JP6650946B2 - モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法 - Google Patents

モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法 Download PDF

Info

Publication number
JP6650946B2
JP6650946B2 JP2017541680A JP2017541680A JP6650946B2 JP 6650946 B2 JP6650946 B2 JP 6650946B2 JP 2017541680 A JP2017541680 A JP 2017541680A JP 2017541680 A JP2017541680 A JP 2017541680A JP 6650946 B2 JP6650946 B2 JP 6650946B2
Authority
JP
Japan
Prior art keywords
finger
processor
image
fingers
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541680A
Other languages
English (en)
Other versions
JP2018508888A (ja
JP2018508888A5 (ja
Inventor
メイザー,ジョナサン,フランシス
オスマン,アセム
タイソン,リチャード
シンプソン,アンドリュー
Original Assignee
ヴェリディウム アイピー リミテッド
ヴェリディウム アイピー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56564833&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6650946(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US14/819,639 external-priority patent/US9361507B1/en
Application filed by ヴェリディウム アイピー リミテッド, ヴェリディウム アイピー リミテッド filed Critical ヴェリディウム アイピー リミテッド
Publication of JP2018508888A publication Critical patent/JP2018508888A/ja
Publication of JP2018508888A5 publication Critical patent/JP2018508888A5/ja
Application granted granted Critical
Publication of JP6650946B2 publication Critical patent/JP6650946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1353Extracting features related to minutiae or pores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1359Extracting features related to ridge properties; Determining the fingerprint type, e.g. whorl or loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • G06V40/1371Matching features related to minutiae or pores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • G06V40/1376Matching features related to ridge properties or fingerprint texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1388Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1394Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Collating Specific Patterns (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Telephone Function (AREA)
  • Image Input (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

関連出願の相互参照
本出願は、「SYSTEMS AND METHODS FOR PERFORMING FINGERPRINT BASED USER AUTHENTICATION USING IMAGERY CAPTURED USING MOBILE DEVICES」と題する、2015年8月6日に出願の米国非仮特許出願第14/819,639号の一部継続出願であり、これは「SYSTEMS AND METHODS FOR PERFORMING FINGERPRINT BASED USER AUTHENTICATION USING IMAGERY CAPTURED USING MOBILE DEVICES」と題する、2015年2月6日に出願の米国仮特許出願第62/112,961号に基づきかつそれに対する優先権を主張し、本明細書に明示的にその全体が記載されるように、その内容が本明細書に参照によって組み込まれるものとする。
本発明は、バイオメトリック特徴をキャプチャして、特徴づけるシステム及び方法に関し、特に、スマートフォンなどのモバイル・デバイスの組み込み型カメラによって、キャプチャされる指の画像を用いてバイオメトリック特徴をキャプチャして、特徴づけるシステム及び方法に関する。
バイオメトリックは個人の生物学的特性(例えば指紋、手の幾何学的配置、網膜パターン、虹彩テクスチャなど)であるので、バイオメトリック技術は追加的な検証要素として用いることができるが、それはバイオメトリックが通常は他の非バイオメトリック証明書より取得するのが困難だからである。バイオメトリクスは、識別および/または認証(アイデンティティ・アサーションおよび/または検証とも呼ばれる)のために用いることができる。
バイオメトリック・アイデンティティ・アサーションは、アプリケーションにより指示される、特定のレベルのセキュリティを要求とすることができる。例えば、金融取引に関連した認証または安全な場所へのアクセスには、より高いセキュリティ・レベルを必要とする。その結果、ユーザのバイオメトリック表現の正確さは、ユーザが正確に認証されることを確実にしてかつセキュリティが維持されるのに十分であることが好ましい。
更に、新生児の行方不明、交換、混同および違法な養子化は、世界的な課題であり、自動バイオメトリック・システムを使用することが、新生児をその顔、虹彩、指紋、足跡および/または掌紋に基づいて識別するために提案された。
しかしながら、虹彩、顔、指および音声アイデンティティ・アサーション・システムが存在して、必要なレベルの正確さを提供する範囲で、このようなシステムは専用装置およびアプリケーションを必要としており、カメラ解像度および発光能力の制限された従来のスマートフォンには容易に実装されない。
電子指紋センサは、すでにスマートフォン・デバイスに追加されており、カリフォルニア州クパチーノのアップル株式会社によるiPhone6、および韓国サムスンのサムスン社によるサムスンS5スマートフォンはその例である。これらのデバイスにおいては、ユーザがセンサ上に自身の指を置くことにより自分の指紋データを登録して、後日に、ユーザは自身の指をセンサ上に再度置くことによって、自身のアイデンティティを検証することができ、指紋データは登録データと比較され、そして、それが一致する場合、ユーザのアイデンティティは確認される。指紋が一致しない場合、ユーザは詐称者として識別され得る。これらのシステムの不利な点は、指紋センサがデバイスにサイズ、重みおよびコストを追加するということである。更にまた、これらの理由により、指紋センサの寸法を最小化することは有利であり、そのような指紋センサは通常指紋の一部だけをキャプチャして、それが識別の有効度を低下させる。指紋センサのためのキャプチャの領域が小さいほど、別の指が偶然一致する場合が多くなり、また指紋データ中の何らかの誤差が真正なユーザの本人拒否を引き起こす可能性がより高まる。
更に、新生児の指紋を従来の指紋センサを用いてキャプチャすることは、指のサイズおよび新生児の手を保持して、それをセンサ上に置くことの困難さのため難しいものがある。
実際的な条件において、これは、ユーザ(すなわち、成人および新生児)本人拒否という不都合が増える弊害があることを意味し、センサの用途は小額決済などの重要でない場合の使用に限られている。指紋センサはなりすまし攻撃の対象にもなり得て、例えば、本物のユーザの指紋の鋳型が指紋センサに置かれて詐称者は認証合格できる。これは、使用を重要でない用途に制限する更なる理由となる。
更なる課題は、指紋センサを備えているモバイル・デバイスは少数に限られており、それが指紋認証システムにアクセス可能な人々の数を制限することになり、デバイスの間に認証方法の不整合が生じる、ということである。
モバイル・デバイスのカメラを使用して単一の指の画像を分析するシステムは提案されてきており、これらのシステムは潜在的にはより便利であるが、しかしながら、単一の指を画像化して分析するそのようなシステムに対する最低の他人誤認率および本人拒否率は、中〜高価格購買および企業システム(つまり大規模システム)などの、より高いセキュリティが要求される用途に対しては、まだ充分に信頼できるものでは無い。
このように、より信頼性が高く、かつ普遍的な指認識システムに対する需要がある。
指紋認識を実行するためのシステム及び方法をサポートする技術が、本明細書において、提示される。
第1の態様によれば、指紋認識を実行する方法が提供される。方法は、カメラ、記憶媒体、記憶媒体に記憶される命令、および命令を実行することにより構成されるプロセッサを有するモバイル・デバイスによって、対象の複数の指を表す1つまたは複数の画像をキャプチャするステップを含む。方法はまた、指検出アルゴリズムを用いて、画像の内の1つに表された複数の指を検出することを含む。方法はまた、セグメンテーション・アルゴリズムに従う画像の1つまたは複数から、複数の指の中の指ごとにそれぞれの指先セグメントを識別することを含む。加えて、方法は、各識別された指のための識別可能な特徴を抽出して、抽出された識別可能な特徴に基づいてバイオメトリック識別子を生成して、バイオメトリック識別子をメモリに記憶することを含む。
これらの、そしてまた他の、態様、特徴および利点は、添付の本発明の特定の実施形態の記述および添付の描画図面および請求項から理解することが可能である。
図1は、本明細書において、開示される少なくとも1つの実施形態による、ユーザのバイオメトリック特徴に従ってユーザを認証するためのコンピュータ・システムの高レベル図である。 図2Aは、本明細書において、開示される少なくとも1つの実施形態による、ユーザのバイオメトリック特徴に従ってユーザを認証するためのコンピュータ・システムのブロック図である。 図2Bは、本明細書において、開示される少なくとも1つの実施形態による、ユーザのバイオメトリック特徴に従ってユーザを認証するためのソフトウェア・モジュールのブロック図である。 図2Cは、本明細書において、開示される少なくとも1つの実施形態による、ユーザのバイオメトリック特徴に従ってユーザを認証するためのコンピュータ・システムのブロック図である。 図3は、本明細書において、開示される少なくとも1つの実施形態による、ユーザのバイオメトリック特徴に従ってバイオメトリック識別子を生成してユーザを登録するかまたは認証するためのルーチンを示すフロー図である。 図4Aは、本明細書において、開示される少なくとも1つの実施形態による、視覚のイメージおよび対応する画像から指を検出するためのルーチンを示すフロー図である。 図4Bは、本明細書において、開示される少なくとも1つの実施形態による、視覚のイメージからの中で検出される指先領域のフィルタリングのためのルーチンを示すフロー図である。 図4Cは、図4Bの、指先領域をフィルタリングするためのルーチンによる、キャプチャされて生成される画像を表す。 図5Aは、本明細書において、開示される少なくとも1つの実施形態による、指の視覚イメージから生存性を検知するためのルーチンを示すフロー図である。 図5Bは、指の視覚のイメージから生存性を検知するためのルーチンに従ってキャプチャされた一連の画像である。 図5Cは、指の視覚のイメージから生存性を検知するためのルーチンに従ってキャプチャされた一連の画像である。 図6Aは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。 図6Bは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。 図6Cは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。 図6Dは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。 図6Eは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。 図6Fは、指のキャプチャした画像および本明細書において、開示される少なくとも1つの実施形態に従って生成された対応する隆線反射率画像を表す。
単なる例示として、かつ概要および紹介の目的で、スマートフォンなどのモバイル・デバイスを使用して、ユーザのバイオメトリック特徴をキャプチャしてユーザのバイオメトリック特徴を特徴づける識別子を生成するシステム及び方法に関する本発明の実施形態を、以下に記載する。バイオメトリック識別子は、 キャプチャされたバイオメトリクスに従ってユーザを認証/識別してユーザの生存性を判定するためのために、好ましくはユーザの複数の指についてキャプチャされたイメージを用いて生成される。本開示はまた、なりすましによって、生じる誤った認証を防止するための追加的な技術を記載する。いくつかの実施例において、反なりすまし技術は、ユーザのバイオメトリクスの1つまたは複数の画像をキャプチャして、生存性の徴候についてキャプチャした画像を分析することを含むことができる。
いくつかの実装では、システムは、固定PC、サーバおよびユーザにより操作されるラップトップ、タブレットおよびスマートフォンなどのデバイスと通信するクラウド・ベースのシステム・サーバ・プラットホームを含む。アクセス制御されているネットワーク化された環境、例えば安全なログインを必要とするウェブサイトにユーザがアクセスしようと試みる際、ユーザは、ユーザの事前登録したモバイル・デバイスを使用して認証するように促される。認証は、モバイル・デバイスを使用して、少なくともユーザの指の画像の形でバイオメトリック情報をキャプチャし、独特の特徴を抽出し、その特徴をユーザのバイオメトリック特徴および/または生存性を表すバイオメトリック識別子としてコード化することによって、ユーザのアイデンティティを検証すること、および/またはユーザが生きていることを検証すること(例えば、生存性を判定すること)を含むことができる。従って、ユーザのアイデンティティおよび/または生存性は、モバイル・デバイスおよび/またはシステム・サーバまたは前述の組合せによって、イメージ、生成されたバイオメトリック識別子を解析すること、ならびに/または、イメージおよび/またはバイオメトリック識別子を、ユーザの第一のシステムへの登録の間に生成されるバイオメトリック識別子と比較することによって、検証できる。
本出願の一態様によれば、開示される実施態様は、普遍的であり使用に便利であるモバイル・デバイス上での指をベースとしたバイオメトリック認識を用いたユーザ識別/認証の、信頼性が高い手段を提供する。開示された実施形態は、モバイル・デバイスに一般的に存在するカメラを使用した4本の指ベースの認識を実行し、その結果、大きさ、コストまたは重さの追加は設計に生じず、そして、至る所で使用できる。システムの更なる目的は、なりすまし攻撃に対する防御を提供することである。
本発明は、同時に複数の指からバイオメトリック情報をキャプチャして、各指から大きい指紋領域をキャプチャする。更にまた、本発明は掌紋および手形を含む手の他の領域から紋情報をとるために用いることもでき、システムの信頼性を更に増加させる。また、新生児識別の場合、本発明は、足指をキャプチャするために用いることができる。更に、提案された革新は、既存のモバイル顔認識システムと結合できる。非限定的な実施例として、顔の特徴のイメージからのバイオメトリクスベースのユーザ認証ための例示的なシステムと方法は、本明細書、および、同時係属の、本出願の譲受人に譲渡された、「SYSTEM AND METHOD FOR AUTHORIZING ACCESS TO ACCESS CONTROLLED ENVIRONMENTS」と題する、2015年5月13日に出願の米国特許出願第14/668,352号において、記載されており、それは、「SYSTEM AND METHOD FOR AUTHORIZING ACCESS TO ACCESS CONTROLLED ENVIRONMENTS」と題する、2014年5月13日に出願の米国特許第9/003,196号、および「SYSTEMS AND METHODS FOR BIOMETRIC AUTHENTICATION OF TRANSACTIONS」と題する、2014年3月7日に出願の米国特許第9,208,492号の継続であり、それぞれの全体が本明細書において記載されるように本明細書に参照によって組み込まれるものとする。更に、本発明は、獲得した指写真に対応し、かつ統合自動化指紋識別システム(IAFIS)において、使われる回転および普通の指紋画像と照合できる指紋画像を生成するために、モバイル・デバイスに存在するカメラを用いて取得した指の写真を処理するために使用できる。IAFISは、米国連邦捜査局(FBI)により維持される国家自動指紋識別および犯罪履歴システムである。IAFISは、自動化「指紋」検索機能、潜在指紋検索機能、電子画像ストレージおよび指紋と応答の電子交換を提供する。
開示された実施形態は、多モードバイオメトリック認証システムと呼ぶことができる。従って、バイオメトリクスの複数の、独立の個片(すなわち、4〜10本の指)の存在は、スマートフォンの埋め込みセンサによって、キャプチャされる指画像または指紋のいずれかを用いた単一指モバイル認識システムに勝る以下の利点を提供する。
1.性能: 無相関のモダリティ(例えば、人の4本の指および新生児の10本の指)の組合せは、単一の指の認識システムより良好な性能の改善に結果としてなることがあり得る。この精度改善は、2つの理由のため起こる。第一に、異なる指からのバイオメトリック証拠の融合は、効果的に識別可能な特徴を増加させて、異なるユーザの特徴との重複を減らす。言い換えれば、複数の指の組合せは、単一の指よりも個人に対して判別性がある。第二に、指のサブセットの取得の間の、ノイズ(ほこりまたはインクのにじみのような要因によって、生じる)および不正確さは、残りの指により提供される情報によって、対処できる。
2.普遍性: 普遍性が無いことの課題を解決して、エラーを登録する失敗を減らす。例えば、切断された指、指の切り傷、損傷または摩耗した隆線(すなわち、摩耗した隆線は、対象の1つまたは複数の指に身体的に起こることがあり得る)のため人が特定の指を登録することができない場合、その人は他の指を使用してまだ識別されることができる。
3.なりすまし攻撃: ユーザの複数の指を登録することが実行される、開示された実施形態を使用することは、なりすまし攻撃に対する認証システムの抵抗力を高める。これは、同時に複数の指を巧みに回避するかまたは偽装することはますます困難になるという理由による。
ユーザを認証し、および/またはユーザのバイオメトリック特徴100のイメージに従ってユーザの生存性を判定するための例示システムは、図1のブロック図として示される。1つの構成において、システムは、システム・サーバ105およびモバイル・デバイス101aおよびユーザ・コンピューティング・デバイス101bを含むユーザ・デバイスから成る。システム100は、1つまたは複数のリモート・コンピューティング・デバイス102を含むこともできる。
システム・サーバ105は、実際には、本明細書に更に記載されるように、ユーザ・デバイスおよびリモート・コンピューティング・デバイスと通信し、電子情報を受信、送信および記憶して要求を処理できる、いかなるコンピューティング・デバイスおよび/またはデータ処理装置であることもできる。同様に、リモート・コンピューティング・デバイス102は実際には、本明細書に更に記載されるように、システム・サーバおよび/またはユーザ・デバイスと通信し、電子情報を受信、送信および記憶して要求を処理できる、いかなるコンピューティング・デバイスおよび/またはデータ処理装置であることもできる。システム・サーバおよび/またはリモート・コンピューティング・デバイスが、多くのネットワーク化された、またはクラウド・ベースのコンピューティング・デバイスであっても良いことを理解すべきである。
いくつかの実装では、コンピューティング・デバイス102は、企業組織、例えば、ユーザアカウント(「企業アカウント」)を維持し、サービスを企業アカウント所有者に提供し、そのシステムおよびサービスに対するユーザ・アクセスを提供する前にユーザの認証を要求する、銀行またはウェブサイトと関連付けることができる。
ユーザ・デバイス、モバイル・デバイス101aおよびユーザ・コンピューティング・デバイス101bは、更に本明細書において、記載されているように、互いに、システム・サーバ105および/またはリモートなコンピュータ102と通信するように構成され、電子情報をそこに送信して、そこから電子情報を受信する。ユーザ・デバイスは、ユーザ入力を受信すると共に、バイオメトリック情報、例えば、ユーザ124のデジタル画像および音声録音をキャプチャして、処理するように構成されることもできる。
モバイル・デバイス101aは、本明細書において、記載されているシステムおよび/または方法を実施できるどのようなモバイル・コンピューティング・デバイスおよび/またはデータ処理装置であることもでき、限定するものではないが、パーソナル・コンピュータ、タブレット型コンピュータ、パーソナル携帯情報機器、モバイル電子デバイス、携帯電話またはスマートフォン・デバイスなどを含む。コンピューティング・デバイス101bは、ユーザが対話できるコンピューティング・デバイスの各種の形を表すことを意図しており、ワークステーション、パーソナル・コンピュータ、ラップトップ・コンピュータ、専用のPOS(販売時点情報管理)システム、ATM端末、アクセス制御デバイスまたは他の適切なデジタル・コンピュータなどである。
更に本明細書において、述べられるように、システム100は、モバイル・デバイス101aを使用してユーザのバイオメトリック特徴に従って、ユーザ124の認証を容易にする。いくつかの実装では、ユーザのバイオメトリック特徴に従った識別または認証は、ユーザのバイオメトリック情報を2ステージの処理で利用する。第1のステージは登録と呼ばれる。登録ステージにおいて、適切なバイオメトリックの標本(例えば、画像)は、個人から集められる。バイオメトリクスのこれらの標本は、各標本に存在する特徴(または特性)を抽出するために分析されて、処理される。画像化された個人のバイオメトリックに存在する特徴のセットは、その人に対する識別子を構成すし、ユーザを認証するために、そして、いくつかの実装では、ユーザが生きた対象であるかどうかを判定するために使用できる。これらの識別子は、次に記憶されて、登録ステージが完了する。第2のステージにおいて、個人の同じバイオメトリックが測定される。このバイオメトリックからの特徴は、登録ステージにおけると同様に抽出されて、現在のバイオメトリック識別子を取得する。目的が生存性を判定することである場合、特徴または特性は、それらが生きた対象を表すかどうか判定するために分析できる。更に本明細書において、記述するように、バイオメトリクスのキャプチャされたイメージの他の特徴および特性は、生体を判定するために分析できる。目的が識別である場合、この識別子は、第1のフェーズで生成される識別子のデータベースにおいて、検索される。一致が見つかると、個人の身元は明らかにされ、さもなければ、識別は失敗する。目的が認証である場合、第2のステージにおいて、生成される識別子は、特定の人のために第1のステージにおいて、生成された識別子と比較される。一致が見つかると、認証は成功し、さもなければ、認証は失敗する。
図1がモバイル・デバイス101aおよびユーザ・コンピューティング・デバイス101bおよびリモート・コンピューティング・デバイス102に関してユーザ100を認証するシステムを表す一方で、本明細書において、記載されている方法で、いかなる数のこのようなデバイスもシステムと対話できることを理解すべきである、という点に留意すべきである。また、図1がユーザ124に関してユーザ100を認証するシステムを表す一方で、本明細書において、記載されている方法で、いかなる数のユーザもシステムと対話できることを理解すべきである、という点に留意すべきである。
モバイル・デバイス101aおよびシステム・サーバ105およびリモート・コンピューティング・デバイス102を含むがこれに限らず、本明細書において、参照される各種のコンピューティング・デバイスおよびマシンが、本明細書では、個々の/単一のデバイスおよび/またはマシンと称される一方で、特定の実装では、参照されたデバイスおよびマシン、ならびにそれらの関連および/または付随的な動作、特徴および/または機能は、当業者に知られているように、ネットワーク接続または有線接続によるなどして、多数のそのようなデバイスおよび/またはマシンにわたって結合され、または配置され、または配備できる、ということを更に理解すべきである。
モバイル・デバイス101a(また、スマートフォンと呼ばれる)の前後関係において、本明細書において、記載されている例示的なシステム及び方法が、モバイル・デバイスに特に限られておらず、他の使用可能コンピューティング・デバイス(例えば、ユーザ・コンピューティング・デバイス102b)を用いて実装できることも理解すべきである。
図2Aに関して、システム100のモバイル・デバイス101aはシステムの動作を有効にする役割を果たす各種のハードウェア部品およびソフトウェア部品を含み、その中には、1つまたは複数のプロセッサ110、メモリ120、マイクロホン125、ディスプレイ140、カメラ145、音声出力155、ストレージ190および通信インタフェース150を含む。プロセッサ110は、メモリ120へロードされることができるソフトウェア命令の形でクライアント・アプリケーションを実行する役割を果たす。特定の実装に応じて、プロセッサ110は、多くのプロセッサ、中央処理装置CPU、グラフィック処理装置GPU、マルチプロセッサ・コアまたは他のタイプのいかなるプロセッサでもあり得る。
好ましくは、メモリ120および/またはストレージ190はプロセッサ110によりアクセス可能であり、それによって、モバイル・デバイスおよびその各種のハードウェア・コンポーネントに、後で詳しく述べるようなシステム及び方法の態様のための動作を行わせるように、プロセッサがメモリ内および/またはストレージにコード化される命令を受信して、実行することを可能にする。メモリは、例えば、ランダムアクセスメモリ(RAM)または他のいかなる適切な揮発性であるか不揮発性のコンピュータ可読記憶媒体であり得る。加えて、メモリは、固定式かまたは着脱可能式であり得る。ストレージ190は、特定の実装に応じて、各種の形をとることができる。例えば、ストレージは、ハード・ディスク、フラッシュ・メモリ、書換型光ディスク、書換型磁気テープまたは上記のいくつかの組合せなどの、1つまたは複数のコンポーネントまたはデバイスを含むことができる。ストレージも、固定式または着脱可能式であり得る。
1つまたは複数のソフトウェア・モジュール130は、ストレージ190および/またはメモリ120において、コード化される。ソフトウェア・モジュール130は、プロセッサ110において、実行されるコンピュータ・プログラム・コードまたは命令セット(また、「モバイル認証クライアント・アプリケーション」と呼ばれる)を有する1つまたは複数のソフトウェア・プログラムまたはアプリケーションを含むことができる。図2Bにて図示するように、好ましくは、ソフトウェア・モジュール130の中に含まれるは、プロセッサ110により実行される、ユーザ・インタフェース・モジュール170、バイオメトリック・キャプチャ・モジュール172、解析モジュール174、登録モジュール176、データベース・モジュール178、認証モジュール180および通信モジュール182である。このようなコンピュータ・プログラム・コードまたは命令は、本明細書において、開示されるシステム及び方法の動作を行うようにプロセッサ110を構成して、1つまたは複数のプログラミング言語のいかなる組合せでも書くことができる。
プログラム・コードは、スタンドアロン・ソフトウェアパッケージとして全体をモバイル・デバイス101上で、または、一部をモバイル・デバイス上、一部をシステム・サーバ105上で、または、全体をシステム・サーバもしくは別のリモート・コンピュータ/デバイス上で、実行できる。後者のシナリオにおいては、リモート・コンピュータはモバイル・デバイス101にローカル・エリア・ネットワーク(LAN)もしくは広域ネットワーク(WAN)、移動通信ネットワーク、携帯電話ネットワークを含む任意のタイプのネットワーク経由で接続されることができ、または接続は外部コンピュータに(例えば、インターネット・サービス・プロバイダーを用いたインターネットによって、)なされることができる。
ソフトウェア・モジュール130のプログラム・コードおよび1つまたは複数のコンピュータ可読のストレージ・デバイス(例えばメモリ120および/またはストレージ190)が、本発明に従って、当業者に知られているように、製造および/また配信できるコンピュータ・プログラム製品を形成すると言うこともできる。
いくつかの例示の実施形態で、1つまたは複数のソフトウェア・モジュール130が、システム100の範囲内で使用するための通信インタフェース150を介して、別のデバイスまたはシステムからストレージ190にネットワークを通じてダウンロードすることができることを理解すべきである。加えて、本発明のシステム及び方法(例えばデータベース185)の動作に関連する他の情報またはデータがストレージに記憶され得る点に留意すべきである。好ましくは、このような情報は、安全な認証アプリケーションを実行しているプロセッサにより収集されかまたは生成される情報を安全に記憶するように、特に割り当てられる暗号化されたデータ記憶に、記憶される。好ましくは、暗号化手段は、情報をモバイル・デバイス・ストレージにローカルに記憶し、情報をシステム・サーバ105に送信するために用いる。例えば、このようなデータは1024ビットのポリモルフィック暗号を使用して、または、エクスポート制御に応じて、AES256ビット暗号方式を使用して暗号化できる。更にまた、暗号化は、リモート鍵(シード)またはローカル鍵(シード)を用いて実行できる。当業者により理解されるように、代わりの暗号方式、例えば、SHA256を用いることができる。
加えて、モバイル・デバイス101aおよび/またはシステム・サーバ105に記憶されるデータは、暗号化鍵としてユーザのバイオメトリック情報、生存性情報またはモバイル・デバイス情報を使用して暗号化できる。いくつかの実装では、前述の組合せは、好ましくは少なくとも384ビット長の楕円曲線暗号を使用してモバイル・デバイス上で暗号化できる、ユーザのための複雑なユニーク鍵を作成するために用いることができる。加えて、その鍵は、モバイル・デバイスおよび/またはシステム・サーバに記憶される利用者データを保護するために用いることができる。
また、好ましくは、データベース185は、ストレージ190に記憶される。後でより詳細に述べるように、データベースは、ユーザ100を認証するためのシステム及び方法の各種の動作の全体にわたって利用される、各種のデータ項目と要素を含み。および/または維持する。データベースに記憶される情報は、後でより詳細に本明細書において、述べるように、ユーザ・バイオメトリック・テンプレートおよびプロファイル情報を含むことができるが、これに限定されるものではない。そのデータベースがローカルにモバイル・デバイス101aに構成されるものとして示されているが、特定の実装では、データベースおよび/または、そこに記憶される各種のデータ要素は、加えて、または代わりに、リモートに(示されないがリモート装置102またはシステム・サーバ105などに)置くことができ、そして、当業者に知られている方法でネットワークによって、モバイル・デバイスに接続できる、ということに留意すべきである。
ユーザ・インタフェース115は、プロセッサにも動作上接続している。インタフェースは、電子コンピューティング・デバイスの技術で理解されるように、スイッチ(複数可)、ボタン(複数可)、キー(複数可)、タッチス・クリーン、マイクロホンなどのような、1つまたは複数の入力または出力装置であり得る。ユーザ・インタフェースは、オン/オフ動作などのユーザからのコマンド、またはユーザ情報およびユーザ100を認証するシステムの動作に関連した設定のキャプチャを容易にする役割を果たす。例えば、インタフェースは、モバイル・デバイス101(例えばユーザ・プロファイルをつくるようにシステムに登録するための個人ユーザ情報)から特定の情報のキャプチャを容易にする役割を果たす。
コンピューティング・デバイス101aは、これもまたプロセッサ110に動作上接続されている、ディスプレイ140を含むこともできる。ディスプレイは、ユーザ100を認証するためのシステムの動作に関してシステムがユーザに指示するかまたはフィードバックを提供することを可能とする、スクリーンまたは任意の他のそのような表示装置を含む。例としては、ディスプレイは、ドット・マトリックス・ディスプレイまたは他の二次元のディスプレイなどのデジタル・ディスプレイであり得る。
更なる例として、インタフェースおよびディスプレイは、タッチ・スクリーン・ディスプレイに内蔵できる。従って、ディスプレイはグラフィカル・ユーザ・インタフェースを示すためにも用いる。そして、それは各種のデータを示すことができ、ユーザによって、情報の入力ができるフィールドを含む「フォーム」を提供できる。グラフィカル・ユーザ・インタフェースのディスプレイに対応する位置でタッチス・クリーンに触れることで、人はデバイスと対話してデータを入力し、設定を変更し、機能を制御することなどができる。そのため、タッチス・クリーンに触れると、ユーザ・インタフェースはプロセッサにこの変化を通信し、設定は変えられることができ、または、ユーザが入力した情報はキャプチャされて、メモリに記憶されることができる。
モバイル・デバイス101aはまた、デジタル画像をキャプチャすることができるカメラ145を含む。カメラは、モバイル・デバイス101aを利用している間に、ユーザの目および/または顔を含むユーザの体の少なくとも一部の画像をキャプチャするように構成される、1つまたは複数の画像化デバイスであり得る。カメラは、画像から(バイオメトリック的に)ユーザを認証するためのバイオメトリック特徴を識別して、ユーザの生存性を判定することを含む安全な認証クライアント・アプリケーションを実行しているモバイル・デバイス・プロセッサ110によって、画像解析の目的でユーザの画像のキャプチャを容易にする役割を果たす。モバイル・デバイス101aおよび/またはカメラ145は、1つまたは複数の光または信号エミッタ(例えば、LED(図示せず)、例えば、可視光エミッタおよび/または赤外線光エミッタなどを含むこともできる。カメラは、例えば、限定されるものではないがCCDまたはCMOSセンサといったセンサを組み込む、前面カメラまたは背面カメラなど、モバイル・デバイスと一体化できる。当業者により理解されるように、カメラ145は、例えばレンズ、明度計(例えば、照度計)、およびズーム、焦点、開口、露出、シャッター速度などの画像キャプチャ設定を調整するために、使うことができる他の従来のハードウェアおよびソフトウェア機能などの、付加ハードウェアを含むこともできる。あるいは、カメラは、モバイル・デバイス101aに外付けとすることもできる。カメラおよび発光体の可能な変形は、当業者により理解される。加えて、モバイル・デバイスは、当業者により理解されるようなオーディオ記録をキャプチャするための1つまたは複数のマイクロホン104を含むこともできる。
音声出力155はまた、プロセッサ110に動作上接続している。音声出力は、当業者により理解されるように、電子オーディオ・ファイルを再生するように構成される任意のタイプのスピーカ・システムであり得る。音声出力は、モバイル・デバイス101に組み込まれることができるかまたは、モバイル・デバイス101に外付けとすることができる。
各種のハードウェアデバイス/センサ160はまた、プロセッサに動作上接続している。センサ160は、時刻などを追跡するオンボード・クロック、デバイスがモバイル・デバイスの位置を判定するGPS対応デバイス、モバイル・デバイスの方向および加速度を追跡する加速度計、地球の磁場を検出してモバイル・デバイスの三次元方向を判定する重力磁力計、モバイル・デバイスと他のオブジェクトの間の距離を検出する近接センサ、RF放射線レベルを検出するRF放射線センサ、および当業者により理解されるようなその他のデバイスを含むことができる。
通信インタフェース150はまた、プロセッサ110に動作上接続しており、モバイル・デバイス101aと外部デバイス、マシンおよび/またはシステム・サーバ105を含む要素の間の通信を可能にするいかなるインタフェースであり得る。好ましくは、通信インタフェースは、モバイル・デバイスを他のコンピューティング・デバイスならびに/または構内ネットワークおよびインターネットなどの通信網に接続するための、モデム、ネットワーク・インタフェース・カード(NIC)、統合ネットワークインタフェース、無線周波数送受信器(例えばブルートゥース(登録商標)、セルラ、NFC)、衛星通信送受信器、赤外線ポート、USB接続および/またはこのような他のいかなるインタフェースも含むが、これに限定されるものではない。このような接続は有線接続または無線接続(例えば802.11標準を使用)を含むことができるが、通信インタフェースが実際にモバイル・デバイスとの間の通信を有効にするいかなるインタフェースであることもできることを理解すべきである。
ユーザ100を認証するシステムの動作の間の様々なポイントで、モバイル・デバイス101aは、システム・サーバ105、ユーザ・コンピューティング・デバイス101bおよび/またはリモート・コンピューティング・デバイス102などの、1つまたは複数のコンピューティング・デバイスと通信できる。このようなコンピューティング・デバイスはモバイル・デバイス101aとの間でデータを送信および/または受信し、それによって好ましくは保守を開始して、および/または、後で詳しく述べるように、システム100の動作を強化する。
図2Cは、システム・サーバ105の例示的な構成を例示しているブロック図である。システム・サーバ105は、ユーザ100の認証のためのシステムの動作を有効にする役割を果たす各種のハードウェア・コンポーネントおよびソフトウェア・コンポーネントに動作上接続された、プロセッサ210を含む。プロセッサ210は、後で詳しく述べるように、命令を実行してユーザ認証およびトランザクション処理に関する各種の動作を実行する役割を果たす。プロセッサ210は、特定の実装に応じて、多くのプロセッサ、マルチプロセッサ・コアまたはいくつかの他のタイプのプロセッサであり得る。
特定の実装において、メモリ220および/または記憶媒体290はプロセッサ210によりアクセス可能であり、それによって、プロセッサ210がメモリ220上および/またはストレージ290上に記憶される命令を受信して、実行することを可能にする。メモリ220は、例えば、ランダムアクセスメモリ(RAM)または他のいかなる適切な揮発性または不揮発性コンピュータ可読記憶媒体でもあり得る。加えて、メモリ220は、ストレージ290は、特定の実装に応じて各種の形をとることができる。例えば、ストレージ290は、ハード・ディスク、フラッシュ・メモリ、書換型光ディスク、書換型磁気テープまたはこれらのいくつかの組合せなどの、1つまたは複数のコンポーネントまたはデバイスを含むことができる。ストレージ290も、固定式であるかまたは、着脱可能式であり得る。
1つまたは複数ソフトウェア・モジュール130は、ストレージ290において、および/またはメモリ220において、コード化される。1つまたは複数のソフトウェア・モジュール130は、プロセッサ210において、実行されるコンピュータ・プログラム・コードまたは命令セットを有する、1つまたは複数のソフトウェア・プログラムまたはアプリケーション(「安全な認証サーバー・アプリケーション」と集合的に呼ぶ)を含むことができる。本明細書において、開示されるシステム及び方法の態様のための動作を実行するためのこのようなコンピュータ・プログラム・コードまたは命令は、当業者により理解されるように、1つまたは複数のプログラミング言語のいかなる組合せでも書くことができる。プログラム・コードは、スタンドアロン・ソフトウェア・パッケージとして全体をシステム・サーバ105上で、または、一部をシステム・サーバ105上、一部をリモート・コンピューティング・デバイス102、モバイル・デバイス101aおよび/またはユーザ・コンピューティング・デバイス101bなどのリモート・コンピューティング・デバイス上で、または、全体をそのようなコンピューティング・デバイス上で、実行できる。図2Bにて図示するように、好ましくは、ソフトウェア・モジュール130の中に含まれるのは、システム・サーバのプロセッサ210により実行される解析モジュール274、登録モジュール276、認証モジュール280、データベース・モジュール278および通信モジュール282である。
また、好ましくは、ストレージ290に記憶されるのはデータベース280である。後で詳しく述べるように、データベース280は、システム100の各種の動作の全体にわたって利用される、制限するものではないが本明細書において、後により詳細に述べるようなユーザ・プロファイルを含む各種のデータ項目および要素を含み、および/または維持する。データベース280がローカルにコンピューティング・デバイス205に構成されるものとして示されているが、特定の実装では、データベース280および/または、そこに記憶される各種のデータ要素は、リモートに置かれるコンピュータ可読メモリまたは記憶媒体上に記憶され、そして、当業者に知られている方法でネットワーク(図示せず)によって、システム・サーバ105に接続できる、ということに留意すべきである。
通信インタフェース255はまた、プロセッサ210に動作上接続している。通信インタフェース255は、システム・サーバ105と外部デバイス、マシンおよび/または要素の間の通信を有効にするいかなるインタフェースでもあり得る。特定の実装において、通信インタフェース255は、コンピューティング・デバイス205を他のコンピューティング・デバイスならびに/または構内ネットワークおよびインターネットなどの通信網に接続するための、モデム、ネットワーク・インタフェース・カード(NIC)、統合ネットワークインタフェース、無線周波数送受信器(例えばブルートゥース(登録商標)、セルラ、NFC)、衛星通信送受信器、赤外線ポート、USB接続および/またはこのような他のいかなるインタフェースも含むが、これに限定されるものではない。このような接続は有線接続または無線接続(例えば802.11標準を使用)を含むことができるが、通信インタフェース255が実際にプロセッサ210との間の通信を有効にするいかなるインタフェースであることもできることを理解すべきである。
上記のユーザ100および各種の要素およびコンポーネントを認証するシステムの動作は、後述するようなバイオメトリック情報のキャプチャおよび認証を容易にする方法を参照して、更に理解される。本明細書に表される処理は、モバイル・デバイス101aおよび/またはシステム・サーバ105の観点から示され、しかしながら、処理が、全体的にあるいは部分的に、モバイル・デバイス101a、システム・サーバ105もしくは他のコンピューティング・デバイス(例えば、リモート・コンピューティング・デバイス102および/またはユーザ・コンピューティング・デバイス101b)、または前記の任意の組合せによって、実行できることを理解すべきである。本明細書において図示されおよび記載されているより多くのまたはより少ない動作が実行され得ることを理解すべきである。これらの動作は、本明細書において、記載されているものと異なる順序で実行することもできる。1つまたは複数のステップがモバイル・デバイス101aによって、および/または他のコンピューティング・デバイス(例えばコンピューティング・デバイス101b、システム・サーバ105およびリモートなコンピュータ102)上で実行され得ることも理解すべきである。
ここで図3に移り、フロー図は、本明細書において、開示される少なくとも1つの実施形態に従って1つまたは複数の画像からユーザのバイオメトリック特徴を検出するためのルーチン300を例示する。一般に、ルーチンは、ユーザの少なくとも複数の指の1つまたは複数の画像をキャプチャして、分析することを含む。好ましくは4本の指がキャプチャされるが、本明細書において、記載されているように、それよりも多いかまたは少ない指をキャプチャして分析できる。上記のように、キャプチャ処理はユーザの登録の間、ならびに次の認証セッションの間に実行されることができ、それは図3に関してまた記載されている。
開示された実施例によれば、広く利用でき、少なくとも可視スペクトル帯域のユーザの指の画像をキャプチャすることができるデジタル・カメラ145を有するモバイル・デバイス(例えばモバイル・デバイス101a)を使用して、画像をキャプチャすることができ、ユーザの固有のバイオメトリック特徴および/または生存性を示すバイオメトリック識別子を生成できる、ということを理解すべきである。
処理はステップ305から始まり、ここで、好ましくはキャプチャ・モジュール172を含めて1つまたは複数のソフトウェア・モジュール130を実行することにより構成されるモバイル・デバイス・プロセッサ110は、カメラ145に、1本の手の4本全ての指をキャプチャしている少なくともユーザ(124)の一部の1つまたは複数の画像をキャプチャさせる。好ましくは、カメラは、例えば従来のスマートフォン・デバイスの背面カメラを用いて、高解像度イメージをキャプチャする。利用できる場合、フラッシュ照明でイメージはより詳細にキャプチャすることができる。
いくつかの実装では、キャプチャ処理の間、ユーザは、カメラの前にそれらの指を配置することを促される。この手順の間、ユーザが適切にそれらの指を配置できるように、ユーザはデバイス・ディスプレイ上のカメラから視覚フィードバックを与えられることが可能である。いくつかの実装では、ディスプレイに表示されるマーキングを用いて、ユーザを案内してカメラの視野の指定位置に、そして、特定の距離でそれらの指を配置できる。例えば、ユーザは、カメラ画像プレビュー・スクリーンの上にオーバレイされている4本の指の輪郭に、自分の指を位置合わせするように求められて、それに応じて、ユーザは、カメラ・プレビュー上で指の輪郭を合わせたときに自分の指がカメラから適切な距離であるということを知る。いくつかの実装では、ユーザは自分の人差し指、中指、薬指および小指を、間隔を空けるのではなく、一緒にしておくことができる。次に、いくつかの実装では、ユーザは、各両手のそれぞれの親指を別々にキャプチャするよう求めることができる。いくつかの実装では、ユーザは、成人によって、指の画像をキャプチャするのを援助される新生児である。カメラの焦点は構成されたプロセッサにより設定されて指に焦点を合わせることができ、それはスクリーン上の指位置ガイドの位置であると見なすことができる。いくつかの実装では、分類器は画像の指を検出するために訓練され、一旦指が検出されて、焦点が合うならば、この分類器はカメラを起動させて画像をキャプチャすることができる。画像の指を検出するために用いることができる分類器は、いくつかの実装では、正規のハール機能を用いて訓練されたハール・カスケード分類器または手画像(ならびに例えば、新生児識別システムの場合は足画像)の指を検出するのに適している、定義済みおよび予めデザインされたフィルタであり得る。いくつかの実装では、画像強調手順は、分類器を使用してキャプチャした画像の指を検出する前に、画像に適用できる。いくつかの実装では、指分類器を適用する前に適用できる画像強調手順は、隆線周波数を通すが焦点がずれている背景周波数を最小化する、バンド・パス・フィルタであるように設計されていてもよい。
次に、キャプチャした画像は調べることができ、そして、キャプチャされたバイオメトリックサンプルの品質は指の隆線を分析することにより判定される。この品質測定値は、以下の隆線プロパティ、周波数、方向、鮮明度および接続性の融合された測定値であり得る。品質測定値が予め定められた閾値未満である場合、ユーザは再びキャプチャ処理を繰り返すように助言され、案内されることができる。
指のキャプチャの後、次にステップ310で、各指の領域が識別される。次に、ステップ315で、領域は強調される、そして次に、ステップ320で、各指の識別可能な特徴空間はそれぞれに抽出されて、別々に記憶できる。より具体的には、ステップ310で、構成されたプロセッサ110は自動の指検出アルゴリズムを実行して、イメージ内の指を検出できる。例えば、例示的な指検出アルゴリズムは、指と背景を区別するためのセグメンテーション・アルゴリズムのアプリケーションを含むことができる。これは、例えば、画像を均一な領域に分けて、次に各領域を調べて、それを指または非指領域として分類することによって、実行できる。更に、これは、例えば、指および指先を検出して分類する分類器を用いて、実行できる。いくつかの実装では、異なる指を検出して、それらを分類して、指先を検出するために用いることができる分類器は、訓練されたハール・カスケード分類器、HOGカスケード分類器、LBPカスケード分類器またはこれらの分類器の組合せであり得る。分類器の訓練は、当分野で知られているように標本画像で実行できる。手を発見するための訓練を受けた分類器をまず使用して、速度および精度を改善するための他の指発見のための分類器に対する検索領域を狭くすることができる、ということに留意する。また、このような分類器が他の指先位置発見技術と連動して用いられて改善された精度を提供できる点に留意する。いくつかの実装では、分類器を用いて識別される領域は、境界によって、強調することができて、モバイル・デバイス・ディスプレイ上でユーザに表示できる。例えば、指先セグメントとして識別される領域は、識別された領域を強調する画像において、境界によって、囲むことができる。境界は直角であるか楕円境界を含む各種の形状であり得る。そして、異なるセグメントは、指先、手、一群の指、他の指領域などを含んで強調できる。ユーザの登録データは、一旦指先位置がユーザにより確認されたならば、分類器を訓練するのを助けるために用いることができる。例えば、いくつかの実装では、指および指先をキャプチャして検出する処理は、次のステップにまとめることができる。(1)手画像をキャプチャし、そして、(2)第1の指先領域を見つけるために訓練されたカスケード分類器、次に第2の指先領域等を見つけるために訓練される別の分類器を起動する。
例として、そして、限定されるものではないが、分類器(LBP分類器など)の使用は、指先を画像で発見するために行うことができ、更にそれに加えて、最初に分類器を使用して手の主要領域(全部の手または手の4本の指など)を発見し、それから二次的な方法を使用して主要領域内の副領域(指先または中間の指節骨)の位置特定をするということも利点であり得る。二次的な方法は、各副領域の位置特定をするために訓練された別の分類器であり得る。副分類器の結果は、各副領域の間の予想される関係(例えば、定められた関係)の知識(例えば、手が指を閉じて平坦な状態に保たれる際には4本の指には、誤った一致を除外するために用いることができる周知の位置関係がある)を用いて更にフィルタリングされる。更なるフィルタリングは、他の顕著な手の特徴(指の間の接点)の位置を発見して、この情報を使用して分類器からの結果をフィルタリングすることによって、適用できる。更に、主要分類器をリアルタイムに用いて、ユーザが指をカメラに示してその焦点を確実にするにつれて、指に追随することができ、そして、画像キャプチャおよび/またはバイオメトリック・マッチングを自動的に起動する前に、露出が手に対して最適化される。
上述し、本明細書において、更に記載するように、プロセッサは、ユーザが指をカメラに提示してイメージがカメラを使用してキャプチャされているのにつれて、リアルタイムに指を検出して追跡するように構成されることができる。追跡された画像の位置を使用して、指がいつ十分に位置的に安定するかを検出し、検証画像の質および指認識の信頼性を改善できる。
いくつかの実装では、プロセッサは、オブジェクト検出方法と、より速い、テンプレート・マッチングまたはオプティカル・フローなどの追跡方式との間で動的に切り替わることによって、リアルタイムの指検出を加速するように構成できる。例えば、一組の4本の指が検出され、それらが手を表すと判定されると、構成されたプロセッサは、オプティカル・フロー・アルゴリズムを使用して指を追跡できる。その結果、例えば、カスケード分類器が次の画像フレームにも適用された場合よりも、指位置は著しく遅延時間が小さく、より高いフレーム率によって、追跡できる。プロセッサにより検索される画像の検索空間をローカル画像領域に限定することによって、高速化が達成でき、プロセッサは、指の中央などの異なった特徴を表すピクセルだけを照合するように構成できる。
指が極端にずれるか、または視野からはずれる場合は、オブジェクト・トラッキングは失敗する場合がある。プロセッサによって、失敗を検出すると、即座に、プロセッサは、初期オブジェクト検出方法、例えばカスケード分類器に復帰できる。4本の指を追跡することの場合、プロセッサは指の相対位置(例えば、指の中央の間の距離)を測定することができ、距離が(例えば、定められた閾値を上回って)著しく変わったと判定された場合、システムはオブジェクト検出に復帰できる。
キャプチャ・システムは、ユーザの指がいつ(特定の許容度の範囲内で)静止している状態に保たれるかを検出して、検証画像のモーション・ブラーを防止できるのが好ましい。これは、例えば、フレーム間のオブジェクトを追跡すること(例えば、移動のベクトルを計算すること)およびオブジェクトの速度が閾値速度以下に落ちるときに、高解像度の検証画像をキャプチャすることによって、達成できる。
オブジェクト位置の位置特定をすることにおける小さい誤差は、速度ベクトルの算出に伝播し得る。カスケード分類器などの方法は、フレームからフレームに移る際のオブジェクト位置の不自然な位相変動(オブジェクト中心が「揺れる」)につながることがしばしばある。この位置ノイズは、オブジェクトがいつ静止しているかについて判定することを妨げる。しかしながら、上述の通り、オプティカル・フローを用いる追跡は、ノイズがより小さく、オブジェクト位置をより速く更新して、静止対象検出の信頼性を相当に高くすることができる。
更にまた、いくつかの実装では、指長情報が指先識別アルゴリズムの一部として記憶されて使うことができ、指紋が画像の特定の相対位置に予想されるという事実に、いくらかの重みを置くことができ、そして、これは指紋発見のアルゴリズムの信頼性を改善し得、そして、例えば、誤ってなされる指紋の一致を排除する助けとなる。それぞれの指の高さおよび幅に関する情報について、同じことが言える。加えて、ユーザの肌色を登録時に記憶することができて、更にバイオメトリック識別および/または、生存性検証手段として使うことができる。これは、正しい紋であるが正しい肌色ではないなりすましの紋(例えば、復元した潜在指紋からのピンクのシリコーン型または白黒のレーザ印刷)を、なりすましとして拒絶できる効果がある。
図4は、キャプチャされた指のイメージからの指先検出のための例示的なルーチン400および対応するイメージを表す。示すように、ステップ405で、複数の指を含むキャプチャされたイメージが取得される。例示的な高解像度画像は画像405Aとして示される。ステップ410で、イメージが縮小されてグレースケールイメージに変換され、主要カスケードは画像の範囲内の手を検出するために適用される。検出された手領域の周辺で表される例示的なグレースケール画像および複数の境界は、画像410Aに表される。ステップ415で、最大の検出された手領域が選択され、領域は、更なる指先検出のために周囲の領域(例えば、拡張領域)を含むように拡張される。選択されたおよび拡張された指領域周辺で表される例示的なグレースケール画像および境界は、画像415Aに表される。次にステップ420で、副領域、すなわち、各指のための指先領域を検出するために、1つまたは複数のより高感度のカスケード分類器が適用される。複数の検出された指先領域周辺で表される例示的なグレースケール画像および境界は、画像420Aに表される。示すように、検出される指先領域は、画像内の実際の指先の数を超える可能性がある。次にステップ425で、指先領域は、フィルタリングされる。フィルタリングは、図4Bに関して本明細書において、更に記載される。フィルタリングした検出された指先領域周辺で表される例示的なグレースケール画像および境界は、画像425Aに表される。次にステップ430で、指先関心領域(ROI)は、アスペクト比を補正するために調整される(例えば、サイズ変更されるかまたは下に拡張される)。検出されサイズ変更されたROI周辺で表される例示的なグレースケール画像および境界は、画像430Aに表される。
指検出は、照明で撮影された画像が実質的に異なり得る屋内および屋外の照明に対して安定であることが好ましい。例えば、低照度環境では、背景はしばしば露出不足になり、暗くなるが、拡散した強い日差しでは、背景の明るさが指の明るさを上回り、陰影が大きく異なる可能性がある。従って、いくつかの実装では、指検出方法は、モバイル・デバイス・プロセッサによって、環境光の量を判定して、検出光量に基づいて、リアルタイムに特定の光量に対してより最適な経路に切り替えることによって、改善できる。光量は、例えば、画面輝度を調整するための携帯電話でみられるハードウェア・ベースの照度計から読み込むことができ、またはカメラ露光設定から推定できる。
そのような実装において、それぞれの光量に特定の1つまたは複数の分類器は、指セグメンテーションを行うためにプロセッサに記憶されて利用できる。例えば、指の1つまたは複数の領域を検出するために用いる第1のカスケード分類器は、強い環境光において、撮られる画像で訓練されることができ、その一方で、第2のカスケード分類器は弱い環境光において、撮られる画像で訓練される。測定された光量に基づいて、構成されたモバイル・デバイス・プロセッサは、適切な分類器を適用できる。より具体的には、光量が閾値を超えない限り、第1の分類器を検出のためにデフォルトとしてプロセッサにより用いることができ、閾値を超える場合には、第2の分類器を用いることができる。例えば、異なる環境光レベルを有する画像フレームのシーケンスがキャプチャされ、分析されている場合、分類器間の切替えはリアルタイムで起こり得る。前述の環境光に特有の分類器の適用方法は、処理の間に最初にキャプチャされる画像(例えば、ユーザが自分の指をカメラの前の適切な位置に置いている間にキャプチャされた低解像度画像)、または次の高解像度画像キャプチャ(例えば、指が第一の画像キャプチャにおいて、検出され、焦点が合っていると判定された後でキャプチャされた高解像度画像)に適用できる、ということを理解できる。
更に、いくつかの実装では、測定された光量に基づいて、更に後述するように、構成されたモバイル・デバイス・プロセッサは人工のフラッシュ画像前処理ステップを選択的に実施できる。例えば、光量が十分に多いときには、フラッシュ電球を利用して対象を照らすことを回避するように、人為的なフラッシュ処理を適用できる。
指検出へのどの単一のアプローチも100%成功するとは保証されないが、しかしながら、プロセッサは、検出品質の尺度を算出するように構成することができ、尺度に基づいて、十分に高い品質の結果が成し遂げられるまで、一連の検出方法を適用できる。例えば、全4本の指を検出する場合、更に本明細書において、述べるように、構成されたプロセッサは4つの検出のどのセットがおそらく手を表すかについて判定するために、スコアを計算できる。このスコアが不十分である(例えば、定められた閾値を満たさない)、または、指が見つからない場合、構成されたプロセッサは更なる検出技術を適用できる。更なる検出技術は、異なる形で訓練された分類器またはいくつかの他の無関係な方法の形であり得る。更に、いくつかの実装では、構成されたプロセッサは、例えば、以前の登録または認証キャプチャから判定されるような、ユーザの分かっている手の大きさに従って、分からない指位置を推定できる。これらの方法が適用される特定の順序が不変である必要は無く、実施する特定の検出技術および適用の順序は、測定された、または時間とともに特定のユーザに(例えば、訓練および/またはマシン学習アルゴリズムに基づいて)合わせた環境条件、特定のモバイル・デバイスのハードウェア能力の関数として、プロセッサによって、選択的に適用できるか、調整できる、ということを理解できる。上記を考慮すると、検出の速度を改善するために、より速い(そして、より正確でない可能性のある)セグメンテーション・アルゴリズムが最初に適用され、結果の品質が十分でない場合にはより強力な(そしてより処理能力が求められることもある)セグメンテーション・アルゴリズムに移行してより正確に指先セグメントを検出するという段階式のセグメンテーション・アプローチを適用するように、プロセッサは構成できる、ということを理解できる。
上記のように、そして、更に本明細書において、記載される通り、モバイル・デバイス・プロセッサにより行う例示的な指ベースの認識アルゴリズムは、1つまたは複数の画像強調ステップを含んで、指検出および特徴抽出を改善できる。カスケード分類器などの検出方法がグレースケール画像に機能することが多いので、従って、例えば、輝度だけしか入力として使われないならば、色彩情報は失われる。従って、周知の色特性(例えば人の手)を有するオブジェクトを検出する方法は、グレースケールへの変換の前に予想される色を表す領域を強調することによって、有益に改善できる。
1つの例示的な実装において、プロセッサにより行う指検出に適用できる画像前処理方法は、適応型表皮モデルを含む。より具体的には、プロセッサは、例えば画像の範囲内で手を検出することによって、キャプチャした画像の1つまたは複数を分析して、知られている肌色の領域の位置特定をするように、構成されることができ、そして、カラー・モデルが計算される。次に、画像はHSV色空間に変換され、確率密度関数(PDF)は予め定められた表皮領域の中のピクセルの色相の分布および彩度値の両方に当てはめられる。画像の残りのピクセルはPDFの中に位置し、ピクセルが表皮を表すという可能性を表す確率(p値)が抽出される。好ましくは、処理は、閾値p値を超えるすべてのピクセルを用いて以前のモデルを改良し、次に、更新されたモデルはプロセッサを用いて適用される、という点で、反復的である。いくつかの実装では、表皮領域が連続的であることを仮定することによって、低いp値を有するが高いp値を有するピクセルに囲まれているピクセルも、モデルに含むことができる。処理は、固定回数の繰返しの後、または、表皮ピクセルの数がもはや著しく増加しない(すなわち、定められた量、収束点をもはや増加させない)ときに、停止できる。収束したp値が、次に更なる検出アルゴリズムのための入力として直接使われることもでき(グレースケール画像に変換される)または、加えて、もしくは、代わりに、背景、非表皮領域に対して(例えば、『人為的なフラッシュ』として作用して)画像の表皮領域を輝かせるために用いることもできる。
相対的に予め定められた(例えば、スクリーン上のガイドを用いて導かれた)位置のモバイル・デバイスカメラに提示されている指の場合、プロセッサは、特定領域(例えば、ガイド内の手の中心に集まった領域)が大いに肌色を表し得ると推定するように、構成できる。従って、この推定の領域は、表皮モデルを構築するための第一の領域としての役割を果たすことができる。加えて、または代わりに、肌色はシステムにユーザが登録するときに、記録する(例えば、表皮モデルを用いずに完了する)ことができる。
図4Bは、検出された指先領域/セグメント(すなわち、図4Aのステップ425)をフィルタリングするための例示的なルーチン450を表す。フィルタリングは、一般に指先セグメントの最善のセットの選択(すなわち、実際の指先セグメントに最も対応する可能性のある各指に対する指先セグメントの選択)を指す。
処理は、指先検出が水平(「X」)方向にソートされる(例えば、指の順序に従って指の方向に対して垂直である方向に配列される)ステップ455から始まる。次にステップ460で、4つの指先領域の組合せが、検出された指先領域の複数を使用して生成される。4つの検出された指先領域の組合せ周辺で表される例示的なグレースケール画像および境界は、画像460Aに表される。
次にステップ465から480で、4つの指先領域の各合成セットがスコアリングされる。スコアリングは、指先領域を分析して個々の指先領域および/または複数の指先領域の身体的特徴を判定して、測定された特性を予想される特性と比較することを含む。更に本明細書において、述べられるように、スコアリングは、他の指先セグメントに対する、そして加えて、または代わりに、前に検出された手領域の全幅(例えば、ステップ415で検出されるような「手の幅」)などの、複数の指の身体的特徴に対する、1つまたは複数の指先セグメントの身体的特徴の比較分析に基づくことができる。
より具体的には、いくつかの実装では、セットとなった検出の結合された幅は、手幅と比較することができて、比較に基づいてスコアリングすることができる。加えて、または代わりに、検出の幅(例えば、隣接する指セグメント間の中心間の距離)の分布は、手幅から見た指セグメントの予想される幅分布に対してスコアリングすることもできる。予想される幅分布は、前に識別された指の訓練セットからの平均として判定できる。訓練セットおよび検出セットは、正確な比較のための手幅に従って正規化できる。例えば、画像470A、4本の指の例示的なグレースケール画像、4つの検出指先領域/セグメントの組合せの周辺に表される境界、ならびに隣接セグメントd1、d2およびd3の間の測定された中間対中間の距離である。
いくつかの実装では、各特定の比較は重みを割り当てられることができ、その結果、算出されたスコアは重みの関数である。例えば、より決定的でない/重要でない測定値(例えば、より低い精度または正確度を有する、または、より少ない信頼性を有する測定値)は、スコアリングの全体的な結果を歪曲しないように、より低い重みを割り当てることによって、割り引くことができる。例として、限定されるものではないが、小指の相対的長さは個人間でより大きな相違があるので、小指に関してYにおいて、判定された測定距離の影響は、それに応じて「重みを減らす」ことができる。図4Bの表470Bは、相対距離特性をスコアリングするために用いる例示的な幅、重みおよび予想される幅を表す。表470Bに示す通り、隣接する指間の例示的な予想される相対距離は4本の指の全幅の4分の1であり、各々は1の重みを割り当てられる。
ステップ475で、指先セグメントの幅は、他の指先セグメントに相対的にスコアリングすることもできる。指幅の比較は、特定の指の予想される相対幅に基づくことができる。例えば、人差し指は端の指と比べてより大きいと予想され、それに応じて、指先領域/セグメントの相対幅がこのような個々の指セグメントの比較に従ってスコアリングすることができる。指の例示的なグレースケール画像および2本の中央の指(人差し指および中指)に対応する4つの可能性がある検出された指先領域は、画像475Aに表される。
同様に、ステップ480で、Y方向の指先領域の相対位置は、それぞれの指先セグメントの予想される長さに従ってスコアリングすることができる。例えば、中央の2本の指は通常、端の指に対してY方向において、より高いと予想され、そして、指先セグメントはこのような予想される相対位置特性に従ってスコアリングすることができる。これに応じて、Y方向(すなわち、指の方向と平行である方向)の指先セグメントの高さの分布は、分析できる。より具体的には、Yでの分布を分析することは、480Aにて図示するように、指の「長さパターン」を分析することを含む。すなわち、人差し指は中指より短く、中指は薬指より長く、薬指は小指より長いと予想される。従って、対象に対する関心領域は、人差し指から小指に向かって、Yにおいて、「上、下、下」のパターンに従う位置を有しなければならない。正確な予想パターンは、前に識別された指の訓練セットからの平均として決定できる。訓練セットおよび指先セグメントのセットが相対的長さの正確な比較および/またはYの位置のためのそれぞれの指および/または手の寸法に従って正規化されることができると理解できる。従って、プロセッサは各種の関心領域/セグメントの一番上の境界の間のYの距離を計算し、それによって、人差し指から中指まで、中指から薬指まで、薬指から小指まで、の3つの距離を与えるように構成できる。プロセッサは次に、手幅を使用して距離を正規化し、それらを手の異なる縮尺にわたって比較可能となるようにすることができる。その後で、距離は期待値パターンと比較することができ、そして、指の組合せは比較の関数として、スコアリングすることができる。指の例示的なグレースケール画像およびY方向において、比較されている4つの可能性がある検出された指先領域は、画像480Aに表される。指先領域の相対的な高さ、幅、Y位置およびX位置が、重要性および/または信頼性に従って重み付けも可能である、と理解することもできる。
前述の測定値に加えて、構成されたプロセッサは、表された指先セグメントの照明特性に従って、指先セグメントの組合せをスコアリングすることもできる。より具体的には、指が画像において、ほぼ等しい照度で現れることを予想できる。従って、構成されたプロセッサは、指先セグメントの組合せごとに、指先セグメントの組合せにわたって照度を測定することができて、照度の相違をスコアリングすることができる。速度および精度のために、各指先セグメントの中央での(例えば、10×16の長方形の範囲内での)ピクセル値だけを合計することができ、4つの和の相違が判定される。高い相違は、1つまたは複数の指先セグメントが誤って配置されていることを意味し、より悪いスコアを割り当てることができる。
次にステップ485で、指先領域の組合せの累積的なスコアは、重み付けされ、合計され、そして、セグメントの最善の組合せが、算出スコアに従って識別される。指の例示的なグレースケール画像および4つの検出された指先領域の最善のスコアの組合せの周辺に表される境界は、画像485Aに表される。
更に、いくつかの実装では、各領域の中のエッジの頻度および方向を分析することによって、検査は実行できる。加えて、または代わりに、指を含む画像のセグメントは、主にスクリーン上の指ポジショニング・ガイドの位置を埋めるセグメントとして、識別できる。
いくつかの実装では、例えば識別のための4本の指だけを使用する場合、4つの指紋を登録して検査するための強力な手順は、以下の通りに実行できる:
a)ユーザに自分の4本の指をカメラの前に置くように案内し、フラッシュ画像をキャプチャする。
b)任意に(前に説明したように)画像処理アルゴリズムを使用して4つの指紋(および他の関心領域)の位置を識別する。
c)例えば指紋領域の上に楕円をスーパーインポーズすることによって、ユーザにこれらの領域を強調し、そして、ユーザが指紋認識を正確であると認めるか、または楕円を正確な位置にドラッグすることによって、誤った位置にある指紋の楕円を調節するかのいずれかを行うように要求する。こうして正確な登録指紋が保証される。
d)将来の確認手順のために正確に登録された指紋を使用する。これは、登録された指紋を使用して検証指紋を検証画像で発見する処理を含むことができる。
更に、いくつかの実装では、4本の指をキャプチャする場合、次に、4本の指の検出された画像は、各隣接する指の間に継ぎ目を定めることによって、例えば、摂動が隆線方向にあるポイントの位置特定をすることによって、4本の個々の指に分割できる。これらのポイントは、特異点と呼ばれる。次に、K平均クラスタリング・アルゴリズムを利用して、決定されたポイントを4本の指を表している4つのクラスタにクラスタ化することができる。いくつかの実装では、K平均は特別な距離関数を使用して、クラスタリング・アルゴリズムで使われる距離行列を計算できる。この特殊関数は、同じ指に位置するポイントに対して、それらが従来のユークリッド距離に関して遠い場合であっても、結果としてより小さい距離尺度になる。次に、領域形成法セグメンテーション・アルゴリズムは、個々に各指をセグメント化するために利用できる。
次に、各指に対して、少なくとも、各指の遠位指節骨の領域は、イメージの範囲内で識別できる。好ましくは、指セグメントの先端と中間および遠位指節骨間の極太線との間に位置する指領域は、それが特徴点である最も判別可能な特性を含むので識別される。
指および手は両方とも、見込まれる形状を作るためのスペースは比較的窮屈であり、したがって、いくつかの実装では、Active Shape Models(アクティブ形状モデル)Active Appearance Models(およびアクティブ外見モデル)は非接触の指紋認識を実行するには有効なアプローチであり得る。例えば、目標画像から手の位置特定をして、セグメント化するために、例示画像の範囲内で手の特徴の上に点集合(例えば指先境界)を配置することによって、ポイント分布モデルが、最初に計算される。モデルは次に、ユーザ手配置のガイドまたは他の画像処理技術を使用して、手位置に関して第一の推定を形成することによって、目標画像の範囲内で初期化される。例えば、カスケード分類器は、手位置に対する第一の推定を提供するために用いることができる。モデルに対して最も良く当てはまるものは、次に、反復的にそれを画像データと比較して、ポイント位置を更新することによって、見つかる。
当てはめられたモデルのポイントは、認識のために関心領域を抽出するために用いる。例えば、指先境界を描くポイントは、指紋を抽出するために用いる。
同様に、指の形状を描くアクティブ形状モデルは、個々の指先をセグメント化するために用いることができる。例えば、指先を含む画像領域は、最初に、カスケード分類器を使用して発見され、次にモデルを用いてセグメント化して、背景および隣接指を取り除く。更にまた、アクティブ形状モデルは、個人ユーザに合わせて調整できる。例えば、システム登録の間にユーザにより確認されて、正しいモデルが当てはまると、モデルはよりよくその個人の手および指形状を描くように調整される。これは認識の速度および信頼性を増加させ、モデルからの偏差はなりすましを識別するために用いることができる。
最大限の指紋抽出の品質のために、例えば、デバイスのディスプレイ上の最適な指配置の視覚的ガイドまたは輪郭を提供して、照明する光源およびカメラの位置に対する最適位置に自分の手および指を配置することを、ユーザは促されることができる。これは、指紋を約+/−20度のカメラに対する最大角度に限定して、カメラの視野の中心の近くに指紋を配置することであり得る。例えば、指は光源から十分遠くにおいて、照明光線に関する入射角を最小化することができ、傾いた表面に関する詳細の損失を防止し、その一方で、十分に強い照明に対しては十分に間近である。並行して、指は、カメラの方へ最大限に照明を反射する方向にされて、認識のための充分な画素密度を確実にするために、カメラの十分に近くに配置される。
キャプチャされた指紋品質は、追加照明光源または、照明光源の空間範囲を広げるための、スマートフォンカメラシステムへの拡張光源を追加することによって、更に改良されることができる。例えば、4つのLEDをスマートフォンまたはタブレットの角に追加することで、光は、より高い指紋キャプチャ品質につながる指紋のより多くの領域によって、有利に反射される。
一旦指の関連した領域が識別されると、ステップ315で、関連した領域は強調できる。より具体的には、好ましくは、解析モジュール172を含むソフトウェア・モジュール130を実行することにより構成される、モバイル・デバイス・プロセッサ110は、イメージの部分を処理して、例えば、平滑化された隆線方向マップに対して調整された一組のガボールフィルタを用いて、イメージの詳細を強調できる。いくつかの実装では、この画像強調の主要な目的は、ライブ・スキャン・センサを使用してキャプチャされ、通常はIAFISなどの従来データベースに記憶される、指紋印象の画像と類似している指紋像を生成することである。この類似性が意味するのは、モバイル・デバイスを用いてキャプチャした画像が、ライブ・スキャン・センサからキャプチャした画像と同じ品質及び属性に似ているということである。この類似性は、モバイル・デバイスによって、キャプチャされる画像を、IAFISなどの従来データベースに記憶される指紋印象の画像に対して照合する可能性を保証するために、望ましい。
指先からの識別可能な特徴の抽出を改善するために、強調フィルタを使用して隆線と溝の間のコントラストを高めることは、利点であり得る。いくつかの実装では、モバイル・デバイス・プロセッサはヒストグラム均等化を適用して、可能性がある値域(通常はグレースケール画像において、[0,255])にわたる強度を均一に配分することによって、ローカル画像コントラストを高めることができる。これは、ピクセル強度の累積ヒストグラムを計算して、許容範囲の極大値に正規化して、この分布のそれらの位置に従ってソース・ピクセルを再配置することによって、達成できる。
コントラスト強調は、識別性が悪く、従って背景ノイズならびに関心信号を強調する欠点を有する。このように、コントラスト強調の前にフィルタリングによって、それらの関心信号だけを分離することは、有益であり得る。例えば、プロセッサはバンド・パス・フィルタを適用して、指紋隆線の予想される周波数に対応しない周波数を有する信号を取り除くことができる。1つのそのような実装は、ガウス・ブラーでフィルタリングされたソースイメージを生のソースイメージから減算することによって、高周波を取り除く。その結果は次に、適切により小さい半径を有する別のガウス・ブラー・フィルタを使用することによって、低周波を取り除くために再びフィルタリングすることができる。次に、ヒストグラム均等化がバンド:パスの結果に適用されて、特徴抽出のための最適画像を達成できる。
ステップ320で、各指の特徴点が抽出されて、そして、バイオメトリック識別子が生成される。当業者により理解されるように、特徴点は指紋の隆線が終わるポイントを指し、そして、テクスチャは隆線により画定されるパターンを指す。より具体的には、好ましくは解析モジュール172を含むソフトウェア・モジュール130を実行することにより構成される、モバイル・デバイス・プロセッサ110は、強調されたイメージを分析して、特徴点抽出アルゴリズムなどのアルゴリズムを使用して、少なくとも各指の末端領域から、特徴を抽出する。
指紋比較のための大部分の自動システムは、特徴点マッチングに基づいており、従って、信頼性が高い特徴点抽出は、重要なタスクである。多くのこのような方法は、指紋のグレースケール画像をスケルトン画像に変換することを必要とする、次に、単純な画像スキャンは、指紋隆線が終わって二またに分かれる特徴点に対応するピクセルの検出を可能にする。抽出された特徴点は、二次元の平面のポイントのセットとして記憶できる。
最後に、特徴点ベースのマッチング・アルゴリズムが、構成されたプロセッサにより実行されて、指紋の間の類似性スコアを生成できる。これらのマッチング・アルゴリズムは、最大数の特徴点組合せの結果を得るテンプレートと入力特徴点セットの間の位置合わせ状態を見つけることによって、指紋の間の類似性スコアを算出する。
末端領域から抽出される特徴は、指および/または手の残りの識別された領域から同様に抽出される他の特徴とともに記憶できる。このような特徴は、1つまたは複数の特徴ベクトルを含む1つまたは複数のバイオメトリック識別子において、特徴づけることが可能である。
登録の間、ステップ325で、このような特徴ベクトルは、ユーザ検証ステップを確実にするのに用いられるバイオメトリック識別子(例えば、テンプレート)として、メモリに記憶される。あるいは、ユーザ検証(ステップ330)の間に、バイオメトリック識別子は、登録の間に記憶されたバージョンと比較される。
より具体的には、検証処理の間に、ユーザの指はキャプチャされて、ステップ305から320に関して記載されているように、バイオメトリック識別子が生成される。しかしながら、ステップ330で、次に、クエリ特徴ベクトルは、登録され記憶された特徴ベクトルと比較される。比較に基づいて、一致スコアは、一致の類似性に関して構成されたプロセッサ110により生成される。一致スコアが十分に近い一致を表す場合、ユーザは確認手順に合格していると判定され得る。
1つまたは複数の実装において、一致スコアは、照会指紋(例えば、照会特徴ベクトル)を登録された指紋と個々に照合して、複合一致スコアを決定することに基づく、複合一致スコアであり得る。より具体的には、手画像のデータベースから、画像は、2つの異なったクラスの対、つまり、同じ手の画像の対および異なる手の画像の対で、対にすることができる。これらの手の指のそれぞれの対(例えば人差し指と人差し指)に対して、より高いスコアがより近い一致を表すとした、これらの手画像の近さを測定するマッチング・スコアを、算出できる。
これらのスコアは、プロットしてスコア分布を形成できる。各タイプの指(例えば薬指)に対して、2つの分布があり、同じ手から同じ指、および異なる手(すなわち詐称者)からの同じ指の画像の照合からのスコアである。
これらのスコア分布は確率分布と考えることができ、それは与えられたマッチング・スコアが分布の1つに帰属する確率を与える。これらの経験的に導かれる分布は、ノイズの平滑化が可能であり、それらを知られている分布(たとえば、ガンマ分布)に当てはめることによって、緻密に特徴づけることが可能である。
特徴付けられていない指画像の対を与えられると、例示的な識別システムは、マッチング・スコアを決定するように構成されることができる。これらの当てはめられた確率分布は、次に、指画像の対が同じ指または異なる指に帰属するという確率の比率(尤度比)を決定するために、用いることができる。
完全な4指照合を行うときに、構成されたシステムは、1つの未知の画像(「プローブ」画像)を前に登録された既知の対象(「ギャラリー」画像)の画像に対してテストすることができる。ギャラリー指に対するプローブ指のそれぞれの対に対して、システムは、尤度比を決定できる。次に、これらの比率は掛け合わせることができ、最終結果は、プローブ画像がギャラリー画像を提供した対象に帰属するという可能性の、全体の尺度を提供する。
この方法は、予測能力の劣る特定の指によって、劣化しないという利点があり、特に、小指は、明確に予測的な一致を提供する可能性が他の指より小さい。それはまた、粗悪な画像に対していくらかの許容度を可能とし、1本の指が劣った一致を示す場合、別の指が特に良好な一致を示すならば、それを埋め合わせることができる。
複数の指全体のスコアを結合することが粗悪な画像に対して許容度を与える一方で、単一プローブ/ギャラリーのマッチング・スコアが十分大きく、全体の合格となることが理論的にあり得る。これは、例えば、攻撃者が正規ユーザの指の1本の非常に高品質の複製を作ることができる場合、なりすましを作り出すことをより容易にし得る。この課題を緩和する例示的な方法は、マッチングおよびスコアリングの処理の間にプロセッサによって、最小数のプローブ指を要求して、二次閾値を越えるマッチング・スコアを個々に作ること、ならびに肯定的な一致を決定するために、マッチング・スコアの組合せが一次マッチング閾値を超えているということを要求すること、を含むことができる。従って、この手段は、いかなる成功したなりすましであってもその最小数の指をうまく複製することが必要であり、それは首尾よく単一の指を複製するよりも困難な作業である。認証処理によって、必要とされる二次閾値を上回ったスコアである指の最小数、および二次閾値の値は、実装のセキュリティの必要性に適するように、劣化した画質への許容力に対してなりすましのリスクとトレードオフするために、調整できる、と理解できる。
通常は、照会指データを登録された指データと比較するときに、それぞれの画像の縮尺が類似していることを確実にすることは重要である。従って、ステップ320の指紋イメージの分析の間、構成されたプロセッサ110は、指紋隆線の基本周波数を判定できる。登録(例えば、ステップ325)の間、構成されたプロセッサは、基本周波数を記憶できる。検証(例えば、ステップ330)の間、構成されたプロセッサは、検証指紋の基本周波数を拡大・縮小して、比較の前に記録された指紋の基本周波数と一致させることができる。加えて、または代わりに、プロセッサは指紋の周波数を正規化して、実際の周波数は記憶される必要がないように、定められた基準周波数、例えば、「1」にすることができる。従って、認識の間、照会指紋は、定められた基準値に正規化できる。
特徴ベクトルを生成する前に、または、認証の間、特徴ベクトルを比較する前に、1つまたは複数の前処理動作が画像フレームに実行されることができることを理解すべきである。例として、そして、限定するものではないが、当業者により理解されるように、分析より前の画像データの前処理は、座標空間の画像フレームの向きを合わせるなどのことを含み得る。
既存のスケーリング・アルゴリズムを実装している画像ベースの指紋認識に関する既存の技術は、一般に指紋の約2%を誤ってスケーリングして認証中の誤った本人拒否に結果としてなっている。これは、不十分な数の画像の基準ポイントを使用して(すなわち、指紋の先端/出発点および指紋の基部/終端点というわずか2ポイントを使用して)、それに応じてサイズおよび縮尺を小さくしている、それらのアルゴリズムに一部起因している。スケーリング動作を改善するために、開示された実施例の1つまたは複数によれば、プロセッサは、指紋の平均周波数(例えば、1インチ当たりの一般的な線の数)を分析して、それに応じて指紋の縮尺を正規化するアルゴリズムを実装できる。この技術は、指紋の領域全体の多くのポイントで取られる、より大きいセットの指紋のピクセルに基づいてスケーリングを判定するので、相当により高い信頼性がスケーリング処理の間に達成され得る。
登録および検証ステップの前および/またはその後に、方法は、生存性を検知するステップを含むこともできる。生存性検知は、図3のステップ335として表される。生体検知方法は、キャプチャされた4つの指画像が、例えば、指の印刷されたなりすましまたは鋳型ではなく、実物の指からであることを検証するために、実施できる。より具体的には、いくつかの実装では、モバイル・デバイス・プロセッサ110(好ましくは、解析モジュール172を含むソフトウェア・モジュール130を実行することによって、構成される)は、指の画質を分析することができて、それらが本物の指からの画像と矛盾が無いか、および/または、減少した解像度および鮮明度などの顕著なアーチファクトを有する偽の指であるかを判定できる。
例えば、更に本明細書において、述べるように、1つの生存性検知技術は、ユーザに画像化の間、手を回転させることを促すことであり得て、また、構成されたプロセッサは、例えば、運動技術からの深さおよび焦点技術からの深さを使用して、画像化された手が正しく三次元である、と判定できる。あるいは、システムは、例えば受動的な生存性検知技術を実施して、画質を分析し、それが十分に鮮明で(例えば、なりすましの手の指紋からの)低解像度ではないことを確認できる。構成されたプロセッサは、指の色を分析して、色彩が実物の手画像および/またはユーザの手の周知の色と整合しているかどうか判定することもできる。従って、いくつかの実装では、手の色の一貫性、言い換えればカラー均一性は、指先および手を同時に検出することによって、成し遂げることができる。次に、手のひらおよび下部の指節骨(すなわち、近位および中間にあるもの)から成る指先を含まない手の領域を切り離して、次にこの領域のカラー・ヒストグラムおよび4つの検出された指先領域のカラー・ヒストグラムを決定する。最後に、いくつかの実装では、これらの2つのヒストグラムを比較することは、手と指の色の均一性に対する検査として利用することができ、特に、攻撃者が鋳型(すなわち、偽の指)を使用してシステムを欺こうとする場合に生存性尺度を判定できる。加えて、構成されたプロセッサは、そのユーザが自分の指で、例えば、指を広げて閉じるかまたは特定の方法で特定の指を動かすなどの、1つまたは複数のジェスチャをするように要求することもできる。
更に、いくつかの実装では、分類器は、なりすましから実物を区別するために訓練できる。分類器は、それが本当の指画像と各種の偽の画像の違いを学ぶように、訓練できる。分類器を実装しているプロセッサは、次に、その訓練に基づいて合格・不合格の結果を提供するように構成される。
更に、いくつかの実装では、バイオメトリクス生存性の追加の要素として、画像内の指紋の位置が考慮に入れられ、すなわち、本物のユーザは、特定の長さの1、2、3および4本目の指がある。その結果、ユーザが指を外に伸ばしそして一緒に閉じる時は、4つの指紋の位置はその特定のユーザと整合している相対的な位置を有していなければならない。この情報は、なりすまし攻撃を防止するのを助ける付加的なセキュリティー・チェックとして使うことができる。例えば、電話スクリーンで潜在的な指紋を発見するハッカーは、ユーザの指の長さを推測することはできそうになく、従って正しくそれらを示す可能性は低い。
図3に関して記載されている例示システムおよび方法に対して更に、各種の代替および変形が考察される。いくつかの実装では、ユーザの指の登録画像は、必ずしもモバイル・デバイスのカメラによって、キャプチャされるというわけではない。その代わりに、指特徴ベクトルは、指画像の予め記録されたデータベースなどの代替ソースから得ることができる。
いくつかの実装では、登録処理の間に、指のキャプチャ(例えば、限定するものではないが、改善された解像度を有する4本または10本の指)のために、各指の画像は順次個々の画像にキャプチャすることができる。この場合には、登録手順の間に、スクリーン上に指ガイドを示している構成されたプロセッサは、ユーザに一度に1本の指をスクリーンに配置するよう促すことができ、セグメンテーション・アルゴリズムを使用して、個々に指の遠位指節骨および指紋領域を識別できる。
いくつかの実装では、マッチング処理(例えば、ステップ330)を指先(例えば、遠位指節骨)領域の比較に制限する代わりに、比較は、指紋に加えて、または、指紋の代わりに手の他の部分を含むことができる。例えば、関心領域は、検出可能なパターニング、または遠位および中間の指節骨、または掌骨を有する手のいかなる部分も含むことができる。これらの領域のいくつかは、それらがなりすまし攻撃に対するより抵抗力があり、そのためより高いセキュリティのレベルを提供するという追加的な利点がある。例えば、ユーザの指先の指紋は、ユーザがさわったスマートフォンのケースまたは他の表面で、しばしば見つけることができる。これらの潜在的な指紋は詐称者により複製されることができる。そして、検証に合格できる鋳型が作られ得る。しかしながら、掌骨の指紋は、手のこれらの領域が表面に接触して潜在的な指紋を残すことがより一般的でないので、見つけるのがまた更に難しい。
いくつかの実装では、特異点を使用して4本指のクラスタを別々の指に分ける代わりに、ユーザは、キャプチャの間、それらの指を広げることを促されることができる。次に、指はセグメンテーション・アルゴリズムを使用して分離されることができ、輪郭変形方法は各指先の位置を識別するために用いることができる。
いくつかの実装では、関連する指領域のセグメンテーションは、肌色、周波数および方向を使用して実行できる。例えば、セグメンテーション処理を補助するために、ソーベルの演算子は構成されたプロセッサにより行い、焦点が合っている領域(すなわち背景よりもむしろ指)を強調できる。加えて、または代わりに、セグメンテーションは、キャプチャ処理の間に、ユーザがそれらの指を配置するために案内された領域に関するキャプチャした画像から単に固定領域を抽出することにより行うこともできる。
いくつかの実装では、認証処理の間に、セグメンテーションは、登録された指紋情報を使用して実行できる。登録の間に生成された指紋テンプレートに基づいて、指紋の特徴をセグメント化して識別し、および/または照合することによって、既存の技術にわたっての改良を提供できる。例えば、既存の画像ベースの指紋識別技術は、登録および認証の間で同じ方法で指紋を分離するが、信頼性が高い使用のためには不満足な首尾でイメージから単一の指紋を分離する結果となっている。いくつかの例では、既存の方法を使用している認証が首尾よく行われるのは、時間としてわずか96%であり、その結果、認証中に4%の本人拒否となっている。複数の指に別々にその技術を用いることによって、この問題は悪化する。
しかしながら、開示された実施例の1つまたは複数によれば、構成されたプロセッサによって、指紋隔離のための異なるアルゴリズムが実行され、すなわち、それは、登録された指紋を使用して、認証の間に、指を見つけて、指紋を分離/照合するものである。これは、著しくより強力なパフォーマンスを提供する。いくつかの実装では、構成されたプロセッサは、例えば、4つの指画像の全体から指の特徴(例えば特徴点)を抽出して、画像中の全ての位置を、登録された指紋からの指の特徴と徹底的に比較することにより指領域の位置特定をすることによって、セグメンテーション処理を実施できる。指領域は、登録された指が画像の指の特徴と一致することが見つかる場所に位置することが分かる。画像のランダムな特徴による誤った一致の可能性を更に最小化するために、一致とされた領域の妥当性は、例えば4本の指をキャプチャする手順の場合、1、2、3および4本目の指がユーザ・ガイダンス・オーバーレイ画像からほぼ予想される通りに見つかり、肌色が予想通りであるなどということを確実にすること(例えば、登録テンプレートを使用していて比較を導くテンプレート・マッチング)によって、点検されることができる。更に、この処理を使用して画像全体を指位置で検索するのではなく、探索範囲を、指がユーザ・ガイダンス・オーバーレイ画像から予想される領域に制限できる。
基本的な隆線周波数に基づいて指スケーリングを行うことに加えて、またはその代わりに、プロセッサ110は、セグメント化された4指クラスタの幅、各関心指領域もしくは指節骨ジョイントの特異点および極太線などの指の特定のポイントの幅または長さのうちの1つまたは複数に基づいて指紋をスケーリングするように構成できる。
特徴点に基づいて指を照合することと、ともに(またはその代わりに)、プロセッサ110は、テクスチャに基づいて指紋を照合するように構成することもできる。
更に、いくつかの実装では、指に対して1つの画像を使用する代わりに、いくつかの画像を用いて、ユーザを登録するかまたは認証できる。複数画像は、各種の露出時間および/または焦点距離でカメラ145を使用して、構成されたプロセッサ110によって、キャプチャされ、拡張された被写界深度および/またはダイナミック・レンジを有する画像を作成できる。このような様々な露出時間および/または焦点距離でイメージをキャプチャすることは、手全体の各種の位置の指紋の焦点が最適なことを確実にする助けとなり得る。従って、構成されたプロセッサは、指の関心部分上の最適焦点を有する画像の、画像(複数可)または部分を選択して分析できる。
加えて、または代わりに、生存性検知は、他の測定基準が印刷またはビデオまたは成形された指の偽物よりもむしろ本当の指のものと整合していることを確認することによって、行うことができる。これらの測定基準は、イメージにキャプチャされるフラッシュからの正反射の分析、フラッシュ、色、彩度測定基準無しで得られた画像と比較した(白黒およびモノクロームのなりすましを排除するために)フラッシュからの正反射の分析を含むことができる。
いくつかの実装では、生存性は、指のイメージから取得される正反射または焦点情報からの深さの情報の分析によって、検知できる。非限定的な実施例として、正反射および焦点からの深さ情報に基づく生存性の判定ための例示的なシステムと方法は、本明細書、および、同時係属の、本出願の譲受人に譲渡された、「SYSTEMS AND METHODS FOR PERFORMING IRIS IDENTIFICATION AND VERIFICATION USING MOBILE DEVICES UTILIZING VISIBLE SPECTRUM LIGHTING」と題する、本明細書においてその全体が記載されるように本明細書に参照によって組み込まれる、2014年10月15日に出願の米国特許出願第62/066,957号において、記載される。生存性は、カメラによって、キャプチャされる画像のシーケンスの全体にわたって表される、指を傾けることまたは指を広げて/狭くすることなどの、指の動的な動き(例えば、指ジェスチャ)の分析によって、検知することもできる。非限定的な実施例として、バイオメトリック特徴およびジェスチャの動的な変化に基づく生存性の判定ための例示的なシステムと方法は、本明細書、および、同時係属の、本出願の譲受人に譲渡された、「SYSTEM AND METHOD FOR DETERMINING LIVENESS」と題する、本明細書においてその全体が記載されるように本明細書に参照によって組み込まれる、2014年8月26日に出願の米国特許出願第62/041,803号において、記載される。
いくつかの実装では、生存性は、指のイメージのキャプチャの間に指隆線上へ発される光の反射率分析を実行することによって、検知できる。生体の指隆線はフラッシュを一様でなく反射するが、印刷された指はフラッシュを一様反射する。従って、指のイメージにおいて、キャプチャされる隆線反射率プロパティは、生存性を判定するために分析され得る。反射率に基づいて生存性を判定するための例示的処理は、図5のフロー図および図5Bから5Cの対応する画像に関して本明細書において、更に記載される。ステップ505で、生存性検知アルゴリズムへの入力が取得される。入力は、フラッシュをオンにしてキャプチャされる指の1つまたは複数の高解像度画像(複数可)、ならびにフラッシュをオフにしてキャプチャされる指の高解像度イメージを含む。指(複数可)の、例示的なフラッシュ・オンの画像505Aおよびフラッシュ・オフの画像505Bは、図5Bに示される。ステップ510で、フラッシュ・オンの画像(複数可)は、画像の範囲内の指紋が分離されるように、大きさを変更される。ステップ515で、対応する指を含むフラッシュ・オフの画像(複数可)の領域は、(例えば上記の例示的な指紋セグメンテーション・アルゴリズムに従って)セグメント化される。従って、フラッシュ・オンの画像に表される指紋およびフラッシュ・オフの画像中の対応する指紋は、更なる処理のために分離される。例示的な分離されたフラッシュ・オンおよびフラッシュ・オフの指先の画像は、図5Bにおいて、それぞれ、画像510Aおよび515Bとして示される。次にステップ520で、ハイ・パス・フィルタが、隆線を表す画像の部分を保持するために適用される。例示的なフィルタリングされたフラッシュ・オンおよびフラッシュ・オフの指先の画像は、図5Bにおいて、画像520Aおよび520Bとして示される。次にステップ525で、生存性スコアが算出される。1つの例示的な構成において、生存性スコアは、フィルタリングされたフラッシュ・オフの画像から生成されるヒストグラムの標準偏差(a)、およびフィルタリングされたフラッシュ・オンの画像から生成されるヒストグラムの対応する標準偏差(b)の関数として、算出される(すなわち、生体スコア=a/b)。例として、指紋のなりすましの画像への処理500の適用の間に取得される類似画像は、図5Cに表される。他の実装においては、他の尺度がフラッシュ・オンおよびフィルタ・オフの画像のヒストグラムから計算されて、生存性スコアを算出できる。以下は、用いることができる尺度のいくつかの実施例である:(1)ヒストグラムの尺度間の違い、(2)ヒストグラム周波数の尺度間の違い、(3)ヒストグラム周波数の標準偏差の比率、(4)ヒストグラムの尖度の違い、および/または、(5)フィルタリングされたフラッシュ・オンおよびフラッシュ・オフの画像における対応するキー・ポイントの数。いくつかの実装では、フラッシュ・オンおよびフラッシュ・オフの画像の背景のピクセル強度における違いは、生存性尺度として用いることができる。
図6Aから6Fは、カメラ視野に対して各種の位置でキャプチャされる指の例示的な隆線画像を表す。特に、図6Aは、カメラから遠すぎて、低い指紋解像度を有する指に対する、キャプチャした画像および対応する隆線画像を表す。図6Bは、カメラから遠すぎて、低い指紋解像度を有する指に対する、キャプチャした画像および対応する隆線画像を表す。図6Cは、視野の中心にあってカメラに十分に近い指配置のために良好な解像度を示す、キャプチャした画像および対応する隆線画像を表す。図6Dは、高角度のLED反射による人差し指および小指の端での反射の損失を示す、キャプチャした画像および対応する隆線画像を表す。図6Eは、指がカメラ視野の端の近くに置かれる際、高角度のLED反射による指の先端での反射の損失を示す、キャプチャした画像および対応する隆線画像を表す。図6Fは、指がカメラ視野の端の近くに置かれる際、高角度のLED反射による指の先端での反射の損失を示す、キャプチャした画像および対応する隆線画像を表す。
いくつかの実装では、指紋ベースの認証は顔面の識別と更に結合されて、多モード・バイオメトリクスの強化されたセキュリティ/信頼性を提供できる。例えば、スマートフォンの場合、ユーザの4本の指は、表面または虹彩キャプチャが前向きカメラを使用してなされるにつれて、同時に、または、順次、スマートフォン後部外装品カメラを用いてキャプチャすることができる。非限定的な実施例として、ハイブリッド・バイオメトリック識別子を生成して、ハイブリッド・バイオメトリック識別子を使用して識別/認証を実行するための例示的なシステム及び方法は、同時係属の、本出願の譲受人に譲渡された、「SYSTEM AND METHOD FOR GENERATING HYBRID BIOMETRIC IDENTIFIERS」と題する、2015年5月4日に出願の米国特許出願第62/156,645号おいて記載され、それはあたかも本明細書において、完全に記載されるかのように本明細書に参照によって、組み込んだものとする。
更なる例として、上記のように、ルーチン300に従って指特徴ベクトルを生成することによって、ユーザを特徴づけることに加えて、ステップ305でキャプチャされる画像(複数可)または別にキャプチャされるバイオメトリック情報から、付加的なバイオメトリック特徴を抽出できる。このような付加的なバイオメトリック特徴は、例として、限定されるものではないが、ソフト・バイオメトリック特性およびハード・バイオメトリック特性を含むことができる。「ソフト・バイオメトリック」特性は身体的、行動的、または付着的な人間特性であるが、指紋、虹彩、眼窩周囲の特性などのハード・バイオメトリックは通常、不変量である。更なる例として、ソフト・バイオメトリック特性は、皮膚テクスチャまたは肌色などの身体的特性を含むことができる。ソフト・バイオメトリクスは、スマートフォンのジャイロ/加速度計により検出される動作、アイトラッキング・アルゴリズムにより検出される目運動特性ならびに顔および/または頭部ドの動きを追うことにより検出される先頭部運動特性を含むこともできる。このようなバイオメトリック特徴は、前述の方法ならびに既存のバイオメトリック解析アルゴリズムに従って抽出することができ、特徴付けることができる。加えて、ユーザのバイオメトリック特徴の付加的な特徴付けは、ステップ320で生成されるバイオメトリック識別子の一部としてコード化されるか、または例えば複数のバイオメトリック識別子を融合させることによって、指紋バイオメトリック識別子を含むコンポジット・バイオメトリック識別子に含まれることができる。
1つまたは複数の例示的実施形態において、指の画像キャプチャは、スマートフォンなどの携帯用デバイスを使用しているユーザによって、通常実行されるより大きな距離で、実行できる。例示的実施形態は、可能な限りの短距離から長距離の画像取得形式を用いてイメージをキャプチャするように構成されるシステムを使用して、同じように行うことができる。ある距離をおいた画像獲得は、例えば望遠レンズを使用する各種の光学ベースのシステム、ならびにレーザ集中ベースのシステムおよびソナー・ベースのシステムなどの、光学形式で実行できる。この種のより長距離の画像キャプチャ形式の適用は、法の執行、軍隊および情報機関において、重要であり得て、最終的には商用環境において、展開されることができる。
更に、画像キャプチャは対象が静止していない間に実行することができ、そのような実装は本明細書において、移動中指紋(FOM)システムと呼ばれる。この種の日和見主義的なキャプチャは、人の指紋が、隠れた操作および/または監視モードでこのジョブにタスクを与えられている特別なオペレータの目に見えるようになるにつれて、時間とともに並行して起こり得る。
離れた距離からのキャプチャのために、超解像度技術を実装して、複数のフレームからのデータを用いて指紋品質を増大させて、より大きい指紋画像に異なるフレームからの部分的な指紋領域をつぎ合わせることができる。非限定的な例として、超解像度技術を実行して複数の画像キャプチャに基づいて識別子を生成し、それを使用して識別/認証を実行するための例示的なシステム及び方法は、本明細書、および、同時係属の、本出願の譲受人に譲渡された、「SYSTEMS AND METHODS FOR PERFORMING IRIS IDENTIFICATION AND VERIFICATION USING MOBILE DEVICES UTILIZING VISIBLE SPECTRUM LIGHTING」と題する、本明細書に参照によって、以前に組み込まれた、2014年10月15日に出願の米国特許出願第62/066,957号において、記載されている。
加えて、指紋獲得および識別を実行するための前述の手順は、NIR光およびIR光スペクトルにおいて、キャプチャされるイメージを使用して、そして、NIRおよび/またはIR発光素子を備えているデバイスを使用して、同じように実行できると理解できる。この実装は、更なるバイオメトリック要因として静脈パターン識別を組み込むために特に役立ち得る。非限定的な例として、NIRのバイオメトリック画像をキャプチャするための例示的なシステム及び方法およびNIRおよびIR発光素子を使用して、識別/認証を実行するIRスペクトル・バンドは、本明細書、および、同時係属の、本出願の譲受人に譲渡された、「SYSTEMS AND METHODS FOR PERFORMING IRIS IDENTIFICATION AND VERIFICATION USING MOBILE DEVICES」と題する、本明細書においてその全体が記載されるように本明細書に参照によって組み込まれる、2015年3月6日に出願の米国特許出願第62/129,277号において、記載される。
この時点で、前の説明の多くが従来のスマートフォン・デバイスを使用してキャプチャされるユーザのバイオメトリック特徴に従ってユーザを認証するためのシステム及び方法を対象としているにもかかわらず、本明細書において、開示されるシステム及び方法が、参照されたシナリオを越えるシナリオ、状況および設定において、同じように展開され、および/または実施できる点に留意すべきである。
本仕様が多くの特定の実装の詳細を含む一方で、これらは、いかなる実装、または請求できることの範囲に対する制限として解釈してはならず、むしろ特定の実装の特定の実施形態に特有であってもよい特徴の記述として解釈すべきである。別々の実施形態の文脈で本仕様に記載されている特定の機能は、単一の実施形態に組合せて実施することもできる。逆に、単一の実施形態の文脈で記載されている各種の機能は、複数の実施形態において、別々に実施することも、あるいは任意の適切な部分的組み合わせで実行することもできる。更に、機能が特定の組合せで行うとして上で記載されており、初めにそのように主張されることさえできるにもかかわらず、主張された組合せからの1つまたは複数の機能は組合せから場合によっては削除されることができ、そして、主張された組合せは部分的組み合わせまたは部分的組み合わせの変形を対象とすることができる。
同様に、動作が図面において、特定の順序で表される一方で、このことが、望ましい結果を達成するために、このような動作が示される特定の順序で実行するかまたは順序通りに実行するということ、あるいは例示される全ての動作を実行するということを要求するものである、と理解すべきではない。特定の状況では、マルチタスキングおよび並列処理が好都合であり得る。更に、上記の実施形態での各種のシステムコンポーネントの分離は、すべての実施形態において、このような分離を必要とするとは理解すべきではなく、記載されているプログラム・コンポーネントおよびシステムが通常、単一のソフトウェア製品で一緒に統合可能かまたは複数のソフトウェア製品にパッケージすることが可能であることを理解すべきである
本明細書において、用いる用語は、特定の実施形態を記述するだけの目的であって、本発明を限定することを意図していない。本明細書において、用いる場合、前後関係が別途明確に示していない限り、単数形「a(1つの)」、「an(1つの)」および「the(その)」は複数形も含むことを意図する。更に、本仕様において、用いる場合、用語「comprises(含む)」および/または、「conprising(含んでいる)」は、述べられた機能、完全体、ステップ、動作、要素および/またはコンポーネントの存在を明示するが、1つまたは複数の他の機能、完全体、ステップ、動作、要素、コンポーネントおよび/またはそれらのグループの存在または追加を排除するものではない。請求項において、請求項要素を修飾するための、「第1の」、「第2の」、「第3の」などの序数用語は、それだけでは1つの請求項要素の、方法の行為が実行される別のあるいは時間的な順序に対する、どのような優先度、優先順位または順序も暗示するものではなく、単に、特定の名前を有する1つの請求項要素を、(序数条件の使用がなければ)同じ名前を有する別の要素から区別するためのラベルとして用いられるだけである。また、本明細書において、用いる語法および用語は説明を目的とするものであり、制限的なものと見なすべきではない。本明細書における、「including(含む)」、「comprising(備える)」、または「having(有する)」、「containing(含む)」、「involving(包含する)」およびそれらの変形の使用は、それ以降に列挙される項目及びその等価物並びに追加の項目を包括的に含むことを意味する。図面における同様の数字は、いくつかの図面を通した同様の要素を表すものであり、図面を参照して説明される全てのコンポーネントおよび/またはステップがすべての実施形態または構成に対して必要とされるわけではないことを理解すべきである。
このように、本発明のシステム及び方法の例示の実施形態および構成は、ユーザのバイオメトリクスに従ってユーザを認証するためのコンピュータ実施方法、コンピュータ・システムおよびコンピュータ・プログラム製品を提供する。図面のフロー図およびブロック図は、各種実施形態および配置による、システム、方法、およびコンピュータ・プログラム製品の可能な実装の、アーキテクチャ、機能性および動作を例示する。この点に関しては、フロー図またはブロック図の各ブロックは、モジュール、セグメントまたはコードの一部を表すことができ、それは指定された論理関数(複数化)を実施するための1つまたは複数の実行可能命令を含む。いくつかの他の実装では、ブロックにみられる関数が図面にみられる順序とは違って出現する場合があることも留意すべきである。例えば、連続して示される2ブロックは、実際は、実質的に並行して実行することができ、または、関係する機能性次第で、時にはブロックは逆順で実行できる。ブロック図および/またはフロー図説明の各ブロック、およびブロック図および/またはフロー図説明のブロックの組合せは、指定された関数もしくは行為を実行する特殊目的のハードウェア・ベースのシステム、または特殊目的のハードウェアおよびコンピュータ命令の組合せによって、実行できる点にも留意する。
上記の主題は、例示として提供されており、制限をするものとして解釈すべきではない。様々な変更と改変は、説明され記載されている例示の実施形態および応用に従わずに、また以下の請求項に記載される本発明の真の趣旨および範囲を逸脱しない範囲で、本明細書において、記載されている主題に対して行うことができる。

Claims (15)

  1. 指紋認識を実行する方法であって、
    カメラ、記憶媒体、前記記憶媒体に記憶される命令、および前記命令を実行することにより構成されるプロセッサを有するモバイル・デバイスによって、1つまたは複数の画像をキャプチャするステップであって、前記1つまたは複数の画像のそれぞれは、対象の指を表すステップと、
    前記プロセッサで、セグメンテーション・アルゴリズムに従って前記1つまたは複数の画像から、前記指に対するそれぞれの指先セグメントを識別するステップと、
    前記プロセッサで、前記指に対する識別可能な特徴を前記それぞれの指先セグメントから抽出するステップと、
    前記抽出された識別可能な特徴を含むバイオメトリック識別子を生成するステップと、
    前記生成されたバイオメトリック識別子を前記プロセッサで前記メモリに記憶するステップと
    を含む方法。
  2. 前記それぞれの指先セグメントを識別する前記ステップは、
    前記プロセッサで、1つまたは複数の分類器を使用して複数の候補指先セグメントを識別する前記指を表す前記1つまたは複数の画像の少なくとも一部を分析するステップと、
    前記プロセッサで、前記指に関する測定された身体的特徴および予想される身体的特徴に従って前記複数の候補指先セグメントをフィルタリングするステップと
    を更に含む、請求項1に記載の方法。
  3. 前記それぞれの指先セグメントの前記識別可能な特徴を抽出する前記ステップの前に、前記識別されたそれぞれの指先セグメントを強調するステップを更に含む、請求項1に記載の方法。
  4. 前記それぞれの指先セグメントを強調するステップは、
    前記プロセッサで、前記それぞれの指先セグメントに対する平滑化された隆線方向マップを生成するステップと、
    前記平滑化された隆線方向マップを強調するステップと
    を含む、請求項3に記載の方法。
  5. 指紋認識を実行する方法であって、
    カメラ、記憶媒体、前記記憶媒体に記憶される命令、および前記命令を実行することにより構成されるプロセッサを有するモバイル・デバイスによって、対象の複数の指を表す画像をキャプチャするステップと、
    前記プロセッサで、指検出アルゴリズムを使用して、前記1つまたは複数の画像に表される前記複数の指を検出するステップと、
    前記プロセッサで、セグメンテーション・アルゴリズムに従って1つまたは複数の前記画像から、前記複数の指の中の各指に対するそれぞれの指先セグメントを識別するステップと、
    前記プロセッサで、各指に対して、識別可能な特徴を前記それぞれの指先セグメントから抽出するステップと、
    前記抽出された識別可能な特徴を含むバイオメトリック識別子を生成するステップと、
    前記生成されたバイオメトリック識別子を前記プロセッサで前記メモリに記憶するステップと
    を含む方法。
  6. 前記プロセッサで、前記生成されたバイオメトリック識別子は生体対象を表すと判定するステップを更に含む、請求項1又は5に記載の方法。
  7. 前記それぞれの指先セグメントに対する識別可能な特徴を抽出するステップは、
    特徴点抽出アルゴリズムに従って、前記それぞれの指先セグメントから前記指の特徴点を抽出するステップと、
    前記バイオメトリック識別子を生成するステップは、前記メモリの前記抽出された特徴点を表している特徴ベクトルをコード化することと
    を含む、請求項1又は5に記載の方法。
  8. 前記プロセッサで、前記生成されたバイオメトリック識別子を前記ユーザと関連した前に記憶されたバイオメトリック識別子と照合するステップと、
    前記照合するステップに基づいて、前記生成されたバイオメトリック識別子と前記記憶されたバイオメトリック識別子の間の類似性スコアを生成するステップと、
    前記対象は前記類似性スコアに基づく前記ユーザであることを検証するステップと、
    を更に含む、請求項1又は5に記載の方法。
  9. 前記複数の指を検出する前記ステップは、複数の指検出アルゴリズムを適用することを含む、請求項5に記載の方法。
  10. 前記複数の指を検出する前記ステップは、
    複数の指検出アルゴリズムの中の第1の指検出アルゴリズムを選択するステップと、
    前記プロセッサによって、前記第1の指検出アルゴリズムを使用して、前記1つまたは複数の画像に表される指の少なくとも1つの候補セットを検出するステップと、
    前記少なくとも1つの指の候補セットが前記複数の指を表すという可能性を表している品質尺度を計算するステップと、
    定められた閾値を満たしていない前記品質に基づいて、別の指検出アルゴリズムを選択して、前記先行の検出および計算ステップを繰り返すステップと
    を含む、請求項5に記載の方法。
  11. 前記第1及び第2の指検出は、別途訓練される分類器である、請求項10に記載の方法。
  12. 前記プロセッサで、前記画像の1つまたは複数から、前記1つまたは複数の画像の範囲内の前記複数の指が位置的に安定であると判定するステップを更に含む、請求項5に記載の方法。
  13. 前記プロセッサによって、前記カメラを使用して、前記対象の前記指を表している1つまたは複数の初期画像をキャプチャするステップと、
    前記プロセッサで、指発見アルゴリズムを使用して、前記1つまたは複数の初期画像に表される前記指を検出するステップと、
    前記プロセッサで、前記1つまたは複数の初期画像から、前記1つまたは複数の初期画像に表される前記指に焦点が合っている、ということを判定するステップと、
    前記プロセッサで、前記カメラを起動して前記1つまたは複数の初期画像の前記指を検出して、前記複数の指に焦点が合っている、と判定することに応答して、前記1つまたは複数の画像をキャプチャするステップと、
    前記指に対する前記それぞれの指先セグメントを識別する前記ステップは、前記1つまたは複数の高解像度画像に基づいていることと
    を更に含む、請求項1に記載の方法。
  14. 前記カメラを使用して、該カメラに対して第1の位置にある1つまたは複数の指の第1の画像をキャプチャするステップと、
    前記カメラに対し、前記第1の位置とは異なる第2の位置において1つまたは複数の指を表している第2の画像をキャプチャするステップと、
    前記カメラに対して異なるそれぞれの位置から1または複数の指を表している少なくとも第1及び第2の画像から、前記1または複数の指が三次元オブジェクトであることを決定するステップと、
    前記前記1または複数の指が三次元オブジェクトであるという決定に基づき、前記対象が生体対象であることを検証するステップとをさらに含む請求項1又は5に記載の方法。
  15. バイオメトリック識別子を生成する前記ステップは、 各指紋セグメントについて、指紋隆線の頻度を決定するステップと、 該指紋隆線の頻度と所定の参照頻度とに基づいて前記バイオメトリック識別子をスケーリングするステップと
    をさらに含む請求項1又は5に記載の方法。
JP2017541680A 2015-02-06 2016-01-29 モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法 Active JP6650946B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201562112961P 2015-02-06 2015-02-06
US62/112,961 2015-02-06
US14/819,639 US9361507B1 (en) 2015-02-06 2015-08-06 Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US14/819,639 2015-08-06
US14/988,833 2016-01-06
US14/988,833 US9424458B1 (en) 2015-02-06 2016-01-06 Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
PCT/IB2016/000569 WO2016125030A2 (en) 2015-02-06 2016-01-29 Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020007244A Division JP2020074174A (ja) 2015-02-06 2020-01-21 モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法

Publications (3)

Publication Number Publication Date
JP2018508888A JP2018508888A (ja) 2018-03-29
JP2018508888A5 JP2018508888A5 (ja) 2019-03-14
JP6650946B2 true JP6650946B2 (ja) 2020-02-19

Family

ID=56564833

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017541680A Active JP6650946B2 (ja) 2015-02-06 2016-01-29 モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法
JP2020007244A Pending JP2020074174A (ja) 2015-02-06 2020-01-21 モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020007244A Pending JP2020074174A (ja) 2015-02-06 2020-01-21 モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法

Country Status (12)

Country Link
US (5) US9424458B1 (ja)
EP (1) EP3254232A2 (ja)
JP (2) JP6650946B2 (ja)
KR (2) KR102587193B1 (ja)
CN (2) CN114120375A (ja)
AU (1) AU2016214084B2 (ja)
BR (1) BR112017016942B1 (ja)
CA (2) CA3199703A1 (ja)
CO (1) CO2017008821A2 (ja)
MX (5) MX2020003006A (ja)
WO (1) WO2016125030A2 (ja)
ZA (1) ZA201705814B (ja)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230627A3 (en) 2006-04-26 2012-03-28 Aware, Inc. Fingerprint preview quality and segmentation
US9268991B2 (en) * 2012-03-27 2016-02-23 Synaptics Incorporated Method of and system for enrolling and matching biometric data
WO2015025933A1 (ja) * 2013-08-21 2015-02-26 日本電気株式会社 指紋照合用指紋コア抽出装置、指紋照合システム、指紋コア抽出方法、及びそのプログラム
US9946919B2 (en) * 2014-11-19 2018-04-17 Booz Allen Hamilton Inc. Device, system, and method for forensic analysis
US9424458B1 (en) 2015-02-06 2016-08-23 Hoyos Labs Ip Ltd. Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US11263432B2 (en) * 2015-02-06 2022-03-01 Veridium Ip Limited Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US10339362B2 (en) * 2016-12-08 2019-07-02 Veridium Ip Limited Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US10387704B2 (en) * 2015-06-29 2019-08-20 Qualcomm Incorporated Method and apparatus for enabling the touchscreen display of a mobile device
US10339178B2 (en) * 2015-06-30 2019-07-02 Samsung Electronics Co., Ltd. Fingerprint recognition method and apparatus
US20170026836A1 (en) * 2015-07-20 2017-01-26 University Of Maryland, College Park Attribute-based continuous user authentication on mobile devices
CN105069435A (zh) * 2015-08-14 2015-11-18 福建联迪商用设备有限公司 指纹识别的方法及系统
US10068078B2 (en) * 2015-10-15 2018-09-04 Microsoft Technology Licensing, Llc Electronic devices with improved iris recognition and methods thereof
US10176377B2 (en) 2015-11-02 2019-01-08 Fotonation Limited Iris liveness detection for mobile devices
US10130429B1 (en) * 2016-01-06 2018-11-20 Ethicon Llc Methods, systems, and devices for controlling movement of a robotic surgical system
US10373019B2 (en) * 2016-01-13 2019-08-06 Ford Global Technologies, Llc Low- and high-fidelity classifiers applied to road-scene images
KR102448863B1 (ko) * 2016-03-08 2022-09-30 엘지전자 주식회사 이동단말기 및 그 제어방법
FR3049090B1 (fr) * 2016-03-21 2021-06-25 Sebastien Jean Serge Dupont Dispositif d'authentification biometrique adaptatif par echographie, photographies en lumiere visible de contraste et infrarouge, sans divulgation, a travers un reseau informatique decentralise
US10438041B2 (en) * 2016-04-13 2019-10-08 AMI Research & Development, LLC Techniques for fingerprint detection and user authentication
US11048786B2 (en) 2016-04-13 2021-06-29 AMI Research & Development, LLC Techniques for fingerprint detection and user authentication
EP3232369B1 (en) * 2016-04-15 2021-06-16 Nxp B.V. Fingerprint authentication system and method
US10040574B1 (en) * 2016-04-26 2018-08-07 James William Laske, Jr. Airplane anti-hijacking system
US10133857B2 (en) * 2016-05-18 2018-11-20 Bank Of America Corporation Phalangeal authentication device
US9905267B1 (en) 2016-07-13 2018-02-27 Gracenote, Inc. Computing system with DVE template selection and video content item generation feature
US10198613B2 (en) * 2016-09-09 2019-02-05 MorphoTrak, LLC Latent fingerprint pattern estimation
GB2556625A (en) * 2016-10-27 2018-06-06 Zwipe As Secure enrolment of biometric data
US10121054B2 (en) * 2016-11-10 2018-11-06 Synaptics Incorporated Systems and methods for improving spoof detection based on matcher alignment information
BR112019011205A8 (pt) * 2016-12-08 2023-04-11 Veridium Ip Ltd Sistemas e métodos para realizar a autenticação de usuário baseada em impressão digital usando imagens capturadas com o uso de dispositivos móveis
US10552662B2 (en) * 2016-12-30 2020-02-04 Beyond Time Investments Limited Optical identification method
JP6862899B2 (ja) * 2017-02-21 2021-04-21 富士通株式会社 情報処理装置、生体認証方法、生体認証プログラム
WO2018175603A1 (en) * 2017-03-21 2018-09-27 Sri International Robust biometric access control using physiological-informed multi-signal correlation
US20180279940A1 (en) * 2017-03-30 2018-10-04 James Campbell Disease Detection Device and Method for Detection of Abnormal Immunological Activity
US10331937B2 (en) 2017-04-19 2019-06-25 International Business Machines Corporation Method and system for context-driven fingerprint scanning to track unauthorized usage of mobile devices
CN107153818B (zh) 2017-05-03 2020-01-14 Oppo广东移动通信有限公司 光学指纹验证方法及相关产品
SE1750720A1 (en) * 2017-06-07 2018-12-08 Fingerprint Cards Ab Fingerprint authentication method and system for rejecting spoof attempts
US11095678B2 (en) * 2017-07-12 2021-08-17 The Boeing Company Mobile security countermeasures
US11734944B2 (en) * 2017-08-03 2023-08-22 Himax Technologies Limited Display device with embedded biometric detection function in active region
WO2019050453A1 (en) * 2017-09-07 2019-03-14 Fingerprint Cards Ab METHOD AND SYSTEM FOR DIGITAL FOOTPRINT DETECTION TO DETERMINE FINGER CONTACT WITH FINGERPRINT SENSOR
US11580775B2 (en) * 2017-10-18 2023-02-14 Fingerprint Cards Anacatum Ip Ab Differentiating between live and spoof fingers in fingerprint analysis by machine learning
US11023757B2 (en) 2018-02-14 2021-06-01 Samsung Electronics Co., Ltd. Method and apparatus with liveness verification
ES2828358T3 (es) * 2018-03-16 2021-05-26 Identy Inc Procedimiento para identificar un objeto dentro de una imagen y dispositivo móvil para ejecutar el procedimiento
KR102017749B1 (ko) * 2018-04-24 2019-09-03 울산과학기술원 다중 생체신호를 이용한 개인 인증 방법 및 시스템
CN108764093B (zh) * 2018-05-21 2021-06-04 中国人民解放军战略支援部队信息工程大学 基于相机的非接触指纹图像采集装置及方法
GB201808801D0 (en) * 2018-05-30 2018-07-11 Ge Healthcare Bioprocess system and method providing automated configuration detection
US11171951B2 (en) * 2018-06-07 2021-11-09 Paypal, Inc. Device interface output based on biometric input orientation and captured proximate data
CN112385180A (zh) * 2018-07-03 2021-02-19 蒂诺克股份有限公司 基于交易时间戳将身份和易于获得的个人标识符信息进行匹配的系统和方法
KR20200004701A (ko) 2018-07-04 2020-01-14 삼성전자주식회사 지문 인식 방법 및 디바이스
US11481615B1 (en) * 2018-07-16 2022-10-25 Xilinx, Inc. Anti-spoofing of neural networks
US11216541B2 (en) * 2018-09-07 2022-01-04 Qualcomm Incorporated User adaptation for biometric authentication
US11321557B2 (en) 2018-09-11 2022-05-03 Alex C Lee Pressure recording systems and methods for biometric identification
US10990805B2 (en) * 2018-09-12 2021-04-27 Apple Inc. Hybrid mode illumination for facial recognition authentication
WO2020055569A1 (en) * 2018-09-13 2020-03-19 Hong Chang Systems and methods for secure biometric identification using recorded pressure
WO2020067990A1 (en) * 2018-09-27 2020-04-02 Coolpay Pte. Ltd. Biometric identification method
US10929516B2 (en) * 2018-10-08 2021-02-23 Advanced New Technologies Co., Ltd. Dynamic grip signature for personal authentication
CN109614844B (zh) * 2018-10-16 2023-01-24 创新先进技术有限公司 一种链路验证方法、装置及设备
KR102383669B1 (ko) 2018-10-23 2022-04-06 한국전자통신연구원 Hlbp 디스크립터 정보를 이용한 시차 최소화 스티칭 장치 및 방법
CN109391622A (zh) * 2018-10-31 2019-02-26 北京中电华大电子设计有限责任公司 一种加载规则的指纹认证云安全系统和方法
CN109239900B (zh) * 2018-11-07 2020-10-16 华东师范大学 一种用于显微数字图像大视野采集的全自动快速聚焦方法
CN111259691B (zh) * 2018-11-30 2024-01-19 上海耕岩智能科技有限公司 一种生物特征分析方法及存储介质
CN109738061B (zh) * 2019-01-11 2020-02-18 华南理工大学 一种面向照度计检定的照度计位置自动对准方法及系统
US12026240B2 (en) 2019-02-21 2024-07-02 Microsoft Technology Licensing, Llc Delegated authentication systems and techniques
EP3702958B1 (en) * 2019-02-26 2023-04-05 Identy Inc. Method for verifying the identity of a user by identifying an object within an image that has a biometric characteristic of the user and separating a portion of the image comprising the biometric characteristic from other portions of the image
US10832485B1 (en) * 2019-06-24 2020-11-10 Verizon Patent And Licensing Inc. CAPTCHA authentication via augmented reality
KR102665968B1 (ko) * 2019-06-27 2024-05-16 삼성전자주식회사 블러 추정 방법 및 장치
US11017198B2 (en) * 2019-07-01 2021-05-25 Gemalto Cogent Inc Slap segmentation of contactless fingerprint images
US10984219B2 (en) 2019-07-19 2021-04-20 Idmission, Llc Fingerprint processing with liveness detection
US11625939B2 (en) * 2019-08-01 2023-04-11 Novatek Microelectronics Corp. Electronic circuit having display driving function, touch sensing function and fingerprint sensing function
US11244135B2 (en) * 2019-08-01 2022-02-08 Novatek Microelectronics Corp. Electronic circuit having display driving function, touch sensing function and fingerprint sensing function
KR20210017269A (ko) * 2019-08-07 2021-02-17 삼성전자주식회사 보정 데이터의 획득을 위한 방법 및 이를 위한 전자 장치
EP3772699A1 (en) * 2019-08-09 2021-02-10 Siemens Aktiengesellschaft Method for user verification, communication device and computer program
US11941629B2 (en) * 2019-09-27 2024-03-26 Amazon Technologies, Inc. Electronic device for automated user identification
EP3832407B1 (fr) * 2019-12-06 2024-03-27 Tissot S.A. Procédé de connexion sécurisée d'une montre à un serveur distant
WO2021117877A1 (ja) * 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 指紋登録方法およびユーザ端末装置
CN111144331B (zh) * 2019-12-27 2023-06-13 中国计量大学 手肘静脉图像肘正中静脉的识别方法及手肘图像采集装置
CN111339932B (zh) * 2020-02-25 2022-10-14 南昌航空大学 一种掌纹图像预处理方法和系统
DE102020202946A1 (de) 2020-03-08 2021-09-09 Volkswagen Aktiengesellschaft Verfahren zum Bereitstellen des Zugangs zu einem Gerät sowie Kraftfahrzeug
KR20210119647A (ko) * 2020-03-25 2021-10-06 삼성전자주식회사 센서를 포함하는 전자 장치 및 이를 이용한 생체 정보 획득 방법
US11357580B2 (en) * 2020-04-10 2022-06-14 Smith & Nephew, Inc. Reciprocal optical tracking system and methods thereof
US11270102B2 (en) 2020-06-29 2022-03-08 Amazon Technologies, Inc. Electronic device for automated user identification
CN111898470B (zh) * 2020-07-09 2024-02-09 武汉华星光电技术有限公司 屏外指纹提取装置及方法、终端
CN111563561A (zh) 2020-07-13 2020-08-21 支付宝(杭州)信息技术有限公司 指纹图像的处理方法及装置
CN111862178B (zh) * 2020-07-31 2022-09-30 易思维(杭州)科技有限公司 改进的lbp特征提取方法
EP3958166A1 (en) * 2020-08-19 2022-02-23 Qamcom Innovation Labs AB Method and system for enabling an electronic payment
KR20220030704A (ko) * 2020-09-03 2022-03-11 삼성전자주식회사 우선순위에 따른 지문 스캔 방법 및 장치
WO2022068931A1 (zh) * 2020-09-30 2022-04-07 墨奇科技(北京)有限公司 非接触指纹识别方法、装置、终端及存储介质
CN112232155B (zh) * 2020-09-30 2021-12-17 墨奇科技(北京)有限公司 非接触指纹识别的方法、装置、终端及存储介质
CN112232157B (zh) * 2020-09-30 2022-03-18 墨奇科技(北京)有限公司 指纹区域检测方法、装置、设备、存储介质
CN112395965A (zh) * 2020-11-06 2021-02-23 山东鲁能软件技术有限公司 一种基于电力内网的移动终端人脸识别系统及方法
US11423689B1 (en) * 2021-02-09 2022-08-23 Guangzhou Tyrafos Semiconductor Tech. Co., Ltd. Identification method for an identification system
TWI799092B (zh) * 2021-02-09 2023-04-11 大陸商廣州印芯半導體技術有限公司 辨識系統的辨識方法
CN112966255A (zh) * 2021-03-15 2021-06-15 珠海艾派克微电子有限公司 芯片及成像盒
US11734949B1 (en) * 2021-03-23 2023-08-22 Amazon Technologies, Inc. System for biometric identification
US11462047B1 (en) * 2021-05-05 2022-10-04 Lenovo (Singapore) Pte. Ltd. Device having a camera overlaid by display as biometric sensor
CN113516167A (zh) * 2021-05-17 2021-10-19 中国工商银行股份有限公司 生物特征识别方法及装置
EP4322120A1 (en) * 2021-06-28 2024-02-14 Petnow Inc. Method for photographing object for identifying companion animal, and electronic device
KR102444928B1 (ko) * 2021-06-28 2022-09-21 주식회사 펫나우 반려 동물의 식별을 위한 객체를 검출하기 위한 방법 및 장치
KR102452192B1 (ko) * 2021-06-28 2022-10-11 주식회사 펫나우 반려 동물의 식별을 위한 객체의 이미지를 필터링하기 위한 방법 및 장치
KR102586144B1 (ko) * 2021-09-23 2023-10-10 주식회사 딥비전 딥러닝을 이용한 손 움직임 추적방법 및 장치
CN113936307B (zh) * 2021-12-17 2022-03-15 北京圣点云信息技术有限公司 一种基于薄膜传感器的静脉图像识别方法及装置
US11688204B1 (en) * 2022-01-28 2023-06-27 Armatura Llc System and method for robust palm liveness detection using variations of images
US11721132B1 (en) 2022-01-28 2023-08-08 Armatura Llc System and method for generating region of interests for palm liveness detection
US11941911B2 (en) 2022-01-28 2024-03-26 Armatura Llc System and method for detecting liveness of biometric information
US12107853B2 (en) 2022-04-21 2024-10-01 Bank Of America Corporation System and method for intelligent authentication via object movement recognition
US12008836B2 (en) 2023-05-04 2024-06-11 Google Llc Spatially and temporally dynamic illumination for fingerprint authentication

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335288A (en) * 1992-02-10 1994-08-02 Faulkner Keith W Apparatus and method for biometric identification
US5659626A (en) * 1994-10-20 1997-08-19 Calspan Corporation Fingerprint identification system
US6292576B1 (en) * 2000-02-29 2001-09-18 Digital Persona, Inc. Method and apparatus for distinguishing a human finger from a reproduction of a fingerprint
JP3825222B2 (ja) 2000-03-24 2006-09-27 松下電器産業株式会社 本人認証装置および本人認証システムならびに電子決済システム
JP2003058889A (ja) * 2001-08-10 2003-02-28 S Stuff:Kk 個人識別方法及び個人識別装置
JP2003178306A (ja) 2001-12-12 2003-06-27 Toshiba Corp 個人認証装置および個人認証方法
JP4217646B2 (ja) * 2004-03-26 2009-02-04 キヤノン株式会社 認証方法及び認証装置
JP4298644B2 (ja) 2004-12-17 2009-07-22 三菱電機株式会社 指紋照合装置、指紋照合方法、指紋照合プログラム、および指紋登録装置
US7515741B2 (en) * 2005-01-07 2009-04-07 Motorola, Inc. Adaptive fingerprint matching method and apparatus
US20070112701A1 (en) * 2005-08-15 2007-05-17 Microsoft Corporation Optimization of cascaded classifiers
KR100891324B1 (ko) * 2005-08-29 2009-03-31 삼성전자주식회사 휴대용 개인단말장치를 이용한 지문인식 시스템 및지문특징 추출장치 및 방법
EP2230627A3 (en) 2006-04-26 2012-03-28 Aware, Inc. Fingerprint preview quality and segmentation
JP5034359B2 (ja) 2006-08-07 2012-09-26 富士通株式会社 画像認証装置、画像認証方法、画像認証プログラム、記録媒体及び電子機器
US7660442B2 (en) 2006-09-01 2010-02-09 Handshot, Llc Method and system for capturing fingerprints, palm prints and hand geometry
JP4680158B2 (ja) 2006-09-13 2011-05-11 株式会社日立製作所 生体認証装置
KR100795187B1 (ko) * 2006-11-29 2008-01-16 엘지전자 주식회사 지문 인식 장치 및 방법
US20140233810A1 (en) 2007-06-11 2014-08-21 Lumidigm, Inc. Dermatoglyphic hand sensor
US8031981B2 (en) 2007-12-21 2011-10-04 Daon Holdings Limited Method and systems for generating a subset of biometric representations
US8200037B2 (en) 2008-01-28 2012-06-12 Microsoft Corporation Importance guided image transformation
EP2266099A1 (en) 2008-03-18 2010-12-29 Thomson Licensing Method and apparatus for adaptive feature of interest color model parameters estimation
JP5065965B2 (ja) 2008-03-31 2012-11-07 富士通株式会社 非接触型生体認証装置の生体誘導制御方法及び非接触型生体認証装置
JP5077956B2 (ja) 2008-04-23 2012-11-21 Kddi株式会社 情報端末装置
US8411913B2 (en) 2008-06-17 2013-04-02 The Hong Kong Polytechnic University Partial fingerprint recognition
US8358336B2 (en) 2008-07-25 2013-01-22 Handshot, Llc Frontal hand capture of fingerprints, palm prints and hand geometry using contactless photography
US10445555B2 (en) 2009-01-27 2019-10-15 Sciometrics, Llc Systems and methods for ridge-based fingerprint analysis
KR101549556B1 (ko) * 2009-03-06 2015-09-03 엘지전자 주식회사 휴대 단말기 및 그 제어방법
CN102045162A (zh) * 2009-10-16 2011-05-04 电子科技大学 一种三模态生物特征持证人身份鉴别系统及其控制方法
US8325993B2 (en) 2009-12-23 2012-12-04 Lockheed Martin Corporation Standoff and mobile fingerprint collection
CN101773394B (zh) * 2010-01-06 2011-09-07 中国航天员科研训练中心 身份识别方法及应用该方法的身份识别系统
JP5800175B2 (ja) * 2010-02-05 2015-10-28 ソニー株式会社 画像処理装置、画像処理方法、プログラム、及び電子機器
KR101413413B1 (ko) * 2010-03-04 2014-06-27 닛본 덴끼 가부시끼가이샤 이물 판정 장치, 이물 판정 방법 및 이물 판정 프로그램
PT2571531T (pt) 2010-04-30 2016-08-31 Janssen Biotech Inc Composições do domínio da fibronectina estabilizadas, métodos e utilizações
US8649575B2 (en) * 2010-08-24 2014-02-11 Samsung Electronics Co., Ltd. Method and apparatus of a gesture based biometric system
US9165177B2 (en) 2010-10-08 2015-10-20 Advanced Optical Systems, Inc. Contactless fingerprint acquisition and processing
US8724861B1 (en) 2010-12-06 2014-05-13 University Of South Florida Fingertip force, location, and orientation sensor
US8548206B2 (en) 2011-01-20 2013-10-01 Daon Holdings Limited Methods and systems for capturing biometric data
WO2012115965A1 (en) * 2011-02-22 2012-08-30 Thomson Reuters Global Resources Entity fingerprints
US8971588B2 (en) 2011-03-30 2015-03-03 General Electric Company Apparatus and method for contactless high resolution handprint capture
JP5747642B2 (ja) 2011-05-06 2015-07-15 富士通株式会社 生体認証装置、生体認証システム、生体認証サーバ、生体認証クライアント及び生体認証装置制御方法
US8897491B2 (en) * 2011-06-06 2014-11-25 Microsoft Corporation System for finger recognition and tracking
US20130067545A1 (en) * 2011-09-13 2013-03-14 Sony Computer Entertainment America Llc Website Security
EP2792149A4 (en) * 2011-12-12 2016-04-27 Intel Corp SCENE SEGMENTATION BY USING PREVIOUS IMAGING MOVEMENTS
JP5799817B2 (ja) 2012-01-12 2015-10-28 富士通株式会社 指位置検出装置、指位置検出方法及び指位置検出用コンピュータプログラム
JP6003124B2 (ja) 2012-03-15 2016-10-05 オムロン株式会社 認証装置、認証装置の制御方法、制御プログラム、および記録媒体
US9569655B2 (en) * 2012-04-25 2017-02-14 Jack Harper Digital voting logic for manufacturable finger asperity wafer-scale solid state palm print scan devices
US20130322705A1 (en) * 2012-05-30 2013-12-05 Google Inc. Facial and fingerprint authentication
JPWO2014027523A1 (ja) 2012-08-17 2016-07-25 ソニー株式会社 画像処理装置、画像処理方法、プログラムおよび画像処理システム
DE102012108838A1 (de) * 2012-09-19 2014-05-28 Cross Match Technologies Gmbh Verfahren und Vorrichtung zur Aufnahme von Fingerabdrücken auf Basis von Fingerabdruckscannern in zuverlässig hoher Qualität
US10140537B2 (en) * 2012-10-26 2018-11-27 Daon Holdings Limited Methods and systems for capturing biometric data
US9495526B2 (en) * 2013-03-15 2016-11-15 Eyelock Llc Efficient prevention of fraud
US9818020B2 (en) 2013-04-02 2017-11-14 Precise Biometrics Ab Fingerprint pore analysis for liveness detection
EP2797030B1 (en) * 2013-04-24 2021-06-16 Accenture Global Services Limited Biometric recognition
US9003196B2 (en) 2013-05-13 2015-04-07 Hoyos Labs Corp. System and method for authorizing access to access-controlled environments
US9313200B2 (en) 2013-05-13 2016-04-12 Hoyos Labs Ip, Ltd. System and method for determining liveness
JP6095478B2 (ja) * 2013-05-16 2017-03-15 スタンレー電気株式会社 入力操作装置
KR20150003501A (ko) * 2013-07-01 2015-01-09 삼성전자주식회사 전자 디바이스 및 전자 디바이스에서 지문을 이용한 인증 방법
JP6221505B2 (ja) * 2013-08-22 2017-11-01 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
US9898642B2 (en) 2013-09-09 2018-02-20 Apple Inc. Device, method, and graphical user interface for manipulating user interfaces based on fingerprint sensor inputs
US9025067B2 (en) 2013-10-09 2015-05-05 General Electric Company Apparatus and method for image super-resolution using integral shifting optics
KR101809543B1 (ko) * 2013-11-22 2017-12-18 삼성전자주식회사 비접촉식 지문 인식하는 방법 및 이를 수행하기 위한 전자 기기
FR3017230B1 (fr) 2014-02-04 2016-03-11 Morpho Procede de validation de l'utilisation d'un vrai doigt comme support d'une empreinte digitale
CA2939637A1 (en) 2014-02-12 2015-08-20 Advanced Optical Systems, Inc. On-the-go touchless fingerprint scanner
CN105096347B (zh) 2014-04-24 2017-09-08 富士通株式会社 图像处理装置和方法
US20150309663A1 (en) * 2014-04-28 2015-10-29 Qualcomm Incorporated Flexible air and surface multi-touch detection in mobile platform
CN104036273A (zh) * 2014-05-22 2014-09-10 南京信息工程大学 一种基于复合窗口sivv特征的指纹图像分割方法
US9785323B2 (en) * 2014-07-23 2017-10-10 Adobe Systems Incorporated Touch-based user interface control tiles
CN104580143A (zh) * 2014-11-09 2015-04-29 李若斌 一种基于手势识别的安全认证方法、终端、服务器和系统
US9946919B2 (en) * 2014-11-19 2018-04-17 Booz Allen Hamilton Inc. Device, system, and method for forensic analysis
US9361507B1 (en) * 2015-02-06 2016-06-07 Hoyos Labs Ip Ltd. Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US10339362B2 (en) * 2016-12-08 2019-07-02 Veridium Ip Limited Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US11263432B2 (en) * 2015-02-06 2022-03-01 Veridium Ip Limited Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US9424458B1 (en) * 2015-02-06 2016-08-23 Hoyos Labs Ip Ltd. Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices

Also Published As

Publication number Publication date
JP2020074174A (ja) 2020-05-14
MX2020003007A (es) 2021-10-08
AU2016214084B2 (en) 2021-05-27
BR112017016942B1 (pt) 2023-12-05
US9785823B2 (en) 2017-10-10
KR20170134356A (ko) 2017-12-06
MX2021012376A (es) 2022-11-17
US20160321496A1 (en) 2016-11-03
US20200110921A1 (en) 2020-04-09
WO2016125030A2 (en) 2016-08-11
US20160232401A1 (en) 2016-08-11
CN114120375A (zh) 2022-03-01
CA2976049C (en) 2023-07-18
CA3199703A1 (en) 2016-08-11
ZA201705814B (en) 2018-08-29
CN107438854B (zh) 2021-11-09
US11188734B2 (en) 2021-11-30
US20180018501A1 (en) 2018-01-18
AU2016214084A1 (en) 2017-08-31
BR112017016942A2 (pt) 2018-04-03
CN107438854A (zh) 2017-12-05
MX2020003009A (es) 2021-10-08
US10521643B2 (en) 2019-12-31
KR20230149320A (ko) 2023-10-26
JP2018508888A (ja) 2018-03-29
MX2017010166A (es) 2018-03-23
KR102587193B1 (ko) 2023-10-06
WO2016125030A3 (en) 2016-11-10
US9424458B1 (en) 2016-08-23
EP3254232A2 (en) 2017-12-13
US20220165087A1 (en) 2022-05-26
CA2976049A1 (en) 2016-08-11
MX2020003006A (es) 2021-10-08
CO2017008821A2 (es) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6650946B2 (ja) モバイル・デバイスを用いてキャプチャしたイメージを使用する指紋ベースのユーザ認証を実行するためのシステムおよび方法
US11263432B2 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US10339362B2 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
JP7242528B2 (ja) モバイルデバイスを用いてキャプチャした画像を使用する、指紋によるユーザ認証を実施するためのシステムおよび方法
US9361507B1 (en) Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices
US9311535B2 (en) Texture features for biometric authentication
US20190392129A1 (en) Identity authentication method
WO2014025447A1 (en) Quality metrics for biometric authentication

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6650946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250