WO2011024747A1 - Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module - Google Patents

Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module Download PDF

Info

Publication number
WO2011024747A1
WO2011024747A1 PCT/JP2010/064163 JP2010064163W WO2011024747A1 WO 2011024747 A1 WO2011024747 A1 WO 2011024747A1 JP 2010064163 W JP2010064163 W JP 2010064163W WO 2011024747 A1 WO2011024747 A1 WO 2011024747A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
substrate
frame body
conversion element
frame
Prior art date
Application number
PCT/JP2010/064163
Other languages
French (fr)
Japanese (ja)
Inventor
植田 義明
真二 中本
和弘 川畑
作本 大輔
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009192650A external-priority patent/JP5388754B2/en
Priority claimed from JP2009198429A external-priority patent/JP5388760B2/en
Priority claimed from JP2009208966A external-priority patent/JP5441576B2/en
Priority claimed from JP2009222310A external-priority patent/JP5388778B2/en
Priority claimed from JP2009242519A external-priority patent/JP5388791B2/en
Priority claimed from JP2009250693A external-priority patent/JP5441617B2/en
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2011024747A1 publication Critical patent/WO2011024747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion device, a photoelectric conversion element storage package, and a photoelectric conversion module using the photoelectric conversion device.
  • the photoelectric conversion element is a solar cell element that converts solar energy into electric power.
  • a structure for efficiently irradiating condensed solar light onto a solar cell element is disclosed. (For example, refer to Patent Document 1).
  • the solar cell device proposed in Patent Document 1 is provided so as to surround a solar cell element on a receiver substrate on which a solar cell element for photoelectric conversion is mounted, and reflects solar light so as to reflect the solar cell element.
  • a reflecting member having a reflecting surface that guides light to the surface, and a resin sealing portion that fills a space surrounded by the reflecting member with resin.
  • This invention is made
  • the photoelectric conversion device includes a substrate, a photoelectric conversion element provided on the substrate, a frame provided so as to surround the photoelectric conversion element on the substrate, and the frame.
  • a condensing member that is bonded over the entire circumference of the body and provided above the photoelectric conversion element via a space. And the whole lower surface of the said condensing member is located in the area
  • FIG. 1 is a schematic perspective view of a photoelectric conversion module 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal structure of the photoelectric conversion device 2 shown in FIG. 1 and an enlarged view of a joint portion between a frame and a condensing member, which will be described later.
  • 3 is an exploded view of the photoelectric conversion device 2
  • FIG. 3A is a light collecting member that guides light to the photoelectric conversion element.
  • FIG. 3B illustrates the internal structure of the photoelectric conversion device, showing an arrangement state of photoelectric conversion elements surrounded by a frame.
  • FIG. 3C is an overall view of the photoelectric conversion device in which the light collecting member is joined to the frame.
  • the photoelectric conversion module 1 is a solar power generation module that converts solar energy into electric power.
  • the photoelectric conversion device 2 according to the present embodiment includes a photoelectric conversion element 7 that converts light energy into electric power.
  • the photoelectric conversion element 7 is a solar cell element having a function of converting solar energy into electric power.
  • the photoelectric conversion module 1 includes a plurality of photoelectric conversion devices 2, a light receiving member 3 and an external substrate 4 provided above the plurality of photoelectric conversion devices 2.
  • the light receiving member 3 has a function of collecting light received from the outside and collecting the received light on the light collecting member 8.
  • the light receiving member 3 is configured by fixing a plurality of lens members 3b to a rectangular frame member 3a.
  • the lens member 3b of the light receiving member 3 is, for example, a dome-shaped Fresnel lens, and is made of a resin material having excellent optical characteristics such as acrylic resin.
  • the plurality of photoelectric conversion devices 2 are mounted on the external substrate 4.
  • the light receiving member 3 is fixed to the external substrate 4 and covers the plurality of photoelectric conversion devices 2.
  • the external substrate 4 has a function of radiating heat generated from the photoelectric conversion device 2.
  • the external substrate 4 is made of a metal material such as aluminum, copper, or a carbon-metal composite material.
  • the thermal conductivity of the external substrate 4 is set to, for example, 10 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the light incident on the light receiving member 3 is collected at the upper end of the light collecting member 8 of the photoelectric conversion device 2. That is, the condensing member 8 has a function of guiding the light collected by the light receiving member 3 to the photoelectric conversion element 7.
  • the light incident on the condensing member 8 proceeds from the upper end to the lower end of the condensing member 8 while being repeatedly reflected by the condensing member 8, and is incident on the upper surface of the photoelectric conversion element 7 from the lower end of the condensing member 8.
  • the photoelectric conversion element 7 converts light energy into electric power.
  • the photoelectric conversion device 2 includes a substrate 5, a photoelectric conversion element 7 provided on the substrate 5, a frame 6 provided so as to surround the photoelectric conversion element 7 on the substrate 5, A condensing member 8 is provided over the entire circumference of the frame 6 and provided above the photoelectric conversion element 7 via the photoelectric conversion element 7 and the space SP.
  • the frame 6 is formed so as to surround the substrate 5 in an annular shape.
  • the photoelectric conversion element 7 is not directly sealed by the light collecting member 8, but a space SP exists between the photoelectric conversion element 7 and the light collecting member 8. Therefore, it is possible to suppress the heat generated by the photoelectric conversion element 7 from being transmitted to the light collecting member 8. Moreover, even if it is a case where the photoelectric conversion element 7 expands thermally, it is suppressed that a big stress is added to the photoelectric conversion element 7.
  • FIG. 1 A block diagram illustrating an important property of the photoelectric conversion element 7.
  • the whole lower surface 8a of the condensing member 8 is located in the area
  • the lower surface 8 a of the light collecting member 8 which is a light extraction surface
  • a part of the light condensed by the light collecting member 8 can be reflected on the upper surface of the frame 6.
  • the reflection on the upper surface of the frame body 6 described above is suppressed. Therefore, the light collection efficiency by the light collection member 8 can be improved.
  • the substrate 5 is a member formed in a circular shape when viewed from above.
  • the frame body 6 is a member formed in a circular shape when viewed in plan.
  • the shape of the substrate 5 or the frame body 6 when viewed in plan is not limited to a circular shape, and may be a square shape or the like.
  • it is preferable that the shape of the frame 6 is formed according to the shape of the condensing member 8 to be joined.
  • the substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a ceramic such as a glass ceramic, It consists of resin materials, such as metal materials, such as copper, iron, tungsten, molybdenum, nickel, or cobalt, the alloy containing these metal materials, glass epoxy, an acryl, or an epoxy.
  • the thermal conductivity of the substrate 5 is, for example, 100 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the thermal expansion coefficient of the substrate 5 is set to 6.0 ppm / ° C. or more and 25.0 ppm / ° C. or less.
  • the first conductive pattern 9a and the second conductive pattern 9b are formed on the substrate 5.
  • the first conductive pattern 9a and the second conductive pattern 9b are made of a metal material such as tungsten, molybdenum, or manganese, and are formed using a thin film forming technique such as a screen printing method, a vapor deposition method, or a sputtering method.
  • the frame body 6 has a function of supporting the light collecting member 8. That is, the frame body 6 has the support part 11 which has an inclined surface over the perimeter of the frame body 6 from the upper surface of the frame body 6.
  • the inclined shape of the support portion 11 is formed in accordance with the inclined shape of the light collecting member 8.
  • the frame body is inclined in a direction in which the inner wall side of the frame body 6 is lowered so as to be parallel to the side surface 8b of the light condensing member 8. It is preferable to have an inclined surface.
  • a metallized layer 12 is formed on the inclined surface of the support portion 11 of the frame 6 for joining with the light collecting member 8.
  • the metal thin film 14 provided on the side surface portion of the condensing member 8 is joined to the metallized layer 12 of the inclined portion of the support portion 11 via the joining member 13.
  • a metal material such as tungsten, molybdenum, or manganese is formed using a thin film forming technique such as a screen printing method, a vapor deposition method, or a sputtering method.
  • a thin film forming technique such as a screen printing method, a vapor deposition method, or a sputtering method.
  • the first conductive pattern 9a and the second conductive pattern 9b are formed on the uncured substrate 5 before firing by using a thin film forming technique such as a vapor deposition method, a screen printing method, or a sputtering method.
  • a thin film forming technique such as a vapor deposition method, a screen printing method, or a sputtering method.
  • the metallized layer 12 for joining with the condensing member 8 is used for the inclination part of the uncured frame 6 before baking using thin film formation techniques, such as a vapor deposition method, a screen printing method, or sputtering method, for example.
  • the uncured frame body 6 before firing is pressure-bonded onto the substrate 5 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed, and both are fired simultaneously. In this way, the substrate 5 and the frame 6 are integrated after firing.
  • the photoelectric conversion element 7 is, for example, a solar cell element containing a III-V group compound semiconductor.
  • the photoelectric conversion element 7 can immediately convert the received light energy into electric power and output it by the photovoltaic effect.
  • the solar cell element has an InGaP / GaAs / Ge three-junction cell structure.
  • the indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less.
  • the gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm.
  • the germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm.
  • the three cells are connected in series via a tunnel junction.
  • the open circuit voltage is the sum of the electromotive voltages of the three cells.
  • the lower surface electrode of the photoelectric conversion element 7 is formed on the lower surface of the photoelectric conversion element 7.
  • the lower electrode is made of, for example, silver or aluminum and is electrically connected to the first conductive pattern 9a through a bonding material such as low melting point solder or conductive epoxy resin.
  • the upper surface electrode of the photoelectric conversion element 7 is formed on the upper surface of the photoelectric conversion element 7.
  • the upper surface electrode is made of, for example, silver, aluminum or the like, and is electrically connected to the second conductive pattern 9b with a conductive wire.
  • the first conductive pattern 9a and the second conductive pattern 9b are electrically connected to the first output terminal 10a and the second output terminal 10b through a bonding material.
  • the first output terminal 10a and the second output terminal 10b are, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy.
  • the bonding material is, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
  • the first output terminal 10a functions as a negative electrode.
  • the second output terminal 10b functions as a positive electrode.
  • the photoelectric conversion element 7 is electrically connected to the first output terminal 10a and the second output terminal 10b, and electricity is supplied to the outside through the first output terminal 10a and the second output terminal 10b. It can be taken out.
  • the metal condensing member 8 has a metal thin film 14 formed over the entire circumference of the side surface.
  • the metal thin film 14 is formed at a position corresponding to the support portion 11 of the frame 6 by a thin film forming technique such as vapor deposition or sputtering.
  • the metal thin film 14 is a metal material such as titanium, platinum, gold, chromium, nickel, gold, silver, copper, or an alloy thereof.
  • the metal thin film 14 on the side surface of the light collecting member 8 is bonded to the inclined surface of the support portion 11 of the frame body 6 via the bonding member 13. Both are joined by brazing, soldering, resin joining, or the like.
  • the joining member 13 is made of, for example, a brazing material, solder, low-melting glass, epoxy resin, or the like.
  • the brazing material include silver-copper brazing.
  • solder include gold-tin, gold-germanium, and tin-lead.
  • the low melting point glass means a glass having a glass transition point of about 600 ° C. or less.
  • the condensing member 8 is provided above the photoelectric conversion element 7 through a space.
  • the photoelectric conversion element 7 is provided in a space SP surrounded by the base body 5, the frame body 6, and the light collecting member 7 and hermetically sealed.
  • the light condensing member 8 has translucency, and has a function of guiding the light reaching from the light receiving member 3 to the photoelectric conversion element 7.
  • the translucency of the condensing member 8 means that when the photoelectric conversion element 7 is a solar cell element, light included in at least a part of the wavelength region of sunlight can be transmitted.
  • the condensing member 8 is, for example, borosilicate glass.
  • the condensing member 8 is a condensing prism, and the shape thereof is a truncated cone shape whose cross-sectional area decreases from the upper end portion to the lower end portion of the condensing member 8 toward the photoelectric conversion element 7.
  • the light that reaches the light collecting member 8 is repeatedly reflected at the interface between the inside and the outside of the light collecting member 8.
  • the condensing member 8 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by reflection in the process toward the photoelectric conversion element 7.
  • FIG. 4 is an exploded view of the photoelectric conversion device 2.
  • FIG. 4A is surrounded by a light collecting member 8 that guides light to the photoelectric conversion element 7, and
  • FIG. 4B is surrounded by a frame body 6.
  • FIG. 4C is an overall view of the photoelectric conversion device 2 in which the light condensing member 8 is joined to the frame body 6, showing the arrangement state of the photoelectric conversion elements 7.
  • the shape of the light collecting member 8 may be a truncated pyramid shape in which the cross-sectional area decreases from the upper end portion to the lower end portion of the light collecting member 8 toward the photoelectric conversion element 7.
  • the shape of the frame 6 is formed according to the shape of the condensing member 8, as shown in FIG.
  • the photoelectric conversion element storage package is a state in which the photoelectric conversion element 7 is not mounted on the substrate 5. That is, the photoelectric conversion element storage package includes a substrate 5 having a mounting portion on which the photoelectric conversion element 7 is mounted on the substrate 5 and a frame body 6 provided on the substrate 5 so as to surround the mounting portion. ing.
  • the frame body 6 has an inclined surface that is inclined in a direction in which the inner wall side of the frame body 6 is lowered in order to join the light collecting member 8 that is to be provided at a position higher than the planned mounting position of the photoelectric conversion element 7. ing.
  • the frame 6 may have a level
  • the photoelectric conversion element 7 is mounted on the substrate 5 of the package via a bonding material such as solder or resin, and further, over the entire circumference of the frame body 6, the space above the photoelectric conversion element 7 via the space.
  • a condensing member 8 is provided.
  • the photoelectric conversion element 7 is provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, the photoelectric conversion element 7 is sealed with a resin.
  • the light incident on the photoelectric conversion element 7 is less likely to attenuate.
  • a decrease in the amount of light incident on the photoelectric conversion element 7 is suppressed, and the light collection efficiency can be improved.
  • the photoelectric conversion element 7 is provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, the light irradiated to the photoelectric conversion element 7 is irregularly reflected inside. At this time, the light is easily reflected at the interface between the air layer, the vacuum layer, and the like in the low refractive index space SP and the photoelectric conversion element 7. As a result, the light irregularly reflected inside the photoelectric conversion element 7 is reflected at the interface, so that it becomes difficult to radiate again from the inside of the photoelectric conversion element 7 to the space SP, and a reduction in light collection efficiency can be suppressed.
  • the joint area between the frame body 6 and the light collecting member 8 can be reduced, and the frame body 6 to the light collecting member 8.
  • Compressive stress can be reduced.
  • the condensing member 8 and the frame 6 are joined to each other by the joining member 13 whose shape is defined in the formation region of the metallized layer 12 and the metallized layer 12, so that the compression from the frame 6 to the condensing member 8 is performed. Stress can be reduced. That is, it can suppress that the refractive index of the condensing member 8 changes with compressive stress. As a result, the position shift of the irradiation light to the photoelectric conversion element 7 can be suppressed, and the light collecting property can be improved.
  • the photoelectric conversion element 7 can be hermetically sealed by being provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, moisture resistance is improved. Thus, the photoelectric conversion element 7 can be operated reliably over a long period of time.
  • the side surface of the light collecting member 8 is fitted into the inclined surface of the support portion 11 of the frame body 6. And since the side surface of the condensing member 8 is joined by the inclined surface of the support part 11 of the frame 6, both are smoothly joined, the condensing member 8 is hard to be damaged, and both are joined well. Can do. As a result, a change in the traveling direction of the light guided to the photoelectric conversion element due to scratches or the like can be suppressed, and the light collecting property can be improved. Furthermore, by making the inclination angles of the light collecting member 8 and the support portion 11 of the frame body 6 substantially coincide with each other, the light collecting member 8 is less likely to be damaged.
  • the present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.
  • the photoelectric conversion device 2 according to the first embodiment includes a support portion 11 having an inclined surface on the inner wall edge over one circumference of the frame body 6, and the metallized layer 12 is formed on the inclined surface of the support portion 11.
  • the support part 11 may have a step, and the metallized layer 12 may be formed in the step.
  • the support portion 11 formed on the inner wall edge over the circumference of the frame body 6 has a step.
  • the condensing member 8 is abutted and joined to the corner of the step of the support portion 11 via the joining member 13.
  • step difference of the support part 11 can further be provided with the alignment function for fixing the condensing member 8 to the frame 6.
  • FIG. 1 when the light condensing member 8 is fitted into the frame 6, it is possible to suppress the positional deviation of the light condensing member 8 with respect to the photoelectric conversion element 7, and to improve the light condensing property to the photoelectric conversion element 7. Can do.
  • the support portion 11 formed on the inner wall edge over the circumference of the frame body 6 has a step.
  • FIG. 6 shows the junction part of the frame 6 and the condensing member 8 in detail, and the other part is simplified.
  • FIG. 7 shows in detail the joint between the frame 6 and the light collecting member 8, and the other parts are simplified.
  • the end portion of the lower surface of the light collecting member 8 facing the photoelectric conversion element 7 is joined to the support portion 11 via the joining member 13. That is, by supporting the outer peripheral end of the lower surface of the light collecting member 8 facing the photoelectric conversion element 7 on the flat portion of the step of the support portion 11 of the frame body 6, the frame body 6 is supported via the bonding member 13.
  • the metallized layer 12 of the part 11 is joined to the metal thin film 14 of the light collecting member 8.
  • the height from the photoelectric conversion element 7 to the lower surface of the condensing member 8 can be easily set to a predetermined height. That is, by setting the height of the step of the frame body 6 to a predetermined height, the height from the photoelectric conversion element 7 to the light collecting member 8 can be easily set.
  • the height from the photoelectric conversion element 7 to the light collecting member 8 is important in that the light incident on the photoelectric conversion element 7 from the light collecting member 8 is efficiently collected.
  • the metal thin film 14 may be formed on the end portion of the lower surface of the light collecting member 8 and bonded to the metallized layer 12 of the support portion 11 via the bonding member 13.
  • the substrate 5 and the frame 6 are prepared.
  • the substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Get.
  • the molds of the substrate 5 and the frame body 6 are filled with the mixture and dried, and then the substrate 5 and the frame body 6 before sintering are taken out.
  • a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent or the like is added to and mixed with the powder to obtain a metal paste.
  • a metal paste is applied to the upper surface of the unsintered substrate 5 using, for example, a screen printing method to form a metallized layer that becomes the conductive pattern 9a and the second conductive pattern 9b of the younger brother 1. To do.
  • the metallized layer 12 for joining to the light collecting member 8 is applied to the support 11 on the inner wall edge of the upper frame body 6 before being taken out by using, for example, a screen printing method. Form.
  • the frame body 6 is placed on the upper surface of the substrate 5 and pressed to bring the two into close contact. And by baking both at the temperature of about 1600 degreeC, the integrated product of the board
  • the photoelectric conversion element 7 is mounted with a conductive epoxy resin, for example, on the first conductive pattern 9a in a region surrounded by the substrate 5 and the frame 6b. Then, the first conductive pattern 9a and the lower electrode of the photoelectric conversion element 7 are electrically connected. Further, the second conductive pattern 9b is electrically connected to the upper surface electrode of the photoelectric conversion element 7 through a conductive wire. And the condensing member 8 is joined to the support part 11 of the frame 6 via solder. In this way, the photoelectric conversion device 2 can be manufactured.
  • a method for manufacturing the photoelectric conversion module 1 will be described.
  • a plurality of photoelectric conversion devices 2 and an external substrate 4 are prepared.
  • a method of connecting the two photoelectric conversion devices 2 will be described. Both are arrange
  • the two arranged photoelectric conversion devices 2 are provided on the external substrate 4, and the two arranged photoelectric conversion devices 2 are connected via a connecting member. As a result, the two photoelectric conversion devices 2 can be fixed to the external substrate 4.
  • the photoelectric conversion device 2 can be fixed to the external substrate 4.
  • a plurality of photoelectric conversion devices 2 are arranged and fixed on the external substrate 4.
  • the photoelectric conversion module 1 can be produced by providing the light receiving member 3 on the plurality of photoelectric conversion devices 2 arranged on the external substrate 4.
  • the constituent materials of the substrate 5 and the frame 6 are changed as compared with the photoelectric conversion device 2 according to the first embodiment.
  • symbol is attached
  • the first base 15 is included in addition to the substrate 5 and the frame 6.
  • the substrate 5 is made of a metal material such as copper, iron, tungsten, molybdenum, nickel or cobalt, or an alloy containing these metal materials.
  • the frame 6 and the first pedestal 15 are made of ceramics such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic. Consists of.
  • the substrate 5 has a function of efficiently dissipating heat generated from the photoelectric conversion element 7 to the outside through the substrate 5.
  • the thermal conductivity of the substrate 5 is set to 10 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less, for example.
  • the metallized layer 12 is formed on the support portion 11 on the inner wall edge on the upper portion of the uncured frame 6 before firing by using a thin film forming technique such as vapor deposition, screen printing, or sputtering.
  • a thin film forming technique such as vapor deposition, screen printing, or sputtering.
  • the first conductive pattern 9a and the first conductive pattern 9a on the upper surface of the first pedestal 15 are formed on the uncured first pedestal 15 before firing using, for example, a thin film forming technique such as vapor deposition, screen printing, or sputtering.
  • the second conductive pattern 9 b is formed, and a metallized layer is formed on the lower surface of the first pedestal 15 and at the junction between the substrate 5 and the first pedestal 15.
  • the first base 15 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed and the uncured frame body 6 before firing are pressure-bonded, and both are integrally fired at the same time.
  • the integrally fired frame 6 and the first pedestal 15 are joined to the substrate 5 via a brazing material on a metallized layer formed on the lower surface of the first pedestal 15. And the board
  • the photoelectric conversion element 7 is mounted on the substrate 5 in an area surrounded by the substrate 5, the frame body 6, and the first pedestal 15 with an adhesive such as epoxy, silicone, or glass epoxy.
  • the photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b via a conductive wire.
  • the photoelectric conversion element 6 is provided in a space SP surrounded by the base body 5, the frame body 6, the first pedestal 15, and the light collecting member 8 and hermetically sealed.
  • the light collecting member 8 is joined to the support portion 11 of the frame body 6 via the joining member 13.
  • the substrate 5 is made of a metal material, heat generated from the photoelectric conversion element 7 via the substrate 5 can be efficiently dissipated to the outside.
  • the substrate 5 and the frame 6 are made of a metal material such as copper, iron, tungsten, molybdenum, nickel or cobalt, or an alloy containing these metal materials.
  • the first pedestal 15 and the second pedestal 16 are made of an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a glass ceramic, or the like. Made of ceramics.
  • the substrate 5 has a function of efficiently dissipating heat generated from the photoelectric conversion element 7 to the outside through the substrate 5.
  • the thermal conductivity of the substrate 5 and the frame 6 is set to, for example, 10 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the first conductive pattern 9a and the second conductive pattern 9a are formed on the upper surface of the first pedestal 15 on the uncured first pedestal 15 before firing by using a thin film forming technique such as vapor deposition, screen printing, or sputtering.
  • the conductive pattern 9 b is formed, and a metallized layer is formed on the lower surface of the first pedestal 15 and at the junction between the substrate 5 and the first pedestal 15. Further, in the same manner, a metallized layer is formed on the upper surface of the second pedestal 16 and at the junction with the frame body 6.
  • the first pedestal 15 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed and the uncured second pedestal 16 before firing are pressure-bonded to each other.
  • the first pedestal 15 and the second pedestal 16 are integrated.
  • the substrate 5 and the frame body 6 are joined to the metallized layer on the lower surface of the first pedestal 15 and the metallized layer on the upper surface of the second pedestal 16 which are integrally fired through a brazing material. In this way, the substrate 5, the frame body 6, the first pedestal 15, and the second pedestal 16 are integrated.
  • the photoelectric conversion element 7 is mounted on the substrate 5 in an area surrounded by the substrate 5, the frame body 6, the first pedestal 15, and the second pedestal 16 with an adhesive such as epoxy, silicone, or glass epoxy. .
  • the photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b via a conductive wire.
  • the photoelectric conversion element 7 is provided in a space SP surrounded by the substrate 5, the frame body 6, the first pedestal 15, the second pedestal 16, and the light collecting member 8 and hermetically sealed.
  • the light collecting member 8 is joined to the support portion 11 of the frame body 6 via the joining member 13.
  • the frame body 6 is formed of a metal material, it is not necessary to newly form a metallized layer on the support portion 11 with the light collecting member 8, and the manufacturing process can be reduced. Furthermore, since the frame 6 has a function of radiating heat to the outside, the heat generated by the photoelectric conversion element 7 through the frame 6 can be effectively dissipated to the outside.
  • the shape of the light collecting member 8 is changed as compared with the photoelectric conversion device 2 according to the first embodiment.
  • symbol is attached
  • the condensing member 8 has a protruding portion 17 in which a part of the side surface 8b of the condensing member 8 protrudes outward in order to be joined to the frame 6.
  • the protruding portion 17 is joined to the upper portion of the frame body 6 at a portion extending on the frame body 6 as seen in a plan view. In other words, the lower surface 17b of the protrusion 17 and the upper surface of the frame are joined.
  • the projecting portion 17 is a plate-like portion that projects outward from the side surface of the light collecting member 8 and has an upper surface 17 a and a lower surface 17 b that faces the frame body 6. Moreover, the length of the protrusion part 17 which protrudes outward from the side surface 11b of the protrusion part 17 should just have a location where the protrusion part 17 and the frame 6 overlap for joining in planar view. As shown in FIG. 10, the outer shape of the protruding portion 17 is preferably provided in accordance with the outer shape of the frame body 6. Specifically, as shown in FIG. 10, a part of the upper side surface 8b of the light collecting member 8 may have a protruding portion 17 that protrudes outward.
  • the protruding portion 17 of the light collecting member 8 is formed with a metal layer over the entire circumference on the lower surface 17b of the protruding portion 17 facing the frame 6.
  • the metal layer should just be formed in the lower surface 17b which opposes the frame 6 of the protrusion part 17, Comprising: The position corresponded to the overlap part of the protrusion part 17 and the frame body 6.
  • FIG. The metal layer is formed by a thin film forming technique such as a vapor deposition method or a sputtering method.
  • a metal layer consists of metal materials, such as titanium, platinum, gold
  • the metal layer of the lower surface 17b facing the frame 6 of the projecting portion 17 of the light collecting member 8 is, for example, the entire circumference of the frame 6 via a bonding member made of brazing material, solder, low melting point glass, epoxy resin, or the like.
  • the upper part of the frame body 6 is joined.
  • a joining method for example, a method such as brazing, solder joining, or resin joining is used.
  • the brazing material include silver-copper brazing.
  • solder include gold-tin, gold-germanium, and tin-lead.
  • the low melting point glass means a glass having a glass transition point of 600 ° C. or lower.
  • the condensing member 8 is joined over the entire circumference of the frame body 6 and provided above the photoelectric conversion element 7 via the space SP.
  • the photoelectric conversion element 7 is provided in a space SP surrounded by the base body 5, the frame body 6, and the light collecting member 8 and hermetically sealed. Since the photoelectric conversion element 7 can be hermetically sealed by being provided in the internal space SP, moisture resistance is improved, and the photoelectric conversion element 7 can be operated with reliability over a long period of time.
  • the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this. As shown in FIG. 11, the region below the projecting portion 17 of the light collecting member 8 may be configured to be fitted into the region surrounded by the frame body 6.
  • a part of the side surface 8 b of the light collecting member 8 has a protruding portion 17 that protrudes outward, and a region below the protruding portion 17 of the light collecting member 8 that extends from the protruding portion 17 toward the photoelectric conversion element 7. , And is disposed in a region surrounded by the frame body 6.
  • FIG. 11 (B) and FIG. 11 (C) the position of the lower surface 17b of the protrusion part 17 which opposes the frame 6 is shown with the dashed-dotted line.
  • the light collecting member 8 has a structure in which a region below the projecting portion 17 of the light collecting member 8 is arranged in a region surrounded by the frame body 6. By doing so, it is possible to suppress the lateral displacement of the light collecting member 8 with respect to the photoelectric conversion element 7. Further, the projecting portion 17 is provided on the side surface 8b of the light condensing member 8 so that the height from the photoelectric conversion element 7 to the light condensing member 8 is a predetermined height, so that the light collecting from the photoelectric conversion element 7 is achieved. The positional deviation in the height direction up to the optical member 8 can be suppressed.
  • the height from the photoelectric conversion element 7 to the light condensing member 8 can also be adjusted at the height of the second frame 6 or the position where the protruding portion 17 of the side surface 8b of the light condensing member 8 is provided.
  • the side surface 8b of the region below the projecting portion 17 of the light collecting member 8 is at the height position of the projecting portion 17, that is, at the position of the root 8c of the projecting portion 17 shown in FIG. 6 is preferably in contact with a part of the inner wall surface. Further, the side surface 8b of the region below the projecting portion 17 of the light condensing member 8 is at a position lower than the projecting portion 17, that is, at a position lower than the position of the dashed line shown in FIG. It may be in contact with a part of the inner wall surface.
  • the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
  • the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17.
  • the region below the projecting portion 17 of the member 8 may be disposed within the region surrounded by the frame body 6, and the region below the condensing member 8 may be convex.
  • the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
  • the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17.
  • the area below the projecting portion 17 of the member 8 may be disposed within the area surrounded by the frame body 6, and the area below the condensing member 8 may be concave.
  • the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
  • the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17.
  • the region below the projecting portion 17 of the member 8 is disposed within the region surrounded by the frame body 6, and the support portion 11 of the frame body 6 faces the projecting portion 17 from the upper portion of the frame body 6. You may make it the structure which has a level
  • ⁇ Fourth embodiment> In the photoelectric conversion device according to the fourth embodiment, the constituent materials of the substrate 5 and the frame 6 are changed as compared with the photoelectric conversion device 2 according to the first embodiment.
  • symbol is attached
  • the substrate 5 according to the photoelectric conversion device 2 of the present embodiment is a conductive substrate made of a material having excellent conductivity.
  • the substrate 5 has a first main surface S1 on one main surface side and a second main surface S2 provided on the outer periphery of the first main surface S1.
  • the frame 6 is formed on the second main surface S2 of the substrate 5, and is positioned so as to surround the first main surface S1.
  • the photoelectric conversion element 7 is formed on the first main surface S1 in the frame body 6.
  • the photoelectric conversion device 2 of the present embodiment includes a conductive layer 18 that is formed on the frame body 6, provided over the inside and outside of the frame body 6, and electrically connected to the upper surface of the photoelectric conversion element 7. .
  • the conductive layer 18 in the photoelectric conversion device 2 of the present embodiment has the same function as the first conductive pattern 9a or the second conductive pattern 9b in the photoelectric conversion device 2 of the first embodiment.
  • a step is formed on the substrate 5.
  • a first main surface S1 is formed on the surface having the higher step height.
  • the second main surface S2 is formed on the surface having the lower step height.
  • the substrate 5 is made of a material having excellent conductivity.
  • a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof can be used.
  • the substrate 5 is preferably made of a material having excellent thermal conductivity, and the thermal conductivity of the substrate 5 according to this embodiment is, for example, 30 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less. Is set.
  • the coefficient of thermal expansion of the substrate 5 is set to, for example, 5 ⁇ 10 ⁇ 6 / ° C. or more and 25 ⁇ 10 ⁇ 6 / ° C. or less.
  • the photoelectric conversion element 7 is provided on the first main surface S1 and connected to the substrate 5.
  • the substrate 5 functions as a positive electrode.
  • the conductive layer 18 functions as a negative electrode.
  • the photoelectric conversion element 7 is electrically connected to the substrate 5 and the conductive layer 18, and electricity can be taken out through the substrate 5 or the conductive layer 18.
  • the height position of the first main surface S1 is set higher than the height position of the second main surface S2. Therefore, the current flowing between the substrate 5 and the conductive layer 18 flows through the first main surface S1 whose height position is higher than the second main surface S2. Since a current flows between the lower surface of the photoelectric conversion element 7 and the first main surface S ⁇ b> 1, the current path is set short between the substrate 5 and the conductive layer 18. As a result, it is possible to take out the power to the outside after reducing the loss of the power generated by the photoelectric conversion element 7.
  • the frame body 6 is formed on the second main surface S2 of the substrate 5 so as to surround the first main surface S1.
  • the conductive layer 18 extends to the inside and outside of the frame body 6.
  • the conductive layer 18 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
  • the frame 6 is made of an insulating material, for example, a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials. Note that the thermal expansion coefficient of the frame 6 is set to, for example, 4 ⁇ 10 ⁇ 6 / ° C. or more and 10 ⁇ 10 ⁇ 6 / ° C. or less.
  • the frame 6 is formed on the substrate 5 and surrounds the photoelectric conversion element 7.
  • the second frame 6 b is formed on the first frame 6 a and connected to the light collecting member 8. It is composed of
  • a gap A1 is provided between the side surface of the substrate 5 located between the first main surface S1 and the second main surface S2 and the first frame body 6a. A part of the lower surface of the frame 6 and the second main surface S2 of the substrate 5 are connected. Note that the length of the gap A1 is set to, for example, 0.1 mm or more and 3 mm or less.
  • the substrate 5 and the frame body 6 are different in thermal expansion coefficient, and the thermal expansion coefficient of the substrate 5 is larger than the thermal expansion coefficient of the frame body 6.
  • the substrate 5 is thermally expanded by heat generated by the photoelectric conversion element 7.
  • the substrate 5 is caused by thermal expansion of the substrate 5.
  • stress may be applied to the inner wall surface of the frame body 6 to cause cracks in the frame body 6.
  • the substrate 5 undergoes thermal expansion.
  • a support portion 11 for supporting the light collecting member 8 is formed on the upper portion of the frame body 6.
  • the support portion 11 is inclined from the upper surface of the frame body 6 to the inner wall surface of the frame body 6.
  • the condensing member 8 is connected to the support part 11 of the frame 6 so as to cover the space SP.
  • the photoelectric conversion element 7 positioned in the space SP is hermetically sealed by being surrounded by the substrate 5, the frame body 6, and the light collecting member 8.
  • the condensing member 8 is fixed to the support portion 11 of the frame 6 via, for example, solder, resin, or glass.
  • the condensing member 8 has a function of condensing the light transmitted through the light receiving member 4 and concentrating the condensed light on the photoelectric conversion element 7.
  • the light collecting member 8 is made of, for example, glass, plastic, or translucent resin.
  • an output terminal 10 electrically connected to the outside is formed on the conductive layer 18 located outside the frame body 6.
  • the output terminal 10 is for taking out the electric power generated by the photoelectric conversion element 7 to the outside.
  • the output terminal 10 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
  • the photoelectric conversion device is in a region surrounded by the frame body 6 as seen through a plane, and is in contact with the other main surface of the substrate 5.
  • the configuration further includes a thermally conductive substrate 19 provided in contact therewith.
  • symbol is attached
  • the photoelectric conversion device 2 is a heat conductive substrate that is provided in contact with the other main surface of the substrate 5 within a region surrounded by the frame body 6 as seen in a plan view. 19 is provided.
  • the substrate 5, the frame body 6 and the first pedestal 15 are, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body or It consists of ceramic materials such as glass ceramic, metal materials such as copper, iron, tungsten, molybdenum, nickel or cobalt, or alloys containing these metal materials, resin materials such as glass epoxy, acrylic or epoxy.
  • the thermal expansion coefficient of the substrate 5 is set to, for example, 7 (ppm / ° C.) or more and 9 (ppm / ° C.) or less.
  • a first conductive pattern 9 a is formed on one main surface of the substrate 5. Further, a metallized layer is formed on the other main surface of the substrate 5 in a region where the thermally conductive substrate 19 is in contact.
  • the first conductive pattern 9a and the second conductive pattern 9b are made of, for example, a metal material such as tungsten, molybdenum, or manganese, and are formed using, for example, a metallization forming technique by a screen printing method.
  • the frame body 6 has a function of supporting the light collecting member 8. That is, as shown in FIG. 4, the frame body 6 has an inclined surface that is inclined in a direction in which the inner wall side of the frame body 6 is lowered from the upper surface of the frame body 6 to the entire inner peripheral surface of the frame body 6. A support portion 11 is provided. The inclined shape of the support portion 11 of the frame 6 is formed in accordance with the inclined shape of the light collecting member 8.
  • the difference between the inclination shape of the support portion 11 and the inclination shape of the light collecting member 8, that is, the inclination angle of the inclined surface of the support portion 11 and the inclination angle of the side surface of the light collection member 8 in a cross-sectional view is 20 It is preferable if it is within the range of 0 ° or less.
  • the support portion 11 of the frame body 6 may be a step that is cut out from the upper surface of the frame body 6 to the inner wall surface.
  • the heat conductive substrate 19 is provided in contact with the other main surface of the substrate 5 in a region surrounded by the frame 6 in a plan view, that is, in a region surrounded by a one-dot chain line as shown in FIG. It is done. Note that the heat conductive substrate 19 is preferably brought into contact with the other main surface of the substrate 5 only in a region surrounded by the frame body 6 in a plan view.
  • the heat conductive substrate 19 is made of a material having excellent heat conductivity, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
  • the thermally conductive substrate 19 is bonded to the substrate 5 via a brazing material on a metallized layer formed in a region surrounded by the frame body 6 on the other main surface of the substrate 5.
  • the thermal expansion coefficient of the thermally conductive substrate 12 is set to, for example, 7 (ppm / ° C.) or more and 23 (ppm / ° C.) or less.
  • the thermal conductivity of the heat conductive substrate 19 is set to, for example, 100 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the distance L between the heat conductive substrate 19 and the frame body 6 is that heat conduction to the light collecting member 8 is suppressed when the heat conductive substrate 19 is seen through a plane.
  • L1 is 0.1 mm to 3.0 mm
  • L2 is 0.1 mm to 3.0 mm
  • L3 is 0.1 mm to 3.0 mm
  • L4 is 0.1 mm to 3.0 mm. It is preferably set.
  • the thickness of the heat conductive substrate 19 is preferably set to 0.1 mm or more and 1.0 mm or less in terms of relaxation of bonding stress due to a difference in thermal expansion coefficient between the substrate 5 and the heat conductive substrate 19. .
  • the photoelectric conversion device 2 is provided on the substrate 5, the base 20 disposed on the substrate 5, and provided on the substrate 5. And a first frame body 6a surrounding the base 20 with a space. Furthermore, the photoelectric conversion device 2 is provided on the base 20, a first conductive plate 21 a extending from the base 20 to the outside of the first frame 6 a, and a first conductive plate 21 a on the base 20 And a second conductive plate 21b which is provided with a space therebetween and extends from the base 20 to the outside of the first frame 6a.
  • the photoelectric conversion device 2 is provided on the base 20, mounted on the first conductive plate 21a, and photoelectric conversion as an element electrically connected to the first conductive plate 21a and the second conductive plate 21b.
  • the second frame body 6b and the second frame body 6b which are provided on the element 7 and on the first frame body 6a so as to cross over the first conductive plate 21a and the second conductive plate 21b and surround the photoelectric conversion element 7.
  • a light collecting member 8 that covers the space SP surrounded by the first frame body 6a and the second frame body 6b.
  • the substrate 5 in the photoelectric conversion device 2 of the present embodiment is a flat plate for mounting the base 20.
  • substrate 5 contains either of the materials excellent in heat dissipation, such as aluminum, copper, or tungsten, for example.
  • the thermal conductivity of the substrate 5 is set to, for example, 150 W / m ⁇ K or more and 400 W / m ⁇ K or less.
  • the base 20 is fixed on the substrate 5 via, for example, solder, resin, or glass.
  • the base 20 is for providing a first conductive plate 21a, a second conductive plate 21b and a photoelectric conversion element 7 which will be described later. Since the light received by the light receiving member 4 illuminates the photoelectric conversion element 7 through the light collecting member 8, the base 20 may become high temperature. Therefore, heat can be released from the base 20 toward the substrate 5 by using the base 20 as a material excellent in heat dissipation.
  • the base 20 is composed of two layers in this embodiment, and includes a base upper part 20a as an upper layer and a base lower part 20b as a lower layer.
  • the base upper portion 20a is made of a material that is insulated from the first conductive plate 21a and the second conductive plate 21b.
  • an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, a nitrided body It consists of ceramics, such as an aluminum sintered body, a silicon nitride sintered body, or a glass ceramic.
  • the thermal conductivity of the base upper portion 20a is set to, for example, 16 W / m ⁇ K or more and 200 W / m ⁇ K or less.
  • the base lower part 20b efficiently transfers the heat transferred from the base upper part 20a to the substrate 5.
  • the base upper part 20a and the base lower part 20b are fixed via, for example, solder, resin or glass.
  • the base lower part 20b includes any one of materials having excellent thermal conductivity, such as copper, tungsten, or molybdenum.
  • the thermal conductivity of the base lower part 20b is set to, for example, 150 W / m ⁇ K or more and 400 W / m ⁇ K or less.
  • the first conductive plate 21a and the second conductive plate 21b are fixed on the base upper portion 20a of the base 20 via, for example, solder, resin, glass or the like.
  • the conductive layer 18 in the photoelectric conversion device 2 of the present embodiment has the same function as the first conductive pattern 9a or the second conductive pattern 9b in the photoelectric conversion device 2 of the first embodiment. Therefore, the first conductive plate 21a and the second conductive plate 21b can pass the electric power generated by the photoelectric conversion element 7 as described later.
  • the first conductive plate 21a and the second conductive plate 21b are rectangular plates, and are made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof. .
  • the first conductive plate 21a and the second conductive plate 21b have a length in the longitudinal direction of, for example, 2 mm or more and 150 mm or less, and a length in the lateral direction of, for example, 0.5 mm or more and 10.0 mm or less.
  • the thickness is set to 0.1 mm or more and 2.0 mm or less.
  • the first conductive plate 21a is provided on the base 20, and the photoelectric conversion element 7 is mounted on the upper surface thereof.
  • the first conductive plate 21a extends from the base 20 to the outside of the first frame 6a.
  • the second conductive plate 21b is spaced apart from the first conductive plate 21a and is provided on the base 20 and extends to the outside of the first frame 6a.
  • the first conductive plate 21a and the second conductive plate 21b are provided along one direction.
  • the shape of the substrate is changed as compared with the photoelectric conversion device 2 according to the first embodiment.
  • symbol is attached
  • the substrate 5 according to the photoelectric conversion device 2 of the present embodiment is an insulating substrate made of a material having excellent insulating properties.
  • the substrate 5 has a first main surface S1 and a second main surface S2 having different height positions on one main surface side.
  • the frame 6 is formed on the substrate 5 and is positioned so as to surround a part of both main surfaces across both the first main surface S1 and the second main surface.
  • the photoelectric conversion element 7 is formed on the first main surface S1 in the frame body 6.
  • the photoelectric conversion device 2 of the present embodiment is formed on the first main surface S1, and is formed on the second main surface, the first conductive pattern 9a electrically connected to the lower surface of the photoelectric conversion element.
  • a second conductive pattern 9b electrically connected to the upper surface of the photoelectric conversion element 7.
  • the substrate 5 has a step.
  • a first main surface S1 is formed on the surface having the lower step height.
  • the second main surface S2 is formed on the surface having the higher step height.
  • the substrate 5 is an insulating substrate and is made of a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials.
  • the end of the first main surface S1 located in the frame 6 and the end of the second main surface S2 located in the frame 6 are designed to overlap in plan view.
  • the end of the first main surface S1 and the end of the second main surface S2 overlap each other when the step 5 provided on the substrate 5 is viewed in cross section. Is an angle between 85 degrees and 95 degrees.
  • the first conductive pattern 9a formed on the first main surface S1 of the substrate 5 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
  • the second conductive pattern 9b formed on the second main surface S2 of the substrate 5 is, for example, copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, similarly to the first conductive pattern 9a. It consists of metal materials, such as these, or those alloys.
  • the photoelectric conversion element 7 is provided on the first main surface S1 and connected to the first conductive pattern 9a.
  • the lower surface electrode pattern of the photoelectric conversion element 7 is formed on the lower surface of the photoelectric conversion element 7 facing the first main surface S1.
  • the lower electrode pattern is electrically connected to the first conductive pattern 9a via, for example, solder.
  • an upper surface electrode pattern is formed on the upper surface of the photoelectric conversion element 7.
  • the upper surface electrode pattern is electrically connected to the second conductive pattern 9b formed on the second main surface S2 through, for example, a wire.
  • the first conductive pattern 9a functions as a positive electrode.
  • the second conductive pattern 9b functions as a negative electrode.
  • the photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b, and electricity is supplied to the outside through the first conductive pattern 9a or the second conductive pattern 9b. It can be taken out.
  • the frame body 6 is formed on the substrate 5 so as to surround a part of both main surfaces of the first main surface S1 and the second main surface S2.
  • the first conductive pattern 9 a extends along the first main surface S ⁇ b> 1 from the inside of the frame body 6 toward the outside of the frame body 6.
  • the second conductive pattern 9b extends along the second main surface S2 from the inside of the frame body 6 toward the outside of the frame body 6.
  • the frame body 6 is an insulating substrate and is made of, for example, a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials.
  • a support portion 11 for supporting the light collecting member 8 is formed on the upper portion of the frame body 6.
  • the support portion 11 is inclined from the upper surface of the frame body 6 to the inner wall surface of the frame body 6.
  • the condensing member 8 is connected to the support part 11 of the frame 6 so as to cover the space SP.
  • the photoelectric conversion element 7 positioned in the space SP is hermetically sealed by being surrounded by the substrate 5, the frame body 6, and the light collecting member 8.
  • the condensing member 8 is fixed to the support portion 11 of the frame 6 via, for example, solder, resin, or glass.
  • the first conductive pattern 9a is provided by providing a step on the substrate 5 and changing the height positions of the first conductive pattern 9a and the second conductive pattern 9b connected to the photoelectric conversion element 7. And the second conductive pattern 9b are not directly connected to each other, and the area on the first conductive pattern 9a on which the photoelectric conversion element 7 is mounted can be reduced. And the area
  • the first conductive layer 9 is designed such that the height position of the second main surface S2 of the substrate 5 on which the second conductive pattern 9b is formed is higher than the height position of the upper surface of the photoelectric conversion element 7.
  • the distance between the second conductive pattern 9b and the upper surface of the photoelectric conversion element 7 can be made shorter than the distance between the pattern 9a and the second conductive pattern 9b. And even if the discharge phenomenon due to dielectric breakdown is about to occur from the second conductive pattern 9b toward the first conductive pattern 9a, the distance between the second conductive pattern 9b and the photoelectric conversion element 7 is shorter. Electricity easily flows from the second conductive pattern 9 b toward the photoelectric conversion element 7, and it is possible to suppress a discharge phenomenon from occurring in the space SP surrounded by the frame body 6.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

One embodiment of the photoelectric conversion device of the present invention comprises a substrate, a photoelectric conversion element that is provided on the substrate, a frame body that is arranged so as to surround the photoelectric conversion element on the substrate, and a light collecting member that is joined to the entire circumference of the frame body and arranged above the photoelectric conversion element with a space therebetween. The entire lower surface of the light collecting member is positioned within the region surrounded by the frame body.

Description

光電変換装置、光電変換素子収納用パッケージ及び光電変換モジュールPhotoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
 本発明は、光電変換装置、光電変換素子収納用パッケージ及びその光電変換装置を用いる光電変換モジュールに関する。 The present invention relates to a photoelectric conversion device, a photoelectric conversion element storage package, and a photoelectric conversion module using the photoelectric conversion device.
 近年、光電変換素子を有する光電変換装置の開発が進められている。例示的な光電変換装置としては、太陽エネルギーを電力に変換する太陽電池装置がある。特に、発電効率の向上を目的として、集光型の太陽電池装置の開発が進められている。この太陽電池装置の場合、光電変換素子は、太陽エネルギーを電力に変換する太陽電池素子である。集光された太陽光を効率良く太陽電池素子に照射する構造が開示されている。(例えば、特許文献1参照)。 In recent years, development of photoelectric conversion devices having photoelectric conversion elements has been promoted. As an exemplary photoelectric conversion device, there is a solar cell device that converts solar energy into electric power. In particular, for the purpose of improving the power generation efficiency, a concentrating solar cell device is being developed. In the case of this solar cell device, the photoelectric conversion element is a solar cell element that converts solar energy into electric power. A structure for efficiently irradiating condensed solar light onto a solar cell element is disclosed. (For example, refer to Patent Document 1).
 上記特許文献1で提案されている太陽電池装置は、光電変換する太陽電池素子を搭載するレシーバ基板と、レシーバ基板上の太陽電池素子を取り囲むように設けられ、太陽光を反射して太陽電池素子へ導光する反射面を有する反射部材と、反射部材で取り囲まれた空間を樹脂で充填した樹脂封止部と、を含んで構成されている。 The solar cell device proposed in Patent Document 1 is provided so as to surround a solar cell element on a receiver substrate on which a solar cell element for photoelectric conversion is mounted, and reflects solar light so as to reflect the solar cell element. A reflecting member having a reflecting surface that guides light to the surface, and a resin sealing portion that fills a space surrounded by the reflecting member with resin.
 しかしながら、上記特許文献1で提案された太陽電池装置の構造では、太陽光は、太陽電池素子を封止している樹脂封止部を透過して太陽電池素子に照射されるため、太陽光が樹脂封止部で減衰してしまう。その結果として、太陽電池素子の集光効率が低下する。 However, in the structure of the solar cell device proposed in Patent Document 1 above, sunlight passes through the resin sealing portion that seals the solar cell element and is irradiated to the solar cell element. It attenuates at the resin sealing part. As a result, the light collection efficiency of the solar cell element is reduced.
 本発明は、上記課題に鑑みてなされたものであり、集光性に優れた光電変換装置、光電変換素子収納用パッケージ及び光電変換モジュールを提供することを目的とする。
特開2009-81278号公報
This invention is made | formed in view of the said subject, and it aims at providing the photoelectric conversion apparatus excellent in the condensing property, the package for photoelectric conversion element accommodation, and a photoelectric conversion module.
JP 2009-81278 A
 本発明の第1の態様に係る光電変換装置は、基板と、前記基板上に設けられた光電変換素子と、前記基板上の前記光電変換素子を取り囲むように設けられた枠体と、前記枠体の全周にわたって接合されるとともに、前記光電変換素子の上方に空間を介して設けられた集光部材と、を備えている。そして、前記枠体で囲まれる領域内に前記集光部材の下面全面が位置している。 The photoelectric conversion device according to the first aspect of the present invention includes a substrate, a photoelectric conversion element provided on the substrate, a frame provided so as to surround the photoelectric conversion element on the substrate, and the frame. A condensing member that is bonded over the entire circumference of the body and provided above the photoelectric conversion element via a space. And the whole lower surface of the said condensing member is located in the area | region enclosed by the said frame.
第1実施形態に係る光電変換モジュールの概観を示す分解斜視図である。It is a disassembled perspective view which shows the external appearance of the photoelectric conversion module which concerns on 1st Embodiment. 第1実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態に係る光電変換装置の集光部材を示す斜視図である。It is a perspective view which shows the condensing member of the photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態に係る光電変換装置の集光部材を除いた内部構造を示す斜視図である。It is a perspective view which shows the internal structure except the condensing member of the photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態に係る光電変換装置の斜視図である。1 is a perspective view of a photoelectric conversion device according to a first embodiment. 第1実施形態に係る他の光電変換装置の集光部材を示す斜視図である。It is a perspective view which shows the condensing member of the other photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態に係る他の光電変換装置の集光部材を除いた内部構造を示す斜視図である。It is a perspective view which shows the internal structure except the condensing member of the other photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態に係る他の光電変換装置の斜視図である。It is a perspective view of the other photoelectric conversion apparatus which concerns on 1st Embodiment. 第1実施形態の変形例1に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 1 of 1st Embodiment. 第1実施形態の変形例2に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 2 of 1st Embodiment. 第1実施形態の変形例3に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 3 of 1st Embodiment. 第2実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 2nd Embodiment. 第2実施形態の変形例に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification of 2nd Embodiment. 第3実施形態に係る光電変換装置における集光部材の断面図である。It is sectional drawing of the condensing member in the photoelectric conversion apparatus which concerns on 3rd Embodiment. 第3実施形態に係る光電変換装置の集光部材を示す断面図である。It is sectional drawing which shows the condensing member of the photoelectric conversion apparatus which concerns on 3rd Embodiment. 第3実施形態の変形例1に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 1 of 3rd Embodiment. 第3実施形態の変形例1に係る光電変換装置の集光部材を示す断面図である。It is sectional drawing which shows the condensing member of the photoelectric conversion apparatus which concerns on the modification 1 of 3rd Embodiment. 第3実施形態の変形例1に係る他の光電変換装置の集光部材を示す断面図である。It is sectional drawing which shows the condensing member of the other photoelectric conversion apparatus which concerns on the modification 1 of 3rd Embodiment. 第3実施形態の変形例2に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 2 of 3rd Embodiment. 第3実施形態の変形例3に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 3 of 3rd Embodiment. 第3実施形態の変形例4に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the modification 4 of 3rd Embodiment. 第4実施形態に係る光電変換装置の平面図である。It is a top view of the photoelectric conversion apparatus which concerns on 4th Embodiment. 第4実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 4th Embodiment. 第5実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 5th Embodiment. 第5実施形態に係る光電変換装置の平面図であって、光電変換素子を除き、熱伝導性基板の当接位置を示す平面図である。It is a top view of the photoelectric conversion apparatus which concerns on 5th Embodiment, Comprising: It is a top view which shows the contact position of a heat conductive board | substrate except a photoelectric conversion element. 第6実施形態に係る光電変換装置の概観斜視図である。It is a general-view perspective view of the photoelectric conversion apparatus which concerns on 6th Embodiment. 第6実施形態に係る光電変換装置の一部の分解斜視図である。It is a one part disassembled perspective view of the photoelectric conversion apparatus which concerns on 6th Embodiment. 第6実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 6th Embodiment. 第7実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on 7th Embodiment. 第7実施形態に係る光電変換装置の光電変換素子及び集光部材を除いた概観斜視図である。It is a general-view perspective view except the photoelectric conversion element and condensing member of the photoelectric conversion apparatus which concerns on 7th Embodiment.
 以下、本発明の一実施形態に係る光電変換モジュール、光電変換装置及び光電変換素子収納用パッケージについて、図面を参照しながら説明する。 Hereinafter, a photoelectric conversion module, a photoelectric conversion device, and a photoelectric conversion element storage package according to an embodiment of the present invention will be described with reference to the drawings.
 <第1実施形態>
 図1は、本発明の第1実施形態に係る光電変換モジュール1の概観斜視図である。また、図2は、図1に示す光電変換装置2の内部構造を示す断面図及び後述する枠体と集光部材との接合部の拡大図である。また、図3は、光電変換装置2の分解図であって、図3(A)は、光を光電変換素子に導く集光部材である。また、図3(B)は、枠体によって取り囲まれた光電変換素子の配置状態を示す光電変換装置の内部構造である。また、図3(C)は、集光部材が枠体に接合された光電変換装置の全体図である。
<First Embodiment>
FIG. 1 is a schematic perspective view of a photoelectric conversion module 1 according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the internal structure of the photoelectric conversion device 2 shown in FIG. 1 and an enlarged view of a joint portion between a frame and a condensing member, which will be described later. 3 is an exploded view of the photoelectric conversion device 2, and FIG. 3A is a light collecting member that guides light to the photoelectric conversion element. FIG. 3B illustrates the internal structure of the photoelectric conversion device, showing an arrangement state of photoelectric conversion elements surrounded by a frame. FIG. 3C is an overall view of the photoelectric conversion device in which the light collecting member is joined to the frame.
 本実施形態に係る光電変換モジュール1は、太陽光エネルギーを電力に変換する太陽光発電モジュールである。また、本実施形態に係る光電変換装置2は、光エネルギーを電力に変換する光電変換素子7を含んでいる。かかる光電変換素子7は、例えば、太陽光エネルギーを電力に変換する機能を備えている太陽電池素子である。 The photoelectric conversion module 1 according to the present embodiment is a solar power generation module that converts solar energy into electric power. In addition, the photoelectric conversion device 2 according to the present embodiment includes a photoelectric conversion element 7 that converts light energy into electric power. For example, the photoelectric conversion element 7 is a solar cell element having a function of converting solar energy into electric power.
 光電変換モジュール1は、複数の光電変換装置2と、複数の光電変換装置2の上方に設けられた受光部材3と外部基板4を含んで構成される。受光部材3は、外部からの光を受光するとともに、受光した光を集光部材8に集める機能を備えている。また、受光部材3は、複数個のレンズ部材3bが矩形のフレーム部材3aに固定されることにより構成されている。受光部材3のレンズ部材3bは、例えば、ドーム状のフレネルレンズであり、例えば、アクリル樹脂等の光学的特性に優れた樹脂材料からなる。複数の光電変換装置2は、外部基板4に実装されている。受光部材3は、外部基板4に固定されており、複数の光電変換装置2を覆っている。 The photoelectric conversion module 1 includes a plurality of photoelectric conversion devices 2, a light receiving member 3 and an external substrate 4 provided above the plurality of photoelectric conversion devices 2. The light receiving member 3 has a function of collecting light received from the outside and collecting the received light on the light collecting member 8. The light receiving member 3 is configured by fixing a plurality of lens members 3b to a rectangular frame member 3a. The lens member 3b of the light receiving member 3 is, for example, a dome-shaped Fresnel lens, and is made of a resin material having excellent optical characteristics such as acrylic resin. The plurality of photoelectric conversion devices 2 are mounted on the external substrate 4. The light receiving member 3 is fixed to the external substrate 4 and covers the plurality of photoelectric conversion devices 2.
 また、外部基板4は、光電変換装置2から発せられる熱を放散させる機能を備えている。外部基板4は、例えば、アルミニウム、銅、炭素-金属複合材等の金属材料から成る。なお、外部基板4の熱伝導率は、例えば、10W/(m・K)以上500W/(m・K)以下に設定されている。 Further, the external substrate 4 has a function of radiating heat generated from the photoelectric conversion device 2. The external substrate 4 is made of a metal material such as aluminum, copper, or a carbon-metal composite material. The thermal conductivity of the external substrate 4 is set to, for example, 10 W / (m · K) or more and 500 W / (m · K) or less.
 受光部材3に入射された光は、光電変換装置2の集光部材8の上端部に集められる。すなわち、集光部材8は、受光部材3によって集められた光を光電変換素子7に導くという機能を備えている。集光部材8に入射された光は、集光部材8で反射を繰り返しながら集光部材8の上端部から下端部へ進み、集光部材8の下端部から光電変換素子7の上面に入射される。そして、光電変換素子7は、光エネルギーを電力に変換する。 The light incident on the light receiving member 3 is collected at the upper end of the light collecting member 8 of the photoelectric conversion device 2. That is, the condensing member 8 has a function of guiding the light collected by the light receiving member 3 to the photoelectric conversion element 7. The light incident on the condensing member 8 proceeds from the upper end to the lower end of the condensing member 8 while being repeatedly reflected by the condensing member 8, and is incident on the upper surface of the photoelectric conversion element 7 from the lower end of the condensing member 8. The The photoelectric conversion element 7 converts light energy into electric power.
 光電変換装置2は、図2に示すように、基板5と、基板5上に設けられた光電変換素子7と、基板5上の光電変換素子7を取り囲むように設けられた枠体6と、枠体6の全周にわたって接合されるとともに、光電変換素子7の上方に光電変換素子7と空間SPを介して設けられた集光部材8と、を備えている。なお、枠体6は、基板5を環状に取り囲むように形成されている。 As shown in FIG. 2, the photoelectric conversion device 2 includes a substrate 5, a photoelectric conversion element 7 provided on the substrate 5, a frame 6 provided so as to surround the photoelectric conversion element 7 on the substrate 5, A condensing member 8 is provided over the entire circumference of the frame 6 and provided above the photoelectric conversion element 7 via the photoelectric conversion element 7 and the space SP. The frame 6 is formed so as to surround the substrate 5 in an annular shape.
 光電変換素子7が集光部材8によって直接に封止されるのではなく、光電変換素子7及び集光部材8の間に空間SPが存在している。そのため、光電変換素子7が発する熱が集光部材8に伝わることが抑制される。また、光電変換素子7が熱膨張した場合であっても、光電変換素子7に大きな応力が加わることが抑制される。 The photoelectric conversion element 7 is not directly sealed by the light collecting member 8, but a space SP exists between the photoelectric conversion element 7 and the light collecting member 8. Therefore, it is possible to suppress the heat generated by the photoelectric conversion element 7 from being transmitted to the light collecting member 8. Moreover, even if it is a case where the photoelectric conversion element 7 expands thermally, it is suppressed that a big stress is added to the photoelectric conversion element 7. FIG.
 そして、第1実施形態の光電変換装置2では、枠体6で囲まれる領域内に集光部材8の下面8a全体が位置している。光の取出し面である集光部材8の下面8aが枠体6の上に位置している場合、集光部材8によって集光された光の一部が枠体6の上面で反射される可能性がある。しかしながら、枠体6で囲まれる領域内に集光部材8の下面8a全体が位置していることによって、上述の枠体6の上面における反射が抑制される。従って、集光部材8による集光効率を向上させることができる。 And in the photoelectric conversion apparatus 2 of 1st Embodiment, the whole lower surface 8a of the condensing member 8 is located in the area | region enclosed by the frame 6. FIG. When the lower surface 8 a of the light collecting member 8, which is a light extraction surface, is positioned on the frame 6, a part of the light condensed by the light collecting member 8 can be reflected on the upper surface of the frame 6. There is sex. However, since the entire lower surface 8a of the light collecting member 8 is located within the region surrounded by the frame body 6, the reflection on the upper surface of the frame body 6 described above is suppressed. Therefore, the light collection efficiency by the light collection member 8 can be improved.
 基板5は、平面視したときに円形状に形成された部材である。また、枠体6は、平面視したときに円形状に形成された部材である。基板5または枠体6の平面視したときの形状は、円形状に限らず、四角形状等の形状にすることができる。なお、枠体6の形状は、接合される集光部材8の形状に合わせて形成されることが好ましい。 The substrate 5 is a member formed in a circular shape when viewed from above. The frame body 6 is a member formed in a circular shape when viewed in plan. The shape of the substrate 5 or the frame body 6 when viewed in plan is not limited to a circular shape, and may be a square shape or the like. In addition, it is preferable that the shape of the frame 6 is formed according to the shape of the condensing member 8 to be joined.
 基板5と枠体6は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミック等のセラミックス、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料あるいはこれらの金属材料を含有する合金、ガラスエポキシ、アクリル又はエポキシ等の樹脂材料からなる。基板5が上記の金属材料及び合金のような導電性の優れた部材によって構成される場合、基板5の熱伝導率は、例えば、100W/(m・K)以上500W/(m・K)以下に設定されている。また、基板5の熱膨張係数は、6.0ppm/℃以上25.0ppm/℃以下に設定されている。 The substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a ceramic such as a glass ceramic, It consists of resin materials, such as metal materials, such as copper, iron, tungsten, molybdenum, nickel, or cobalt, the alloy containing these metal materials, glass epoxy, an acryl, or an epoxy. When the substrate 5 is composed of a member having excellent conductivity such as the above metal material and alloy, the thermal conductivity of the substrate 5 is, for example, 100 W / (m · K) or more and 500 W / (m · K) or less. Is set to The thermal expansion coefficient of the substrate 5 is set to 6.0 ppm / ° C. or more and 25.0 ppm / ° C. or less.
 また、基板5が上記のセラミックス及び樹脂材料のような絶縁性の部材によって構成される場合、基板5上には、第1の導電パターン9a及び第2の導電パターン9bが形成される。第1の導電パターン9a及び第2の導電パターン9bは、例えば、タングステン、モリブデン又はマンガン等の金属材料からなり、スクリーン印刷法、蒸着法又はスパッタリング法等の薄膜形成技術を用いて形成される。 Further, when the substrate 5 is configured by an insulating member such as the above ceramics and resin material, the first conductive pattern 9a and the second conductive pattern 9b are formed on the substrate 5. The first conductive pattern 9a and the second conductive pattern 9b are made of a metal material such as tungsten, molybdenum, or manganese, and are formed using a thin film forming technique such as a screen printing method, a vapor deposition method, or a sputtering method.
 また、枠体6は、集光部材8を支持する機能を備える。すなわち、枠体6は、枠体6の上面から枠体6の全周にわたって傾斜面を有する支持部11を有している。支持部11の傾斜の形状は、集光部材8の傾斜の形状に合わせて形成される。尚、支持部11の傾斜の形状と集光部材8の傾斜の形状、すなわち、断面視したときの支持部11と集光部材8の傾斜角が、一致することが好ましい。たとえば、集光部材8が上部の幅よりも下部の幅がい構成の場合、枠体は、集光部材8の側面8bと平行となるように枠体6の内壁側が低くなる方向に傾斜している傾斜面を有していることが好ましい。集光部材8との接合のために、メタライズ層12が、枠体6の支持部11の傾斜面に形成されている。接合部材13を介して、支持部11の傾斜部のメタライズ層12と集光部材8の側面部に設けられた金属薄膜14が接合される。メタライズ層12としては、例えば、タングステン、モリブデン又はマンガン等の金属材料が、スクリーン印刷法、蒸着法又はスパッタリング法等の薄膜形成技術を用いて形成される。なお、集光部材8の詳細な構成については後述する。 Further, the frame body 6 has a function of supporting the light collecting member 8. That is, the frame body 6 has the support part 11 which has an inclined surface over the perimeter of the frame body 6 from the upper surface of the frame body 6. The inclined shape of the support portion 11 is formed in accordance with the inclined shape of the light collecting member 8. In addition, it is preferable that the inclination shape of the support part 11 and the inclination shape of the condensing member 8, ie, the inclination angle of the support part 11 and the condensing member 8 when seen in a cross-section. For example, when the condensing member 8 has a lower width than the upper width, the frame body is inclined in a direction in which the inner wall side of the frame body 6 is lowered so as to be parallel to the side surface 8b of the light condensing member 8. It is preferable to have an inclined surface. A metallized layer 12 is formed on the inclined surface of the support portion 11 of the frame 6 for joining with the light collecting member 8. The metal thin film 14 provided on the side surface portion of the condensing member 8 is joined to the metallized layer 12 of the inclined portion of the support portion 11 via the joining member 13. As the metallized layer 12, for example, a metal material such as tungsten, molybdenum, or manganese is formed using a thin film forming technique such as a screen printing method, a vapor deposition method, or a sputtering method. The detailed configuration of the light collecting member 8 will be described later.
 ここで、基板5と枠体6がセラミックスで形成される場合について、両者が一体化される状態の基板5と枠体6の作製方法について説明する。焼成前の未硬化の基板5上に、例えば、蒸着法、スクリーン印刷法又はスパッタリング法等の薄膜形成技術を用いて、第1の導電パターン9a及び第2の導電パターン9bを形成する。また、焼成前の未硬化の枠体6の傾斜部に、例えば、蒸着法、スクリーン印刷法又はスパッタリング法等の薄膜形成技術を用いて、集光部材8との接合のためのメタライズ層12を形成する。そして、焼成前の未硬化の第1の導電パターン9a及び第2の導電パターン9bが形成された基板5上に、焼成前の未硬化の枠体6を圧着して、両者を同時に焼成する。このようにして、焼成後に、基板5と枠体6が一体化される。 Here, in the case where the substrate 5 and the frame body 6 are formed of ceramics, a manufacturing method of the substrate 5 and the frame body 6 in a state where both are integrated will be described. The first conductive pattern 9a and the second conductive pattern 9b are formed on the uncured substrate 5 before firing by using a thin film forming technique such as a vapor deposition method, a screen printing method, or a sputtering method. Moreover, the metallized layer 12 for joining with the condensing member 8 is used for the inclination part of the uncured frame 6 before baking using thin film formation techniques, such as a vapor deposition method, a screen printing method, or sputtering method, for example. Form. Then, the uncured frame body 6 before firing is pressure-bonded onto the substrate 5 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed, and both are fired simultaneously. In this way, the substrate 5 and the frame 6 are integrated after firing.
 光電変換素子7は、例えば、III-V族化合物半導体を含んでいる太陽電池素子である。光電変換素子7は、光起電力効果により、受けた光エネルギーを即時に電力に変換して出力することができる。例えば、太陽電池素子は、InGaP/GaAs/Geの3接合型セルの構造を有している。インジウムガリウムリン(InGaP)トップセルは、660nm以下の波長領域に含まれる光をエネルギー変換する。ガリウムヒ素(GaAs)ミドルセルは、660nmから890nmまでの波長領域に含まれる光をエネルギー変換する。ゲルマニウム(Ge)ボトムセルは、890nmから2000nmまでの波長領域に含まれる光をエネルギー変換する。3つのセルは、トンネル接合を介して直列に接続されている。開放電圧は、3つのセルの起電圧の和である。 The photoelectric conversion element 7 is, for example, a solar cell element containing a III-V group compound semiconductor. The photoelectric conversion element 7 can immediately convert the received light energy into electric power and output it by the photovoltaic effect. For example, the solar cell element has an InGaP / GaAs / Ge three-junction cell structure. The indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less. The gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm. The germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm. The three cells are connected in series via a tunnel junction. The open circuit voltage is the sum of the electromotive voltages of the three cells.
 光電変換素子7の下面には、光電変換素子7の下面電極が形成されている。かかる下面電極は、例えば、銀、アルミニウム等により形成され、低融点半田、導電性エポキシ樹脂等の接合材を介して第1の導電パターン9aと電気的に接続されている。 The lower surface electrode of the photoelectric conversion element 7 is formed on the lower surface of the photoelectric conversion element 7. The lower electrode is made of, for example, silver or aluminum and is electrically connected to the first conductive pattern 9a through a bonding material such as low melting point solder or conductive epoxy resin.
 また、光電変換素子7の上面には、光電変換素子7の上面電極が形成されている。かかる上面電極は、例えば、銀、アルミニウム等により形成され、導電性ワイヤで第2の導電パターン9bと電気的に接続されている。更に、第1の導電パターン9a及び第2の導電パターン9bは、接合材を介して第1の出力端子10aと第2の出力端子10bに電気的に接続されている。第1の出力端子10a及び第2の出力端子10bは、例えば、鉄-ニッケル-コバルト(Fe-Ni-Co)合金である。また、接合材としては、例えば、銀-銅ロウ、低融点半田又は導電性エポキシ樹脂等である。 Further, the upper surface electrode of the photoelectric conversion element 7 is formed on the upper surface of the photoelectric conversion element 7. The upper surface electrode is made of, for example, silver, aluminum or the like, and is electrically connected to the second conductive pattern 9b with a conductive wire. Further, the first conductive pattern 9a and the second conductive pattern 9b are electrically connected to the first output terminal 10a and the second output terminal 10b through a bonding material. The first output terminal 10a and the second output terminal 10b are, for example, an iron-nickel-cobalt (Fe—Ni—Co) alloy. The bonding material is, for example, silver-copper solder, low melting point solder, conductive epoxy resin, or the like.
 ここで、第1の出力端子10aは、負極として機能する。また、第2の出力端子10bは、正極として機能する。そして、光電変換素子7は、第1の出力端子10a及び第2の出力端子10bと電気的に接続されており、第1の出力端子10a及び第2の出力端子10bを介して外部に電気を取り出すことができる。 Here, the first output terminal 10a functions as a negative electrode. The second output terminal 10b functions as a positive electrode. The photoelectric conversion element 7 is electrically connected to the first output terminal 10a and the second output terminal 10b, and electricity is supplied to the outside through the first output terminal 10a and the second output terminal 10b. It can be taken out.
 集光部材8は、側面の一周にわたって金属薄膜14が形成される。尚、金属薄膜14は、枠体6の支持部11に相当する位置に蒸着法やスパッタリング法等の薄膜形成技術によって形成される。金属薄膜14は、例えば、チタン、白金、金、クロム、ニッケル、金、銀、銅、或いはそれらの合金等の金属材料である。図2の要部拡大図に示されるように、集光部材8の側面の金属薄膜14が、接合部材13を介して、枠体6の支持部11の傾斜面で接合される。両者は、ロウ接合、半田接合又は樹脂接合等で接合される。また、接合部材13は、例えば、ロウ材、半田、低融点ガラス又はエポキシ樹脂等からなる。ロウ材としては、例えば、銀-銅ロウ等である。半田としては、金-錫系、金-ゲルマニウム系、錫-鉛系等である。また、低融点ガラスとは、ガラス転移点が600℃以下程度のガラスのことをいう。 The metal condensing member 8 has a metal thin film 14 formed over the entire circumference of the side surface. The metal thin film 14 is formed at a position corresponding to the support portion 11 of the frame 6 by a thin film forming technique such as vapor deposition or sputtering. The metal thin film 14 is a metal material such as titanium, platinum, gold, chromium, nickel, gold, silver, copper, or an alloy thereof. As shown in the enlarged view of the main part of FIG. 2, the metal thin film 14 on the side surface of the light collecting member 8 is bonded to the inclined surface of the support portion 11 of the frame body 6 via the bonding member 13. Both are joined by brazing, soldering, resin joining, or the like. The joining member 13 is made of, for example, a brazing material, solder, low-melting glass, epoxy resin, or the like. Examples of the brazing material include silver-copper brazing. Examples of solder include gold-tin, gold-germanium, and tin-lead. The low melting point glass means a glass having a glass transition point of about 600 ° C. or less.
 そして、集光部材8は、光電変換素子7の上方に空間を介して設けられる。結果として、光電変換素子7は、基体5と枠体6と集光部材7で囲まれる空間SPに設けられ、気密封止される。 And the condensing member 8 is provided above the photoelectric conversion element 7 through a space. As a result, the photoelectric conversion element 7 is provided in a space SP surrounded by the base body 5, the frame body 6, and the light collecting member 7 and hermetically sealed.
 また、集光部材8は、透光性を有しており、受光部材3から届いた光を光電変換素子7に導く機能を備えている。集光部材8の透光性とは、光電変換素子7が、太陽電池素子である場合は、太陽光の少なくとも一部の波長領域に含まれる光が透過できることをいう。集光部材8は、例えば、ホウ珪酸ガラスである。 Further, the light condensing member 8 has translucency, and has a function of guiding the light reaching from the light receiving member 3 to the photoelectric conversion element 7. The translucency of the condensing member 8 means that when the photoelectric conversion element 7 is a solar cell element, light included in at least a part of the wavelength region of sunlight can be transmitted. The condensing member 8 is, for example, borosilicate glass.
 また、集光部材8は、集光プリズムであり、その形状は、集光部材8の上端部から下端部へ光電変換素子7に向かうに従って断面積が小さくなる円錐台形状である。集光部材8に届いた光は、集光部材8の内部と外部との界面において繰り返し反射される。集光部材8は、光電変換素子7に向かう過程で反射によって断面積内の光エネルギーの強度分布を均等化するという機能を備えている。なお、集光部材8の周囲には、例えば、蒸着法等によって、太陽光を反射する機能を有する反射部材として、金属の薄膜を設けても良い。 The condensing member 8 is a condensing prism, and the shape thereof is a truncated cone shape whose cross-sectional area decreases from the upper end portion to the lower end portion of the condensing member 8 toward the photoelectric conversion element 7. The light that reaches the light collecting member 8 is repeatedly reflected at the interface between the inside and the outside of the light collecting member 8. The condensing member 8 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by reflection in the process toward the photoelectric conversion element 7. In addition, you may provide a metal thin film around the condensing member 8 as a reflecting member which has a function which reflects sunlight, for example by a vapor deposition method etc.
 また、集光部材8は、光の反射によって断面積内の光エネルギーの強度分布を均等化する機能を有していることが好ましい。図4は、光電変換装置2の分解図であって、図4(A)は、光を光電変換素子7に導く集光部材8、また、図4(B)は、枠体6によって取り囲まれた光電変換素子7の配置状態を示す光電変換装置2の内部構造、また、図4(C)は、集光部材8が枠体6に接合された光電変換装置2の全体図である。集光部材8の形状は、図4(A)に示すように、集光部材8の上端部から下端部へ光電変換素子7に向かうに従って断面積が小さくなる角錐台形状であっても良い。なお、枠体6の形状は、図4(B)に示すように、集光部材8の形状に合わせて、形成される。 Further, it is preferable that the light collecting member 8 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by reflecting light. FIG. 4 is an exploded view of the photoelectric conversion device 2. FIG. 4A is surrounded by a light collecting member 8 that guides light to the photoelectric conversion element 7, and FIG. 4B is surrounded by a frame body 6. FIG. 4C is an overall view of the photoelectric conversion device 2 in which the light condensing member 8 is joined to the frame body 6, showing the arrangement state of the photoelectric conversion elements 7. As shown in FIG. 4A, the shape of the light collecting member 8 may be a truncated pyramid shape in which the cross-sectional area decreases from the upper end portion to the lower end portion of the light collecting member 8 toward the photoelectric conversion element 7. In addition, the shape of the frame 6 is formed according to the shape of the condensing member 8, as shown in FIG.
 ここで、光電変換素子収納用パッケージについて説明する。光電変換素子収納用パッケージとは、基板5上に光電変換素子7が未搭載の状態である。すなわち、光電変換素子収納用パッケージは、基板5上に光電変換素子7が搭載される搭載部を有した基板5と、基板5上に搭載部を取り囲むように設けられる枠体6と、を備えている。枠体6は、光電変換素子7の搭載予定位置より上方位置に設けられる予定の集光部材8を接合するために、枠体6の内壁側が低くなる方向に傾斜している傾斜面を有している。また、枠体6は、後述するように、枠体6の上面から内壁面にかけて切り欠かれた段差を有していても良い。そして、パッケージの基板5上に、例えば、半田や樹脂等の接合材を介して光電変換素子7を搭載し、更に、枠体6の全周にわたって、光電変換素子7の上方に空間を介して集光部材8が設けられる。接合部材13を介して、枠体6の支持部11のメタライズ層12と集光部材8の金属薄膜14が接合されることにより、集光部材8が設けられた光電変換装置2となる。 Here, the photoelectric conversion element storage package will be described. The photoelectric conversion element storage package is a state in which the photoelectric conversion element 7 is not mounted on the substrate 5. That is, the photoelectric conversion element storage package includes a substrate 5 having a mounting portion on which the photoelectric conversion element 7 is mounted on the substrate 5 and a frame body 6 provided on the substrate 5 so as to surround the mounting portion. ing. The frame body 6 has an inclined surface that is inclined in a direction in which the inner wall side of the frame body 6 is lowered in order to join the light collecting member 8 that is to be provided at a position higher than the planned mounting position of the photoelectric conversion element 7. ing. Moreover, the frame 6 may have a level | step difference notched from the upper surface of the frame 6 to the inner wall surface so that it may mention later. Then, for example, the photoelectric conversion element 7 is mounted on the substrate 5 of the package via a bonding material such as solder or resin, and further, over the entire circumference of the frame body 6, the space above the photoelectric conversion element 7 via the space. A condensing member 8 is provided. By joining the metallized layer 12 of the support portion 11 of the frame 6 and the metal thin film 14 of the light collecting member 8 via the bonding member 13, the photoelectric conversion device 2 provided with the light collecting member 8 is obtained.
 本実施形態によれば、光電変換素子7が、基板5と枠体6と集光部材8によって形成される内部の空間SPに設けられるため、光電変換素子7が樹脂によって封入されている構造に比較して、光電変換素子7に入射する光が減衰しにくい。その結果、光電変換素子7への入射光量の減少が抑制され、集光効率を向上することができる。 According to this embodiment, since the photoelectric conversion element 7 is provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, the photoelectric conversion element 7 is sealed with a resin. In comparison, the light incident on the photoelectric conversion element 7 is less likely to attenuate. As a result, a decrease in the amount of light incident on the photoelectric conversion element 7 is suppressed, and the light collection efficiency can be improved.
 また、光電変換素子7が、基板5と枠体6と集光部材8で形成される内部の空間SPに設けられているため、光電変換素子7に照射された光が、その内部で乱反射した際に、低屈折率の空間SPの空気層や真空層等と光電変換素子7との界面で反射し易くなる。その結果、光電変換素子7の内部で乱反射した光が界面で反射することにより、再び、光電変換素子7の内部から空間SPへ放射されにくくなり、集光効率の低下を抑制することができる。 In addition, since the photoelectric conversion element 7 is provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, the light irradiated to the photoelectric conversion element 7 is irregularly reflected inside. At this time, the light is easily reflected at the interface between the air layer, the vacuum layer, and the like in the low refractive index space SP and the photoelectric conversion element 7. As a result, the light irregularly reflected inside the photoelectric conversion element 7 is reflected at the interface, so that it becomes difficult to radiate again from the inside of the photoelectric conversion element 7 to the space SP, and a reduction in light collection efficiency can be suppressed.
 また、集光部材8と枠体6が枠体6の支持部11のみで接合されることによって、枠体6と集光部材8の接合面積が小さくでき、枠体6から集光部材8への圧縮応力が低減できる。更には、集光部材8と枠体6が、メタライズ層12とメタライズ層12の形成領域で形状が規定される接合部材13で接合されることによって、枠体6から集光部材8への圧縮応力が低減できる。すなわち、集光部材8の屈折率が、圧縮応力によって変化することを抑制することができる。その結果、光電変換素子7への照射光の位置ずれを抑制することができ、集光性を向上することができる。 Further, by joining the light collecting member 8 and the frame body 6 only by the support portion 11 of the frame body 6, the joint area between the frame body 6 and the light collecting member 8 can be reduced, and the frame body 6 to the light collecting member 8. Compressive stress can be reduced. Furthermore, the condensing member 8 and the frame 6 are joined to each other by the joining member 13 whose shape is defined in the formation region of the metallized layer 12 and the metallized layer 12, so that the compression from the frame 6 to the condensing member 8 is performed. Stress can be reduced. That is, it can suppress that the refractive index of the condensing member 8 changes with compressive stress. As a result, the position shift of the irradiation light to the photoelectric conversion element 7 can be suppressed, and the light collecting property can be improved.
 また、光電変換素子7が、基板5と枠体6と集光部材8によって形成される内部の空間SPに設けられることによって、光電変換素子7を気密封止することができるため、耐湿性が向上し、光電変換素子7を長期にわたって信頼性良く作動させることができる。 Moreover, since the photoelectric conversion element 7 can be hermetically sealed by being provided in the internal space SP formed by the substrate 5, the frame body 6, and the light collecting member 8, moisture resistance is improved. Thus, the photoelectric conversion element 7 can be operated reliably over a long period of time.
 また、集光部材8の側面が、枠体6の支持部11の傾斜面に嵌め込まれる。そして、集光部材8の側面が枠体6の支持部11の傾斜面で接合されるため、両者が滑らかに接合され、集光部材8に傷等が付きにくく、両者を良好に接合することができる。その結果、傷等によって光電変換素子に導かれる光の進行方向の変化を抑制することができ、集光性を向上することができる。更に、集光部材8と枠体6の支持部11の傾斜角を略一致させることにより、集光部材8に傷等がより付きにくくなる。 Further, the side surface of the light collecting member 8 is fitted into the inclined surface of the support portion 11 of the frame body 6. And since the side surface of the condensing member 8 is joined by the inclined surface of the support part 11 of the frame 6, both are smoothly joined, the condensing member 8 is hard to be damaged, and both are joined well. Can do. As a result, a change in the traveling direction of the light guided to the photoelectric conversion element due to scratches or the like can be suppressed, and the light collecting property can be improved. Furthermore, by making the inclination angles of the light collecting member 8 and the support portion 11 of the frame body 6 substantially coincide with each other, the light collecting member 8 is less likely to be damaged.
 <第1実施形態の変形例>
 本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。上記第1実施形態に係る光電変換装置2は、枠体6の一周にわたって内壁縁に傾斜面を有している支持部11を有し、メタライズ層12が支持部11の傾斜面に形成されているが、これに限られない。支持部11が、段差を有し、メタライズ層12が段差に形成されていても良い。なお、第1実施形態の変形例に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification of First Embodiment>
The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention. The photoelectric conversion device 2 according to the first embodiment includes a support portion 11 having an inclined surface on the inner wall edge over one circumference of the frame body 6, and the metallized layer 12 is formed on the inclined surface of the support portion 11. However, it is not limited to this. The support part 11 may have a step, and the metallized layer 12 may be formed in the step. In addition, about the photoelectric conversion apparatus which concerns on the modification of 1st Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 <第1実施形態の変形例1>
 図5に示すように、枠体6の一周にわたって内壁縁に形成される支持部11が段差を有している。集光部材8は、接合部材13を介して、この支持部11の段差の角部に突き当てて接合される。そして、支持部11の段差の角部が、集光部材8を枠体6に固定するためのアライメント機能を更に備えることができる。その結果、集光部材8を枠体6に嵌め込んだ際に、集光部材8の光電変換素子7に対する位置ずれを抑制することができ、光電変換素子7への集光性を向上することができる。
<Variation 1 of the first embodiment>
As shown in FIG. 5, the support portion 11 formed on the inner wall edge over the circumference of the frame body 6 has a step. The condensing member 8 is abutted and joined to the corner of the step of the support portion 11 via the joining member 13. And the corner | angular part of the level | step difference of the support part 11 can further be provided with the alignment function for fixing the condensing member 8 to the frame 6. FIG. As a result, when the light condensing member 8 is fitted into the frame 6, it is possible to suppress the positional deviation of the light condensing member 8 with respect to the photoelectric conversion element 7, and to improve the light condensing property to the photoelectric conversion element 7. Can do.
 <第1実施形態の変形例2>
 図6に示すように、枠体6の一周にわたって内壁縁に形成される支持部11が段差を有している。なお、図6は、枠体6と集光部材8との接合部を詳細に示し、他の部分は簡略化してある。支持部11の段差及びその周辺部にメタライズ層12を設けることにより、枠体6は、接合部材13を介して、支持部11の周辺部を含んで集光部材8の金属薄膜14と接合される。その結果、枠体6と集光部材8の固定がさらに強固にできる。例えば、接合部材13として半田を用いた場合、半田によるフィレットを形成できるので、枠体6と集光部材8との接合がより強固となり接合性を向上することができる。
<Modification 2 of the first embodiment>
As shown in FIG. 6, the support portion 11 formed on the inner wall edge over the circumference of the frame body 6 has a step. In addition, FIG. 6 shows the junction part of the frame 6 and the condensing member 8 in detail, and the other part is simplified. By providing the metallized layer 12 on the step of the support portion 11 and its peripheral portion, the frame 6 is joined to the metal thin film 14 of the light collecting member 8 including the peripheral portion of the support portion 11 via the joining member 13. The As a result, the frame 6 and the condensing member 8 can be more firmly fixed. For example, when solder is used as the joining member 13, since a fillet made of solder can be formed, the joining between the frame body 6 and the light collecting member 8 becomes stronger and the joining property can be improved.
 <第1実施形態の変形例3>
 図7に示すように、枠体6の一周にわたって内壁縁に形成される支持部11が段差を有している。尚、図7は、枠体6と集光部材8との接合部を詳細に示し、他の部分は簡略化してある。接合部材13を介して、集光部材8の光電変換素子7と対向する下面の端部が支持部11と接合される。すなわち、枠体6の支持部11の段差の平坦部に光電変換素子7と対向する集光部材8の下面の外周端部を当接することにより、接合部材13を介して、枠体6の支持部11のメタライズ層12が集光部材8の金属薄膜14と接合される。結果として、光電変換素子7から集光部材8の下面までの高さを予め決められた所定の高さに容易に設定することができる。すなわち、枠体6の段差の高さを予め決められた所定の高さにしておくことで、光電変換素子7から集光部材8までの高さを容易に設定することができる。光電変換素子7から集光部材8までの高さは、集光部材8から光電変換素子7へ入射される光を効率良く集光させる点で重要である。また、集光部材8の下面の端部にも金属薄膜14を形成して、接合部材13を介して、支持部11のメタライズ層12と接合しても良い。
<Modification 3 of the first embodiment>
As shown in FIG. 7, the support portion 11 formed on the inner wall edge over the circumference of the frame body 6 has a step. FIG. 7 shows in detail the joint between the frame 6 and the light collecting member 8, and the other parts are simplified. The end portion of the lower surface of the light collecting member 8 facing the photoelectric conversion element 7 is joined to the support portion 11 via the joining member 13. That is, by supporting the outer peripheral end of the lower surface of the light collecting member 8 facing the photoelectric conversion element 7 on the flat portion of the step of the support portion 11 of the frame body 6, the frame body 6 is supported via the bonding member 13. The metallized layer 12 of the part 11 is joined to the metal thin film 14 of the light collecting member 8. As a result, the height from the photoelectric conversion element 7 to the lower surface of the condensing member 8 can be easily set to a predetermined height. That is, by setting the height of the step of the frame body 6 to a predetermined height, the height from the photoelectric conversion element 7 to the light collecting member 8 can be easily set. The height from the photoelectric conversion element 7 to the light collecting member 8 is important in that the light incident on the photoelectric conversion element 7 from the light collecting member 8 is efficiently collected. Alternatively, the metal thin film 14 may be formed on the end portion of the lower surface of the light collecting member 8 and bonded to the metallized layer 12 of the support portion 11 via the bonding member 13.
 ここで、図1に示す光電変換モジュール1及び図2に示す光電変換装置2の製造方法を説明する。 Here, a method for manufacturing the photoelectric conversion module 1 shown in FIG. 1 and the photoelectric conversion device 2 shown in FIG. 2 will be described.
 まず、基板5及び枠体6を準備する。基板5及び枠体6が、例えば酸化アルミニウム質焼結体から成る場合、酸化アルミニウム、酸化珪素、酸化マグネシウム及び酸化カルシウム等の原料粉末に、有機バインダー、可塑剤又は溶剤等を添加混合して混合物を得る。 First, the substrate 5 and the frame 6 are prepared. When the substrate 5 and the frame 6 are made of, for example, an aluminum oxide sintered body, an organic binder, a plasticizer, a solvent, or the like is added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. Get.
 そして、基板5及び枠体6の型枠内に、混合物を充填して乾燥させた後、焼結前の基板5及び枠体6を取り出す。 Then, the molds of the substrate 5 and the frame body 6 are filled with the mixture and dried, and then the substrate 5 and the frame body 6 before sintering are taken out.
 また、タングステン又はモリブデン等の高融点金属粉末を準備し、この粉末に有機バインダー、可塑剤又は溶剤等を添加混合して金属ペーストを得る。 Also, a high melting point metal powder such as tungsten or molybdenum is prepared, and an organic binder, a plasticizer, a solvent or the like is added to and mixed with the powder to obtain a metal paste.
 そして、取り出した焼結前の基板5の上面に対して、例えばスクリーン印刷法を用いて、金属ペーストを塗って、弟1の導電性パターン9a及び第2の導電パターン9bとなるメタライズ層を形成する。 Then, a metal paste is applied to the upper surface of the unsintered substrate 5 using, for example, a screen printing method to form a metallized layer that becomes the conductive pattern 9a and the second conductive pattern 9b of the younger brother 1. To do.
 また、取り出した焼結前の枠体6上部の内壁縁の支持部11に対して、例えばスクリーン印刷法を用いて、金属ペーストを塗って、集光部材8との接合のためのメタライズ層12を形成する。 Further, the metallized layer 12 for joining to the light collecting member 8 is applied to the support 11 on the inner wall edge of the upper frame body 6 before being taken out by using, for example, a screen printing method. Form.
 さらに、基板5の上面に枠体6を載せて加圧させることで、両者を密着させる。そして、両者を約1600℃の温度で焼成することにより、基板5と枠体6の一体品を作製することができる。 Furthermore, the frame body 6 is placed on the upper surface of the substrate 5 and pressed to bring the two into close contact. And by baking both at the temperature of about 1600 degreeC, the integrated product of the board | substrate 5 and the frame 6 can be produced.
 次に、基板5及び枠体6bで囲まれる領域であって、第1の導電パターン9a上に、例えば、導電性エポキシ樹脂で光電変換素子7を実装する。そして、第1の導電パターン9aと光電変換素子7の下面電極とを電気的に接続する。また、第2の導電パターン9bから、光電変換素子7の上面電極に対して、導電性ワイヤを介して電気的に接続する。そして、枠体6の支持部11に半田を介して集光部材8を接合する。このようにして、光電変換装置2を作製することができる。 Next, the photoelectric conversion element 7 is mounted with a conductive epoxy resin, for example, on the first conductive pattern 9a in a region surrounded by the substrate 5 and the frame 6b. Then, the first conductive pattern 9a and the lower electrode of the photoelectric conversion element 7 are electrically connected. Further, the second conductive pattern 9b is electrically connected to the upper surface electrode of the photoelectric conversion element 7 through a conductive wire. And the condensing member 8 is joined to the support part 11 of the frame 6 via solder. In this way, the photoelectric conversion device 2 can be manufactured.
 次に、光電変換モジュール1の作製方法について説明する。まず、複数個の光電変換装置2と、外部基板4を準備する。ここでは、二つの光電変換装置2の接続方法について説明する。一方の光電変換装置2の第1の出力端子10aと他方の光電変換装置2の第2の出力端子10bとが隣り合うように、両者を配置する。そして、配置した二つの光電変換装置2を外部基板4上に設け、接続部材を介して配置した二つの光電変換装置2を接続する。その結果、二つの光電変換装置2を外部基板4に対して固定することができる。 Next, a method for manufacturing the photoelectric conversion module 1 will be described. First, a plurality of photoelectric conversion devices 2 and an external substrate 4 are prepared. Here, a method of connecting the two photoelectric conversion devices 2 will be described. Both are arrange | positioned so that the 1st output terminal 10a of one photoelectric conversion apparatus 2 and the 2nd output terminal 10b of the other photoelectric conversion apparatus 2 may adjoin. Then, the two arranged photoelectric conversion devices 2 are provided on the external substrate 4, and the two arranged photoelectric conversion devices 2 are connected via a connecting member. As a result, the two photoelectric conversion devices 2 can be fixed to the external substrate 4.
 このようにして、光電変換装置2を外部基板4に固定することができる。同様にして、複数個の光電変換装置2を外部基板4に配置して固定する。そして、外部基板4に配置した複数個の光電変換装置2上に受光部材3を設けることで、光電変換モジュール1を作製することができる。 In this way, the photoelectric conversion device 2 can be fixed to the external substrate 4. Similarly, a plurality of photoelectric conversion devices 2 are arranged and fixed on the external substrate 4. And the photoelectric conversion module 1 can be produced by providing the light receiving member 3 on the plurality of photoelectric conversion devices 2 arranged on the external substrate 4.
 <第2実施形態>
 第2実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、基板5及び枠体6の構成材料が変更されたものになっている。なお、第2実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
Second Embodiment
In the photoelectric conversion device according to the second embodiment, the constituent materials of the substrate 5 and the frame 6 are changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 2nd Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 図8に示すように、第1実施形態の構造と比較して、基板5と枠体6に追加して第1の台座15を含んで構成される。 As shown in FIG. 8, compared to the structure of the first embodiment, the first base 15 is included in addition to the substrate 5 and the frame 6.
 基板5は、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料、或いはこれらの金属材料を含有する合金からなる。枠体6と第1の台座15は、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等のセラミックスからなる。基板5は、光電変換素子7から発生する熱を効率良く基板5を介して外部に放散させる機能を備えている。なお、基板5の熱伝導率は、例えば10W/(m・K)以上500W/(m・K)以下に設定されている。 The substrate 5 is made of a metal material such as copper, iron, tungsten, molybdenum, nickel or cobalt, or an alloy containing these metal materials. The frame 6 and the first pedestal 15 are made of ceramics such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic. Consists of. The substrate 5 has a function of efficiently dissipating heat generated from the photoelectric conversion element 7 to the outside through the substrate 5. The thermal conductivity of the substrate 5 is set to 10 W / (m · K) or more and 500 W / (m · K) or less, for example.
 ここで、基板5と枠体6と台座15が一体化される状態の作製方法について説明する。焼成前の未硬化の枠体6の上部の内壁縁の支持部11に、例えば、蒸着法、スクリーン印刷法又はスパッタリング法等の薄膜形成技術を用いて、メタライズ層12を形成する。また、焼成前の未硬化の第1の台座15に、例えば、蒸着法、スクリーン印刷法又はスパッタリング法等の薄膜形成技術を用いて、第1の台座15上面に第1の導電パターン9a及び第2の導電パターン9bを形成し、第1の台座15の下面であって、基板5と第1の台座15との接合部にメタライズ層を形成する。まず、焼成前の未硬化の第1の導電パターン9a及び第2の導電パターン9bが形成された第1の台座15と焼成前の未硬化の枠体6を圧着して、両者を同時に一体焼成する。その後、一体焼成された枠体6と第1の台座15を、第1の台座15の下面に形成されたメタライズ層にロウ材を介して、基板5と接合する。そして、基板5と枠体6と第1の台座15を一体とする。 Here, a manufacturing method in a state where the substrate 5, the frame body 6, and the pedestal 15 are integrated will be described. The metallized layer 12 is formed on the support portion 11 on the inner wall edge on the upper portion of the uncured frame 6 before firing by using a thin film forming technique such as vapor deposition, screen printing, or sputtering. In addition, the first conductive pattern 9a and the first conductive pattern 9a on the upper surface of the first pedestal 15 are formed on the uncured first pedestal 15 before firing using, for example, a thin film forming technique such as vapor deposition, screen printing, or sputtering. The second conductive pattern 9 b is formed, and a metallized layer is formed on the lower surface of the first pedestal 15 and at the junction between the substrate 5 and the first pedestal 15. First, the first base 15 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed and the uncured frame body 6 before firing are pressure-bonded, and both are integrally fired at the same time. To do. Thereafter, the integrally fired frame 6 and the first pedestal 15 are joined to the substrate 5 via a brazing material on a metallized layer formed on the lower surface of the first pedestal 15. And the board | substrate 5, the frame 6, and the 1st base 15 are united.
 光電変換素子7は、基板5と枠体6と第1の台座15で囲まれる領域に、例えば、エポキシ、シリコーン又はガラスエポキシ等の接着材によって基板5上に実装される。そして、光電変換素子7は、導電性ワイヤを介して、第1の導電パターン9a及び第2の導電パターン9bと電気的に接続される。また、光電変換素子6は、基体5と枠体6と第1の台座15と集光部材8によって囲まれる空間SPに設けられ、気密封止される。集光部材8は、接合部材13を介して、枠体6の支持部11に接合される。 The photoelectric conversion element 7 is mounted on the substrate 5 in an area surrounded by the substrate 5, the frame body 6, and the first pedestal 15 with an adhesive such as epoxy, silicone, or glass epoxy. The photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b via a conductive wire. The photoelectric conversion element 6 is provided in a space SP surrounded by the base body 5, the frame body 6, the first pedestal 15, and the light collecting member 8 and hermetically sealed. The light collecting member 8 is joined to the support portion 11 of the frame body 6 via the joining member 13.
 本実施形態によれば、基板5が、金属材料から構成されることにより、基板5を介して光電変換素子7から発生する熱を効率良く外部に放散することができる。 According to this embodiment, since the substrate 5 is made of a metal material, heat generated from the photoelectric conversion element 7 via the substrate 5 can be efficiently dissipated to the outside.
 <第2実施形態の変形例1>
 本変形例に係る光電変換装置では、第2実施形態に係る光電変換装置と比較して、図9に示すように、基板5と枠体6と第1の台座15に追加して第2の台座16を含んで構成される。なお、本変形例に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Modification Example 1 of Second Embodiment>
In the photoelectric conversion device according to the present modification, as compared with the photoelectric conversion device according to the second embodiment, the second addition to the substrate 5, the frame body 6, and the first pedestal 15, as shown in FIG. 9. The pedestal 16 is included. In addition, about the photoelectric conversion apparatus which concerns on this modification, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 基板5と枠体6は、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料、或いはこれらの金属材料を含有する合金からなる。第1の台座15と第2の台座16は、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等のセラミックスからなる。なお、基板5は、光電変換素子7から発生する熱を効率良く基板5を介して外部に放散させる機能を備えている。なお、基板5と枠体6の熱伝導率は、例えば10W/(m・K)以上500W/(m・K)以下に設定されている。 The substrate 5 and the frame 6 are made of a metal material such as copper, iron, tungsten, molybdenum, nickel or cobalt, or an alloy containing these metal materials. The first pedestal 15 and the second pedestal 16 are made of an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, a glass ceramic, or the like. Made of ceramics. The substrate 5 has a function of efficiently dissipating heat generated from the photoelectric conversion element 7 to the outside through the substrate 5. The thermal conductivity of the substrate 5 and the frame 6 is set to, for example, 10 W / (m · K) or more and 500 W / (m · K) or less.
 ここで、基板6と枠体6と第1の台座15と第2の台座16が一体化される状態の作製方法について説明する。焼成前の未硬化の第1の台座15に、例えば、蒸着法、スクリーン印刷法又はスパッタリング法等の薄膜形成技術を用いて、第1の台座15の上面に第1の導電パターン9a及び第2の導電パターン9bを形成し、第1の台座15の下面であって、基板5と第1の台座15との接合部にメタライズ層を形成する。更に、同様にして、第2の台座16の上面であって、枠体6との接合部にメタライズ層を形成する。まず、焼成前の未硬化の第1の導電パターン9a及び第2の導電パターン9bが形成された第1の台座15と焼成前の未硬化の第2の台座16とを圧着して、両者を同時に一体焼成し、第1の台座15と第2の台座16を一体化する。その後、一体焼成された第1の台座15の下面のメタライズ層と第2の台座16の上面のメタライズ層にロウ材を介して基板5と枠体6と接合する。このようにして、基板5と枠体6と第1の台座15と第2の台座16を一体とする。 Here, a manufacturing method in a state where the substrate 6, the frame body 6, the first pedestal 15, and the second pedestal 16 are integrated will be described. The first conductive pattern 9a and the second conductive pattern 9a are formed on the upper surface of the first pedestal 15 on the uncured first pedestal 15 before firing by using a thin film forming technique such as vapor deposition, screen printing, or sputtering. The conductive pattern 9 b is formed, and a metallized layer is formed on the lower surface of the first pedestal 15 and at the junction between the substrate 5 and the first pedestal 15. Further, in the same manner, a metallized layer is formed on the upper surface of the second pedestal 16 and at the junction with the frame body 6. First, the first pedestal 15 on which the uncured first conductive pattern 9a and the second conductive pattern 9b before firing are formed and the uncured second pedestal 16 before firing are pressure-bonded to each other. At the same time, the first pedestal 15 and the second pedestal 16 are integrated. After that, the substrate 5 and the frame body 6 are joined to the metallized layer on the lower surface of the first pedestal 15 and the metallized layer on the upper surface of the second pedestal 16 which are integrally fired through a brazing material. In this way, the substrate 5, the frame body 6, the first pedestal 15, and the second pedestal 16 are integrated.
 光電変換素子7は、基板5と枠体6と第1の台座15と第2の台座16で囲まれる領域に、例えば、エポキシ、シリコーン又はガラスエポキシ等の接着材によって基板5上に実装される。そして、光電変換素子7は、導電性ワイヤを介して、第1の導電パターン9a及び第2の導電パターン9bに電気的に接続される。また、光電変換素子7は、基板5と枠体6と第1の台座15と第2の台座16と集光部材8によって囲まれる空間SPに設けられ、気密封止される。集光部材8が、接合部材13を介して、枠体6の支持部11に接合される。 The photoelectric conversion element 7 is mounted on the substrate 5 in an area surrounded by the substrate 5, the frame body 6, the first pedestal 15, and the second pedestal 16 with an adhesive such as epoxy, silicone, or glass epoxy. . The photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b via a conductive wire. The photoelectric conversion element 7 is provided in a space SP surrounded by the substrate 5, the frame body 6, the first pedestal 15, the second pedestal 16, and the light collecting member 8 and hermetically sealed. The light collecting member 8 is joined to the support portion 11 of the frame body 6 via the joining member 13.
 枠体6が金属材料で形成されるため、集光部材8との支持部11にメタライズ層を新たに形成する必要がなく、製造プロセスを削減することができる。更に、枠体6が、外部への放熱機能を備えているため、枠体6を介して光電変換素子7が発する熱を効果的に外部に放散することができる。 Since the frame body 6 is formed of a metal material, it is not necessary to newly form a metallized layer on the support portion 11 with the light collecting member 8, and the manufacturing process can be reduced. Furthermore, since the frame 6 has a function of radiating heat to the outside, the heat generated by the photoelectric conversion element 7 through the frame 6 can be effectively dissipated to the outside.
 <第3実施形態>
 第3実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、集光部材8の形状が変更されたものになっている。なお、第3実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Third Embodiment>
In the photoelectric conversion device according to the third embodiment, the shape of the light collecting member 8 is changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 3rd Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 集光部材8は、枠体6と接合するために集光部材8の側面8bの一部が外方に向かって突出する突出部17を有している。突出部17は、平面透視して、枠体6上に延在している箇所が枠体6の上部と接合されている。言い換えれば、突出部17の下面17bと枠体の上面とが接合されている。 The condensing member 8 has a protruding portion 17 in which a part of the side surface 8b of the condensing member 8 protrudes outward in order to be joined to the frame 6. The protruding portion 17 is joined to the upper portion of the frame body 6 at a portion extending on the frame body 6 as seen in a plan view. In other words, the lower surface 17b of the protrusion 17 and the upper surface of the frame are joined.
 また、突出部17は、集光部材8の側面から外方に向かって突出し、上面17aと枠体6と対向する下面17bを有する板状の部位である。また、突出部17の側面11bから外方へ突出する突出部17の長さは、平面透視して、突出部17と枠体6とが接合のために重なる箇所が有れば良い。突出部17の外形は、図10に示すように、枠体6の外形の形状に合わせて設けられることが好ましい。具体的には、図10に示すように、集光部材8の上部の側面8bの一部が外方に向かって突出する突出部17を有する形状とすることができる。 The projecting portion 17 is a plate-like portion that projects outward from the side surface of the light collecting member 8 and has an upper surface 17 a and a lower surface 17 b that faces the frame body 6. Moreover, the length of the protrusion part 17 which protrudes outward from the side surface 11b of the protrusion part 17 should just have a location where the protrusion part 17 and the frame 6 overlap for joining in planar view. As shown in FIG. 10, the outer shape of the protruding portion 17 is preferably provided in accordance with the outer shape of the frame body 6. Specifically, as shown in FIG. 10, a part of the upper side surface 8b of the light collecting member 8 may have a protruding portion 17 that protrudes outward.
 また、集光部材8の突出部17は、突出部17の枠体6と対向する下面17bに全周にわたって金属層が形成される。なお、金属層は、突出部17の枠体6と対向する下面17bであって、突出部17と枠体6との重なり箇所に相当する位置に形成されていれば良い。また、金属層は、蒸着法やスパッタリング法等の薄膜形成技術によって形成される。金属層は、例えば、チタン、白金、金、クロム、ニッケル、金、銀、銅、或いはそれらの合金等の金属材料からなる。 Further, the protruding portion 17 of the light collecting member 8 is formed with a metal layer over the entire circumference on the lower surface 17b of the protruding portion 17 facing the frame 6. In addition, the metal layer should just be formed in the lower surface 17b which opposes the frame 6 of the protrusion part 17, Comprising: The position corresponded to the overlap part of the protrusion part 17 and the frame body 6. FIG. The metal layer is formed by a thin film forming technique such as a vapor deposition method or a sputtering method. A metal layer consists of metal materials, such as titanium, platinum, gold | metal | money, chromium, nickel, gold | metal | money, silver, copper, or those alloys, for example.
 集光部材8の突出部17の枠体6と対向する下面17bの金属層が、例えば、ロウ材、半田、低融点ガラス又はエポキシ樹脂等からなる接合部材を介して、枠体6の全周にわたって、枠体6の上部で接合される。接合方法としては、例えば、ロウ接合、半田接合又は樹脂接合等の方法である。ロウ材としては、例えば、銀-銅ロウ等である。半田としては、金-錫系、金-ゲルマニウム系、錫-鉛系等である。また、低融点ガラスとは、ガラス転移点が600℃以下のガラスのことをいう。 The metal layer of the lower surface 17b facing the frame 6 of the projecting portion 17 of the light collecting member 8 is, for example, the entire circumference of the frame 6 via a bonding member made of brazing material, solder, low melting point glass, epoxy resin, or the like. The upper part of the frame body 6 is joined. As a joining method, for example, a method such as brazing, solder joining, or resin joining is used. Examples of the brazing material include silver-copper brazing. Examples of solder include gold-tin, gold-germanium, and tin-lead. The low melting point glass means a glass having a glass transition point of 600 ° C. or lower.
 集光部材8は、枠体6の全周にわたって接合されるとともに、光電変換素子7の上方に空間SPを介して設けられる。結果として、光電変換素子7は、基体5、枠体6及び集光部材8で囲まれる空間SPに設けられ、気密封止される。内部の空間SPに設けられることによって、光電変換素子7を気密封止することができるため、耐湿性が向上し、光電変換素子7を長期にわたって信頼性良く作動させることができる。 The condensing member 8 is joined over the entire circumference of the frame body 6 and provided above the photoelectric conversion element 7 via the space SP. As a result, the photoelectric conversion element 7 is provided in a space SP surrounded by the base body 5, the frame body 6, and the light collecting member 8 and hermetically sealed. Since the photoelectric conversion element 7 can be hermetically sealed by being provided in the internal space SP, moisture resistance is improved, and the photoelectric conversion element 7 can be operated with reliability over a long period of time.
 <第3実施形態の変形例1>
 上記実施形態に係る光電変換装置2は、枠体6と対向する突出部17の上面17aと、集光部材8の光電変換素子7と対向する下面とは反対側の上面と、が同一面となるように構成され、突出部17と枠体6が接合されているが、これに限らない。図11に示すように、集光部材8の突出部17より下部の領域が、枠体6で囲まれた領域内に嵌め込まれる構造としてもよい。すなわち、集光部材8の側面8bの一部が外方に向かって突出する突出部17を有し、突出部17から光電変換素子7に向かう集光部材8の突出部17より下部の領域が、枠体6で囲まれた領域内に配置される。なお、図11(B)及び図11(C)には、枠体6と対向する突出部17の下面17bの位置を一点鎖線で示している。
<Modification 1 of 3rd Embodiment>
In the photoelectric conversion device 2 according to the above-described embodiment, the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this. As shown in FIG. 11, the region below the projecting portion 17 of the light collecting member 8 may be configured to be fitted into the region surrounded by the frame body 6. That is, a part of the side surface 8 b of the light collecting member 8 has a protruding portion 17 that protrudes outward, and a region below the protruding portion 17 of the light collecting member 8 that extends from the protruding portion 17 toward the photoelectric conversion element 7. , And is disposed in a region surrounded by the frame body 6. In addition, in FIG. 11 (B) and FIG. 11 (C), the position of the lower surface 17b of the protrusion part 17 which opposes the frame 6 is shown with the dashed-dotted line.
 図11(B)及び図11(C)に示すように、集光部材8は、集光部材8の突出部17より下部の領域が、枠体6で囲まれた領域内に配置される構造とすることにより、光電変換素子7に対する集光部材8の横方向の位置ずれを抑制することができる。また、光電変換素子7から集光部材8までの高さを予め決められた所定の高さとなるように、集光部材8の側面8bに突出部17を設けることで、光電変換素子7から集光部材8までの高さ方向の位置ずれを抑制することができる。結果として、光電変換素子7への照射光の位置ずれを抑制することができ、集光効率を向上することができる。なお、光電変換素子7から集光部材8までの高さは、第2の枠体6の高さまたは集光部材8の側面8bの突出部17が設けられる位置で調整することもできる。 As shown in FIGS. 11B and 11C, the light collecting member 8 has a structure in which a region below the projecting portion 17 of the light collecting member 8 is arranged in a region surrounded by the frame body 6. By doing so, it is possible to suppress the lateral displacement of the light collecting member 8 with respect to the photoelectric conversion element 7. Further, the projecting portion 17 is provided on the side surface 8b of the light condensing member 8 so that the height from the photoelectric conversion element 7 to the light condensing member 8 is a predetermined height, so that the light collecting from the photoelectric conversion element 7 is achieved. The positional deviation in the height direction up to the optical member 8 can be suppressed. As a result, the position shift of the irradiation light to the photoelectric conversion element 7 can be suppressed, and the light collection efficiency can be improved. The height from the photoelectric conversion element 7 to the light condensing member 8 can also be adjusted at the height of the second frame 6 or the position where the protruding portion 17 of the side surface 8b of the light condensing member 8 is provided.
 集光部材8の突出部17より下部の領域の側面8bが、突出部17の高さ位置で、すなわち、図11(B)で示す一点鎖線の突出部17の根元8cの位置で、枠体6の内壁面の一部と接することが好ましい。また、集光部材8の突出部17より下部の領域の側面8bが、突出部17よりも低い位置で、すなわち、図11(C)で示す一点鎖線の位置よりも低い位置で、枠体6の内壁面の一部と接しても良い。 The side surface 8b of the region below the projecting portion 17 of the light collecting member 8 is at the height position of the projecting portion 17, that is, at the position of the root 8c of the projecting portion 17 shown in FIG. 6 is preferably in contact with a part of the inner wall surface. Further, the side surface 8b of the region below the projecting portion 17 of the light condensing member 8 is at a position lower than the projecting portion 17, that is, at a position lower than the position of the dashed line shown in FIG. It may be in contact with a part of the inner wall surface.
 <第3実施形態の変形例2>
 上記実施形態に係る光電変換装置2は、枠体6と対向する突出部17の上面17aと、集光部材8の光電変換素子7と対向する下面とは反対側の上面と、が同一面となるように構成され、突出部17と枠体6が接合されているが、これに限らない。
<Modification 2 of 3rd Embodiment>
In the photoelectric conversion device 2 according to the above-described embodiment, the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
 集光部材8が、図12に示すように、集光部材8の側面8bの一部が外方に向かって突出する突出部17を有し、突出部17から光電変換素子7に向かう集光部材8の突出部17より下部の領域が、枠体6で囲まれた領域内に配置されるとともに、集光部材8のこの下部の領域が凸状となる構造にしてもよい。集光部材8の下部の領域の形状が光電変換素子7に向かって凸状である場合には、光電変換素子7への照射光を光電変換素子7の受光面に効果的に集光することができ、集光効率を向上することができる。 As shown in FIG. 12, the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17. The region below the projecting portion 17 of the member 8 may be disposed within the region surrounded by the frame body 6, and the region below the condensing member 8 may be convex. When the shape of the lower region of the light collecting member 8 is convex toward the photoelectric conversion element 7, the irradiation light to the photoelectric conversion element 7 is effectively condensed on the light receiving surface of the photoelectric conversion element 7. And the light collection efficiency can be improved.
 <第3実施形態の変形例3>
 上記実施形態に係る光電変換装置2は、枠体6と対向する突出部17の上面17aと、集光部材8の光電変換素子7と対向する下面とは反対側の上面と、が同一面となるように構成され、突出部17と枠体6が接合されているが、これに限らない。
<Third Modification of Third Embodiment>
In the photoelectric conversion device 2 according to the above-described embodiment, the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
 集光部材8が、図13に示すように、集光部材8の側面8bの一部が外方に向かって突出する突出部17を有し、突出部17から光電変換素子7に向かう集光部材8の突出部17よりの下部の領域が、枠体6で囲まれた領域内に配置されるとともに、この集光部材8の下部の領域が凹状となる構造にしてもよい。集光部材8の下部の領域の形状を光電変換素子7に向かって凹状とすることにより、光電変換素子7への照射光を平行光とすることができ、光電変換素子7の受光面に効果的に集光することができ、集光効率を向上することができる。 As shown in FIG. 13, the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17. The area below the projecting portion 17 of the member 8 may be disposed within the area surrounded by the frame body 6, and the area below the condensing member 8 may be concave. By making the shape of the lower region of the light condensing member 8 concave toward the photoelectric conversion element 7, the irradiation light to the photoelectric conversion element 7 can be made parallel light, which is effective on the light receiving surface of the photoelectric conversion element 7. Therefore, the light can be condensed and the light collection efficiency can be improved.
 <第3実施形態の変形例4>
 上記実施形態に係る光電変換装置2は、枠体6と対向する突出部17の上面17aと、集光部材8の光電変換素子7と対向する下面とは反対側の上面と、が同一面となるように構成され、突出部17と枠体6が接合されているが、これに限らない。
<Modification 4 of 3rd Embodiment>
In the photoelectric conversion device 2 according to the above-described embodiment, the upper surface 17a of the projecting portion 17 facing the frame body 6 and the upper surface of the condensing member 8 opposite to the lower surface facing the photoelectric conversion element 7 are the same surface. Although it is comprised and the protrusion part 17 and the frame 6 are joined, it is not restricted to this.
 集光部材8が、図14に示すように、集光部材8の側面8bの一部が外方に向かって突出する突出部17を有し、突出部17から光電変換素子7に向かう集光部材8の突出部17より下部の領域が、枠体6で囲まれた領域内に配置されるとともに、枠体6の支持部11が突出部17と対向する枠体6の上部から枠体6の内壁面にかけて段差を有する構造にしてもよい。このような支持部11に集光部材8の突出部17を配置することにより、光電変換素子7に対する集光部材8の高さ方向及び横方向の位置ずれを抑制することができ、集光効率を向上することができる。 As shown in FIG. 14, the condensing member 8 has a protruding portion 17 in which a part of the side surface 8 b of the condensing member 8 protrudes outward, and the condensing toward the photoelectric conversion element 7 from the protruding portion 17. The region below the projecting portion 17 of the member 8 is disposed within the region surrounded by the frame body 6, and the support portion 11 of the frame body 6 faces the projecting portion 17 from the upper portion of the frame body 6. You may make it the structure which has a level | step difference over the inner wall surface. By disposing the protruding portion 17 of the light collecting member 8 on such a support portion 11, it is possible to suppress the positional deviation in the height direction and the horizontal direction of the light collecting member 8 with respect to the photoelectric conversion element 7, and the light collecting efficiency. Can be improved.
 <第4実施形態>
 第4実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、基板5及び枠体6の構成材料が変更されたものになっている。なお、第2実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Fourth embodiment>
In the photoelectric conversion device according to the fourth embodiment, the constituent materials of the substrate 5 and the frame 6 are changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 2nd Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 本実施形態の光電変換装置2に係る基板5は、導電性の優れた材料からなる導電性基板である。基板5は、一主面側に第1主面S1と、第1主面S1の外周に設けられる第2主面S2とを有する。枠体6は、基板5の第2主面S2上に形成され、第1主面S1を取り囲むように位置している。光電変換素子7は、枠体6内の第1主面S1上に形成されている。また、本実施形態の光電変換装置2は、枠体6上に形成され、枠体6の内外にわたって設けられるとともに、光電変換素子7の上面と電気的に接続される導電層18を備えている。本実施形態の光電変換装置2における導電層18は第1実施形態の光電変換装置2における第1の導電パターン9a又は第2の導電パターン9bと同様の機能を有している。 The substrate 5 according to the photoelectric conversion device 2 of the present embodiment is a conductive substrate made of a material having excellent conductivity. The substrate 5 has a first main surface S1 on one main surface side and a second main surface S2 provided on the outer periphery of the first main surface S1. The frame 6 is formed on the second main surface S2 of the substrate 5, and is positioned so as to surround the first main surface S1. The photoelectric conversion element 7 is formed on the first main surface S1 in the frame body 6. In addition, the photoelectric conversion device 2 of the present embodiment includes a conductive layer 18 that is formed on the frame body 6, provided over the inside and outside of the frame body 6, and electrically connected to the upper surface of the photoelectric conversion element 7. . The conductive layer 18 in the photoelectric conversion device 2 of the present embodiment has the same function as the first conductive pattern 9a or the second conductive pattern 9b in the photoelectric conversion device 2 of the first embodiment.
 基板5には、段差が形成されている。その段差の高さ位置が高い方の面に、第1主面S1が形成されている。また、段差の高さ位置が低い方の面に、第2主面S2が形成されている。基板5は、導電性の優れた材料からなり、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金を用いることができる。また、基板5は、熱電導性の優れた材料からなることが好ましく、本実施形態に係る基板5の熱伝導率は、例えば30W/(m・K)以上500W/(m・K)以下に設定されている。また、基板5の熱膨張率は、例えば5×10-6/℃以上25×10-6/℃以下に設定されている。 A step is formed on the substrate 5. A first main surface S1 is formed on the surface having the higher step height. Further, the second main surface S2 is formed on the surface having the lower step height. The substrate 5 is made of a material having excellent conductivity. For example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof can be used. The substrate 5 is preferably made of a material having excellent thermal conductivity, and the thermal conductivity of the substrate 5 according to this embodiment is, for example, 30 W / (m · K) or more and 500 W / (m · K) or less. Is set. The coefficient of thermal expansion of the substrate 5 is set to, for example, 5 × 10 −6 / ° C. or more and 25 × 10 −6 / ° C. or less.
 また、光電変換素子7は、第1主面S1上に設けられ、基板5と接続される。 Further, the photoelectric conversion element 7 is provided on the first main surface S1 and connected to the substrate 5.
 ここで、基板5は、正極として機能する。また、導電層18は、負極として機能する。そして、光電変換素子7は、基板5及び導電層18と電気的に接続されており、基板5又は導電層18を介して外部に電気を取り出すことができる。 Here, the substrate 5 functions as a positive electrode. The conductive layer 18 functions as a negative electrode. The photoelectric conversion element 7 is electrically connected to the substrate 5 and the conductive layer 18, and electricity can be taken out through the substrate 5 or the conductive layer 18.
 基板5は、第1主面S1の高さ位置が第2主面S2の高さ位置よりも高く設定されている。そのため、基板5と導電層18との間に流れる電流が、第2主面S2よりも高さ位置が高い第1主面S1を介して流れる。そして、光電変換素子7の下面と第1主面S1との間で電流が流れるため、電流の経路が基板5と導電層18との間で短く設定される。その結果、光電変換素子7で発電した電力のロスを低減した上で、電力を外部に取り出すことができる。 In the substrate 5, the height position of the first main surface S1 is set higher than the height position of the second main surface S2. Therefore, the current flowing between the substrate 5 and the conductive layer 18 flows through the first main surface S1 whose height position is higher than the second main surface S2. Since a current flows between the lower surface of the photoelectric conversion element 7 and the first main surface S <b> 1, the current path is set short between the substrate 5 and the conductive layer 18. As a result, it is possible to take out the power to the outside after reducing the loss of the power generated by the photoelectric conversion element 7.
 枠体6は、第1主面S1を取り囲むように、基板5の第2主面S2上に形成される。そして、導電層18は、枠体6の内外にまで延在されている。なお、導電層18は、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。 The frame body 6 is formed on the second main surface S2 of the substrate 5 so as to surround the first main surface S1. The conductive layer 18 extends to the inside and outside of the frame body 6. The conductive layer 18 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
 枠体6は、絶縁性の材料からなり、例えば、アルミナ又はムライト等のセラミック材料、或いはガラスセラミック材料等から成る。または、これらの材料のうち複数の材料を混合した複合系材料から成る。なお、枠体6の熱膨張率は、例えば4×10-6/℃以上10×10-6/℃以下に設定されている。なお、枠体6は、基板5上に形成され、光電変換素子7を取り囲む第1枠体6aと、第1枠体6a上に形成され、集光部材8と接続される第2枠体6bから構成されている。 The frame 6 is made of an insulating material, for example, a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials. Note that the thermal expansion coefficient of the frame 6 is set to, for example, 4 × 10 −6 / ° C. or more and 10 × 10 −6 / ° C. or less. The frame 6 is formed on the substrate 5 and surrounds the photoelectric conversion element 7. The second frame 6 b is formed on the first frame 6 a and connected to the light collecting member 8. It is composed of
 第1主面S1と第2主面S2の間に位置する基板5の側面と、第1枠体6aとの間には、空隙A1が設けられている。枠体6の下面の一部と基板5の第2主面S2とが接続される。なお、空隙A1の長さは、例えば0.1mm以上3mm以下に設定されている。 A gap A1 is provided between the side surface of the substrate 5 located between the first main surface S1 and the second main surface S2 and the first frame body 6a. A part of the lower surface of the frame 6 and the second main surface S2 of the substrate 5 are connected. Note that the length of the gap A1 is set to, for example, 0.1 mm or more and 3 mm or less.
 基板5と枠体6とは、熱膨張率が異なり、基板5の熱膨張率が枠体6の熱膨張率よりも大きいため、例えば光電変換素子7の発する熱によって、基板5が熱膨張することがある。仮に、第1主面S1と第2主面S2の間に位置する基板5の側面と、枠体6の内壁面とが接しているとすると、基板5の熱膨張に起因して、基板5が枠体6の内壁面に応力を加え、枠体6にクラックが発生することがある。本実施形態によれば、第1主面S1と第2主面S2の間に位置する基板5の側面と、枠体6との間に空隙A1を設けることで、基板5が熱膨張を起こしても枠体6と当接しにくいため、枠体6にクラックが発生するのを抑制することができる。 The substrate 5 and the frame body 6 are different in thermal expansion coefficient, and the thermal expansion coefficient of the substrate 5 is larger than the thermal expansion coefficient of the frame body 6. For example, the substrate 5 is thermally expanded by heat generated by the photoelectric conversion element 7. Sometimes. If the side surface of the substrate 5 located between the first main surface S1 and the second main surface S2 and the inner wall surface of the frame 6 are in contact with each other, the substrate 5 is caused by thermal expansion of the substrate 5. However, stress may be applied to the inner wall surface of the frame body 6 to cause cracks in the frame body 6. According to the present embodiment, by providing the gap A1 between the side surface of the substrate 5 located between the first main surface S1 and the second main surface S2 and the frame body 6, the substrate 5 undergoes thermal expansion. However, since it is difficult to come into contact with the frame body 6, it is possible to suppress the occurrence of cracks in the frame body 6.
 また、枠体6の上部には、集光部材8を支持する支持部11が形成されている。支持部11は、枠体6の上面から枠体6の内壁面にかけて傾斜している。 Further, a support portion 11 for supporting the light collecting member 8 is formed on the upper portion of the frame body 6. The support portion 11 is inclined from the upper surface of the frame body 6 to the inner wall surface of the frame body 6.
 集光部材8は、空間SPを覆うように、枠体6の支持部11に接続される。そして、空間SP内に位置する光電変換素子7は、基板5、枠体6及び集光部材8にて囲まれることで気密封止される。また、集光部材8は、枠体6の支持部11に対して、例えば半田、樹脂又はガラスを介して固着される。 The condensing member 8 is connected to the support part 11 of the frame 6 so as to cover the space SP. The photoelectric conversion element 7 positioned in the space SP is hermetically sealed by being surrounded by the substrate 5, the frame body 6, and the light collecting member 8. Moreover, the condensing member 8 is fixed to the support portion 11 of the frame 6 via, for example, solder, resin, or glass.
 集光部材8は、受光部材4を介して透過した光を集光し、集光した光を光電変換素子7に集中させる機能を備えている。なお、集光部材8は、例えばガラス、プラスチック又は透光性樹脂等からなる。 The condensing member 8 has a function of condensing the light transmitted through the light receiving member 4 and concentrating the condensed light on the photoelectric conversion element 7. The light collecting member 8 is made of, for example, glass, plastic, or translucent resin.
 また、図16に示すように、枠体6の外部に位置する導電層18上には、外部と電気的に接続する出力端子10が形成されている。出力端子10は、光電変換素子7で発電した電力を外部に取り出すためのものである。なお、出力端子10は、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。 Further, as shown in FIG. 16, an output terminal 10 electrically connected to the outside is formed on the conductive layer 18 located outside the frame body 6. The output terminal 10 is for taking out the electric power generated by the photoelectric conversion element 7 to the outside. The output terminal 10 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof.
 <第5実施形態>
 第5実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、平面透視して枠体6で囲まれる領域内であって、基板5の他主面に当接して設けられる熱伝導性基板19をさらに備えた構成となっている。なお、第5実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Fifth Embodiment>
In the photoelectric conversion device according to the fifth embodiment, as compared with the photoelectric conversion device 2 according to the first embodiment, the photoelectric conversion device is in a region surrounded by the frame body 6 as seen through a plane, and is in contact with the other main surface of the substrate 5. The configuration further includes a thermally conductive substrate 19 provided in contact therewith. In addition, about the photoelectric conversion apparatus which concerns on 5th Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 本実施形態の光電変換装置2は、図17に示すように、平面透視して、枠体6で囲まれる領域内であって、基板5の他主面に当接して設けられる熱伝導性基板19を備えている。 As shown in FIG. 17, the photoelectric conversion device 2 according to the present embodiment is a heat conductive substrate that is provided in contact with the other main surface of the substrate 5 within a region surrounded by the frame body 6 as seen in a plan view. 19 is provided.
 基板5、枠体6及び第1の台座15は、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミック等のセラミックス、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料或いはこれらの金属材料を含有する合金、ガラスエポキシ、アクリル又はエポキシ等の樹脂材料からなる。また、基板5の熱膨張係数は、例えば、7(ppm/℃)以上9(ppm/℃)以下に設定されている。 The substrate 5, the frame body 6 and the first pedestal 15 are, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body or It consists of ceramic materials such as glass ceramic, metal materials such as copper, iron, tungsten, molybdenum, nickel or cobalt, or alloys containing these metal materials, resin materials such as glass epoxy, acrylic or epoxy. The thermal expansion coefficient of the substrate 5 is set to, for example, 7 (ppm / ° C.) or more and 9 (ppm / ° C.) or less.
 また、基板5の一主面には、第1の導電パターン9aが形成される。また、基板5の他主面には、熱伝導性基板19が当接される領域にメタライズ層が形成される。 In addition, a first conductive pattern 9 a is formed on one main surface of the substrate 5. Further, a metallized layer is formed on the other main surface of the substrate 5 in a region where the thermally conductive substrate 19 is in contact.
 第1の台座15上には、第2の導電パターン9bが形成される。第1の導電パターン9a及び第2の導電パターン9bは、例えば、タングステン、モリブデン又はマンガン等の金属材料からなり、例えば、スクリーン印刷法によるメタライズ形成技術を用いて形成される。 On the first pedestal 15, the second conductive pattern 9b is formed. The first conductive pattern 9a and the second conductive pattern 9b are made of, for example, a metal material such as tungsten, molybdenum, or manganese, and are formed using, for example, a metallization forming technique by a screen printing method.
 また、枠体6は、集光部材8を支持する機能を備える。すなわち、枠体6は、図4に示すように、枠体6の上面から枠体6の内周面の全周にわたって、枠体6の内壁側が低くなる方向に傾斜している傾斜面を有する支持部11を有している。枠体6の支持部11の傾斜の形状は、集光部材8の傾斜の形状に合わせて形成される。尚、支持部11の傾斜の形状と集光部材8の傾斜の形状、すなわち、断面視したときの支持部11の傾斜面の傾斜角と集光部材8の側面の傾斜角の差が、20°以下の範囲内であれば好ましい。 Further, the frame body 6 has a function of supporting the light collecting member 8. That is, as shown in FIG. 4, the frame body 6 has an inclined surface that is inclined in a direction in which the inner wall side of the frame body 6 is lowered from the upper surface of the frame body 6 to the entire inner peripheral surface of the frame body 6. A support portion 11 is provided. The inclined shape of the support portion 11 of the frame 6 is formed in accordance with the inclined shape of the light collecting member 8. The difference between the inclination shape of the support portion 11 and the inclination shape of the light collecting member 8, that is, the inclination angle of the inclined surface of the support portion 11 and the inclination angle of the side surface of the light collection member 8 in a cross-sectional view is 20 It is preferable if it is within the range of 0 ° or less.
 集光部材8の側面が枠体6の支持部11の傾斜面で接合されるため、両者が滑らかに接合され、集光部材8に傷等が付きにくく、両者を良好に接合することができる。その結果、傷等によって光電変換素子7に導かれる光の進行方向の変化を抑制することができ、集光性を向上することができる。また、枠体6の支持部11は、枠体6の上面から内壁面にかけて切り欠かれた段差であっても良い。 Since the side surface of the light collecting member 8 is joined by the inclined surface of the support portion 11 of the frame body 6, both are smoothly joined, the light collecting member 8 is hardly damaged, and both can be joined well. . As a result, a change in the traveling direction of light guided to the photoelectric conversion element 7 due to scratches or the like can be suppressed, and the light condensing property can be improved. Further, the support portion 11 of the frame body 6 may be a step that is cut out from the upper surface of the frame body 6 to the inner wall surface.
 熱伝導性基板19は、平面透視して、枠体6で囲まれる領域内、すなわち、図18に示すように、一点鎖線で囲まれる領域内で、基板5の他主面に当接して設けられる。なお、熱伝導性基板19は、平面透視して、枠体6で囲まれる領域内のみで、基板5の他主面に当接されることが好ましい。熱伝導性基板19は、熱伝導性の優れた材料からなり、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。熱伝導性基板19は、基板5の他主面で、枠体6で囲まれる領域内に形成されたメタライズ層に、ロウ材を介して、基板5と接合される。また、熱導電性基板12の熱膨張係数は、例えば、7(ppm/℃)以上23(ppm/℃)以下に設定されている。 The heat conductive substrate 19 is provided in contact with the other main surface of the substrate 5 in a region surrounded by the frame 6 in a plan view, that is, in a region surrounded by a one-dot chain line as shown in FIG. It is done. Note that the heat conductive substrate 19 is preferably brought into contact with the other main surface of the substrate 5 only in a region surrounded by the frame body 6 in a plan view. The heat conductive substrate 19 is made of a material having excellent heat conductivity, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof. The thermally conductive substrate 19 is bonded to the substrate 5 via a brazing material on a metallized layer formed in a region surrounded by the frame body 6 on the other main surface of the substrate 5. The thermal expansion coefficient of the thermally conductive substrate 12 is set to, for example, 7 (ppm / ° C.) or more and 23 (ppm / ° C.) or less.
 熱伝導性基板19の熱伝導率は、例えば、100W/(m・K)以上500W/(m・K)以下に設定されている。また、熱伝導性基板19は、図18に示すように、平面透視した場合に、熱伝導性基板19と枠体6との距離Lは、集光部材8への熱伝導の抑制という点で、L1は、0.1mm以上3.0mm以下、L2は、0.1mm以上3.0mm以下、L3は、0.1mm以上3.0mm以下、L4は、0.1mm以上3.0mm以下にそれぞれ設定されることが好ましい。また、熱伝導性基板19の厚みは、基板5と熱伝導性基板19との熱膨張係数の差による接合応力の緩和という点で、0.1mm以上1.0mm以下に設定されることが好ましい。 The thermal conductivity of the heat conductive substrate 19 is set to, for example, 100 W / (m · K) or more and 500 W / (m · K) or less. In addition, as shown in FIG. 18, the distance L between the heat conductive substrate 19 and the frame body 6 is that heat conduction to the light collecting member 8 is suppressed when the heat conductive substrate 19 is seen through a plane. , L1 is 0.1 mm to 3.0 mm, L2 is 0.1 mm to 3.0 mm, L3 is 0.1 mm to 3.0 mm, and L4 is 0.1 mm to 3.0 mm. It is preferably set. Further, the thickness of the heat conductive substrate 19 is preferably set to 0.1 mm or more and 1.0 mm or less in terms of relaxation of bonding stress due to a difference in thermal expansion coefficient between the substrate 5 and the heat conductive substrate 19. .
 <第6実施形態>
 第6実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、枠体の形状が変更となっている。なお、第6実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
<Sixth Embodiment>
In the photoelectric conversion device according to the sixth embodiment, the shape of the frame is changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 6th Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 光電変換装置2は、図19から図21に示すように、基板5と、基板5上に配置される基台20と、基板5上に設けられ、平面視したときに基台20と間を空けて基台20を取り囲む第1枠体6aと、を含んでいる。さらに、光電変換装置2は、基台20上に設けられ、基台20上から第1枠体6a外まで延在される第1導電板21aと、基台20上に第1導電板21aと間を空けて設けられ、基台20上から第1枠体6a外まで延在される第2導電板21bと、を含んでいる。さらにまた、光電変換装置2は、基台20上に設けられ、第1導電板21a上に実装され、第1導電板21a及び第2導電板21bと電気的に接続される素子としての光電変換素子7と、第1枠体6a上であって第1導電板21a及び第2導電板21b上を横切るように設けられ、光電変換素子7を取り囲む第2枠体6bと、第2枠体6bに接合されるとともに、第1枠体6a及び第2枠体6bで囲まれる空間SPを覆う集光部材8と、を備えている。 As shown in FIGS. 19 to 21, the photoelectric conversion device 2 is provided on the substrate 5, the base 20 disposed on the substrate 5, and provided on the substrate 5. And a first frame body 6a surrounding the base 20 with a space. Furthermore, the photoelectric conversion device 2 is provided on the base 20, a first conductive plate 21 a extending from the base 20 to the outside of the first frame 6 a, and a first conductive plate 21 a on the base 20 And a second conductive plate 21b which is provided with a space therebetween and extends from the base 20 to the outside of the first frame 6a. Furthermore, the photoelectric conversion device 2 is provided on the base 20, mounted on the first conductive plate 21a, and photoelectric conversion as an element electrically connected to the first conductive plate 21a and the second conductive plate 21b. The second frame body 6b and the second frame body 6b which are provided on the element 7 and on the first frame body 6a so as to cross over the first conductive plate 21a and the second conductive plate 21b and surround the photoelectric conversion element 7. And a light collecting member 8 that covers the space SP surrounded by the first frame body 6a and the second frame body 6b.
 本実施形態の光電変換装置2における基板5は、平板であって、基台20を実装するためのものである。基板5は、例えばアルミ二ウム、銅又はタングステン等の放熱性に優れた材料のいずれかを含む。なお、基板5の熱伝導率は、例えば150W/m・K以上400W/m・K以下に設定されている。 The substrate 5 in the photoelectric conversion device 2 of the present embodiment is a flat plate for mounting the base 20. The board | substrate 5 contains either of the materials excellent in heat dissipation, such as aluminum, copper, or tungsten, for example. The thermal conductivity of the substrate 5 is set to, for example, 150 W / m · K or more and 400 W / m · K or less.
 基台20は、基板5上に、例えば半田、樹脂又はガラスを介して固着される。基台20は、後述する第1導電板21a、第2導電板21b及び光電変換素子7を設けるためのものである。受光部材4が受光した光が、集光部材8を介して光電変換素子7を照らすため、基台20が高温になることがある。そこで、基台20を放熱性に優れた材料とすることで、基台20から基板5に向かって熱を外部に放出することができる。 The base 20 is fixed on the substrate 5 via, for example, solder, resin, or glass. The base 20 is for providing a first conductive plate 21a, a second conductive plate 21b and a photoelectric conversion element 7 which will be described later. Since the light received by the light receiving member 4 illuminates the photoelectric conversion element 7 through the light collecting member 8, the base 20 may become high temperature. Therefore, heat can be released from the base 20 toward the substrate 5 by using the base 20 as a material excellent in heat dissipation.
 基台20は、本実施形態では二層からなり、上層としての基台上部20aと、下層としての基台下部20bとからなる。そして、基台上部20aは、第1導電板21a及び第2導電板21bと絶縁される材料からなり、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミック等のセラミックスから成る。なお、基台上部20aの熱伝導率は、例えば16W/m・K以上200W/m・K以下に設定されている。 The base 20 is composed of two layers in this embodiment, and includes a base upper part 20a as an upper layer and a base lower part 20b as a lower layer. The base upper portion 20a is made of a material that is insulated from the first conductive plate 21a and the second conductive plate 21b. For example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, a nitrided body It consists of ceramics, such as an aluminum sintered body, a silicon nitride sintered body, or a glass ceramic. The thermal conductivity of the base upper portion 20a is set to, for example, 16 W / m · K or more and 200 W / m · K or less.
 また、基台下部20bは、基台上部20aから伝わる熱を、効率良く基板5に伝えるものである。基台上部20aと基台下部20bとは、例えば半田、樹脂又はガラスを介して固着される。基台下部20bは、例えば、銅、タングステン又はモリブデン等の熱伝導性の優れた材料のいずれかを含む。なお、基台下部20bの熱伝導率は、例えば150W/m・K以上400W/m・K以下に設定されている。 Further, the base lower part 20b efficiently transfers the heat transferred from the base upper part 20a to the substrate 5. The base upper part 20a and the base lower part 20b are fixed via, for example, solder, resin or glass. The base lower part 20b includes any one of materials having excellent thermal conductivity, such as copper, tungsten, or molybdenum. The thermal conductivity of the base lower part 20b is set to, for example, 150 W / m · K or more and 400 W / m · K or less.
 第1導電板21a及び第2導電板21bは、基台20の基台上部20a上に、例えば半田、樹脂又はガラス等を介して固着される。本実施形態の光電変換装置2における導電層18は第1実施形態の光電変換装置2における第1の導電パターン9a又は第2の導電パターン9bと同様の機能を有している。そのため、第1導電板21a及び第2導電板21bは、後述するように光電変換素子7にて起電した電力を流すことが可能である。第1導電板21a及び第2導電板21bは、矩形状の板体であって、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。そして、第1導電板21a及び第2導電板21bは、長手方向の長さが、例えば2mm以上150mm以下であって、短手方向の長さが、例えば0.5mm以上10.0mm以下であって、厚みが例えば0.1mm以上2.0mm以下に設定されている。 The first conductive plate 21a and the second conductive plate 21b are fixed on the base upper portion 20a of the base 20 via, for example, solder, resin, glass or the like. The conductive layer 18 in the photoelectric conversion device 2 of the present embodiment has the same function as the first conductive pattern 9a or the second conductive pattern 9b in the photoelectric conversion device 2 of the first embodiment. Therefore, the first conductive plate 21a and the second conductive plate 21b can pass the electric power generated by the photoelectric conversion element 7 as described later. The first conductive plate 21a and the second conductive plate 21b are rectangular plates, and are made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof. . The first conductive plate 21a and the second conductive plate 21b have a length in the longitudinal direction of, for example, 2 mm or more and 150 mm or less, and a length in the lateral direction of, for example, 0.5 mm or more and 10.0 mm or less. For example, the thickness is set to 0.1 mm or more and 2.0 mm or less.
 第1導電板21aは、基台20上に設けられるとともに、その上面に光電変換素子7が実装される。そして、第1導電板21aは、基台20上から第1枠体6a外にまで延在される。 The first conductive plate 21a is provided on the base 20, and the photoelectric conversion element 7 is mounted on the upper surface thereof. The first conductive plate 21a extends from the base 20 to the outside of the first frame 6a.
 第2導電板21bは、第1導電板21aと間を空けて、基台20上に併設するとともに、第1枠体6a外にまで延在される。なお、第1導電板21aと第2導電板21bは、一方向に沿って設けられている。 The second conductive plate 21b is spaced apart from the first conductive plate 21a and is provided on the base 20 and extends to the outside of the first frame 6a. The first conductive plate 21a and the second conductive plate 21b are provided along one direction.
 <第7実施形態>
 第7実施形態に係る光電変換装置では、第1実施形態に係る光電変換装置2と比較して、基板の形状が変更となっている。なお、第7実施形態に係る光電変換装置のうち、第1実施形態に係る光電変換装置2と同様な部分については、同一の符号を付して適宜説明を省略する。
本実施形態の光電変換装置2に係る基板5は、絶縁性の優れた材料からなる絶縁性基板である。基板5は、一主面側に高さ位置が異なる第1主面S1及び第2主面S2を有する。枠体6は、基板5上に形成され、第1主面S1及び第2主面の両主面を跨って両主面の一部を取り囲むように位置している。光電変換素子7は、枠体6内の第1主面S1上に形成される。また、本実施形態の光電変換装置2は、第1主面S1上に形成され、光電変換素子の下面と電気的に接続される第1の導電パターン9aと、第2主面上に形成され、光電変換素子7の上面と電気的に接続される第2の導電パターン9bとを備えている。
<Seventh embodiment>
In the photoelectric conversion device according to the seventh embodiment, the shape of the substrate is changed as compared with the photoelectric conversion device 2 according to the first embodiment. In addition, about the photoelectric conversion apparatus which concerns on 7th Embodiment, about the part similar to the photoelectric conversion apparatus 2 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
The substrate 5 according to the photoelectric conversion device 2 of the present embodiment is an insulating substrate made of a material having excellent insulating properties. The substrate 5 has a first main surface S1 and a second main surface S2 having different height positions on one main surface side. The frame 6 is formed on the substrate 5 and is positioned so as to surround a part of both main surfaces across both the first main surface S1 and the second main surface. The photoelectric conversion element 7 is formed on the first main surface S1 in the frame body 6. In addition, the photoelectric conversion device 2 of the present embodiment is formed on the first main surface S1, and is formed on the second main surface, the first conductive pattern 9a electrically connected to the lower surface of the photoelectric conversion element. And a second conductive pattern 9b electrically connected to the upper surface of the photoelectric conversion element 7.
 基板5は、段差が形成されている。その段差の高さ位置が低い方の面に、第1主面S1が形成されている。また、段差の高さ位置が高い方の面に、第2主面S2が形成されている。基板5は、絶縁性の基板であって、アルミナ又はムライト等のセラミック材料、或いはガラスセラミック材料等から成る。または、これらの材料のうち複数の材料を混合した複合系材料から成る。なお、枠体6内に位置する第1主面S1の端部と、枠体6内に位置する第2主面S2の端部とが、平面視して重なり合うように設計されている。ここで、第1主面S1の端部と第2主面S2の端部が重なり合うとは、基板5に設けられている段差5を断面視したときに、第2主面S2と段差の側面とのなす角度が、85度以上95度以下である状態をいう。 The substrate 5 has a step. A first main surface S1 is formed on the surface having the lower step height. In addition, the second main surface S2 is formed on the surface having the higher step height. The substrate 5 is an insulating substrate and is made of a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials. The end of the first main surface S1 located in the frame 6 and the end of the second main surface S2 located in the frame 6 are designed to overlap in plan view. Here, the end of the first main surface S1 and the end of the second main surface S2 overlap each other when the step 5 provided on the substrate 5 is viewed in cross section. Is an angle between 85 degrees and 95 degrees.
 基板5の第1主面S1上に形成される第1の導電パターン9aは、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。また、基板5の第2主面S2上に形成される第2の導電パターン9bは、第1の導電パターン9aと同様に、例えば、銅、銀、金、鉄、アルミニウム、ニッケル、コバルト又はクロム等の金属材料、或いはそれらの合金からなる。 The first conductive pattern 9a formed on the first main surface S1 of the substrate 5 is made of, for example, a metal material such as copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, or an alloy thereof. In addition, the second conductive pattern 9b formed on the second main surface S2 of the substrate 5 is, for example, copper, silver, gold, iron, aluminum, nickel, cobalt, or chromium, similarly to the first conductive pattern 9a. It consists of metal materials, such as these, or those alloys.
 また、光電変換素子7は、第1主面S1上に設けられ、第1の導電パターン9aと接続される。 Further, the photoelectric conversion element 7 is provided on the first main surface S1 and connected to the first conductive pattern 9a.
 光電変換素子7の第1主面S1と対向する下面には、光電変換素子7の下面電極パターンが形成されている。かかる下面電極パターンが、例えば半田を介して第1の導電パターン9aと電気的に接続されている。 The lower surface electrode pattern of the photoelectric conversion element 7 is formed on the lower surface of the photoelectric conversion element 7 facing the first main surface S1. The lower electrode pattern is electrically connected to the first conductive pattern 9a via, for example, solder.
 また、光電変換素子7の上面には上面電極パターンが形成されている。かかる上面電極パターンは、例えばワイヤを介して第2主面S2上に形成される第2の導電パターン9bと電気的に接続される。 Further, an upper surface electrode pattern is formed on the upper surface of the photoelectric conversion element 7. The upper surface electrode pattern is electrically connected to the second conductive pattern 9b formed on the second main surface S2 through, for example, a wire.
 ここで、第1の導電パターン9aは、正極として機能する。また、第2の導電パターン9bは、負極として機能する。そして、光電変換素子7は、第1の導電パターン9aと第2の導電パターン9bと電気的に接続されており、第1の導電パターン9a又は第2の導電パターン9bを介して外部に電気を取り出すことができる。 Here, the first conductive pattern 9a functions as a positive electrode. The second conductive pattern 9b functions as a negative electrode. The photoelectric conversion element 7 is electrically connected to the first conductive pattern 9a and the second conductive pattern 9b, and electricity is supplied to the outside through the first conductive pattern 9a or the second conductive pattern 9b. It can be taken out.
 枠体6は、第1主面S1及び第2主面S2の両主面の一部を取り囲むように、基板5上に形成される。そして、第1の導電パターン9aは、枠体6の内部から枠体6の外部に向けて第1主面S1上に沿って延在されている。また、第2の導電パターン9bは、枠体6の内部から枠体6の外部に向けて第2主面S2上に沿って延在されている。 The frame body 6 is formed on the substrate 5 so as to surround a part of both main surfaces of the first main surface S1 and the second main surface S2. The first conductive pattern 9 a extends along the first main surface S <b> 1 from the inside of the frame body 6 toward the outside of the frame body 6. The second conductive pattern 9b extends along the second main surface S2 from the inside of the frame body 6 toward the outside of the frame body 6.
 枠体6は、絶縁性の基板であって、例えば、アルミナ又はムライト等のセラミック材料、或いはガラスセラミック材料等から成る。または、これらの材料のうち複数の材料を混合した複合系材料から成る。 The frame body 6 is an insulating substrate and is made of, for example, a ceramic material such as alumina or mullite, or a glass ceramic material. Or it consists of a composite material which mixed several materials among these materials.
 また、枠体6の上部には、集光部材8を支持する支持部11が形成されている。支持部11は、枠体6の上面から枠体6の内壁面にかけて傾斜している。 Further, a support portion 11 for supporting the light collecting member 8 is formed on the upper portion of the frame body 6. The support portion 11 is inclined from the upper surface of the frame body 6 to the inner wall surface of the frame body 6.
 集光部材8は、空間SPを覆うように、枠体6の支持部11に接続される。そして、空間SP内に位置する光電変換素子7は、基板5、枠体6及び集光部材8にて囲まれることで気密封止される。また、集光部材8は、枠体6の支持部11に対して、例えば半田、樹脂又はガラスを介して固着される。 The condensing member 8 is connected to the support part 11 of the frame 6 so as to cover the space SP. The photoelectric conversion element 7 positioned in the space SP is hermetically sealed by being surrounded by the substrate 5, the frame body 6, and the light collecting member 8. Moreover, the condensing member 8 is fixed to the support portion 11 of the frame 6 via, for example, solder, resin, or glass.
 本実施形態によれば、基板5に段差を設け、光電変換素子7と接続される第1の導電パターン9a及び第2の導電パターン9bの高さ位置を変えることで、第1の導電パターン9aと第2の導電パターン9bが直接接続されることがなく、光電変換素子7を実装する第1の導電パターン9a上の面積を小さくすることができる。そして、枠体6で囲まれる領域を小さくすることができ、光電変換装置2を小型化することができる。 According to the present embodiment, the first conductive pattern 9a is provided by providing a step on the substrate 5 and changing the height positions of the first conductive pattern 9a and the second conductive pattern 9b connected to the photoelectric conversion element 7. And the second conductive pattern 9b are not directly connected to each other, and the area on the first conductive pattern 9a on which the photoelectric conversion element 7 is mounted can be reduced. And the area | region enclosed by the frame 6 can be made small, and the photoelectric conversion apparatus 2 can be reduced in size.
 また、第2の導電パターン9bが形成される基板5の第2主面S2の高さ位置を、光電変換素子7の上面の高さ位置よりも高い位置に設計することで、第1の導電パターン9aと第2の導電パターン9bの距離よりも、第2の導電パターン9bと光電変換素子7の上面との距離を短くすることができる。そして、絶縁破壊による放電現象が、第2の導電パターン9bから第1の導電パターン9aに向けて起きようとしても、第2の導電パターン9bと光電変換素子7との距離の方が短いため、第2の導電パターン9bから光電変換素子7に向けて電気が流れやすく、放電現象が枠体6で囲まれる空間SP内で起きるのを抑制することができる。 In addition, the first conductive layer 9 is designed such that the height position of the second main surface S2 of the substrate 5 on which the second conductive pattern 9b is formed is higher than the height position of the upper surface of the photoelectric conversion element 7. The distance between the second conductive pattern 9b and the upper surface of the photoelectric conversion element 7 can be made shorter than the distance between the pattern 9a and the second conductive pattern 9b. And even if the discharge phenomenon due to dielectric breakdown is about to occur from the second conductive pattern 9b toward the first conductive pattern 9a, the distance between the second conductive pattern 9b and the photoelectric conversion element 7 is shorter. Electricity easily flows from the second conductive pattern 9 b toward the photoelectric conversion element 7, and it is possible to suppress a discharge phenomenon from occurring in the space SP surrounded by the frame body 6.
1 光電変換モジュール
2 光電変換装置
3 受光部材
4 外部基板
5 基板
6 枠体
7 光電変換素子
8 集光部材
9a 第1の導電パターン
9b 第2の導電パターン
10a 第1の出力端子
10b 第2の出力端子
11 支持部
12 メタライズ層
13 接合部材
14 金属薄膜
15 第1の台座
16 第2の台座
17 突出部
18 導電層
19 熱伝導性基板
20 基台
21a 第1導電板
21b 第2導電板
SP 空間
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion module 2 Photoelectric conversion apparatus 3 Light receiving member 4 External substrate 5 Substrate 6 Frame 7 Photoelectric conversion element 8 Condensing member 9a 1st conductive pattern 9b 2nd conductive pattern 10a 1st output terminal 10b 2nd output Terminal 11 Supporting part 12 Metallized layer 13 Joining member 14 Metal thin film 15 First pedestal 16 Second pedestal 17 Protruding part 18 Conductive layer 19 Thermally conductive substrate 20 Base 21a First conductive plate 21b Second conductive plate SP Space

Claims (10)

  1.  基板と、 
     前記基板に設けられた光電変換素子と、 
     前記基板上の前記光電変換素子を取り囲むように設けられた枠体と、 
     前記枠体の全周にわたって接合されるとともに、前記光電変換素子の上方に空間を介して設けられた集光部材と、を備え、 
     前記枠体で囲まれる領域内に前記集光部材の下面全面が位置していることを特徴とする光電変換装置。 
    A substrate,
    A photoelectric conversion element provided on the substrate;
    A frame provided so as to surround the photoelectric conversion element on the substrate;
    A light condensing member that is bonded over the entire circumference of the frame body and provided above the photoelectric conversion element via a space;
    The photoelectric conversion device according to claim 1, wherein the entire lower surface of the light condensing member is located in a region surrounded by the frame.
  2.  請求項1に記載の光電変換装置であって、
     前記集光部材は上部の幅よりも下部の幅が狭く、前記集光部材の側面が前記枠体と接合されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The condensing member has a lower width narrower than an upper width, and a side surface of the condensing member is joined to the frame.
  3.  請求項2に記載の光電変換装置であって、
     前記枠体は、前記集光部材の側面と平行となるように前記枠体の内壁側が低くなる方向に傾斜している傾斜面を有していることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 2,
    The photoelectric conversion device according to claim 1, wherein the frame includes an inclined surface that is inclined in a direction in which an inner wall side of the frame is lowered so as to be parallel to a side surface of the light collecting member.
  4.  請求項1に記載の光電変換装置であって、
     前記枠体は、前記枠体の上面から内壁面にかけて切り欠かれた段差を有していることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The said frame body has the level | step difference notched from the upper surface of the said frame body to the inner wall surface, The photoelectric conversion apparatus characterized by the above-mentioned.
  5.  請求項1に記載の光電変換装置であって、
     前記集光部材は、側方に向かって突出しているとともに、前記枠体に接合されている突出部を有していることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The said light condensing member protrudes toward the side, and has the protrusion part joined to the said frame, The photoelectric conversion apparatus characterized by the above-mentioned.
  6.  請求項5に記載の光電変換装置であって、
     前記突出部の下面と前記枠体の上面とが接合されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 5,
    The photoelectric conversion device, wherein a lower surface of the protruding portion and an upper surface of the frame body are joined.
  7.  請求項5に記載の光電変換素子であって、
     前記集光部材は、前記突出部の根元の位置で、側面が前記枠体の内壁面と対向していることを特徴とする光電変換装置。
    The photoelectric conversion element according to claim 5,
    The photoelectric conversion device according to claim 1, wherein the condensing member has a side surface facing an inner wall surface of the frame body at a base position of the protruding portion.
  8.  請求項5に記載の光電変換装置であって、
     前記枠体は、前記枠体の上面から内壁面にかけて切り欠かれた段差を有し、前記段差に前記突出部が配置されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 5,
    The said frame body has the level | step difference notched from the upper surface of the said frame body to the inner wall surface, The said protrusion is arrange | positioned at the said level | step difference, The photoelectric conversion apparatus characterized by the above-mentioned.
  9.  光電変換素子が搭載される搭載部を有した基板と、
     前記基板上に前記搭載部を取り囲むように設けられた枠体と、
     前記枠体の全周にわたって接合されるとともに、前記光電変換素子の搭載予定位置よりも上方位置に設けられた集光部材と、を備え、
     前記枠体で囲まれる領域内に少なくとも前記集光部材の下面が位置していることを特徴とする光電変換素子収納用パッケージ。
    A substrate having a mounting portion on which the photoelectric conversion element is mounted;
    A frame provided on the substrate so as to surround the mounting portion;
    A light condensing member that is joined over the entire circumference of the frame body and provided at a position higher than the mounting position of the photoelectric conversion element;
    A package for housing a photoelectric conversion element, wherein at least a lower surface of the light condensing member is located in a region surrounded by the frame.
  10.  請求項1乃至請求項9のいずれかに記載の光電変換装置と、
     前記光電変換装置上に設けられた受光部材と、
    を備えたことを特徴とする光電変換モジュール。
    A photoelectric conversion device according to any one of claims 1 to 9,
    A light receiving member provided on the photoelectric conversion device;
    A photoelectric conversion module comprising:
PCT/JP2010/064163 2009-08-22 2010-08-23 Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module WO2011024747A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2009192650A JP5388754B2 (en) 2009-08-22 2009-08-22 Photoelectric conversion device and photoelectric conversion module
JP2009-192650 2009-08-22
JP2009-198429 2009-08-28
JP2009198429A JP5388760B2 (en) 2009-08-28 2009-08-28 Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP2009208966A JP5441576B2 (en) 2009-09-10 2009-09-10 Photoelectric conversion device and photoelectric conversion module
JP2009-208966 2009-09-10
JP2009-222310 2009-09-28
JP2009222310A JP5388778B2 (en) 2009-09-28 2009-09-28 Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP2009-242519 2009-10-21
JP2009242519A JP5388791B2 (en) 2009-10-21 2009-10-21 Photoelectric conversion device and photoelectric conversion module
JP2009-250693 2009-10-30
JP2009250693A JP5441617B2 (en) 2009-10-30 2009-10-30 Photoelectric conversion device and photoelectric conversion module

Publications (1)

Publication Number Publication Date
WO2011024747A1 true WO2011024747A1 (en) 2011-03-03

Family

ID=43627852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064163 WO2011024747A1 (en) 2009-08-22 2010-08-23 Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2011024747A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028671A (en) * 2010-07-27 2012-02-09 Kyocera Corp Photoelectric conversion device and photoelectric conversion module
WO2014028055A1 (en) * 2012-08-16 2014-02-20 Semprius, Inc. Surface mountable solar receiver with integrated through substrate interconnect and optical element cradle
CN108520866A (en) * 2018-04-27 2018-09-11 宁波江丰电子材料股份有限公司 Welding structure and semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289896A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
US20020154239A1 (en) * 2001-04-24 2002-10-24 Hisayoshi Fujimoto Image sensor module and method of making the same
JP2003174183A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation device
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009096267A1 (en) * 2008-02-01 2009-08-06 Sharp Kabushiki Kaisha Solar battery, light collection type solar power generating module and solar battery manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289896A (en) * 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
US20020154239A1 (en) * 2001-04-24 2002-10-24 Hisayoshi Fujimoto Image sensor module and method of making the same
JP2003174183A (en) * 2001-12-07 2003-06-20 Daido Steel Co Ltd Light condensation type photovoltaic generation device
JP2006313810A (en) * 2005-05-09 2006-11-16 Daido Steel Co Ltd Light condensing solar power generator
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009096267A1 (en) * 2008-02-01 2009-08-06 Sharp Kabushiki Kaisha Solar battery, light collection type solar power generating module and solar battery manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028671A (en) * 2010-07-27 2012-02-09 Kyocera Corp Photoelectric conversion device and photoelectric conversion module
WO2014028055A1 (en) * 2012-08-16 2014-02-20 Semprius, Inc. Surface mountable solar receiver with integrated through substrate interconnect and optical element cradle
CN108520866A (en) * 2018-04-27 2018-09-11 宁波江丰电子材料股份有限公司 Welding structure and semiconductor device

Similar Documents

Publication Publication Date Title
WO2010137687A1 (en) Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module
US20090159125A1 (en) Solar cell package for solar concentrator
WO2011058941A1 (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
WO2011024747A1 (en) Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module
JP5388778B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP2011108866A (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP5388754B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2011174763A (en) Infrared detector
JP2011151276A (en) Photoelectric converter and photoelectric conversion module
JP5441576B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5388760B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP5653132B2 (en) Photoelectric conversion device and photoelectric conversion module
JP6026821B2 (en) Photoelectric conversion device, photoelectric conversion module, and component for photoelectric conversion device
JP5393350B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2012089592A (en) Photoelectric conversion device and photoelectric conversion module
JP2011096911A (en) Photoelectric conversion device, and photoelectric conversion module
JP2014063779A (en) Solar cell for concentrating solar photovoltaic power generating device
JP5676953B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5495824B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5495737B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2011103351A (en) Photoelectric converter and photoelectric conversion module
JP5645774B2 (en) Solar cell module
JP5869317B2 (en) Concentrated solar cell device component and concentrated solar cell device
JP2012164915A (en) Photoelectric conversion device and photoelectric conversion module
JP5388791B2 (en) Photoelectric conversion device and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811797

Country of ref document: EP

Kind code of ref document: A1