JP2021048147A - Solar battery cover - Google Patents

Solar battery cover Download PDF

Info

Publication number
JP2021048147A
JP2021048147A JP2019167888A JP2019167888A JP2021048147A JP 2021048147 A JP2021048147 A JP 2021048147A JP 2019167888 A JP2019167888 A JP 2019167888A JP 2019167888 A JP2019167888 A JP 2019167888A JP 2021048147 A JP2021048147 A JP 2021048147A
Authority
JP
Japan
Prior art keywords
columnar member
solar cell
light
boundary
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019167888A
Other languages
Japanese (ja)
Other versions
JP7344061B2 (en
Inventor
弘行 後藤
Hiroyuki Goto
弘行 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2019167888A priority Critical patent/JP7344061B2/en
Publication of JP2021048147A publication Critical patent/JP2021048147A/en
Application granted granted Critical
Publication of JP7344061B2 publication Critical patent/JP7344061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

To provide a solar battery cover which can be structured in a thin film with a simple structure, and in which a solar tracking is not required and a generating efficiency is improved.SOLUTION: A solar battery cover 1 covering a light reception surface of a solar cell panel, comprises: an incidence plane 2 of a light in a top face; an emission surface 3 of the light in a bottom face; a transparent column-like member 5 having a boundary surface 4 reflecting the light in a side face; a plurality of net boundary transparent cover boards 6 which are bundled so that both side faces are adjacent, so is structured in a flat tabular so that each of the top face and the bottom face becomes one surface, in which the boundary surface 4 is viewed in a net shape when viewing it from the top face or the bottom face. Each net boundary transparent cover board 6 is mounted to the solar cell panel so that the bottom face of the column-like member 5 is faced to the light reception surface.SELECTED DRAWING: Figure 3

Description

本発明は、太陽電池パネルの受光面を覆う太陽電池カバーに係り、特に、簡易な構成で発電効率の向上を図った太陽電池カバーに関する。 The present invention relates to a solar cell cover that covers a light receiving surface of a solar cell panel, and more particularly to a solar cell cover that has a simple configuration and has improved power generation efficiency.

太陽電池パネルの受光面を覆うカバーとして、レンズによって集光を図ったもの(特許文献1参照)や、反射板によって集光を図ったもの(特許文献2参照)が知られているが、レンズや反射板によって集光する場合、発電面積が狭く、太陽追尾が必要で、装置全体が複雑となって大型化してしまう。 As a cover covering the light receiving surface of the solar cell panel, one in which light is collected by a lens (see Patent Document 1) and one in which light is collected by a reflector (see Patent Document 2) are known. When light is collected by a reflector or a reflector, the power generation area is small, solar tracking is required, and the entire device becomes complicated and large.

太陽追尾が不要、簡易な構成で軽薄な太陽電池カバーとして、カバー本体としての透明板の裏面に、断面が三角形の反射溝を形成し、略プリズムによって集光を図ったものが知られているが(特許文献3参照)、三角溝の直下は光が出射されず、太陽電池の電流の流れが悪く、抵抗となって部分的に発熱する可能性がある。部分発熱(ホットスポット)は、太陽電池の劣化を早めるため、改善の余地がある。 As a thin solar cell cover that does not require sun tracking and has a simple structure, a reflective groove with a triangular cross section is formed on the back surface of a transparent plate as the cover body, and light is collected by a prism. However (see Patent Document 3), light is not emitted directly under the triangular groove, the current flow of the solar cell is poor, and there is a possibility that it becomes a resistance and partially generates heat. Partial heat generation (hot spot) accelerates the deterioration of the solar cell, so there is room for improvement.

また、太陽光を複数の光ファイバーによって集光し、太陽電池に導くようしたものが知られているが(特許文献4参照)、レンズや反射板によって集光を図ったものと同様、発電面積が狭い。また、光ファイバーによって装置全体が大型化し、太陽電池パネルに重ねられず、パネルアッセンブリをコンパクトに構成できない。いずれの方式も、既設の太陽電池パネルへの取り付けが難しい。 Further, it is known that sunlight is collected by a plurality of optical fibers and guided to a solar cell (see Patent Document 4), but the power generation area is similar to that of light collected by a lens or a reflector. narrow. In addition, the optical fiber makes the entire device large and cannot be stacked on the solar cell panel, so that the panel assembly cannot be compactly configured. Both methods are difficult to attach to the existing solar cell panel.

特開2017−228709号公報Japanese Unexamined Patent Publication No. 2017-228709 特開2017−191854号公報Japanese Unexamined Patent Publication No. 2017-191854 特開2010−238830号公報JP-A-2010-238830 特開昭55−96906号公報Japanese Unexamined Patent Publication No. 55-96906

以上の事情を考慮して創案された本発明の目的は、反射板式、レンズ式、光ファイバー式よりも簡易な構造で軽薄に構成でき、プリズム式より発電面積が広く、太陽追尾が不要で発電効率を向上でき、既設の太陽電池パネルにも取り付けられる太陽電池カバーを提供することにある。 The object of the present invention, which was conceived in consideration of the above circumstances, is that it can be constructed lightly with a simpler structure than the reflector type, lens type, and optical fiber type, has a larger power generation area than the prism type, does not require solar tracking, and has power generation efficiency. The purpose is to provide a solar cell cover that can be attached to an existing solar cell panel.

上述した目的を達成すべく創案された本発明によれば、太陽電池パネルの受光面を覆う太陽電池カバーであって、頂面に光の入射面、底面に光の出射面、側面に光を反射させる境界面を有する透明な柱状部材を、側面同士が隣接するように複数束ねて、各々の頂面および底面が面一となるように平板状に構成され、頂面または底面から見たとき境界面が網目状に見える網目境界透明カバー板を備え、網目境界透明カバー板は、柱状部材の底面が受光面に向くように太陽電池パネルに装着される、ことを特徴とする太陽電池カバーが提供される。 According to the present invention, which was devised to achieve the above-mentioned object, it is a solar cell cover that covers a light receiving surface of a solar cell panel, and has a light incident surface on the top surface, a light emitting surface on the bottom surface, and light on the side surface. When a plurality of transparent columnar members having a reflective boundary surface are bundled so that the side surfaces are adjacent to each other and are formed in a flat plate shape so that the top surface and the bottom surface of each are flush with each other, when viewed from the top surface or the bottom surface. A solar cell cover is provided with a mesh boundary transparent cover plate whose boundary surface looks like a mesh, and the mesh boundary transparent cover plate is mounted on a solar cell panel so that the bottom surface of a columnar member faces the light receiving surface. Provided.

本発明に係る太陽電池カバーにおいては、柱状部材の臨界角をθ1、柱状部材の屈折率をn2としたとき、柱状部材の屈折角θ2を次式で求め、
θ2=arcsin((sinθ1)/n2)
柱状部材の側面同士の幅w1、柱状部材の1単位の高さt1、柱状部材の屈折角θ2が次式の関係となっており、
tanθ2=w1/t1
柱状部材の高さt1=tとしたとき、柱状部材の側面同士の幅wが次式で定められた、
w=(t/n)tanθ2 nは自然数
ことを特徴とする太陽電池カバーであってもよい。
In the solar cell cover according to the present invention, when the critical angle of the columnar member is θ1 and the refractive index of the columnar member is n2, the refraction angle θ2 of the columnar member is obtained by the following equation.
θ2 = arcsin ((sin θ1) / n2)
The width w1 between the side surfaces of the columnar member, the height t1 of one unit of the columnar member, and the refraction angle θ2 of the columnar member have the following relations.
tan θ2 = w1 / t1
When the height t1 = t of the columnar member, the width w between the side surfaces of the columnar member was determined by the following equation.
w = (t / n) tan θ2 n may be a solar cell cover characterized by being a natural number.

本発明に係る太陽電池カバーにおいては、柱状部材の境界面における反射効率を高めるため、柱状部材の側面が鏡面状態となっている、又は柱状部材の側面に金属蒸着が施されていてもよい。 In the solar cell cover according to the present invention, in order to increase the reflection efficiency at the boundary surface of the columnar member, the side surface of the columnar member may be in a mirror surface state, or the side surface of the columnar member may be metal-deposited.

本発明に係る太陽電池カバーにおいては、柱状部材が、接着剤を介して複数束ねられており、隣接する柱状部材の側面同士の間に接着剤が介在されていてもよい。 In the solar cell cover according to the present invention, a plurality of columnar members are bundled with an adhesive, and an adhesive may be interposed between the side surfaces of adjacent columnar members.

本発明に係る太陽電池カバーにおいては、柱状部材は、断面が正方形、長方形、円形、正六角形、正三角形の何れかであり、入射面と出射面とが平行であり、入射面および出射面に対して境界面が垂直であってもよい。 In the solar cell cover according to the present invention, the columnar member has a cross section of any of a square, a rectangle, a circle, a regular hexagon, and a regular triangle, and the entrance surface and the exit surface are parallel to each other. On the other hand, the boundary surface may be vertical.

本発明に係る太陽電池カバーによれば、反射板式、レンズ式、光ファイバー式よりも簡易な構造で軽薄に構成でき、プリズム式より発電面積が広がり、太陽追尾が不要で発電効率を向上でき、既設の太陽電池パネルにも取り付けられる。 According to the solar cell cover according to the present invention, the structure is simpler than that of the reflector type, the lens type, and the optical fiber type, and the structure can be made lighter. It can also be attached to the solar panel of.

本発明の一実施形態に係る太陽電池カバーの斜視図である。It is a perspective view of the solar cell cover which concerns on one Embodiment of this invention. 太陽電池カバーを通過する透過光の説明図であり、(a)は境界面が有る本発明、(b)は境界面が無い比較例を示す。It is explanatory drawing of the transmitted light passing through a solar cell cover, (a) shows the present invention having a boundary surface, (b) shows a comparative example without a boundary surface. 太陽電池カバーを通過する透過光が拡散する様子を示す説明図であり、(a)は境界面が無い比較例、(b)は境界面が有る本発明を示す。It is explanatory drawing which shows the state that the transmitted light which passes through a solar cell cover is diffused, (a) is a comparative example which does not have a boundary surface, (b) shows the present invention which has a boundary surface. 太陽電池カバーの板厚の違いによる入射面積と出射面積の違いを示す説明図であり、(a)、(b)、(c)は板厚が1単位の2倍のときの上面図、側断面図、下面図を示し、(d)、(e)、(f)は板厚が1単位の1倍のときの上面図、側断面図、下面図を示し、(g)、(h)、(i)は板厚が1単位の0.5倍のときの上面図、側断面図、下面図を示す。It is explanatory drawing which shows the difference of the incident area and the exit area by the difference in the plate thickness of the solar cell cover, and (a), (b), (c) are the top view, side when the plate thickness is twice one unit. Cross-sectional views and bottom views are shown, and (d), (e), and (f) show top views, side cross-sectional views, and bottom views when the plate thickness is 1 times one unit, and (g), (h). , (I) show a top view, a side sectional view, and a bottom view when the plate thickness is 0.5 times one unit. 太陽電池カバーのカバー板厚tと境界面間距離wを求めるための説明図であり、(a)は入射光、太陽電池カバー、出射光を示す側断面図、(b)は屈折角θ2と境界面間距離w1と板厚t1との関係を示す数式であり、(c)は臨界角度、屈折率等を示す表であり、(d)は屈折角θ2を算出する数式である。It is explanatory drawing for finding the cover plate thickness t and the boundary surface distance w of a solar cell cover, (a) is a side sectional view which shows incident light, a solar cell cover, and emitted light, and (b) is a refraction angle θ2. It is a mathematical formula showing the relationship between the boundary surface distance w1 and the plate thickness t1, (c) is a table showing the critical angle, the refractive index, etc., and (d) is a mathematical formula for calculating the refraction angle θ2. 東京の1月1日での時刻と日射量との関係を示すグラフである。It is a graph which shows the relationship between the time and the amount of solar radiation on January 1st in Tokyo.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。係る実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易にするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, etc. shown in the embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. To do.

(太陽電池カバー1の概要)
図1示す本発明の一実施形態に係る太陽電池カバー1は、太陽電池パネルの受光面を覆うカバーであって、図2(a)に示すように、頂面に光の入射面2、底面に光の出射面3、側面に光を反射させる境界面4を有する透明な柱状部材5を、側面同士が隣接するように複数束ねて、各々の頂面および底面が面一となるように平板状に構成され、頂面または底面から見たとき境界面4が網目状に見える網目境界透明カバー板6を備えている。この網目境界透明カバー板6は、柱状部材5の底面(出射面3)が受光面に向くように太陽電池パネルに重ねて装着される。
(Outline of solar cell cover 1)
The solar cell cover 1 according to the embodiment of the present invention shown in FIG. 1 is a cover that covers the light receiving surface of the solar cell panel, and as shown in FIG. 2A, has a light incident surface 2 on the top surface and a bottom surface. A plurality of transparent columnar members 5 having a light emitting surface 3 and a boundary surface 4 for reflecting light on the side surfaces are bundled so that the side surfaces are adjacent to each other, and a flat plate is provided so that the top surface and the bottom surface of each are flush with each other. It is provided with a mesh boundary transparent cover plate 6 which is configured in a shape and the boundary surface 4 looks like a mesh when viewed from the top surface or the bottom surface. The mesh boundary transparent cover plate 6 is mounted on the solar cell panel so that the bottom surface (emission surface 3) of the columnar member 5 faces the light receiving surface.

本実施形態に係る太陽電池カバー1は、図2(a)に示すように、光を反射させる境界面4を有しているため、頂面(入射面2)に斜めに入射した入射光(矢印)が、境界面4で反射し、底面(出射面3)から出射する。このルートは、頂面の入射部の真下の底面が出射部となる点で、垂直光6と同様に考えられる。一方、図2(b)に示すように、従来の太陽電池カバー1aは、単なる透明な板体7であるため、頂面に斜めに入射した入射光が、板体7を透過してそのまま底面から出射する。このルートは、頂面の入射部の斜め下の底面が出射部となるため、傾斜光8となる。 As shown in FIG. 2A, the solar cell cover 1 according to the present embodiment has a boundary surface 4 for reflecting light, so that the incident light (incident surface 2) obliquely incident on the top surface (incident surface 2) is (incident surface 2). The arrow) is reflected by the boundary surface 4 and is emitted from the bottom surface (exit surface 3). This route can be considered in the same manner as the vertical light 6 in that the bottom surface directly below the incident portion on the top surface is the emitting portion. On the other hand, as shown in FIG. 2 (b), since the conventional solar cell cover 1a is merely a transparent plate body 7, incident light obliquely incident on the top surface passes through the plate body 7 and remains as it is on the bottom surface. Emit from. In this route, since the bottom surface diagonally below the incident portion on the top surface is the emitting portion, the oblique light 8 is obtained.

図3(a)に示すように、境界面4が無い従来の太陽電池カバー1aにおいては、頂面から入射した入射光が透明な板体7内にて拡散して拡散光9となり、拡散幅w1が或る程度広がった状態で底面から出射する。他方、図3(b)に示すように、本実施形態の太陽電池カバー1においては、頂面(入射面2)から入射した入射光は、拡散するものの境界面4で反射し、反対側の境界面4で更に反射し、反射の度に拡散し、境界面4によって区画された面積に制限された状態(幅w2、w2<w1)で底面(出射面3)から出射する。これにより、底面から出射する光の密度(照度、輝度)が従来の太陽電池カバー1aよりも高まり、発電効率が向上する。以下、本実施形態に係る太陽電池カバー1の各構成要素について説明する。 As shown in FIG. 3A, in the conventional solar cell cover 1a having no boundary surface 4, the incident light incident from the top surface is diffused in the transparent plate body 7 to become diffused light 9, and the diffusion width is increased. It emits from the bottom surface in a state where w1 is spread to some extent. On the other hand, as shown in FIG. 3B, in the solar cell cover 1 of the present embodiment, the incident light incident from the top surface (incident surface 2) is diffused but reflected at the boundary surface 4 and is on the opposite side. It is further reflected at the boundary surface 4, diffused at each reflection, and is emitted from the bottom surface (emission surface 3) in a state limited to the area partitioned by the boundary surface 4 (width w2, w2 <w1). As a result, the density (illuminance, brightness) of the light emitted from the bottom surface is higher than that of the conventional solar cell cover 1a, and the power generation efficiency is improved. Hereinafter, each component of the solar cell cover 1 according to the present embodiment will be described.

(柱状部材5)
図2(a)、図3(b)に示す柱状部材5の材質には、透明材として、ガラス、アクリル、ポリカーボネート、ポリスチレン等が用いられる。図4(a)、図4(b)、図4(c)に示すように、柱状部材5は、断面が正方形であり、入射面2と出射面3とが平行であり、入射面2および出射面3に対して境界面4が垂直となっている。なお、柱状部材5の断面形状は、正方形に限られず、長方形、円形、正六角形、正三角形でもよい。また、境界面4における反射効率を高めるため、柱状部材5の側面を鏡面状態としてもよく、柱状部材5の側面に銀色又は金色等の金属蒸着が施されていてもよい。
(Column member 5)
As the material of the columnar member 5 shown in FIGS. 2 (a) and 3 (b), glass, acrylic, polycarbonate, polystyrene or the like is used as a transparent material. As shown in FIGS. 4 (a), 4 (b), and 4 (c), the columnar member 5 has a square cross section, the incident surface 2 and the exit surface 3 are parallel to each other, and the incident surface 2 and The boundary surface 4 is perpendicular to the exit surface 3. The cross-sectional shape of the columnar member 5 is not limited to a square, but may be a rectangle, a circle, a regular hexagon, or an equilateral triangle. Further, in order to increase the reflection efficiency on the boundary surface 4, the side surface of the columnar member 5 may be mirror-finished, and the side surface of the columnar member 5 may be vapor-deposited with a metal such as silver or gold.

柱状部材5の入射面2には、透過光の均一性を増す(ムラを無くす)ため、拡散性がよくなる表面処理を施してもよい。同様に、柱状部材5の出射面3にも、出射光の均一性を増すため、拡散性がよくなる表面処理を施してもよい。表面処理には、光拡散剤を含んだ透明な樹脂や塗料などを、入射面2、出射面3に塗布(コーティング)することが考えられる。光拡散剤には、二酸化ケイ素(ガラス)、炭酸カルシウム(石灰)、蛍光剤などが用いられる。その他、表面処理として、粒子を吹き付けて、入射面2、出射面3の表面に凹面レンズ状の窪みを付けるブラスト加工も考えられる。 The incident surface 2 of the columnar member 5 may be surface-treated to improve diffusivity in order to increase the uniformity of transmitted light (eliminate unevenness). Similarly, the emitting surface 3 of the columnar member 5 may be subjected to a surface treatment for improving the diffusivity in order to increase the uniformity of the emitted light. For the surface treatment, it is conceivable to apply (coat) a transparent resin or paint containing a light diffusing agent on the entrance surface 2 and the exit surface 3. As the light diffusing agent, silicon dioxide (glass), calcium carbonate (lime), a fluorescent agent and the like are used. In addition, as a surface treatment, blasting may be considered in which particles are sprayed to form concave lens-shaped depressions on the surfaces of the entrance surface 2 and the exit surface 3.

(接着剤)
柱状部材5は、接着剤を介して複数束ねられて接着されており、隣接する柱状部材5の側面(境界面4)同士の間に接着剤が介在されている。隣接する柱状部材5の境界面4と境界面4との間に接着剤が挟み込まれるため、個々の柱状部材5の境界面4の反射機能は保たれる。粘度の小さい接着剤を用いることで、柱状部材5同士の間の接着剤の厚みを薄くすることができ、太陽電池カバー1の頂面(入射面2)および底面(出射面3)に、隣接する柱状部材5を仕切るように網目状に現れる接着剤の面積(光を遮る面積)を、可及的に小さくできる。
(adhesive)
A plurality of columnar members 5 are bundled and adhered to each other via an adhesive, and an adhesive is interposed between the side surfaces (boundary surfaces 4) of adjacent columnar members 5. Since the adhesive is sandwiched between the boundary surface 4 of the adjacent columnar member 5 and the boundary surface 4, the reflective function of the boundary surface 4 of each columnar member 5 is maintained. By using an adhesive having a low viscosity, the thickness of the adhesive between the columnar members 5 can be reduced, and the adhesive is adjacent to the top surface (incident surface 2) and the bottom surface (exit surface 3) of the solar cell cover 1. The area of the adhesive (area that blocks light) that appears in a mesh pattern so as to partition the columnar member 5 can be made as small as possible.

接着剤は、透明で、柱状部材5の表面(側面)を溶解しない材質が好ましい。例えば、シアノアクリレート系瞬間接着剤(アロンアルファ(登録商標)等)が考えられる。接着剤には、図2(a)において、境界面4を突き抜けた透過光を柱状部材5に戻すため、ガラスビーズや蛍光剤などの拡散剤を添加してもよい。 The adhesive is preferably a transparent material that does not dissolve the surface (side surface) of the columnar member 5. For example, a cyanoacrylate-based instant adhesive (Aron Alpha (registered trademark), etc.) can be considered. In order to return the transmitted light penetrating the boundary surface 4 to the columnar member 5 in FIG. 2A, a diffusing agent such as glass beads or a fluorescent agent may be added to the adhesive.

(柱状部材5の縦横比)
図4(b)、図4(e)に示すように、柱状部材5の高さtと側面(境界面)同士の幅wとの比(縦横比)は、柱状部材5の頂面2に入射する光(太陽光の直達光)の角度が、設定した最大入射角(例えば柱状部材5の材質の臨界角)のとき、入射面積(図4(a)、図4(d))と出射面積(図4(c)、図4(f))とが同等となる縦横比が望ましい。
(Aspect ratio of columnar member 5)
As shown in FIGS. 4 (b) and 4 (e), the ratio (aspect ratio) between the height t of the columnar member 5 and the width w between the side surfaces (boundary surfaces) is the top surface 2 of the columnar member 5. When the angle of the incident light (direct light of sunlight) is the set maximum incident angle (for example, the critical angle of the material of the columnar member 5), the incident area (FIGS. 4 (a) and 4 (d)) and the exit An aspect ratio that is equivalent to the area (FIGS. 4 (c) and 4 (f)) is desirable.

例えば、図4(e)に示すように、入射点(西上頂点)から入射した光が反射点(東下頂点)に到達するときの高さを板厚txとした場合は、図4(d)にハッチングで示す入射面積と図4(f)にハッチングで示す出射面積とが等しくなる。 For example, as shown in FIG. 4 (e), when the height when the light incident from the incident point (west upper apex) reaches the reflection point (east lower apex) is set to the plate thickness tx, FIG. 4 (e). The incident area shown by hatching in d) and the exit area shown by hatching in FIG. 4 (f) are equal.

また、図4(b)に示すように、入射点(西上頂点)から反射点(東反射点)までの高さと反射点(東反射点)から出射点(西下頂点)までの高さが等しくなる板厚tyでも、図4(a)に示す入射面積と図4(c)に示す出射面積とが等しくなる。 Further, as shown in FIG. 4 (b), the height from the incident point (west upper apex) to the reflection point (east reflection point) and the height from the reflection point (east reflection point) to the exit point (west lower apex). Even if the plate thickness ty is the same, the incident area shown in FIG. 4 (a) and the emitted area shown in FIG. 4 (c) are equal.

他方、図4(h)に示すように、入射点(西上頂点)から入射した光が反射点(東下頂点)に到達しない板厚tzでは、図4(d)に示す入射面積に対して図4(f)に示す出射面積が小さくなり、非出射部10ができるため好ましくない。 On the other hand, as shown in FIG. 4 (h), in the plate thickness tz in which the light incident from the incident point (west upper apex) does not reach the reflection point (east lower apex), the incident area shown in FIG. 4 (d) Therefore, the emission area shown in FIG. 4 (f) is reduced, and the non-emission portion 10 is formed, which is not preferable.

(作用・効果)
図1に示す本実施形態に係る太陽電池カバー1を構成する網目境界透明カバー板6は、図示しない太陽電池の受光面に、隙間無く重ねて設置される。網目境界透明カバー板6の底面の出射面積は、太陽電池の受光面積と等しい。
(Action / effect)
The mesh boundary transparent cover plate 6 constituting the solar cell cover 1 according to the present embodiment shown in FIG. 1 is installed so as to overlap the light receiving surface of the solar cell (not shown) without a gap. The exit area of the bottom surface of the mesh boundary transparent cover plate 6 is equal to the light receiving area of the solar cell.

図2(a)に示すように、網目境界透明カバー板6を透過する透過光は、入射面2で屈折し、柱状部材5の内部を透過し、出射面3で再度屈折し、出射される。カバー板6の内部の透過光は、透明な柱状部材5の境界面4で反射(全反射)し、出射面3に向かう。反射屈折の原理は、スネルの法則に則る。例えば、柱状部材5の入射面2では、光の上流側媒質Aが空気、下流側媒質Bが柱状部材5となる。接着後の境界面4では、光の上流側媒質Aが柱状部材5、下流側媒質Bが接着剤となる。 As shown in FIG. 2A, the transmitted light transmitted through the mesh boundary transparent cover plate 6 is refracted at the incident surface 2, transmitted through the inside of the columnar member 5, is refracted again at the exit surface 3, and is emitted. .. The transmitted light inside the cover plate 6 is reflected (totally reflected) at the boundary surface 4 of the transparent columnar member 5 and directed toward the exit surface 3. The principle of reflection refraction follows Snell's law. For example, on the incident surface 2 of the columnar member 5, the upstream medium A of light is air and the downstream medium B is the columnar member 5. On the boundary surface 4 after bonding, the upstream medium A of light serves as a columnar member 5, and the downstream medium B serves as an adhesive.

図3(a)に示すように、透明な板体7の内部を透過する透過光には、一般に拡散性がある。図3(b)に示すように、本実施形態においては、拡散する透過光が柱状部材5の境界面4で反射(全反射)して出射面3に向かうため、拡散領域が拡大することが抑えられる(w2<w1)。このため、底面(出射面3)から出射する光の密度(単位面積当たりの出射光量)が、境界面が無い透明板7(図3(a)参照)よりも増加する。よって、発電効率が向上する。 As shown in FIG. 3A, the transmitted light transmitted through the inside of the transparent plate 7 is generally diffusive. As shown in FIG. 3B, in the present embodiment, the diffused transmitted light is reflected (totally reflected) at the boundary surface 4 of the columnar member 5 and directed toward the exit surface 3, so that the diffusion region can be expanded. It can be suppressed (w2 <w1). Therefore, the density of the light emitted from the bottom surface (exiting surface 3) (the amount of emitted light per unit area) is higher than that of the transparent plate 7 having no boundary surface (see FIG. 3A). Therefore, the power generation efficiency is improved.

ところで、図5に示すように、太陽光は、直線的に網目境界透明カバー板6に到達する直達光(破線で示す)と、大気中の水蒸気等の分子や微粒子に当たって散乱した後にカバー板6に到達する散乱光(ドットで示す)とから構成されている。直達光は、日の出から日の入りにかけてカバー板6の入射面2に対する入射角が変化し、散乱光は、入射角が変化せずカバー板6の入射面に垂直に到達する。従って、入射角変化により発生する直達光の非出射部10(図4(h)、図4(i)参照)にも、散乱光の透過光が照射される。 By the way, as shown in FIG. 5, sunlight hits and scatters direct light (shown by a broken line) that linearly reaches the mesh boundary transparent cover plate 6 and molecules and fine particles such as water vapor in the atmosphere, and then the cover plate 6 It is composed of scattered light (indicated by dots) that reaches. The incident angle of the direct light changes with respect to the incident surface 2 of the cover plate 6 from sunrise to sunset, and the scattered light reaches the incident surface of the cover plate 6 perpendicularly without changing the incident angle. Therefore, the non-emission portion 10 of the direct light generated by the change in the incident angle (see FIGS. 4 (h) and 4 (i)) is also irradiated with the transmitted light of the scattered light.

このため、図5に示す柱状部材5の出射面3、すなわち太陽電池の受光面における照度のムラ(光の重なりの差)は、散乱光(散乱しながら大気を透過した光)の透過光(直線的に柱状部材5内を透過した光(ドットで示す))と直達光(直線的に大気を通過した光)の透過光(直線的に柱状部材5内を透過した光(破線で示す))の拡散光(透明な柱状部材5を通過する際に拡散する光(細かなハッチングで示す))で緩和される。よって、カバー板6の底面(出射面3)に完全な非出射部10(図4(h)、図4(i)参照)が無くなり、太陽電池の受光面に発電しない部分が無くなり、発電効率が向上する。 Therefore, the unevenness of illuminance (difference in overlapping of light) on the exit surface 3 of the columnar member 5 shown in FIG. 5, that is, the light receiving surface of the solar cell is the transmitted light (light transmitted through the atmosphere while being scattered). Light transmitted linearly through the columnar member 5 (indicated by dots) and direct light (light linearly passed through the atmosphere) transmitted light (light linearly transmitted through the columnar member 5 (indicated by broken lines)) ) Is alleviated by the diffused light (light diffused when passing through the transparent columnar member 5 (indicated by fine hatching)). Therefore, the bottom surface (emission surface 3) of the cover plate 6 has no complete non-emission portion 10 (see FIGS. 4 (h) and 4 (i)), and there is no portion on the light receiving surface of the solar cell that does not generate power, resulting in power generation efficiency. Is improved.

このように、本実施形態に係る網目境界透明カバー板6を用いた太陽電池カバー1によれば、例えば、特許文献3記載された透明板の裏面に断面三角形の反射溝を形成したものと比べると、太陽電池パネルの受光面にホットスポットができなくなるため、太陽電池の劣化が抑制される。 As described above, according to the solar cell cover 1 using the mesh boundary transparent cover plate 6 according to the present embodiment, for example, it is compared with the case where the reflection groove having a triangular cross section is formed on the back surface of the transparent plate described in Patent Document 3. As a result, hot spots cannot be formed on the light receiving surface of the solar cell panel, so that deterioration of the solar cell is suppressed.

また、文献3に記載されたもののように、電極の位置に合わせた溝間隔の製造精度、取付位置精度を必要とせず、文献2の反射式、文献1のレンズ式に対し、太陽電池パネルとは別に必要な支持構造物が不要となる。すなわち、簡易かつ軽薄な構造であるため、軽量で製品コストを抑制できる。 Further, unlike the one described in Document 3, the manufacturing accuracy of the groove spacing and the mounting position accuracy according to the position of the electrode are not required, and the solar cell panel is used as opposed to the reflection type of Document 2 and the lens type of Document 1. The necessary support structure is not required. That is, since it has a simple and frivolous structure, it is lightweight and the product cost can be suppressed.

文献2の反射式、文献1のレンズ式、文献4の光ファイバー式に対し、網目境界透明カバー板6の入射面2と出射面3との間隔が、夫々、反射板、レンズの焦点距離、光ファイバーの長さと比べ狭くなり、装置全体の厚みが薄くなる。よって、太陽電池パネルへの重量負荷を軽減でき、網目境界透明カバー板6を太陽電池パネルの受光面に支持構造物無しで重ねることができ、パネルアッセンブリをコンパクトに構成できる。 Compared to the reflection type of Document 2, the lens type of Document 1, and the optical fiber type of Document 4, the distance between the entrance surface 2 and the exit surface 3 of the mesh boundary transparent cover plate 6 is the reflection plate, the focal length of the lens, and the optical fiber, respectively. It becomes narrower than the length of the lens, and the thickness of the entire device becomes thin. Therefore, the weight load on the solar cell panel can be reduced, the mesh boundary transparent cover plate 6 can be stacked on the light receiving surface of the solar cell panel without a support structure, and the panel assembly can be compactly configured.

(発電時間)
ところで、柱状部材5の材質をアクリル(PMMA)とすると、図5に示すように、空気(媒質A)から光が柱状部材5(媒質B)に屈折しながら入り始める入射角度と、空気(媒質A)からの光が柱状部材(媒質B)によって全反射し始める反射角の臨界角θ1’は42.2°である。よって、太陽光の直達光が柱状部材5内に入れる角度の範囲は、理論的には84.4°(=42.2×2)となるが、実際には余裕を考えて入射角度範囲θ3=80°と考える。この場合、実務上の臨界角(入射角)θ1=40°となる。
(Power generation time)
By the way, assuming that the material of the columnar member 5 is acrylic (PMMA), as shown in FIG. 5, the incident angle at which light from the air (medium A) begins to enter the columnar member 5 (medium B) while refracting, and the air (medium). The critical angle θ1'of the reflection angle at which the light from A) begins to be totally reflected by the columnar member (medium B) is 42.2 °. Therefore, the range of the angle at which the direct light of sunlight enters the columnar member 5 is theoretically 84.4 ° (= 42.2 × 2), but in reality, the incident angle range θ3 is considered with a margin. Consider = 80 °. In this case, the practical critical angle (incident angle) θ1 = 40 °.

地球は、24時間で360°回転するので、入射角度範囲θ3=80°(θ1×2)は、時間にすると5時間20分となる。5時間20分を午前午後に分け、12時(正午)を中心とした前後2時間40分の時間帯は、9時20分から14時40分である。図6に示すように、9時20分から14時40分の5時間20分の日射量(水平面日射量=直達日射量+散乱日射量)を考えると、全日射量の82%で上述した発電効果を発揮することができる。 Since the earth rotates 360 ° in 24 hours, the incident angle range θ3 = 80 ° (θ1 × 2) is 5 hours and 20 minutes in terms of time. 5 hours and 20 minutes are divided into morning and afternoon, and the time zone of 2 hours and 40 minutes before and after 12:00 (noon) is from 9:20 to 14:40. As shown in FIG. 6, considering the amount of solar radiation (horizontal plane solar radiation = direct solar radiation + scattered solar radiation) from 9:20 to 14:40 for 5 hours and 20 minutes, the above-mentioned power generation is 82% of the total solar radiation. It can be effective.

また、入射角度範囲θ3=80°に対し、夏至から冬至までの太陽の傾きの角度範囲は地軸の傾斜角(23.5°)を2倍した47°であるので、太陽追尾機構なしで、1年を通じて適切な発電効果を発揮できる。 In addition, the angle range of the inclination of the sun from the summer solstice to the winter solstice is 47 °, which is twice the inclination angle (23.5 °) of the earth's axis, with respect to the incident angle range θ3 = 80 °. Appropriate power generation effect can be exhibited throughout the year.

(柱状部材5の高さt、側面同士の幅wの決定)
図5に示す、柱状部材5の高さである網目境界透明カバー板の板厚t、柱状部材5の側面同士の幅である境界面4間距離wは、次のようにして決定する。
(Determination of height t of columnar member 5 and width w between side surfaces)
The thickness t of the mesh boundary transparent cover plate, which is the height of the columnar member 5, and the distance w between the boundary surfaces 4, which is the width between the side surfaces of the columnar member 5, are determined as follows.

先ず、図5(a)において、アクリル製の柱状部材5の入射面2で全反射が起こる臨界角θ1’=42.2°から実際の運用時の余裕を考えて実務上の臨界角(入射角)θ1=40°を定め、臨界角θ1=40°から以下のように柱状部材5内での屈折角θ2を求める。 First, in FIG. 5A, from the critical angle θ1'= 42.2 ° at which total reflection occurs on the incident surface 2 of the acrylic columnar member 5, the critical angle (incident) in practice is considered in consideration of the margin during actual operation. Angle) θ1 = 40 ° is determined, and the refraction angle θ2 in the columnar member 5 is obtained from the critical angle θ1 = 40 ° as follows.

屈折角θ2は、入射光(太陽光の直達光)の入射角θ1=40°、柱状部材5の屈折率n2=1.49、空気の屈折率n1=1から、次式(スネルの法則)で表される(図5(c)、図5(d)参照)。
n2(sinθ2)=n1(sinθ1)
上式を変形し、屈折角θ2を求めると、
n2=sinθ1/sinθ2
θ2=sin^−1((sinθ1)/n2)=arcsin((sinθ1)/n2)=25.6°
となる。
The refractive index θ2 is the following equation (Snell's law) from the incident angle θ1 = 40 ° of the incident light (direct light of sunlight), the refractive index n2 = 1.49 of the columnar member 5, and the refractive index n1 = 1 of the air. (See FIG. 5 (c) and FIG. 5 (d)).
n2 (sinθ2) = n1 (sinθ1)
When the above equation is transformed to obtain the refraction angle θ2,
n2 = sinθ1 / sinθ2
θ2 = sin ^ -1 ((sinθ1) / n2) = arcsin ((sinθ1) / n2) = 25.6 °
Will be.

図5(b)に示すように、屈折光線を斜辺とし、斜辺と隣辺との角度を屈折角θ2とした直角三角形が斜辺同士で2個組み合わされた長方形を、柱状部材5の側面の1単位とする。直角三角形の対辺の長さが境界面間距離w1となり、隣辺の長さが1単位の板厚t1となり、何れか一方を設定すると、1単位が定まる。1単位を一以上積み重ねて所望の板厚tとする。 As shown in FIG. 5B, a rectangle in which two right triangles having the hypotenuse as the hypotenuse and the angle between the hypotenuse and the adjacent side as the refraction angle θ2 are combined with each other is formed by one of the side surfaces of the columnar member 5. The unit is. The length of the opposite side of the right triangle is the distance w1 between the boundary surfaces, the length of the adjacent side is the plate thickness t1 of 1 unit, and if either one is set, 1 unit is determined. One unit or more is stacked to obtain a desired plate thickness t.

すなわち、図5(b)に示すように、柱状部材5の1単位の側面同士の幅w1、柱状部材5の1単位の高さt1とすると、柱状部材の屈折角θ2は次式の関係となる。
tanθ2=w1/t1
上式を変形し、柱状部材5の高さt1=tとしたとき、柱状部材5の側面同士の幅wは、次式で算出される。
w=(t/n)tanθ2…式X (nは自然数)
図5(a)、図4(b)はn=2で1単位を2個積み重ねたもの、図4(e)はn=1で1単位のものである。なお、1単位を3個以上積み重ねてもよい。
That is, as shown in FIG. 5B, assuming that the width w1 between the side surfaces of one unit of the columnar member 5 and the height t1 of one unit of the columnar member 5, the refraction angle θ2 of the columnar member has the relationship of the following equation. Become.
tan θ2 = w1 / t1
When the above equation is modified and the height t1 = t of the columnar member 5, the width w between the side surfaces of the columnar member 5 is calculated by the following equation.
w = (t / n) tan θ2 ... Equation X (n is a natural number)
5 (a) and 4 (b) are n = 2 and two 1 units are stacked, and FIG. 4 (e) is n = 1 and 1 unit. In addition, one unit may be stacked three or more.

柱状部材5の高さt、側面同士の幅wは、図5(a)に示す太陽光を取り込む角度範囲θ3、製造の難易度、経済性(材質、重量、コスト)の何れに重点を置くかで、それぞれ最適な仕様が定まる。 The height t of the columnar member 5 and the width w between the side surfaces emphasize any of the angle range θ3 for taking in sunlight, the difficulty of manufacturing, and the economic efficiency (material, weight, cost) shown in FIG. 5 (a). The optimum specifications are determined for each.

例えば、太陽光を取り込む角度範囲θ3を重視する場合には、入射角(実務上の臨界角)θ1が広い材質の柱状部材5を用いることで、太陽光の取込量が増えるため発電量が多くなる。製造の難易度を重視する場合には、柱状部材5の太さ(幅w)を大きくし、柱状部材5を束ねる数を少なくすることで、柱状部材5同士を接着させ易くなって製造が容易となる。また、経済性(重量、コスト)を重視する場合には、柱状部材5の高さtを低くしてカバー板6の板厚tを薄くし、柱状部材5を束ねる数を少なくし、カバー板6の体積を小さくすることで、柱状部材5の使用材料量が減るため経済性が高まる。 For example, when emphasizing the angle range θ3 that takes in sunlight, by using a columnar member 5 made of a material having a wide incident angle (critical angle in practice) θ1, the amount of sunlight taken in increases, so that the amount of power generation increases. More. When the difficulty of manufacturing is emphasized, the thickness (width w) of the columnar member 5 is increased and the number of bundled columnar members 5 is reduced, so that the columnar members 5 can be easily adhered to each other and the manufacturing is easy. It becomes. When economic efficiency (weight, cost) is emphasized, the height t of the columnar member 5 is lowered to reduce the plate thickness t of the cover plate 6, the number of bundled columnar members 5 is reduced, and the cover plate is used. By reducing the volume of No. 6, the amount of material used for the columnar member 5 is reduced, so that the economy is improved.

本実施形態においては、図5に示すように、柱状部材5の材質にアクリルを用い、太陽光の直達光を最長時間取り込むため、アクリルの臨界角θ1’=42.2°よりもやや小さい入射角θ1=40°から定まる屈折角θ2=25.6°を、1単位の基準とする。 In the present embodiment, as shown in FIG. 5, acrylic is used as the material of the columnar member 5, and since the direct light of sunlight is taken in for the longest time, the incident is slightly smaller than the critical angle θ1'= 42.2 ° of acrylic. The refraction angle θ2 = 25.6 °, which is determined from the angle θ1 = 40 °, is used as a reference for one unit.

また、網目境界透明カバー板6の重量を考慮して、カバー板6の板厚(柱状部材5の高さ)t(図5(b)の直角三角形の隣辺)を予め所定の数値に設定し、柱状部材5の側面同士の幅wを算出することとする。なお、1単位の積重数は、柱状部材5の境界面4での反射回数が多くなると透過光の拡散性が高まるため、2回反射する2単位とする。 Further, in consideration of the weight of the mesh boundary transparent cover plate 6, the plate thickness (height of the columnar member 5) t (adjacent side of the right triangle in FIG. 5B) of the cover plate 6 is set to a predetermined value in advance. Then, the width w between the side surfaces of the columnar member 5 is calculated. The product number of one unit is set to two units that reflect twice because the diffusivity of transmitted light increases as the number of reflections on the boundary surface 4 of the columnar member 5 increases.

屈折角θ2=25.6°、板厚t=5mm、2単位の積み重ねとすると、柱状部材5の側面同士の幅wは、上述した式Xで算出される。
w=(t/n)tanθ2 nは自然数(n=2)
=(5/2)tan25.6
=1.2mm
この場合、柱状部材5の側面同士の幅wは、1.2mmと定まる。
Assuming that the refraction angle θ2 = 25.6 °, the plate thickness t = 5 mm, and two units are stacked, the width w between the side surfaces of the columnar member 5 is calculated by the above formula X.
w = (t / n) tan θ2 n is a natural number (n = 2)
= (5/2) tan25.6
= 1.2 mm
In this case, the width w between the side surfaces of the columnar member 5 is determined to be 1.2 mm.

同じ屈折角θ2=25.6°で、板厚t=5mm、3単位の積み重ねでは、
w=(t/n)tanθ2 nは自然数(n=3)
=(5/3)tan25.6
=0.8mm
この場合、柱状部材5の側面同士の幅wは、0.8mmと定まる。
With the same refraction angle θ2 = 25.6 °, with a plate thickness of t = 5 mm and 3 units stacked,
w = (t / n) tan θ2 n is a natural number (n = 3)
= (5/3) tan25.6
= 0.8mm
In this case, the width w between the side surfaces of the columnar member 5 is determined to be 0.8 mm.

同じ屈折角θ2=25.6°で、板厚t=3mm、2単位の積み重ねでは、
w=(t/n)tanθ2 nは自然数(n=2)
=(3/2)tan25.6
=0.7mm
この場合、柱状部材5の側面同士の幅wは、0.7mmと定まる。
With the same refraction angle θ2 = 25.6 °, with a plate thickness of t = 3 mm and 2 units stacked,
w = (t / n) tan θ2 n is a natural number (n = 2)
= (3/2) tan25.6
= 0.7mm
In this case, the width w between the side surfaces of the columnar member 5 is determined to be 0.7 mm.

このように、簡単な計算で、カバー板6の板厚(柱状部材5の高さ)t、柱状部材5の側面同士の幅(境界面間距離)wを、正確に求めることができる。なお、拡散光(図3(b)、図5(a)参照)の影響を考慮して最大発電量となる1単位の積重数は、実際の試験結果から決定する。 As described above, the thickness of the cover plate 6 (height of the columnar member 5) t and the width between the side surfaces of the columnar member 5 (distance between the boundary surfaces) w can be accurately obtained by a simple calculation. The product number of one unit, which is the maximum amount of power generation, is determined from the actual test results in consideration of the influence of diffused light (see FIGS. 3 (b) and 5 (a)).

以上、添付図面を参照しつつ本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されないことは勿論であり、特許請求の範囲に記載された範疇における各種の変更例または修正例についても、本発明の技術的範囲に属することは言うまでもない。 Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above-described embodiments, and various modifications in the scope of claims are described. It goes without saying that the modified examples also belong to the technical scope of the present invention.

本発明は、太陽電池パネルの受光面を覆う太陽電池カバーに係り、簡易な構成で発電効率の向上を図った太陽電池カバーに利用できる。 The present invention relates to a solar cell cover that covers a light receiving surface of a solar cell panel, and can be used for a solar cell cover that aims to improve power generation efficiency with a simple configuration.

1 太陽電池カバー
2 入射面
3 出射面
4 境界面
5 柱状部材
6 網目境界透明カバー板
t 柱状部材の高さ
w 柱状部材の側面(境界面)同士の幅
θ1 柱状部材の臨界角
θ2 柱状部材の屈折角
n2 柱状部材の屈折率
1 Solar cell cover 2 Incident surface 3 Exit surface 4 Boundary surface 5 Columnar member 6 Mesh boundary transparent cover plate t Height of columnar member w Width between side surfaces (boundary surface) of columnar member θ1 Critical angle of columnar member θ2 Critical angle of columnar member Refractive angle n2 Refractive index of columnar member

Claims (5)

太陽電池パネルの受光面を覆う太陽電池カバーであって、
頂面に光の入射面、底面に光の出射面、側面に光を反射させる境界面を有する透明な柱状部材を、前記側面同士が隣接するように複数束ねて、各々の前記頂面および前記底面が面一となるように平板状に構成され、前記頂面または前記底面から見たとき前記境界面が網目状に見える網目境界透明カバー板を備え、
該網目境界透明カバー板は、前記柱状部材の底面が前記受光面に向くように前記太陽電池パネルに装着される、ことを特徴とする太陽電池カバー。
A solar cell cover that covers the light receiving surface of the solar cell panel.
A plurality of transparent columnar members having a light incident surface on the top surface, a light emitting surface on the bottom surface, and a boundary surface for reflecting light on the side surfaces are bundled so that the side surfaces are adjacent to each other, and the top surface and the above surface are each bundled. It is configured in a flat plate shape so that the bottom surface is flush with each other, and is provided with a mesh boundary transparent cover plate in which the boundary surface looks like a mesh when viewed from the top surface or the bottom surface.
The mesh boundary transparent cover plate is a solar cell cover that is mounted on the solar cell panel so that the bottom surface of the columnar member faces the light receiving surface.
前記柱状部材の臨界角をθ1、前記柱状部材の屈折率をn2としたとき、前記柱状部材の屈折角θ2を次式で求め、
θ2=arcsin((sinθ1)/n2)
前記柱状部材の側面同士の幅w1、前記柱状部材の1単位の高さt1、前記柱状部材の屈折角θ2が次式の関係となっており、
tanθ2=w1/t1
前記柱状部材の高さt1=tとしたとき、前記柱状部材の側面同士の幅wが次式で定められた、
w=(t/n)tanθ2 nは自然数
ことを特徴とする請求項1に記載の太陽電池カバー。
When the critical angle of the columnar member is θ1 and the refractive index of the columnar member is n2, the refraction angle θ2 of the columnar member is obtained by the following equation.
θ2 = arcsin ((sinθ1) / n2)
The width w1 between the side surfaces of the columnar member, the height t1 of one unit of the columnar member, and the refraction angle θ2 of the columnar member have the following relations.
tan θ2 = w1 / t1
When the height t1 = t of the columnar member, the width w between the side surfaces of the columnar member was determined by the following equation.
The solar cell cover according to claim 1, wherein w = (t / n) tan θ2 n is a natural number.
前記柱状部材の境界面における反射効率を高めるため、前記柱状部材の側面が鏡面状態となっている、又は前記柱状部材の側面に金属蒸着が施されている、ことを特徴とする請求項1又は2に記載の太陽電池カバー。 Claim 1 or claim 1, wherein the side surface of the columnar member is in a mirror surface state, or the side surface of the columnar member is metal-deposited in order to increase the reflection efficiency at the boundary surface of the columnar member. 2. The solar cell cover according to 2. 前記柱状部材が、接着剤を介して複数束ねられており、隣接する前記柱状部材の側面同士の間に接着剤が介在されている、ことを特徴とする請求項1から3の何れか1項に記載の太陽電池カバー。 Any one of claims 1 to 3, wherein a plurality of the columnar members are bundled with an adhesive, and the adhesive is interposed between the side surfaces of the adjacent columnar members. The solar cell cover described in. 前記柱状部材は、断面が正方形、長方形、円形、正六角形、正三角形の何れかであり、前記入射面と前記出射面とが平行であり、前記入射面および前記出射面に対して前記境界面が垂直である、ことを特徴とする請求項1から4の何れか1項に記載の太陽電池カバー。 The columnar member has a cross section of any of a square, a rectangle, a circle, a regular hexagon, and a regular triangle, the entrance surface and the emission surface are parallel to each other, and the interface surface with respect to the entrance surface and the emission surface. The solar cell cover according to any one of claims 1 to 4, wherein is vertical.
JP2019167888A 2019-09-16 2019-09-16 solar cell cover Active JP7344061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167888A JP7344061B2 (en) 2019-09-16 2019-09-16 solar cell cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167888A JP7344061B2 (en) 2019-09-16 2019-09-16 solar cell cover

Publications (2)

Publication Number Publication Date
JP2021048147A true JP2021048147A (en) 2021-03-25
JP7344061B2 JP7344061B2 (en) 2023-09-13

Family

ID=74876562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167888A Active JP7344061B2 (en) 2019-09-16 2019-09-16 solar cell cover

Country Status (1)

Country Link
JP (1) JP7344061B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274449A (en) * 2000-03-24 2001-10-05 Hitachi Ltd Condensing photovoltaic power generation device
JP2005099802A (en) * 2003-09-24 2005-04-14 Crf Soc Consortile Per Azioni Multifocal condenser for element for converting solar radiation into electric, heat or chemical energy
JP2009139418A (en) * 2007-12-03 2009-06-25 Hikari Energy Kenkyusho:Kk Light condensing device and light condensing method
WO2011058941A1 (en) * 2009-11-10 2011-05-19 京セラ株式会社 Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2011138970A (en) * 2009-12-29 2011-07-14 Sharp Corp Concentrating solar battery, concentrating solar battery module, and method of manufacturing the same
JP2011159822A (en) * 2010-02-01 2011-08-18 Mitsubishi Electric Corp Photovoltaic power generator and method of manufacturing the same
US20120006382A1 (en) * 2010-06-07 2012-01-12 Hypersolar, Inc. Thin and flat solar collector-concentrator
CN103364871A (en) * 2012-03-28 2013-10-23 容云 Light equalizer, and solar energy and electric heating mixing utilization system
WO2013180298A1 (en) * 2012-06-01 2013-12-05 シャープ株式会社 Solar cell module and solar power generation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274449A (en) * 2000-03-24 2001-10-05 Hitachi Ltd Condensing photovoltaic power generation device
JP2005099802A (en) * 2003-09-24 2005-04-14 Crf Soc Consortile Per Azioni Multifocal condenser for element for converting solar radiation into electric, heat or chemical energy
JP2009139418A (en) * 2007-12-03 2009-06-25 Hikari Energy Kenkyusho:Kk Light condensing device and light condensing method
WO2011058941A1 (en) * 2009-11-10 2011-05-19 京セラ株式会社 Photovoltaic conversion device, package for accommodating photovoltaic conversion element, and photovoltaic conversion module
JP2011138970A (en) * 2009-12-29 2011-07-14 Sharp Corp Concentrating solar battery, concentrating solar battery module, and method of manufacturing the same
JP2011159822A (en) * 2010-02-01 2011-08-18 Mitsubishi Electric Corp Photovoltaic power generator and method of manufacturing the same
US20120006382A1 (en) * 2010-06-07 2012-01-12 Hypersolar, Inc. Thin and flat solar collector-concentrator
CN103364871A (en) * 2012-03-28 2013-10-23 容云 Light equalizer, and solar energy and electric heating mixing utilization system
WO2013180298A1 (en) * 2012-06-01 2013-12-05 シャープ株式会社 Solar cell module and solar power generation device

Also Published As

Publication number Publication date
JP7344061B2 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
US11313526B2 (en) Lighting unit and lighting fixture
CN108287438B (en) Backlight module and display device
US20070274100A1 (en) Light guide plate having high brightness and uniformity of light emission and backlight module adopting same
CN101430072B (en) Assembled uniform surface light source
JP2005331969A (en) Back illumination to be used for display unit
US10760743B2 (en) Lamp
KR20050107281A (en) Resembling prismatic structure of light guide plate
US11719413B2 (en) Lighting arrangements for targeted illumination patterns
US11194243B2 (en) Projection screen and projection system
CN1928653A (en) Backlight system and reflecting shade for same
JP2013134985A (en) Uniform irradiation optical lens
TWM608390U (en) Backlight module
TW201541672A (en) Light source module
JPH095505A (en) Lens sheet, surface light source and display device
CN206817388U (en) LED wall wash lamp lens
JP2011138774A (en) Light guide plate and backlight module using the same
CN210462888U (en) LED lens capable of forming uniform square light spots
JPWO2018025993A1 (en) Daylighting device
JP2021048147A (en) Solar battery cover
CN104090423B (en) Transparent display
JPH08254606A (en) Lens sheet, surface light source and display device
JPH08136733A (en) Back light panel
CN101419360A (en) Back light module unit
US20090147539A1 (en) Optical assembly
CN214094141U (en) Skylight based on fresnel lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230901

R150 Certificate of patent or registration of utility model

Ref document number: 7344061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150