WO2010137687A1 - Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module - Google Patents

Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module Download PDF

Info

Publication number
WO2010137687A1
WO2010137687A1 PCT/JP2010/059082 JP2010059082W WO2010137687A1 WO 2010137687 A1 WO2010137687 A1 WO 2010137687A1 JP 2010059082 W JP2010059082 W JP 2010059082W WO 2010137687 A1 WO2010137687 A1 WO 2010137687A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion device
extraction electrode
optical member
package
Prior art date
Application number
PCT/JP2010/059082
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 伊藤
植田 義明
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2010137687A1 publication Critical patent/WO2010137687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion module.
  • photoelectric conversion devices having photoelectric conversion elements
  • a solar cell device that converts solar energy into electric power
  • a concentrating solar cell device is being developed.
  • the concentrating solar cell device has a solar cell element that converts solar energy into electric power.
  • a concentrating photoelectric conversion device is required to have improved environmental resistance for the purpose of improving efficiency related to photoelectric conversion.
  • problems related to environmental resistance there is moisture resistance of a photoelectric conversion device.
  • a photoelectric conversion device includes a base portion and a frame portion provided on the base portion, a first extraction electrode provided from the frame portion to the outside of the frame portion, A ceramic package having a second extraction electrode provided from the inside of the frame portion to the outside of the frame portion with a space from the extraction electrode is provided.
  • the photovoltaic device is provided in the ceramic package, is electrically connected to the first extraction electrode, and is electrically connected to the second extraction electrode.
  • the cover includes a cover provided on the package, and an optical member fixed to the cover and collecting light to the photovoltaic element. The cover has a through hole. The optical member is inserted into the through hole.
  • a photoelectric conversion module includes a photoelectric conversion device and a condensing lens provided on the photoelectric conversion device.
  • a component for a photoelectric conversion device includes a ceramic package including a mounting region for a photoelectric conversion element, a cover provided on the ceramic package, and an optical member fixed to the cover. Yes.
  • the cover has a through hole. The optical member is inserted into the through hole.
  • FIG. 1 shows a photoelectric conversion module according to an embodiment of the present invention.
  • FIG. 2 shows a partially enlarged view of the photoelectric conversion module shown in FIG. 1.
  • the perspective view of the photoelectric conversion apparatus 1 shown by FIG. 2 is shown.
  • the internal structure of the photoelectric conversion apparatus 1 shown by FIG. 3 is shown.
  • the top view of the photoelectric conversion apparatus 1 shown by FIG. 3 is shown.
  • the conceptual diagram of the example photoelectric conversion element 12 is shown.
  • FIG. 4 shows a cross-sectional view of the photoelectric conversion device 1 shown in FIG. 3.
  • 8 shows another exemplary fixing structure of the optical member 14 shown in FIG. 9 shows the optical member 14 and the metal thin film 17 shown in FIG.
  • the light-receiving structure in the photoelectric conversion module shown by FIG. 2 is shown typically.
  • the perspective view of the photoelectric conversion apparatus 1 which concerns on the modification 1 is shown.
  • the sectional view of photoelectric conversion device 1 concerning modification 1 is shown.
  • the light-receiving structure in the photoelectric conversion module which concerns on the modification 1 is shown typically.
  • the sectional view of photoelectric conversion device 1 concerning modification 2 is shown.
  • the top view of the photoelectric conversion apparatus 1 which concerns on the modification 2 is shown.
  • the disassembled perspective view of the package of the photoelectric conversion apparatus 1 which concerns on the modification 2 is shown.
  • 10 is a cross-sectional view illustrating a mounting structure of a photoelectric conversion element of a photoelectric conversion apparatus 1 according to Modification 2.
  • FIG. 10 is a cross-sectional view illustrating a mounting structure of a bypass diode of a photoelectric conversion apparatus 1 according to Modification 2.
  • FIG. 9 shows a cross-sectional view of a photoelectric conversion device 1 according to Modification 3.
  • FIG. 9 shows a cross-sectional view of an optical member of a photoelectric conversion device 1 according to Modification 3.
  • the top view of the photoelectric conversion apparatus 1 which concerns on the modification 4 is shown.
  • a photoelectric conversion module includes a plurality of photoelectric conversion devices 1, a condensing lens 2 provided above the plurality of photoelectric conversion devices 1, and a base body. 3 is included.
  • the condenser lens 2 is shown in a state where it is removed from the base 3 for the purpose of showing the internal structure of the photoelectric conversion module.
  • the plurality of photoelectric conversion devices 1 are mounted on the base 3.
  • the condenser lens 2 is fixed to the base 3 and covers the plurality of photoelectric conversion devices 1.
  • An example of the photoelectric conversion module is a solar cell module. More specifically, the photoelectric conversion module is, for example, a concentrating solar cell module.
  • the photoelectric conversion module includes a plurality of photoelectric conversion devices 1 each having an optical member 14 and a condenser lens 2.
  • An example of the photoelectric conversion module is a solar cell module. More specifically, the photoelectric conversion module is, for example, a concentrating solar cell module.
  • the condensing lens 2 is a primary optical system member.
  • the optical member 14 is a secondary optical system member.
  • one lens of the condenser lens 2 is arranged corresponding to one photoelectric conversion device 1, but the present invention is not limited to this.
  • one lens of the condenser lens 2 may be arranged corresponding to the plurality of photoelectric conversion devices 1.
  • FIG. 1 shows that the photoelectric conversion module is a solar cell module. More specifically, the photoelectric conversion module is, for example, a concentrating solar cell module.
  • the condensing lens 2 is a primary optical system member.
  • the optical member 14 is a secondary optical system member.
  • one lens of the condenser lens 2 is arranged corresponding to one photoelectric
  • the condensing lens 2 is arrange
  • the condenser lens 2 may be replaced with a reflection mirror, a reflection mirror may be disposed below the photoelectric conversion device 1, and light may be reflected by the reflection mirror and collected in the photoelectric conversion device 1.
  • the plurality of photoelectric conversion devices 1 are mounted on an xy plane in a virtual xyz space.
  • the upward direction means the positive direction of the virtual z-axis.
  • each optical axis of the plurality of photoelectric conversion devices 1 is indicated by a one-dot chain line.
  • the condenser lens 2 is shown partially omitted for the purpose of showing the internal structure.
  • the photoelectric conversion device 1 includes a package 11, a photoelectric conversion element 12 that is provided in the package 11 and is a photovoltaic element that converts sunlight into electrical energy, A cover 13 provided on the package 11 and an optical member 14 provided above the photoelectric conversion element 12 are included.
  • the package 11 is shown partially omitted for the purpose of showing the internal structure.
  • the cover 13 is indicated by a dotted line in a transparent state.
  • Package 11 includes a base portion 111 and a frame portion 112 provided on the base portion 111.
  • the package 11 has a cavity portion 115.
  • the package 11 is substantially made of an inorganic material.
  • the exemplary package 11 consists essentially of ceramics. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • the base part 111 of the package 11 has a plurality of conductor patterns 113. As shown in FIG. 5, the plurality of conductor patterns 113 are provided on the bottom surface of the cavity portion 115. In FIG. 5, the cover 13 and the optical member 14 are omitted for the purpose of showing the internal structure.
  • the conductor pattern 113 includes a mounting region 114 for the photoelectric conversion element 12. In FIG. 5, the mounting area 114 is indicated by a one-dot chain line.
  • the frame part 112 of the package 11 has a plurality of positioning markers 116 related to the mounting of the photoelectric conversion element 12.
  • the positioning marker 116 is provided on an extension of the diagonal line in the photoelectric conversion element 12. In FIG. 5, the diagonal line of the photoelectric conversion element 12 and its extension line are shown with the dashed-two dotted line.
  • the photoelectric conversion element 12 is mounted on the conductor pattern 113.
  • the exemplary photoelectric conversion element 12 is a solar cell element including a III-V group compound semiconductor.
  • an exemplary solar cell element has an InGaP / GaAs / Ge 3 junction cell structure.
  • the indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less.
  • the gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm.
  • the germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm.
  • the three cells are connected in series via a tunnel junction.
  • the open circuit voltage is the sum of the electromotive voltages of the three cells.
  • the cover 13 is provided on the package 11 and is fixed to the package 11 by the joining member 15.
  • the cover 13 has a through hole 131.
  • the through hole 131 is provided immediately above the photoelectric conversion element 12.
  • the connection location with the optical member 14 of the cover 13 is made into the location lower than the height position of the center of the optical member 14, it is not restricted to this.
  • the connection portion of the cover 13 with the optical member 14 may be positioned around the upper end portion of the optical member 14 by increasing the thickness of the package 11 in the vertical direction. By enlarging the internal space of the package 11, the protection area inside the package 11 can be widened.
  • the cover 13 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • the cover 13 is substantially made of a metal material or ceramics.
  • the exemplary cover 13 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy or a nickel iron (Ni—Fe) alloy.
  • the cover 13 is made of a glass material such as borosilicate glass, for example.
  • the joining member 15 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • the joining member 15 is substantially made of a metal material.
  • An exemplary bonding material 15 is solder. Examples of solders are SnPb, SnAg, SnAgCu, SnAgCu, SnZnBi, SnAgInBi, and SnZnAl.
  • the optical member 14 is provided above the photoelectric conversion element 12 and is inserted into the through hole 131 of the cover 13.
  • An exemplary fixing structure of the optical member 14 is shown in the enlarged view of FIG.
  • the optical member 14 is fixed to the cover 13 by a joining member 16.
  • the joining member 16 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • the joining member 16 is, for example, low melting point glass. “Low melting glass” refers to glass having a glass transition point of about 600 ° C. or less.
  • the optical member 14 is joined by a joining member 18 containing a metal material.
  • a metal thin film 17 is formed on the side surface of the optical member 14.
  • the joining member 18 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • the material example of the joining member 18 is a gold tin (AuSn) alloy.
  • the metal thin film 17 is formed on the side surface of the optical member 14 over the circumference in a portion joined to the cover 13.
  • An exemplary method for forming the metal thin film 17 is vapor deposition.
  • the optical member 14 has translucency and has a function of guiding light that has arrived from the condenser lens 2 to the photoelectric conversion element 12.
  • the optical member 14 can collect light toward the mounting region of the photoelectric conversion element 12 and is arranged to collect a large amount of light on the light receiving surface of the photoelectric conversion element 12 mounted in the mounting region.
  • Translucency of the optical member 14 means that light included in at least a part of the wavelength region of sunlight can be transmitted.
  • the optical member 14 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
  • An example of the material of the optical member 14 is optical glass. Exemplary optical glasses include borosilicate glass.
  • the photoelectric conversion device 1 is improved in terms of moisture resistance by having the optical member 14 substantially made of borosilicate glass.
  • the exemplary optical member 14 is a prism.
  • the optical member 14 has a pyramid shape in which the cross-sectional area decreases from the upper end toward the lower end.
  • the light reaching the optical member 14 from the condenser lens 2 is repeatedly totally reflected at the interface between the inside and the outside of the optical member 14.
  • the optical member 14 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by total reflection of light.
  • the photoelectric conversion device 1 is improved in terms of environmental resistance because the photoelectric conversion element 12 is enclosed by the package 11, the cover 13, and the optical member 14. In particular, the photoelectric conversion device 1 is improved in terms of moisture resistance because the photoelectric conversion element 12 is hermetically sealed.
  • the photoelectric conversion device 1 in the present embodiment has the photoelectric conversion element sealed with a resin. Compared to the structure, the moisture resistance is improved.
  • An exemplary state of the interior space is a void.
  • Another exemplary state of the interior space is a vacuum state or a state filled with gas.
  • the temperature increases or decreases under the influence of the temperature of the outside air. If the internal space of the package 11 is filled with the resin, the resin undergoes thermal expansion / contraction, and the deterioration of the resin due to heat proceeds. Then, the resin may be peeled inside the package 11 and the package 11 may be cracked. As a result, it becomes difficult to maintain the sealing property of the internal space of the package 11, the photoelectric conversion element 12 is corroded, and the photoelectric conversion efficiency is lowered. According to this embodiment, since the resin is not filled in the internal space of the package 11, the package 11 is not broken by the resin, and the sealing performance of the package 11 can be improved.
  • the second optical member 2 has a plurality of lens portions 21 corresponding to the plurality of optical members 14.
  • Each of the plurality of lens portions 21 is a Fresnel lens having a dome shape.
  • Each of the plurality of lens portions 21 has a function of collecting light on the corresponding optical member 14.
  • the material example of the optical member 14 is glass.
  • the light receiving structure in the photoelectric conversion module of the present embodiment will be described with reference to FIG. In FIG. 10, how the light travels is schematically shown by arrows.
  • the light 91 incident on the lens portion 21 is collected at the upper end of the optical member 14.
  • the light 92 incident on the optical member 14 travels downward while repeating total reflection at the interface between the inside and the outside of the optical member 14.
  • the light 92 is incident on the upper surface of the photoelectric conversion element 12 from the lower end portion of the optical member 14.
  • the photoelectric conversion element 12 converts light energy into electric power.
  • the photoelectric conversion module in this embodiment can maintain the sealing performance inside the photoelectric conversion device 1 satisfactorily by making the package 11 a ceramic package, and has improved humidity resistance. Deterioration in the internal configuration of the photoelectric conversion device 1 such as the conversion element 12 is reduced. Therefore, the photoelectric conversion module in the present embodiment is improved with respect to the efficiency of photoelectric conversion.
  • the photoelectric conversion device 1 includes a package 11, a submount substrate 12 ⁇ / b> X and a photoelectric conversion element 12 provided in the package 11, and the package 11. And a cover 13 provided on the housing.
  • the package 11 is shown partially omitted for the purpose of showing the internal structure.
  • the cover 13 is omitted for the same purpose.
  • the package 11 includes a base part 111, a frame part 112 provided on the base part 111, a metal member 1131 embedded in the base part 111, and a plurality of lead terminals 1141.
  • the package 11 has a cavity portion 115.
  • the base portion 111 and the frame 112 portion are substantially made of an insulating material.
  • An example of the insulating material is ceramics.
  • the photoelectric conversion device 1 is improved with respect to heat dissipation.
  • the metal member 1131 is fixed to the base portion 111.
  • the lower surface of the metal member 1131 has a larger area than the upper surface of the metal member 1131.
  • the size of the base part 111 is larger than the lower surface of the metal member 1131.
  • An example of the material of the metal member 1131 is copper (Cu). Since the photoelectric conversion device 1 includes the metal member 1131 embedded in the base portion 111, heat dissipation is improved.
  • each of the plurality of lead terminals 1141 is located inside the frame portion 112.
  • An inner end portion of the lead terminal 1141 is provided on the base portion 111.
  • the outer end portion of each of the plurality of lead terminals is located outside the frame portion 112.
  • the submount substrate 12X is provided on the metal member 1131 and joined to the metal member 1131.
  • the submount substrate 12X has a conductor pattern 121.
  • the conductor pattern 121 is electrically connected to the lead terminal 1141 by a bonding wire.
  • the submount substrate 12X has a mounting region for the photoelectric conversion elements 12.
  • a material example of the submount substrate 12X is ceramics. Since the photoelectric conversion device 1 has the submount substrate 12X provided on the metal member 1131, heat dissipation is improved.
  • the photoelectric conversion element 12 is mounted on the submount substrate 12X and is electrically connected to the conductor pattern 121.
  • the photoelectric conversion element 12 is electrically connected to the lead terminal 1141 by a bonding wire.
  • the light receiving structure in the photoelectric conversion module of Modification 1 will be described with reference to FIG. In FIG. 13, how the light travels is schematically shown by arrows.
  • the light 91 incident on the lens portion 21 is collected at the upper end portion of the photoelectric conversion device 1.
  • the light 91 is incident on the upper surface of the photoelectric conversion element 12.
  • the photoelectric conversion element 12 converts light energy into electric power.
  • the photoelectric conversion module in Modification 1 is improved with respect to the efficiency of photoelectric conversion in, for example, the photoelectric conversion element 12 by improving heat dissipation. Therefore, the photoelectric conversion module in Modification 1 is improved with respect to the efficiency of photoelectric conversion.
  • the heat conduction path is indicated by arrows.
  • the heat generated by the photoelectric conversion element 12 is conducted to the metal member 1131 through the submount substrate 12X.
  • the heat conducted to the metal member 1131 is conducted to the base 3 shown in FIG. 1, for example.
  • the photoelectric conversion module is a concentrating solar cell module, since sunlight is collected by the optical member 2, for example, heat may be generated in the photoelectric conversion element 12.
  • the efficiency of photoelectric conversion may decrease as the temperature rises.
  • the photoelectric conversion module according to Modification 1 has a heat conduction path from the photoelectric conversion element 12, thereby improving the photoelectric conversion efficiency.
  • the photoelectric conversion module in Modification 1 can suppress the temperature inside the photoelectric conversion device 1 from rising by embedding a metal member having excellent heat dissipation in the package 11. Can be improved. Therefore, the photoelectric conversion module in the modification 1 can contribute to improvement of environmental resistance.
  • the photoelectric conversion device 1 As illustrated in FIG. 14, the photoelectric conversion device 1 according to Modification 2 includes a package 11, a photoelectric conversion element 12 mounted on the package 11, a cover 13 provided on the package 11, and a photoelectric conversion device. And an optical member 14 provided above the conversion element 12. As shown in FIG. 15, the photoelectric conversion device 1 further includes a bypass diode 152 mounted on the package 11.
  • Package 11 includes a base portion 111 and a frame portion 112 provided on the base portion 111.
  • the package 11 includes a first extraction electrode 1132 provided on the upper end portion of the frame portion 112 and a second extraction electrode 1142 provided on the upper surface of the base portion 111.
  • the first extraction electrode 1132 includes a conductor pattern 1152 and a first lead terminal 1162.
  • the first extraction electrode 1132 has an inner end located inside the package 11 and an outer end located outside the package 11.
  • the conductor pattern 1152 is entirely formed on the upper surface of the frame portion 112 and surrounds the cavity region.
  • the conductor pattern 1152 is indicated by a dot pattern.
  • the package 11 is shown in a disassembled state for the purpose of showing the overall configuration.
  • the exemplary conductor pattern 1152 is a metallized layer fired together with the frame part 112.
  • the conductor pattern 1152 contains tungsten (W) or molybdenum (Mo).
  • the first lead terminal 1162 has a ring portion 1172 and a terminal portion 1182.
  • the first lead terminal 1162 is joined to the conductor pattern 1152 at the ring portion 1172.
  • the area of the opening of the ring portion 1172 is larger than the area of the opening of the conductor pattern 1152.
  • the inner peripheral position of the ring portion 1172 in the conductor pattern 1152 is indicated by a broken line.
  • the exemplary first lead terminal 1162 includes copper.
  • the exemplary first lead terminal 1162 is substantially made of oxygen-free copper.
  • Another exemplary first lead terminal 1162 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy.
  • the second extraction electrode 1142 is provided in a region surrounded by the frame portion 112 in the base portion 111.
  • the second extraction electrode 1142 is a second lead terminal.
  • the second lead terminal 1141 is provided between the base part 111 and the frame part 112, and is joined to the base part 111 and the frame part 112.
  • the exemplary second lead terminal 1141 includes copper.
  • the exemplary second lead terminal 1141 is substantially made of oxygen-free copper.
  • Another exemplary second lead terminal 1141 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy.
  • the photoelectric conversion element 12 has an upper end portion including the first electrode 121 and a lower end portion including the second electrode 122.
  • the first electrode 121 is electrically connected to the first extraction electrode 1132. More specifically, the first electrode 121 is electrically connected to the conductor pattern 1152 through a bonding wire. The bonding wire is connected to the inner end of the first extraction electrode 1132.
  • the second electrode 122 is bonded to the second lead terminal 1141 and is electrically connected to the second lead terminal 1141.
  • the photoelectric conversion element 12 provided on the second lead terminal 1141 is electrically connected to the first extraction electrode 1132 provided at a position corresponding to the height of the photoelectric conversion element 12,
  • the photoelectric conversion device 1 is improved with respect to the reliability of mounting the photoelectric conversion element 12. More specifically, since the conductor pattern 1152 is provided at a height position corresponding to the first electrode 121 of the photoelectric conversion element 12, the photoelectric conversion device 1 relates to the reliability in wire bonding of the photoelectric conversion element 12. It has been improved.
  • the bypass diode 152 is accommodated in the cavity of the package 11 and is provided on the second lead terminal 1141. As shown in FIG. 18, the bypass diode 152 has an upper end including the first electrode 1512 and a lower end including the second electrode 1522.
  • the first electrode 1512 is electrically connected to the first extraction electrode 1132. More specifically, the first electrode 1512 is electrically connected to the conductor pattern 1152 through a bonding wire. The bonding wire is connected to the inner end of the first extraction electrode 1132.
  • the second electrode 1522 is bonded to the second lead terminal 1141 and is electrically connected to the second lead terminal 1141.
  • the photoelectric conversion module is improved in terms of productivity because the outer end portion of the first extraction electrode 1132 and the outer end portion of the second extraction electrode 1142 are arranged in opposite directions with respect to the photoelectric conversion element 12. Has been. More specifically, the photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1.
  • first extraction electrode 1132 and the second extraction electrode 1142 “arranged in the reverse direction” means that, for example, in FIG. 15, the first extraction electrode 1132 is in the positive direction of the virtual x axis with respect to the photoelectric conversion element 12.
  • the photoelectric conversion module is improved in terms of productivity because the outer end portion of the first extraction electrode 1132 and the outer end portion of the second extraction electrode 1142 are provided at different height positions. Has been. More specifically, the photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1.
  • “provided at different height positions” means that the outer end portion of the first extraction electrode 1132 in FIG. And the outer end of the second extraction electrode 1142 are provided at different positions in the virtual z-axis direction.
  • the photoelectric conversion module of Modification 2 includes a plurality of photoelectric conversion devices 1 connected in series. In each of the plurality of photoelectric conversion devices 1, the photoelectric conversion element 12 and the bypass diode 152 are connected in parallel.
  • the bypass diode 152 is an electrical device that avoids the photoelectric conversion element 12 that does not generate output when a failure occurs in a part of the plurality of photoelectric conversion elements 12 or when output is not generated due to blocking of incident light. It forms a simple path.
  • the photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1 when, for example, the plurality of photoelectric conversion devices 1 are connected in series.
  • the photoelectric conversion module in the modification 2 can maintain the connection state of the some photoelectric conversion apparatus 1 favorably by improving the connection structure of the photoelectric conversion apparatus 1, and improves the connection reliability of the photoelectric conversion apparatus 1. Can be made. Therefore, the photoelectric conversion module in Modification 2 can contribute to improvement of environmental resistance.
  • the package 11 includes the base portion 111 and the frame portion 112 provided on the base portion 111, but is not limited thereto.
  • the base unit 111 may be separate from the package 11 and the package 11 may be configured by the frame unit 112.
  • the first extraction electrode 1132 and the second extraction electrode 1142 have outer end portions, but one has an outer end portion and the other does not have an outer end portion. It may be a structure.
  • the first extraction electrode 1132 has an outer end, and the second extraction electrode 1142 does not have an outer end.
  • Modification 3 Of the photoelectric conversion device according to Modification 3, the same parts as those of the photoelectric conversion device according to the present embodiment or the photoelectric conversion devices according to Modifications 1 and 2 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
  • the optical member 14 is provided above the photoelectric conversion element 12 and includes a first condenser prism 41 and a second condenser prism 42.
  • the first condensing prism 41 and the second condensing prism 42 have a pyramid shape in which the cross-sectional area decreases from the upper end toward the lower end.
  • the 1st condensing prism 41 may be not a taper shape but a plate body, when thickness is set thin.
  • the first condenser prism 41 is provided in the through hole of the cover 13 and is joined to the cover 13 by a joining member made of an inorganic material. Therefore, the photoelectric conversion module is improved with respect to environmental resistance.
  • An exemplary joining member consists essentially of a gold tin (AuSn) alloy.
  • Another exemplary joining member consists essentially of low melting glass. “Low melting glass” refers to glass having a glass transition point of about 600 ° C. or less.
  • the first condensing prism 41 includes a lens portion 411 having a light transmitting property and a reflective layer 412.
  • Translucency of the lens portion 411 means that light converted by the photoelectric conversion element 12 can be transmitted.
  • “translucency” means that at least part of the wavelength of sunlight can be transmitted.
  • An example of the material of the lens portion 411 is optical glass. Exemplary optical glasses include borosilicate glass. The photoelectric conversion module is improved in terms of environmental resistance by having the lens portion 411 substantially made of borosilicate glass.
  • the reflection layer 412 is formed on the side surface of the lens portion 411 over the entire circumference at the portion joined to the cover 13.
  • An example of the reflective layer 412 is a layer substantially made of metal.
  • An exemplary method for forming the reflective layer 412 is vapor deposition.
  • Another example of the reflective layer 412 is a layer substantially made of a dielectric.
  • More specifically, another example of the reflective layer 412 is a dielectric multilayer film.
  • the dielectric multilayer film is formed by alternately laminating a plurality of dielectric layers having different light refractive indexes, and causes total reflection of light due to the difference in the refractive index of light.
  • the light is repeatedly totally reflected at the reflection layer 412.
  • the first condenser prism 41 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by reflecting light.
  • the second condenser prism 42 is provided on the first condenser prism 41, and has translucency.
  • the “translucency” of the second condensing prism 42 means that the light whose energy is converted by the photoelectric conversion element 12 can be transmitted.
  • “translucency” means that at least part of the wavelength of sunlight can be transmitted.
  • the material example of the 2nd condensing prism 42 is optical glass. Exemplary optical glasses include borosilicate glass.
  • the photoelectric conversion module has the second light collecting prism 42 substantially made of borosilicate glass, thereby improving the environmental resistance.
  • the light is repeatedly totally reflected at the interface between the inside and the outside of the second condenser prism 42.
  • the second condenser prism 42 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by total reflection of light.
  • the condensing lens is a primary optical system member
  • the second condensing prism 42 is a secondary optical system member
  • the first condensing prism 41 is a tertiary optical system member.
  • the first condenser prism 41 and the second condenser prism 42 have a function of guiding the light collected by the condenser lens to the photoelectric conversion element 12.
  • the photoelectric conversion module according to Modification 3 includes a first condensing prism 41 that constitutes a structure for hermetically sealing the cavity 115, and a second condensing prism 41 provided separately from the first condensing prism 41.
  • a first condensing prism 41 that constitutes a structure for hermetically sealing the cavity 115
  • a second condensing prism 41 provided separately from the first condensing prism 41.
  • the photoelectric conversion module according to Modification 3 includes a first light collecting prism 41 and a second light collecting prism 42 provided separately from the first light collecting prism 41, thereby providing a photoelectric conversion element. 12 hermetic seals and productivity improvements.
  • the photoelectric conversion module according to Modification 3 includes a first light collecting prism 41 and a second light collecting prism 42 provided separately from the first light collecting prism 41, thereby providing a photoelectric conversion element. It is improved with respect to 12 hermetic seals and with respect to the degree of freedom of selection of the second condenser prism 42.
  • the photoelectric conversion module in Modification 3 the deterioration in the internal configuration of the photoelectric conversion device 1 such as the photoelectric conversion element 12 is reduced by hermetically sealing the photoelectric conversion element 12. Therefore, the photoelectric conversion module in the modification 3 can contribute to improvement of environmental resistance.
  • Modification 4 >> Among the photoelectric conversion devices according to the modification example 4, the same parts as those of the photoelectric conversion device according to the present embodiment or the photoelectric conversion devices according to the modification examples 1, 2, and 3 are denoted by the same reference numerals, and description thereof is omitted as appropriate. To do.
  • the photoelectric conversion element 12 is mounted on the mounting region 114 of the package 11 in a plan view.
  • the cover 13 is omitted for the purpose of showing the internal structure.
  • the package 11 has a peripheral region 114X surrounding the mounting region 114 and a plurality of alignment marks 116a to 116d provided in the peripheral region 114X.
  • the optical member 14 is indicated by a broken line.
  • the optical member 14 has a lower surface edge 14L and an upper surface edge 14U.
  • the lower surface edge 14L and the upper surface edge 14U have a rectangular shape.
  • the lower edge 14L is located inside the upper edge of the photoelectric conversion element 12. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion of light emitted from the optical member 14 to the photoelectric conversion element 12.
  • the upper surface edge 14 ⁇ / b> U is located outside the upper surface edge of the photoelectric conversion element 12. Therefore, the photoelectric conversion device 1 is improved with respect to the light collection efficiency with respect to the photoelectric conversion element 12.
  • the rectangular upper surface corner 12 a of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116 a and the rectangular lower surface corner 142 a of the optical member 14. Therefore, the photoelectric conversion device 1 is improved with respect to the light receiving efficiency of the photoelectric conversion element 12.
  • the rectangular upper surface corner 12b of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116b and the rectangular lower surface corner 142b of the optical member 14.
  • the rectangular upper surface corner 12c of the photoelectric conversion element 12 is located on a line segment connecting the alignment mark 116c and the rectangular lower surface corner 142c of the optical member 14.
  • a rectangular upper surface corner 12d of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116d and the rectangular lower surface corner 142d of the optical member 14.
  • the plurality of alignment marks 116a to 116d are provided so as to correspond to the four corners 114a to 114d of the rectangular mounting region 114. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion in the photoelectric conversion element 12 by improving the accuracy of arrangement of the optical member 14.
  • the lower surface of the optical member is included in the range defined by the plurality of alignment marks 116a to 116d. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion in the photoelectric conversion element 12 by improving the accuracy in positioning of the optical member 14.
  • the photoelectric conversion module in Modification 4 can hermetically seal the inside of the photoelectric conversion device by improving the positioning accuracy of the optical member. For example, deterioration in the internal configuration of the photoelectric conversion device 1 such as the photoelectric conversion element 12 Has been reduced. Therefore, the photoelectric conversion module in the modification 4 can contribute to improvement of environmental resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photoelectric conversion device (1) is provided with a ceramic package (11) which has: a first extraction electrode, which includes a base section (111) and a frame section (112) provided on the base section (111) and is provided from the inside of the frame section (112) to the outside of the frame section (112); and a second extraction electrode provided in the frame section. The photoelectric conversion device is also provided with a photovoltaic element (12), which is provided in a ceramic package (11), is electrically connected to the first extraction electrode, and is electrically connected to the second extraction electrode. Furthermore, the photoelectric conversion device includes a cover (13) provided on the package (11), and an optical member (14) which is affixed on the cover (13) and collects light to the photoelectric conversion element. The cover (13) has a through hole. The optical member (14) is inserted into the through hole.

Description

光電変換装置用部品、光電変換装置および光電変換モジュールComponents for photoelectric conversion device, photoelectric conversion device and photoelectric conversion module
 本発明は、光電変換モジュールに関するものである。 The present invention relates to a photoelectric conversion module.
 近年、光電変換素子を有する光電変換装置の開発が進められている。例示的な光電変換装置としては、太陽エネルギーを電力に変換する太陽電池装置がある(例えば、特開2005-285948号公報参照)。特に、発電効率の向上を目的として、集光型の太陽電池装置の開発が進められている。集光型の太陽電池装置は、太陽エネルギーを電力に変換する太陽電池素子を有している。 In recent years, development of photoelectric conversion devices having photoelectric conversion elements has been promoted. As an exemplary photoelectric conversion device, there is a solar cell device that converts solar energy into electric power (see, for example, JP-A-2005-285948). In particular, for the purpose of improving the power generation efficiency, a concentrating solar cell device is being developed. The concentrating solar cell device has a solar cell element that converts solar energy into electric power.
 光電変換装置の開発において、耐環境性の向上が求められている。特に、集光型の光電変換装置は、光電変換に関する効率を向上させることを目的に、耐環境性の向上が求められている。耐環境性に関する課題例としては、光電変換装置の耐湿性がある。 In the development of photoelectric conversion devices, improvement in environmental resistance is required. In particular, a concentrating photoelectric conversion device is required to have improved environmental resistance for the purpose of improving efficiency related to photoelectric conversion. As an example of problems related to environmental resistance, there is moisture resistance of a photoelectric conversion device.
 本発明の一実施形態に係る光電変換装置は、ベース部とベース部上に設けられたフレーム部とを含んでおり、フレーム部内からフレーム部外に設けられる第1の引出電極と、第1の引出電極と間を空けてフレーム部内からフレーム部外に設けられる第2の引出電極とを有するセラミックパッケージを備えている。また、セラミックパッケージ内に設けられ、第1の引出電極と電気的に接続され、第2の引出電極と電気的に接続される光起電力素子を備えている。さらに、パッケージの上に設けられたカバーと、カバーに固定され、光起電力素子に光を集める光学部材とを含んでいる。カバーは、貫通孔を有している。光学部材は、貫通孔に挿入されている。 A photoelectric conversion device according to an embodiment of the present invention includes a base portion and a frame portion provided on the base portion, a first extraction electrode provided from the frame portion to the outside of the frame portion, A ceramic package having a second extraction electrode provided from the inside of the frame portion to the outside of the frame portion with a space from the extraction electrode is provided. The photovoltaic device is provided in the ceramic package, is electrically connected to the first extraction electrode, and is electrically connected to the second extraction electrode. Further, the cover includes a cover provided on the package, and an optical member fixed to the cover and collecting light to the photovoltaic element. The cover has a through hole. The optical member is inserted into the through hole.
 本発明の一実施形態に係る光電変換モジュールは、光電変換装置と、光電変換装置上に設けられた集光レンズと、を備えている。 A photoelectric conversion module according to an embodiment of the present invention includes a photoelectric conversion device and a condensing lens provided on the photoelectric conversion device.
 本発明の一実施形態に係る光電変換装置用部品は、光電変換素子の実装領域を含んでいるセラミックパッケージと、セラミックパッケージの上に設けられるカバーと、カバーに固定される光学部材とを含んでいる。カバーは、貫通孔を有している。光学部材は、貫通孔に挿入される。 A component for a photoelectric conversion device according to an embodiment of the present invention includes a ceramic package including a mounting region for a photoelectric conversion element, a cover provided on the ceramic package, and an optical member fixed to the cover. Yes. The cover has a through hole. The optical member is inserted into the through hole.
本発明の一実施形態に係る光電変換モジュールを示している。1 shows a photoelectric conversion module according to an embodiment of the present invention. 図1に示された光電変換モジュールの部分拡大図を示している。FIG. 2 shows a partially enlarged view of the photoelectric conversion module shown in FIG. 1. 図2に示された光電変換装置1の斜視図を示している。The perspective view of the photoelectric conversion apparatus 1 shown by FIG. 2 is shown. 図3に示された光電変換装置1の内部構造を示している。The internal structure of the photoelectric conversion apparatus 1 shown by FIG. 3 is shown. 図3に示された光電変換装置1の平面図を示している。The top view of the photoelectric conversion apparatus 1 shown by FIG. 3 is shown. 例示的な光電変換素子12の概念図を示している。The conceptual diagram of the example photoelectric conversion element 12 is shown. 図3に示された光電変換装置1の断面図を示している。FIG. 4 shows a cross-sectional view of the photoelectric conversion device 1 shown in FIG. 3. 図7に示された光学部材14の他の例示的な固定構造を示している。8 shows another exemplary fixing structure of the optical member 14 shown in FIG. 図8に示された光学部材14および金属薄膜17を示している。9 shows the optical member 14 and the metal thin film 17 shown in FIG. 図2に示された光電変換モジュールにおける受光構造を模式的に示している。The light-receiving structure in the photoelectric conversion module shown by FIG. 2 is shown typically. 変形例1に係る光電変換装置1の斜視図を示している。The perspective view of the photoelectric conversion apparatus 1 which concerns on the modification 1 is shown. 変形例1に係る光電変換装置1の断面図を示している。The sectional view of photoelectric conversion device 1 concerning modification 1 is shown. 変形例1に係る光電変換モジュールにおける受光構造を模式的に示している。The light-receiving structure in the photoelectric conversion module which concerns on the modification 1 is shown typically. 変形例2に係る光電変換装置1の断面図を示している。The sectional view of photoelectric conversion device 1 concerning modification 2 is shown. 変形例2に係る光電変換装置1の平面図を示している。The top view of the photoelectric conversion apparatus 1 which concerns on the modification 2 is shown. 変形例2に係る光電変換装置1のパッケージの分解斜視図を示している。The disassembled perspective view of the package of the photoelectric conversion apparatus 1 which concerns on the modification 2 is shown. 変形例2に係る光電変換装置1の光電変換素子の実装構造を示す断面図である。10 is a cross-sectional view illustrating a mounting structure of a photoelectric conversion element of a photoelectric conversion apparatus 1 according to Modification 2. FIG. 変形例2に係る光電変換装置1のバイパスダイオードの実装構造を示す断面図である。10 is a cross-sectional view illustrating a mounting structure of a bypass diode of a photoelectric conversion apparatus 1 according to Modification 2. FIG. 変形例2に係る光電変換モジュールの回路図を示している。The circuit diagram of the photoelectric conversion module which concerns on the modification 2 is shown. 変形例3に係る光電変換装置1の断面図を示している。FIG. 9 shows a cross-sectional view of a photoelectric conversion device 1 according to Modification 3. 変形例3に係る光電変換装置1の光学部材の断面図を示している。FIG. 9 shows a cross-sectional view of an optical member of a photoelectric conversion device 1 according to Modification 3. 変形例4に係る光電変換装置1の平面図を示している。The top view of the photoelectric conversion apparatus 1 which concerns on the modification 4 is shown.
 以下、本発明の例示的な実施形態について図面を参照して説明する。 Hereinafter, exemplary embodiments of the present invention will be described with reference to the drawings.
 ≪光電変換モジュールの構成≫
 図1に示されているように、本発明の一つの実施形態における光電変換モジュールは、複数の光電変換装置1と、複数の光電変換装置1の上方に設けられた集光レンズ2と、基体3とを含んでいる。図1において、集光レンズ2は、光電変換モジュールの内部構造を示すことを目的に、基体3から外された状態で示されている。複数の光電変換装置1は、基体3に実装されている。集光レンズ2は、基体3に固定されており、複数の光電変換装置1を覆っている。光電変換モジュールの例は、太陽電池モジュールである。さらに具体的に、光電変換モジュールは、例えば集光型の太陽電池モジュールである。
≪Configuration of photoelectric conversion module≫
As shown in FIG. 1, a photoelectric conversion module according to an embodiment of the present invention includes a plurality of photoelectric conversion devices 1, a condensing lens 2 provided above the plurality of photoelectric conversion devices 1, and a base body. 3 is included. In FIG. 1, the condenser lens 2 is shown in a state where it is removed from the base 3 for the purpose of showing the internal structure of the photoelectric conversion module. The plurality of photoelectric conversion devices 1 are mounted on the base 3. The condenser lens 2 is fixed to the base 3 and covers the plurality of photoelectric conversion devices 1. An example of the photoelectric conversion module is a solar cell module. More specifically, the photoelectric conversion module is, for example, a concentrating solar cell module.
 図2に示されているように、光電変換モジュールは、各々光学部材14を有する複数の光電変換装置1と、集光レンズ2とを含んでいる。光電変換モジュールの例は、太陽電池モジュールである。さらに具体的に、光電変換モジュールは、例えば集光型の太陽電池モジュールである。集光レンズ2は、一次光学系部材である。光学部材14は、二次光学系部材である。なお、図1に示すように、本実施形態においては、一つの光電変換装置1に対して、集光レンズ2の一つのレンズが対応して配置されているが、これに限られない。例えば、複数の光電変換装置1に対して、集光レンズ2の一つのレンズを対応して配置してもよい。また、図1に示すように、本実施形態においては、集光レンズ2を光電変換装置1上方に配置しているが、これに限られない。例えば、集光レンズ2を反射ミラーに置き換えて、光電変換装置1の下方に反射ミラーを配置し、光を反射ミラーで反射して光電変換装置1に集める構造としてもよい。 As shown in FIG. 2, the photoelectric conversion module includes a plurality of photoelectric conversion devices 1 each having an optical member 14 and a condenser lens 2. An example of the photoelectric conversion module is a solar cell module. More specifically, the photoelectric conversion module is, for example, a concentrating solar cell module. The condensing lens 2 is a primary optical system member. The optical member 14 is a secondary optical system member. As shown in FIG. 1, in the present embodiment, one lens of the condenser lens 2 is arranged corresponding to one photoelectric conversion device 1, but the present invention is not limited to this. For example, one lens of the condenser lens 2 may be arranged corresponding to the plurality of photoelectric conversion devices 1. Moreover, as shown in FIG. 1, in this embodiment, although the condensing lens 2 is arrange | positioned above the photoelectric conversion apparatus 1, it is not restricted to this. For example, the condenser lens 2 may be replaced with a reflection mirror, a reflection mirror may be disposed below the photoelectric conversion device 1, and light may be reflected by the reflection mirror and collected in the photoelectric conversion device 1.
 図2において、複数の光電変換装置1は、仮想のxyz空間におけるxy平面に実装されている。図2において、上方向とは、仮想のz軸の正方向のことをいう。図2において、複数の光電変換装置1の各々の光軸が、一点鎖線によって示されている。図2において、内部構造を示すことを目的に、集光レンズ2は部分的に省略された状態で示されている。 In FIG. 2, the plurality of photoelectric conversion devices 1 are mounted on an xy plane in a virtual xyz space. In FIG. 2, the upward direction means the positive direction of the virtual z-axis. In FIG. 2, each optical axis of the plurality of photoelectric conversion devices 1 is indicated by a one-dot chain line. In FIG. 2, the condenser lens 2 is shown partially omitted for the purpose of showing the internal structure.
 図3および図4に示されているように、光電変換装置1は、パッケージ11と、パッケージ11内に設けられ、太陽光を電気エネルギーに変換する光起電力素子である光電変換素子12と、パッケージ11の上に設けられたカバー13と、光電変換素子12の上方に設けられた光学部材14とを含んでいる。図4において、内部構造を示すことを目的に、パッケージ11は、部分的に省略された状態で示されている。図4において、同様の目的で、カバー13は、透視した状態で点線によって示されている。 As shown in FIGS. 3 and 4, the photoelectric conversion device 1 includes a package 11, a photoelectric conversion element 12 that is provided in the package 11 and is a photovoltaic element that converts sunlight into electrical energy, A cover 13 provided on the package 11 and an optical member 14 provided above the photoelectric conversion element 12 are included. In FIG. 4, the package 11 is shown partially omitted for the purpose of showing the internal structure. In FIG. 4, for the same purpose, the cover 13 is indicated by a dotted line in a transparent state.
 パッケージ11は、ベース部111と、ベース部111の上に設けられたフレーム部112とを含んでいる。パッケージ11は、キャビティー部115を有している。パッケージ11は、実質的に無機材料からなる。例示的なパッケージ11は、実質的にセラミックスからなる。従って、光電変換装置1は、耐湿性に関して改善されている。 Package 11 includes a base portion 111 and a frame portion 112 provided on the base portion 111. The package 11 has a cavity portion 115. The package 11 is substantially made of an inorganic material. The exemplary package 11 consists essentially of ceramics. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance.
 パッケージ11のベース部111は、複数の導体パターン113を有している。図5に示されているように、複数の導体パターン113は、キャビティー部115の底面に設けられている。図5において、内部構造を示すことを目的に、カバー13および光学部材14は省略されている。導体パターン113は、光電変換素子12の実装領域114を含んでいる。図5において、実装領域114は、一点鎖線によって示されている。 The base part 111 of the package 11 has a plurality of conductor patterns 113. As shown in FIG. 5, the plurality of conductor patterns 113 are provided on the bottom surface of the cavity portion 115. In FIG. 5, the cover 13 and the optical member 14 are omitted for the purpose of showing the internal structure. The conductor pattern 113 includes a mounting region 114 for the photoelectric conversion element 12. In FIG. 5, the mounting area 114 is indicated by a one-dot chain line.
 パッケージ11のフレーム部112は、光電変換素子12の実装に関する複数の位置決めマーカ116を有している。位置決めマーカ116は、光電変換素子12における対角線の延長線上に設けられている。図5において、光電変換素子12の対角線およびその延長線が二点鎖線によって示されている。 The frame part 112 of the package 11 has a plurality of positioning markers 116 related to the mounting of the photoelectric conversion element 12. The positioning marker 116 is provided on an extension of the diagonal line in the photoelectric conversion element 12. In FIG. 5, the diagonal line of the photoelectric conversion element 12 and its extension line are shown with the dashed-two dotted line.
 光電変換素子12は、導体パターン113に実装されている。例示的な光電変換素子12は、III-V族化合物半導体を含んでいる太陽電池素子である。図6に示されているように、例示的な太陽電池素子は、InGaP/GaAs/Ge3接合型セルの構造を有している。インジウムガリウムリン(InGaP)トップセルは、660nm以下の波長領域に含まれる光をエネルギー変換する。ガリウムヒ素(GaAs)ミドルセルは、660nmから890nmまでの波長領域に含まれる光をエネルギー変換する。ゲルマニウム(Ge)ボトムセルは、890nmから2000nmまでの波長領域に含まれる光をエネルギー変換する。3つのセルは、トンネル接合を介して直列に接続されている。開放電圧は、3つのセルの起電圧の和である。 The photoelectric conversion element 12 is mounted on the conductor pattern 113. The exemplary photoelectric conversion element 12 is a solar cell element including a III-V group compound semiconductor. As shown in FIG. 6, an exemplary solar cell element has an InGaP / GaAs / Ge 3 junction cell structure. The indium gallium phosphide (InGaP) top cell converts energy contained in a wavelength region of 660 nm or less. The gallium arsenide (GaAs) middle cell converts energy contained in a wavelength region from 660 nm to 890 nm. The germanium (Ge) bottom cell converts light contained in a wavelength region from 890 nm to 2000 nm. The three cells are connected in series via a tunnel junction. The open circuit voltage is the sum of the electromotive voltages of the three cells.
 図7に示されているように、カバー13は、パッケージ11の上に設けられており、接合部材15によってパッケージ11に固定されている。カバー13は、貫通孔131を有している。貫通孔131は、光電変換素子12の直上に設けられている。なお、図7では、カバー13の光学部材14との接続箇所が、光学部材14の中心の高さ位置よりも低い箇所としているが、これに限られない。例えば、パッケージ11の上下方向の厚みを大きくすることによって、カバー13の光学部材14との接続箇所を、光学部材14の上端部周辺に位置させてもよい。パッケージ11の内部空間を大きくすることによって、パッケージ11内部の保護領域を広くすることができる。 As shown in FIG. 7, the cover 13 is provided on the package 11 and is fixed to the package 11 by the joining member 15. The cover 13 has a through hole 131. The through hole 131 is provided immediately above the photoelectric conversion element 12. In addition, in FIG. 7, although the connection location with the optical member 14 of the cover 13 is made into the location lower than the height position of the center of the optical member 14, it is not restricted to this. For example, the connection portion of the cover 13 with the optical member 14 may be positioned around the upper end portion of the optical member 14 by increasing the thickness of the package 11 in the vertical direction. By enlarging the internal space of the package 11, the protection area inside the package 11 can be widened.
 カバー13は、実質的に無機材料からなる。従って、光電変換装置1は、耐湿性に関して改善されている。カバー13は、実質的に金属材料またはセラミックスからなる。例示的なカバー13は、実質的に鉄-ニッケル-コバルト(Fe-Ni-Co)合金またはニッケル鉄(Ni-Fe)合金からなる。あるいは、カバー13は、例えば、ホウ珪酸ガラスなどのガラス材料からなる。 The cover 13 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance. The cover 13 is substantially made of a metal material or ceramics. The exemplary cover 13 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy or a nickel iron (Ni—Fe) alloy. Alternatively, the cover 13 is made of a glass material such as borosilicate glass, for example.
 接合部材15は、実質的に無機材料からなる。従って、光電変換装置1は、耐湿性に関して改善されている。接合部材15は、実質的に金属材料からなる。例示的な接合材15は、半田である。半田の例は、SnPb系、SnAg系、SnAgCu系、SnAgCu系、SnZnBi系、SnAgInBi系、SnZnAl系である。 The joining member 15 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance. The joining member 15 is substantially made of a metal material. An exemplary bonding material 15 is solder. Examples of solders are SnPb, SnAg, SnAgCu, SnAgCu, SnZnBi, SnAgInBi, and SnZnAl.
 光学部材14は、光電変換素子12の上方に設けられており、カバー13の貫通孔131に挿入されている。図7の拡大図に、光学部材14の例示的な固定構造が示されている。光学部材14は、接合部材16によってカバー13に固定されている。接合部材16は、実質的に無機材料からなる。従って、光電変換装置1は、耐湿性に関して改善されている。接合部材16は、例えば低融点ガラスである。“低融点ガラス”とは、ガラス転移点が600℃以下程度のガラスのことをいう。 The optical member 14 is provided above the photoelectric conversion element 12 and is inserted into the through hole 131 of the cover 13. An exemplary fixing structure of the optical member 14 is shown in the enlarged view of FIG. The optical member 14 is fixed to the cover 13 by a joining member 16. The joining member 16 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance. The joining member 16 is, for example, low melting point glass. “Low melting glass” refers to glass having a glass transition point of about 600 ° C. or less.
 図8に示されているように、光学部材14の他の例示的な固定構造において、光学部材14は、金属材料を含む接合部材18によって接合されている。光学部材14の側面に、金属薄膜17が形成されている。接合部材18は、実質的に無機材料からなる。従って、光電変換装置1は、耐湿性に関して改善されている。接合部材18の材料例は、金スズ(AuSn)合金である。図9に示されているように、金属薄膜17は、光学部材14の側面に、カバー13に接合される部分において一周にわたって形成されている。金属薄膜17の例示的な形成方法は、蒸着である。 As shown in FIG. 8, in another exemplary fixing structure of the optical member 14, the optical member 14 is joined by a joining member 18 containing a metal material. A metal thin film 17 is formed on the side surface of the optical member 14. The joining member 18 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance. The material example of the joining member 18 is a gold tin (AuSn) alloy. As shown in FIG. 9, the metal thin film 17 is formed on the side surface of the optical member 14 over the circumference in a portion joined to the cover 13. An exemplary method for forming the metal thin film 17 is vapor deposition.
 光学部材14は、透光性を有しており、集光レンズ2から届いた光を光電変換素子12に導くという機能を有している。また、光学部材14は、光電変換素子12の実装領域に向けて光を集めることができ、実装領域に実装した光電変換素子12の受光面に多くの光を集めるように配置されている。光学部材14の“透光性”とは、太陽光の少なくとも一部の波長領域に含まれる光が透過できることをいう。光学部材14は、実質的に無機材料からなる。従って、光電変換装置1は、耐湿性に関して改善されている。光学部材14の材料例は、光学ガラスである。例示的な光学ガラスは、ホウ珪酸ガラスを含む。光電変換装置1は、実質的にホウ珪酸ガラスからなる光学部材14を有していることにより、耐湿性に関して向上されている。 The optical member 14 has translucency and has a function of guiding light that has arrived from the condenser lens 2 to the photoelectric conversion element 12. The optical member 14 can collect light toward the mounting region of the photoelectric conversion element 12 and is arranged to collect a large amount of light on the light receiving surface of the photoelectric conversion element 12 mounted in the mounting region. “Translucency” of the optical member 14 means that light included in at least a part of the wavelength region of sunlight can be transmitted. The optical member 14 is substantially made of an inorganic material. Therefore, the photoelectric conversion device 1 is improved with respect to moisture resistance. An example of the material of the optical member 14 is optical glass. Exemplary optical glasses include borosilicate glass. The photoelectric conversion device 1 is improved in terms of moisture resistance by having the optical member 14 substantially made of borosilicate glass.
 例示的な光学部材14は、プリズムである。光学部材14は、上端から下端に向かうに従って断面積が小さくなる角錐状を成している。集光レンズ2から光学部材14に届いた光は、光学部材14の内部と外部との界面において繰り返し全反射される。光学部材14は、光の全反射によって断面積内の光エネルギーの強度分布を均等化するという機能を有している。 The exemplary optical member 14 is a prism. The optical member 14 has a pyramid shape in which the cross-sectional area decreases from the upper end toward the lower end. The light reaching the optical member 14 from the condenser lens 2 is repeatedly totally reflected at the interface between the inside and the outside of the optical member 14. The optical member 14 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by total reflection of light.
 光電変換装置1は、光電変換素子12がパッケージ11とカバー13と光学部材14とによって封入されていることによって、耐環境性に関して改善されている。特に、光電変換装置1は、光電変換素子12が気密に封入されていることによって、耐湿性に関して向上されている。 The photoelectric conversion device 1 is improved in terms of environmental resistance because the photoelectric conversion element 12 is enclosed by the package 11, the cover 13, and the optical member 14. In particular, the photoelectric conversion device 1 is improved in terms of moisture resistance because the photoelectric conversion element 12 is hermetically sealed.
 光電変換素子12が、パッケージ11とカバー13と光学部材14とによって形成される内部空間に設けられていることにより、本実施形態における光電変換装置1は、光電変換素子が樹脂によって封入されている構造に比べて、耐湿性に関して改善されている。内部空間の例示的な状態は空隙である。内部空間の他の例示的な状態は、真空状態またはガスが充填された状態である。 Since the photoelectric conversion element 12 is provided in an internal space formed by the package 11, the cover 13, and the optical member 14, the photoelectric conversion device 1 in the present embodiment has the photoelectric conversion element sealed with a resin. Compared to the structure, the moisture resistance is improved. An exemplary state of the interior space is a void. Another exemplary state of the interior space is a vacuum state or a state filled with gas.
 光電変換装置1が屋外にて使用すると、外気の温度の影響を受けて、温度が高くなったり、低くなったりする。仮に、パッケージ11の内部空間が樹脂によって充填されていると、樹脂が熱膨張・熱収縮を起こして、熱による樹脂の劣化が進行する。そして、樹脂がパッケージ11内部にて剥離を起こし、パッケージ11にクラックが発生する虞がある。その結果、パッケージ11の内部空間の封止性を維持することが困難となり、光電変換素子12が腐食し、光電変換効率が低下する。本実施形態によれば、パッケージ11の内部空間に樹脂が充填されていないため、樹脂によるパッケージ11の破壊が発生することがなく、パッケージ11の封止性を向上させることができる。 When the photoelectric conversion device 1 is used outdoors, the temperature increases or decreases under the influence of the temperature of the outside air. If the internal space of the package 11 is filled with the resin, the resin undergoes thermal expansion / contraction, and the deterioration of the resin due to heat proceeds. Then, the resin may be peeled inside the package 11 and the package 11 may be cracked. As a result, it becomes difficult to maintain the sealing property of the internal space of the package 11, the photoelectric conversion element 12 is corroded, and the photoelectric conversion efficiency is lowered. According to this embodiment, since the resin is not filled in the internal space of the package 11, the package 11 is not broken by the resin, and the sealing performance of the package 11 can be improved.
 再び図2を参照して、第2の光学部材2は、複数の光学部材14に対応している複数のレンズ部分21を有している。複数のレンズ部分21の各々は、ドーム形状を有するフレネルレンズである。複数のレンズ部分21の各々は、対応する光学部材14に光を集めるという機能を有している。光学部材14の材料例は、ガラスである。 Referring to FIG. 2 again, the second optical member 2 has a plurality of lens portions 21 corresponding to the plurality of optical members 14. Each of the plurality of lens portions 21 is a Fresnel lens having a dome shape. Each of the plurality of lens portions 21 has a function of collecting light on the corresponding optical member 14. The material example of the optical member 14 is glass.
 本実施形態の光電変換モジュールにおける受光構造について図10を参照して説明する。図10において、光の進み方が、模式的に矢印によって示されている。レンズ部分21に入射された光91は、光学部材14の上端部に集められる。光学部材14に入射された光92は、光学部材14の内部と外部との界面において全反射を繰り返しながら下方へ進む。光92は、光学部材14の下端部から光電変換素子12の上面に入射される。光電変換素子12は、光エネルギーを電力に変換する。 The light receiving structure in the photoelectric conversion module of the present embodiment will be described with reference to FIG. In FIG. 10, how the light travels is schematically shown by arrows. The light 91 incident on the lens portion 21 is collected at the upper end of the optical member 14. The light 92 incident on the optical member 14 travels downward while repeating total reflection at the interface between the inside and the outside of the optical member 14. The light 92 is incident on the upper surface of the photoelectric conversion element 12 from the lower end portion of the optical member 14. The photoelectric conversion element 12 converts light energy into electric power.
 本実施形態における光電変換モジュールは、パッケージ11をセラミックパッケージにすることによって、光電変換装置1の内部の封止性を良好に維持することができ、耐湿性に関して改善されていることにより、例えば光電変換素子12などの光電変換装置1の内部構成における劣化が低減されている。従って、本実施形態における光電変換モジュールは、光電変換の効率に関して向上されている。 The photoelectric conversion module in this embodiment can maintain the sealing performance inside the photoelectric conversion device 1 satisfactorily by making the package 11 a ceramic package, and has improved humidity resistance. Deterioration in the internal configuration of the photoelectric conversion device 1 such as the conversion element 12 is reduced. Therefore, the photoelectric conversion module in the present embodiment is improved with respect to the efficiency of photoelectric conversion.
 ≪変形例1≫
 変形例1に係る光電変換装置のうち、本実施形態に係る光電変換装置と同様な部分については、同一の符号を付して適宜説明を省略する。
<< Modification 1 >>
Of the photoelectric conversion device according to Modification 1, the same parts as those of the photoelectric conversion device according to the present embodiment are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 図11および図12に示されているように、変形例1に係る光電変換装置1は、パッケージ11と、パッケージ11内に設けられたサブマウント基板12Xおよび光電変換素子12と、パッケージ11の上に設けられたカバー13とを含んでいる。図3において、内部構造を示すことを目的に、パッケージ11は、部分的に省略された状態で示されている。図3において、同様の目的で、カバー13は省略されている。 As shown in FIGS. 11 and 12, the photoelectric conversion device 1 according to the first modification includes a package 11, a submount substrate 12 </ b> X and a photoelectric conversion element 12 provided in the package 11, and the package 11. And a cover 13 provided on the housing. In FIG. 3, the package 11 is shown partially omitted for the purpose of showing the internal structure. In FIG. 3, the cover 13 is omitted for the same purpose.
 パッケージ11は、ベース部111と、ベース部111の上に設けられたフレーム部112と、ベース部111に埋め込まれた金属部材1131と、複数のリード端子1141とを含んでいる。パッケージ11は、キャビティー部115を有している。 The package 11 includes a base part 111, a frame part 112 provided on the base part 111, a metal member 1131 embedded in the base part 111, and a plurality of lead terminals 1141. The package 11 has a cavity portion 115.
 ベース部111およびフレーム112部は、実質的に絶縁材料からなる。絶縁材料の例は、セラミックスである。ベース部111およびフレーム部112がセラミックスを含んでいる場合、光電変換装置1は放熱性に関して向上されている。 The base portion 111 and the frame 112 portion are substantially made of an insulating material. An example of the insulating material is ceramics. When the base part 111 and the frame part 112 contain ceramics, the photoelectric conversion device 1 is improved with respect to heat dissipation.
 金属部材1131は、ベース部111に固定されている。金属部材1131の下面は、金属部材1131の上面より面積が大きい。ベース部111のサイズは、金属部材1131の下面よりさらに大きい。金属部材1131の材料例は、銅(Cu)である。光電変換装置1は、ベース部111に埋め込まれた金属部材1131を含んでいることにより、放熱性に関して改善されている。 The metal member 1131 is fixed to the base portion 111. The lower surface of the metal member 1131 has a larger area than the upper surface of the metal member 1131. The size of the base part 111 is larger than the lower surface of the metal member 1131. An example of the material of the metal member 1131 is copper (Cu). Since the photoelectric conversion device 1 includes the metal member 1131 embedded in the base portion 111, heat dissipation is improved.
 複数のリード端子1141の各々の内側端部は、フレーム部112の内側に位置している。リード端子1141の内側端部は、ベース部111の上に設けられている。複数のリード端子の各々の外側端部は、フレーム部112の外側に位置している。 The inner end portion of each of the plurality of lead terminals 1141 is located inside the frame portion 112. An inner end portion of the lead terminal 1141 is provided on the base portion 111. The outer end portion of each of the plurality of lead terminals is located outside the frame portion 112.
 サブマウント基板12Xは、金属部材1131の上に設けられており、金属部材1131に接合されている。サブマウント基板12Xは、導体パターン121を有している。導体パターン121は、ボンディングワイヤによってリード端子1141に電気的に接続されている。サブマウント基板12Xは、光電変換素子12の実装領域を有している。サブマウント基板12Xの材料例は、セラミックスである。光電変換装置1は、金属部材1131の上に設けられたサブマウント基板12Xを有していることにより、放熱性に関して改善されている。 The submount substrate 12X is provided on the metal member 1131 and joined to the metal member 1131. The submount substrate 12X has a conductor pattern 121. The conductor pattern 121 is electrically connected to the lead terminal 1141 by a bonding wire. The submount substrate 12X has a mounting region for the photoelectric conversion elements 12. A material example of the submount substrate 12X is ceramics. Since the photoelectric conversion device 1 has the submount substrate 12X provided on the metal member 1131, heat dissipation is improved.
 光電変換素子12は、サブマウント基板12Xに実装されており、導体パターン121に電気的に接続されている。光電変換素子12は、ボンディングワイヤによってリード端子1141に電気的に接続されている。 The photoelectric conversion element 12 is mounted on the submount substrate 12X and is electrically connected to the conductor pattern 121. The photoelectric conversion element 12 is electrically connected to the lead terminal 1141 by a bonding wire.
 変形例1の光電変換モジュールにおける受光構造について図13を参照して説明する。図13において、光の進み方が、模式的に矢印によって示されている。レンズ部分21に入射された光91は、光電変換装置1の上端部に集められる。光91は、光電変換素子12の上面に入射される。光電変換素子12は、光エネルギーを電力に変換する。 The light receiving structure in the photoelectric conversion module of Modification 1 will be described with reference to FIG. In FIG. 13, how the light travels is schematically shown by arrows. The light 91 incident on the lens portion 21 is collected at the upper end portion of the photoelectric conversion device 1. The light 91 is incident on the upper surface of the photoelectric conversion element 12. The photoelectric conversion element 12 converts light energy into electric power.
 変形例1における光電変換モジュールは、放熱性に関して改善されていることにより、例えば光電変換素子12における光電変換の効率に関して改善されている。従って、変形例1における光電変換モジュールは、光電変換の効率に関して向上されている。 The photoelectric conversion module in Modification 1 is improved with respect to the efficiency of photoelectric conversion in, for example, the photoelectric conversion element 12 by improving heat dissipation. Therefore, the photoelectric conversion module in Modification 1 is improved with respect to the efficiency of photoelectric conversion.
 図13において、熱の伝導経路が矢印によって示されている。光電変換素子12によって発生された熱は、サブマウント基板12Xを介して金属部材1131に伝導される。金属部材1131に伝導された熱は、例えば図1に示された基体3に伝導される。光電変換モジュールが集光型太陽電池モジュールである場合、太陽光が光学部材2によって集められるため、例えば光電変換素子12において熱が発生することがある。光電変換モジュールは、温度の上昇に伴って、光電変換の効率が低下する可能性がある。変形例1における光電変換モジュールは、光電変換素子12からの熱の伝導経路を有していることにより、光電変換の効率に関して改善されている。 In FIG. 13, the heat conduction path is indicated by arrows. The heat generated by the photoelectric conversion element 12 is conducted to the metal member 1131 through the submount substrate 12X. The heat conducted to the metal member 1131 is conducted to the base 3 shown in FIG. 1, for example. When the photoelectric conversion module is a concentrating solar cell module, since sunlight is collected by the optical member 2, for example, heat may be generated in the photoelectric conversion element 12. In the photoelectric conversion module, the efficiency of photoelectric conversion may decrease as the temperature rises. The photoelectric conversion module according to Modification 1 has a heat conduction path from the photoelectric conversion element 12, thereby improving the photoelectric conversion efficiency.
 変形例1における光電変換モジュールは、パッケージ11内部に放熱性の優れた金属部材を埋め込むことによって、光電変換装置1の内部の温度が上昇するのを抑制することができ、光電変換装置1の放熱性を向上させることができる。従って、変形例1における光電変換モジュールは、耐環境性の向上に寄与することができる。 The photoelectric conversion module in Modification 1 can suppress the temperature inside the photoelectric conversion device 1 from rising by embedding a metal member having excellent heat dissipation in the package 11. Can be improved. Therefore, the photoelectric conversion module in the modification 1 can contribute to improvement of environmental resistance.
 ≪変形例2≫
 変形例2に係る光電変換装置のうち、本実施形態に係る光電変換装置または変形例1に係る光電変換装置と同様な部分については、同一の符号を付して適宜説明を省略する。
<< Modification 2 >>
Of the photoelectric conversion device according to Modification 2, the same parts as those of the photoelectric conversion device according to this embodiment or the photoelectric conversion device according to Modification 1 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 図14に示されているように、変形例2に係る光電変換装置1は、パッケージ11と、パッケージ11に実装された光電変換素子12と、パッケージ11の上に設けられたカバー13と、光電変換素子12の上方に設けられた光学部材14とを含んでいる。図15に示されているように、光電変換装置1は、パッケージ11に実装されたバイパスダイオード152をさらに含んでいる。 As illustrated in FIG. 14, the photoelectric conversion device 1 according to Modification 2 includes a package 11, a photoelectric conversion element 12 mounted on the package 11, a cover 13 provided on the package 11, and a photoelectric conversion device. And an optical member 14 provided above the conversion element 12. As shown in FIG. 15, the photoelectric conversion device 1 further includes a bypass diode 152 mounted on the package 11.
 パッケージ11は、ベース部111と、ベース部111の上に設けられたフレーム部112とを含んでいる。パッケージ11は、フレーム部112の上端部に設けられた第1の引出電極1132と、ベース部111の上面に設けられた第2の引出電極1142とを有している。 Package 11 includes a base portion 111 and a frame portion 112 provided on the base portion 111. The package 11 includes a first extraction electrode 1132 provided on the upper end portion of the frame portion 112 and a second extraction electrode 1142 provided on the upper surface of the base portion 111.
 第1の引出電極1132は、導体パターン1152および第1のリード端子1162を含んでいる。第1の引出電極1132は、パッケージ11の内側に位置する内側端部と、パッケージ11の外側に位置する外側端部とを有している。 The first extraction electrode 1132 includes a conductor pattern 1152 and a first lead terminal 1162. The first extraction electrode 1132 has an inner end located inside the package 11 and an outer end located outside the package 11.
 図16に示されているように、導体パターン1152は、フレーム部112の上面に全面的に形成されており、キャビティ領域を囲んでいる。図16において、導体パターン1152は、ドット模様によって示されている。図16において、パッケージ11は、全体構成を示すことを目的に、分解された状態で示されている。フレーム部112が実質的にセラミックスからなる場合、例示的な導体パターン1152は、フレーム部112とともに焼成されたメタライズ層である。導体パターン1152は、タングステン(W)またはモリブデン(Mo)を含んでいる。 As shown in FIG. 16, the conductor pattern 1152 is entirely formed on the upper surface of the frame portion 112 and surrounds the cavity region. In FIG. 16, the conductor pattern 1152 is indicated by a dot pattern. In FIG. 16, the package 11 is shown in a disassembled state for the purpose of showing the overall configuration. In the case where the frame part 112 is substantially made of ceramic, the exemplary conductor pattern 1152 is a metallized layer fired together with the frame part 112. The conductor pattern 1152 contains tungsten (W) or molybdenum (Mo).
 第1のリード端子1162は、リング部1172および端子部1182を有している。第1のリード端子1162は、リング部1172において導体パターン1152に接合されている。リング部1172の開口部の面積は、導体パターン1152の開口部の面積より大きい。図16において、導体パターン1152におけるリング部1172の内周位置が、破線によって示されている。例示的な第1のリード端子1162は、銅を含んでいる。例示的な第1のリード端子1162は、実質的に無酸素銅からなる。他の例示的な第1のリード端子1162は、実質的に鉄-ニッケル-コバルト(Fe-Ni-Co)合金からなる。 The first lead terminal 1162 has a ring portion 1172 and a terminal portion 1182. The first lead terminal 1162 is joined to the conductor pattern 1152 at the ring portion 1172. The area of the opening of the ring portion 1172 is larger than the area of the opening of the conductor pattern 1152. In FIG. 16, the inner peripheral position of the ring portion 1172 in the conductor pattern 1152 is indicated by a broken line. The exemplary first lead terminal 1162 includes copper. The exemplary first lead terminal 1162 is substantially made of oxygen-free copper. Another exemplary first lead terminal 1162 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy.
 第2の引出電極1142は、ベース部111におけるフレーム部112に囲まれた領域に設けられている。第2の引出電極1142は、第2のリード端子である。 The second extraction electrode 1142 is provided in a region surrounded by the frame portion 112 in the base portion 111. The second extraction electrode 1142 is a second lead terminal.
 第2のリード端子1141は、ベース部111およびフレーム部112の間に設けられており、ベース部111およびフレーム部112に接合されている。例示的な第2のリード端子1141は、銅を含んでいる。例示的な第2のリード端子1141は、実質的に無酸素銅からなる。他の例示的な第2のリード端子1141は、実質的に鉄-ニッケル-コバルト(Fe-Ni-Co)合金からなる。 The second lead terminal 1141 is provided between the base part 111 and the frame part 112, and is joined to the base part 111 and the frame part 112. The exemplary second lead terminal 1141 includes copper. The exemplary second lead terminal 1141 is substantially made of oxygen-free copper. Another exemplary second lead terminal 1141 consists essentially of an iron-nickel-cobalt (Fe—Ni—Co) alloy.
 図17に示されているように、光電変換素子12は、第1の電極121を含む上端部と、第2の電極122を含む下端部とを有している。第1の電極121は、第1の引出電極1132に電気的に接続されている。さらに具体的に、第1の電極121は、ボンディングワイヤを介して導体パターン1152に電気的に接続されている。ボンディングワイヤは、第1の引出電極1132の内側端部に接続されている。第2の電極122は、第2のリード端子1141に接合されており、第2のリード端子1141に電気的に接続されている。 As shown in FIG. 17, the photoelectric conversion element 12 has an upper end portion including the first electrode 121 and a lower end portion including the second electrode 122. The first electrode 121 is electrically connected to the first extraction electrode 1132. More specifically, the first electrode 121 is electrically connected to the conductor pattern 1152 through a bonding wire. The bonding wire is connected to the inner end of the first extraction electrode 1132. The second electrode 122 is bonded to the second lead terminal 1141 and is electrically connected to the second lead terminal 1141.
 第2のリード端子1141の上に設けられた光電変換素子12が、光電変換素子12の高さに対応した位置に設けられた第1の引出電極1132に電気的に接続されていることにより、光電変換装置1は、光電変換素子12の実装の信頼性に関して改善されている。さらに具体的に、導体パターン1152が光電変換素子12の第1の電極121に対応する高さ位置に設けられていることにより、光電変換装置1は、光電変換素子12のワイヤボンディングにおける信頼性に関して改善されている。 The photoelectric conversion element 12 provided on the second lead terminal 1141 is electrically connected to the first extraction electrode 1132 provided at a position corresponding to the height of the photoelectric conversion element 12, The photoelectric conversion device 1 is improved with respect to the reliability of mounting the photoelectric conversion element 12. More specifically, since the conductor pattern 1152 is provided at a height position corresponding to the first electrode 121 of the photoelectric conversion element 12, the photoelectric conversion device 1 relates to the reliability in wire bonding of the photoelectric conversion element 12. It has been improved.
 バイパスダイオード152は、パッケージ11のキャビティ部に収容されており、第2のリード端子1141の上に設けられている。図18に示されているように、バイパスダイオード152は、第1の電極1512を含む上端部と、第2の電極1522を含む下端部とを有している。第1の電極1512は、第1の引出電極1132に電気的に接続されている。さらに具体的に、第1の電極1512は、ボンディングワイヤを介して導体パターン1152に電気的に接続されている。ボンディングワイヤは、第1の引出電極1132の内側端部に接続されている。第2の電極1522は、第2のリード端子1141に接合されており、第2のリード端子1141に電気的に接続されている。 The bypass diode 152 is accommodated in the cavity of the package 11 and is provided on the second lead terminal 1141. As shown in FIG. 18, the bypass diode 152 has an upper end including the first electrode 1512 and a lower end including the second electrode 1522. The first electrode 1512 is electrically connected to the first extraction electrode 1132. More specifically, the first electrode 1512 is electrically connected to the conductor pattern 1152 through a bonding wire. The bonding wire is connected to the inner end of the first extraction electrode 1132. The second electrode 1522 is bonded to the second lead terminal 1141 and is electrically connected to the second lead terminal 1141.
 第1の引出電極1132の外側端部および第2の引出電極1142の外側端部が、光電変換素子12を基準に互いに逆方向に配置されていることにより、光電変換モジュールは、生産性に関して改善されている。さらに具体的に、変形例2における光電変換モジュールは、複数の光電変換装置1の接続構造に関して改善されている。 The photoelectric conversion module is improved in terms of productivity because the outer end portion of the first extraction electrode 1132 and the outer end portion of the second extraction electrode 1142 are arranged in opposite directions with respect to the photoelectric conversion element 12. Has been. More specifically, the photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1.
 第1の引出電極1132および第2の引出電極1142に関して“逆方向に配置”とは、例えば図15において、第1の引出電極1132が光電変換素子12を基準に仮想のx軸の正方向に延在しており、第2の引出電極1142が光電変換素子12を基準に仮想のx軸の負方向に延在しているという構造のことをいう。 With respect to the first extraction electrode 1132 and the second extraction electrode 1142, “arranged in the reverse direction” means that, for example, in FIG. 15, the first extraction electrode 1132 is in the positive direction of the virtual x axis with respect to the photoelectric conversion element 12. This is a structure in which the second extraction electrode 1142 extends in the negative direction of the virtual x-axis with reference to the photoelectric conversion element 12.
 変形例2において、第1の引出電極1132の外側端部および第2の引出電極1142の外側端部が、互いに異なる高さ位置に設けられていることにより、光電変換モジュールは、生産性に関して改善されている。さらに具体的に、変形例2における光電変換モジュールは、複数の光電変換装置1の接続構造に関して改善されている。 In the second modified example, the photoelectric conversion module is improved in terms of productivity because the outer end portion of the first extraction electrode 1132 and the outer end portion of the second extraction electrode 1142 are provided at different height positions. Has been. More specifically, the photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1.
 第1の引出電極1132の外側端部および第2の引出電極1142の外側端部に関して“異なる高さ位置に設けられた”とは、例えば図14において、第1の引出電極1132の外側端部と第2の引出電極1142の外側端部とが、仮想のz軸方向において異なる位置に設けられているという構造のことをいう。 With respect to the outer end portion of the first extraction electrode 1132 and the outer end portion of the second extraction electrode 1142, “provided at different height positions” means that the outer end portion of the first extraction electrode 1132 in FIG. And the outer end of the second extraction electrode 1142 are provided at different positions in the virtual z-axis direction.
 図19に示されているように、変形例2の光電変換モジュールは、直列に接続された複数の光電変換装置1を含んでいる。複数の光電変換装置1の各々において、光電変換素子12およびバイパスダイオード152は、並列に接続されている。バイパスダイオード152は、複数の光電変換素子12の一部に故障が生じた場合、または、入射光の遮断により出力を生じなくなった場合に、出力を生じていない光電変換素子12を回避する電気的な経路を形成するものである。変形例2における光電変換モジュールは、例えば複数の光電変換装置1を直列に接続する場合に、複数の光電変換装置1の接続構造に関して改善されている。 As shown in FIG. 19, the photoelectric conversion module of Modification 2 includes a plurality of photoelectric conversion devices 1 connected in series. In each of the plurality of photoelectric conversion devices 1, the photoelectric conversion element 12 and the bypass diode 152 are connected in parallel. The bypass diode 152 is an electrical device that avoids the photoelectric conversion element 12 that does not generate output when a failure occurs in a part of the plurality of photoelectric conversion elements 12 or when output is not generated due to blocking of incident light. It forms a simple path. The photoelectric conversion module in Modification 2 is improved with respect to the connection structure of the plurality of photoelectric conversion devices 1 when, for example, the plurality of photoelectric conversion devices 1 are connected in series.
 変形例2における光電変換モジュールは、光電変換装置1の接続構造を改善することによって、複数の光電変換装置1の接続状態を良好に維持することができ、光電変換装置1の接続信頼性を向上させることができる。従って、変形例2における光電変換モジュールは、耐環境性の向上に寄与することができる。 The photoelectric conversion module in the modification 2 can maintain the connection state of the some photoelectric conversion apparatus 1 favorably by improving the connection structure of the photoelectric conversion apparatus 1, and improves the connection reliability of the photoelectric conversion apparatus 1. Can be made. Therefore, the photoelectric conversion module in Modification 2 can contribute to improvement of environmental resistance.
 なお、変形例2では、図16において、パッケージ11は、ベース部111と、ベース部111の上に設けられたフレーム部112とを含んでいるとしたが、これに限られない。例えば、ベース部111がパッケージ11とは別体であって、パッケージ11がフレーム部112から構成される構造であってもよい。また、変形例2では、第1の引出電極1132と第2の引出電極1142は、外側端部を有しているが、一方が外側端部を有し、他方が外側端部を有さない構造であってもよい。例えば、第1の引出電極1132は外側端部を有し、第2の引出電極1142が外側端部を有さない構造である。複数の光電変換装置1を接続するときに、どちらか一方の端子の外側端部がない場合、複数の光電変換装置1の接続方法の自由度を向上させることができる。 In the second modification, in FIG. 16, the package 11 includes the base portion 111 and the frame portion 112 provided on the base portion 111, but is not limited thereto. For example, the base unit 111 may be separate from the package 11 and the package 11 may be configured by the frame unit 112. In Modification 2, the first extraction electrode 1132 and the second extraction electrode 1142 have outer end portions, but one has an outer end portion and the other does not have an outer end portion. It may be a structure. For example, the first extraction electrode 1132 has an outer end, and the second extraction electrode 1142 does not have an outer end. When the plurality of photoelectric conversion devices 1 are connected, if there is no outer end portion of one of the terminals, the degree of freedom of the connection method of the plurality of photoelectric conversion devices 1 can be improved.
 ≪変形例3≫
 変形例3に係る光電変換装置のうち、本実施形態に係る光電変換装置または変形例1、2に係る光電変換装置と同様な部分については、同一の符号を付して適宜説明を省略する。
<< Modification 3 >>
Of the photoelectric conversion device according to Modification 3, the same parts as those of the photoelectric conversion device according to the present embodiment or the photoelectric conversion devices according to Modifications 1 and 2 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
 光学部材14は、光電変換素子12の上方に設けられており、第1の集光プリズム41および第2の集光プリズム42を含んでいる。第1の集光プリズム41および第2の集光プリズム42は、上端から下端に向かうに従って断面積が小さくなる角錐状を成している。なお、第1の集光プリズム41は、厚みを薄く設定した場合、テーパー状でなく板体であってもよい。 The optical member 14 is provided above the photoelectric conversion element 12 and includes a first condenser prism 41 and a second condenser prism 42. The first condensing prism 41 and the second condensing prism 42 have a pyramid shape in which the cross-sectional area decreases from the upper end toward the lower end. In addition, the 1st condensing prism 41 may be not a taper shape but a plate body, when thickness is set thin.
 第1の集光プリズム41は、カバー13の貫通孔内に設けられており、無機材料からなる接合部材によってカバー13に接合されている。従って、光電変換モジュールは、耐環境性に関して改善されている。例示的な接合部材は、実質的に金スズ(AuSn)合金からなる。他の例示的な接合部材は、実質的に低融点ガラスからなる。“低融点ガラス”とは、ガラス転移点が600℃以下程度のガラスのことをいう。 The first condenser prism 41 is provided in the through hole of the cover 13 and is joined to the cover 13 by a joining member made of an inorganic material. Therefore, the photoelectric conversion module is improved with respect to environmental resistance. An exemplary joining member consists essentially of a gold tin (AuSn) alloy. Another exemplary joining member consists essentially of low melting glass. “Low melting glass” refers to glass having a glass transition point of about 600 ° C. or less.
 図21に示されているように、第1の集光プリズム41は、透光性を有するレンズ部分411および反射層412を含んでいる。 As shown in FIG. 21, the first condensing prism 41 includes a lens portion 411 having a light transmitting property and a reflective layer 412.
 レンズ部分411の“透光性”とは、光電変換素子12によってエネルギー変換される光が透過できることをいう。例えば光電変換装置が太陽電池装置の場合、“透光性”とは、太陽光の少なくとも一部の波長が透過できることをいう。レンズ部分411の材料例は、光学ガラスである。例示的な光学ガラスは、ホウ珪酸ガラスを含む。光電変換モジュールは、実質的にホウ珪酸ガラスからなるレンズ部分411を有していることにより、耐環境性に関して向上されている。 “Translucency” of the lens portion 411 means that light converted by the photoelectric conversion element 12 can be transmitted. For example, when the photoelectric conversion device is a solar cell device, “translucency” means that at least part of the wavelength of sunlight can be transmitted. An example of the material of the lens portion 411 is optical glass. Exemplary optical glasses include borosilicate glass. The photoelectric conversion module is improved in terms of environmental resistance by having the lens portion 411 substantially made of borosilicate glass.
 反射層412は、レンズ部分411の側面に、カバー13に接合される部分において一周にわたって形成されている。反射層412の例は、実質的に金属からなる層である。反射層412の例示的な形成方法は、蒸着である。反射層412の他の例は、実質的に誘電体からなる層である。さらに具体的に、反射層412の他の例は、誘電体多層膜である。誘電体多層膜とは、互いに光の屈折率の異なる複数の誘電体層が交互に積層されているものであり、光の屈折率差によって光の全反射を生じさせるものである。 The reflection layer 412 is formed on the side surface of the lens portion 411 over the entire circumference at the portion joined to the cover 13. An example of the reflective layer 412 is a layer substantially made of metal. An exemplary method for forming the reflective layer 412 is vapor deposition. Another example of the reflective layer 412 is a layer substantially made of a dielectric. More specifically, another example of the reflective layer 412 is a dielectric multilayer film. The dielectric multilayer film is formed by alternately laminating a plurality of dielectric layers having different light refractive indexes, and causes total reflection of light due to the difference in the refractive index of light.
 光は、反射層412において繰り返し全反射される。第1の集光プリズム41は、光の反射によって断面積内の光エネルギーの強度分布を均等化するという機能を有している。 The light is repeatedly totally reflected at the reflection layer 412. The first condenser prism 41 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by reflecting light.
 図20を参照して、第2の集光プリズム42は、第1の集光プリズム41の上に設けられており、透光性を有している。第2の集光プリズム42の“透光性”とは、光電変換素子12によってエネルギー変換される光が透過できることをいう。例えば光電変換装置が太陽電池装置の場合、“透光性”とは、太陽光の少なくとも一部の波長が透過できることをいう。第2の集光プリズム42の材料例は、光学ガラスである。例示的な光学ガラスは、ホウ珪酸ガラスを含む。光電変換モジュールは、実質的にホウ珪酸ガラスからなる第2の集光プリズム42を有していることにより、耐環境性に関して向上されている。 Referring to FIG. 20, the second condenser prism 42 is provided on the first condenser prism 41, and has translucency. The “translucency” of the second condensing prism 42 means that the light whose energy is converted by the photoelectric conversion element 12 can be transmitted. For example, when the photoelectric conversion device is a solar cell device, “translucency” means that at least part of the wavelength of sunlight can be transmitted. The material example of the 2nd condensing prism 42 is optical glass. Exemplary optical glasses include borosilicate glass. The photoelectric conversion module has the second light collecting prism 42 substantially made of borosilicate glass, thereby improving the environmental resistance.
 光は、第2の集光プリズム42の内部と外部との界面において繰り返し全反射される。第2の集光プリズム42は、光の全反射によって断面積内の光エネルギーの強度分布を均等化するという機能を有している。 The light is repeatedly totally reflected at the interface between the inside and the outside of the second condenser prism 42. The second condenser prism 42 has a function of equalizing the intensity distribution of light energy in the cross-sectional area by total reflection of light.
 集光レンズに入射された光は、光学部材14に集められる。変形例3において、集光レンズは一次光学系部材であり、第2の集光プリズム42は二次光学系部材であり、第1の集光プリズム41は三次光学系部材である。第1の集光プリズム41および第2の集光プリズム42は、集光レンズによって集められた光を光電変換素子12に導くという機能を有している。 The light incident on the condenser lens is collected by the optical member 14. In Modification 3, the condensing lens is a primary optical system member, the second condensing prism 42 is a secondary optical system member, and the first condensing prism 41 is a tertiary optical system member. The first condenser prism 41 and the second condenser prism 42 have a function of guiding the light collected by the condenser lens to the photoelectric conversion element 12.
 変形例3における光電変換モジュールは、キャビティー部115を気密封止するための構造を構成する第1の集光プリズム41と、この第1の集光プリズム41とは別に設けられた第2の集光プリズム42とを含んでいることにより、光電変換素子12の気密封止および光電変換効率に関して改善されている。 The photoelectric conversion module according to Modification 3 includes a first condensing prism 41 that constitutes a structure for hermetically sealing the cavity 115, and a second condensing prism 41 provided separately from the first condensing prism 41. By including the condenser prism 42, the hermetic sealing of the photoelectric conversion element 12 and the photoelectric conversion efficiency are improved.
 変形例3における光電変換モジュールは、第1の集光プリズム41と、この第1の集光プリズム41とは別に設けられた第2の集光プリズム42とを含んでいることにより、光電変換素子12の気密封止および生産性に関して改善されている。 The photoelectric conversion module according to Modification 3 includes a first light collecting prism 41 and a second light collecting prism 42 provided separately from the first light collecting prism 41, thereby providing a photoelectric conversion element. 12 hermetic seals and productivity improvements.
 変形例3における光電変換モジュールは、第1の集光プリズム41と、この第1の集光プリズム41とは別に設けられた第2の集光プリズム42とを含んでいることにより、光電変換素子12の気密封止に関して改善されているとともに、第2の集光プリズム42の選択の自由度に関して改善されている。 The photoelectric conversion module according to Modification 3 includes a first light collecting prism 41 and a second light collecting prism 42 provided separately from the first light collecting prism 41, thereby providing a photoelectric conversion element. It is improved with respect to 12 hermetic seals and with respect to the degree of freedom of selection of the second condenser prism 42.
 変形例3における光電変換モジュールは、光電変換素子12を気密封止することにより、たとえば光電変換素子12などの光電変換装置1の内部構成における劣化が低減されている。従って、変形例3における光電変換モジュールは、耐環境性の向上に寄与することができる。 In the photoelectric conversion module in Modification 3, the deterioration in the internal configuration of the photoelectric conversion device 1 such as the photoelectric conversion element 12 is reduced by hermetically sealing the photoelectric conversion element 12. Therefore, the photoelectric conversion module in the modification 3 can contribute to improvement of environmental resistance.
 ≪変形例4≫
 変形例4に係る光電変換装置のうち、本実施形態に係る光電変換装置または変形例1、2、3に係る光電変換装置と同様な部分については、同一の符号を付して適宜説明を省略する。
<< Modification 4 >>
Among the photoelectric conversion devices according to the modification example 4, the same parts as those of the photoelectric conversion device according to the present embodiment or the photoelectric conversion devices according to the modification examples 1, 2, and 3 are denoted by the same reference numerals, and description thereof is omitted as appropriate. To do.
 図22に示されているように、平面視において、光電変換素子12は、パッケージ11の実装領域114に実装されている。図22において、内部構造を示すことを目的に、カバー13は省略されている。パッケージ11は、実装領域114を囲んでいる周囲領域114Xと、周囲領域114Xに設けられた複数のアライメントマーク116a~116dを有している。 22, the photoelectric conversion element 12 is mounted on the mounting region 114 of the package 11 in a plan view. In FIG. 22, the cover 13 is omitted for the purpose of showing the internal structure. The package 11 has a peripheral region 114X surrounding the mounting region 114 and a plurality of alignment marks 116a to 116d provided in the peripheral region 114X.
 図22において、光学部材14は、破線によって示されている。光学部材14は、下面の縁14Lと上面の縁14Uとを有している。下面の縁14Lおよび上面の縁14Uは、矩形状を有している。 22, the optical member 14 is indicated by a broken line. The optical member 14 has a lower surface edge 14L and an upper surface edge 14U. The lower surface edge 14L and the upper surface edge 14U have a rectangular shape.
 下面の縁14Lは、光電変換素子12の上面の縁より内側に位置している。従って、光電変換装置1は、光学部材14から光電変換素子12に放射される光のエネルギー変換の効率に関して改善されている。上面の縁14Uは、光電変換素子12の上面の縁より外側に位置している。従って、光電変換装置1は、光電変換素子12に対する集光効率に関して改善されている。 The lower edge 14L is located inside the upper edge of the photoelectric conversion element 12. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion of light emitted from the optical member 14 to the photoelectric conversion element 12. The upper surface edge 14 </ b> U is located outside the upper surface edge of the photoelectric conversion element 12. Therefore, the photoelectric conversion device 1 is improved with respect to the light collection efficiency with respect to the photoelectric conversion element 12.
 アライメントマーク116aと光学部材14の矩形状の下面の角142aとを結んだ線分上に、光電変換素子12の矩形状の上面の角12aが位置している。従って、光電変換装置1は、光電変換素子12の受光効率に関して改善されている。 The rectangular upper surface corner 12 a of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116 a and the rectangular lower surface corner 142 a of the optical member 14. Therefore, the photoelectric conversion device 1 is improved with respect to the light receiving efficiency of the photoelectric conversion element 12.
 同様に、アライメントマーク116bと光学部材14の矩形状の下面の角142bとを結んだ線分上に、光電変換素子12の矩形状の上面の角12bが位置している。アライメントマーク116cと光学部材14の矩形状の下面の角142cとを結んだ線分上に、光電変換素子12の矩形状の上面の角12cが位置している。アライメントマーク116dと光学部材14の矩形状の下面の角142dとを結んだ線分上に、光電変換素子12の矩形状の上面の角12dが位置している。 Similarly, the rectangular upper surface corner 12b of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116b and the rectangular lower surface corner 142b of the optical member 14. The rectangular upper surface corner 12c of the photoelectric conversion element 12 is located on a line segment connecting the alignment mark 116c and the rectangular lower surface corner 142c of the optical member 14. A rectangular upper surface corner 12d of the photoelectric conversion element 12 is positioned on a line segment connecting the alignment mark 116d and the rectangular lower surface corner 142d of the optical member 14.
 複数のアライメントマーク116a~116dは、矩形状の実装領域114の4つの角114a~114dに対応するように設けられている。従って、光電変換装置1は、光学部材14の配置の精度に関して向上されていることによって、光電変換素子12におけるエネルギー変換の効率に関して改善されている。 The plurality of alignment marks 116a to 116d are provided so as to correspond to the four corners 114a to 114d of the rectangular mounting region 114. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion in the photoelectric conversion element 12 by improving the accuracy of arrangement of the optical member 14.
 平面視において、光学部材の下面が、複数のアライメントマーク116a~116dによって規定される領域の範囲内に含まれている。従って、光電変換装置1は、光学部材14の位置決めにおける精度が向上されていることによって、光電変換素子12におけるエネルギー変換の効率に関して改善されている。 In a plan view, the lower surface of the optical member is included in the range defined by the plurality of alignment marks 116a to 116d. Therefore, the photoelectric conversion device 1 is improved with respect to the efficiency of energy conversion in the photoelectric conversion element 12 by improving the accuracy in positioning of the optical member 14.
 変形例4における光電変換モジュールは、光学部材の位置決め精度を向上させることによって、光電変換装置の内部を気密封止することができ、たとえば光電変換素子12などの光電変換装置1の内部構成における劣化が低減されている。従って、変形例4における光電変換モジュールは、耐環境性の向上に寄与することができる。 The photoelectric conversion module in Modification 4 can hermetically seal the inside of the photoelectric conversion device by improving the positioning accuracy of the optical member. For example, deterioration in the internal configuration of the photoelectric conversion device 1 such as the photoelectric conversion element 12 Has been reduced. Therefore, the photoelectric conversion module in the modification 4 can contribute to improvement of environmental resistance.

Claims (7)

  1.  ベース部と前記ベース部上に設けられたフレーム部とを含んでおり、前記フレーム部内から前記フレーム部外に設けられた第1の引出電極と、前記第1の引出電極と間を空けて前記フレーム部内から前記フレーム部外に設けられた第2の引出電極とを有している、セラミックパッケージと、
     前記セラミックパッケージ内に設けられ、前記第1の引出電極および前記第2の引出電極に電気的に接続された光起電力素子と、
     貫通孔を有しており、前記セラミックパッケージ上に設けられたカバーと、
     前記貫通孔に挿入されており、前記貫通孔の内壁面に固定され、前記光起電力素子に光を集める光学部材と、
    を備えた光電変換装置。
    A base part and a frame part provided on the base part, the first extraction electrode provided outside the frame part from the inside of the frame part, and the first extraction electrode with a gap between the first extraction electrode and the first extraction electrode A ceramic package having a second extraction electrode provided outside the frame portion from within the frame portion;
    A photovoltaic element provided in the ceramic package and electrically connected to the first extraction electrode and the second extraction electrode;
    A cover having a through hole and provided on the ceramic package;
    An optical member inserted into the through hole, fixed to the inner wall surface of the through hole, and collecting light on the photovoltaic element;
    A photoelectric conversion device comprising:
  2.  請求項1に記載の光電変換装置であって、
     前記第1の引出電極および前記第2の引出電極は、互いに異なる高さ位置に設けられており、前記第1の引出電極は前記フレーム部の上面から前記フレーム部外に延在していることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1,
    The first extraction electrode and the second extraction electrode are provided at different height positions, and the first extraction electrode extends from the upper surface of the frame portion to the outside of the frame portion. A photoelectric conversion device characterized by the above.
  3.  請求項1または請求項2に記載の光電変換装置であって、
     前記セラミックパッケージは、前記ベース部に埋め込まれた金属部材を含み、
     前記金属部材と重なる領域に前記光起電力素子が配置されていることを特徴とする光電変換装置。
    The photoelectric conversion device according to claim 1 or 2, wherein
    The ceramic package includes a metal member embedded in the base portion,
    The photovoltaic device, wherein the photovoltaic element is disposed in a region overlapping with the metal member.
  4. [規則91に基づく訂正 09.08.2010] 
     請求項1ないし請求項3のいずれかに記載の光電変換装置であって、
     前記光学部材は、前記カバーに接合されているとともに前記光起電力素子の上方に設けられた第1の集光プリズムと、前記第1集光プリズム上に設けられた第2の集光プリズムを含んでいることを特徴とする光電変換装置。
    [Correction based on Rule 91 09.08.2010]
    A photoelectric conversion device according to any one of claims 1 to 3,
    The optical member includes a first condenser prism that is bonded to the cover and provided above the photovoltaic element, and a second condenser prism provided on the first condenser prism. A photoelectric conversion device comprising:
  5. [規則91に基づく訂正 09.08.2010] 
     請求項1ないし請求項4のいずれかに記載の光電変換装置であって、
     平面視において、前記光学部材の下面の縁は前記光起電力素子の縁の内側に位置しているとともに、前記光学部材の上面の縁は前記光起電力素子の縁よりも外側に位置していることを特徴とする光電変換装置。
    [Correction based on Rule 91 09.08.2010]
    A photoelectric conversion device according to any one of claims 1 to 4,
    In plan view, the edge of the lower surface of the optical member is located inside the edge of the photovoltaic element, and the edge of the upper surface of the optical member is located outside the edge of the photovoltaic element. A photoelectric conversion device characterized by comprising:
  6.  請求項1ないし請求項5のいずれかに記載の光電変換装置と、
     前記光電変換装置上に設けられ、前記光電変換装置の前記光学部材に光を集める集光レンズと、を備えた光電変換モジュール。
    A photoelectric conversion device according to any one of claims 1 to 5,
    A photoelectric conversion module comprising: a condensing lens that is provided on the photoelectric conversion device and collects light on the optical member of the photoelectric conversion device.
  7.  光起電力素子の実装領域を有するベース部と前記ベース部上に設けられるフレーム部とを含んでおり、前記フレーム部内から前記フレーム部外に設けられる第1の引出電極と、前記第1の引出電極と間を空けて前記フレーム部内から前記フレーム部外に設けられる第2の引出電極とを有している、セラミックパッケージと、
     貫通孔を有しており、前記セラミックパッケージの上に設けられるカバーと、
     前記貫通孔に挿入されるとともに、前記貫通孔の内壁面に固定され、前記光起電力素子の実装領域に光を集める光学部材と、
    を備えた光電変換装置用部品。
    A first lead electrode provided outside the frame part from the inside of the frame part; and a first lead part including a base part having a mounting region of the photovoltaic element and a frame part provided on the base part A ceramic package having a second lead electrode provided outside the frame portion from inside the frame portion with a gap between the electrodes;
    A cover having a through hole and provided on the ceramic package;
    An optical member that is inserted into the through-hole and fixed to the inner wall surface of the through-hole, and collects light in a mounting region of the photovoltaic element;
    A component for a photoelectric conversion device.
PCT/JP2010/059082 2009-05-28 2010-05-28 Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module WO2010137687A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-128837 2009-05-28
JP2009128837 2009-05-28
JP2009-128836 2009-05-28
JP2009128836 2009-05-28
JP2009-151358 2009-06-25
JP2009151358 2009-06-25
JP2009-159228 2009-07-03
JP2009159228 2009-07-03
JP2009177629 2009-07-30
JP2009-177629 2009-07-30

Publications (1)

Publication Number Publication Date
WO2010137687A1 true WO2010137687A1 (en) 2010-12-02

Family

ID=43222792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059082 WO2010137687A1 (en) 2009-05-28 2010-05-28 Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module

Country Status (1)

Country Link
WO (1) WO2010137687A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081090A1 (en) * 2009-12-29 2011-07-07 シャープ株式会社 Concentrator solar cell, concentrator solar cell module and concentrator solar cell system, and method for manufacturing concentrator solar cell and concentrator solar cell module
ES2365959A1 (en) * 2010-12-22 2011-10-14 Abengoa Solar New Technologies S.A. Photovoltaic solar concentration module and modular disposal comprising such module. (Machine-translation by Google Translate, not legally binding)
WO2012100788A1 (en) * 2011-01-26 2012-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaic concentrator receiver and its use
CN102651414A (en) * 2011-02-25 2012-08-29 安科太阳能公司 Concentrated photovoltaic system modules using iii-v semiconductor solar cells
EP2442370A3 (en) * 2010-10-14 2012-09-12 Millenium Communication Co., Ltd Package structure of concentrated photovoltaic cell
JP2013042087A (en) * 2011-08-19 2013-02-28 Kyocera Corp Solar cell module
CN102983189A (en) * 2011-09-07 2013-03-20 广东量晶光电科技有限公司 Photoelectric component packaging structure
EP2693494A1 (en) * 2012-07-31 2014-02-05 AZURSPACE Solar Power GmbH Solar cell unit
EP2693493A1 (en) * 2012-07-31 2014-02-05 AZURSPACE Solar Power GmbH Solar cell unit
NL2010592C2 (en) * 2013-04-09 2014-10-13 Suncycle B V SEMI-CONDUCTOR DEVICE.
NL2010591C2 (en) * 2013-04-09 2014-10-13 Suncycle B V PHOTO-VOLTAIC EQUIPMENT.
CN105553416A (en) * 2015-12-18 2016-05-04 四川钟顺太阳能开发有限公司 Packaging structure applicable to high-concentration solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830678A (en) * 1987-06-01 1989-05-16 Todorof William J Liquid-cooled sealed enclosure for concentrator solar cell and secondary lens
JPH11261096A (en) * 1998-03-11 1999-09-24 Honda Motor Co Ltd Light condensing type photovoltaic power plant
EP1835547A1 (en) * 2004-11-01 2007-09-19 Zhores Ivanovich Alferov Photovoltaic module
WO2008050392A1 (en) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Concentrating photovoltaic apparatus
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009096267A1 (en) * 2008-02-01 2009-08-06 Sharp Kabushiki Kaisha Solar battery, light collection type solar power generating module and solar battery manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830678A (en) * 1987-06-01 1989-05-16 Todorof William J Liquid-cooled sealed enclosure for concentrator solar cell and secondary lens
JPH11261096A (en) * 1998-03-11 1999-09-24 Honda Motor Co Ltd Light condensing type photovoltaic power plant
EP1835547A1 (en) * 2004-11-01 2007-09-19 Zhores Ivanovich Alferov Photovoltaic module
WO2008050392A1 (en) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Concentrating photovoltaic apparatus
WO2008127142A1 (en) * 2007-04-16 2008-10-23 Zakrytoe Aktsionernoe Obschestvo 'technoexan' Photovoltaic module
WO2009096267A1 (en) * 2008-02-01 2009-08-06 Sharp Kabushiki Kaisha Solar battery, light collection type solar power generating module and solar battery manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923112B2 (en) 2008-02-11 2018-03-20 Suncore Photovoltaics, Inc. Concentrated photovoltaic system modules using III-V semiconductor solar cells
JP2011138970A (en) * 2009-12-29 2011-07-14 Sharp Corp Concentrating solar battery, concentrating solar battery module, and method of manufacturing the same
WO2011081090A1 (en) * 2009-12-29 2011-07-07 シャープ株式会社 Concentrator solar cell, concentrator solar cell module and concentrator solar cell system, and method for manufacturing concentrator solar cell and concentrator solar cell module
EP2442370A3 (en) * 2010-10-14 2012-09-12 Millenium Communication Co., Ltd Package structure of concentrated photovoltaic cell
ES2365959A1 (en) * 2010-12-22 2011-10-14 Abengoa Solar New Technologies S.A. Photovoltaic solar concentration module and modular disposal comprising such module. (Machine-translation by Google Translate, not legally binding)
WO2012100788A1 (en) * 2011-01-26 2012-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaic concentrator receiver and its use
CN102651414A (en) * 2011-02-25 2012-08-29 安科太阳能公司 Concentrated photovoltaic system modules using iii-v semiconductor solar cells
JP2013042087A (en) * 2011-08-19 2013-02-28 Kyocera Corp Solar cell module
CN102983189B (en) * 2011-09-07 2015-10-21 广东量晶光电科技有限公司 Photoelectric component encapsulating structure
CN102983189A (en) * 2011-09-07 2013-03-20 广东量晶光电科技有限公司 Photoelectric component packaging structure
EP2693494A1 (en) * 2012-07-31 2014-02-05 AZURSPACE Solar Power GmbH Solar cell unit
WO2014019654A1 (en) * 2012-07-31 2014-02-06 Azur Space Solar Power Gmbh Solar cell unit
WO2014019655A1 (en) * 2012-07-31 2014-02-06 Azur Space Solar Power Gmbh Solar cell unit
EP2693493A1 (en) * 2012-07-31 2014-02-05 AZURSPACE Solar Power GmbH Solar cell unit
NL2010592C2 (en) * 2013-04-09 2014-10-13 Suncycle B V SEMI-CONDUCTOR DEVICE.
NL2010591C2 (en) * 2013-04-09 2014-10-13 Suncycle B V PHOTO-VOLTAIC EQUIPMENT.
CN105553416A (en) * 2015-12-18 2016-05-04 四川钟顺太阳能开发有限公司 Packaging structure applicable to high-concentration solar cell
CN105553416B (en) * 2015-12-18 2017-11-03 四川钟顺太阳能开发有限公司 A kind of encapsulating structure suitable for high concentrating solar battery

Similar Documents

Publication Publication Date Title
WO2010137687A1 (en) Component for photoelectric conversion device, photoelectric conversion device, and photoelectric conversion module
US20090159125A1 (en) Solar cell package for solar concentrator
WO2011081090A1 (en) Concentrator solar cell, concentrator solar cell module and concentrator solar cell system, and method for manufacturing concentrator solar cell and concentrator solar cell module
KR20100135200A (en) Concentrated photovoltaic system receiver for iii-v semiconductor solar cells
CN106449805A (en) Concentrator-type photovoltaic (CPV) modules, receivers and sub-receivers and methods of forming same
CN103531572B (en) The optical module of wafer-class encapsulation and the transceiver module with the optical module
WO2011058941A1 (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
US7868244B2 (en) Solar CPV cell module and method of safely assembling, installing, and/or maintaining the same
CN111934193A (en) LD chip inorganic packaging structure and preparation method thereof
JP5388778B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JPWO2012160994A1 (en) Concentrating solar cell and manufacturing method thereof
JP2011174763A (en) Infrared detector
WO2011024747A1 (en) Photoelectric conversion device, package for housing photoelectric conversion element, and photoelectric conversion module
JP2011108866A (en) Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2014063779A (en) Solar cell for concentrating solar photovoltaic power generating device
JP2011151276A (en) Photoelectric converter and photoelectric conversion module
JP6026821B2 (en) Photoelectric conversion device, photoelectric conversion module, and component for photoelectric conversion device
JP5653132B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5388760B2 (en) Photoelectric conversion device, photoelectric conversion element storage package, and photoelectric conversion module
JP5495824B2 (en) Photoelectric conversion device and photoelectric conversion module
JP5393350B2 (en) Photoelectric conversion device and photoelectric conversion module
JP2012089592A (en) Photoelectric conversion device and photoelectric conversion module
JP2011096911A (en) Photoelectric conversion device, and photoelectric conversion module
JP5645774B2 (en) Solar cell module
JP5495737B2 (en) Photoelectric conversion device and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP