面は、上方から下方に向かうにつれて、円状から多角形状に変形している。すなわち、集光材20は、上部20bが逆円錐台状および下部20aが多角柱状となるように、集光材20の上部20bの横断面は、上方から下方に向かうにつれて、円状から多角状になだらかに変形し、下部20aが多角柱状となっている。なお、集光材20は、集光材20の金型を任意の形状に設定することで、所望の形状にすることができる。 As shown in FIG. 11, the condensing material 20 has an inverted frustoconical shape in which the outer edge shape of the lower portion 20 a is similar to the outer edge shape of the photoelectric conversion element 9, and the upper portion 20 b is wide from below to above. Thus, the outer edge shape of the lower portion 20a of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 are set so as to overlap each other when seen through the plane. The cross section of the upper part 20b of the light condensing material 20 is deformed from a circular shape to a polygonal shape from the upper side to the lower side. That is, the light condensing material 20 has a cross section of the upper part 20b of the light condensing material 20 from a circular shape to a polygonal shape from the top to the bottom so that the upper part 20b has an inverted truncated cone shape and the lower part 20a has a polygonal columnar shape. The lower portion 20a has a polygonal columnar shape. In addition, the condensing material 20 can be made into a desired shape by setting the metal mold | die of the condensing material 20 to arbitrary shapes.
 集光材20の下部20aは、多角柱状であって、平面透視したときに光電変換素子9の外縁形状と合わせる形状に設定されている。集光材20の上部20bは、逆円錐台状に形成されており、受光材3を介して集光材20に集まる光は、まず、集光材20の上部20bに進入する。そして、図11に示すように、集光材20の上部20bに進入した光LCは、横断面が円状の集光材20の上部20b内で下部20aに向かって収束していく。このとき、仮に、集光材20の上部20bの横断面に矩形状等の角がある形状の場合には、侵入した光LCは、下部20aに向かって進行する際に集光材20の内部から外部に向かって一部の光が漏れ出ることがあるが、集光材20は、上部20bの横断面を円状とすることで、集光材20の内部から外部に向かって漏れ出る光を低減することができる。 The lower part 20a of the light condensing material 20 has a polygonal column shape, and is set to a shape that matches the outer edge shape of the photoelectric conversion element 9 when seen through the plane. The upper part 20b of the light condensing material 20 is formed in an inverted truncated cone shape, and the light gathered on the light condensing material 20 via the light receiving material 3 first enters the upper part 20b of the light condensing material 20. As shown in FIG. 11, the light LC that has entered the upper portion 20 b of the light collector 20 converges toward the lower portion 20 a in the upper portion 20 b of the light collector 20 having a circular cross section. At this time, if the cross section of the upper part 20b of the light condensing material 20 has a corner such as a rectangle, the light LC that has entered the interior of the light condensing material 20 travels toward the lower part 20a. The light condensing member 20 may leak from the inside of the light condensing material 20 to the outside by making the cross section of the upper portion 20b circular. Can be reduced.
 集光材20の下部20aに収束した光は、下部20aの下面の全面から光電変換素子9に放射されるため、平面視したときに、集光材20の下部20aの外周内に光電変換素子9を配置することで、下部20aから放射される光によって、光電変換素子9の上面の全面を照らすことができる。 Since the light converged on the lower part 20a of the light condensing material 20 is radiated from the entire lower surface of the lower part 20a to the photoelectric conversion element 9, the photoelectric conversion element is located within the outer periphery of the lower part 20a of the light condensing material 20 when viewed in plan. By arranging 9, the entire upper surface of the photoelectric conversion element 9 can be illuminated by the light emitted from the lower portion 20 a.
 また、光電変換素子9は、平面透視したときに、集光材20の下部20aの外周内に配置させるとともに、平面透視したときに光電変換素子9と集光材20の下部20aとを合致させることができる。両者を合致するように配置することで、集光材20は、下部20aから放射される光を効率良く光電変換素子9に照射することができ、光電変換装置2の光電変換効率を良好にすることができる。つまり、集光材20は、光電変換素子9の受光面の形状に合わせて、集光材20の下部20aの形状と配置場所を決定することで、光電変換装置2の光電変換効率を優れたものにすることができる。 Further, the photoelectric conversion element 9 is disposed within the outer periphery of the lower portion 20a of the light condensing material 20 when seen through the plane, and the photoelectric conversion element 9 and the lower portion 20a of the light collecting material 20 are matched when seen through the plane. be able to. By arrange | positioning so that both may correspond, the condensing material 20 can irradiate the photoelectric conversion element 9 with the light radiated | emitted from the lower part 20a efficiently, and makes the photoelectric conversion efficiency of the photoelectric conversion apparatus 2 favorable. be able to. That is, the light condensing material 20 is excellent in the photoelectric conversion efficiency of the photoelectric conversion device 2 by determining the shape and location of the lower part 20a of the light condensing material 20 according to the shape of the light receiving surface of the photoelectric conversion element 9. Can be a thing.
 さらに、集光材20から光電変換素子9に進行する光は、光電変換素子9の受光面に多く照射されるため、素子搭載基板5は、光電変換素子9の周辺に余分な熱の発生が抑制される。これによって、素子搭載基板5は放熱特性を良好に維持することができる。 Furthermore, a large amount of light traveling from the light condensing material 20 to the photoelectric conversion element 9 is applied to the light receiving surface of the photoelectric conversion element 9, so that the element mounting substrate 5 generates extra heat around the photoelectric conversion element 9. It is suppressed. Thereby, the element mounting substrate 5 can maintain good heat dissipation characteristics.
 また、集光材20と支持部6aとの接合箇所は、集光材20の上部20bの側面であり、集光材20の上部20bは、横断面が円状であるため、支持部6aから集光材20に加わる応力集中を分散することができる。集光材20は、集光材20の上部20bに対して支持部6aから局所的に応力が集中するのを緩和することができ、その結果、集光材20の破損の発生が効果的に抑制される。 Moreover, since the junction part of the condensing material 20 and the support part 6a is a side surface of the upper part 20b of the condensing material 20, since the cross section of the upper part 20b of the condensing material 20 is circular, from the support part 6a. The stress concentration applied to the light collector 20 can be dispersed. The light collecting material 20 can alleviate the local concentration of stress from the support portion 6a to the upper portion 20b of the light collecting material 20, and as a result, the light collecting material 20 can be effectively damaged. It is suppressed.
 本実施形態によれば、集光材20は、平面透視したときに下部20aの外縁形状が光電変換素子9の外縁形状の相似形であるとともに、上部20bが下方から上方に向かって幅広の逆円錐台状であって、平面透視したときに集光材20の外縁形状と光電変換素子9の外縁形状とが重なっている。これによって、集光材20は、集光材20内を進行する光を外部に漏れ出るのを抑制するとともに、集光材20の下端から光電変換素子9に向かって進行する光を効率よく光電変換素子9に照射することができ、光電変換効率を効果的に向上させることができる。 According to the present embodiment, the condensing material 20 has a shape in which the outer edge shape of the lower portion 20a is similar to the outer edge shape of the photoelectric conversion element 9 when viewed through the plane, and the upper portion 20b is a wide reverse from the lower side to the upper side. In the shape of a truncated cone, the outer edge shape of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 overlap when viewed through the plane. As a result, the light condensing material 20 suppresses leakage of the light traveling in the light condensing material 20 to the outside, and efficiently converts the light traveling from the lower end of the light condensing material 20 toward the photoelectric conversion element 9. The conversion element 9 can be irradiated, and the photoelectric conversion efficiency can be effectively improved.
 また、集光材20は、光電変換素子9の周囲を照らす光の量を少なくし、素子搭載基板5が必要以上に高温になるのを抑制することができ、光電変換素子9の電気特性が大きく変化するのを抑制することができる。これによって、集光材20は、光電変換素子9の光起電力効果を向上させることができる。 Moreover, the condensing material 20 can reduce the amount of light that illuminates the periphery of the photoelectric conversion element 9, and can suppress the element mounting substrate 5 from becoming unnecessarily high. A large change can be suppressed. Thereby, the condensing material 20 can improve the photovoltaic effect of the photoelectric conversion element 9.
 上述した実施形態によれば、光電変換素子9の外縁が矩形状の場合には、集光材20は、下部20aを矩形柱状に形成したが、これに限らない。集光材20は、光電変換素子9の外縁形状と集光材20の下部20aの外縁形状が相似の関係であれば、例えば、図12に示すように、光電変換素子9の外縁形状を六角形とし、集光材20の下部20aの外縁形状を六角形に形成してもよい。また、集光材20の下部20aの外縁形状と光電変換素子9の外縁形状は相似の関係にあれば、図13に示すように、光電変換素子9の外縁形状は、平面透視したときに集光材20の下部20aの外縁形状の内側に位置するようにしてもよい。 According to the above-described embodiment, when the outer edge of the photoelectric conversion element 9 is rectangular, the light condensing material 20 has the lower portion 20a formed in a rectangular column shape, but this is not restrictive. If the outer edge shape of the photoelectric conversion element 9 and the outer edge shape of the lower part 20a of the light collecting material 20 are similar to each other in the light condensing material 20, for example, as shown in FIG. The outer edge shape of the lower part 20a of the condensing material 20 may be formed in a hexagonal shape. Further, if the outer edge shape of the lower part 20a of the light condensing material 20 and the outer edge shape of the photoelectric conversion element 9 are similar, as shown in FIG. 13, the outer edge shape of the photoelectric conversion element 9 is collected when seen through a plane. You may make it locate inside the outer edge shape of the lower part 20a of the optical material 20. FIG.
 <第2の実施形態の変形例>
本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。以下、第2の実施形態の変形例について説明する。なお、第2の実施形態の変形例に係る光電変換装置のうち、第2の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification of Second Embodiment>
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. Hereinafter, modifications of the second embodiment will be described. Note that, in the photoelectric conversion device according to the modification of the second embodiment, the same parts as those of the photoelectric conversion device 2 according to the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <第2の実施形態の変形例1>
 上記実施形態では、集光材20の下部20aは、平面透視して上部20bの下端の領域と合わさる大きさに設定されているが、これに限らない。集光材20は、例えば、図14に示すように、集光材20の下部20ayを、断面視したときに枠体6の内壁面に向かって突出するように形成してもよい。なお、枠体6は、素子搭載基板5上に形成され、土台として機能する第1の枠体6cと、第1の枠体6c上に形成され、集光材20を支持する第2の枠体6dで構成されている。
<Modification Example 1 of Second Embodiment>
In the said embodiment, although the lower part 20a of the condensing material 20 is set to the magnitude | size which fits with the area | region of the lower end of the upper part 20b seeing through a plane, it is not restricted to this. For example, as shown in FIG. 14, the light collector 20 may be formed so that the lower part 20 ay of the light collector 20 protrudes toward the inner wall surface of the frame 6 when viewed in cross section. The frame body 6 is formed on the element mounting substrate 5 and functions as a base, and the second frame is formed on the first frame body 6c and supports the light collecting material 20. It is composed of a body 6d.
 また、枠体6の内壁面は、枠体6に集光材20が接合された状態で、集光材20の下部20ayの側面と対向する対向面なるように形成されている。そのため、枠体6と集光材20とは、枠体6に集光材20を接合する際に、両者の位置合わせをするのに、枠体6の内壁面と集光材20の下部20ayの側面との間の距離を調整することで、容易にアライメントすることができる。その結果、集光材20は、枠体6に対する集光材20の位置関係を所望の状態にすることができ、集光効率を良好にすることができる。 Further, the inner wall surface of the frame body 6 is formed to be a facing surface that faces the side surface of the lower portion 20ay of the light collecting material 20 in a state where the light collecting material 20 is joined to the frame body 6. Therefore, the frame body 6 and the light collector 20 are aligned with each other when the light collector 20 is joined to the frame body 6, and the inner wall surface of the frame body 6 and the lower portion 20 ay of the light collector 20 are aligned. By adjusting the distance between the side surfaces, alignment can be easily performed. As a result, the condensing material 20 can make the positional relationship of the condensing material 20 with respect to the frame 6 into a desired state, and can improve condensing efficiency.
 <第2の実施形態の変形例2>
 上記実施形態では、集光材20の下部の光電変換素子9と対向する下面は、光電変換素子9の上面と対向する平面状に形成されているが、これに限られない。例えば、図15に示すように、集光材20の下部20azの光電変換素子9と対向する下面は、光電変換素子9に向かって突出する凸曲面に形成されていてもよい。
<Modification 2 of the second embodiment>
In the above embodiment, the lower surface facing the photoelectric conversion element 9 below the condensing material 20 is formed in a planar shape facing the upper surface of the photoelectric conversion element 9, but is not limited thereto. For example, as shown in FIG. 15, the lower surface facing the photoelectric conversion element 9 in the lower part 20az of the light condensing material 20 may be formed as a convex curved surface protruding toward the photoelectric conversion element 9.
 集光材20の下部20azの下面を凸曲面とすることで、集光材20の上部20bから下部20azに進行する光は、集光材20の下面の凸状の出射面に集光させることができ、その出射面から集光した光を、光電変換素子9に向かって進行させることができる。その結果、集光材20は、光電変換装置2の光電変換効率を効果的に向上させることができる。 By making the lower surface of the lower part 20az of the light condensing material 20 a convex curved surface, the light traveling from the upper part 20b to the lower part 20az of the light condensing material 20 is condensed on the convex emission surface of the lower surface of the light condensing material 20 The light condensed from the emission surface can be advanced toward the photoelectric conversion element 9. As a result, the light condensing material 20 can effectively improve the photoelectric conversion efficiency of the photoelectric conversion device 2.
 <第3の実施形態>
 第3の実施形態に係る光電変換装置では、第1の実施形態に係る光電変換装置2と比較して、素子搭載基板5の構成、枠体6の形状および構成材料、ならびに集光材10の形状が変更されたものとなっている。なお、第3の実施形態に係る光電変換装置のうち、第1の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Third Embodiment>
In the photoelectric conversion device according to the third embodiment, as compared with the photoelectric conversion device 2 according to the first embodiment, the configuration of the element mounting substrate 5, the shape and constituent materials of the frame body 6, and the condensing material 10 The shape has been changed. Note that, in the photoelectric conversion device according to the third embodiment, the same portions as those of the photoelectric conversion device 2 according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 光電変換装置2は、図16に示すように、素子搭載基板5と、素子搭載基板5の上面の中央領域に設けられる光電変換素子9と、素子搭載基板5の上面に設けられ、光電変換素子9を取り囲むとともに、下部が中央領域から中央領域の外周に位置する周辺領域に向かって延在して素子搭載基板5の上面と接合される枠体36と、枠体36の上部と接合されるとともに、光電変換素子9と重なる領域に設けられる集光材30と、を備えている。また、光電変換装置2は、素子搭載基板5の下面に設けられ、平面透視して枠体36と重なる領域に設けられる導電性部材12と、を備えている。 As shown in FIG. 16, the photoelectric conversion device 2 is provided on the element mounting substrate 5, the photoelectric conversion element 9 provided in the central region of the upper surface of the element mounting substrate 5, and the upper surface of the element mounting substrate 5. 9, a lower portion extends from the central region toward a peripheral region located on the outer periphery of the central region, and is joined to the upper surface of the element mounting substrate 5, and is joined to the upper portion of the frame 36. In addition, a light collecting member 30 provided in a region overlapping with the photoelectric conversion element 9 is provided. The photoelectric conversion device 2 includes a conductive member 12 that is provided on the lower surface of the element mounting substrate 5 and is provided in a region that overlaps the frame body 36 as seen through the plane.
 また、素子搭載基板5は、図16に示すように、光電変換素子9と導電性部材12とが電気的に接続されるように導電層7が設けられている。すなわち、導電層7は、素子搭載基板5の上面の中央領域に設けられて光電変換素子9と電気的に接続され、また、素子搭載基板5の内部のビア部に設けられて導電性部材12と電気的に接続されている。なお、光電変換装置2は、図16では、1個の光電変換素子9を素子搭載基板5に搭載した構成を示している。 Further, as shown in FIG. 16, the element mounting substrate 5 is provided with a conductive layer 7 so that the photoelectric conversion element 9 and the conductive member 12 are electrically connected. That is, the conductive layer 7 is provided in the central region of the upper surface of the element mounting substrate 5 and is electrically connected to the photoelectric conversion element 9, and is provided in the via portion inside the element mounting substrate 5 to be the conductive member 12. And are electrically connected. In FIG. 16, the photoelectric conversion device 2 has a configuration in which one photoelectric conversion element 9 is mounted on the element mounting substrate 5.
 集光材30は、平面透視したときに矩形状に形成された部材である。集光材30は、枠体36の上部と接合されるとともに、光電変換素子9と重なる領域に設けられている。 The condensing material 30 is a member formed in a rectangular shape when seen through the plane. The light condensing material 30 is joined to the upper part of the frame body 36 and provided in a region overlapping the photoelectric conversion element 9.
 枠体36は、平面視したときに、矩形状に形成された部材である。また、枠体36は、素子搭載基板5の上面に設けられ、光電変換素子9を取り囲むとともに、下部が中央領域から中央領域の外周に位置する周辺領域に向かって延在して素子搭載基板5の上面と接合されている。枠体36は、上部が素子搭載基板5の上方に延在し、集光材30と接合される傾斜部36aと、下部が素子搭載基板5の中央領域の外周に位置する周辺領域に向かって延在して素子搭載基板5の上面に接合される延在部36bとを備えている。なお、傾斜部36aが光電変換素子9を囲む枠部となる。また、枠体36は、集光材30を支持する機能を備えている。枠体36は、枠体36の傾斜部36aの上部で、集光材30が接合されている。枠体36は、平面透視したときに、矩形状に形成された部材であるが、矩形状に限らず、円形状等の形状にすることができる。 The frame body 36 is a member formed in a rectangular shape when viewed in plan. Further, the frame body 36 is provided on the upper surface of the element mounting substrate 5 and surrounds the photoelectric conversion element 9, and the lower portion extends from the central region toward the peripheral region located on the outer periphery of the central region to extend the element mounting substrate 5. It is joined to the upper surface of. The frame body 36 has an upper portion extending above the element mounting substrate 5, and an inclined portion 36 a joined to the light condensing material 30, and a lower portion toward a peripheral region located on the outer periphery of the central region of the element mounting substrate 5. And an extending portion 36 b that extends and is joined to the upper surface of the element mounting substrate 5. The inclined portion 36a becomes a frame portion surrounding the photoelectric conversion element 9. The frame body 36 has a function of supporting the light collecting member 30. In the frame 36, the light condensing material 30 is joined to the upper part of the inclined portion 36 a of the frame 36. The frame 36 is a member formed in a rectangular shape when seen through on a plane, but is not limited to a rectangular shape, and may be formed in a circular shape or the like.
 また、枠体36は、例えば、アルミニウム、銅または銀等の金属材料、あるいはこれらの金属材料を含有する合金、あるいは焼結タングステンに銅を含浸したような複合材料、銅含浸タングステンに設けられた複数の貫通孔に銅を充填したような複合材料または各種金属を層状に積層した複合材料等からなる。なお、枠体36の熱伝導率は、例えば、100(W/m・K)以上500(W/m・K)以下に設定されている。また、枠体36の熱膨張係数は、10(ppm/℃)以上25(ppm/℃)以下に設定されている。これにより、光電変換素子9の周辺で発生した熱は、枠体36に伝導して効率よく外部に放熱される。 The frame 36 is provided on a metal material such as aluminum, copper or silver, an alloy containing these metal materials, a composite material in which sintered tungsten is impregnated with copper, or copper-impregnated tungsten. It consists of a composite material in which a plurality of through holes are filled with copper or a composite material in which various metals are laminated in layers. The thermal conductivity of the frame 36 is set to, for example, 100 (W / m · K) or more and 500 (W / m · K) or less. The thermal expansion coefficient of the frame 36 is set to 10 (ppm / ° C.) or more and 25 (ppm / ° C.) or less. Thereby, the heat generated around the photoelectric conversion element 9 is conducted to the frame body 36 and efficiently radiated to the outside.
 また、枠体36は、素子搭載基板5の上方に延在する傾斜部36aの内面が鏡面加工されている。枠体36は、鏡面加工によって光の反射効率を向上することができる。枠体36は、温度上昇を抑制することができる。鏡面加工は、研削することにより平滑に仕上げるように加工しても、メッキを施して加工してもよい。また、枠体36の傾斜部36aの厚みは、光電変換素子9で反射した光の外部への光漏れを抑制するために、例えば、0.3mm以上3.0mm以下に設定されている。また、枠体36の延在部36bの厚みは、例えば、0.3mm以上3.0mm以下に設定されている。 The frame 36 has a mirror-finished inner surface of an inclined portion 36 a extending above the element mounting substrate 5. The frame body 36 can improve the light reflection efficiency by mirror finishing. The frame body 36 can suppress a temperature rise. The mirror surface processing may be processed so as to be finished smoothly by grinding or may be processed by plating. Further, the thickness of the inclined portion 36a of the frame body 36 is set to, for example, 0.3 mm or more and 3.0 mm or less in order to suppress light leakage to the outside of the light reflected by the photoelectric conversion element 9. Moreover, the thickness of the extension part 36b of the frame 36 is set to 0.3 mm or more and 3.0 mm or less, for example.
 また、枠体36は、集光材30の側面のみで接合されているので、枠体36と集光材30の接合面積を小さくすることできる。結果として、枠体36から集光材30への圧縮応力が低減でき、集光材30の屈折率の変化による光電変換素子9の受光面9aへの照射光の位置ずれを抑制することができ、集光性を向上することができる。 Further, since the frame body 36 is joined only by the side surface of the light condensing material 30, the joining area between the frame body 36 and the light condensing material 30 can be reduced. As a result, the compressive stress from the frame body 36 to the light condensing material 30 can be reduced, and the displacement of the irradiation light on the light receiving surface 9a of the photoelectric conversion element 9 due to the change in the refractive index of the light condensing material 30 can be suppressed. Condensability can be improved.
 また、枠体36は、枠体36の全周にわたって集光材30と接合されるとともに、光電変換素子9の上方に空間SPを介して設けられている。結果として、光電変換素子9は、素子搭載基板5、枠体36および集光材30で囲まれる空間SP内に設けられ、気密封止されている。光電変換装置2は、光電変換素子9が内部の空間SPに設けられることによって、光電変換素子9を気密封止することができるため、光電変換素子9の耐湿性が向上し、光電変換素子9を長期にわたって信頼性良く作動させることができる。 Further, the frame body 36 is joined to the light collecting material 30 over the entire circumference of the frame body 36 and is provided above the photoelectric conversion element 9 via a space SP. As a result, the photoelectric conversion element 9 is provided in a space SP surrounded by the element mounting substrate 5, the frame body 36, and the light collector 30 and hermetically sealed. Since the photoelectric conversion device 9 can hermetically seal the photoelectric conversion element 9 by providing the photoelectric conversion element 9 in the internal space SP, the moisture resistance of the photoelectric conversion element 9 is improved. Can be operated reliably over a long period of time.
 導電性部材12は、例えば、アルミニウム、銅または銀等の金属材料、あるいはこれらの金属材料を含有する合金、あるいは焼結タングステンに銅を含浸したような複合材料、銅含浸タングステンに設けられた複数の貫通孔に銅を充填したような複合材料または各種金属を層状に積層した複合材料等からなる。導電性部材12は、素子搭載基板5の下面に設けられ、平面透視して枠体36と重なる領域に設けられている。また、導電性部材12は、熱伝導性を良好にし、素子搭載基板5に搭載された光電変換素子9から発生する熱を効率よく外部に放熱させる機能を備えている。すなわち、光電変換素子9の周辺の熱は導電性部材12に熱伝導して効率よく外部に放熱される。 The conductive member 12 includes, for example, a metal material such as aluminum, copper or silver, an alloy containing these metal materials, a composite material in which copper is impregnated with sintered tungsten, or a plurality of copper impregnated tungsten. It is made of a composite material in which copper is filled in the through-hole or a composite material in which various metals are laminated in layers. The conductive member 12 is provided on the lower surface of the element mounting substrate 5, and is provided in a region that overlaps the frame body 36 when seen in a plan view. Further, the conductive member 12 has a function of improving heat conductivity and efficiently radiating heat generated from the photoelectric conversion element 9 mounted on the element mounting substrate 5 to the outside. That is, the heat around the photoelectric conversion element 9 is conducted to the conductive member 12 and efficiently radiated to the outside.
 また、導電性部材12の熱伝導率は、例えば、100(W/m・K)以上500(W/m・K)以下に設定されている。また、導電性部材12の熱膨張係数は、10(ppm/℃)以上25(ppm/℃)以下に設定されている。また、導電性部材12の厚みは、例えば、0.3mm以上3mm以下に設定されている。また、枠体36と導電性部材12の熱膨張係数は、素子搭載基板5の熱膨張係数より大きく設定されている。なお、導電性部材12は、光電変換装置2が外部へ電気を取り出すための出力端子の機能を備えている。 The thermal conductivity of the conductive member 12 is set to, for example, 100 (W / m · K) or more and 500 (W / m · K) or less. The thermal expansion coefficient of the conductive member 12 is set to 10 (ppm / ° C.) or more and 25 (ppm / ° C.) or less. Moreover, the thickness of the conductive member 12 is set to 0.3 mm or more and 3 mm or less, for example. Further, the thermal expansion coefficients of the frame body 36 and the conductive member 12 are set larger than the thermal expansion coefficient of the element mounting substrate 5. In addition, the electroconductive member 12 is provided with the function of the output terminal for the photoelectric conversion apparatus 2 to take out electricity outside.
 また、第1の導電性部材12aおよび第2の導電性部材12bは、接合材を介して、導電層7と電気的に接続されている。接合材は、例えば、銀-銅ロウ、低融点半田または導電性エポキシ樹脂等からなる。 Further, the first conductive member 12a and the second conductive member 12b are electrically connected to the conductive layer 7 through a bonding material. The bonding material is made of, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
 また、第1の導電性部材12aは、例えば、正極として機能している。また、第2の導電性部材12bは、例えば、負極として機能している。そして、光電変換素子7は、第1の導電性部材12aおよび第2の導電性部材12bに電気的に接続されており、第1の導電性部材12aおよび第2の導電性部材12bを介して外部に電気を取り出すことができる。 Further, the first conductive member 12a functions as a positive electrode, for example. The second conductive member 12b functions as, for example, a negative electrode. The photoelectric conversion element 7 is electrically connected to the first conductive member 12a and the second conductive member 12b, and is connected via the first conductive member 12a and the second conductive member 12b. Electricity can be taken out to the outside.
 また、導電性部材12は、例えば、溶融した金属材料を型枠に鋳込んで作製したインゴットを周知の切削加工や打ち抜き加工等の金属加工法を用いて所定形状にして形成される。 In addition, the conductive member 12 is formed in a predetermined shape by using a known metal working method such as cutting or punching, for example, an ingot produced by casting a molten metal material into a mold.
 本実施形態によれば、素子搭載基板5の上面は、枠体30の延在部30bが当接して設けられ、素子搭載基板5の下面は、導電性部材12が当接して設けられているので、光電変換装置2は、光電変換素子9の周辺の熱を枠体30および導電性部材12を介して光電変換装置2の外部に効率よく放熱することができ、素子搭載基板5および光電変換素子9の温度上昇を抑制することができる。結果として、光電変換装置2は、光電変換素子9の変換効率の低下を抑制することができる。 According to this embodiment, the upper surface of the element mounting substrate 5 is provided in contact with the extending portion 30 b of the frame 30, and the lower surface of the element mounting substrate 5 is provided in contact with the conductive member 12. Therefore, the photoelectric conversion device 2 can efficiently dissipate heat around the photoelectric conversion element 9 to the outside of the photoelectric conversion device 2 through the frame body 30 and the conductive member 12, and the element mounting substrate 5 and the photoelectric conversion can be performed. The temperature rise of the element 9 can be suppressed. As a result, the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
 また、枠体30の延在部30bおよび導電性部材12が、素子搭載基板5の上面および下面に当接して設けられ、導電性部材12が、平面透視して枠体30の延在部30bと素子搭載基板5の上面とが接合される領域と重なる領域に設けられているので、素子搭載基板5の反りを抑制することができる。つまり、枠体30の延在部30bが素子搭載基板5よりも熱膨張係数が大きく、かつ、導電性部材11が素子搭載基板5よりも熱膨張係数が大きいので、素子搭載基板5に接合された枠体30の延在部30bによる素子搭載基板5の上方に向かって変形する熱変形を、素子搭載基板5に接合された導電性部材12によって、素子搭載基板5の下方に向かって変形させることによって、光電変換装置2は、素子搭載基板5の応力の均衡が崩れるのを抑制することができ、ひいては、素子搭載基板5の反りを小さくすることができる。 In addition, the extending portion 30b of the frame 30 and the conductive member 12 are provided in contact with the upper surface and the lower surface of the element mounting substrate 5, and the conductive member 12 is seen through the plane and the extending portion 30b of the frame 30. And the upper surface of the element mounting substrate 5 are provided in a region overlapping with a region where the element mounting substrate 5 is joined, so that warpage of the element mounting substrate 5 can be suppressed. That is, since the extension part 30b of the frame 30 has a larger thermal expansion coefficient than that of the element mounting board 5 and the conductive member 11 has a larger thermal expansion coefficient than that of the element mounting board 5, it is bonded to the element mounting board 5. The thermal deformation that is deformed toward the upper side of the element mounting substrate 5 by the extending portion 30b of the frame body 30 is deformed toward the lower side of the element mounting substrate 5 by the conductive member 12 bonded to the element mounting substrate 5. As a result, the photoelectric conversion device 2 can suppress the stress balance of the element mounting substrate 5 from being lost, and consequently the warpage of the element mounting substrate 5 can be reduced.
 したがって、光電変換装置2は、素子搭載基板5の熱変形が抑制されるため、光電変換素子9の受光面9aの反りが抑制され、光電変換素子9に対する集光材30の位置ずれを低減することができ、集光効率を向上することができる。 Therefore, in the photoelectric conversion device 2, since the thermal deformation of the element mounting substrate 5 is suppressed, the warp of the light receiving surface 9 a of the photoelectric conversion element 9 is suppressed, and the positional deviation of the light collecting material 30 with respect to the photoelectric conversion element 9 is reduced. And the light collection efficiency can be improved.
 また、枠体30の延在部30bおよび導電性部材12の熱膨張係数が同一な場合は、素子搭載基板5の反りを抑制するという点で、延在部30bと導電性部材11の厚みを同一に、かつ、素子搭載基板5に接合されている延在部30bと導電性部材12の領域を同一に設定することができる。これによって、光電変換装置2は、光電変換素子9の受光面9aの反りが抑制され、集光効率を向上することができる。 Moreover, when the extension part 30b of the frame 30 and the thermal expansion coefficient of the electroconductive member 12 are the same, the thickness of the extension part 30b and the electroconductive member 11 is the point of suppressing the curvature of the element mounting substrate 5. The region of the extended portion 30b and the conductive member 12 bonded to the element mounting substrate 5 can be set to be the same. Accordingly, the photoelectric conversion device 2 can suppress the warp of the light receiving surface 9a of the photoelectric conversion element 9, and can improve the light collection efficiency.
 また、枠体30の延在部30bおよび導電性部材12の熱膨張係数が異なる場合は、素子搭載基板5の反りを抑制するという点で、熱膨張係数の大きい方の厚みは、熱膨張係数の小さい方の厚みよりも薄く設定される。そして、素子搭載基板5は、素子搭載基板5に対する応力が均衡となるように枠体30の延在部30bおよび導電性部材12が素子搭載基板5に接合されることによって反りが抑制される。 Moreover, when the thermal expansion coefficient of the extension part 30b of the frame 30 and the conductive member 12 is different, the thickness with the larger thermal expansion coefficient is the coefficient of thermal expansion in that the warpage of the element mounting substrate 5 is suppressed. It is set to be thinner than the smaller thickness. The warpage of the element mounting substrate 5 is suppressed by bonding the extending portion 30b of the frame 30 and the conductive member 12 to the element mounting substrate 5 so that the stress on the element mounting substrate 5 is balanced.
 また、光電変換装置2は、光電変換素子9の周辺部の熱を素子搭載基板5の内部に設けられたビア部の導電層7を経由して効率よく導電性部材12に伝導し、外部に放熱することができる。 In addition, the photoelectric conversion device 2 efficiently conducts heat around the photoelectric conversion element 9 to the conductive member 12 via the conductive layer 7 in the via portion provided in the element mounting substrate 5, and to the outside. It can dissipate heat.
 <第3の実施形態の変形例>
 本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。以下、第3の実施形態の変形例について説明する。なお、第3の実施形態の変形例に係る光電変換装置のうち、第3の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification of Third Embodiment>
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. Hereinafter, modifications of the third embodiment will be described. Note that, in the photoelectric conversion device according to the modification of the third embodiment, the same portions as those of the photoelectric conversion device 2 according to the third embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <第3の実施形態の変形例1>
 上記第3の実施形態の変形例1に係る光電変換装置2では、本実施形態に係る光電変換装置2と比較して、枠体30の延在部30bの厚みが変更されたものになっている。
<Variation 1 of the third embodiment>
In the photoelectric conversion device 2 according to the first modification of the third embodiment, the thickness of the extending portion 30b of the frame 30 is changed as compared with the photoelectric conversion device 2 according to the present embodiment. Yes.
 枠体30の延在部30bは、素子搭載基板5の素子搭載基板5の中央領域から周辺領域の全方位に向かって延在している。光電変換装置2は、枠体30が素子搭載基板5との接合領域が広く設定されているので、光電変換素子9の周辺の熱を効率よく外部に放熱することができ、素子搭載基板5および光電変換素子9の温度上昇を抑制することができる。結果として、光電変換装置2は、光電変換素子9の変換効率の低下を抑制することができる。 The extending portion 30b of the frame body 30 extends from the central region of the element mounting substrate 5 of the element mounting substrate 5 toward all directions of the peripheral region. In the photoelectric conversion device 2, since the frame 30 has a wide junction region with the element mounting substrate 5, the heat around the photoelectric conversion element 9 can be efficiently radiated to the outside. The temperature rise of the photoelectric conversion element 9 can be suppressed. As a result, the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
 また、枠体36の延在部36bと素子搭載基板5とが接合している領域が広く設定され、図17に示すように、延在部36bよりも導電性部材12の厚みが厚く設定されているので、素子搭載基板5に対する応力が均衡となり、素子搭載基板5の反りを抑制することができる。光電変換素子2は、導電性部材12の厚みおよび素子搭載基板5と接合する領域を調整することによって、素子搭載基板5の反りを抑制することができる。なお、延在部36bおよび導電性部材12のそれぞれの厚みは、延在部36bよりも導電性部材12の厚みが厚くなるように、例えば、0.3mm以上3mm以下の範囲でそれぞれに設定されている。 Further, a region where the extending portion 36b of the frame 36 and the element mounting substrate 5 are joined is set wider, and as shown in FIG. 17, the thickness of the conductive member 12 is set thicker than that of the extending portion 36b. As a result, the stress on the element mounting substrate 5 is balanced, and the warpage of the element mounting substrate 5 can be suppressed. The photoelectric conversion element 2 can suppress the warpage of the element mounting substrate 5 by adjusting the thickness of the conductive member 12 and the region to be bonded to the element mounting substrate 5. In addition, each thickness of the extension part 36b and the electroconductive member 12 is each set in the range of 0.3 mm or more and 3 mm or less, for example so that the thickness of the electroconductive member 12 may become thicker than the extension part 36b. ing.
 また、素子搭載基板5に対する効力が均衡となるように、光電変換装置2は、枠体36の延在部36bまたは導電性部材12の厚み、または、枠体36の延在部36bまたは導電性部材12と素子搭載基板5と接合する領域を調整することによって、素子搭載基板5の反りを抑制することができる。 Further, the photoelectric conversion device 2 has the thickness of the extending portion 36b or the conductive member 12 of the frame body 36, or the extending portion 36b of the frame body 36 or the conductive material so that the effect on the element mounting substrate 5 is balanced. By adjusting the region where the member 12 and the element mounting substrate 5 are joined, the warpage of the element mounting substrate 5 can be suppressed.
 <第3の実施形態の変形例2>
 上記実施形態に係る光電変換装置2は、枠体36は、枠体36の傾斜部36aおよび延在部36bで構成されているが、これに限らない。図18に示すように、断面視したときに、枠体36が、枠体36の傾斜部36aと延在部36bの間に光電変換素子9を取り囲むように光電変換素子9よりも高い位置で光電変換素子9の外方に向かって屈曲するとともに光電変換素子9に近接して設けられる屈曲部36cを有する構成としてもよい。光電変換素子9の周辺の熱によって、素子搭載基板5と枠体36との接合応力が高まってとしても、屈曲部36cを有しているので、枠体36の屈曲部36cが撓むことによって、素子搭載基板5と枠体36の延在部36bの接合性の低下を抑制することができる。また、接合性の低下によって生じる枠体36の変形による光電変換素子9への集光効率の低下を抑制することができる。
<Modification 2 of the third embodiment>
In the photoelectric conversion device 2 according to the above-described embodiment, the frame body 36 includes the inclined portion 36a and the extending portion 36b of the frame body 36, but is not limited thereto. As shown in FIG. 18, when viewed in cross section, the frame body 36 is positioned higher than the photoelectric conversion element 9 so as to surround the photoelectric conversion element 9 between the inclined portion 36 a and the extending portion 36 b of the frame body 36. It is good also as a structure which has the bending part 36c provided close to the photoelectric conversion element 9 while it bends toward the outer side of the photoelectric conversion element 9. FIG. Even if the bonding stress between the element mounting substrate 5 and the frame body 36 is increased by the heat around the photoelectric conversion element 9, the bent portion 36c of the frame body 36 is bent because the bent portion 36c is bent. In addition, it is possible to suppress a decrease in the bonding property between the element mounting substrate 5 and the extending portion 36b of the frame 36. Moreover, the fall of the condensing efficiency to the photoelectric conversion element 9 by the deformation | transformation of the frame 36 which arises by the fall of joining property can be suppressed.
 また、素子搭載基板5と延在部36bとの接合応力が高まり、素子搭載基板5が反ったとしても、枠体36の屈曲部36cが撓むことによって、枠体36の傾斜部36aの変形を抑制することができる。結果として、枠体36の傾斜部36aの変形による光電変換素子9への集光効率の低下を抑制することができる。 Further, even if the bonding stress between the element mounting substrate 5 and the extending portion 36b is increased and the element mounting substrate 5 is warped, the bent portion 36c of the frame body 36 is bent to deform the inclined portion 36a of the frame body 36. Can be suppressed. As a result, it is possible to suppress a decrease in light collection efficiency on the photoelectric conversion element 9 due to the deformation of the inclined portion 36a of the frame 36.
 また、光電変換装置2は、屈曲部36cを有しているので、屈曲部36cを経由して、光電変換素子9の周辺の熱を枠体36へ熱伝導し効率よく外部に放熱することができる。 Further, since the photoelectric conversion device 2 has the bent portion 36c, the heat around the photoelectric conversion element 9 can be conducted to the frame 36 through the bent portion 36c and efficiently radiated to the outside. it can.
 また、集光材30から光電変換素子9へ光が入射する光入射部36dの領域の形状は光電変換素子9の受光面9aの領域の形状と合わせる構成としてもよい。すなわち、平面透視したときに、光入射部36dの形状は、光電変換素子9の受光面9aの形状に合わせて形成されていてもよい。これによって、光電変換装置2は、集光性を向上させることができる。 Further, the shape of the region of the light incident part 36 d where light enters the photoelectric conversion element 9 from the light condensing material 30 may be configured to match the shape of the region of the light receiving surface 9 a of the photoelectric conversion element 9. That is, when viewed through, the shape of the light incident part 36 d may be formed in accordance with the shape of the light receiving surface 9 a of the photoelectric conversion element 9. Thereby, the photoelectric conversion apparatus 2 can improve light condensing property.
 <第4の実施形態>
 第4の実施形態に係る光電変換装置では、第1の実施形態に係る光電変換装置2と比較して、枠体6の形状および構成材料、ならびに集光材10の形状が変更されたものとなっている。なお、第4の実施形態に係る光電変換装置のうち、第1の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Fourth Embodiment>
In the photoelectric conversion device according to the fourth embodiment, compared to the photoelectric conversion device 2 according to the first embodiment, the shape and constituent materials of the frame body 6 and the shape of the light collector 10 are changed. It has become. In addition, about the photoelectric conversion apparatus which concerns on 4th Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 光電変換装置2は、図19に示すように、導電層7が設けられた素子搭載基板5と、素子搭載基板5上に設けられるとともに、導電層7と電気的に接続される光電変換素子9と、素子搭載基板5上で光電変換素子9を取り囲むとともに、内周部に光電変換素子9側に向かって内方に傾斜する傾斜面を有する枠体46と、枠体46と接合されるとともに、光電変換素子9に光を集光する集光材40と、を備えている。 As shown in FIG. 19, the photoelectric conversion device 2 includes an element mounting substrate 5 provided with a conductive layer 7, and a photoelectric conversion element 9 provided on the element mounting substrate 5 and electrically connected to the conductive layer 7. And a frame body 46 that surrounds the photoelectric conversion element 9 on the element mounting substrate 5 and has an inclined surface that is inclined inward toward the photoelectric conversion element 9 on the inner periphery, and is joined to the frame body 46. And a light condensing material 40 for condensing light on the photoelectric conversion element 9.
 枠体46は、平面視したときに円形状に形成された部材である。枠体46は、図19に示すように、素子搭載基板5上で前記光電変換素子9を取り囲むとともに、枠体46の内周部に光電変換素子9側に向かって内方に傾斜する傾斜面B2を有している。すなわち、枠体46は、光電変換素子9側に向かって折れ曲がり部B1で折れ曲がって傾斜し、傾斜面B2を有するとともに、平面視したときに、光電変換素子8の上方に開口部B3を有している。また、枠体46の開口部B3は、平面視したときに、光電変換素子9を視認することができる。枠体46は、素子搭載基板5上に設けられる第1の枠体46aと、第1の枠体46aと接合されるとともに、傾斜面B1を有する第2の枠体46bを含んで構成されている。すなわち、第1の枠体46aは、集光材40を支持する機能を備えている第2の枠体46bと接合されている。なお、光電変換装置2は、図19では、1個の光電変換素子9を素子搭載基板5に搭載した構成として示している。 The frame body 46 is a member formed in a circular shape when viewed in plan. As shown in FIG. 19, the frame 46 surrounds the photoelectric conversion element 9 on the element mounting substrate 5, and is an inclined surface inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion of the frame 46. B2. That is, the frame 46 is bent and inclined at the bent portion B1 toward the photoelectric conversion element 9 side, has an inclined surface B2, and has an opening B3 above the photoelectric conversion element 8 when viewed in plan. ing. Moreover, the opening B3 of the frame 46 can visually recognize the photoelectric conversion element 9 when viewed in plan. The frame body 46 includes a first frame body 46a provided on the element mounting substrate 5 and a second frame body 46b that is joined to the first frame body 46a and has an inclined surface B1. Yes. That is, the first frame body 46a is joined to the second frame body 46b having a function of supporting the light collector 40. Note that the photoelectric conversion device 2 is shown in FIG. 19 as a configuration in which one photoelectric conversion element 9 is mounted on the element mounting substrate 5.
 第1の枠体46aは、絶縁機能を有し、絶縁性の材料からなり、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミック等のセラミックス材料からなる。または、第1の枠体46aは、これらの材料のうちの複数の材料を混合した複合系からなる。または、第1の枠体46aは、ガラス、またはエポキシ樹脂、アクリル樹脂等の樹脂からなる。 The first frame 46a has an insulating function and is made of an insulating material, such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, It is made of a ceramic material such as a silicon nitride sintered body or glass ceramic. Or the 1st frame 46a consists of a composite system which mixed several materials among these materials. Alternatively, the first frame 46a is made of glass or a resin such as an epoxy resin or an acrylic resin.
 また、第1の枠体46aの熱伝導率は、例えば、15W/(m・K)以上30W/(m・K)以下に設定されている。また、素子搭載基板5の熱伝導率は、枠体46の熱伝導率よりも大きく設定されることによって、第1の枠体6aへの熱伝導を抑制することができ、第1の枠体46aと接合される第2の枠体46bが熱の影響を受けにくくなり、集光材40への熱の影響を抑制することができる。 Further, the thermal conductivity of the first frame 46a is set to, for example, 15 W / (m · K) or more and 30 W / (m · K) or less. Further, the thermal conductivity of the element mounting substrate 5 is set to be larger than the thermal conductivity of the frame body 46, whereby the heat conduction to the first frame body 6a can be suppressed, and the first frame body. The second frame 46b joined to 46a is less affected by heat, and the influence of heat on the light collector 40 can be suppressed.
 また、第1の枠体46aの熱膨張係数は、例えば、3(ppm/℃)以上10(ppm/℃)以下に設定されている。第1の枠体46aは、平面視したときに円形状に形成された部材であるが、円形状に限らず、矩形状等の形状にすることができる。 Further, the thermal expansion coefficient of the first frame 46a is set to 3 (ppm / ° C.) or more and 10 (ppm / ° C.) or less, for example. The first frame 46a is a member formed in a circular shape when seen in a plan view, but is not limited to a circular shape and may be formed in a rectangular shape or the like.
 また、第1の枠体46aは、第2の枠体46bとの接合のために、第2の枠体46bと対向する上面に、メタライズ層が設けられている。メタライズ層としては、例えば、タングステン、モリブデンまたはマンガン等の金属材料が、例えば、スクリーン印刷法を用いて形成される。 In addition, the first frame 46a is provided with a metallized layer on the upper surface facing the second frame 46b for joining with the second frame 46b. As the metallized layer, for example, a metal material such as tungsten, molybdenum, or manganese is formed using, for example, a screen printing method.
 第2の枠体46bは、平面視したときに円形状に形成された部材である。また、第2の枠体46bは、内周部に光電変換素子9側に向かって内方に傾斜する傾斜面B2を有している。すなわち、枠体6bが、光電変換素子9側に向かって折れ曲がり部B1で折れ曲がって傾斜し、平面視したときに、傾斜面B2を有するとともに、光電変換素子8の上方に開口部A1を有している。また、枠体46bの開口部B3は、平面視したときに、光電変換素子9を視認することができる。 The second frame body 46b is a member formed in a circular shape when viewed in plan. The second frame body 46b has an inclined surface B2 that is inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion. That is, the frame 6b is bent and inclined at the bent portion B1 toward the photoelectric conversion element 9 side, and has an inclined surface B2 and an opening A1 above the photoelectric conversion element 8 when viewed in plan. ing. Moreover, the opening B3 of the frame 46b can visually recognize the photoelectric conversion element 9 when viewed in plan.
 また、第2の枠体46bの一方は、第1の枠体46aと接合され、他方は光電変換素子9の上方に配置されている。また、第2の枠体46bは、集光材40を支持する機能を備えている。第2の枠体46bの傾斜面B2に、集光材40が接合されている。第2の枠体46bは、平面視したときに円形状に形成された部材であるが、第1の枠体46aの形状に合わせて、円形状に限らず、矩形状等の形状にすることができる。 Further, one of the second frame bodies 46 b is joined to the first frame body 46 a, and the other is arranged above the photoelectric conversion element 9. Further, the second frame body 46 b has a function of supporting the light collecting member 40. The light collector 40 is joined to the inclined surface B2 of the second frame 46b. The second frame body 46b is a member formed in a circular shape when viewed in plan, but is not limited to a circular shape but a rectangular shape or the like in accordance with the shape of the first frame body 46a. Can do.
 また、光電変換素子9側に向かって内方に傾斜する第2の枠体46bの傾斜面B2の傾斜角度αは、10°から60°に設定することができる。このような傾斜角度αに設定することで、集光材40からの集光光を効果的に光電変換素子8に導くことができる。 Further, the inclination angle α of the inclined surface B2 of the second frame 46b inclined inward toward the photoelectric conversion element 9 can be set to 10 ° to 60 °. By setting such an inclination angle α, the condensed light from the condensing material 40 can be effectively guided to the photoelectric conversion element 8.
 また、第2の枠体46bは、例えば、アルミニウム、銅、銀等の金属材料からなる。また、第2の枠体46b熱伝導率は、例えば、20W/(m・K)以上500W/(m・K)以下に設定されている。これにより、光電変換素子9の周辺で発生した熱が、第2の枠体46bに熱伝導して効果的に外部に放熱される。 Further, the second frame 46b is made of a metal material such as aluminum, copper, or silver. The thermal conductivity of the second frame 46b is set to, for example, 20 W / (m · K) or more and 500 W / (m · K) or less. Thereby, the heat generated in the vicinity of the photoelectric conversion element 9 is thermally conducted to the second frame 46b and effectively radiated to the outside.
 また、枠体46は、光電変換素子8側に向かって枠体46の内方に傾斜する傾斜面B2が鏡面加工されている。結果として、枠体46は、光の反射効率を向上することができる。また、枠体46は、温度上昇を抑制することができる。鏡面加工は、研削することにより平滑に仕上げるように加工しても、メッキを施して加工してもよい。また、枠体46は、光電変換素子9で反射した光の外部への光漏れを抑制するために、枠体46の厚みは、例えば、0.1mm以上2mm以下に設定されている。 The frame 46 is mirror-finished with an inclined surface B2 that is inclined inward of the frame 46 toward the photoelectric conversion element 8 side. As a result, the frame 46 can improve the light reflection efficiency. Moreover, the frame 46 can suppress a temperature rise. The mirror surface processing may be processed so as to be finished smoothly by grinding or may be processed by plating. Further, the thickness of the frame body 46 is set to, for example, 0.1 mm or more and 2 mm or less in order to suppress light leakage to the outside of the light reflected by the photoelectric conversion element 9.
 本実施例によれば、枠体46が、内周部に光電変換素子9側に向かって内方に傾斜する傾斜面B2を有し、枠体46の開口部B3が、光電変換素子9の上方に配置されるように構成されている。結果として、枠体46は、光電変換素子9で発生する熱が、光電変換素子9の上方に配置された枠体46に伝導し、熱を効果的に外部に放散することができる。 According to the present embodiment, the frame body 46 has the inclined surface B <b> 2 inclined inward toward the photoelectric conversion element 9 side at the inner periphery, and the opening B <b> 3 of the frame body 46 is formed on the photoelectric conversion element 9. It is comprised so that it may be arrange | positioned upwards. As a result, the heat generated in the photoelectric conversion element 9 is transmitted to the frame 46 disposed above the photoelectric conversion element 9, and the frame 46 can effectively dissipate the heat to the outside.
 また、集光材40で集光された光が、光電変換素子9に正確に照射されなかった場合でも、正確に照射されなかった光が、光電変換素子9の上方に配置され、光電変換素子9側に向かって内方に傾斜する傾斜面B2で反射されることにより、光電変換素子9に反射光を入射させることができる。結果として、枠体46は、光電変換素子9の変換効率の低下を抑制することができる。 Moreover, even when the light condensed by the light condensing material 40 is not accurately irradiated to the photoelectric conversion element 9, the light that has not been correctly irradiated is disposed above the photoelectric conversion element 9, and the photoelectric conversion element Reflected light can be incident on the photoelectric conversion element 9 by being reflected by the inclined surface B2 inclined inward toward the 9 side. As a result, the frame body 46 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
 また、枠体46が、内周部に光電変換素子9側に向かって内方に傾斜する傾斜面B2を有し、光電変換素子9の上方に配置されて構成されているので、集光材10からの入射光が、光電変換素子9または光電変換素子9の周辺で反射した場合に、反射光が光電変換装置2の外部へ漏れることを抑制することができる。 Further, since the frame 46 has an inclined surface B2 inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion and is arranged above the photoelectric conversion element 9, the light collecting material When the incident light from 10 is reflected around the photoelectric conversion element 9 or the photoelectric conversion element 9, the reflected light can be prevented from leaking outside the photoelectric conversion device 2.
 また、枠体46は、一方が素子搭載基板5に接合され、他方が開口部B3で開放端であるため、枠体46は、枠体46と集光材40との熱膨張係数の差による接合応力を緩和することができる。 In addition, since one of the frame bodies 46 is bonded to the element mounting substrate 5 and the other is an open end at the opening B3, the frame body 46 is caused by a difference in thermal expansion coefficient between the frame body 46 and the light condensing material 40. Bonding stress can be relaxed.
 また、集光材40は、枠体46の折れ曲がり部B1の位置で接合されているため、集光材40の面積を広くでき、受光材3から多くの光を受光することができる。結果として、光電変換素子9の変換効率を向上することができる。 Further, since the light condensing material 40 is joined at the position of the bent portion B1 of the frame 46, the area of the light condensing material 40 can be increased and a large amount of light can be received from the light receiving material 3. As a result, the conversion efficiency of the photoelectric conversion element 9 can be improved.
 また、枠体46は、絶縁材料からなる第1の枠体46aと金属材料からなる第2の枠体46bを含んで構成されているので、絶縁材料からなる第1の枠体46aによって、導電層7との電気的なショートを効果的に防止することができる。 In addition, since the frame body 46 includes the first frame body 46a made of an insulating material and the second frame body 46b made of a metal material, the frame body 46 is made conductive by the first frame body 46a made of an insulating material. An electrical short circuit with the layer 7 can be effectively prevented.
 また、枠体46は、光電変換素子9で発生した熱を、第1の枠体46a、さらには、金属材料で構成されている第2の枠体46bに伝導して、外部に効果的に放熱することができる。 The frame body 46 conducts heat generated in the photoelectric conversion element 9 to the first frame body 46a and further to the second frame body 46b made of a metal material, effectively outside. It can dissipate heat.
 また、第1の枠体46aは、絶縁材料で構成されているので、第2の枠体46bが熱の影響を受けにくくなり、第2の枠体46bに接合されている集光材40への熱の影響を抑制することができる。 In addition, since the first frame 46a is made of an insulating material, the second frame 46b is not easily affected by heat, and the light collecting material 40 joined to the second frame 46b. The influence of heat can be suppressed.
 <第4の実施形態の変形例>
 本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。以下、第4の実施形態の変形例について説明する。なお、第4の実施形態の変形例に係る光電変換装置のうち、第4の実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification of Fourth Embodiment>
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention. Hereinafter, a modification of the fourth embodiment will be described. Note that, in the photoelectric conversion device according to the modification of the fourth embodiment, the same parts as those of the photoelectric conversion device 2 according to the fourth embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <第4の実施形態の変形例1>
 上記実施例に係る光電変換装置2は、枠体46が、素子搭載基板5上に設けられる第1の枠体46aと、第1の枠体46aと接合されるとともに、傾斜面B2を有する第2の枠体46bとで構成されているが、これに限らない。図20に示すように、枠体46は、第1の枠体46aと第2の枠体46bとが一体化された構成としてもよい。すなわち、枠体46は、1つの部材で構成され、内周部に光電変換素子9側に向かって内方に傾斜する傾斜面B1を有するとともに、平面視したとき、光電変換素子8の上方に配置されている開口部B3を有する構成としてもよい。これにより、枠体46は、1つの部材で構成することができるので、製造プロセスを削減することができる。
<Modification 1 of Fourth Embodiment>
In the photoelectric conversion device 2 according to the above embodiment, the frame 46 is joined to the first frame 46a provided on the element mounting substrate 5 and the first frame 46a, and has the inclined surface B2. However, the present invention is not limited to this. As shown in FIG. 20, the frame 46 may have a configuration in which a first frame 46 a and a second frame 46 b are integrated. That is, the frame body 46 is composed of one member, and has an inclined surface B1 inclined inward toward the photoelectric conversion element 9 on the inner peripheral portion, and above the photoelectric conversion element 8 when viewed in plan. It is good also as a structure which has the opening part B3 arrange | positioned. Thereby, since the frame 46 can be comprised by one member, a manufacturing process can be reduced.
 また、枠体46は、絶縁性の材料からなり、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミック等のセラミックス材料からなる。または、これらの材料のうちの複数の材料を混合した複合系からなる。または、ガラス、またはエポキシ樹脂、アクリル樹脂等の樹脂からなる。 The frame body 46 is made of an insulating material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body or It is made of a ceramic material such as glass ceramic. Alternatively, it is composed of a composite system in which a plurality of these materials are mixed. Or it consists of resin, such as glass or an epoxy resin, an acrylic resin.
 また、枠体46の熱伝導率は、例えば、15W/(m・K)以上30W/(m・K)以下に設定されている。また、素子搭載基板5は、熱伝導率を枠体46の熱伝導率よりも大きくすることによって、枠体46への熱伝導を抑制することができる。これによって、枠体46は熱の影響を受けにくくなり、集光材40への熱の影響を抑制することができる。 The thermal conductivity of the frame 46 is set to, for example, 15 W / (m · K) or more and 30 W / (m · K) or less. In addition, the element mounting substrate 5 can suppress heat conduction to the frame 46 by making the thermal conductivity larger than that of the frame 46. As a result, the frame 46 is less susceptible to heat, and the influence of heat on the light collecting member 40 can be suppressed.
 また、枠体4は、例えば、アルミニウム、銅、銀等の金属材料からなる材料であってもよく、枠体46は、枠体46と導電層7の間に絶縁層を介して配置される。熱伝導率は、例えば、20W/(m・K)以上500W/(m・K)以下に設定されている。枠体46が、金属材料からなるため、枠体46が熱を外部に放熱することができる領域の面積を広くすることができる。結果として、光電変換素子9で発生した熱による素子搭載基板5の温度上昇を抑制することができる。また、光電変換装置2は、光電変換素子9の変換効率の低下を抑制することができる。 Further, the frame body 4 may be a material made of a metal material such as aluminum, copper, or silver, for example, and the frame body 46 is disposed between the frame body 46 and the conductive layer 7 via an insulating layer. . The thermal conductivity is set to, for example, 20 W / (m · K) or more and 500 W / (m · K) or less. Since the frame 46 is made of a metal material, the area of the region where the frame 46 can dissipate heat to the outside can be increased. As a result, the temperature rise of the element mounting substrate 5 due to the heat generated in the photoelectric conversion element 9 can be suppressed. Further, the photoelectric conversion device 2 can suppress a decrease in conversion efficiency of the photoelectric conversion element 9.
1 光電変換モジュール
2、12、22 光電変換装置
3 受光材
3a フレーム部材
3b レンズ部材
4 外部基板
5、25 素子搭載基板
6、16、26、36、46 枠体
6a、16a 枠体の支持部
6b、16b、26b 枠部
7、27 導電層
8a 第1の出力端子
8b 第2の出力端子
9 光電変換素子
10、20、30、40 集光材
11 接合部材
SP 空間
A1 開口部
S1 第1の接続領域
S2 第2の接続領域
 
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion module 2, 12, 22 Photoelectric conversion apparatus 3 Light receiving material 3a Frame member 3b Lens member 4 External substrate 5, 25 Element mounting substrate 6, 16, 26, 36, 46 Frame body 6a, 16a Frame support part 6b , 16b, 26b Frame portion 7, 27 Conductive layer 8a First output terminal 8b Second output terminal 9 Photoelectric conversion element 10, 20, 30, 40 Light condensing material 11 Joining member SP Space A1 Opening S1 First connection Area S2 Second connection area

Claims (7)

  1.  導電層が設けられている素子搭載基板と、
    前記素子搭載基板上に設けられて、前記導電層に電気的に接続されている複数の光電変換素子と、
    前記素子搭載基板上に配置された、複数の前記光電変換素子をそれぞれ囲む枠部を有する枠体と、
    前記枠部に接合されて、複数の前記光電変換素子にそれぞれ対応するように配置されている集光材と
    を備えていることを特徴とする光電変換装置。
    An element mounting substrate provided with a conductive layer;
    A plurality of photoelectric conversion elements provided on the element mounting substrate and electrically connected to the conductive layer;
    A frame body having a frame portion disposed on the element mounting substrate and surrounding each of the plurality of photoelectric conversion elements;
    A photoelectric conversion device comprising: a light collecting member that is bonded to the frame portion and disposed to correspond to each of the plurality of photoelectric conversion elements.
  2.  請求項1に記載の光電変換装置であって、
    1つの前記光電変換素子は、1つの前記導電層に搭載されているとともに、上面の電極の少なくとも1つが隣接する導電層に導電性ワイヤで接続されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    One of the photoelectric conversion elements is mounted on one of the conductive layers, and at least one of the electrodes on the upper surface is connected to the adjacent conductive layer with a conductive wire.
  3.  請求項1または請求項2に記載の光電変換装置であって、
    前記枠体は、複数の前記枠部を有していることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1 or 2, wherein
    The said frame body has the said some frame part, The photoelectric conversion apparatus characterized by the above-mentioned.
  4.  請求項1乃至請求項3のいずれかに記載の光電変換装置であって、
    前記集光材は、下部の外縁形状が前記光電変換素子の外縁形状の相似形であるとともに、平面透視したときに、前記集光材の下部の外縁形状の内側に前記光電変換素子の外縁形状が位置していることを特徴とする光電変換装置。
    A photoelectric conversion device according to any one of claims 1 to 3,
    The condensing material is similar in shape to the outer edge shape of the photoelectric conversion element in the lower outer edge shape, and when viewed from above, the outer edge shape of the photoelectric conversion element is inside the outer edge shape of the lower part of the light collecting material. A photoelectric conversion device, wherein:
  5.  請求項4に記載の光電変換装置であって、
    平面透視したときに、前記集光材の下部の外縁形状は、前記光電変換素子の外縁形状と重なっていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 4,
    The photoelectric conversion device according to claim 1, wherein an outer edge shape of a lower portion of the light condensing material overlaps with an outer edge shape of the photoelectric conversion element when viewed through a plane.
  6.  複数の光電変換素子と、これら複数の光電変換素子にそれぞれ対応するように配置される複数の集光材とを搭載するための光電変換素子収納用パッケージであって、
    前記複数の光電変換素子が搭載される素子搭載基板と、
    前記素子搭載基板上に設けられた、前記複数の光電変換素子に電気的に接続される導電層と、
    前記素子搭載基板上に配置された、前記集光材が接合される枠体と、
    を備えていることを特徴とする光電変換素子収納用パッケージ。
    A photoelectric conversion element storage package for mounting a plurality of photoelectric conversion elements and a plurality of light collecting materials arranged to correspond to the plurality of photoelectric conversion elements,
    An element mounting substrate on which the plurality of photoelectric conversion elements are mounted;
    A conductive layer provided on the element mounting substrate and electrically connected to the plurality of photoelectric conversion elements;
    A frame disposed on the element mounting substrate to which the light collecting material is bonded;
    A package for storing a photoelectric conversion element, comprising:
  7.  請求項1乃至請求項5のいずれかに記載の光電変換装置と、
    前記光電変換装置上に設けられ、前記集光材に光を集める受光材と
    を備えていることを特徴とする光電変換モジュール。
     
     
     
     
     
     
     
     
     
    The photoelectric conversion device according to any one of claims 1 to 5,
    A photoelectric conversion module comprising: a light receiving material provided on the photoelectric conversion device and collecting light on the light collecting material.








PCT/JP2010/069803 2009-11-10 2010-11-08 Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module WO2011058941A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-257374 2009-11-10
JP2009257374A JP2011103351A (en) 2009-11-10 2009-11-10 Photoelectric converter and photoelectric conversion module
JP2009262670A JP2011108866A (en) 2009-11-18 2009-11-18 Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2009-262670 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011058941A1 true WO2011058941A1 (en) 2011-05-19

Family

ID=43991600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069803 WO2011058941A1 (en) 2009-11-10 2010-11-08 Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module

Country Status (1)

Country Link
WO (1) WO2011058941A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646738A (en) * 2012-05-02 2012-08-22 天津蓝天太阳科技有限公司 Internal wiring shading structure of spotlight photovoltaic assembly
WO2013001944A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Concentrating solar power generation apparatus, and method for manufacturing concentrating solar power generation apparatus
JP2013105786A (en) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd Solar light power generation module, solar light power generation panel, and flexible printed wiring board for solar light power generation module
WO2014028055A1 (en) * 2012-08-16 2014-02-20 Semprius, Inc. Surface mountable solar receiver with integrated through substrate interconnect and optical element cradle
JP2016028446A (en) * 2015-10-19 2016-02-25 信越化学工業株式会社 Method of manufacturing concentrating solar cell module
JP2021048147A (en) * 2019-09-16 2021-03-25 プレス工業株式会社 Solar battery cover

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274449A (en) * 2000-03-24 2001-10-05 Hitachi Ltd Condensing photovoltaic power generation device
JP2002289897A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003174183A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation device
JP2006303494A (en) * 2005-04-19 2006-11-02 Palo Alto Research Center Inc Concentrating solar collector using solid optical element
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009064625A2 (en) * 2007-11-14 2009-05-22 Solfocus, Inc. Solar cell package for solar concentrator
JP2009147155A (en) * 2007-12-14 2009-07-02 Sharp Corp Condensing photovoltaic power generation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274449A (en) * 2000-03-24 2001-10-05 Hitachi Ltd Condensing photovoltaic power generation device
JP2002289897A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003174183A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation device
JP2006303494A (en) * 2005-04-19 2006-11-02 Palo Alto Research Center Inc Concentrating solar collector using solid optical element
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009064625A2 (en) * 2007-11-14 2009-05-22 Solfocus, Inc. Solar cell package for solar concentrator
JP2009147155A (en) * 2007-12-14 2009-07-02 Sharp Corp Condensing photovoltaic power generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001944A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Concentrating solar power generation apparatus, and method for manufacturing concentrating solar power generation apparatus
JP2013012605A (en) * 2011-06-29 2013-01-17 Sharp Corp Light collection type solar light power generation apparatus and manufacturing method of the same
JP2013105786A (en) * 2011-11-10 2013-05-30 Sumitomo Electric Ind Ltd Solar light power generation module, solar light power generation panel, and flexible printed wiring board for solar light power generation module
CN102646738A (en) * 2012-05-02 2012-08-22 天津蓝天太阳科技有限公司 Internal wiring shading structure of spotlight photovoltaic assembly
WO2014028055A1 (en) * 2012-08-16 2014-02-20 Semprius, Inc. Surface mountable solar receiver with integrated through substrate interconnect and optical element cradle
JP2016028446A (en) * 2015-10-19 2016-02-25 信越化学工業株式会社 Method of manufacturing concentrating solar cell module
JP2021048147A (en) * 2019-09-16 2021-03-25 プレス工業株式会社 Solar battery cover
JP7344061B2 (en) 2019-09-16 2023-09-13 プレス工業株式会社 solar cell cover

Similar Documents

Publication Publication Date Title
WO2011058941A1 (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
EP1852918A2 (en) Solar concentrating photovoltaic device with resilient cell package assembly
US20090159125A1 (en) Solar cell package for solar concentrator
WO2010137687A1 (en) Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module
JP5013684B2 (en) Condensing lens, condensing lens structure, concentrating solar power generation device, and manufacturing method of condensing lens structure
WO2008041502A1 (en) Solar cell, light concentrating photovoltaic power generation module, light concentrating photovoltaic power generation unit, solar cell manufacturing method and solar cell manufacturing apparatus
CN101238587A (en) Solar cell module and method for its production
CN103782397A (en) Reflector for a photovoltaic power module
TWI493738B (en) Solar package structure and method for fabricating the same
JP2011108866A (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JPWO2012160994A1 (en) Concentrating solar cell and manufacturing method thereof
JP5388778B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
WO2011024747A1 (en) Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module
JP2011151276A (en) Photoelectric converter and photoelectric conversion module
JP5388754B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2014063779A (en) Solar cell for concentrating solar photovoltaic power generating device
JP5441617B2 (en) Photoelectric conversion device and photoelectric conversion module
JP6026821B2 (en) Photoelectric conversion device, photoelectric conversion module, and component for photoelectric conversion device
JP5653132B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5495737B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5441576B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2012089592A (en) Photoelectric conversion device and photoelectric conversion module
JP5495824B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5388760B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP5393350B2 (en) Photoelectric conversion device and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829900

Country of ref document: EP

Kind code of ref document: A1