WO2011057815A1 - Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen - Google Patents

Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen Download PDF

Info

Publication number
WO2011057815A1
WO2011057815A1 PCT/EP2010/006936 EP2010006936W WO2011057815A1 WO 2011057815 A1 WO2011057815 A1 WO 2011057815A1 EP 2010006936 W EP2010006936 W EP 2010006936W WO 2011057815 A1 WO2011057815 A1 WO 2011057815A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell compartment
battery housing
elements
cell
energy storage
Prior art date
Application number
PCT/EP2010/006936
Other languages
English (en)
French (fr)
Inventor
Tim Schaefer
Claus-Rupert Hohenthanner
Original Assignee
Li-Tec Battery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li-Tec Battery Gmbh filed Critical Li-Tec Battery Gmbh
Priority to US13/510,291 priority Critical patent/US20130130078A1/en
Priority to CN2010800514467A priority patent/CN102598354A/zh
Priority to BR112012011216A priority patent/BR112012011216A2/pt
Priority to JP2012538246A priority patent/JP2013511116A/ja
Priority to EP10785339A priority patent/EP2502292A1/de
Publication of WO2011057815A1 publication Critical patent/WO2011057815A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5038Heating or cooling of cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • Battery housing for accommodating electrochemical
  • the present invention relates to a battery case for accommodating a plurality of electrochemical energy storage devices and a method of manufacturing this battery case.
  • a battery housing according to the invention surrounds, essentially with rigid walls, at least two electrochemical energy storage devices.
  • Such a battery housing preferably has a plurality of cell compartments but at least one cell compartment, wherein one or more electrochemical energy storage devices are arranged in a cell compartment.
  • the battery case is intended to absorb external stresses, such as a force to keep away from the electrochemical energy storage devices and to influence the temperature balance.
  • Previously used battery cases affect the temperature management of the energy storage devices through relatively complex spatial arrangements thereof, such as e.g. DE 10 2008 014 155 A1. This type of arrangement can be achieved by using partly complex housing elements such as e.g. DE 10 2007063 269 A1 can be achieved. Complex enclosures are difficult to manufacture mechanical components.
  • One aspect of the present invention is therefore to provide an easy-to-manufacture battery case for electrochemical energy storage devices.
  • the invention is therefore based on the object to provide a battery case available, which serves to increase the reliability of electrochemical energy storage devices. This is achieved according to the invention by the teaching of the independent claims. Preferred developments of the invention are the subject of the dependent claims.
  • a battery housing surrounds at least one but preferably a plurality of electrochemical energy storage devices.
  • the battery housing has at least one but preferably a plurality of cell compartments for receiving these electrochemical energy storage devices.
  • the surface of the battery case consists of four side surfaces, a bottom and a top surface, the side surfaces being formed by the cell compartment elements.
  • two electrochemical energy storage devices are arranged in a cell compartment.
  • an elastic compensation element is arranged between two electrochemical energy storage devices.
  • the cell compartments are formed by cell compartment elements.
  • a cell roof element forms at least one cell compartment, preferably two cell compartment elements form a cell compartment.
  • the cell compartments are in particular closable by a cover element.
  • An electrochemical energy storage device has at least one electrode stack, a current conductor and an enclosure.
  • An electrochemical energy storage device is provided to convert and store electrical energy into chemical energy. Conversely, the electrochemical energy storage device can convert the chemically stored energy back into electrical energy and release.
  • an electrochemical energy storage device is designed as a lithium-ion battery.
  • a cell roof element is to be understood as a thin-walled molded part which essentially defines a cell compartment.
  • a cellular element at least with a portion of its wall, forms at least a portion of the outer surface of this battery case, preferably a portion of the side wall of the battery case.
  • Under a side wall of the battery case the lateral boundary of the battery case is to be understood. This sidewall partially separates the contents of the battery case from the environment surrounding the battery case. This side wall is formed in particular by cell compartment elements.
  • a lid element according to the invention is understood to mean a component or a device which is intended to close the edge opening of a cell compartment.
  • a cell compartment has in particular one or preferably two edge openings.
  • a cover element preferably delimits the contents of the battery housing at least in regions relative to the environment surrounding the battery housing.
  • a cover element is provided to selectively direct a Temperiermediumsstrom to the cell compartment elements or derived from these.
  • a cover element for guiding the tempering medium has cavities.
  • cavities are in particular designed so that the cell compartment elements can not only be serially flowed through by a temperature control medium flow, but that the cell compartment elements can be flowed through in series, in particular by two or more temperature control medium flows.
  • the cell compartment elements can be flowed through by a predetermined design of these cavities in any order.
  • these cavities can be designed such that at least two or preferably all cell compartment elements are flowed through in parallel by the temperature control medium.
  • devices may be used in a cover element which are intended to actively conduct the tempering medium flow.
  • Active conduction of the temperature control medium flow is to be understood as meaning that predetermined cavities of the cover element are opened or closed, in particular as a function of external control commands or as a function of the tempering medium temperature.
  • thermostats or valves are provided for guiding the tempering medium flow.
  • An intermediate wall is to be understood as meaning a wall running within the battery housing which has cavities and / or recesses can. This wall preferably delimits the cell compartments at least in regions and is part of the cell compartment element.
  • connection element is to be understood as meaning a component which is intended to produce a positive connection between a cover element and at least one cell compartment element.
  • a latching connection according to the invention is a positive connection, which establishes a connection between a cover element and at least one cell compartment element without further components.
  • connection region is to be understood as meaning a specific section of a cell compartment element.
  • a first cell compartment element contacts a second cell compartment element.
  • a temperature control medium is to be understood as meaning a gaseous or liquid fluid.
  • the tempering medium is provided to supply the battery housing with an energy flow or dissipate it.
  • Under flow channels cavities in the battery housing are to be understood within the meaning of the invention. These cavities are flowed through as planned by the temperature control medium and can be located both in one or more cover elements and in one or more cell compartment elements.
  • the cell compartment elements are made of a metallic material or preferably of a fiber composite material.
  • This material preferably comprises aluminum as an essential constituent; other constituents in particular may be manganese, magnesium, copper, silicon, nickel, zinc and beryllium.
  • a fiber composite material the thermal conductivity is achieved, in particular, by a high proportion of thermally conductive fibers, which are in particular made from a material having the aforementioned heat conduction properties.
  • a fiber composite material has a fiber content of 30 to 95% by volume, preferably 40 to 80% by volume and more preferably 50 to 65% by volume.
  • the cell compartment elements are made of a hybrid material.
  • a hybrid material is to be understood as meaning a material which, in regions, consists of a plastic, in particular of a fiber-reinforced plastic and in some areas of a metallic material. In those areas in which the hybrid material consists of metal, it has in particular good thermal conduction properties, in those areas in which this material consists of fiber-reinforced plastic, it has in particular good heat-insulating properties.
  • this thermal conductivity is less than 0.5 W / (K * m), preferably less than 0.2 W / (K * m), and more preferably less than 0.1 W / (K * m), each at 20 ° C.
  • the temperature balance of the energy storage devices can be easily influenced and thus increase the reliability.
  • the cell compartment elements are to be understood as a thin-walled molded part produced by deformation.
  • this molded part consists of a, in forming manufacturing processes, such. Bending, deep drawing, pressing or punching, machined sheet metal.
  • This sheet has in particular a wall thickness of 0.3 mm - 2.2 mm, preferably from 0.8 mm - 1, 2 mm, preferably from 1, 0 mm.
  • the cell compartment elements are to be understood as a thin-walled, originally formed molded part. Forming manufacturing processes are in particular the continuous casting or extrusion.
  • a profiled cell compartment element has, at least in sections, a wall thickness of 1.0 mm - 3.0 mm, preferably of 1.8 mm - 2.5 mm and particularly preferably of 2.2 mm.
  • cell compartment elements made of a metallic material are in the contact areas to other cell compartment elements with a heat insulating layer, such. Microtherm, provided.
  • this thermal insulation layer is vapor-deposited or painted.
  • the heat insulation layer has a light color, preferably white.
  • the heat insulation layer is embodied in a mirror-like or reflective manner.
  • the cell compartment elements are to be understood as a thin-walled molded part, which is manufactured from a hybrid material.
  • the cellular compartment element is made of plastic, in particular at the points where it contacts another cell compartment element. In other areas, this cellular compartment element is made in particular of a metallic material.
  • This design of the cell compartment elements in particular the heat transfer from one cell compartment to another and thus the mutual heating of the electrochemical energy storage devices is made difficult and on the other hand favors the heat transfer to the environment surrounding the battery case.
  • this plastic region of the cell compartment element is at least partially, in particular in the region facing the electrochemical energy storage device, with a heat conducting layer, e.g. a thermally conductive foil, coated.
  • a heat conducting layer e.g. a thermally conductive foil
  • this plastic region is vapor-deposited with a heat-reflecting layer.
  • This heat-reflecting layer is especially white or specular.
  • This heat-conducting layer has a temperature-conducting connection, in particular with the metallic region of the cell compartment element. By means of this heat-conducting layer, in particular a temperature current is dissipated from the electrochemical energy storage device and conducted to the metallic region of the cell compartment element.
  • the temperature conduction of the cell compartment elements is improved and thus the operational safety of the electrochemical energy storage devices increases.
  • a cell compartment element has a connection region, which is intended to produce a positive connection with a cover element.
  • a positive connection exists between a cover element and a plurality of cell compartment elements, preferably between a cover element and all cell compartment elements. Due to the selected type of connection between the lid and cell compartment elements, the cell compartment contents are protected from external influences and thus increase the reliability.
  • an additional connecting element is provided for producing this positive connection.
  • a connecting element is preferably a substantially elongated component.
  • This connecting element is preferably connected to the battery housing in a materially bonded manner; in particular, the connecting element is glued to the battery housing at least in regions.
  • a cohesive connection thus arises between the connecting element, the cover element and the cell compartment element. Due to the particularly stressable design of this connection area, the reliability is increased.
  • the positive connection between a cover element and a cell compartment element 1 is produced without additional connecting elements.
  • a latching connection in particular connects a cover element with one or preferably with all cell compartment elements.
  • Such a latching connection is preferably a frictional or particularly preferably positive connection.
  • the particularly simple design of this cover element connection area contains only a few sources of errors during assembly and production, thus increasing the safety of the battery housing.
  • two adjacent cell compartment elements have a common connection area.
  • these cell compartment elements contact each other in this connection area.
  • the cell compartment elements in this connection region are integrally connected to one another.
  • such a cohesive connection is produced by gluing.
  • the cell compartment elements in this connection area are positively connected to each other.
  • a temperature control medium is present in a battery housing.
  • This tempering medium is intended to conduct an energy flow.
  • this energy flow is derived to or from a cover element.
  • this energy flow is derived from at least one cell compartment element or from it.
  • the tempering medium flows through at least one cell compartment element and at least one cover element.
  • a plurality of battery housing can be connected by the Temperiermediumsan say, thus easily a plurality of battery housing flows through the temperature control.
  • a cell compartment element has at least one or more flow channels.
  • two cell compartment elements form at least one flow channel.
  • These flow passages are intended to be flowed through by a temperature control medium.
  • such throughflow channels are evacuated between two cell compartment elements and are not flowed through.
  • the pressure in such a gap is preferably 0.9 * 10 5 Pascal to 0 * 10 5 Pascal preferably 0.8 * 10 5 Pascal to 0.5 * 10 5 Pascal and more preferably 0.7 * 10 5 Pascal to 0 , 6 * 10 5 Pascal.
  • these flow-through channels are provided with a phase change material (PCM) which is present as solid at ambient temperature, e.g. a salt or a paraffin, filled.
  • PCM phase change material
  • this phase change material changes its state of aggregation and liquefies.
  • cell compartment elements are preferably produced by a suitable original or transforming manufacturing process.
  • these cell compartment elements for producing the battery case relative to each other, brought into a predetermined position.
  • at least one of these cell compartment elements is then connected to at least one cover element.
  • contact points between the cover element and cell compartment elements which are intended to be flowed through by a temperature control, fluid-tight manner.
  • Such a connection may in particular be provided by elastic sealing means, e.g. O-rings, sealing lips or by a material connection by means of sealing pastes or sealing strips are produced.
  • Hybrid material a metallic insert inserted into a mold and connected in its edge region cohesively with plastic to form a cell compartment element.
  • this insert has a structure which preferably has recesses in order to form a particularly strong connection with the plastic region of the cell compartment element.
  • a cellular compartment element is materially connected to a cover element, preferably by gluing or welding.
  • FIG. 1 shows a battery housing for electrochemical energy storage devices, comprising a plurality of cell compartment elements and two cover elements, wherein connections for a temperature control medium are provided on a cover element.
  • 2 two cell compartment elements with electrochemical Energy storage devices.
  • the cell compartment elements are made of sheet metal and form a positive connection in their connection area.
  • In the intermediate between two electrochemical energy storage devices is an elastic
  • cell compartment elements two different embodiments of cell compartment elements. These cell compartment elements are designed as extruded profiles. In Figure 3 b form two cell compartment elements a double wall, which can be traversed by a temperature control.
  • FIG. 4 shows two different configurations for cell compartment elements, which are made of sheet metal.
  • 4a a tempering medium line is inserted into the cell compartment element and it can be flowed through by a temperature-control medium.
  • 4b shows a cell compartment element with a plurality of cooling fins, which are intended to enlarge the surface of the cell compartment element and thus to improve the heat conduction.
  • 5 two different embodiments of cell compartment elements, which are made of extruded profiles. In Fig.5a flow channels are introduced into the cell compartment element and these channels can be traversed by a temperature control.
  • FIG. 5 b shows a cell compartment element with a plurality of cooling ribs, which are intended to enlarge the surface of the cell compartment element and thus to improve the heat conduction.
  • connection is made by a connecting element.
  • This connecting element is glued to the cover element and the cell compartment elements.
  • Cover element wherein the connection is made by a latching connection. 8 shows different possibilities for flow through cell compartment elements, the temperature control medium flow being controlled by the cover element.
  • FIG. 9 shows a cell compartment element made of a hybrid material.
  • FIG. 1 shows a battery housing for accommodating electrochemical energy storage devices 15.
  • This battery housing has two cover elements 2 and a plurality of cell compartment elements 1.
  • two terminals 3 are introduced for a tempering in a cover element 2.
  • the temperature control medium flows into the cover element 2 through one of these connections. From the cover element 2, the temperature control medium flows back through the individual cell compartment elements 1 to the second connection 3.
  • two cell compartment elements 1 a are shown made of sheet metal. These cell compartment elements 1a together form a connection area 5a. In this connection region 5 d, the two cell compartment elements 1 a are positively connected to each other.
  • the cell compartments 4 are separated by an intermediate wall 13.
  • In the cell compartments 4 are each two electrochemical energy storage devices 15. These energy storage devices 15 are pressed by elastic compensation elements 16 against the cell tray element 1, thereby creating a temperature-conducting connection between cell compartment element 1 and energy storage device 15th
  • FIG 3a two cell compartment elements 1 b are shown. These cell compartment elements 1 b are made of a continuous casting profile. The two cell compartment elements 1 b form a common connection area 5b with each other. In this connection region, the cell compartment elements 1 b are positively connected with each other.
  • Figure 3b shows two cell compartment elements 1 c, which are made of a continuous casting profile.
  • the two cell compartment elements 1 c form a common Connection area 5c with each other.
  • a double-wall cavity 6 c is created between them.
  • This cavity 6c is intended to be flowed through by a temperature control medium.
  • the two cell compartment elements le are fluid-tightly connected to one another in their connection region 5c.
  • an elastic region of the cell compartment element 4 results.
  • This elastic region of the cell compartment elements 1 c eliminates the elastic compensation element 16 between the energy storage devices 15.
  • FIG. 4 a shows a cell compartment element 1 d, which is produced from sheet metal.
  • This cell compartment element 1d has a shape, so that a tempering medium line 6d can be introduced into the cell compartment element 1d.
  • This Temperiermediums Koch 6d is intended to be traversed by a temperature control.
  • FIG. 4b shows a cell compartment element 1e which is produced from sheet metal.
  • This cell compartment member 1e has a plurality of cooling fins 7e. Through these cooling fins 7e, the surface of the cell compartment element 1 e is increased, thus a better temperature conduction is achieved.
  • FIG. 5a shows a cell compartment element 1f which is produced from a continuous casting profile.
  • flow channels 6 f are introduced. These recesses 6f are intended to be flowed through by a temperature control medium. These flow channels 6f can also be located in the intermediate walls 12.
  • the flow channels 6f in the cell compartment elements 1f may also be in communication with the cover flow channels 14 (not shown).
  • FIG. 5b shows a cell compartment element 1f, which is produced from a continuous casting profile.
  • This cell compartment member 1f has a plurality of cooling fins 7f. These are intended to enlarge the surface of the cell compartment element 1f. By enlarging the surface, a better temperature conduction is achieved.
  • the cooling fins 7f are advantageously aligned so that they are from an artificially generated or by, by Heating the ambient air resulting, air flow can be flowed in the rib longitudinal direction.
  • FIG. 6 shows the connection region 9 between a cover element 2 and cell compartment elements 1.
  • the lid member 2 has a series of ZellenfachausEnglishungen 10. Cellular elements 1 engage in these recesses 10.
  • the cell compartment elements 1 and the cover element 2 are connected to one another in a form-fitting manner by a connecting element 8.
  • This connecting element 8 is adhesively bonded to the Zellenfachele- elements 1 and the cover element 2 by gluing.
  • the connecting element 8 may be fixed by fastening means such as e.g. Screws, rivets or pins are connected to the cover element 2 or the cell compartment elements 1.
  • FIG. 7 illustrates the connection region 9 between a cover element 2 and cell compartment elements 1.
  • a special shaping of the cell compartment elements is provided.
  • the cell compartment elements have a snap area 11, which can be deformed elastically.
  • the cover element 2 has a detent portion 17, in which this snap region 11 of the cell compartment element 1 can engage.
  • the latching connection can also be produced by additional spring and auxiliary elements.
  • FIG. 8 shows various possibilities for the flow through the cell compartment elements.
  • FIG. 8 a shows a serial flow through 3 cell compartment elements.
  • the Temperiermediumsstrom 18 enters a cover element 2 and is directed by this to an outer cell compartment element 1.
  • the temperature control medium flows from here starting a cell compartment element 1 after another.
  • the Temperiermediumsstrom 18 exits at a second cover element 2 again.
  • FIG. 8b shows a further embodiment for the flow through a plurality of cell compartment elements 1.
  • the Temperiermediumsstrom is first through the lid member 2 and is passed to a cell compartment element 1. This is at least partially surrounded by other cell compartment elements 1. From this flowed through first Cell compartment element 1 divides the Temperiermediumsstrom 18 in a second cover element 2 and then simultaneously flows through (parallel) two other cell compartment elements 1. The Temperiermediumsstrom 18 exits from the same cover element 2, in which he has previously entered.
  • FIG. 8c shows a further embodiment for the flow through a plurality of cell compartment elements 1.
  • a cover element 2 has tempering medium valves 19. With these tempering medium valves 19, the tempering medium flow 18 can be directed to individual cell compartment elements 1. In particular, not all cell compartment elements 1 must be controllable by a separate tempering medium valve 19.
  • These Temperiermediumsventile are in particular thermostats. Such thermostats release the tempering medium flow 18 to cell compartment elements 1 or shut it off, or restrict the flow rate. Such thermostats operate as a function of temperature, e.g. of the tempering medium flow 18.
  • FIG. 9 shows an embodiment of a cell compartment element 1 h made of a hybrid material.
  • the heat conduction from one cell compartment element to the other is prevented by the heat-insulating intermediate wall 12h made of plastic (FIG. 9a).
  • the heat conduction from a cell compartment element 1 h to the environment surrounding the cellular compartment element is promoted by the side wall 13 h consisting of a metallic material.
  • the side wall 13h is in temperature-conducting connection with the heat-conducting foil 20.
  • the heat-conducting foil 20 carries off a temperature flow from the surface of the electrochemical energy storage device and delivers it to the side wall 13h. This effectively prevents mutual heating of electrochemical energy storage devices in adjacent cell compartments.
  • FIG. 9b shows different possibilities for configuring the edge region of the side wall 13h.
  • the recesses in the side wall 13h lead to a better connection of the metallic side wall 13h with the intermediate wall 12h made of plastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Ein Batteriegehäuse umgibt mindestens ein aber bevorzugt eine Vielzahl von elektrochemischen Energiespeichereinrichtungen. Das Batteriegehäuse weist zur Aufnahme dieser elektrochemischen Energiespeichereinrichtungen wenigstens ein aber bevorzugt eine Vielzahl von Zellenfächern auf. Die Oberfläche des Batteriegehäuses besteht aus vier Seitenflächen, einer Boden- und einer Deckfläche, wobei die Seitenflächen von den Zellenfachelementen gebildet werden. Vorzugsweise werden in einem Zellenfach zwei elektrochemische Energiespeichereinrichtungen angeordnet. Insbesondere ist zwischen zwei elektrochemischen Energiespeichereinrichtungen ein elastisches Ausgleichselement angeordnet. Die Zellenfächer werden von Zellenfachelementen gebildet. Insbesondere bildet ein Zellenfachelement wenigstens ein Zellenfach, bevorzugt bilden zwei Zellenfachelemente ein Zellenfach. Die Zellenfächer sind insbesondere durch ein Deckelelement verschließbar.

Description

Batteriegehäuse zur Aufnahme von elektrochemischen
Energiespeichereinrichtungen
B e s c h r e i b u n g
Die vorliegende Erfindung betrifft ein Batteriegehäuse zur Aufnahme einer Vielzahl von elektrochemischen Energiespeichereinrichtungen und ein Verfahren zum Herstellen dieses Batteriegehäuses. Ein Batteriegehäuse im Sinne der Erfindung umgibt, im Wesentlichen mit starren Wandungen, wenigstens zwei elektrochemische Energiespeichereinrichtungen. Ein solches Batteriegehäuse weist vorzugsweise eine Vielzahl von Zellenfächern aber wenigstens ein Zellenfach auf, wobei in einem Zellenfach eine oder mehrere elektrochemische Energiespeichereinrichtungen angeordnet sind. Das Batteriegehäuse ist dazu vorgesehen, äußere Beanspruchungen, wie z.B. eine Krafteinwirkung, von den elektrochemischen Energiespeichereinrichtungen fernzuhalten und den Temperaturhaushalt zu beeinflussen.
Bisher eingesetzte Batteriegehäuse beeinflussen den Temperaturhaushalt der Energiespeichereinrichtungen durch eine relativ komplexe, räumliche Anordnungen dieser, wie z.B. DE 10 2008 014 155 A1. Diese Art der Anordnung kann durch zum Teil aufwändige Gehäuseelemente wie z.B. DE 10 2007063 269 A1 erreicht werden. Komplexe Gehäuse sind schwierig herzustellende mechanische Bauteile. Ein Aspekt der vorgestellten Erfindung ist es daher, ein einfach zu fertigendes Batteriegehäuse für elektrochemische Energiespeichereinrichtungen zur Verfügung zustellen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Batteriegehäuse zur Verfügung zustellen, welches der Erhöhung der Betriebssicherheit von elektrochemischen Energiespeichereinrichtungen dient. Das wird erfindungsgemäß durch die Lehre der unabhängigen Ansprüche erreicht. Zu bevorzugende Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Ein Batteriegehäuse umgibt mindestens eine aber bevorzugt eine Vielzahl von elektrochemischen Energiespeichereinrichtungen. Das Batteriegehäuse weist zur Aufnahme dieser elektrochemischen Energiespeichereinrichtungen wenigstens ein aber bevorzugt eine Vielzahl von Zellenfächern auf. Die Oberfläche des Batteriegehäuses besteht aus vier Seitenflächen, einer Boden- und einer Deckfläche, wobei die Seitenflächen von den Zellenfachelementen gebildet werden. Vorzugsweise werden in einem Zellenfach zwei elektrochemische Energiespeichereinrichtungen angeordnet. Insbesondere ist zwischen zwei elektrochemischen Energiespeichereinrichtungen ein elastisches Ausgleichs- element angeordnet. Die Zellenfächer werden von Zellenfachelementen gebildet. Insbesondere bildet ein Zelleniachelement wenigstens ein Zellenfach, bevorzugt bilden zwei Zellenfachelemente ein Zellenfach. Die Zellenfächer sind insbesondere durch ein Deckelelement verschließbar. Eine elektrochemische Energiespeichereinrichtung weist wenigstens einen Elektrodenstapel, einen Stromableiter und eine Umhüllung auf. Eine elektrochemische Energiespeichereinrichtung ist dazu vorgesehen, elektrische Energie in chemische Energie umzuwandeln und zu speichern. Umgekehrt kann die elektrochemische Energiespeichereinrichtung die chemisch gespeicherte Ener- gie wieder in elektrische Energie umwandeln und abgeben. Vorzugsweise ist eine solche elektrochemische Energiespeichereinrichtung als Lithium-Ionen Akku ausgeführt.
Unter einem Zelleniachelement ist ein dünnwandiges Formteil zu verstehen, welches im Wesentlichen ein Zellenfach begrenzt. Ein Zelleniachelement bildet wenigstens mit einem Abschnitt seiner Wandung wenigstens einen Abschnitt der Außenfläche dieses Batteriegehäuses, vorzugsweise einen Abschnitt der Seitenwand des Batteriegehäuses. Vorzugsweise besteht zwischen einem Zelleniachelement und wenigstens einer elektrochemischen Energiespeichereinrichtung eine temperaturleitende Verbindung. Unter einer Seitenwand des Batteriegehäuses ist die seitliche Begrenzung des Batteriegehäuses aufzufassen. Diese Seitenwand grenzt bereichsweise den Inhalt des Batteriegehäuses von der das Batteriegehäuse umgebenden Umwelt ab. Diese Seitenwand wird insbesondere von Zellenfachelementen gebildet.
Unter einem erfindungsgemäßen Deckelelement ist ein Bauteil oder eine Einrichtung zu verstehen, welche dazu vorgesehen ist, die Randöffnung eines Zellenfaches zu verschließen. Je nach Ausgestaltung des Zellenfachelementes weist ein Zellenfach insbesondere eine oder vorzugsweise zwei Randöffnungen auf. Damit grenzt ein Deckelelement vorzugsweise den Inhalt des Batteriegehäuses wenigstens bereichsweise gegenüber der das Batteriegehäuse umgebenden Umwelt ab. Insbesondere ist ein Deckelelement dazu vorgesehen, gezielt einen Temperiermediumsstrom zu den Zellenfachelementen hin- oder von diesen abzuleiten. Vorzugsweise weist ein Deckelelement zum Leiten des Temperiermediums Hohlräume auf. Diese Hohlräume sind insbesondere so gestaltet, dass die Zellenfachelemente nicht nur von einem Temperiermediumsstrom seriell durchströmt werden können, sondern dass die Zellenfachelemente insbesondere von zwei oder mehreren Temperiermediumsströmen seriell durch- strömt werden können. Insbesondere können die Zellenfachelemente durch eine vorbestimmte Gestaltung dieser Hohlräume in beliebiger Reihenfolge durchströmt werden. Insbesondere können diese Hohlräume so gestaltet sein, dass wenigstens zwei oder vorzugsweise alle Zellenfachelemente parallel vom Temperiermedium durchströmt werden. In ein Deckelelement können insbesondere Einrichtungen eingesetzt sein, welche dazu vorgesehen sind, den Temperiermediumsstrom aktiv zu leiten.
Unter dem aktiven Leiten des Temperiermediumstroms ist zu verstehen, dass insbesondere in Abhängigkeit von externen Steuerbefehlen oder in Abhängigkeit der Temperiermediums-Temperatur vorbestimmte Hohlräume des Deckelelements geöffnet oder verschlossen werden. Zum Leiten des Temperiermediums- stroms sind insbesondere Thermostate oder Ventile vorgesehen.
Unter einer Zwischenwand ist eine innerhalb des Batteriegehäuses verlaufende Wandung zu verstehen, welche Hohlräume und/oder Ausnehmungen aufweisen kann. Diese Wandung begrenzt vorzugsweise die Zellenfächer wenigstens bereichsweise und ist ein Teil des Zellenfachelements.
Im Sinne der Erfindung ist unter einem Verbindungselement ein Bauteil zu ver- stehen, welches dazu vorgesehen ist, eine formschlüssige Verbindung zwischen einem Deckelelement und wenigstens einem Zellenfachelement herzustellen.
Eine Rastverbindung ist erfindungsgemäß eine formschlüssige Verbindung, welche ohne weitere Bauteile eine Verbindung zwischen einem Deckelelement und wenigstens einem Zellenfachelement herstellt.
Im Sinne der Erfindung ist unter einem Verbindungsbereich ein bestimmter Abschnitt eines Zellenfachelementes zu verstehen. In diesem Verbindungsbereich kontaktiert ein erstes Zellenfachelement ein zweites Zellenfachelement.
Erfindungsgemäß ist unter einem Temperiermedium ein gasförmiges oder flüssiges Fluid zu verstehen. Das Temperiermedium ist dazu vorgesehen, dem Batteriegehäuse einen Energiestrom zuzuführen oder von diesem abzuführen. Unter Durchströmungskanälen sind im Sinne der Erfindung Hohlräume im Batteriegehäuse aufzufassen. Diese Hohlräume werden planmäßig vom Temperiermedium durchströmt und können sich sowohl in einem oder in mehreren Deckelelementen und in einem oder in mehreren Zellenfachelementen befinden. Insbesondere sind die Zellenfachelemente aus einem metallischen Werkstoff hergestellt oder bevorzugt aus einem Faserverbund Werkstoff. Insbesondere ist dies ein Werkstoff mit einer hohen thermischen Leitfähigkeit, vorzugsweise mit einer thermischen Leitfähigkeit bei 20°C von λ20= = 40 bis 1000 W/(K*m), bevorzugt 100 bis 400 W/(K*m) und besonders bevorzugt ca. 220 W/(K*m). Vorzugs- weise weist dieser Werkstoff als einen wesentlichen Bestandteil Aluminium auf, weitere Bestandteile können insbesondere Mangan, Magnesium, Kupfer, Silizium, Nickel, Zink und Beryllium sein.
Bei einem Faserverbundwerkstoff wird die thermische Leitfähigkeit insbesondere durch einen hohen Anteil an wärmeleitfähigen Fasern erreicht, welche insbeson- dere aus einem Werkstoff mit den zuvor genannten Wärmeleiteigenschaften be- stehen. Insbesondere weist ein Faserverbundwerkstoff einen Faseranteil von 30 bis 95 Volumen-%, vorzugsweise von 40 bis 80 Volumen-% und besonders bevorzugt mit 50 bis 65 Volumen-% auf.
Insbesondere sind die Zellenfachelemente aus einem Hybridwerkstoff gefertigt. Unter einen Hybridwerkstoff ist im Sinne der Erfindung ein Werkstoff zu verstehen, der bereichsweise aus einem Kunststoff, insbesondere aus einem Faserverstärkten Kunststoff und bereichsweise aus einem metallischen Werkstoff besteht. In denjenigen Bereichen in denen der Hybridwerkstoff aus Metall besteht, besitzt er insbesondere gute Wärmeleiteigenschaften, in denjenigen Bereichen in den dieser Werkstoff aus faserverstärktem Kunststoff besteht, besitzt er insbesondere gut Wärme-Isolationseigenschaften. Insbesondere ist diese Wärmeleitfähigkeit kleiner als 0,5 W/(K*m), bevorzugt kleiner als 0,2 W/(K*m) und besonders bevorzugt kleiner als 0,1 W/(K*m), jeweils bei 20°C.
Durch die günstigen Wärmeleiteigenschaften und im Fall eines Hybridwerkstoffs auch die guten Isolationseigenschaften des Batteriegehäuses lässt sich der Temperaturhaushalt der Energiespeichereinrichtungen einfach beeinflussen und somit die Betriebssicherheit erhöhen.
Insbesondere sind die Zellenfachelemente als ein dünnwandiges, umformend hergestelltes Formteil aufzufassen. Vorzugsweise besteht dieses Formteil aus einem, in umformenden Fertigungsverfahren, wie z.B. Abkanten, Tiefziehen, Pressen oder Stanzen, bearbeitetem Blech. Dieses Blech weist insbesondere eine Wandstärke von 0,3 mm - 2,2 mm, vorzugsweise von 0,8 mm - 1 ,2 mm, bevorzugt von 1 ,0 mm auf. Insbesondere ergibt sich durch eine geeignete Wahl der Wandstärke ein günstiges Gewichts-/Steifigkeitsverhältnis (Leichtbau) des Batteriegehäuses, somit werden äußere Beanspruchungen von den
elektrochemischen Energiespeichereinrichtungen ferngehalten und damit die Betriebssicherheit erhöht. Insbesondere sind die Zellenfachelemente als ein dünnwandiges, urformend hergestelltes Formteil aufzufassen. Urformende Fertigungsverfahren sind insbesondere das Stranggießen oder das Strangpressen. Vorzugsweise weist ein solches urformend hergestelltes Zellenfachelement wenigstens abschnittsweise eine Wandstärke von 1 ,0 mm - 3,0 mm, bevorzugt von 1 ,8 mm - 2,5 mm und besonders bevorzugt von 2,2 mm auf. Durch eine geeignete Formgebung und Werkstoffwahl wird die Temperaturleitung der Zellenfachelemente verbessert und dadurch die Betriebssicherheit der elektrochemischen
Energiespeichereinrichtungen erhöht. Insbesondere sind Zellenfachelemente aus einem metallischen Werkstoff in den Kontaktbereichen zu andern Zellenfachelementen mit einer Wärmeisolationsschicht, wie z.B. Mikrotherm, versehen. Insbesondere ist diese Wärmeisolationsschicht aufgedampft oder lackiert sein. Insbesondere weist die Wärmeisolationsschicht eine helle Farbe, vorzugsweise Weiß auf besonders bevorzugt ist die Wärmeisolationsschicht spiegelnd oder reflektierend ausgeführt. Somit wird insbesondere die Wärmeleitung von einem Zellenfachelement zum anderen erschwert.
Insbesondere sind die Zellenfachelemente als ein dünnwandiges Formteil, wel- ches aus einem Hybridwerkstoff hergestellt ist aufzufassen. Dabei wird das Zellenfachelement insbesondere an den Stellen, an denen es ein weiteres Zellenfachelement kontaktiert aus Kunststoff ausgeführt. In anderen Bereichen ist dieses Zellenfachelement insbesondere aus einem metallischen Werkstoff ausgeführt. Durch diese Gestaltung der Zellenfachelemente wird insbesondere der Wärmedurchtritt von einem Zellenfach zum anderen und damit die gegenseitige Aufheizung der elektrochemischen Energiespeichereinrichtungen erschwert und andererseits die Wärmeabgabe an die das Batteriegehäuse umgebende Umwelt begünstigt.
Insbesondere ist dieser Kunststoffbereich des Zellenfachelementes wenigstens bereichsweise, insbesondere in dem der elektrochemischen Energiespeichereinrichtung zugewandten Bereich, mit einer Wärmeleitschicht, z.B. einer wärmeleitenden Folie, überzogen. Vorzugsweise ist dieser Kunststoffbereich mit einer Wärmereflektierenden Schicht bedampft. Diese Wärmereflektierende Schicht ist insbesondere weiß oder spiegelnd. Diese Wärmeleitschicht weist insbesondere mit dem metallischen Bereich des Zellenfachelementes eine temperaturleitende Verbindung auf. Durch diese Wärmeleitschicht wird insbesondere ein Temperaturstrom von der elektrochemischen Energiespeichereinrichtung abgeführt und zum metallischen Bereich des Zellenfachelementes geleitet.
Durch eine geeignete Formgebung und Werkstoffwahl wird die Temperatur- leitung der Zellenfachelemente verbessert und dadurch die Betriebssicherheit der elektrochemischen Energiespeichereinrichtungen erhöht.
Ein Zellenfachelement weist insbesondere einen Verbindungsbereich auf, welcher dazu vorgesehen ist, eine formschlüssige Verbindung mit einem Deckel- element herzustellen. Insbesondere besteht eine solche formschlüssige Verbindung zwischen einem Deckelelement und mehreren Zellenfachelementen, vorzugsweise zwischen einem Deckelelement und allen Zellenfachelementen. Durch die gewählte Art der Verbindung zwischen Deckel- und Zellenfachelementen wird der Zellenfachinhalt vor äußeren Einflüssen geschützt und somit die Betriebssicherheit erhöht.
Insbesondere ist zum Herstellen dieser formschlüssigen Verbindung ein zusätzliches Verbindungselement vorgesehen. Bevorzugt ist ein solches Verbindungselement ein im Wesentlichen langgestrecktes Bauteil. Dieses Ver- bindungselement wird vorzugsweise stoffschlüssig mit dem Batteriegehäuse verbunden, insbesondere wird das Verbindungselement wenigstens bereichsweise mit dem Batteriegehäuse verklebt. Insbesondere entsteht so eine stoffschlüssige Verbindung zwischen dem Verbindungselement, dem Deckelelement und dem Zellenfachelement. Durch die besonders beanspruchbare Ausgestal- tung dieses Verbindungsbereichs, wird die Betriebssicherheit erhöht.
Insbesondere wird die formschlüssige Verbindung zwischen einem Deckelelement und einem Zellenfachelement 1 ohne zusätzliche Verbindungselemente hergestellt. Eine solche Rastverbindung verbindet insbesondere ein Deckelele- ment mit einem oder bevorzugt mit allen Zellenfachelementen. Eine solche Rastverbindung ist vorzugsweise eine kraftschlüssige oder besonders bevorzugt formschlüssige Verbindung. Die besonders einfache Gestaltung dieses Deckel- elementverbindungsbereichs beinhaltet nur wenige Fehlerquellen bei der Montage und Fertigung, somit wird die Sicherheit des Batteriegehäuses erhöht.
Insbesondere weisen zwei benachbarte Zellenfachelemente einen gemeinsamen Verbindungsbereich auf. Bevorzugt kontaktieren sich diese Zellenfachelemente in diesem Verbindungsbereich. Vorzugsweise sind die Zellenfachelemente in diesem Verbindungsbereich stoffschlüssig miteinander verbunden. Ins- besondere wird eine solche stoffschlüssige Verbindung durch Kleben hergestellt. Bevorzugt sind die Zellenfachelemente in diesem Verbindungsbereich formschlüssig miteinander verbunden. Durch zusätzliche Verrippung, die ein solcher Verbindungsbereich für das Batteriegehäuse darstellt, ergibt sich ein besonders steifes und damit sicheres Batteriegehäuse.
Insbesondere ist in einem Batteriegehäuse ein Temperiermedium vorhanden. Dieses Temperiermedium ist dazu vorgesehen, einen Energiestrom zu leiten. Vorzugsweise wird dieser Energiestrom zu einem Deckelelement hin- oder von diesem abgeleitet. Besonders bevorzugt wird dieser Energiestrom zu wenig- stens einem Zellenfachelement hin- oder von diesem abgeleitet. Insbesondere durchströmt das Temperiermedium wenigstens ein Zellenfachelement und wenigstens ein Deckelelement. Insbesondere können mehrere Batteriegehäuse durch die Temperiermediumsanschlüsse verbunden werden, somit werden auf einfache Weise mehrere Batteriegehäuse vom Temperiermedium durchströmt. Durch die aktive Temperaturbeeinflussung der elektrochemischen Energiespeichereinrichtungen wird die Betriebssicherheit dieser erhöht.
Insbesondere weist ein Zellenfachelement wenigstens einen oder mehrere Durchströmungskanäle auf. Vorzugsweise bilden zwei Zellenfachelemente wenigstens einen Durchströmungskanal. Diese Durchströmungskanäle sind dazu vorgesehen, von einem Temperiermedium durchströmt zu werden. Insbesondere sind solche Durchströmungskanäle zwischen zwei Zellenfachele- menten evakuiert und werden nicht durchströmt. Der Druck in einem solchen Zwischenraum beträgt dabei vorzugsweise 0,9*105 Pascal bis 0*105 Pascal vorzugsweise 0,8*105 Pascal bis 0,5*105 Pascal und besonders bevorzugt 0,7*105 Pascal bis 0,6*105 Pascal. Durch die Evakuierung dieser Durchströmungskanäle wird die Wärmeleitfähigkeit dieser Bereiche insbesondere unter 0,03 W/(m*K) bei 20°C gesengt.
Insbesondere sind diese Durchströmungskanäle mit einem bei Umge- bungstemperatur als Festkörper vorliegenden Phasenwechselmaterial (PCM), z.B. einem Salz oder einem Parafin, gefüllt. Bei einem Anstieg der Temperatur innerhalb der Durchströmungskanäle von bevorzugt über 200°C oder besonders bevorzugt von über 100°C wechselt dieses Phasenwechselmaterial seinen Aggregatszustand und verflüssigt sich. Durch das Verflüssigen wird
insbesondere Wärmeenergie aufgenommen. Durch diesen Wechsel des Aggregatszustandes tritt weniger Wärmeenergie von einem Zellenfach auf das andere über, dadurch wird die Betriebssicherheit der elektrochemischen
Energiespeichereinrichtungen erhöht. Zur Herstellung eines Batteriegehäuses werden vorzugsweise Zellenfachele- mente durch ein geeignetes ur- oder umformendes Fertigungsverfahren hergestellt. Insbesondere werden diese Zellenfachelemente zur Herstellung des Batteriegehäuses relativ zueinander, in eine vorbestimmte Position gebracht. Vorzugsweise wird dann wenigstens eines dieser Zellenfachelemente mit wenig- stens einem Deckelelement verbunden. Insbesondere werden Kontaktstellen zwischen dem Deckelelement und Zellenfachelementen, welche dazu vorgesehen sind von einem Temperiermedium durchströmt zu werden, fluiddicht verbunden. Eine solche Verbindung kann insbesondere durch elastische Dichtmittel wie z.B. O-Ringe, Dichtungslippen oder durch eine stoffschlüssige Verbindung durch Dichtungspasten oder Dichtungsbänder hergestellt werden.
Insbesondere wird zur Herstellung eines Zellenfachelementes aus einem
Hybridwerkstoff eine metallischer Einleger in eine Form eingelegt und in seinem Randbereich stoffschlüssig mit Kunststoff zu einem Zellenfachelement verbunden. Insbesondere in diesem Randbereich, weist dieser Einleger eine Struktur auf, die vorzugsweise Ausnehmungen aufweist um eine besonders feste Verbindung mit dem Kunststoffbereich des Zellenfachelementes zu bilden.
Insbesondere wird ein Zellenfachelement mit einem Deckelelement stoffschlüs- sig, vorzugsweise durch Kleben oder Schweißen, verbunden.
Weiter Vorteile und Ausführungsformen der vorliegenden Erfindung ergeben sich aus den beigefügten Zeichnungen. Dabei zeigen: Fig.1 : ein Batteriegehäuse für elektrochemische Energiespeichereinrichtungen, bestehend aus mehreren Zellenfachelementen und zwei Deckelelementen, wobei an einem Deckelelement Anschlüsse für ein Temperiermedium vorgesehen sind. Fig.2: zwei Zellenfachelementen mit elektrochemischen Energiespeichereinrichtungen. Dabei sind die Zellenfachelemente aus Blech hergestellt und bilden in ihrem Verbindungsbereich eine formschlüssige Verbindung. In den Zwischen zwei elektrochemischen Energiespeichereinrichtungen befindet sich ein elastisches
Ausgleichselement.
Fig.3: zwei unterschiedliche Ausgestaltungen von Zellenfachelementen. Dabei sind diese Zellenfachelemente als Stranggussprofile ausgeführt. In Fig.3 b bilden zwei Zellenfachelemente eine Doppelwand, welche von einem Temperiermedium durchströmt werden kann.
Fig.4: zwei unterschiedliche Ausgestaltungen für Zellenfachelemente, welche aus Blech gefertigt sind. Wobei in Fig.4a eine Temperiermediumsleitung in das Zellenfachelement eingesetzt ist und diese von einem Tempe- riermedium durchströmt werden kann. Fig.4b zeigt ein Zellenfachelement mit mehreren Kühlrippen, welche dazu vorgesehen sind die Oberfläche des Zellenfachelements zu vergrößern und damit die Wärmeleitung zu verbessern. Fig.5: zwei unterschiedliche Ausgestaltungen für Zellenfachelemente, welche aus Stranggussprofilen gefertigt sind. Wobei in Fig.5a Durchströmungskanäle in das Zellenfachelement eingebracht sind und diese Kanäle von einem Temperiermedium durchströmt werden können. Fig.5b zeigt ein Zellenfachelement mit mehreren Kühlrippen, welche dazu vorge- sehen sind die Oberfläche des Zellenfachelements zu vergrößern und damit die Wärmeleitung zu verbessern.
.6: den Verbindungsbereich zwischen Zellenfachelementen und einem
Deckelelement, wobei die Verbindung durch ein Verbindungselement hergestellt wird. Dieses Verbindungselement ist mit dem Deckelelement und den Zellenfachelementen verklebt.
Fig.7: den Verbindungsbereich zwischen Zellenfachelementen und einem
Deckelelement, wobei die Verbindung durch eine Rastverbindung hergestellt wird. Fig.8: unterschiedliche Möglichkeiten zu Durchströmung von Zellenfachele- menten, wobei der Temperiermediumsstrom vom Deckelelement gesteuert wird.
Fig.9: ein Zellenfachelement aus einem Hybridwerkstoff.
Zunächst wird die Erfindung in einem Beispiel anhand von Fig.1 verdeutlicht. In Figur 1 ist ein Batteriegehäuse zur Aufnahme von elektrochemischen Energiespeichereinrichtungen 15 dargestellt. Dieses Batteriegehäuse weist zwei Deckelelemente 2 und mehrere Zellenfachelemente 1 auf. Dabei sind in einem Deckelelement 2 zwei Anschlüsse 3 für ein Temperiermedium eingebracht. Durch einen dieser Anschlüsse strömt das Temperiermedium in das Deckelelement 2 hinein. Vom Deckelelement 2 aus strömt das Temperiermedium durch die einzelnen Zellenfachelemente 1 zum zweiten Anschluss 3 zurück.
In Figur 2 sind zwei Zellenfachelemente 1 a aus Blech dargestellt. Diese Zellenfachelemente 1 a bilden gemeinsam einen Verbindungsbereich 5a. In diesem Verbindungsbereich 5d sind die beiden Zellenfachelemente 1 a formschlüssig miteinander verbunden. Die Zellenfächer 4 werden durch eine Zwischenwand 13 voneinander getrennt. In den Zellenfächern 4 befinden sich jeweils zwei elektrochemische Energiespeichereinrichtungen 15. Diese Energiespeichereinrichtungen 15 werden durch elastische Ausgleichselemente 16 gegen das Zellen- fachelement 1 gedrückt, dadurch entsteht eine temperaturleitende Verbindung zwischen Zellenfachelement 1 und Energiespeichereinrichtung 15.
In Figur 3a sind zwei Zellenfachelemente 1 b dargestellt. Diese Zellenfachelemente 1 b sind aus einem Stranggussprofil hergestellt. Die beiden Zellen- fachelemente 1 b bilden einen gemeinsamen Verbindungsbereich 5b miteinander. In diesem Verbindungsbereich sind die Zellenfachelemente 1 b formschlüssig miteinander verbunden.
Figur 3b zeigt zwei Zellenfachelemente 1 c, welche aus einem Stranggussprofil hergestellt sind. Die beiden Zellenfachelemente 1 c bilden einen gemeinsamen Verbindungsbereich 5c miteinander. Durch die Verbindung der beiden Zellen- fachelemente 1 c entsteht ein Doppelwandhohlraum 6c zwischen diesen. Dieser Hohlraum 6c ist dazu vorgesehen, von einem Temperiermedium durchströmt zu werden. Die beiden Zellenfachelemente l e werden in ihrem Verbindungsbereich 5c fluiddicht miteinander verbunden. Durch eine geeignete Wahl der Wandstärke im Bereich der doppelten Zwischenwand 12 ergibt sich ein elastischer Bereich des Zellenfachelementes 4. Durch diesen elastischen Bereich der Zellenfachelemente 1 c kann das elastische Ausgleichselement 16 zwischen den Energiespeichereinrichtungen 15 entfallen.
In Figur 4a ist ein Zellenfachelement 1d dargestellt, welches aus Blech hergestellt wird. Dieses Zellenfachelement 1d weist eine Formgebung auf, so dass eine Temperiermediumsleitung 6d in das Zellenfachelement 1d eingebracht werden kann. Diese Temperiermediumsleitung 6d ist dazu vorgesehen, von einem Temperiermedium durchströmt zu werden.
In Figur 4b ist ein Zellenfachelement 1e dargestellt, welches aus Blech hergestellt wird. Dieses Zellenfachelement 1e weist eine Vielzahl von Kühlrippen 7e auf. Durch diese Kühlrippen 7e wird die Oberfläche des Zellenfachelementes 1 e vergrößert, somit wird eine bessere Temperaturleitung erreicht.
In Figur 5a ist ein Zellenfachelement 1f dargestellt, welches aus einem Stranggussprofil hergestellt wird. In dieses Zellenfachelement 1f sind Durchströmungskanäle 6f eingebracht. Diese Ausnehmungen 6f sind dazu vorgesehen, von ei- nem Temperiermedium durchströmt zu werden. Diese Durchströmungskanäle 6f können auch in den Zwischenwänden 12 liegen. Die Durchströmungskanäle 6f in den Zellenfachelementen 1f können auch mit den Deckeldurchströmungs- kanälen 14 (nicht dargestellt) in Verbindung stehen. In Figur 5b ist ein Zellenfachelement 1f dargestellt, welches aus einem Stranggussprofil hergestellt wird. Dieses Zellenfachelement 1f weist eine Vielzahl von Kühlrippen 7f auf. Diese sind dazu vorgesehen, die Oberfläche des Zellenfachelementes 1f zu vergrößern. Durch die Vergrößerung der Oberfläche wird eine bessere Temperaturleitung erreicht. Die Kühlrippen 7f werden dabei vorteilhaft so ausgerichtet, dass sie von einem künstlich erzeugten oder durch den, durch Erwärmung der Umgebungsluft entstehenden, Luftstrom in Rippenlängsrichtung angeströmt werden können.
In Figur 6 ist der Verbindungsbereich 9 zwischen einem Deckelelement 2 und Zellenfachelementen 1 dargestellt. Das Deckelelement 2 weist eine Reihe von Zellenfachausnehmungen 10 auf. In diese Ausnehmungen 10 greifen Zellen- fachelemente 1 ein. Die Zellenfachelemente 1 und das Deckelelement 2 werden durch ein Verbindungselement 8 formschlüssig miteinander verbunden. Dieses Verbindungselement 8 wird durch Kleben stoffschlüssig mit den Zellenfachele- menten 1 und dem Deckelelement 2 verbunden. Alternativ kann das Verbindungselement 8 durch Befestigungsmittel wie z.B. Schrauben, Niete oder Stifte mit dem Deckelelement 2 oder den Zellenfachelementen 1 verbunden werden.
In Figur 7 ist der Verbindungsbereich 9 zwischen einem Deckelelement 2 und Zellenfachelementen 1 dargestellt. Zum Ausbilden dieser Rastverbindung ist eine spezielle Formgebung der Zellenfachelemente vorgesehen. Die Zellenfachelemente weisen einen Schnappbereich 11 auf, welcher sich elastisch verformen lässt. Das Deckelelement 2 weist einen Rastenabschnitt 17 auf, in welchem dieser Schnappbereich 11 des Zellenfachelementes 1 einrasten kann. Die Rastver- bindung kann auch durch zusätzliche Feder- und Hilfselemente hergestellt werden.
In Figur 8 sind verschiedene Möglichkeiten zur Durchströmung der Zellenfachelemente dargestellt.
In Figur 8a ist eine serielle Durchströmung von 3 Zellenfachelementen dargestellt. Der Temperiermediumsstrom 18 tritt in ein Deckelelement 2 ein und wird von diesem zu einem äußeren Zellenfachelement 1 geleitet. Das Temperiermedium durchströmt von hier ausgehend ein Zellenfachelement 1 nach dem anderen. Der Temperiermediumsstrom 18 tritt an einem zweiten Deckelelement 2 Wieder aus.
In Figur 8b ist eine weitere Ausführungsform für die Durchströmung von mehreren Zellenfachelementen 1 dargestellt. In dieser Ausführungsform wird der Temperiermediumsstrom zunächst durch das Deckelelement 2 ein und wird zu einem Zellenfachelement 1 geleitet. Dieses ist von anderen Zellenfachelementen 1 wenigstens bereichsweise umgeben. Von diesem als erstem durchströmten Zellenfachelement 1 teilt sich der Temperiermediumsstrom 18 in einem zweiten Deckelelement 2 auf und durchströmt danach gleichzeitig (parallel) zwei weitere Zellenfachelemente 1. Der Temperiermediumsstrom 18 tritt aus dem gleichen Deckelelement 2 aus, in das er zuvor eingetreten ist.
In Figur 8c ist eine weitere Ausführungsform für die Durchströmung von mehreren Zellenfachelementen 1 dargestellt. Dabei weist ein Deckelelement 2 Tempe- riermediumsventile 19 auf. Mit diesen Temperiermediumsventilen 19 lässt sich der Temperiermediumsstrom 18 gezielt zu einzelnen Zellenfachelementen 1 leiten. Insbesondere müssen nicht alle Zellenfachelemente 1 durch ein eigenes Temperiermediumsventil 19 ansteuerbar sein. Diese Temperiermediumsventile sind insbesondere Thermostate. Solche Thermostate geben den Temperiermediumsstrom 18 zu Zellenfachelementen 1 frei oder sperren ihn ab, oder drosseln die Durchflussmenge. Solche Thermostate arbeiten in Abhängigkeit der Temperatur, z.B. des Temperiermediumstroms 18.
In Figur 9 ist eine Ausführungsform eines Zellenfachelementes 1 h aus einem Hybridwerkstoff dargestellt. Dabei wird die Wärmeleitung von einem Zellenfachelement zum anderen, durch den wärmeisolierenden Zwischenwand 12h aus Kunststoff verhindert (Figur 9a). Die Wärmeleitung von einem Zellenfachelement 1 h an die das Zellenfachelement umgebende Umwelt hingegen wird durch die aus einem metallischen Werkstoff bestehende Seitenwand 13h begünstigt. Die Seitenwand 13h steht in temperaturleitender Verbindung mit der Wärmeleitfolie 20. Die Wärmeleitfolie 20 führt einen Temperaturstrom von der Oberfläche der elektrochemischen Energiespeichereinrichtung ab und gibt diesen and die Sei- tenwand 13h ab. Dadurch wird wirksam ein gegenseitiges Aufheizen von elektrochemischen Energiespeichereinrichtungen in benachbarten Zellenfächer verhindert. In Figur 9b sind unterschiedliche Möglichkeiten zur Ausgestaltung des Randbereichs der Seitenwand 13h dargestellt. Die Ausnehmungen in der Seitenwand 13h führen zu einer bessern Verbindung des metallischen Seitenwand 13h mit der Zwischenwand 12h aus Kunststoff.

Claims

P a t e n t a n s p r ü c h e
1. Batteriegehäuse, zum Aufnehmen von mindestens einer elektrochemischen Energiespeichereinrichtung (15) in einem Zellenfach (4), wobei dieses Zellenfach wenigstens vier Seitenwände (13) und wenigstens ein Deckelele- ment (2) aufweist,
dadurch gekennzeichnet, dass
die Zellenfächer (4) von mindestens einem Zellenfachelement (1) gebildet werden,
dass die Zellenfachelemente (1) die Seitenwände (13) des Batteriege- häuses bilden,
dass das Batteriegehäuse mindestens ein Zellenfachelement (1) und ein Zellfach (4) aufweist und,
dass dieses durch wenigstens ein Deckelelement (2) verschließbar ist.
2. Batteriegehäuse nach Anspruch 1 , dadurch gekennzeichnet, dass
die Zellenfachelemente (1) aus einem metallischen Werkstoff, bevorzugt aus einem Werkstoff der wenigstens teilweise aus Aluminium besteht, hergestellt sind.
3. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
die Zellenfachelemente (1) aus einem dünnwandigen, umformend
hergestellten Formteil bestehen, bevorzugt aus einem abgekanteten Blech, wobei dieses Blech eine Wandstärke von 0,3 mm bis 2,2 mm, bevorzugt eine Wandstärke von 0,8 mm bis 1 ,2 mm und besonders bevorzugt eine Wandstärke von 1 mm aufweist. 4. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
die Zellenfachelemente (1) aus einem dünnwandigen, urformend
hergestellten Formteil bestehen, bevorzugt aus einem Stranggussprofil, wobei diese wenigstens bereichsweise eine Wandstärke von 1 mm bis 3 mm, bevorzugt von 1 ,8 mm bis 2,5 mm und besonders bevorzugt von 2,2 mm aufweist.
5. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
wenigstens ein Deckelelement (2) einen Bereich (9) aufweist, welcher dazu vorgesehen ist eine formschlüssige Verbindung mit wenigstens einem Zellenfachelement (1), bevorzugt mit allen Zellenfachelementen (1) herzustellen.
6. Batteriegehäuse nach Anspruch 5, dadurch gekennzeichnet, dass
zum Herstellen dieser formschlüssigen Verbindung ein zusätzliches
Verbindungselement (8) verwendet wird, wobei dieses Verbindungselement (8) vorzugsweise stoffschlüssig mit dem Batteriegehäuse verbunden ist.
7. Batteriegehäuse nach Anspruch 5, dadurch gekennzeichnet, dass
zum Herstellen dieser formschlüssigen Verbindung eine Rastverbindung verwendet wird.
8. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
zwei benachbarte Zellenfachelement (1) einen gemeinsamen Verbindungsbereich (5) aufweisen und sich in diesem kontaktieren,
bevorzugt sind die Zellenfachelemente (1) in diesem Bereich stoffschlüssig durch kleben oder besonders bevorzugt formschlüssig verbunden. 9. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
ein Temperiermedium das Batteriegehäuse durchströmen kann und dazu vorgesehen ist aus wenigstens einem Deckelelement (2) oder aus zwei Deckelelementen (2), aus einem Zellenfachelement (1) oder aus mehreren Zellenfachelementen (2) einen Energiestrom ab- oder zu diesen
hinzuführen.
10. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
die Zellenfachelemente Durchströmungskanäle (6) aufweisen oder zwei benachbarte Zellenfachelemente Durchströmungskanäle bilden (6c), welche dazu vorgesehen sind von einem Temperiermedium durchströmt zu werden.
11. Batteriegehäuse nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
ein Deckelelement (2) oder eine Zellenfachelement (1) Temperiermediums- ventile (19) enthält.
12. Eine Batterie, welche mehrere elektrochemische Energiespeichereinrichtungen aufweist, dadurch gekennzeichnet, dass
diese Energiespeichereinrichtungen in einem Batteriegehäuse nach einem der vorangegangen Ansprüche angeordnet sind. 13. Verfahren zur Herstellung eines Batteriegehäuses gemäß eines der Ansprüche 1 bis 11 ,
dadurch gekennzeichnet, dass
ein Zellenfachelement (1) durch ein geeignetes Herstellverfahren hergestellt wird,
dass mehrere Zellenfachelement (1) relativ zueinander in eine vorbestimmte Position gebracht werden,
dass wenigstens ein Zellenfachelement (1) mit wenigstens einem Deckelelement (2) verbunden wird.
Verfahren zum Herstellen eines Batteriegehäuses nach Anspruch 13
Figure imgf000019_0001
dadurch gekennzeichnet, dass
zischen wenigstens einem Zellenfachelement (1) und einem Deckelelement (2) eine stoffschlüssige Verbindung hergestellt wird.
15. Verfahren zum Herstellen eines Batteriegehäuses nach einem der
Ansprüche 13 oder 14, dadurch gekennzeichnet, dass
ein Deckelelement (2) wenigstens im Bereich von Durchströmungskanälen (6) fluiddicht mit einem Zellenfachelement (1) verbunden wird.
PCT/EP2010/006936 2009-11-16 2010-11-15 Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen WO2011057815A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/510,291 US20130130078A1 (en) 2009-11-16 2010-11-15 Battery housing for holding electrochemical energy storage devices
CN2010800514467A CN102598354A (zh) 2009-11-16 2010-11-15 用于容纳电化学能量存储装置的蓄电池外壳
BR112012011216A BR112012011216A2 (pt) 2009-11-16 2010-11-15 alojamento de bateria para fixar pelo menos um dispositivo de armazenamento de energia eletroquímica em um compartimento de célula, bateria compreendendo uma pluralidade de dispositivos de armazenamento de energia eletroquímica e método para produzir uma alojamento de bateria
JP2012538246A JP2013511116A (ja) 2009-11-16 2010-11-15 電気化学的エネルギー貯蔵装置を受容するためのバッテリーハウジング
EP10785339A EP2502292A1 (de) 2009-11-16 2010-11-15 Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053506.3 2009-11-16
DE102009053506A DE102009053506A1 (de) 2009-11-16 2009-11-16 Batteriegehäuse zur Aufnahme von elektrochemischen Energiespeichereinrichtungen

Publications (1)

Publication Number Publication Date
WO2011057815A1 true WO2011057815A1 (de) 2011-05-19

Family

ID=43531780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/006936 WO2011057815A1 (de) 2009-11-16 2010-11-15 Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen

Country Status (8)

Country Link
US (1) US20130130078A1 (de)
EP (1) EP2502292A1 (de)
JP (1) JP2013511116A (de)
KR (1) KR20120099722A (de)
CN (1) CN102598354A (de)
BR (1) BR112012011216A2 (de)
DE (1) DE102009053506A1 (de)
WO (1) WO2011057815A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548240A1 (de) * 2010-03-19 2013-01-23 Li-tec Battery GmbH Batteriegehäuse zur aufnahme von elektrochemischen energiespeicherzellen
US8722223B2 (en) 2011-09-01 2014-05-13 Samsung Sdi Co., Ltd. Battery pack
US20140356675A1 (en) * 2011-12-05 2014-12-04 Sk Innovation Co., Ltd. Battery Module Including a Flexible Member
AT513166B1 (de) * 2012-07-24 2017-06-15 Avl List Gmbh Batterie
KR20200008105A (ko) * 2019-12-19 2020-01-23 에스케이이노베이션 주식회사 신축부재가 구비된 배터리모듈

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010135456A2 (en) 2009-05-20 2010-11-25 Johnson Controls - Saft Advanced Power Solutions Llc Lithium ion battery module
JP5745938B2 (ja) * 2011-05-30 2015-07-08 株式会社東芝 二次電池装置
AT511887B1 (de) * 2011-09-12 2016-05-15 Avl List Gmbh Wiederaufladbare batterie
US9236592B2 (en) 2012-11-27 2016-01-12 Ford Global Technologies, Llc Protective vehicle battery cage and method of making a battery cage
KR101730961B1 (ko) 2013-01-04 2017-04-27 삼성에스디아이 주식회사 단열부재가 마련된 배터리 모듈
DE102013206503A1 (de) 2013-04-12 2014-10-16 Robert Bosch Gmbh Vorrichtung zur Aufnahme von Batteriezellen, Batteriemodul und Kraftfahrzeug
US9484558B2 (en) * 2013-10-01 2016-11-01 Lg Chem, Ltd. Battery cell and battery module using the same
DE102014207531A1 (de) * 2014-04-22 2015-10-22 Bayerische Motoren Werke Aktiengesellschaft Galvanisches Element mit Festkörperzellenstapel
DE102014111645A1 (de) * 2014-08-14 2016-02-18 Jobst H. KERSPE Batteriegehäuse
DE102015200390A1 (de) * 2015-01-14 2016-07-14 Robert Bosch Gmbh Batterie mit thermischer Isolation
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10003053B2 (en) * 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
DE102015202630A1 (de) * 2015-02-13 2016-08-18 Siemens Aktiengesellschaft Elektrischer Energiespeicher
US10566587B2 (en) * 2015-04-14 2020-02-18 Ford Global Technologies, Llc Electrified vehicle plate with integrated compression limiter
US10897065B2 (en) * 2015-04-14 2021-01-19 Ford Global Technologies, Llc Electrified vehicle array plate that houses at least one electronic module
JP6678302B2 (ja) * 2015-07-24 2020-04-08 パナソニックIpマネジメント株式会社 温度調和ユニット、温度調和システム、車両
CN105742539B (zh) 2016-04-21 2019-04-05 宁德时代新能源科技股份有限公司 一种电芯模组
US20190386359A1 (en) * 2016-06-20 2019-12-19 Corvus Energy Inc. Cell carrier comprising phase change material
EP3279968B1 (de) * 2016-08-02 2020-05-13 Robert Bosch GmbH Batteriemodul
CN107195831A (zh) * 2017-07-06 2017-09-22 江西优特汽车技术有限公司 一种硬壳动力电池模组及其制作方法
DE102017217917A1 (de) 2017-10-09 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Speichereinrichtung zum Speichern von elektrischer Energie für ein Kraftfahrzeug, sowie Verfahren zum Trennen zweier Gehäuseelemente einer solchen Speichereinrichtung
KR102497037B1 (ko) * 2017-12-06 2023-02-08 현대자동차주식회사 차량용 배터리팩 구조
JP7249553B2 (ja) * 2018-02-27 2023-03-31 パナソニックIpマネジメント株式会社 電池モジュール
JP7399760B2 (ja) * 2020-03-16 2023-12-18 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
JP7399764B2 (ja) * 2020-03-19 2023-12-18 信越ポリマー株式会社 放熱構造体およびそれを備えるバッテリー
DE102020203871A1 (de) * 2020-03-25 2021-09-30 Elringklinger Ag Batteriemodule, Batterievorrichtungen und Verfahren zum Herstellen eines Batteriemoduls
DE102020203878A1 (de) * 2020-03-25 2021-09-30 Elringklinger Ag Batteriemodule, Batterievorrichtungen und Verfahren zum Herstellen eines Batteriemoduls
DE102020203876A1 (de) * 2020-03-25 2021-09-30 Elringklinger Ag Batteriemodule, Batterievorrichtungen und Verfahren zum Herstellen eines Batteriemoduls
FI20215113A1 (en) * 2021-02-03 2022-08-04 Aurora Powertrains Oy Scalable stackable battery pack
WO2023170852A1 (ja) * 2022-03-10 2023-09-14 三菱自動車工業株式会社 組電池
WO2023177615A1 (en) * 2022-03-12 2023-09-21 Nix Kenneth Wayne Iii A system and method for storage and withdrawal of electrical energy from a subterranean environment
DE102022106656A1 (de) 2022-03-22 2023-09-28 Bayerische Motoren Werke Aktiengesellschaft Elektrochemischer Energiespeicher, elektrochemische Rundzelle und Verfahren zur Herstellung einer elektrochemischen Rundzelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142195A1 (en) * 2001-03-30 2002-10-03 Yukio Ehara Battery pack
EP1251572A1 (de) * 2001-04-18 2002-10-23 Tanita Corporation Batteriebehälter
DE202004010755U1 (de) * 2004-07-09 2004-09-30 ROLEC Gehäuse-Systeme GmbH Handgehäuse zum Einbau von elektrischen und/oder elektronischen Bauteilen
WO2009057266A1 (ja) * 2007-10-29 2009-05-07 Panasonic Corporation 電池パックおよび電池搭載機器
DE102007063269A1 (de) 2007-12-20 2009-06-25 Daimler Ag Batteriemodul mit mehreren Einzelzellen
DE102008014155A1 (de) 2008-03-14 2009-09-17 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Modulares Batteriesystem mit Kühlsystem

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271495B2 (ja) * 1995-10-24 2002-04-02 松下電器産業株式会社 組蓄電池
JP3755557B2 (ja) * 1997-10-30 2006-03-15 日産自動車株式会社 バッテリーの空調装置
JP3138678B2 (ja) * 1998-01-28 2001-02-26 静岡日本電気株式会社 コイン型電池の着脱構造
JP2000277177A (ja) * 1999-03-29 2000-10-06 Hitachi Ltd 二次電池モジュール
JP2008166191A (ja) * 2006-12-28 2008-07-17 Sanyo Electric Co Ltd 電池パック
JP2009231143A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 電池装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142195A1 (en) * 2001-03-30 2002-10-03 Yukio Ehara Battery pack
EP1251572A1 (de) * 2001-04-18 2002-10-23 Tanita Corporation Batteriebehälter
DE202004010755U1 (de) * 2004-07-09 2004-09-30 ROLEC Gehäuse-Systeme GmbH Handgehäuse zum Einbau von elektrischen und/oder elektronischen Bauteilen
WO2009057266A1 (ja) * 2007-10-29 2009-05-07 Panasonic Corporation 電池パックおよび電池搭載機器
DE102007063269A1 (de) 2007-12-20 2009-06-25 Daimler Ag Batteriemodul mit mehreren Einzelzellen
DE102008014155A1 (de) 2008-03-14 2009-09-17 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Modulares Batteriesystem mit Kühlsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2502292A1

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548240A1 (de) * 2010-03-19 2013-01-23 Li-tec Battery GmbH Batteriegehäuse zur aufnahme von elektrochemischen energiespeicherzellen
US8722223B2 (en) 2011-09-01 2014-05-13 Samsung Sdi Co., Ltd. Battery pack
US9209499B2 (en) 2011-09-01 2015-12-08 Samsung Sdi Co., Ltd. Battery pack
US20140356675A1 (en) * 2011-12-05 2014-12-04 Sk Innovation Co., Ltd. Battery Module Including a Flexible Member
US9548521B2 (en) * 2011-12-05 2017-01-17 Sk Innovation Co., Ltd. Battery module including a flexible member
AT513166B1 (de) * 2012-07-24 2017-06-15 Avl List Gmbh Batterie
KR20200008105A (ko) * 2019-12-19 2020-01-23 에스케이이노베이션 주식회사 신축부재가 구비된 배터리모듈
KR102191173B1 (ko) * 2019-12-19 2020-12-15 에스케이이노베이션 주식회사 신축부재가 구비된 배터리모듈

Also Published As

Publication number Publication date
DE102009053506A1 (de) 2011-05-19
US20130130078A1 (en) 2013-05-23
BR112012011216A2 (pt) 2016-07-05
KR20120099722A (ko) 2012-09-11
JP2013511116A (ja) 2013-03-28
EP2502292A1 (de) 2012-09-26
CN102598354A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
EP2502292A1 (de) Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen
DE102010011983A1 (de) Batteriegehäuse zur Aufnahme von elektrochemischen Energiespeicherzellen
DE102007063190B4 (de) Batterie, bestehend aus mehreren Einzelzellen, insbesondere für einen Hybridantrieb
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
DE102008034860B4 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
EP0917230B1 (de) Akkumulatorenbatterie mit Temperiervorrichtung
DE102009052254A1 (de) Energiespeichervorrichtung
EP2727169B1 (de) Wiederaufladbare elektrische batterie
DE102007052375B4 (de) Energiespeicher mit Kühlvorrichtung und Verfahren zur Herstellung eines Energiespeichers
EP3386001A1 (de) Traktionsakkumulator, insbesondere länglicher bauart mit benachbart angeordneten lithium-ionen-sekundärzellen und verfahren zur kontrolle des wärmehaushalts
DE102012012663A1 (de) Gehäuse für eine Betriebseinrichtung, insbesondere für ein Batteriepaket einer Fahrzeugantriebsbatterie
DE102008034873A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102010005154A1 (de) Gekühlter Energiespeicher
DE102020121498A1 (de) Energiespeichervorrichtung mit einem Batterie-Zellenmodul und einer Kühlvorrichtung, vorzugsweise für ein zumindest teilweise elektrisch angetriebenes Fahrzeug, und Verfahren zur Herstellung der Energiespeichervorrichtung
DE102013225628A1 (de) Vorrichtung zum Kontaktieren von Wärmeübertragerelementen mit Batteriemodulen eines Kraftfahrzeuges
DE102009005498A1 (de) Galvanische Zelle mit Umhüllung
WO2018188995A1 (de) Batterie für ein kraftfahrzeug und kraftfahrzeug
DE102013215975B4 (de) Abstandshalter für eine Batterie, Batterie und Kraftfahrzeug
DE102021106125A1 (de) Batteriepack mit umspritzten stromschienen, die parallele kühlwege bieten
DE102017207911A1 (de) Batteriemodulgehäuse, Verfahren zur Herstellung eines solchen und Batteriemodul
DE102008034855A1 (de) Zellverbund für eine Batterie
DE102017104709A1 (de) Batteriemodul zur Verwendung bei einem Hochvolt-Energiespeicher
DE102016218140A1 (de) Brennstoffzellenstapel
DE102014202549A1 (de) Elektrische Energiespeichereinrichtung und Verfahren zum Entwärmen einer elektrischen Energiespeichereinrichtung
DE102012218764A1 (de) Kühlfinne zum Kühlen einer elektrochemischen Zelle sowie Energiespeicher und Batteriemodul mit Kühlfinne und Zelle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051446.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1131/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012538246

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010785339

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127015310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13510291

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011216

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011216

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120511