WO2011058836A1 - 偽指判定装置、偽指判定方法および偽指判定プログラム - Google Patents

偽指判定装置、偽指判定方法および偽指判定プログラム Download PDF

Info

Publication number
WO2011058836A1
WO2011058836A1 PCT/JP2010/067551 JP2010067551W WO2011058836A1 WO 2011058836 A1 WO2011058836 A1 WO 2011058836A1 JP 2010067551 W JP2010067551 W JP 2010067551W WO 2011058836 A1 WO2011058836 A1 WO 2011058836A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
finger
skin
background
fake
Prior art date
Application number
PCT/JP2010/067551
Other languages
English (en)
French (fr)
Inventor
啓 門田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201080051084.1A priority Critical patent/CN102612706B/zh
Priority to JP2011540448A priority patent/JPWO2011058836A1/ja
Priority to EP10829796.1A priority patent/EP2500862B1/en
Priority to US13/508,682 priority patent/US10496871B2/en
Publication of WO2011058836A1 publication Critical patent/WO2011058836A1/ja
Priority to US16/679,557 priority patent/US11443548B2/en
Priority to US17/881,675 priority patent/US11734951B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1388Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using image processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger

Definitions

  • the present invention relates to a fake finger determination device, a fake finger determination method, and a fake finger determination program.
  • fingerprint authentication has attracted attention as one of authentication methods for identifying individuals. Fingerprints vary from person to person and are characterized by not changing over time. Therefore, fingerprint authentication is considered to be more reliable than password authentication or the like that is currently popular. On the other hand, in fingerprint authentication, it is necessary to prevent fraudulent impersonation by impersonating a person using a fake finger or the like forged by taking another person's fingerprint. As a technique for preventing such illegal acts, for example, in Patent Documents 1 and 2 below, a false finger is detected based on the color of the surface of the finger irradiated with light.
  • the present invention has been made to solve the above-described problems, and is a fake finger determination device, a fake finger determination method, and a fake finger determination program that can determine a fake finger with a transparent thin film on the finger surface.
  • the purpose is to provide.
  • the fake finger determination device of the present invention includes an imaging unit that captures an authentication target that is a target for fingerprint authentication, and an image captured by the imaging unit using at least a skin region and a color of a pixel included in the image. There is a foreign object around the finger using the classification part that classifies into a plurality of areas including the background area and the characteristics of the area classified by the classification part that is not classified as either the skin area or the background area. And a determination unit for determining whether or not.
  • the fake finger determination method of the present invention includes an imaging step of capturing an authentication target that is a target for fingerprint authentication, and an image captured in the imaging step using at least a skin region and a color of a pixel included in the image.
  • the fake finger determination program of the present invention causes a computer to execute each step included in the fake finger determination method.
  • the background to the present invention will be described.
  • fingerprint authentication if an attempt is made to impersonate another person using a transparent thin film obtained by duplicating another person's fingerprint, the person's fingerprint needs to be covered with a thin film.
  • the size of the thin film is necessarily larger than the range in which the fingerprint of the finger is read. Therefore, when fingerprint authentication is performed by attaching such a thin film to a finger, it is assumed that a part of the thin film protrudes around the finger.
  • the present invention has been made paying attention to this point, and is characterized in that a fake finger with a transparent thin film on the surface of the finger is discriminated by detecting a thin film protruding around the finger.
  • embodiments of the fake finger determination device of the present invention based on such premise will be specifically described.
  • FIG. 1 is a diagram schematically illustrating the configuration of a fake finger determination apparatus.
  • the fake finger determination device 1 is a device that determines whether or not an authentication object to be subjected to fingerprint authentication is a fake finger.
  • the finger as the authentication object is placed on, for example, a predetermined placement area provided on the top surface of the fake finger determination device 1.
  • the fake finger determination device 1 includes an imaging unit 10, a light source unit 20, and a control unit 30.
  • the imaging unit 10 is a camera, for example, and images an authentication object placed on the placement area.
  • the light source unit 20 is, for example, an LED (Light-Emitting Diode), and emits light to the authentication target when the authentication target is photographed by the imaging unit 10.
  • each component of the imaging unit 10, the light source unit 20, and the control unit 30 included in the fake finger determination device 1 is basically the same as the imaging unit, the light source unit, and the control unit included in the conventional fingerprint authentication device. However, it differs from the conventional fingerprint authentication apparatus in that the control unit 30 has various functions for determining the authenticity of the authentication object.
  • the fake finger determination device 1 is physically configured to include a CPU, a memory, an imaging unit, and a light source unit.
  • the memory includes, for example, a ROM that stores programs and data processed by the CPU, and a RAM that is mainly used as various work areas for control processing. These elements are connected to each other via a bus.
  • the function of each part in the fake finger determination apparatus 1 to be described later is executed by the CPU executing a program stored in the ROM and processing it using image data captured by the imaging unit and various data expanded in the RAM. Can be realized.
  • the control unit 30 controls the entire fake finger determination apparatus 1 by executing various control processes.
  • the control unit 30 includes a classification unit 31 and a determination unit 32.
  • the classification unit 31 classifies the image captured by the imaging unit 10 into a skin region, a background region, and a remaining region using the color of the pixels included in the image. Specifically, the classification unit 31 classifies the skin region, the background region, and the remaining region as follows.
  • the classification unit 31 divides the captured image into three regions using the pixel color included in the image captured by the imaging unit 10 as a feature amount.
  • the hue value of the pixel can be used as the feature amount when dividing.
  • a k-means method k-means
  • the classification unit 31 calculates a representative value of each divided area.
  • the representative value for example, the average value of the hue value of each pixel in each area, or the hue value of the most existing pixel in each area can be used.
  • the classification unit 31 classifies a region having a representative value closest to the skin color as a skin region based on the calculated representative value of each region. Whether or not it is close to the color of the skin can be determined using, for example, a hue value. Specifically, the classification unit 31 sets, as a skin region, a region whose hue value falls within a predetermined range that can be taken as a preset skin color among the three regions.
  • the predetermined range is, for example, a range of approximately 10 to 50 degrees that can be taken as a skin color hue that is a skin color when the red hue is set to 0 degrees in the HSV (Hue, Saturation, Value) color space. Is applicable. Note that when there are a plurality of skin region target regions, for example, a region having a representative value closest to the center value of a predetermined range that can be taken as a skin color can be classified as a skin region.
  • the classification unit 31 classifies a region having a representative value closer to the background color as a background region based on the representative values of two regions other than the skin region. Specifically, the classification unit 31 sets, as a background region, a region having a hue value that falls within a predetermined range that can be taken as a preset background color, as a representative value, of two regions other than the skin region. If the representative values of the two areas are both within the predetermined range, for example, an area having a representative value closer to the center value of the predetermined range that can be taken as the background color is classified as the background area. be able to. As a result, the region that is not classified as either the skin region or the background region is classified as the remaining region. In addition, even if the transparency of the thin film on the finger surface is high, the background color and the thin film color inevitably have a difference between the background color and the thin film color. It is possible to distinguish the area.
  • FIG. 2 is a diagram schematically illustrating a classification state when a fake finger with a transparent thin film attached to the surface of a human finger is photographed as an authentication object.
  • 2A is an image corresponding to a human finger
  • B is an image corresponding to a background
  • C is an image corresponding to a transparent thin film.
  • the classification unit 31 divides the captured image into regions A and Ca, a region B, and a region Cb using the color of the pixel included in the captured image shown in FIG. 2 as a feature amount.
  • the classification unit 31 classifies the regions A and Ca having the representative value closest to the skin color as the skin region based on the representative values of the divided regions, and sets the region B having the representative value closer to the background color as the background. Classify as a region and classify region Cb as the remaining region.
  • classification can be performed in consideration of the positional relationship between the two regions other than the skin region. Specifically, a region located on the outer side with respect to the position of the skin region can be used as the background region. Even if a range of hue values that can be taken as background colors can be set in advance, classification may be performed in consideration of both a method using a representative value and a method using a positional relationship.
  • the determination unit 32 determines whether or not the remaining region that is not classified as either the skin region or the background region among the regions classified by the classification unit 31 is an area obtained by excessively dividing either the skin region or the background region. Determine whether. Whether the region is excessively divided can be determined, for example, according to the similarity or distance between the representative value of the remaining region and the representative value of the skin region or the background region.
  • the determination unit 32 determines that there is no foreign object around the finger, that is, the authentication target is a human finger. In this way, it is determined whether or not the remaining area is an excessively divided area, and when the remaining area is an excessively divided area, it is determined that it is a human finger, so that a valid human finger is placed. In this case, it is possible to reduce the case where the false finger is erroneously determined.
  • the determination unit 32 determines whether there is a foreign object around the finger based on the size of the remaining area. Specifically, when the number of pixels in the remaining region is equal to or greater than a predetermined number, the determination unit 32 determines that there is a foreign object around the finger, that is, the authentication target is a fake finger.
  • a predetermined number for example, an upper limit value (upper limit pixel number) of the number of pixels that can be detected as noise corresponds.
  • FIG. 3 is a flowchart showing a processing procedure for determining a fake finger with a transparent thin film on the surface of the finger.
  • the light source unit 20 irradiates the authentication object with light, and the imaging unit 10 captures the authentication object (step). S101).
  • the classification unit 31 divides the image captured by the imaging unit 10 into three regions using the pixel color included in the captured image as a feature amount (step S102).
  • the classification unit 31 calculates a representative value of each region divided in step S102 (step S103).
  • the classification unit 31 classifies the region having the representative value closest to the skin into the skin region based on the representative value of each region calculated in step S103 (step S104).
  • the classification unit 31 classifies the region having the representative value closest to the background as the background region based on the representative values of the two regions other than the skin region (step S105).
  • the determination unit 32 determines whether or not the remaining region that is not classified as either the skin region or the background region among the three regions divided in step S102 is a region obtained by excessively dividing the skin region. Is determined (step S106). If this determination is YES (step S106; YES), the process proceeds to step S110 described later.
  • step S106 determines that the remaining area is not an area obtained by excessively dividing the skin area.
  • step S107 determines whether or not the remaining area is an area obtained by excessively dividing the background area. If this determination is YES (step S107; YES), the process proceeds to step S110 described later.
  • step S107 determines that the remaining area is not an area obtained by excessively dividing the background area.
  • step S107 determines that the three areas divided in step S102 are the same. It is determined whether or not the number of pixels in the remaining area of the area is greater than or equal to a predetermined upper limit number of pixels (step S108). When this determination is NO (step S108; NO), the determination unit 32 determines that there is no foreign object around the finger (step S110). That is, it is determined that the authentication target is a human finger, and the fake finger determination process is terminated.
  • step S108 when it is determined in step S108 that the number of pixels in the remaining area is equal to or greater than the predetermined upper limit number of pixels (step S108; YES), the determination unit 32 determines that there is a foreign object around the finger. Determination is made (step S109). That is, it is determined that the authentication target is a fake finger, and the fake finger determination process is terminated.
  • an image captured by the imaging unit 10 can be classified into a skin region, a background region, and a remaining region. Then, when the number of pixels in the remaining area is equal to or larger than the predetermined number, it can be determined that there is a foreign object around the finger. Thereby, even if it is a fake finger
  • the fake finger determination device 1 in the first embodiment it is determined whether or not the remaining area is an area obtained by excessively dividing the skin area or the background area. It can be determined that it is a human finger. Thereby, when a legitimate human body finger is placed, a case where it is erroneously determined to be a fake finger can be reduced.
  • a second embodiment of the present invention will be described.
  • the fake finger determination device in the second embodiment is different from the fake finger determination device in the first embodiment described above in that the function of the classification unit 31 of the control unit 30 is different.
  • the other configurations are the same as the configurations of the fake finger determination device in the first embodiment, and therefore, the same reference numerals are given to the respective components, and the description thereof is omitted. Differences from the first embodiment will be described.
  • the classification unit 31 in the second embodiment uses the color of the pixels included in the image to classify the image captured by the imaging unit 10 into a skin region, a background region, and a remaining region. Common to the classification unit 31 in FIG. However, the specific methods for classifying the skin region, the background region, and the remaining region are different. Below, the classification
  • the classification unit 31 classifies a pixel group having a color that can be taken as skin out of each pixel included in the image captured by the imaging unit 10 into a skin region.
  • a color that can be taken as skin for example, a hue value that can be taken as skin can be used.
  • the hue value that can be taken as skin corresponds to, for example, approximately 10 to 50 degrees that can be taken as the skin color hue value that is the skin color when the red hue value is set to 0 degree in the HSV color space.
  • the classification unit 31 classifies a pixel group having a color that can be taken as a background among the pixels included in the image captured by the imaging unit 10 into a background region.
  • a color that can be taken as a background for example, a hue value that can be taken as a background can be used.
  • the pixel group that is not classified into either the skin region or the background region is classified as the remaining region.
  • the portion of the image captured by the imaging unit 10 that does not correspond to the skin region is divided into two regions using the color of the pixel included in this portion as a feature amount. Based on the positional relationship between the two divided areas, an area located on the outer side can be classified as a background area. For example, the hue value of the pixel can be used as the feature amount when dividing. As a method of dividing into two regions, for example, a k-means method (k-means) can be used.
  • FIG. 4 is a flowchart showing a processing procedure for determining a fake finger having a transparent thin film on the finger surface.
  • step S201 and steps S204 to S208 shown in FIG. 4 have the same processing contents as step S101 and step S106 to step S110 shown in FIG. 3, respectively, and therefore description thereof will be omitted below.
  • the processing content of step S202 and step S203 different from FIG. 3 will be mainly described.
  • the classification unit 31 selects a pixel group having a color that can be taken as skin among the pixels included in the image photographed by the imaging unit 10. Classification as a skin region (step S202).
  • the classification unit 31 classifies a pixel group having a color that can be taken as a background among the pixels included in the image photographed by the imaging unit 10 as a background region (step S203).
  • the determination unit 32 determines whether or not the remaining area that is not classified as either the skin area or the background area is an area obtained by excessively dividing the skin area or the background area. It is determined (step S204, step S205), and it is determined whether or not the number of pixels in the remaining area is equal to or greater than a predetermined upper limit number of pixels (step S206).
  • an image photographed by the imaging unit 10 can be classified into a skin region, a background region, and a remaining region. Then, when the number of pixels in the remaining area is equal to or larger than the predetermined number, it can be determined that there is a foreign object around the finger. Thereby, even if it is a fake finger
  • the false finger determination device 1 in the second embodiment it is determined whether or not the remaining area is an area obtained by excessively dividing the skin area or the background area. It can be determined that it is a human finger. Thereby, when a legitimate human body finger is placed, a case where it is erroneously determined to be a fake finger can be reduced.
  • the image captured by the imaging unit 10 is classified into three regions, that is, a skin region, a background region, and the remaining region, but the number of regions to be classified is not limited to three regions. It suffices if it can be classified into a plurality of regions including at least a skin region and a background region.
  • the imaging range of the imaging unit 10 is larger than that of the authentication target and the background exists around the authentication target.
  • this precondition is not satisfied.
  • the imaging range of the imaging unit is small, there is a high possibility that a background or film will not appear in the captured image. If the background and film do not appear in the photographed image, the present invention cannot determine a fake finger. Therefore, it is desirable to apply the present invention when the background is shown in the photographed image, and not apply the present invention when the background is not reflected in the photographed image. In order to realize this, for example, the following processing may be incorporated into the above-described fake finger determination processing.
  • the determination unit 32 determines that the background exists when the ratio of the skin area in the entire image captured by the imaging unit 10 is smaller than a predetermined ratio, and determines whether there is a foreign object around the finger. . On the other hand, the determination unit 32 determines that there is no background when the ratio of the skin area in the entire image captured by the imaging unit 10 is equal to or greater than a predetermined ratio, and whether or not there is a foreign object around the finger. It is assumed that the fake finger determination process is exited without determining. As the predetermined ratio, for example, the lower limit value of the ratio when it is assumed that the background does not exist is applicable. By performing such processing, it is not always necessary to provide an imaging unit having a shooting range larger than that of the authentication target.
  • the determination unit 32 in each of the above-described embodiments determines whether or not there is a foreign object around the finger based on the size of the remaining area. It is not limited to that. For example, it may be determined whether or not there is a foreign object around the finger using the features of the remaining area such as the shape and position of the remaining area.
  • the fake finger determination apparatus, fake finger determination method, and fake finger determination program according to the present invention are suitable for determining a fake finger with a transparent thin film on the finger surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Collating Specific Patterns (AREA)

Abstract

 指の表面に透明な薄膜を付けた偽指を判別する。指紋認証の対象となる認証対象物を撮影する撮像部10と、撮像部10によって撮影された画像を、当該画像に含まれる画素の色を用いて、少なくとも皮膚領域および背景領域を含む複数の領域に分類する分類部31と、分類部31によって分類された領域のうち、皮膚領域および背景領域のいずれにも分類されない領域の特徴を用いて、指の周辺に異物が存在するか否かを判定する判定部32と、を備える。

Description

偽指判定装置、偽指判定方法および偽指判定プログラム
 本発明は、偽指判定装置、偽指判定方法および偽指判定プログラムに関する。
 近年、個人を識別する認証方式の一つとして指紋認証が注目されている。指紋は人によって異なり、年月が経過しても変化しないという特徴がある。したがって、指紋認証は、現在普及しているパスワード認証等よりも信頼性が高いとされている。一方、指紋認証では、他人の指紋を取り込んで偽造した偽指等を用いて本人になりすます不正行為を阻止する必要がある。このような不正行為を阻止する技術として、例えば、下記特許文献1、2では、光を照射した指の表面の色を基準にして偽指を検知している。
特開2003-50993号公報 特許第2637253号公報
 上記特許文献1、2に記載された指の表面の色を基準にして偽指を検知する技術では、他人の指紋を複製等した透明な薄膜を指の表面に付けた偽指を、検知することができない。上記特許文献1、2では、透明な薄膜を付けた偽指の表面の色と皮膚の色とを区別することが困難なためである。
 本発明は、上述した課題を解決するためになされたものであり、指の表面に透明な薄膜を付けた偽指を判別することができる偽指判定装置、偽指判定方法および偽指判定プログラムを提供することを目的とする。
 本発明の偽指判定装置は、指紋認証の対象となる認証対象物を撮影する撮像部と、撮像部によって撮影された画像を、当該画像に含まれる画素の色を用いて、少なくとも皮膚領域および背景領域を含む複数の領域に分類する分類部と、分類部によって分類された領域のうち、皮膚領域および背景領域のいずれにも分類されない領域の特徴を用いて、指の周辺に異物が存在するか否かを判定する判定部と、を備える。
 本発明の偽指判定方法は、指紋認証の対象となる認証対象物を撮影する撮像ステップと、撮像ステップにおいて撮影された画像を、当該画像に含まれる画素の色を用いて、少なくとも皮膚領域および背景領域を含む複数の領域に分類する分類ステップと、分類ステップにおいて分類された領域のうち、皮膚領域および背景領域のいずれにも分類されない領域の特徴を用いて、指の周辺に異物が存在するか否かを判定する判定ステップと、を含む。
 本発明の偽指判定プログラムは、上記偽指判定方法に含まれる各ステップをコンピュータに実行させる。
 本発明によれば、指の表面に透明な薄膜を付けた偽指を判別することができる。
各実施形態における偽指判定装置の概略構成を示すブロック図である。 認証対象物として人体指の表面に透明な薄膜を付けた偽指が撮影された場合の分類状態を説明するための模式図である。 第1実施形態における偽指を判定する際の処理手順を示すフローチャートである。 第2実施形態における偽指を判定する際の処理手順を示すフローチャートである。
 以下、添付図面を参照して、本発明に係る偽指判定装置、偽指判定方法および偽指判定プログラムの好適な実施形態について説明する。
 最初に、本発明に至った経緯について説明する。指紋認証の際に、他人の指紋を複製等した透明な薄膜を用いて他人になりすまそうとすると、本人の指紋を薄膜で覆い隠す必要がある。この場合に、薄膜のサイズは、指の指紋が読み取られる範囲よりも必然的に大きくなる。したがって、このような薄膜を指に付けて指紋認証を行った場合には、薄膜の一部が指の周辺にはみ出すことが想定される。本発明は、この点に着目してなされたものであり、指の周辺にはみ出した薄膜を検出することで、指の表面に透明な薄膜を付けた偽指を判別することを特徴とする。以下において、このような前提に基づく本発明の偽指判定装置の実施形態について具体的に説明する。
 [第1実施形態]
 まず、図1を参照して、第1実施形態における偽指判定装置の概略構成について説明する。図1は、偽指判定装置の構成を模式的に示した図である。偽指判定装置1は、指紋認証の対象となる認証対象物が偽指であるか否かを判定する装置である。認証対象物となる指は、例えば偽指判定装置1の天面に設けられた所定の載置領域に載置する。
 図1に示すように、偽指判定装置1は、撮像部10と、光源部20と、制御部30とを有する。撮像部10は、例えばカメラであり、載置領域に載置された認証対象物を撮影する。光源部20は、例えばLED(Light-Emitting Diode)であり、撮像部10によって認証対象物が撮影される際に、認証対象物に光を照射する。
 なお、偽指判定装置1が有する撮像部10、光源部20および制御部30の各構成要素は、原則として、従来の指紋認証装置が有する撮像部、光源部および制御部と同じである。ただし、制御部30が認証対象物の真偽を判定する際の各種機能を有する点で従来の指紋認証装置とは異なる。
 また、偽指判定装置1は、物理的には、CPUと、メモリと、撮像部と、光源部とを含んで構成される。メモリには、例えば、CPUで処理されるプログラムやデータを記憶するROMと、主として制御処理のための各種作業領域として使用されるRAMとが含まれる。これらの要素は、互いにバスを介して接続されている。CPUが、ROMに記憶されたプログラムを実行し、撮像部によって撮影された画像データや、RAMに展開された各種のデータを用いて処理することで、後述する偽指判定装置1における各部の機能を実現することができる。
 制御部30は、各種制御処理を実行することで、偽指判定装置1全体を制御する。制御部30は、例えば、分類部31と、判定部32と、を有する。
 分類部31は、撮像部10によって撮影された画像を、この画像に含まれる画素の色を用い、皮膚領域、背景領域および残りの領域に分類する。具体的に、分類部31は、以下のようにして皮膚領域、背景領域および残りの領域に分類する。
 分類部31は、撮像部10によって撮影された画像に含まれる画素の色を特徴量として撮影画像を三つの領域に分割する。分割する際の特徴量としては、例えば、画素の色相値を用いることができる。三つの領域に分割する方法としては、例えば、k-平均法(k-means)を用いることができる。
 分類部31は、分割した各領域の代表値をそれぞれ算出する。代表値としては、例えば、それぞれの領域内にある各画素の色相値の平均値や、それぞれの領域内において最も多く存在する画素の色相値を用いることができる。分類部31は、算出した各領域の代表値に基づいて、皮膚の色に最も近い代表値を有する領域を皮膚領域として分類する。皮膚の色に近いか否かは、例えば、色相値を用いて判定することができる。具体的に、分類部31は、三つの領域のうち、予め設定した肌色として取り得る所定の範囲内に収まる色相値を代表値とする領域を、皮膚領域とする。所定の範囲としては、例えば、HSV(Hue、Saturation、Value)色空間において赤の色相を0度とした場合に、皮膚の色である肌色の色相として取り得る、およそ10度~50度の範囲が該当する。なお、皮膚領域の対象となる領域が複数存在する場合には、例えば、肌色として取り得る所定の範囲の中心値に最も近い代表値を有する領域を、皮膚領域として分類することができる。
 分類部31は、皮膚領域以外の二つの領域の代表値に基づいて、背景の色により近い代表値を有する領域を背景領域として分類する。具体的に、分類部31は、皮膚領域以外の二つの領域のうち、予め設定した背景色として取り得る所定の範囲内に収まる色相値を代表値とする領域を、背景領域とする。なお、二つの領域の代表値が共に所定の範囲内に収まる場合には、例えば、背景色として取り得る所定の範囲の中心値に対してより近い代表値を有する領域を、背景領域として分類することができる。これにより、皮膚領域および背景領域のいずれにも分類されない領域が、残りの領域として分類されることとなる。また、指の表面に付ける薄膜の透明度が高い場合であっても、多少は白濁等しているため、背景の色と薄膜の色との間には必然的に差が生じ、背景領域と薄膜領域とを判別することは可能となる。
 ここで、分類部31によって分類される皮膚領域、背景領域および残りの領域の具体例を図2に示す。図2は、認証対象物として人体指の表面に透明な薄膜を付けた偽指が撮影された場合の分類状態を模式的に表す図である。図2に示すAは人体指に相当する画像であり、Bは背景に相当する画像であり、Cは透明な薄膜に相当する画像である。分類部31は、図2に示す撮影画像に含まれる画素の色を特徴量として、当該撮影画像を、領域AおよびCaと、領域Bと、領域Cbとに分割する。分類部31は、分割した各領域の代表値に基づいて、皮膚の色に最も近い代表値を有する領域AおよびCaを皮膚領域として分類し、背景の色により近い代表値を有する領域Bを背景領域として分類し、領域Cbを残りの領域として分類する。
 なお、背景色が不明であり、背景色として取り得る色相値の範囲を予め設定することができない場合には、皮膚領域以外の二つの領域の位置関係を考慮して分類することができる。具体的には、皮膚領域の位置を基準にして、より外側に位置する領域を背景領域とすることができる。また、背景色として取り得る色相値の範囲を予め設定することができる場合であっても、代表値を用いる方法と位置関係を用いる方法との双方を考慮して分類することとしてもよい。
 判定部32は、分類部31によって分類された領域のうち、皮膚領域および背景領域のいずれにも分類されない残りの領域が、皮膚領域または背景領域のいずれかを過剰に分割した領域であるか否かを判定する。過剰に分割した領域であるか否かは、例えば、残りの領域の代表値と、皮膚領域または背景領域のそれぞれの代表値との間の類似度や距離に応じて判定することができる。
 判定部32は、残りの領域が過剰に分割した領域であると判定した場合に、指の周辺に異物が存在しない、すなわち、認証対象物が人体指であると判定する。このように、残りの領域が過剰に分割した領域であるか否かを判定し、過剰に分割した領域である場合には人体指であると判定することで、正当な人体指が載置された場合に、偽指であると誤判定されるケースを低減させることができる。
 判定部32は、残りの領域が過剰に分割した領域ではないと判定した場合に、残りの領域の大きさに基づいて、指の周辺に異物が存在するか否かを判定する。具体的に、判定部32は、残りの領域の画素数が所定数以上である場合に、指の周辺に異物が存在する、すなわち、認証対象物が偽指であると判定する。所定数としては、例えば、ノイズとして検出され得る画素数の上限値(上限画素数)が該当する。
 次に、図3を参照して第1実施形態における偽指判定装置で実行される偽指判定処理について説明する。図3は、指の表面に透明な薄膜を付けた偽指を判定する際の処理手順を示すフローチャートである。
 最初に、偽指判定装置1の載置領域に認証対象物が載置されると、光源部20は、認証対象物に光を照射し、撮像部10は、認証対象物を撮影する(ステップS101)。
 続いて、分類部31は、撮像部10によって撮影された画像を、この撮影画像に含まれる画素の色を特徴量として三つの領域に分割する(ステップS102)。
 続いて、分類部31は、上記ステップS102で分割した各領域の代表値をそれぞれ算出する(ステップS103)。
 続いて、分類部31は、上記ステップS103で算出した各領域の代表値に基づいて、皮膚に最も近い代表値を有する領域を皮膚領域に分類する(ステップS104)。
 続いて、分類部31は、皮膚領域以外の二つの領域の代表値に基づいて、背景に最も近い代表値を有する領域を背景領域に分類する(ステップS105)。
 続いて、判定部32は、上記ステップS102において分割された三つの領域のうち、皮膚領域および背景領域のいずれにも分類されない残りの領域が、皮膚領域を過剰に分割した領域であるか否かを判定する(ステップS106)。この判定がYESである場合(ステップS106;YES)には、処理を後述するステップS110に移行する。
 一方、上記ステップS106の判定で上記残りの領域が皮膚領域を過剰に分割した領域ではないと判定された場合(ステップS106;NO)に、判定部32は、上記ステップS102において分割された三つの領域のうち、上記残りの領域が背景領域を過剰に分割した領域であるか否かを判定する(ステップS107)。この判定がYESである場合(ステップS107;YES)には、処理を後述するステップS110に移行する。
 一方、上記ステップS107の判定で上記残りの領域が背景領域を過剰に分割した領域ではないと判定された場合(ステップS107;NO)に、判定部32は、上記ステップS102において分割された三つの領域のうち、上記残りの領域の画素数が所定の上限画素数以上であるか否かを判定する(ステップS108)。この判定がNOである場合(ステップS108;NO)に、判定部32は、指の周辺に異物が存在しないと判定する(ステップS110)。つまり、認証対象物が人体指であると判定し、偽指判定処理を終了する。
 一方、上記ステップS108の判定で上記残りの領域の画素数が所定の上限画素数以上であると判定された場合(ステップS108;YES)に、判定部32は、指の周辺に異物が存在すると判定する(ステップS109)。つまり、認証対象物が偽指であると判定し、偽指判定処理を終了する。
 上述してきたように、第1実施形態における偽指判定装置1によれば、撮像部10によって撮影された画像を、皮膚領域、背景領域および残りの領域に分類することができる。そして、残りの領域の画素数が所定数以上である場合に、指の周辺に異物が存在すると判定することができる。これにより、指の表面に透明な薄膜を付けた偽指であっても、指の周辺にはみ出した薄膜部分を検出することができる。それゆえに、偽指の判別精度を向上させることが可能となる。
 また、第1実施形態における偽指判定装置1によれば、残りの領域が皮膚領域や背景領域を過剰に分割した領域であるか否かを判定し、過剰に分割した領域である場合には人体指であると判定することができる。これにより、正当な人体指が載置された場合に、偽指であると誤判定されるケースを低減させることができる。
 [第2実施形態]
 本発明の第2実施形態について説明する。第2実施形態における偽指判定装置が、上述した第1実施形態における偽指判定装置と相違する点は、制御部30の分類部31の機能が異なる点である。それ以外の構成については、第1実施形態における偽指判定装置の各構成と同様であるため、各構成要素には同一の符合を付し、その説明は省略するとともに、以下においては、主に第1実施形態との相違点について説明する。
 第2実施形態における分類部31は、撮像部10によって撮影された画像を、この画像に含まれる画素の色を用い、皮膚領域、背景領域および残りの領域に分類する点で、第1実施形態における分類部31と共通する。しかしながら、両者は、皮膚領域、背景領域および残りの領域に分類する具体的な方法が異なる。以下に、第2実施形態における分類部31が、皮膚領域、背景領域および残りの領域に分類する方法について具体的に説明する。
 分類部31は、撮像部10によって撮影された画像に含まれる各画素のうち、皮膚として取り得る色を有する画素群を、皮膚領域に分類する。皮膚として取り得る色として、例えば、皮膚として取り得る色相値を用いることができる。皮膚として取り得る色相値は、例えば、HSV色空間で赤の色相値を0度とした場合に、皮膚の色である肌色の色相値として取り得る、およそ10度~50度が該当する。
 分類部31は、撮像部10によって撮影された画像に含まれる各画素のうち、背景として取り得る色を有する画素群を、背景領域に分類する。背景として取り得る色としては、例えば、背景として取り得る色相値を用いることができる。これにより、皮膚領域および背景領域のいずれにも分類されない画素群が、残りの領域として分類されることとなる。
 なお、背景の色が不明な場合には、撮像部10によって撮影された画像のうち皮膚領域に該当しない部分を、この部分に含まれる画素の色を特徴量として二つの領域に分割し、この分割した二つの領域の位置関係に基づいて、より外側に位置する領域を背景領域として分類することができる。分割する際の特徴量としては、例えば、画素の色相値を用いることができる。二つの領域に分割する方法としては、例えば、k-平均法(k-means)を用いることができる。
 次に、図4を参照して第2実施形態における偽指判定装置で実行される偽指判定処理について説明する。図4は、指の表面に透明な薄膜を付けた偽指を判定する際の処理手順を示すフローチャートである。なお、図4に示すステップS201およびステップS204~ステップS208は、図3に示すステップS101およびステップS106~ステップS110と、それぞれ同様の処理内容であるため、以下においてはそれらの説明を省略する。ここでは、図3と相違するステップS202およびステップS203の処理内容について主に説明する。
 図4に示すように、ステップS201において認証対象物が撮影されると、分類部31は、撮像部10によって撮影された画像に含まれる各画素のうち、皮膚として取り得る色を有する画素群を皮膚領域として分類する(ステップS202)。
 続いて、分類部31は、撮像部10によって撮影された画像に含まれる各画素のうち、背景として取り得る色を有する画素群を背景領域として分類する(ステップS203)。
 その後、上述した第1実施形態と同様に、判定部32が、皮膚領域および背景領域のいずれにも分類されない残りの領域が、皮膚領域または背景領域を過剰に分割した領域であるか否かを判定し(ステップS204、ステップS205)、上記残りの領域の画素数が所定の上限画素数以上であるか否かを判定する(ステップS206)ことになる。
 上述してきたように、第2実施形態における偽指判定装置1によれば、撮像部10によって撮影された画像を、皮膚領域、背景領域および残りの領域に分類することができる。そして、残りの領域の画素数が所定数以上である場合に、指の周辺に異物が存在すると判定することができる。これにより、指の表面に透明な薄膜を付けた偽指であっても、指の周辺にはみ出した薄膜部分を検出することができる。それゆえに、偽指の判別精度を向上させることが可能となる。
 また、第2実施形態における偽指判定装置1によれば、残りの領域が皮膚領域や背景領域を過剰に分割した領域であるか否かを判定し、過剰に分割した領域である場合には人体指であると判定することができる。これにより、正当な人体指が載置された場合に、偽指であると誤判定されるケースを低減させることができる。
 なお、上述した各実施形態は、単なる例示に過ぎず、実施形態に明示していない種々の変形や技術の適用を排除するものではない。すなわち、本発明は、その趣旨を逸脱しない範囲で様々な形態に変形して実施することができる。
 例えば、上述した各実施形態では、撮像部10によって撮影された画像を、皮膚領域、背景領域および残りの領域の三領域に分類しているが、分類する領域数は三領域に限定されない。少なくとも皮膚領域および背景領域を含む複数の領域に分類することができればよい。
 また、上述した各実施形態では、撮像部10の撮影範囲が認証対象物よりも大きく、認証対象物の周辺に背景が存在することを前提として説明しているが、この前提条件を満たさないことも考えられる。例えば、撮像部の撮影範囲が小さい場合には、撮影画像に背景や膜が写らない可能性が高い。撮影画像に背景や膜が写らなければ、本発明で偽指を判別することはできない。したがって、撮影画像に背景が写っている場合には本発明を適用し、撮影画像に背景が写っていない場合には本発明を適用しないことが望ましい。これを実現するために、例えば、以下の処理を、上述した偽指判定処理に組み込むこととしてもよい。
 判定部32は、撮像部10によって撮影された画像全体に占める皮膚領域の割合が所定割合よりも小さい場合に、背景が存在すると判定し、指の周辺に異物が存在するか否かを判定する。一方、判定部32は、撮像部10によって撮影された画像全体に占める皮膚領域の割合が所定割合以上である場合に、背景が存在しないと判定し、指の周辺に異物が存在するか否かを判定することなく、偽指判定処理を抜けることとする。所定割合としては、例えば、背景が存在しない状態であると想定されるときの割合の下限値が該当する。このような処理を行うことで、必ずしも認証対象物よりも大きな撮影範囲を有する撮像部を備える必要がなくなる。
 また、上述した各実施形態における判定部32は、残りの領域の大きさに基づいて、指の周辺に異物が存在するか否かを判定しているが、判定する際の基準は領域の大きさに限定されない。例えば、残りの領域の形状や位置等のように、残りの領域の特徴を用いて指の周辺に異物が存在するか否かを判定することとしてもよい。
 この出願は、2009年11月10日に出願された日本出願特願2009-256971を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明に係る偽指判定装置、偽指判定方法および偽指判定プログラムは、指の表面に透明な薄膜を付けた偽指を判別することに適している。
 1…偽指判定装置、10…撮像部、20…光源部、30…制御部、31…分類部、32…判定部。

Claims (12)

  1.  指紋認証の対象となる認証対象物を撮影する撮像部と、
     前記撮像部によって撮影された画像を、当該画像に含まれる画素の色を用いて、少なくとも皮膚領域および背景領域を含む複数の領域に分類する分類部と、
     前記分類部によって分類された前記領域のうち、前記皮膚領域および前記背景領域のいずれにも分類されない領域の特徴を用いて、指の周辺に異物が存在するか否かを判定する判定部と、
     を備えることを特徴とする偽指判定装置。
  2.  前記判定部は、前記皮膚領域および前記背景領域のいずれにも分類されない領域の大きさに基づいて、指の周辺に異物が存在すると判定することを特徴とする請求項1記載の偽指判定装置。
  3.  前記分類部は、前記撮像部によって撮影された画像を、当該画像に含まれる画素の色を用いて、三つの領域に分割し、当該分割した三つの領域における色の特徴量に基づいて、皮膚の色に最も近い特徴量を有する領域を前記皮膚領域に分類することを特徴とする請求項1または2記載の偽指判定装置。
  4.  前記分類部は、前記皮膚領域に分類した領域以外の二つの領域における色の特徴量に基づいて、背景の色により近い特徴量を有する領域を前記背景領域に分類することを特徴とする請求項3記載の偽指判定装置。
  5.  前記分類部は、前記皮膚領域に分類した領域以外の二つの領域のうち、前記皮膚領域の位置を基準として、より外側に位置する領域を前記背景領域に分類することを特徴とする請求項3記載の偽指判定装置。
  6.  前記分類部は、前記撮像部によって撮影された画像に含まれる各画素のうち、皮膚として取り得る色を有する画素を、前記皮膚領域に分類することを特徴とする請求項1または2記載の偽指判定装置。
  7.  前記分類部は、前記撮像部によって撮影された画像に含まれる各画素のうち、背景として取り得る色を有する画素を、前記背景領域に分類することを特徴とする請求項6記載の偽指判定装置。
  8.  前記分類部は、前記撮像部によって撮影された画像のうち前記皮膚領域に含まれない部分を、当該部分に含まれる画素の色を用いて二つの領域に分割し、当該分割した二つの領域のうち、前記皮膚領域の位置を基準として、より外側に位置する領域を前記背景領域に分類することを特徴とする請求項6記載の偽指判定装置。
  9.  前記判定部は、前記分類部によって分類された前記領域のうち、前記皮膚領域および前記背景領域のいずれにも分類されない領域が、前記皮膚領域または前記背景領域のいずれかを過剰に分割した領域であるか否かを判定し、過剰に分割した領域ではないと判定した場合に、指の周辺に異物が存在するか否かを判定することを特徴とする請求項1~8のいずれか1項に記載の偽指判定装置。
  10.  前記判定部は、前記撮像部によって撮影された画像全体に占める前記皮膚領域の割合が、背景が存在しない状態であると想定されるときの所定割合よりも小さい場合に、指の周辺に異物が存在するか否かを判定することを特徴とする請求項1~9のいずれか1項に記載の偽指判定装置。
  11.  指紋認証の対象となる認証対象物を撮影する撮像ステップと、
     前記撮像ステップにおいて撮影された画像を、当該画像に含まれる画素の色を用いて、少なくとも皮膚領域および背景領域を含む複数の領域に分類する分類ステップと、
     前記分類ステップにおいて分類された前記領域のうち、前記皮膚領域および前記背景領域のいずれにも分類されない領域の特徴を用いて、指の周辺に異物が存在するか否かを判定する判定ステップと、
     を含むことを特徴とする偽指判定方法。
  12.  請求項11に記載の各ステップをコンピュータに実行させるための偽指判定プログラム。
PCT/JP2010/067551 2009-11-10 2010-10-06 偽指判定装置、偽指判定方法および偽指判定プログラム WO2011058836A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080051084.1A CN102612706B (zh) 2009-11-10 2010-10-06 假手指判定设备、假手指判定方法和假手指判定程序
JP2011540448A JPWO2011058836A1 (ja) 2009-11-10 2010-10-06 偽指判定装置、偽指判定方法および偽指判定プログラム
EP10829796.1A EP2500862B1 (en) 2009-11-10 2010-10-06 Fake-finger determination device, fake-finger determination method and fake-finger determination program
US13/508,682 US10496871B2 (en) 2009-11-10 2010-10-06 Fake-finger determination device, fake-finger determination method, and fake-finger determination program
US16/679,557 US11443548B2 (en) 2009-11-10 2019-11-11 Fake-finger determination device, fake-finger determination method and fake-finger determination program
US17/881,675 US11734951B2 (en) 2009-11-10 2022-08-05 Fake-finger determination device, fake-finger determination method, and fake-finger determination program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009256971 2009-11-10
JP2009-256971 2009-11-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/508,682 A-371-Of-International US10496871B2 (en) 2009-11-10 2010-10-06 Fake-finger determination device, fake-finger determination method, and fake-finger determination program
US16/679,557 Continuation US11443548B2 (en) 2009-11-10 2019-11-11 Fake-finger determination device, fake-finger determination method and fake-finger determination program

Publications (1)

Publication Number Publication Date
WO2011058836A1 true WO2011058836A1 (ja) 2011-05-19

Family

ID=43991496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067551 WO2011058836A1 (ja) 2009-11-10 2010-10-06 偽指判定装置、偽指判定方法および偽指判定プログラム

Country Status (5)

Country Link
US (4) US10496871B2 (ja)
EP (1) EP2500862B1 (ja)
JP (1) JPWO2011058836A1 (ja)
CN (1) CN102612706B (ja)
WO (1) WO2011058836A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011152213A1 (ja) * 2010-06-04 2011-12-08 日本電気株式会社 指紋認証システム、指紋認証方法および指紋認証プログラム
CN106599858A (zh) * 2016-12-20 2017-04-26 北京小米移动软件有限公司 指纹识别方法、装置和电子设备
JP2018191075A (ja) * 2017-04-28 2018-11-29 キヤノンマーケティングジャパン株式会社 画像処理装置、画像処理装置の制御方法、およびプログラム
US10628657B2 (en) 2015-06-15 2020-04-21 Nec Corporation Dermal image information processing device, dermal image information processing method, and program
US10915728B2 (en) 2015-03-31 2021-02-09 Nec Corporation Biological pattern information processing device, biological pattern information processing method and program
US11055511B2 (en) 2015-03-31 2021-07-06 Nec Corporation Biological pattern information processing device, biological pattern information processing method, and program

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011058836A1 (ja) 2009-11-10 2013-03-28 日本電気株式会社 偽指判定装置、偽指判定方法および偽指判定プログラム
US10445547B2 (en) 2016-05-04 2019-10-15 Invensense, Inc. Device mountable packaging of ultrasonic transducers
US10315222B2 (en) 2016-05-04 2019-06-11 Invensense, Inc. Two-dimensional array of CMOS control elements
US10539539B2 (en) 2016-05-10 2020-01-21 Invensense, Inc. Operation of an ultrasonic sensor
US11673165B2 (en) 2016-05-10 2023-06-13 Invensense, Inc. Ultrasonic transducer operable in a surface acoustic wave (SAW) mode
US10562070B2 (en) 2016-05-10 2020-02-18 Invensense, Inc. Receive operation of an ultrasonic sensor
US10706835B2 (en) 2016-05-10 2020-07-07 Invensense, Inc. Transmit beamforming of a two-dimensional array of ultrasonic transducers
US10441975B2 (en) 2016-05-10 2019-10-15 Invensense, Inc. Supplemental sensor modes and systems for ultrasonic transducers
US10452887B2 (en) 2016-05-10 2019-10-22 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers
KR101870226B1 (ko) * 2016-09-01 2018-06-25 상명대학교산학협력단 위조 바이오 정보 검출 장치 및 방법
US11151355B2 (en) 2018-01-24 2021-10-19 Invensense, Inc. Generation of an estimated fingerprint
US10755067B2 (en) 2018-03-22 2020-08-25 Invensense, Inc. Operating a fingerprint sensor comprised of ultrasonic transducers
US11188735B2 (en) 2019-06-24 2021-11-30 Invensense, Inc. Fake finger detection using ridge features
WO2020264046A1 (en) * 2019-06-25 2020-12-30 Invensense, Inc. Fake finger detection based on transient features
US11176345B2 (en) 2019-07-17 2021-11-16 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11216632B2 (en) 2019-07-17 2022-01-04 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11232549B2 (en) 2019-08-23 2022-01-25 Invensense, Inc. Adapting a quality threshold for a fingerprint image
US11392789B2 (en) 2019-10-21 2022-07-19 Invensense, Inc. Fingerprint authentication using a synthetic enrollment image
TWI793448B (zh) * 2020-01-21 2023-02-21 神盾股份有限公司 電子裝置及其操作方法
WO2021183457A1 (en) 2020-03-09 2021-09-16 Invensense, Inc. Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness
US11995909B2 (en) 2020-07-17 2024-05-28 Tdk Corporation Multipath reflection correction
TWI792846B (zh) * 2021-03-03 2023-02-11 神盾股份有限公司 屏下指紋感測裝置以及指紋感測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167230A (ja) * 1995-12-18 1997-06-24 Nec Corp 指掌紋画像処理装置
JP2637253B2 (ja) 1989-12-18 1997-08-06 富士通株式会社 生体識別装置
JP2002177624A (ja) * 2000-12-15 2002-06-25 Kyoraku Sangyo 指紋認証装置を備えた遊技媒体計数装置
JP2003006645A (ja) * 2001-06-20 2003-01-10 Secom Co Ltd 本人認証用の顔画像照合装置
JP2003050993A (ja) 2001-08-06 2003-02-21 Omron Corp 指紋読取方法および指紋読取装置
JP2009256971A (ja) 2008-04-17 2009-11-05 Aica Kogyo Co Ltd 目地構造

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560352B2 (en) * 1999-10-08 2003-05-06 Lumidigm, Inc. Apparatus and method of biometric identification or verification of individuals using optical spectroscopy
EP1423821B1 (en) * 2001-06-29 2006-08-16 Precise Biometrics AB Method and apparatus for checking a person's identity, where a system of coordinates, constant to the fingerprint, is the reference
US7460696B2 (en) * 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
JP4468896B2 (ja) * 2004-01-13 2010-05-26 富士通株式会社 生体情報による認証装置
KR100752640B1 (ko) * 2005-01-05 2007-08-29 삼성전자주식회사 방향성 기울기 필터를 이용한 지문 영역 분할 장치 및 방법
JP2006277415A (ja) 2005-03-29 2006-10-12 Sanyo Electric Co Ltd 登録方法および装置ならびに認証方法および装置
US20070036400A1 (en) * 2005-03-28 2007-02-15 Sanyo Electric Co., Ltd. User authentication using biometric information
US20090304237A1 (en) * 2005-06-29 2009-12-10 Kyocera Corporation Biometric Authentication Apparatus
US7505613B2 (en) * 2005-07-12 2009-03-17 Atrua Technologies, Inc. System for and method of securing fingerprint biometric systems against fake-finger spoofing
CN100573553C (zh) 2007-01-18 2009-12-23 中国科学院自动化研究所 基于薄板样条形变模型的活体指纹检测方法
JPWO2011058836A1 (ja) 2009-11-10 2013-03-28 日本電気株式会社 偽指判定装置、偽指判定方法および偽指判定プログラム
WO2013101113A1 (en) 2011-12-29 2013-07-04 Intel Corporation Management of collaborative teams
KR102160251B1 (ko) 2013-10-23 2020-09-25 삼성전자주식회사 복수의 프로세서들을 병렬적으로 이용하여 시뮬레이션을 수행하는 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637253B2 (ja) 1989-12-18 1997-08-06 富士通株式会社 生体識別装置
JPH09167230A (ja) * 1995-12-18 1997-06-24 Nec Corp 指掌紋画像処理装置
JP2002177624A (ja) * 2000-12-15 2002-06-25 Kyoraku Sangyo 指紋認証装置を備えた遊技媒体計数装置
JP2003006645A (ja) * 2001-06-20 2003-01-10 Secom Co Ltd 本人認証用の顔画像照合装置
JP2003050993A (ja) 2001-08-06 2003-02-21 Omron Corp 指紋読取方法および指紋読取装置
JP2009256971A (ja) 2008-04-17 2009-11-05 Aica Kogyo Co Ltd 目地構造

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942439B2 (en) 2010-06-04 2015-01-27 Nec Corporation Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
JP5850341B2 (ja) * 2010-06-04 2016-02-03 日本電気株式会社 指紋認証システム、指紋認証方法および指紋認証プログラム
WO2011152213A1 (ja) * 2010-06-04 2011-12-08 日本電気株式会社 指紋認証システム、指紋認証方法および指紋認証プログラム
US10915728B2 (en) 2015-03-31 2021-02-09 Nec Corporation Biological pattern information processing device, biological pattern information processing method and program
US11776304B2 (en) 2015-03-31 2023-10-03 Nec Corporation Biological pattern information processing device, biological pattern information processing method and program
US11557146B2 (en) 2015-03-31 2023-01-17 Nec Corporation Biological pattern information processing device, biological pattern information processing method, and program
US11055511B2 (en) 2015-03-31 2021-07-06 Nec Corporation Biological pattern information processing device, biological pattern information processing method, and program
US10853620B2 (en) 2015-06-15 2020-12-01 Nec Corporation Dermal image information processing device, dermal image information processing method, and program
US10867160B2 (en) 2015-06-15 2020-12-15 Nec Corporation Dermal image information processing device, dermal image information processing method, and program
US10853621B2 (en) 2015-06-15 2020-12-01 Nec Corporation Dermal image information processing device, dermal image information processing method, and program
US10628657B2 (en) 2015-06-15 2020-04-21 Nec Corporation Dermal image information processing device, dermal image information processing method, and program
CN106599858A (zh) * 2016-12-20 2017-04-26 北京小米移动软件有限公司 指纹识别方法、装置和电子设备
JP2018191075A (ja) * 2017-04-28 2018-11-29 キヤノンマーケティングジャパン株式会社 画像処理装置、画像処理装置の制御方法、およびプログラム

Also Published As

Publication number Publication date
US11443548B2 (en) 2022-09-13
CN102612706A (zh) 2012-07-25
JPWO2011058836A1 (ja) 2013-03-28
US12106602B2 (en) 2024-10-01
US20230351800A1 (en) 2023-11-02
CN102612706B (zh) 2015-09-02
EP2500862A1 (en) 2012-09-19
US20120224041A1 (en) 2012-09-06
US20220369956A1 (en) 2022-11-24
US20200074145A1 (en) 2020-03-05
EP2500862A4 (en) 2017-08-23
EP2500862B1 (en) 2018-09-19
US10496871B2 (en) 2019-12-03
US11734951B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2011058836A1 (ja) 偽指判定装置、偽指判定方法および偽指判定プログラム
JP6650946B2 (ja) モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法
CN110326001B (zh) 使用利用移动设备捕捉的图像执行基于指纹的用户认证的系统和方法
JP5725012B2 (ja) 異物判定装置、異物判定方法および異物判定プログラム
JP5709016B2 (ja) 偽指判定装置、偽指判定方法および偽指判定プログラム
US11227170B2 (en) Collation device and collation method
WO2009107237A1 (ja) 生体認証装置
TW200809700A (en) Method for recognizing face area
JP4247691B2 (ja) 登録装置、照合装置、登録方法、照合方法及びプログラム
US20080304716A1 (en) Face recognition device
US8942439B2 (en) Fingerprint authentication system, fingerprint authentication method, and fingerprint authentication program
US20130169797A1 (en) Color detector for vehicle
US9349071B2 (en) Device for detecting pupil taking account of illuminance and method thereof
JP4694352B2 (ja) 指紋照合装置
KR101767051B1 (ko) 퍼지 추론 기반 지정맥 영상 추출 방법 및 그 장치
KR20230083208A (ko) Ai를 이용한 위조지문판별기능이 포함된 비접촉식 지문인증방법
KR20210075656A (ko) 얼굴 인식 시스템 및 그 위조 얼굴 판별 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051084.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010829796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011540448

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508682

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE