WO2011054265A1 - 双反应器石油烃类原料催化转化方法及装置 - Google Patents

双反应器石油烃类原料催化转化方法及装置 Download PDF

Info

Publication number
WO2011054265A1
WO2011054265A1 PCT/CN2010/078163 CN2010078163W WO2011054265A1 WO 2011054265 A1 WO2011054265 A1 WO 2011054265A1 CN 2010078163 W CN2010078163 W CN 2010078163W WO 2011054265 A1 WO2011054265 A1 WO 2011054265A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
reaction
section
main reactor
Prior art date
Application number
PCT/CN2010/078163
Other languages
English (en)
French (fr)
Inventor
石宝珍
Original Assignee
Shi Baozhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Baozhen filed Critical Shi Baozhen
Publication of WO2011054265A1 publication Critical patent/WO2011054265A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • C10G11/187Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1809Controlling processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
    • C10G51/026Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only only catalytic cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • C10G51/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural parallel stages only

Definitions

  • Double reactor petroleum hydrocarbon raw material catalytic conversion method and device Double reactor petroleum hydrocarbon raw material catalytic conversion method and device
  • the invention relates to the technical field of petrochemical industry, in particular to a method and a device for catalytic conversion of a petroleum reactor raw material in a double reactor. Background technique
  • Catalytic conversion is an important secondary processing method for petroleum heavy fractions.
  • the existing catalytic converters for petroleum hydrocarbon feedstocks almost all use riser reactors, and the catalytic feedstock is catalytically converted into gasoline, diesel, liquefied petroleum gas, etc. in the riser reactor. Reaction product.
  • the conventional catalytic conversion method and apparatus use a riser reactor, and the reaction process has obvious disadvantages: First, the temperature of the regenerated catalyst is high, and the reactant oil ratio and the heavy oil preheating temperature are limited. In the existing catalytic conversion reaction process, the reaction raw materials are used. When the oil is directly in contact with a high-temperature catalyst of about 70 CTC, an excessive thermal cracking reaction often occurs, and excessive conversion of the raw material oil into by-products such as dry gas and coke affects economic benefits.
  • the reaction conversion rate in the second half of the riser reactor is low. Studies have shown that 80% of the total conversion reaction is completed in the front half of the riser, but the reaction conversion rate in the second half of the riser reactor is low. The important reason is In the latter half of the riser, the catalyst is deactivated due to coking, adsorption of poisons, and the like.
  • the quality of the catalytic converter unit is not ideal, especially the high olefin content of the gasoline, which does not meet the environmental requirements.
  • CN99120517. 0 discloses a method for cooling the heavy oil catalytic cracking regenerant conveying pipeline, which is on the regenerant conveying pipeline.
  • the heat exchange sleeve is installed, and the regenerated catalyst after the temperature drop enters the riser reactor to react with the feedstock oil
  • US 5,800,697 discloses a catalytic conversion reaction-regeneration method, and a catalyst cooling zone is arranged beside the regenerator, from the dense phase The hot regenerant of the bed enters the cooling zone from the outlet to the appropriate temperature, and then enters the bottom of the riser reactor through the regeneration riser and the slide valve to participate in the reaction.
  • CN1302843A proposes a catalyst relay scheme, that is, catalyst replacement in the middle of the riser. , separating all the reacted catalysts into high-activity, low-temperature regenerated catalysts with reduced temperature treatment, The efficiency of fully recovering the second half of the riser to the first half, while solving the previous problem, increases the feasibility of the project implementation.
  • the riser outlet temperature and the mixing temperature along the sections of the riser should be independently adjustable.
  • the earlier application is the post-mixing temperature control technology (MTC). After mixing, the temperature control is realized by circulating the liquid phase stream, such as refining oil, downstream of the fresh raw material injection zone, so that the riser is divided into two.
  • MTC post-mixing temperature control technology
  • the upstream zone ie below the riser
  • the downstream zone (above the riser) reacts under more conventional and milder conditions
  • interpretation if not specified, existing Catalytic technology generally refers to the upstream riser reaction technology, that is, both the reaction raw material and the catalyst enter from the bottom (ie, the lower part) of the reactor, and continuously react upward along the riser, and exit from the reactor from the top (ie, the upper) outlet of the reactor) It is apparent that the riser outlet temperature is maintained at this time by the amount of heat-regenerated catalyst circulating through the regeneration spool.
  • the catalytic conversion reaction of petroleum hydrocarbons is a complicated system engineering.
  • the composition of the reaction products is closely related to the concentration of the raw materials in the reactor, the reaction temperature of different reaction zones, the reaction time, and the amount of catalyst circulation, as long as one or some of them are mastered.
  • the regulation of several variables may make great progress in theory and practice.
  • Theoretical studies and practices have confirmed that lowering the temperature of the catalyst in contact with the feedstock can effectively reduce the degree of thermal cracking reaction.
  • the catalytic activity is enhanced and catalyzed.
  • the proportion of the reaction increases, and the thermal reaction is effectively controlled, which is advantageous for improving product yield and reducing dry gas and coke yield; if the oil contact section and the post reaction section of the riser reactor can be macroscopically adjusted at the same time (That is, the reaction temperature or the ratio of the agent to the oil in the latter part of the riser reactor (the so-called ratio of the catalyst to the oil, which is the ratio of the catalyst circulation amount to the total feed amount), it is possible to control the overall catalytic conversion reaction process toward the target product. Minimize the formation of by-products. Summary of the invention
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a method and a device for catalytic conversion of a petroleum reactor raw material in a double reactor are provided, which are effective by controlling the reaction conditions of the reactor in contact with the reaction section and the reaction section. Reduce the degree of thermal cracking reaction and increase the reaction efficiency of the post-reaction section, thereby effectively reducing reaction by-products and flexibly improving product distribution.
  • the present invention provides a catalytic converter conversion process for a dual reactor petroleum hydrocarbon feedstock, wherein the catalytic conversion reaction is carried out in a secondary reactor in which the main reactor and the raw materials are lighter than the raw materials in the main reactor, Main reactor
  • the pre-lifting section is input to the first low-temperature catalyst, and the first low-temperature catalyst is transported into the oil-contacting reaction section through the pre-lifting gas, and is contacted with the reaction raw material entering from the feed nozzle to carry out a catalytic conversion reaction, and the reaction mixture is upwardly and inwardly Above the feed nozzle, the second low temperature catalyst input into the main reactor is contacted, and the reaction is continued in the subsequent reaction stage to complete the catalytic conversion reaction of the main reactor reaction raw material.
  • the regenerated catalyst or the third low-temperature catalyst is further input to the main reactor pre-lifting section, the first The low temperature catalyst is mixed with the regenerated catalyst or the third low temperature catalyst and sent to the oil agent contact reaction section via the pre-elevated gas.
  • the first low temperature catalyst and/or the second low temperature catalyst comprises a temperature-reducing regenerated catalyst, a catalyst to be produced from a post-reactor reaction stage, a self-returning catalyst from the main reactor stripping section or from the main a self-recirculating catalyst of the reaction stage after the reactor;
  • the third low-temperature catalyst comprising a catalyst to be produced from the post-reactor reaction section, a self-returning catalyst from the main reactor stripping section or from the The main reaction reactor is self-recirculating the spent catalyst after the reaction section.
  • the input regenerated catalyst is cooled and cooled in the pre-lifting section of the secondary reactor.
  • a fourth low-temperature catalyst is further input to the pre-lifting section of the secondary reactor, the fourth low temperature
  • the catalyst is mixed with the regenerated catalyst in a pre-lifting section; wherein the fourth low-temperature catalyst comprises a temperature-reducing regenerated catalyst or a catalyst to be produced from a reaction section after the sub-reactor.
  • the temperature or/and the ratio of the agent to oil of the pre-elevation section and the post-reaction section are adjusted by adjusting the catalyst circulation amount of the first low-temperature catalyst and the second low-temperature catalyst.
  • the invention also provides a dual reactor petroleum hydrocarbon raw material catalytic conversion device, which is divided into a main reactor and a secondary reactor of a pre-lifting section, an oil-contacting reaction section and a post-reaction section from bottom to top, in the main
  • the upper portion of the pre-lift section of the reactor and the secondary reactor is provided with a feed nozzle
  • the main reactor comprising a first line and a second line with a slide valve, the first line and the main reactor being pre-lifted a section connected to the first low temperature catalyst, the second line being disposed above the main reactor feed nozzle and in communication with the main reactor for accessing the second low temperature catalyst
  • the secondary reactor includes a regeneration riser for communicating with the secondary reactor pre-lift section for introducing a regenerated catalyst to the secondary reactor pre-lift section.
  • the main reactor further includes a third pipeline or a regeneration riser with a spool valve, the third pipeline and the The pre-lifting section of the main reactor is connected to be connected to the third low-temperature catalyst; the regeneration riser is in communication with the pre-lifting section of the main reactor, and is used for pre-lifting section regeneration of the main reactor catalyst.
  • first pipeline and the second pipeline are respectively in communication with one of the following: a catalyst desuperheater in communication with the regenerator, a post reaction section of the subreactor, a main reactor post-reaction section, the main reactor stripping section;
  • the third line is in communication with one of the following: a catalyst desuperheater in communication with the regenerator, the subreactor a post-reaction section, a post-reactor post-reaction section, and a main reactor stripping section.
  • the pre-lift section of the secondary reactor is provided with a catalyst cooler for cooling and cooling the regenerative catalyst input to the pre-lift section.
  • the secondary reactor further includes a through pipe connected to the secondary reactor pre-lifting section for accessing the fourth low-temperature catalyst, and the pipelines are respectively connected to one of the following places Pass: a catalyst desuperheater in communication with the regenerator, a post reaction section of the secondary reactor.
  • the catalytic converter device further includes a settler, and when only one settler is included, both the main reactor outlet and the outlet of the secondary reactor are connected to the settler, when two separate sets are included In the settler, the outlet of the main reactor and the outlet of the secondary reactor are sequentially connected to the first settler and the second settler, respectively.
  • the catalytic converter device further includes a regenerator, the first settler and/or the second settler being in communication with the regenerator via a riser.
  • the reactor of the present invention preferably uses a riser reactor, and the secondary reactor outlet of the present invention preferentially accesses the settler provided at the outlet of the main reactor, that is, the secondary reactor is preferably used in combination with the main reactor. Setter.
  • the catalytic conversion method and apparatus of the present invention have at least the following beneficial results:
  • the present invention introduces a catalyst having a lower temperature than the regenerated catalyst in the middle of the main reactor (in the present invention, a catalyst having a lower temperature than the regenerated catalyst is defined as a low-temperature catalyst, the first low-temperature catalyst and the second low-temperature catalyst according to the present invention.
  • the third low temperature catalyst and the fourth low temperature catalyst are both explained as catalysts having a temperature lower than that of the regenerated catalyst, and the first, second, third, and fourth labels are only for accessing in different places involved in the technical solution.
  • the low temperature catalyst in the reactor is distinguished), so that the ratio of the agent to oil (C/0) in the whole reaction process is divided into two zones, that is, the oil is in contact with the reaction zone and the reaction zone ratio of the agent is increased, and the two zones are passed.
  • the adjustment of the amount of catalyst circulation can control the degree of reaction in each zone to achieve control of the total conversion reaction.
  • the present invention achieves temperature control of at least two zones in the main reactor, and the main reactor outlet temperature is no longer maintained by the conventional catalytic conversion reaction by controlling the amount of regenerated catalyst circulating through the regeneration spool, but by Controlling the amount of low-temperature catalyst circulation entering the reaction section to adjust, and the temperature of the oil contacting the reaction section can be controlled by the pre-lift section The amount of recycled catalyst circulation or the amount of low temperature catalyst circulation is adjusted.
  • the oil contact reaction section the oil contact condition is improved, thereby reducing the thermal cracking reaction, increasing the ratio of the agent to the oil in the post reaction section, thereby adjusting the reaction temperature accordingly, thereby further improving the catalytic conversion reaction, thereby realizing Control of the entire catalytic reaction.
  • the invention adopts the low-temperature catalyst in the pre-lifting section or uses the mixture of the regenerated catalyst and the low-temperature catalyst in the pre-lifting section to effectively cool the regenerated catalyst while performing effective adjustment control on the main reactor oil contact reaction section and the post-reaction section.
  • the control of the pre-lifting section temperature can be realized by adjusting the circulating amount of the low-temperature catalyst, thereby achieving simultaneous control of the three regions of the reactor pre-lifting section, the oil-contacting reaction section, and the post-reaction section as a whole.
  • the different needs of industrial applications can be met, such as: To meet domestic and international petroleum liquefied gases and low-carbon olefins (with propylene) Mainly)
  • the increasing demand can be achieved by mixing the regenerated catalyst with the low-temperature catalyst (such as the catalyst to be produced in the reaction section of the secondary reactor) and then entering from the bottom of the reactor to contact with the feedstock, catalyzing at higher temperature and high activity.
  • the aromatization reaction section can be used in the middle of the main reactor, and the aromatization reaction section is introduced, and the catalyst of the main reactor is refluxed into the feed nozzle to make the aromatization reaction zone retaining agent.
  • the oil ratio is 3-20, thereby obtaining a reaction mixture having a high aromatic content; those skilled in the art can adjust according to the specific conditions.
  • the invention reduces the temperature of the catalyst in contact with the feedstock oil by directly lowering the regenerated catalyst or by mixing the regenerated catalyst with the main reactor from the reflux catalyst or regenerating the catalyst with the secondary reactor catalyst (for example, regenerating the catalyst)
  • the temperature is about 700 ° C; the temperature of the regenerated catalyst is lower than 700, usually at 500-700 ° C, the temperature of the main reactor itself refluxing the catalyst is about 50 CTC; the secondary reactor is about 500 ° C, which is obvious, when Mixing the latter three catalysts with the regenerated catalyst can effectively reduce the temperature of the catalyst used in the reaction, minimizing the dry gas yield in the whole reaction process, increasing the liquid recovery, greatly improving the economy, and simultaneously generating the gasoline product.
  • the ethylene content in the product has decreased, meeting environmental requirements.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Example 2 is a schematic view showing the distribution of catalyst circulation amount from bottom to top in the main reactor according to Example 1 of the present invention
  • Embodiment 1 of the present invention is a schematic diagram of a control principle of Embodiment 1 of the present invention.
  • Embodiment 2 of the present invention is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 5 is a schematic structural view of Embodiment 3 of the present invention
  • Figure 6 is a schematic view showing the distribution of catalyst circulation amount from bottom to top in the main reactor according to Example 3 of the present invention
  • Figure 7 is a schematic structural view of Embodiment 4 of the present invention.
  • Figure 8 is a schematic structural view of Embodiment 5 of the present invention.
  • Figure 9 is a schematic structural view of Embodiment 6 of the present invention.
  • Figure 10 is a schematic structural view of Embodiment 7 of the present invention.
  • FIG 11 is a schematic view showing the structure of an embodiment 8 of the present invention. Description of the reference signs:
  • Embodiment 1 See FIG.
  • the temperature-reducing regenerated catalyst i.e., the first low-temperature catalyst
  • the temperature-reducing regenerated catalyst formed by the regeneration riser 7 and cooled by the catalyst desuperheater 9 and the portion of the regenerated catalyst entering the regeneration riser 7b at the bottom of the main reactor 1 are pre-elevated.
  • the reaction section IV continues the reaction to complete the catalytic conversion of the reaction raw material; on the other hand, a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and upwards and through the feed nozzle 25 under the action of the lifting medium
  • the incoming atomized light raw material contacts the catalytic reaction, the reaction mixture enters the post reaction section, and a part of the reacted still active catalyst is introduced into the main reactor 1 through the catalyst relay tube 10' from above the feed nozzle 5,
  • the remaining reactant stream continues along the secondary reactor 11 to complete the catalytic conversion of the light feedstock;
  • the catalytically converted reaction stream enters the common settler 2 to separate the catalyst, and after being stripped by the stripping section 3, the standing
  • the regeneration riser 7, 7b, 7a, the catalyst relay pipe 10', etc. are provided with a slide valve, as shown in Fig. 3, the regeneration riser 7 is provided with a slide valve 18, and the regeneration riser 7b is provided with a slide valve 17, A spool 19 is provided on the catalyst relay tube 10'.
  • the pre-elevation section II can be controlled by controlling the opening degree of the spool 18 on the regeneration riser 7.
  • the amount of the regenerated catalyst to be cooled is about 20% of the amount of regenerated catalyst from the regeneration riser 7b.
  • the temperature of the oil contacting section III or the catalyst is called a catalyst.
  • the circulation amount is mainly controlled by the opening degree of the spool valve 17; after the reactant enters the post-reaction section IV, if the catalyst of the secondary reactor is not introduced (by the catalyst relay tube 10'), the reaction proceeds continuously, and the catalyst rapidly loses. Live, catalytic selectivity is declining.
  • the catalyst to be introduced into the secondary reactor from the catalyst relay tube 10' increases the ratio of the agent to the oil in the reaction section IV, and the reaction heat of the reaction section IV also changes accordingly, and the outlet temperature of the riser is also changed. Change with it.
  • the system of the present invention also includes an automatic control system for controlling the orderly and automatic completion of the entire reaction-regeneration system.
  • an automatic control system for controlling the orderly and automatic completion of the entire reaction-regeneration system.
  • different temperature control zones such as the pre-lift section II, the oil contact section III and the riser outlet
  • One or more temperature sensing elements are provided at appropriate locations in the temperature control zone for collecting the temperature there and transmitting the collected temperature values to a central processing unit in the automatic control system.
  • each spool valve is connected to the corresponding spool opening and closing power system, so that the spool valve can be controlled by the spool opening and closing power system to automatically change the opening degree.
  • the automatic control system stores the corresponding temperature design value of each temperature control zone, and the central processor compares the temperature design value with the actual temperature sent by the temperature sensing component corresponding to the temperature control zone, and drives the spool opening and closing power according to the comparison result.
  • the spool automatically changes the opening degree according to the actual situation of the reaction, and adjusts the temperature of the corresponding temperature control zone by the amount of the catalyst to maintain the design value, for example, according to the temperature T 3 of the outlet of the reactor and the temperature at the outlet
  • the design value is used to control the spool 19, and the spool 17 is controlled according to the temperature ⁇ 2 of the oil contacting reaction section and the design value of the temperature, and the slip is controlled according to the temperature of the pre-lift section 1 and the design value of the temperature.
  • Valve 18 is used to control the spool 19, and the spool 17 is controlled according to the temperature ⁇ 2 of the oil contacting reaction section and the design value of the temperature, and the slip is controlled according to the temperature of the pre-lift section 1 and the design value of the temperature.
  • the ratio of the agent to the oil cannot be separated from the temperature, and the two are interrelated.
  • the ratio of the agent to the oil has a value such as 19.
  • the temperature of the catalyst is lowered to 640. °C, when the original agent oil is maintained to react with 19, the reaction heat balance cannot be ensured.
  • More catalyst must be introduced into the reactor to compensate for the lack of heat caused by the catalyst temperature drop. That is, the ratio of the agent to the oil must be increased while cooling. The agent to oil ratio is increased to 22) to meet the heat balance. Therefore, according to the above-described adjustment method of Embodiment 1 of the present invention, the ratio of the oil to the oil is adjusted while the temperature of each temperature control zone is adjusted.
  • a gas-solid separation unit is provided at the outlet of the reaction stage catalyst relay pipe 10' after the secondary reactor 11 (i.e., the expanded diameter section in the middle of the secondary reactor 11), and the secondary reactor 11 is provided.
  • the catalyst, reaction oil and gas mixture stream is advanced along the secondary reactor 11, a portion of the catalyst is separated from the mixture stream by inertia or a centrifugal separator in the gas-solid separation unit.
  • the separation and withdrawal of the catalyst are adjustable. When the required amount of catalyst withdrawal is reduced, the originally separated and unextracted catalyst can enter the catalyst mixture stream and continue to rise.
  • the separation and extraction of the catalyst the following examples are identical to the principle of the present example and will not be described again.
  • the bottom-up catalyst circulation amount distribution along the main reactor is as shown in FIG. 2, and the introduction of the temperature-reducing regenerated catalyst causes the catalyst circulation amount of the pre-elevation section II to be significantly increased compared with the catalyst circulation amount of the regeneration riser section I;
  • the catalyst of the pre-elevation section II after thorough mixing enters the oil contact section III upward, and contacts with the heavy raw material to carry out vaporization and conversion reaction of the raw material, and the catalyst circulation amount of the reaction section remains unchanged;
  • the reactant stream enters the reaction section IV, Due to the introduction of the catalyst to be produced in the secondary reactor, the catalyst circulation amount is significantly increased, and the amount of the catalyst is adjusted by the sliding valve according to the temperature of each temperature control zone and the set temperature design value, which not only improves the ratio of the catalyst to the oil in the post reaction section.
  • the desired riser outlet temperature can be maintained so that the reaction of the entire riser reaction zone is at an adjustable level.
  • the first and second low temperature catalysts may comprise a plurality of types.
  • the first low temperature catalyst which is connected to the pre-lift section II at the bottom of the main reactor 1 is a temperature-reducing regenerated catalyst, at the feed nozzle 5
  • the second low-temperature catalyst connected above is the catalyst to be produced from the secondary reactor, and the pre-elevation section II at the bottom of the main reactor 1 can be connected to the regenerated catalyst in addition to the first low-temperature catalyst (as in the first embodiment).
  • the third low temperature catalyst, the pre-lifting section II at the bottom of the secondary reactor 1 can also be connected to the fourth low-temperature catalyst, as exemplified by:
  • Example 2 See Figure 4.
  • the reaction mixture is upwardly reacted with the active reactor from the secondary reactor 11 introduced by the catalyst relay tube 10'.
  • Catalyst contact continues in the latter reaction stage IV to complete the catalytic conversion of the reaction raw material; a part of the regenerated catalyst is passed from the regeneration riser 7a to the bottom of the secondary reactor 11, under the action of the lifting medium, and the reaction section of the secondary reactor 11 is refluxed. After the catalyst is mixed, it is contacted with the atomized light raw material entering through the feed nozzle 25 to participate in the catalytic reaction, and the reaction mixture is advanced into the post reaction section, and the reacted active catalyst is partially passed through the catalyst relay tube.
  • Example 3 See Figure 5.
  • the temperature-reducing regenerated catalyst (first low-temperature catalyst) which is formed by the regeneration riser 7 and cooled by the catalyst desuperheater 9 enters the pre-lift section II at the bottom of the main reactor 1, and goes up to the atomized feedstock oil which enters through the feed nozzle 5.
  • Contacting participates in the catalytic reaction; the reaction mixture is contacted upward with the catalyst (second low temperature catalyst) active from the secondary reactor 11 via the catalyst relay tube 10', and the reaction is continued in the subsequent reaction section IV to complete the catalysis of the heavy raw material.
  • a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and is mixed with the catalyst (fourth low-temperature catalyst) refluxed from the reaction section of the secondary reactor 11 under the action of the lifting medium, and then proceeds upwards and upwards.
  • the atomized light material entering the nozzle 25 is contacted to participate in the catalytic reaction, and the reaction mixture is advanced into the post reaction section, and a part of the reacted still active catalyst is passed through the catalyst relay tube 10' from above the feed nozzle 5 into the main reactor.
  • the temperature-recovering catalyst is input in the pre-elevation section II, and in order to satisfy the heat balance in the reaction process, it is necessary to increase a larger amount of the temperature-reducing regenerated catalyst than in the prior art. Therefore, the oil ratio is improved at the pre-lift section II, and the temperature at the pre-lift section II can be adjusted by adjusting the amount of the regenerated catalyst to be cooled.
  • the bottom-up catalyst circulation amount distribution along the main reactor is shown in Fig. 6.
  • the temperature-recovering catalyst is introduced into the oil contact section III, and the raw material is vaporized and converted in contact with the raw material.
  • the cycle amount of the catalyst remains unchanged; the reactant stream enters the post-reaction section IV, and the catalyst to be introduced into the sub-reactor 11 improves the ratio of the agent to the oil in the post-reaction section, so that the reaction of the post-reactor reaction section is at an adjustable level.
  • Example 4 See Figure 7. a reduced-temperature regenerated catalyst (first low-temperature catalyst) formed by the catalyst-receiving tube 10'' from the secondary reactor 11 active catalyst (third low-temperature catalyst), and cooled by the catalyst desuperheater 9 entering from the regeneration riser 7 After mixing in the pre-elevation section II at the bottom of the main reactor 1, it is brought into contact with the atomized feedstock entering through the feed nozzle 5 to participate in the catalytic reaction, and the reaction mixture is upwardly refluxed with the catalyst from the catalyst reflux tube 8 ( The second low temperature catalyst) is contacted in the subsequent reaction zone IV to continue the reaction, completing the catalytic conversion of the reaction raw material; Part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a.
  • first low-temperature catalyst formed by the catalyst-receiving tube 10'' from the secondary reactor 11 active catalyst (third low-temperature catalyst), and cooled by the catalyst desuperheater 9 entering from the regeneration riser 7
  • the lifting medium Under the action of the lifting medium, it contacts the atomized light raw material entering through the feed nozzle 25 to participate in the catalytic reaction, and the reaction mixture enters the reaction section upward, and a part of the reaction
  • the still active catalyst to be activated enters the pre-lift section II of the main reactor 1 through the catalyst relay tube 10'', and the remaining reactant streams continue to rise along the sub-reactor 11 to complete the catalytic conversion of the light raw materials;
  • the reactant stream which completes the catalytic conversion enters the common settler 2 to separate the catalyst, and a part of the catalyst to be produced which is stripped by the stripping section 3 passes through the reflux pipe 8 to enter the main reactor 1 from above the feed nozzle 5, and the other part is to be raised.
  • the tube 6 enters the regenerator 4 for regeneration.
  • Example 5 See Figure 8.
  • the catalyst (the first low temperature catalyst) from the secondary reactor 11 via the catalyst relay tube 10 and the part of the regenerated catalyst entering the regeneration reactor 7b are mixed in the pre-lift section II at the bottom of the main reactor 1
  • the reaction mixture is brought into contact with the self-recirculating catalyst (second low temperature catalyst) from the catalyst reflux pipe 8 to continue the reaction in the subsequent reaction zone IV, and the reaction is completed.
  • Catalytic conversion of heavy raw materials a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and after being cooled and precooled by the precooler 13, the atomization light entering the upward and the feed nozzle 25 is lightly under the action of the lifting medium.
  • the raw material contact is involved in the catalytic reaction, the reaction mixture enters the post-reaction section, and a part of the reacted still active catalyst is introduced into the main reactor 1 pre-elevation section II through the catalyst relay tube 10, and the remaining reactant streams continue along the secondary reactor.
  • the catalyst is separated into the common settler 2 to separate the catalyst, and a part of the catalyst to be produced which is stripped by the stripping section 3 passes through the reflux pipe 8 to enter the main reactor 1 from above the feed nozzle 5, and the other part is regenerated by the riser 6 to be produced.
  • the device 4 is regenerated.
  • Example 6 See Figure 9.
  • the self-recirculating catalyst (first low-temperature catalyst) refluxed from the main reactor 1 and the reaction section IV reflux tube 15 is passed through a pre-elevation section II at the bottom of the main reactor 1 with a part of the regenerated catalyst entering from the regeneration riser 7b. After mixing, it is brought into contact with the atomized feedstock entering through the feed nozzle 5 to participate in the catalytic reaction, and the reaction mixture is brought into contact with the catalyst (second low temperature catalyst) active from the secondary reactor 11 via the catalyst relay tube 10 upward.
  • the reaction is continued in the latter reaction section IV, and a part of the reacted still active catalyst is refluxed through the catalyst reflux pipe 15 into the pre-lift section II of the main reactor 1, and the remaining reactant streams continue to rise along the secondary reactor 11 to complete the reaction.
  • Catalytic conversion of the raw material; a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and is mixed with the catalyst to be produced which is refluxed from the reaction section of the secondary reactor 11 under the action of the lifting medium, and is fed upward and through the feed nozzle 25.
  • the incoming atomized light raw material contacts the catalytic reaction, and the reaction mixture enters the post-reaction section, and the reacted active remains.
  • a part of the catalyst enters the main reactor 1 through the catalyst relay tube 10' from above the feed nozzle 5, and a part is refluxed from the catalyst return tube 12 into the bottom of the sub-reactor 11 (fourth low-temperature catalyst), and the remaining reaction streams continue along the secondary reaction
  • the reactor 11 is up, completes the catalytic conversion of the light raw materials; the reactant stream in the two reactors that completes the catalytic conversion enters the common settler 2 to separate the catalyst, and after being stripped by the stripping section 3, the reactor 6 enters the regenerator 4 regeneration.
  • Example 7 See Figure 10.
  • the catalyst to be activated (the first low temperature catalyst) from the secondary reactor 11 via the catalyst relay tube 10 and a part of the regenerated catalyst entering the regeneration reactor 7b are mixed in the pre-lift section II at the bottom of the main reactor 1
  • the reaction mixture is contacted with the temperature-reducing regenerated catalyst (second low-temperature catalyst) formed by the temperature drop of the catalyst desuperheater 9 to continue the reaction in the post-reaction section IV, and the reaction is completed.
  • the catalytic conversion of the reaction raw material a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and contacts the atomized light raw material entering through the feed nozzle 25 to participate in the catalytic reaction under the action of the lifting medium, and the reaction mixture enters upward.
  • a part of the reacted still active catalyst enters the pre-lift section II of the main reactor 1 through the catalyst relay tube 10, and the remaining reactant streams continue to rise along the secondary reactor 11 to complete the catalytic conversion of the light raw materials;
  • the reactant stream that completes the catalytic conversion in the two reactors enters the common settler 2 From the catalyst, after stripping the stripping section 3, the spent standpipe enters the regenerator 4 6 regeneration.
  • Example 8 See Figure 1 1.
  • the catalyst to be produced (the first low temperature catalyst) from the secondary reactor 11 via the catalyst relay tube 10 and the regenerated catalyst entering the regeneration riser 7b are mixed in the pre-lift section II at the bottom of the main reactor 1, and then upward
  • the atomized raw material entering through the feed nozzle 5 is contacted to participate in the catalytic reaction, and the reaction mixture is brought into contact with the active catalyst (ie, the second low temperature catalyst) from the secondary reactor 1 through the catalyst relay tube 10'.
  • Section IV continues the reaction to complete the catalytic conversion of the reaction raw material; a part of the regenerated catalyst enters the bottom of the secondary reactor 11 from the regeneration riser 7a, and is in contact with the atomized light raw material entering through the feed nozzle 25 under the action of the lifting medium.
  • Catalytic reaction the reaction mixture enters the post-reaction section, and a part of the reacted still active catalyst is introduced into the main reactor 1 pre-elevation section II through the catalyst relay tube 10, and the other part is catalyzed by the catalyst relay tube 10' Above the feed nozzle enters the main reactor 1, and another portion of the spent catalyst is refluxed through the return pipe 12.
  • the remaining reactant streams continue to rise along the secondary reactor 11 to complete the catalytic conversion of the light raw materials; the reactant streams in the two reactors that complete the catalytic conversion are separated into the common settler 2
  • the catalyst after being stripped by the stripping section 3, is regenerated by the riser 6 to enter the regenerator 4.
  • all the devices involved such as a main reactor, a secondary reactor, a regenerator, a settler, etc., are included, and according to the device required for the catalytic conversion reaction, the device to be protected by the present invention can of course be only
  • the main reactor and the sub-reactor are included, or a device such as a settler and a regenerator is added on the basis of the main reactor and the sub-reactor.
  • the catalytic conversion method in these structures is the same as the above embodiment, and will not be described herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

双反应器石油烃类原料催化转化方法及装置
技术领域
本发明涉及石油化工技术领域, 特别是涉及双反应器石油烃类原料催化转化方法 及装置。 背景技术
催化转化是石油重质馏分重要的二次加工手段, 现有石油烃类原料催化转化装置几乎 都采用提升管反应器, 反应原料在提升管反应器中催化转化形成汽油、 柴油、 液化石油气 等反应产品。
常规催化转化方法和装置使用提升管反应器, 其反应过程存在明显的不足: 首先是再生催化剂温度较高, 限制了反应剂油比和重油预热温度, 现有催化转化反应 过程中, 反应原料油直接与 70CTC左右的高温催化剂接触, 往往发生过量的热裂化反应, 原料油过多的转化成干气和焦炭等副产品, 影响经济效益。
其次是提升管反应器后半部反应转化率较低, 研究表明, 80%的总转化反应是在提升 管前半部完成的, 但是提升管反应器后半部反应转化率较低, 重要原因是在提升管后半部 催化剂因结焦、 吸附毒物等失活。
另外, 催化转化装置的产品质量并不理想, 尤其是汽油烯烃含量较高, 不符合环保要 求。
为了能在保证原料汽化转化的同时, 尽可能地降低原料油与催化剂接触时的热裂化反 应, CN99120517. 0公开了一种重油催化裂化再生剂输送管路降温方法, 是在再生剂输送管 路上安装换热套管, 降温后的再生催化剂进入提升管反应器与原料油接触反应; US5, 800, 697公开了一种催化转化反应 -再生方法, 在再生器旁边设置催化剂降温区, 来自 密相床的热再生剂从出口进入降温区换热至适宜温度后经再生立管、 滑阀进入提升管反应 器底部参与反应。
为了提高重质原料油在提升管反应器后半部的反应效率, 出现了多种提高反应器后半 部催化剂活性的发明, 如, CN1302843A提出了催化剂接力方案, 即在提升管中部进行催化 剂置换, 将反应过的催化剂全部分离出, 置换成高活性、 经降温处理的低温再生催化剂, 使提升管后半段完全恢复到前半段的效率, 这样虽然解决了前一个问题, 但却增加了工程 实施的可行性。
再有, 为了避免提升管反应器中各种有害的和非选择性的转化反应, 提升管出口温度 及沿提升管各段的混合温度都应能各自独立的调节。 较早应用的是混合后温度控制技术 (MTC), 混合后温度控制是通过采用注入液相物流, 如回炼油, 在新鲜原料喷射区的下游 进行循环来实现的, 这样提升管就划分为二个区域: 上游区 (即提升管的下方) 具有混合 温度高的特点, 下游区 (提升管的上方) 反应在较常规的和较温和的条件下进行 (解释: 如没有特别注明, 现有催化技术一般指上行式提升管反应技术, 即反应原料与催化剂均自 反应器底部 (也就是下部) 进入, 沿提升管向上不断反应, 由反应器顶部 (也就是上部) 出口从反应器出来), 显然此时提升管出口温度是由控制通过再生滑阀的热再生催化剂循 环量来维持的。
石油烃类的催化转化反应是一个复杂的系统工程, 反应产物的组成与原料在反应器中 的浓度、 不同反应区的反应温度、 反应时间、 催化剂循环量息息相关, 只要掌握了其中某 一或某几个变量的调控规律, 就可能在理论和实践上取得巨大进步。 已有理论研究和实践 证实, 降低与原料油接触的催化剂的温度, 可有效减少热裂化反应程度; 此外就整个反应 过程而言, 当催化剂的整体活性及选择性提高时, 催化作用增强, 催化反应所占比例增大, 热反应得到有效控制, 对提高产品收率、 降低干气和焦炭产率是有利的; 如果能同时从宏 观上调节提升管反应器中油剂接触段和后反应段 (即提升管反应器后半部) 的反应温度或 剂油比 (所谓剂油比, 就是催化剂循环量与总进料量之比), 就可能控制整体的催化转化 反应过程向着目标产物方向进行, 最大限度减少副产物的生成。 发明内容
本发明要解决的技术问题在于, 针对现有技术的不足, 提供一种双反应器石油烃类原 料催化转化方法及装置, 通过对反应器接触反应段、 后反应段反应条件的灵活控制, 有效 减少热裂化反应程度, 并增加后反应段的反应效率, 从而有效降低反应副产品、 灵活改善 产品的分布。
为解决上述技术问题, 本发明提供了一种双反应器石油烃类原料催化转化方法, 催化 转化反应在主反应器和原料轻于主反应器中的原料的次反应器中进行, 向所述主反应器的 预提升段输入第一低温催化剂, 所述第一低温催化剂经预提升气体输送进入油剂接触反应 段, 与自进料喷嘴进入的反应原料接触进行催化转化反应, 反应混合物向上与在所述进料 喷嘴上方、 向主反应器内输入的第二低温催化剂接触, 在后反应段继续进行反应, 完成主 反应器反应原料的催化转化反应。
在上述的催化转化方法中, 进一步地, 在向主反应器预提升段输入第一低温催化剂的 同时, 还向所述主反应器预提升段输入再生催化剂或第三低温催化剂, 所述第一低温催化 剂与所述再生催化剂或第三低温催化剂混合, 经预提升气体输送进入油剂接触反应段。
其中, 所述第一低温催化剂和 /或第二低温催化剂包括降温再生催化剂、 来自次反应 器后反应段的待生催化剂、 来自主反应器汽提段的自身回流待生催化剂或来自所述主反应 器后反应段的自身回流待生催化剂; 所述第三低温催化剂包括来自所述次反应器后反应段 的待生催化剂、 来自主反应器汽提段的自身回流待生催化剂或来自所述主反应器后反应段 的自身回流待生催化剂。
在上述的催化转化方法中,进一步地, 向所述次反应器的预提升段输入再生催化剂时, 在所述次反应器的预提升段对输入的再生催化剂进行冷却降温。
在上述的催化转化方法中, 更进一步地, 向所述次反应器的预提升段输入再生催化剂 的同时, 还向所述次反应器的预提升段输入第四低温催化剂, 所述第四低温催化剂与所述 再生催化剂在预提升段混合; 其中, 所述第四低温催化剂包括降温再生催化剂或来自所述 次反应器后反应段的待生催化剂。
在上述的催化转化方法中, 通过调节第一低温催化剂和第二低温催化剂的催化剂循环 量来调整该预提升段和后反应段的温度或 /和剂油比。
本发明还提供了一种双反应器石油烃类原料催化转化装置, 自下而上分为预提升段、 油剂接触反应段和后反应段的主反应器和次反应器, 在所述主反应器和次反应器的预提升 段上部设有进料喷嘴, 所述主反应器包括带有滑阀的第一管路和第二管路, 所述第一管路 与主反应器预提升段相连通, 用于接入第一低温催化剂, 所述第二管路设置在所述主反应 器进料喷嘴上方, 与所述主反应器相连通, 用于接入第二低温催化剂的, 所述次反应器包 括用于与所述次反应器预提升段相连通的再生立管, 用于向所述次反应器预提升段接入再 生催化剂。
进一步地, 所述主反应器还包括带有滑阀的第三管路或再生立管, 所述第三管路与所 述主反应器预提升段相连通, 用于接入第三低温催化剂; 所述再生立管与所述主反应器预 提升段相连通, 用于向所述主反应器预提升段接入再生催化剂。
更进一步地, 所述第一管路和第二管路分别与以下各处中的一处相连通: 与所述再生 器连通的催化剂降温器、 所述次反应器的后反应段、 所述主反应器后反应段、 所述主反应 器汽提段;所述第三管路与以下各处中的一处相连通:与所述再生器连通的催化剂降温器、 所述次反应器的后反应段、 所述主反应器后反应段、 所述主反应器汽提段。
另外, 所述次反应器的预提升段设有催化剂冷却器, 用于对输入预提升段的再生催化 剂进行冷却降温。 进一步地, 所述次反应器还包括与所述次反应器预提升段相连通的、 用 于接入第四低温催化剂的通过管路, 所述管路分别与以下各处中的一处相连通: 与所述再 生器连通的催化剂降温器、 所述次反应器的后反应段。
进一步地, 所述催化转化装置还包括沉降器, 当只包括一个沉降器时, 所述主反应器 出口和所述次反应器的出口都接入所述沉降器, 当包括两个单独设置的沉降器时, 所述主 反应器的出口和所述次反应器的出口分别依次接入所述第一沉降器和所述第二沉降器。
更进一步地, 所述催化转化装置还包括再生器, 所述第一沉降器和 /或第二沉降器通 过待生立管与所述再生器连通。
另外, 本发明所述的反应器优先选用提升管反应器, 本发明所述的次反应器出口优先 接入所述主反应器出口设置的沉降器, 即优先选用次反应器与主反应器共用沉降器。
采用本发明的催化转化方法和装置, 至少具有以下有益结果:
1、 本发明在主反应器中部引入比再生催化剂温度低的催化剂 (在本发明中, 将比再 生催化剂温度低的催化剂定义为低温催化剂, 本发明所述的第一低温催化剂、 第二低温催 化剂、第三低温催化剂及第四低温催化剂均解释为温度低于再生催化剂的催化剂,其第一、 第二、 第三、 第四的标注只是为了对技术方案中所涉及的、 在不同位置接入到反应器中的 低温催化剂进行区分), 使整个反应过程中的剂油比 (C/0) 分成两个区, 即油剂接触反应 段和增加剂油比的后反应段, 通过对两区催化剂循环量的调节可以控制各区的反应程度从 而实现对总转化反应的控制。
2、 本发明实现了对主反应器中至少两个区域的温度控制, 主反应器出口温度不再同 常规催化转化反应由控制通过再生滑阀的再生催化剂循环量来维持的局面, 而是由控制进 入后反应段的低温催化剂循环量来调节, 而油剂接触反应段温度可由控制通过预提升段的 再生催化剂循环量或低温催化剂循环量来调节。 在油剂接触反应段改善了油剂接触情况, 以此减少了热裂化反应, 在后反应段增加了剂油比, 从而相应地调节了反应温度, 从而可 以进一步改善催化转化反应, 由此实现对整个催化反应的控制。
3、 本发明在对主反应器油剂接触反应段、 后反应段实行有效调节控制的同时, 在预 提升段使用低温催化剂或使用再生催化剂与低温催化剂的混合物, 不仅可实现对再生催化 剂的降温, 而且可通过对低温催化剂循环量的调节实现对预提升段温度的控制, 从而整体 上实现对反应器预提升段、 油剂接触反应段、 后反应段三个区域的同时控制。 具体地说, 通过对参与催化转化反应的催化剂温度、 活性及进入反应器不同位置的灵活调节, 可满足 工业应用的不同需要, 如: 为满足国内外对石油液化气和低碳烯烃 (以丙烯为主) 需求量 的日益增长, 可采用再生催化剂与低温催化剂 (如次反应器后反应段的待生催化剂) 混合 后由反应器底部进入与原料油接触, 在较高温度、 高活性下催化转化; 若多产芳烃, 可采 用在主反应器中部扩径即设置芳构化反应段、 引一部分主反应器的待生催化剂回流入进料 喷嘴上方等措施, 使芳构化反应段保持剂油比 3-20, 从而获得高芳烃含量的反应混合物; 本领域技术人员可根据具体情况进行调整。
4、 本发明采用对再生催化剂直接降温或通过再生催化剂与主反应器自回流待生催化 剂混合或再生催化剂与次反应器待生催化剂混合来降低与原料油接触的催化剂温度 (例 如, 再生催化剂的温度约 700°C ; 降温再生催化剂的温度<700 , 通常在 500-700°C, 主 反应器自身回流待生催化剂的温度约 50CTC ; 次反应器待生催化剂约 500°C, 很明显, 当 将后三种催化剂与再生催化剂进行混合后可以有效降低反应所用催化剂的温度), 最大限 度地降低整个反应过程中的干气产率, 使得液收增加, 经济性大大提高, 同时生成的汽油 产品中的乙烯含量下降, 满足了环保要求。 附图说明
图 1为本发明实施例 1结构示意图;
图 2为本发明实施例 1沿主反应器自下而上催化剂循环量分布示意图;
图 3为本发明实施例 1控制原理示意图;
图 4为本发明实施例 2结构示意图;
图 5为本发明实施例 3结构示意图; 图 6为本发明实施例 3沿主反应器自下而上催化剂循环量分布示意图;
图 7为本发明实施例 4结构示意图;
图 8为本发明实施例 5结构示意图;
图 9为本发明实施例 6结构示意图;
图 10为本发明实施例 7结构示意图;
图 11为本发明实施例 8结构示意图。 附图标记说明:
1:主反应器 2:沉降器 3:汽提段
4:再生器 5、 25:进料喷嘴 6:待生立管
7、 7a、 7b、 16:再生立管 8、 8'、 12、 15:催化剂回流管 9:催化剂降温器
10、 10'、 10'' :催化剂接力管 11:次反应器 13:预冷器
I :再生立管段 II:预提升段 III:油剂接触反应段 IV:后反应段 h-提升管高度 C:催化剂循环量
17、 18、 19:滑阀 T3:与相应滑阀相关的温度控制区的温度< 具体实施方式
以下结合附图详细说明本发明的技术方案, 本发明的保护范围包括但不限于此: 实施例 1: 见图 1。 一方面, 由再生立管 7进入的、 经催化剂降温器 9降温形成的降 温再生催化剂 (即第一低温催化剂) 与由再生立管 7b 进入的一部分再生催化剂在主反应 器 1底部的预提升段 II混合后, 向上与经进料喷嘴 5进入的雾化原料接触参与催化反应, 反应混合物向上与经催化剂接力管 10' 的来自次反应器 11的有活性的待生催化剂 (即第 二低温催化剂)接触进入后反应段 IV继续进行反应, 完成反应原料的催化转化; 另一方面, 一部分再生催化剂由再生立管 7a进入次反应器 11底部, 在提升介质作用下, 向上与经进 料喷嘴 25 进入的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 一部 分反应过的尚有活性的待生催化剂经催化剂接力管 10' 由进料喷嘴 5上方进入主反应器 1 中, 其余反应物流继续沿次反应器 11 上行, 完成轻质原料的催化转化; 两反应器中完成 催化转化的反应物流进入共用沉降器 2分离出催化剂, 经汽提段 3汽提后, 由待生立管 6 进入再生器 4再生。
其中, 再生立管 7、 7b、 7a、 催化剂接力管 10' 等设有滑阀, 如图 3所示, 再生立管 7上设有滑阀 18、 再生立管 7b上设有滑阀 17、 催化剂接力管 10' 上设有滑阀 19。 在实施 例 1中, 因在主反应器 1底部补入了经降温器 9降温的降温再生催化剂, 因此通过控制再 生立管 7上滑阀 18的开度大小, 即可控制预提升段 II处的温度; 另外, 因工程上降温器 9 的大小限制, 降温再生催化剂量的大小约占由再生立管 7b来的再生催化剂量的 20%左右, 所以, 油剂接触段 III的温度或称催化剂循环量主要由滑阀 17 的开度大小控制; 反应物向 上进入后反应段 IV后, 若不引入次反应器的待生催化剂(由催化剂接力管 10' ), 反应向上 不断进行, 催化剂快速失活, 催化选择性不断下降。 在本实施例中, 由催化剂接力管 10' 引入次反应器的待生催化剂, 则增加了反应段 IV的剂油比, 后反应段 IV的反应热等也相应 改变, 提升器的出口温度也随之改变。
在具体的工程实施时, 本发明所述系统还包括有自动控制系统, 用于控制整个反应- 再生系统的工作有序自动完成。 其中, 为了控制各反应段的温度或剂油比, 在主反应器 1 中设有不同的温度控制区 (如预提升段 II处、 油剂接触段 III处及提升管出口处), 在每个 温度控制区的适当位置设有一个或多个感温元件 (如热电偶), 用于采集该处的温度, 并 将采集到的温度值发送给自动控制系统中的中央处理器。
另外, 各滑阀与对应的滑阀开闭动力系统相连, 以使滑阀可以受滑阀开闭动力系统的 控制, 自动变换开度大小。 自动控制系统中存储有各温度控制区的相应温度设计值, 中央 处理器将该温度设计值与对应温度控制区的感温元件发送来的实际温度进行比较, 根据比 较结果驱动滑阀开闭动力系统, 从而使滑阀根据反应时实情况自动变换开度大小, 通过催 化剂的进入量来调节相应温度控制区的温度, 以维持设计值, 例如, 根据反应器出口的温 度 T3和该处温度的设计值来控制滑阀 19, 根据油剂接触反应段的温度 Τ2和该处温度的设 计值来控制滑阀 17, 根据预提升段的温度 1\和该处温度的设计值来控制滑阀 18。
在石油烃类原料的催化转化反应中, 剂油比与温度并不能分割开来, 二者是互相关联 的。 例如: 当再生催化剂 70CTC进入反应器与原料接触反应时, 根据反应-再生系统的热平 衡需要, 剂油比有一个值如 19, 当再生催化剂经降温器降温进入反应器时, 催化剂温度降 低为 640°C, 维持原有剂油比 19反应时就不能保证反应热平衡需要, 必须有更多的催化剂 进入反应器以补偿催化剂温度降低造成的热量不足, 即降温的同时必须提高剂油比 (此时 剂油比提高为 22) 以满足热平衡。 因此, 根据本发明实施例 1上述的调节方法, 在调节了 各温度控制区温度的同时, 也调节了剂油比。
另外, 如图 1所示, 在次反应器 11后反应段催化剂接力管 10 ' 的引出口处 (即次反 应器 11中部的扩径段) 设有气固分离单元, 当次反应器 11中的催化剂、 反应油气混合物 流沿次反应器 11 上行时, 经气固分离单元中的惯性或离心分离器, 使一部分催化剂从混 合物流中分离出来。 催化剂的分离、 引出量是可调的, 当需要的催化剂引出量减少时, 原 分离而未引出的催化剂可以进入催化剂混合物流继续上行。 关于催化剂的分离及引出以下 各实施例与本例原理相同, 以后不再赘述。
本实施例中, 沿主反应器自下而上催化剂循环量分布如图 2所示, 降温再生催化剂的 引入使得预提升段 II的催化剂循环量比再生立管段 I的催化剂循环量有大幅增加; 充分混 合后的预提升段 II的催化剂向上进入油剂接触段 III, 与重质原料接触进行原料的汽化、 转 化反应, 此反应段催化剂循环量保持不变; 反应物流向上进入后反应段 IV, 由于引入次反 应器的待生催化剂, 所以催化剂循环量明显增加, 通过滑阀根据各温度控制区的温度和设 定的温度设计值来调节催化剂的量, 不仅改进了后反应段的剂油比而且可维持希望的提升 管出口温度, 使整个提升管反应区的反应都处于可调节水平。
在本发明中, 第一、 二低温催化剂可以包括很多种, 在实施例 1中, 在主反应器 1底 部的预提升段 II接入的第一低温催化剂为降温再生催化剂, 在进料喷嘴 5的上方接入的第 二低温催化剂为来自次反应器的待生催化剂, 而且, 主反应器 1底部的预提升段 II除了接 入第一低温催化剂, 还可以接入再生催化剂 (如实施例 1 ) 和第三低温催化剂, 在次反应 器 1底部的预提升段 II也可以接入第四低温催化剂, 以下举例说明:
实施例 2: 见图 4。 来自催化剂回流管 8 ' 的自身回流待生催化剂 (第三低温催化剂), 与由再生立管 7进入的经催化剂降温器 9降温形成的降温再生催化剂 (第一低温催化剂) 在主反应器 1底部的预提升段 II中混合后, 向上与经进料喷嘴 5进入的雾化原料油接触参 与催化反应; 反应混合物向上与由催化剂接力管 10 ' 引入的来自次反应器 11的有活性的 待生催化剂接触在后反应段 IV继续进行反应, 完成反应原料的催化转化; 一部分再生催化 剂由再生立管 7a进入次反应器 11底部, 在提升介质作用下, 与次反应器 11后反应段回 流来的待生催化剂混合后, 向上与经进料喷嘴 25进入的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 反应过的尚有活性的待生催化剂一部分经催化剂接力管 10' 由进料喷嘴 5上方进入主反应器 1中, 一部分由催化剂回流管 12回流进入次反应器 11底部(即第四低温催化剂), 其余反应物流继续沿次反应器 11上行, 完成轻质原料的催 化转化; 两反应器中完成催化转化的反应物流进入共用沉降器 2分离出催化剂, 经汽提段 3汽提后的待生催化剂一部分由回流管 8 ' 回流进入主反应器 1预提升段 II中, 另一部分 由待生立管 6进入再生器 4再生。
实施例 3: 见图 5。 由再生立管 7进入的经催化剂降温器 9降温形成的降温再生催化 剂 (第一低温催化剂) 进入主反应器 1底部的预提升段 II中, 向上与经进料喷嘴 5进入的 雾化原料油接触参与催化反应; 反应混合物向上与经催化剂接力管 10 ' 的来自次反应器 11有活性的待生催化剂(第二低温催化剂)接触在后反应段 IV中继续进行反应, 完成重质 原料的催化转化; 一部分再生催化剂由再生立管 7a进入次反应器 11底部, 在提升介质作 用下, 与次反应器 11 后反应段回流来的待生催化剂 (第四低温催化剂) 混合后, 向上与 经进料喷嘴 25 进入的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 反应过的尚有活性的待生催化剂一部分经催化剂接力管 10'由进料喷嘴 5上方进入主反应 器 1中, 一部分由催化剂回流管 12回流进入次反应器 11底部, 其余反应物流继续沿次反 应器 11 上行, 完成轻质原料的催化转化; 两反应器中完成催化转化的反应物流进入共用 沉降器 2分离出催化剂, 经汽提段 3汽提后, 由待生立管 6进入再生器 4再生。
本实施例中,在预提升段 II输入的是降温再生催化剂,为了满足反应过程中的热平衡, 的与现有技术相比, 需要增加更大量的降温再生催化剂。 因此, 在预提升段 II处改进了油 剂比, 并通过调整降温再生催化剂的量可以调节预提升段 II处的温度。 沿主反应器自下而 上催化剂循环量分布如图 6所示, 在预提升段 II输入的是降温再生催化剂向上进入油剂接 触段 III, 与原料接触进行原料的汽化、 转化反应, 此反应段催化剂循环量保持不变; 反应 物流向上进入后反应段 IV, 引入次反应器 11 的待生催化剂改进了后反应段的剂油比, 使 反应器后反应段的反应处于可调节水平。
实施例 4: 见图 7。经催化剂接力管 10' ' 的来自次反应器 11有活性的待生催化剂(第 三低温催化剂),与由再生立管 7进入的经催化剂降温器 9降温形成的降温再生催化剂(第 一低温催化剂) 在主反应器 1底部的预提升段 II中混合后, 向上与经进料喷嘴 5进入的雾 化原料油接触参与催化反应, 反应混合物向上与来自催化剂回流管 8的自身回流待生催化 剂 (第二低温催化剂) 接触在后反应段 IV中继续进行反应, 完成反应原料的催化转化; 一 部分再生催化剂由再生立管 7a进入次反应器 11底部, 在提升介质作用下, 向上与经进料 喷嘴 25 进入的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 一部分 反应过的尚有活性的待生催化剂经催化剂接力管 10' ' 进入主反应器 1预提升段 II中, 其 余反应物流继续沿次反应器 11 上行, 完成轻质原料的催化转化; 两反应器中完成催化转 化的反应物流进入共用沉降器 2分离出催化剂, 经汽提段 3汽提后的待生催化剂一部分经 回流管 8由进料喷嘴 5上方进入主反应器 1, 另一部分由待生立管 6进入再生器 4再生。
实施例 5: 见图 8。 经催化剂接力管 10的来自次反应器 11有活性的待生催化剂 (第 一低温催化剂) 与由再生立管 7b进入的一部分再生催化剂在主反应器 1底部的预提升段 II中混合后, 向上与经进料喷嘴 5进入的雾化原料油接触参与催化反应, 反应混合物向上 与来自催化剂回流管 8的自身回流待生催化剂 (第二低温催化剂) 接触在后反应段 IV中继 续进行反应, 完成重质原料的催化转化; 一部分再生催化剂由再生立管 7a进入次反应器 11底部, 经预冷器 13降温预冷后, 在提升介质作用下, 向上与经进料喷嘴 25进入的雾化 轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 一部分反应过的尚有活性的 待生催化剂经催化剂接力管 10进入主反应器 1预提升段 II中, 其余反应物流继续沿次反 应器 11 上行, 完成轻质原料的催化转化; 两反应器中完成催化转化的反应物流进入共用 沉降器 2分离出催化剂, 经汽提段 3汽提后的待生催化剂一部分经回流管 8由进料喷嘴 5 上方进入主反应器 1, 另一部分由待生立管 6进入再生器 4再生。
实施例 6: 见图 9。 由主反应器 1后反应段 IV回流管 15回流来的自身回流待生催化剂 (第一低温催化剂) 经与由再生立管 7b进入的一部分再生催化剂在主反应器 1底部的预 提升段 II中混合后, 向上与经进料喷嘴 5进入的雾化原料油接触参与催化反应, 反应混合 物向上与经催化剂接力管 10的来自次反应器 11有活性的待生催化剂 (第二低温催化剂) 接触在后反应段 IV中继续进行反应, 一部分反应过的尚有活性的待生催化剂经催化剂回流 管 15回流进入主反应器 1预提升段 II中, 其余反应物流继续沿次反应器 11上行, 完成反 应原料的催化转化; 一部分再生催化剂由再生立管 7a进入次反应器 11底部, 在提升介质 作用下, 与次反应器 11后反应段回流来的待生催化剂混合后, 向上与经进料喷嘴 25进入 的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 反应过的尚有活性的 待生催化剂一部分经催化剂接力管 10' 由进料喷嘴 5上方进入主反应器 1中, 一部分由催 化剂回流管 12回流进入次反应器 11底部 (第四低温催化剂), 其余反应物流继续沿次反 应器 11 上行, 完成轻质原料的催化转化; 两反应器中完成催化转化的反应物流进入共用 沉降器 2分离出催化剂, 经汽提段 3汽提后, 由待生立管 6进入再生器 4再生。
实施例 7 : 见图 10。 经催化剂接力管 10的来自次反应器 11有活性的待生催化剂 (第一低温催化剂)与由再生立管 7b进入的一部分再生催化剂在主反应器 1底部的预 提升段 II中混合后, 向上与经进料喷嘴 5进入的雾化原料油接触参与催化反应, 反应 混合物向上与经催化剂降温器 9降温形成的降温再生催化剂 (第二低温催化剂) 接触 在后反应段 IV中继续进行反应, 完成反应原料的催化转化; 一部分再生催化剂由再生 立管 7a进入次反应器 11底部, 在提升介质作用下, 向上与经进料喷嘴 25进入的雾化 轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 一部分反应过的尚有活 性的待生催化剂经催化剂接力管 10进入主反应器 1预提升段 II中,其余反应物流继续 沿次反应器 11上行, 完成轻质原料的催化转化; 两反应器中完成催化转化的反应物流 进入共用沉降器 2分离出催化剂, 经汽提段 3汽提后, 由待生立管 6进入再生器 4再 生。
实施例 8 : 见图 1 1。 经催化剂接力管 10的来自次反应器 11有活性的待生催化剂 (第一低温催化剂)与由再生立管 7b进入的再生催化剂在主反应器 1底部的预提升段 II中混合后, 向上与经进料喷嘴 5进入的雾化原料接触参与催化反应, 反应混合物向 上与经催化剂接力管 10 ' 的来自次反应器 1 1 的有活性的待生催化剂 (即第二低温催 化剂) 接触进入后反应段 IV继续进行反应, 完成反应原料的催化转化; 一部分再生催 化剂由再生立管 7a进入次反应器 11底部, 在提升介质作用下, 向上与经进料喷嘴 25 进入的雾化轻质原料接触参与催化反应, 反应混合物向上进入后反应段, 一部分反应 过的尚有活性的待生催化剂经催化剂接力管 10进入主反应器 1预提升段 II中,另一部 分待生催化经催化剂接力管 10 ' 自进料喷嘴上方进入主反应器 1, 另外一部分待生催 化剂经回流管 12回流进入次反应器 11底部(即第四低温催化剂), 其余反应物流继续 沿次反应器 11上行, 完成轻质原料的催化转化; 两反应器中完成催化转化的反应物流 进入共用沉降器 2分离出催化剂, 经汽提段 3汽提后, 由待生立管 6进入再生器 4再 生。
另外, 在以上实施例中, 包括了所涉及到的所有装置, 如主反应器、 次反应器、 再生器和沉降器等, 根据催化转化反应所需的装置, 本发明要保护的装置当然可以只 包括主反应器和次反应器, 或者是在主反应器和次反应器的基础上增加沉降器和再生 器等装置, 这些结构中的催化转化方法与上述实施例相同, 在此不再赘述。

Claims

权利要求书
1. 一种双反应器石油烃类原料催化转化方法, 催化转化反应在主反应器和原料轻于 主反应器中的原料的次反应器中进行, 其特征在于: 向所述主反应器的预提升段输入第一 低温催化剂, 所述第一低温催化剂经预提升气体输送进入油剂接触反应段, 与自进料喷嘴 进入的反应原料接触进行催化转化反应, 反应混合物向上与在所述进料喷嘴上方、 向主反 应器内输入的第二低温催化剂接触, 在后反应段继续进行反应, 完成主反应器反应原料的 催化转化反应。
2. 根据权利要求 1所述的催化转化方法, 其特征在于: 向主反应器预提升段输入第 一低温催化剂的同时, 还向所述主反应器预提升段输入再生催化剂或第三低温催化剂, 所 述第一低温催化剂与所述再生催化剂或第三低温催化剂混合, 经预提升气体输送进入油剂 接触反应段。
3. 根据权利要求 1或 2所述的催化转化方法, 其特征在于: 所述第一低温催化剂和 / 或第二低温催化剂包括降温再生催化剂、 来自次反应器后反应段的待生催化剂、 来自主反 应器汽提段的自身回流待生催化剂或来自所述主反应器后反应段的自身回流待生催化剂。
4. 根据权利要求 2所述的催化转化方法, 其特征在于: 所述第三低温催化剂包括来 自所述次反应器后反应段的待生催化剂、 来自主反应器汽提段的自身回流待生催化剂或来 自所述主反应器后反应段的自身回流待生催化剂。
5. 根据权利要求 1所述的催化转化方法, 其特征在于: 向所述次反应器的预提升段 输入再生催化剂时, 在所述次反应器的预提升段对输入的再生催化剂进行冷却降温。
6. 根据权利要求 1或 5所述的催化转化方法, 其特征在于: 向所述次反应器的预提 升段输入再生催化剂的同时, 还向所述次反应器的预提升段输入第四低温催化剂, 所述第 四低温催化剂与所述再生催化剂在预提升段混合; 其中, 所述第四低温催化剂包括降温再 生催化剂或来自所述次反应器后反应段的待生催化剂。
7. 根据权利要求 1所述的催化转化方法, 其特征在于: 通过调节第一低温催化剂和 第二低温催化剂的催化剂循环量来调整该预提升段和后反应段的温度或 /和剂油比。
8. 一种双反应器石油烃类原料催化转化装置, 包括自下而上分为预提升段、 油剂接 触反应段和后反应段的主反应器和次反应器, 在所述主反应器和次反应器的预提升段上部 设有进料喷嘴, 其特征在于: 所述主反应器包括带有滑阀的第一管路和第二管路, 所述第 一管路与主反应器预提升段相连通, 用于接入第一低温催化剂, 所述第二管路设置在所述 主反应器进料喷嘴上方, 与所述主反应器相连通, 用于接入第二低温催化剂, 所述次反应 器包括用于与所述次反应器预提升段相连通的再生立管, 用于向所述次反应器预提升段接 入再生催化剂。
9. 根据权利要求 8所述的催化转化装置, 其特征在于: 所述主反应器还包括带有滑 阀的第三管路或再生立管, 所述第三管路与所述主反应器预提升段相连通, 用于接入第三 低温催化剂; 所述再生立管与所述主反应器预提升段相连通, 用于向所述主反应器预提升 段接入再生催化剂。
10. 根据权利要求 8所述的催化转化装置, 其特征在于: 所述第一管路和第二管路分 别与以下各处中的一处相连通: 与一再生器连通的催化剂降温器、 所述次反应器的后反应 段、 所述主反应器后反应段、 所述主反应器汽提段。
11. 根据权利要求 9所述的催化转化装置, 其特征在于: 所述第三管路与以下各处中 的一处相连通: 与一再生器连通的催化剂降温器、 所述次反应器的后反应段、 所述主反应 器后反应段、 所述主反应器汽提段。
12. 根据权利要求 8所述的催化转化装置, 其特征在于: 所述次反应器的预提升段设 有催化剂冷却器。
13. 根据权利要求 8-12任一所述的催化转化装置, 其特征在于: 所述次反应器还包 括与所述次反应器预提升段相连通的、 用于接入第四低温催化剂的管路, 所述管路分别与 以下各处中的一处相连通: 与一再生器连通的催化剂降温器、 所述次反应器的后反应段。
14. 根据权利要求 8-12任一所述的催化转化装置, 其特征在于: 还包括第一沉降器, 所述主反应器的出口和所述次反应器的出口分别接入所述第一沉降器。
15. 根据权利要求 14所述的催化转化装置, 其特征在于: 还包括再生器, 所述第一 沉降器通过待生立管与所述再生器连通。
16. 根据权利要求 8-12任一所述的催化转化装置, 其特征在于: 还包括单独设置的 第一沉降器和第二沉降器, 所述主反应器的出口和所述次反应器的出口分别依次接入所述 第一沉降器和所述第二沉降器。
17. 根据权利要求 16所述的催化转化装置, 其特征在于: 还包括再生器, 所述第一 沉降器和第二沉降器分别通过待生立管与所述再生器连通。
18. 根据权利要求 8-12任一所述的催化转化装置, 其特征在于: 所述主反应器和次 反应器分别为提升管反应器。
PCT/CN2010/078163 2009-11-04 2010-10-27 双反应器石油烃类原料催化转化方法及装置 WO2011054265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910066364.9A CN102051210B (zh) 2009-11-04 2009-11-04 双提升管石油烃类原料催化转化方法及装置
CN200910066364.9 2009-11-04

Publications (1)

Publication Number Publication Date
WO2011054265A1 true WO2011054265A1 (zh) 2011-05-12

Family

ID=43956016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078163 WO2011054265A1 (zh) 2009-11-04 2010-10-27 双反应器石油烃类原料催化转化方法及装置

Country Status (2)

Country Link
CN (1) CN102051210B (zh)
WO (1) WO2011054265A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861753A (zh) * 2005-10-12 2006-11-15 洛阳石化设备研究所 一种使用汽油重油偶合反应器的催化转化方法和装置
CN1888025A (zh) * 2005-06-30 2007-01-03 洛阳石化设备研究所 一种催化转化方法及催化转化装置
CN1912067A (zh) * 2005-08-08 2007-02-14 洛阳石化设备研究所 一种催化剂接力使用的催化裂化转化方法及其装置
CN1928023A (zh) * 2006-09-06 2007-03-14 中国石油化工集团公司 一种提升管催化裂化方法与装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189543C (zh) * 2003-06-19 2005-02-16 中国石油化工集团公司 一种轻烯烃催化转化方法
CN1928022B (zh) * 2005-09-09 2010-04-21 洛阳石化设备研究所 一种低温大剂油比催化转化反应方法及反应器
CN101161786B (zh) * 2006-10-12 2012-05-09 中国石油化工股份有限公司 一种石油烃类的转化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888025A (zh) * 2005-06-30 2007-01-03 洛阳石化设备研究所 一种催化转化方法及催化转化装置
CN1912067A (zh) * 2005-08-08 2007-02-14 洛阳石化设备研究所 一种催化剂接力使用的催化裂化转化方法及其装置
CN1861753A (zh) * 2005-10-12 2006-11-15 洛阳石化设备研究所 一种使用汽油重油偶合反应器的催化转化方法和装置
CN1928023A (zh) * 2006-09-06 2007-03-14 中国石油化工集团公司 一种提升管催化裂化方法与装置

Also Published As

Publication number Publication date
CN102051210B (zh) 2014-07-16
CN102051210A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
US10184088B2 (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or middle distillates and light olefins
JP6967135B2 (ja) オレフィン製造のための一体化された熱・接触分解
CN101161786B (zh) 一种石油烃类的转化方法
CN108794292B (zh) 一种多产丙烯的催化转化方法
CN107286972B (zh) 一种多产丙烯的催化转化方法
WO2016054879A1 (zh) 一种催化裂化反应再生方法
CN111807916B (zh) 一种高效的含氧化合物生产低碳烯烃的装置
US20230256427A1 (en) Method and equipment for circulating cooled regenerated catalyst
EP3919589A1 (en) Method for catalytic conversion of hydrocarbon with downer reactor and device thereof
WO2019228131A1 (zh) 一种多产丙烯的催化反应再生方法
JP5764214B2 (ja) 接触分解方法及び装置
CN103788992A (zh) 一种催化裂化方法
WO2011054265A1 (zh) 双反应器石油烃类原料催化转化方法及装置
CN102465006B (zh) 一种催化裂化方法及装置
CN1333048C (zh) 一种石油烃催化转化方法
CN102485841B (zh) 一种催化裂化方法及装置
CN102051198B (zh) 单提升管石油烃类原料催化转化方法及装置
CN117304972A (zh) 一种提高低碳烯烃和汽柴油收率的双催化剂催化裂化装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827879

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2826/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827879

Country of ref document: EP

Kind code of ref document: A1