WO2011057448A1 - 一种地下水动力装置 - Google Patents

一种地下水动力装置 Download PDF

Info

Publication number
WO2011057448A1
WO2011057448A1 PCT/CN2009/074938 CN2009074938W WO2011057448A1 WO 2011057448 A1 WO2011057448 A1 WO 2011057448A1 CN 2009074938 W CN2009074938 W CN 2009074938W WO 2011057448 A1 WO2011057448 A1 WO 2011057448A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cylinder
groundwater
weight
gas
Prior art date
Application number
PCT/CN2009/074938
Other languages
English (en)
French (fr)
Inventor
余俊均
Original Assignee
Yu Chun Kwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu Chun Kwan filed Critical Yu Chun Kwan
Priority to PCT/CN2009/074938 priority Critical patent/WO2011057448A1/zh
Publication of WO2011057448A1 publication Critical patent/WO2011057448A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a power generating apparatus, and more particularly to an underground water power apparatus that uses groundwater for work.
  • This groundwater power can be widely used in power generation and other fields.
  • tidal power generation is to build a dam in the estuary or the bay to form a natural reservoir, and the hydroelectric generator is assembled in the dam. Since the tidal range and the head change frequently over the course of the day, there is an intermittent power generation without special adjustment measures, and the promotion and application are limited.
  • the present invention proposes a groundwater power plant that can fully recycle groundwater resources to obtain power output.
  • the power device comprises: a cylinder block, a water delivery pipe and a weight.
  • the cylinder body is arranged underground, and is used for providing a accommodating space for collecting groundwater.
  • the side wall of the cylinder body is provided with a water inlet, the ground water can enter the cylinder body from the water inlet, and the water outlet is also provided at the bottom of the cylinder body; the first end of the water pipeline It is connected with the water outlet, and the second end of the water pipeline extends out of the ground; the water pressure mechanism, the water pressure mechanism shoots the groundwater in the cylinder from the second end of the water pipeline to perform external work.
  • the water pressing mechanism includes a weight, and the weight has a piston portion that is sealingly engaged with the cylinder, and is operable to perform a rising and falling reciprocating motion in the cylinder; wherein, when the piston portion is lowered, the driving is performed.
  • the heavy object presses down the groundwater in the cylinder, and the pressurized groundwater enters the water pipeline and The second end of the water pipeline is fired at a high speed to perform external work.
  • the piston portion rises, the groundwater around the cylinder enters the cylinder through the water inlet.
  • a unidirectional switch is provided at the water inlet to ensure a one-way flow of water at the water inlet when the piston portion is raised.
  • the weight is raised by a pulley block mechanism disposed on the ground, and the weight is lowered by the action of gravity.
  • the weight further includes a plurality of weights, and the plurality of weights are disposed on the piston portion, and each of the plurality of weights is lifted one by one by the pulley block mechanism.
  • the weight is coupled to the exercise device for use as a load for fitness exercise when lifting the weight.
  • the weight further includes a substantially U-shaped receiving portion, and the receiving portion is located above the piston portion, and the pressurized water that is emitted at a high speed through the second end of the water delivery pipe flows into the U after external work. Type inside the housing.
  • the bottom of the U-shaped receiving portion is provided with a water supply passage communicating with the receiving space of the cylinder block and a water control switch for controlling the water supply passage.
  • the water control switch controls the U-shaped receiving portion. The water in the part flows into the cylinder through the water supply passage.
  • a lifting air dam is further provided below the weight to increase the buoyancy of the weight.
  • the lifting gas is a volume that is not variable in volume.
  • the lifting gas is a volumetric gas cylinder.
  • the gas in the lifting gas cylinder is discharged to reduce the resistance of the weight pressing.
  • the gas in the lifting gas cylinder is added to increase the buoyancy of the heavy object. Thereby reducing the force required for lifting.
  • the pressurized water from the second end of the water conduit is used to drive the power conversion device.
  • the power conversion apparatus includes a generator, and the electricity generated by the generator is stored by the power storage device for standby.
  • the groundwater power plant includes a plurality of sets of cylinders, and in the process of collecting groundwater in a certain cylinder, other cylinders in which groundwater is collected are used for work.
  • the water pressure mechanism includes a gas inlet and outlet passage provided at the top of the cylinder body, and the gas is input into the cylinder body through the gas inlet and outlet passage, so that the air pressure in the cylinder body is gradually increased, and the ground water in the cylinder body is subjected to high pressure gas. The action is discharged through the water outlet.
  • the water pressure mechanism includes a pressurized water gas chamber disposed in the cylinder body, the pressurized water gas cylinder is a gas volume with a variable volume, and the pressurized water gas chamber includes a gas inlet and outlet passage extending from the top of the cylinder body.
  • the top of the cylinder is sealed, and the gas is supplied to the pressurized water gas via the gas inlet and outlet passage, and the volume of the pressurized water gas expands.
  • the groundwater in the cylinder is expelled by the pressurized water and discharged through the water outlet.
  • Fig. 1 is a schematic view showing the structure of a first embodiment of a groundwater power plant of the present invention.
  • Figure 2 shows a detailed structural diagram of the medium weight used in the groundwater power plant of Figure 1.
  • Fig. 3 is a view showing the structure of a second embodiment of the groundwater power plant of the present invention.
  • Fig. 4 is a view showing the structure of a third embodiment of the groundwater power plant of the present invention.
  • Fig. 5 is a view showing the configuration of a fourth embodiment of the groundwater power plant of the present invention.
  • FIG. 1 there is shown a schematic configuration of a first embodiment of a groundwater power plant of the present invention.
  • the groundwater power device of the invention mainly comprises: a cylinder block 100, a water delivery pipe 200 and a weight
  • the cylinder block 100 is disposed underground and is used to provide a receiving space 102 for collecting groundwater.
  • a water inlet 104 is provided on the side wall of the cylinder 100.
  • a unidirectional switch 1041 for ensuring that groundwater enters the cylinder 100 from the water inlet 104 in one direction is provided at the water inlet 104.
  • a filter layer (not shown) is further provided at the water inlet 104, and the filter layer can appropriately prevent debris such as sand from entering the cylinder.
  • a screen can be added at the water inlet 104 to filter the debris.
  • the cylinder 100 is 10 meters deep and has a diameter of 3 meters, which ensures that the cylinder can be inserted into the groundwater to a certain depth, and the groundwater can flow into the cylinder through the water inlet 104.
  • these parameters are not limited to this, and may be increased or decreased depending on the specific situation.
  • the groundwater power plant of the present invention can include a plurality of sets of cylinders 100. During the accumulation of groundwater by a certain cylinder 100, other cylinders 100 that collect groundwater are used for external work.
  • the first end 201 of the water delivery conduit 200 is in communication with the water outlet 106, and the second end 202 of the water delivery conduit 20 extends out of the ground.
  • the water conduit 200 has a smaller inner diameter relative to the cylinder 100.
  • the pressurized groundwater will enter the water conduit 200 having a smaller inner diameter to form a pressurized fluid, and from the water delivery.
  • the second end 202 of the duct 200 is fired at a high speed to perform work externally.
  • the second end 204 of the water delivery conduit 200 is used to drive a water turbine 400 that can be coupled to a generator (not shown) to convert hydraulic power into electrical energy.
  • the electric energy can also be stored and stored by the power storage device as needed, and therefore, one application of the unbalanced power unit of the present invention is home. Further, the pressurized fluid exiting the second end of the water conduit 200 can be used to drive a variety of other power conversion devices based on hydrodynamic operation.
  • FIG. 2 shows a structural schematic diagram of the weight that can be used in the groundwater power plant of FIG.
  • the weight 300 is disposed in the cylinder 100 for applying pressure to the groundwater accumulated in the cylinder 100.
  • the weight 300 has a piston portion 302 sealingly engaged with the cylinder 100, and is operable to rise and fall in the cylinder 10. Reciprocating motion.
  • the weight 300 can pass through a pulley block mechanism 500 disposed on the ground To ascend, and rely on gravity to decline.
  • the piston portion 302 descends, the weight 300 is driven to press down the groundwater (not labeled) in the cylinder 100, and the pressurized groundwater enters the water delivery pipe 200 and is fired from the second end 202 of the water delivery pipe 200 to perform external work.
  • the weight 300 When the piston portion 302 rises, since the groundwater has a certain water level, the groundwater around the cylinder 100 enters the cylinder 100 through the water inlet 104. It is worth mentioning that when the weight 300 is raised, the weight 300 is locked in the predetermined position, and when the next water pressing operation is required, the unlocking can automatically lower the weight 300 and thus exert pressure on the groundwater. In an embodiment, the weight 30 weighs 3 tons. Similarly, the parameter is not limited thereto, and may be increased or decreased according to specific conditions.
  • the weight 300 further includes a plurality of separable weights 304 disposed on the piston portion 302, and the plurality of weights are lifted one by one by the pulley block mechanism 500.
  • Each of the blocks 304 can make the lifting of the weights 300 easier and more convenient.
  • the plurality of weights 304 have substantially the same periphery as the weights 300 and are stacked on the weights 300.
  • the pulley block is matched by a plurality of fixed pulleys and movable pulleys, so as to achieve the purpose of saving labor and changing the direction of force action, and thus the weight 300 and the weight 304 provided on the weight 300 are lifted by the pulley block device.
  • the pulley block When the pulley block is manually driven, it can be regarded as a way of fitness exercise to some extent. Therefore, the weight 300 and the weight block 304 disposed on the weight 300 can be connected to the fitness equipment for lifting. When the weight is 300, it acts as a load for fitness exercise.
  • a crane or the like can be used to lift the weight 300, not limited to the pulley block.
  • the weight 300 may further include a substantially U-shaped receiving portion 306.
  • the receiving portion 306 is located above the piston portion 302.
  • the pressurized water that is emitted at a high speed through the second end 204 of the water delivery pipe 200 can be reflowed after external work.
  • the U-shaped housing portion 306 is inside.
  • the bottom of the U-shaped receiving portion 306 may be provided with a water supply passage communicating with the receiving space of the cylinder 100 3061 and a water control switch 3062 for controlling the water supply passage.
  • the water control switch 3061 controls the water in the U-shaped receiving portion 306 to flow into the cylinder 100 through the water supply passage 3061 to accelerate the replenishment process of the water in the cylinder. .
  • the lifting gas 308 may be further disposed under the weight 300, and when the weight 300 is pressed downward, the gas in the lifting gas 308 is discharged to reduce the weight 300.
  • the resistance of the pressure when the lifting weight 300 is ready for the next water pressure action, replenishes the gas into the lift gas 308 to increase the buoyancy of the weight 300 to reduce the force required to lift the weight 300.
  • the inflation of the lift gas dam 308 can be achieved by using an inflator commonly used in the market, such as an air pump.
  • volume is variable.
  • a volume-invariant gas cylinder can also be used. This fixed volume gas enthalpy can increase the maneuverability of the weight as it rises and falls in the cylinder to a certain extent.
  • the groundwater power plant has to undergo the stage of collecting groundwater before work. It is well known that the underground is rich in water resources. Therefore, there is abundant groundwater around the underground cylinder 100, and the cylinder 100 gathers groundwater for 4 hours. . When the cylinder 100 is gathered with an appropriate amount of groundwater, the groundwater dynamic power device of the present invention can start working. First, the weight 300 is lifted by the pulley block 500 or the crane, and the work of lifting the weight 300 includes replenishing the gas to the lift gas 308. To increase buoyancy, and to lift the weights 304 one by one to reduce the force required to lift the weights 300 at one time.
  • the weight 300 When the weight 300 is raised, the weight 300 is locked at a predetermined position, and at the same time, the gas of the lift gas 308 is released to reduce the resistance when the weight 300 is pressed, and the plurality of weights 304 are added one by one.
  • the gravity object is added to the weight 300.
  • the weight 300 can be unlocked by the unlocking of the weight 300. Since the single-way flow of the one-way switch 1041 at the water inlet 104 is used, the weight 300 is unlocked due to gravity.
  • the pressurized groundwater can only enter the water delivery pipe 200 through the water outlet 106 at the bottom of the cylinder 100 to form a pressure fluid and be fired from the second end 204 of the water delivery pipe 200 to perform external work, such as driving the turbine. 400 and other power conversion equipment.
  • the groundwater that has been completed can be returned to the cylinder 100 through the flow guiding device.
  • the groundwater can be recycled to another cylinder through the flow guiding device, so that several cylinders can work alternately and alternately replenish the water.
  • the tank 10 can continue to have sufficient groundwater to sustain work.
  • FIG. 3 shows a schematic structural view of a second embodiment of the groundwater power plant of the present invention.
  • the groundwater power plant mainly includes: a cylinder block 110, a water conduit 210, and a weight 310.
  • the cylinder block 110 is disposed underground to provide a receiving space 112 for collecting groundwater.
  • the water inlet port 114 is disposed on the side wall of the cylinder block 110, and the water inlet port 114 is provided with a unidirectional switch 1141 for ensuring that the groundwater enters the cylinder block 110 from the water inlet port 114 in one direction.
  • the weight 310 is disposed in the cylinder 110 for applying pressure to the groundwater accumulated in the cylinder 110.
  • the weight 310 has a piston portion 312 sealingly engaged with the cylinder 110, and is operable to rise and fall in the cylinder 110. Reciprocating motion.
  • the water outlet is no longer disposed at the bottom of the cylinder block 110, but a water outlet 314 is formed on the piston portion 312 of the weight 310.
  • the first end 211 of the water delivery pipe 210 is connected to the water outlet 314, and the second end 212 of the water delivery pipe 210 extends out of the ground.
  • the pressurized groundwater is disposed on the piston portion 312.
  • the water outlet 314 enters the water delivery conduit 210 and exits at a high velocity from the second end 212 of the water delivery conduit 210 to work on the turbine 410 and other hydrodynamically-operated multiple power conversion devices.
  • the arrangement of the water outlet 314 on the piston portion 312 reduces the material of the water outlet pipe 160 to a certain extent, and at the same time reduces the complexity of installing the water delivery pipe 210.
  • FIG. 4 shows a schematic structural view of a third embodiment of the groundwater power plant of the present invention.
  • the groundwater power plant mainly includes: a cylinder block 120, a water delivery pipe 220, and a pressurized water gas cylinder 600.
  • the cylinder block 120 is disposed underground to provide a receiving space 122 for collecting groundwater.
  • the water inlet 124 is disposed on the side wall of the cylinder 120, and the water inlet 124 is provided with a unidirectional switch 1241 for ensuring that the groundwater enters the cylinder 120 from the water inlet 124 unidirectionally.
  • the top of the cylinder block 120 is provided with a water outlet 126.
  • the first end 221 of the water delivery pipe 220 is connected to the water outlet 126, and the second end 222 of the water delivery pipe 220 extends out of the ground for driving the water turbine 420 and other fluid-based work.
  • the pressurized water gas cylinder 600 is disposed in the cylinder block 120, and the pressurized water gas cylinder 600 is a volume changeable gas cylinder.
  • the pressurized water gas cylinder 600 further includes a gas inlet and outlet passage 610 extending from the cylinder block 120. The top of the cylinder block 120 is sealed.
  • the pressurized water gas 600 receives the gas, the volume of the pressurized water gas 600 begins to expand, and the groundwater is expanded by the pressurized water gas 600 into the water delivery pipe 220 via the water outlet 126 and from the second end 222 of the water delivery pipe 220.
  • High-speed injection works on the turbine 420 and other power conversion devices based on hydrodynamic operation.
  • FIG. 5 shows a schematic structural view of a fourth embodiment of the groundwater power plant of the present invention.
  • the groundwater power plant mainly includes: a cylinder block 130 and a water delivery pipe 230.
  • the cylinder block 130 is disposed underground to provide a receiving space 132 for collecting groundwater.
  • the water inlet 134 is disposed on the side wall of the cylinder 130, and the water inlet 134 is provided with a unidirectional switch 1341 for ensuring that the groundwater enters the cylinder 130 from the water inlet 134 in one direction.
  • the bottom of the cylinder 130 is provided with a water outlet 136.
  • the first end 231 of the water delivery pipe 230 is connected to the water outlet 136, and the second end 232 of the water delivery pipe 230 extends out of the ground for driving the water turbine 430 and other fluid-based work.
  • the top of the cylinder 130 is sealed.
  • a gas inlet and outlet passage 138 is also provided at the top of the cylinder block 130.
  • the air pressure in the cylinder block 130 gradually increases, and the groundwater is subjected to the action of the high pressure gas to enter the water delivery pipe 230 via the water outlet 136 and the high speed from the second end 232 of the water delivery pipe 230.
  • the injection works on the turbine 430 and other various power conversion devices based on hydrodynamic operation.
  • the groundwater power device of the present invention fully utilizes groundwater resources to perform external work, is not only energy-saving and environmentally friendly, but also provides stable hydraulic pressure. It is an ideal power generating device and can be widely used. application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

一种地下水动力装置
【技术领域】
本发明涉及一种动力产生装置, 尤其涉及一种利用地下水来做功的地下 水动力装置。 该地下水动力可广泛应用于发电等领域。
【背景技术】
借助于大自然的力量来有效地解决当今的能源、 环保问题一直是人们所 期望的。 比如, 在电力能源方面, 潮汐发电是在河口或海湾筑一条大坝, 以 形成天然水库, 水轮发电机组装在拦海大坝里。 由于潮差和水头在一日内经 常变化, 在无特殊调节措施时, 发电有间歇性, 推广应用受到了限制。
因此, 为了解尽量避免能源的浪费, 并利用比较容易获得的自然条件来 获取能量, 需要有一种利用地下水资源做功的动力输出装置, 其可充分循环 利用地下水资源来获取能量, 实现环保节能, 并可持续提供稳定的液压。
【发明内容】
为此, 本发明提出了一种地下水动力装置, 其可以充分循环利用地下水 资源来获得动力输出。
本发明提供的动力装置包括: 缸体、输水管道以及重物。缸体设于地下, 用于提供收容空间来聚集地下水, 缸体的侧壁设有入水口, 地下水可从入水 口进入缸体, 缸体底部还设有出水口; 输水管道的第一端与出水口连通, 输 水管道的第二端伸出地面; 压水机构, 压水机构将缸体内地地下水从输水管 道的第二端高速射出从而对外做功。
根据本发明一优选实施例, 压水机构包括重物, 重物具有与缸体密封配 合的活塞部, 可操作在缸体内做上升以及下降的往复运动; 其中, 当活塞部 下降时, 带动重物向下压缸体内的地下水, 受压的地下水进入输水管道并从 输水管道的第二端高速射出从而对外做功, 当活塞部上升时, 缸体周围的地 下水经入水口进入缸体内。
根据本发明一优选实施例, 入水口处设有单向开关, 以保证当所述活塞 部上升时入水口处水流的单向流通。
根据本发明一优选实施例, 重物通过设置在地面上的滑轮组机构来提升, 重物靠重力的作用而下降。
根据本发明一优选实施例, 重物还包括多个配重块, 多个配重块设于活 塞部之上, 通过滑轮组机构逐个提升多个配重块中的每一个。
根据本发明一优选实施例, 重物与健身设备相连, 用于在提升重物时充 当健身锻炼的负荷。
根据本发明一优选实施例, 重物还包括大致 U型的容置部, 容置部位于 活塞部之上,经输水管道的第二端高速射出的受压水在对外做功之后,流入 U 型容置部内。
根据本发明一优选实施例, U型容置部的底部设有与缸体的收容空间连 通的供水通道以及控制供水通道的控水开关,在重物上升时,控水开关控制 U 型容置部内的水经供水通道流入缸体。
根据本发明一优选实施例, 重物下方进一步设置有升降气嚢, 以增大所 述重物的浮力。 所述升降气嚢为体积不可变的气嚢。
根据本发明一优选实施例, 所述升降气嚢为体积可变的气嚢。 在重物向 下压水时, 将升降气嚢内的气体排出以减小重物下压的阻力, 在提升重物准 备下一次压水动作时, 向升降气嚢内补充气体以增加重物的浮力从而减小提 升所需要的力。
根据本发明一优选实施例, 输水管道的第二端射出的压力水用于驱动动 力转换设备。
根据本发明一优选实施例, 动力转换设备包括发电机, 发电机发出的电 由蓄电装置储存备用。 根据本发明一优选实施例, 地下水动力装置包括多组缸体, 在某一缸体 聚集地下水的过程中, 其他聚集有地下水的缸体用来做功。
根据本发明一优选实施例,压水机构包括设于缸体顶部的气体出入通道, 气体经由气体出入通道输入缸体内, 使得缸体内气压逐渐增大, 缸体内的地 下水受到高压气体的作用经由出水口排出。
根据本发明一优选实施例, 压水机构包括设于缸体内的压水气嚢, 压水 气嚢为体积可变化的气嚢, 压水气嚢包括伸出缸体顶部的气体出入通道, 缸 体的顶部成密封设置, 气体经由气体出入通道输入压水气嚢, 压水气嚢的体 积膨胀, 缸体内地下水受到压水气嚢的膨胀作用而经由出水口排出。
结合附图阅读本发明实施方式的详细描述后, 本发明的其他特点和优点 将变得更加清楚。
【附图说明】
可参考附图通过实例更加具体地描述本实用新型, 其中附图并未按照比 例绘制, 在附图中:
图 1显示了本发明的地下水动力装置的第一实施例的结构示意图。
图 2显示了用于图 1地下水动力装置的中重物的一种具体结构示意图。 图 3显示了本发明的地下水动力装置的第二实施例的结构示意图。
图 4显示了本发明的地下水动力装置的第三实施例的结构示意图。
图 5显示了本发明的地下水动力装置的第四实施例的结构示意图。
【具体实施方式】
下面结合附图详细描述本发明的具体实施方式。
请参见图 1 ,图 1显示了本发明的地下水动力装置的第一实施例的结构示 意图。
本发明的地下水动力装置主要包括: 缸体 100、 输水管道 200 以及重物 缸体 100设于地下, 用于提供收容空间 102来聚集地下水。 缸体 100的 侧壁上设有入水口 104。入水口 104处设有用于保证地下水从入水口 104单向 的进入到缸体 100内的单向开关 1041。入水口 104处还设有过滤层(未图示 ), 过滤层可适当防止泥沙等杂物进入到缸体。 筒单的, 可在入水口 104处加设 筛网来过滤杂物。 在附图 1 中为了示意地下水进入缸体 100的情况, 仅示出 一个入水口 104, 然而, 本领域技术人员应当理解, 缸体 100的侧壁上可设置 多个这样的入水口 104。 此外, 缸体 100的底部设有出水口 106。 在一实施例 中, 缸体 100深 10 米, 直径达 3米, 这样保证缸体可插入地下水一定深度, 地下水可以通过入水口 104 流入缸体内。 然而, 这些参量并不限于此, 可根 据具体情况进行相应增减。
在某些实施例中, 本发明的地下水动力装置可包括多组缸体 100, 在某一 缸体 100聚集地下水的过程中,其他聚集有地下水的缸体 100用来对外做功。
输水管道 200的第一端 201与出水口 106连通,输水管道 20的第二端 202 伸出地面。 该输水管道 200相对缸体 100具有较小的内径, 当缸体 100内聚 集的地下水受压时, 受压的地下水将进入具有较小内径的输水管道 200形成 压力流体, 并从输水管道 200的第二端 202高速射出从而对外做功。 在一实 施例中,输水管道 200的第二端 204用于驱动水轮机 400, 水轮机 400可与发 电机(图未示)联动, 因而可将液压动力转化为电能。 根据需要, 也可借助 蓄电装置将电能储存起来备用, 因此, 本发明的不平衡动力装置的一种应用 场合为家用。 进一步地, 输水管道 200第二端射出的压力流体可用于驱动基 于流体动力工作的其他多种动力转换设备。
接下来,请一并参照图 2, 图 2显示了可用于图 1的地下水动力装置的重 物的一种结构示意图。
重物 300设于缸体 100内, 用于对缸体 100内聚集的地下水施加压力, 该重物 300具有与缸体 100密封配合的活塞部 302, 可操作在缸体 10内做上 升以及下降的往复运动。 该重物 300可通过设置在地面上的滑轮组机构 500 来提升, 并依靠重力作用下降。 当活塞部 302下降时, 带动重物 300向下压 缸体 100内的地下水(未标号 ), 受压的地下水进入输水管道 200并从输水管 道 200的第二端 202高速射出从而对外做功, 当活塞部 302上升时, 由于地 下水具有一定的水位, 缸体 100周围的地下水会经入水口 104进入缸体 100 内。 值得一提的是, 当重物 300升起后, 重物 300被锁定在预定位置, 需要 进行下一次压水动作时, 解锁即可让重物 300 自动下降并因此对地下水施加 压力。 在一实施例中, 重物 30重达 3吨, 同样, 该参量并不限于此, 可根据 具体情况进行相应增减。
为了增大重物 300的重力作用,重物 300还包括多个可分离的配重块 304, 该多个配重块 304设于活塞部 302之上, 通过滑轮组机构 500逐个提升多个 配重块 304中的每一个, 可使得提升重物 300的工作更为轻松方便。 在一实 施例中, 多个配重块 304具有与重物 300大致相同的外围, 且层叠设置在重 物 300上。
众所周知, 滑轮组是由若干个定滑轮和动滑轮匹配而成, 可以达到既省 力又改变力作用方向的目的, 因而通过滑轮组装置来提升重物 300 以及设于 重物 300上的配重块 304。 当采用人工方式驱动滑轮组时, 在某种程度上可视 为健身锻炼的一种方式, 所以, 重物 300以及设于重物 300上的配重块 304 可与健身设备相连, 用于在提升重物 300时充当健身锻炼的负荷。
当然对于应用于大型发电机的场合, 可以采用吊机等来提升重物 300, 而 不仅限于滑轮组。
重物 300还可包括大致 U型的容置部 306, 容置部 306位于活塞部 302 之上, 经输水管道 200的第二端 204高速射出的受压水在对外做功之后, 可 回流入 U型容置部 306内。 采用多组缸体的时候, 从一个缸体中压出的地下 水在做功之后可以回收到另一个缸体中。 从而实现几个缸体交替做功、 交替 补充水的工作循环。
U 型容置部 306 的底部可设有与缸体 100 的收容空间连通的供水通道 3061以及控制供水通道的控水开关 3062, 在重物 30上升时, 控水开关 3061 控制 U型容置部 306内的水经供水通道 3061流入缸体 100, 以加速缸体内水 的补充过程。
进一步地, 为了更容易地提升重物 300, 重物 300下方可进一步设置升降 气嚢 308, 在重物 300向下压水时, 将升降气嚢 308内的气体排出以减小重物 300下压的阻力, 在提升重物 300准备下一次压水动作时, 向升降气嚢 308内 补充气体以增加重物 300的浮力从而减小提升重物 300所需要的力。 可以采 取市场常用的充气装置如气泵来实现对升降气嚢 308的充气。
以上提到的是体积可变化的气嚢, 作为一种实施例的变型, 也可以采用 体积不可变的气嚢。 这种定容积式气嚢在一定程度上可以增加重物在气缸里 上升以及下降时的可操纵性。
下面结合以上所述来介绍本发明的地下水动力装置的工作情况。
地下水动力装置在工作前要经历聚集地下水的阶段, 众所周知, 地下具 有丰富的水资源, 因此, 设于地下的缸体 100周围具有丰富的地下水, 缸体 100聚集地下水的工作 4艮快即可完成。 当缸体 100聚集有适量的地下水时, 本 发明的地下水动动力装置即可开始工作, 首先, 利用滑轮组 500或起重机将 重物 300提升, 提升重物 300的工作包括向升降气嚢 308补充气体来增大浮 力, 以及逐一提升配重块 304来减小一次性提升重物 300所需要的力。 当重 物 300升起后, 将重物 300锁定在预定位置, 同时, 将升降气嚢 308的气体 放出以减小重物 300下压时的阻力,并将多个配重块 304逐一加设到重物 300 上从而增加重力效果,完成以上步骤之后,解锁重物 300即可进行压水工作, 由于入水口 104处单向开关 1041的单向导流做用, 在重物 300解锁后由于重 力作用下压地下水时, 受压的地下水仅可经由缸体 100底部的出水口 106进 入输水管道 200形成压力流体并从输水管道 200的第二端 204高速射出从而 对外做功, 比如可驱动水轮机 400等动力转换设备。 做完功的地下水可通过 导流设备回流到缸体 100 内。 在采用多组缸体的时候, 从一个缸体中压出的 地下水在做功之后可通过导流设备回收到另一个缸体中, 从而实现几个缸体 交替做功、 交替补充水的工作循环。 通过重复利用做功的地下水以及不断从 入水口 14补充新的地下水, 缸体 10内可以持续保持有充足的地下水, 因而 可持续做功。
接下来, 请参见图 3 , 图 3显示了本发明的地下水动力装置的第二实施例 的结构示意图。
在本发明的第二实施例中, 地下水动力装置主要包括: 缸体 110、 输水管 道 210以及重物 310。
类似于本发明的第一实施例, 在本发明的第二实施例中, 缸体 110设于 地下, 用于提供收容空间 112来聚集地下水。 缸体 110的侧壁上设有入水口 114, 入水口 114处设有用于保证地下水从入水口 114单向的进入到缸体 110 内的单向开关 1141。 重物 310设于缸体 110内, 用于对缸体 110内聚集的地 下水施加压力, 该重物 310具有与缸体 110密封配合的活塞部 312, 可操作在 缸体 110内做上升以及下降的往复运动。
与本发明第一实施例的不同之处在于, 在本发明的第二实施例中, 出水 口不再设于缸体 110底部, 而是在重物 310的活塞部 312上开设出水口 314, 输水管道 210的第一端 211连接在出水口 314上,输水管道 210的第二端 212 伸出地面, 当重物 310下降压水时, 受压的地下水经由设于活塞部 312上的 出水口 314进入输水管道 210并从输水管道 210的第二端 212高速射出对水 轮机 410以及其他基于流体动力工作的多种动力转换设备做功。将出水口 314 设于活塞部 312上, 在一定程度上减少了出水管 160的用材, 同时降低了安 装输水管道 210的复杂性。
接下来, 请参见图 4, 图 4显示了本发明的地下水动力装置的第三实施例 的结构示意图。
在本发明的第三实施例中, 地下水动力装置主要包括: 缸体 120、 输水管 道 220、 以及压水气嚢 600。 类似于本发明的第一实施例, 在本发明的第四实施例中, 缸体 120设于 地下, 用于提供收容空间 122来聚集地下水。 缸体 120的侧壁上设有入水口 124, 入水口 124处设有用于保证地下水从入水口 124单向的进入到缸体 120 内的单向开关 1241。 缸体 120的顶部设有出水口 126, 输水管 220的第一端 221连接在出水口 126上,输水管道 220的第二端 222伸出地面, 用于驱动水 轮机 420以及其他基于流体动力工作的多种动力转换设备。
压水气嚢 600设于缸体 120内, 压水气嚢 600为体积可变化的气嚢, 该 压水气嚢 600还包括伸出缸体 120的气体出入通道 610。缸体 120的顶部成密 封设置。 当压水气嚢 600接收气体时, 压水气嚢 600的体积开始膨胀, 地下 水受到压水气嚢 600的膨胀作用经由出水口 126进入输水管道 220并从输水 管道 220的第二端 222高速射出对水轮机 420以及其他基于流体动力工作的 多种动力转换设备做功。
接下来, 请参见图 5 , 图 5显示了本发明的地下水动力装置的第四实施例 的结构示意图。
在本发明的第四实施例中, 地下水动力装置主要包括: 缸体 130和输水 管道 230。
类似于本发明的第一实施例, 在本发明的第四实施例中, 缸体 130设于 地下, 用于提供收容空间 132来聚集地下水。 缸体 130的侧壁上设有入水口 134, 入水口 134处设有用于保证地下水从入水口 134单向的进入到缸体 130 内的单向开关 1341。 缸体 130的底部设有出水口 136, 输水管 230的第一端 231连接在出水口 136上,输水管道 230的第二端 232伸出地面, 用于驱动水 轮机 430以及其他基于流体动力工作的多种动力转换设备。 缸体 130的顶部 成密封设置。缸体 130顶部还设有气体出入通道 138。 当缸体 130接收经由出 入通道 138输入的气体时, 缸体 130内气压逐渐增大, 地下水受到高压气体 的作用经由出水口 136进入输水管道 230并从输水管道 230的第二端 232高 速射出对水轮机 430以及其他基于流体动力工作的多种动力转换设备做功。 综上所述, 本领域技术人员容易理解, 本发明的地下水动力装置充分循 环利用地下水资源对外做功, 不仅节能环保, 还可持续提供稳定的液压, 是 一种理想的动力产生装置, 能够得到广泛应用。
以上虽然结合附图描述了本发明的实施方式, 但是本领域技术人员可以 在所附权利要求的范围内做出各种变形或修改。

Claims

权 利 要 求
1. 一种地下水动力装置, 其特征在于, 所述地下水动力装置包括: 缸体, 所述缸体设于地下, 用于提供收容空间来聚集地下水, 所述缸体 的侧壁设有入水口, 地下水可从所述入水口进入所述缸体, 所述缸体还设有 出水口;
输水管道, 所述输水管道的第一端与所述出水口连通, 所述输水管道的 第二端伸出地面;
压水机构, 所述压水机构将缸体内地地下水从所述输水管道的第二端高 速射出从而对外做功。
2. 根据权利要求 1所述的地下水动力装置, 其特征在于, 所述压水机构 包括:
重物, 具有与所述缸体密封配合的活塞部, 可操作在所述缸体内做上升 以及下降的往复运动;
其中, 当所述活塞部下降时,带动所述重物向下压所述缸体内的地下水, 受压的地下水进入所述输水管道并从所述输水管道的第二端高速射出从而对 外做功,
当所述活塞部上升时, 所述缸体周围的地下水经所述入水口进入所述缸 体内。
3. 根据权利要求 2所述的地下水动力装置, 其特征在于, 所述出水口设 于所述缸体的底部或者顶部。
4. 根据权利要求 3所述的地下水动力装置, 其特征在于, 所述入水口处 设有单向开关, 以保证当所述活塞部上升时入水口处水流的单向流通。
5. 根据权利要求 4所述的地下水动力装置, 其特征在于, 所述重物通过 设置在地面上的滑轮组机构来提升, 所述重物靠重力的作用而下降。
6. 根据权利要求 4所述的地下水动力装置, 其特征在于, 所述重物还包 括多个配重块, 所述多个配重块设于所述活塞部之上, 通过所述滑轮组机构 逐个提升所述多个配重块中的每一个。
7. 根据权利要求 4所述的地下水动力装置, 其特征在于, 所述重物与健 身设备相连, 用于在提升所述重物时充当健身锻炼的负荷。
8. 根据权利要求 6所述的地下水动力装置, 其特征在于, 所述重物还包 括大致 U型的容置部, 所述容置部位于所述活塞部之上, 经所述输水管道的 第二端高速射出的受压水在对外做功之后, 流入所述 U型容置部内。
9. 根据权利要求 8所述的地下水动力装置, 其特征在于, 所述 U型容置 部的底部设有与所述缸体的收容空间连通的供水通道以及控制所述供水通道 的控水开关, 在所述重物上升时, 所述控水开关控制所述 U型容置部内的水 经所述供水通道流入缸体内。
10. 根据权利要求 4所述的地下水动力装置, 其特征在于, 所述重物下 方进一步设置有升降气嚢, 以增大所述重物的浮力。
11. 根据权利要求 10所述的地下水动力装置, 其特征在于, 在所述重物 向下压水时, 将所述升降气嚢内的气体排出以减小所述重物下压的阻力, 在 提升所述重物准备下一次压水动作时, 向所述升降气嚢内补充气体以增加所 述重物的浮力从而减小提升所需要的力。
12. 根据权利要求 3所述的地下水动力装置, 其特征在于, 所述输水管 道的第二端射出的压力水用于驱动动力转换设备。
13. 根据权利要求 12所述的地下水动力装置, 其特征在于, 所述动力转 换设备包括发电机, 所述发电机发出的电由蓄电装置储存备用。
14. 根据权利要求 3所述的地下水动力装置, 其特征在于, 所述地下水 动力装置包括多组缸体, 在某一缸体聚集地下水的过程中, 其他聚集有地下 水的缸体用来做功。
15. 根据权利要求 1所述的地下水动力装置, 其特征在于, 所述压水机 构包括: 设于缸体顶部的气体出入通道, 气体经由气体出入通道输入缸体内, 使 得缸体内气压逐渐增大, 所述缸体内的地下水受到高压气体的作用经由出水 口排出。
16. 根据权利要求 1所述的地下水动力装置, 其特征在于, 所述压水机 构包括:
设于缸体内的压水气嚢, 所述压水气嚢为体积可变化的气嚢, 所述压水 气嚢包括伸出缸体顶部的气体出入通道, 所述缸体的顶部成密封设置, 气体 经由气体出入通道输入压水气嚢, 压水气嚢的体积膨胀, 缸体内地下水受到 压水气嚢的膨胀作用而经由出水口排出。
PCT/CN2009/074938 2009-11-13 2009-11-13 一种地下水动力装置 WO2011057448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074938 WO2011057448A1 (zh) 2009-11-13 2009-11-13 一种地下水动力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074938 WO2011057448A1 (zh) 2009-11-13 2009-11-13 一种地下水动力装置

Publications (1)

Publication Number Publication Date
WO2011057448A1 true WO2011057448A1 (zh) 2011-05-19

Family

ID=43991170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074938 WO2011057448A1 (zh) 2009-11-13 2009-11-13 一种地下水动力装置

Country Status (1)

Country Link
WO (1) WO2011057448A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734092A (zh) * 2012-07-04 2012-10-17 隆力液压机械(北京)有限公司 重力蓄能发电装置
CN102797649A (zh) * 2012-08-16 2012-11-28 温锡钦 新型水力活塞泵势能转换装置
WO2013034817A1 (fr) * 2011-09-08 2013-03-14 Fabron Jean-Luc Réacteur gravitationnel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063172U (zh) * 1990-03-02 1990-10-03 陈振博 多功能杠杆泵
JP2001295747A (ja) * 2000-04-17 2001-10-26 Kawanishi Kaiji:Kk 水面下マンホール水力発電システム
CN1824946A (zh) * 2005-02-21 2006-08-30 吴水森 利用水压力带动水轮发电机循环发电

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063172U (zh) * 1990-03-02 1990-10-03 陈振博 多功能杠杆泵
JP2001295747A (ja) * 2000-04-17 2001-10-26 Kawanishi Kaiji:Kk 水面下マンホール水力発電システム
CN1824946A (zh) * 2005-02-21 2006-08-30 吴水森 利用水压力带动水轮发电机循环发电

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034817A1 (fr) * 2011-09-08 2013-03-14 Fabron Jean-Luc Réacteur gravitationnel
CN102734092A (zh) * 2012-07-04 2012-10-17 隆力液压机械(北京)有限公司 重力蓄能发电装置
CN102797649A (zh) * 2012-08-16 2012-11-28 温锡钦 新型水力活塞泵势能转换装置
CN102797649B (zh) * 2012-08-16 2015-06-10 温锡钦 新型水力活塞泵势能转换装置

Similar Documents

Publication Publication Date Title
MX2007001701A (es) Sistema de bombeo de liquido hidraulico.
CN103573315A (zh) 一种压缩空气和液压结合的微小型压缩空气储能系统
WO2017036088A1 (zh) 水资源回收应用水力发电设备
WO2015184999A1 (zh) 一种垂直重力强压式大容量液体高效泵送装置
WO2011057448A1 (zh) 一种地下水动力装置
CN108978774A (zh) 一种用于挖掘机的混联式混合动力系统
CN108194437B (zh) 一种势能回收及电机调速的双泵液压节能系统
JP5620909B2 (ja) 液体用ロッドポンプ
CN103133434A (zh) 蓄能型节能液压抽油机
WO2008141587A1 (fr) Dispositif de pompage d'eau à économie d'énergie et de type à différence de pression d'air
KR101075138B1 (ko) 파도력 발전장치
CN210290029U (zh) 能利用水力发电余水动能的泵
TWM523761U (zh) 水資源回收應用水力發電設備
CN108488052A (zh) 能利用水力发电余水动能的泵
CN114790959A (zh) 一种静水发电技术
WO2016016668A1 (en) Conversion from gravitational force to electrical power
WO2010076797A2 (en) Apparatus with buoyant and sinkable piston
CN104612935B (zh) 一种助浮提升式大容量高扬程液体高效泵送装置
CN214196276U (zh) 一种液压抽油机
CN107013188A (zh) 一种往复式柔性牵引抽油机构
CN203081644U (zh) 水循环蓄能发电系统
US8997474B2 (en) Differential fluid pressure energy conversion system
JP6421366B1 (ja) ユニット型小水力発電装置。
CA2761843A1 (en) System for discharging water to a turbine to generate power
CN201288652Y (zh) 腔囊式气压导流泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09851203

Country of ref document: EP

Kind code of ref document: A1