WO2019228131A1 - 一种多产丙烯的催化反应再生方法 - Google Patents

一种多产丙烯的催化反应再生方法 Download PDF

Info

Publication number
WO2019228131A1
WO2019228131A1 PCT/CN2019/085280 CN2019085280W WO2019228131A1 WO 2019228131 A1 WO2019228131 A1 WO 2019228131A1 CN 2019085280 W CN2019085280 W CN 2019085280W WO 2019228131 A1 WO2019228131 A1 WO 2019228131A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
light hydrocarbon
zone
catalyst
regeneration
Prior art date
Application number
PCT/CN2019/085280
Other languages
English (en)
French (fr)
Inventor
石宝珍
Original Assignee
青岛京润石化设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛京润石化设计研究院有限公司 filed Critical 青岛京润石化设计研究院有限公司
Publication of WO2019228131A1 publication Critical patent/WO2019228131A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/06Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/20Plural distinct oxidation stages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of catalytic conversion of petroleum hydrocarbons, and particularly relates to a catalytic reaction regeneration method for producing propylene, which can improve the yield of propylene.
  • Propylene is one of the most important petrochemical raw materials. 70% of propylene is produced by cracking of petroleum hydrocarbons in a tube furnace, and another 30% of propylene is provided by a catalytic cracking process. Drawing on the operation and design experience of conventional heavy oil catalytic cracking reaction-regeneration systems, researchers at home and abroad have developed a series of technologies for catalytic cracking of heavy oil to produce propylene.
  • One of the feasible routes for the production of propylene by the catalytic cracking method is the dual-reactor light hydrocarbon or secondary feedstock or gasoline refining. Such as FDFCC, Maxofin and so on.
  • KBR and Mobil Technology jointly developed the Maxofin technology for producing propylene using heavy oil as a raw material.
  • This technology uses a dual riser reactor.
  • the first riser cracks conventional FCC raw materials.
  • the naphtha produced by the reaction is cracked into a second riser to increase propylene production.
  • the two risers share a settler and regenerator.
  • UOP company developed RxPro technology for producing propylene with low carbon olefins above C4. This technology also uses a double riser reactor structure. The first riser reactor is used for cracking heavy raw materials, and the second riser reactor is used for The C4 component and naphtha produced in the first reactor are reprocessed, and the two reaction products enter separate fractionation systems.
  • TMP technology based on two-stage riser catalytic cracking technology.
  • This technology uses heavy oil as raw material, and utilizes the process characteristics of two-stage riser catalytic cracking process, catalytic relay, and large agent-to-oil ratio to optimize the combination of feeding methods for different types of reaction materials to control the suitability of different materials. Reaction conditions to achieve the purpose of improving the yield of propylene.
  • the existing technology is mainly improved from the perspective of catalysts and reaction conditions such as reaction temperature and time.
  • reaction conditions such as reaction temperature and time.
  • Various process technologies only consider the reactor as a pipe or a riser.
  • the light hydrocarbon or the second feedstock or gasoline has a low final boiling point and is easily gasified.
  • the gasification temperature often differs greatly from the reaction temperature; while the catalytic cracking reaction is a gas-solid phase reaction, the reaction raw materials need to be gasified before the catalytic cracking reaction can proceed.
  • a regenerated catalyst is used. All or most of the heat required by the reactor is provided from the bottom of the reactor.
  • the catalyst from the regenerator also mainly enters the reactor from the bottom of the reactor.
  • the bottom of the reactor is the highest temperature in the reactor. The position gradually decreases with the progress of the reaction; the low-temperature reaction raw materials are first contacted with the catalyst at the highest temperature.
  • An object of the present invention is to provide an improved catalytic reaction regeneration method for producing propylene.
  • the technical scheme of the present invention is mainly to realize the three-stage series countercurrent regeneration of the catalyst to be regenerated in a regenerator during the regeneration of the regenerant, which can provide different catalysts for the two reactors, and the catalyst between the reactor and the regenerator is still maintained.
  • Gravity transport; reaction method realizes separation of low-temperature gasification of light hydrocarbons or second raw materials from high-temperature reactions, semi-regenerant reaction, and low-temperature gasification of catalysts that are first contacted with moderately carbon-containing light hydrocarbons or second raw materials, improving propylene selectivity
  • the invention changes the original regeneration agent distribution mode and heating mode, and provides better micro-reaction conditions and reaction gas-solid contact form for light hydrocarbon or second raw material reaction.
  • a propylene-producing catalytic reaction regeneration method includes a regeneration process and a reaction process, wherein a feedstock oil or a first feedstock reactor (also referred to as a main reactor) and a light hydrocarbon or a second feedstock reactor (also referred to as a secondary reactor) are provided.
  • a feedstock oil or a first feedstock reactor also referred to as a main reactor
  • a light hydrocarbon or a second feedstock reactor also referred to as a secondary reactor
  • the feedstock or first feedstock reactor is used to catalyze the reaction of the feedstock or the first feedstock (ie fresh feedstock or the first feedstock); preferably, the feedstock or the first feedstock
  • the feedstock reactor is a riser reactor (also known as a feedstock or first feedstock riser), which is composed of a pre-lift zone (or catalyst delivery zone) and a feedstock or first feedstock reaction zone; light hydrocarbons or second feedstock Hydrocarbon or second raw material reactor reaction, preferably, light hydrocarbon or second raw material reactor can be used for circulating oil or refining oil reaction at the same time; raw oil or first raw material reactor and light hydrocarbon or second raw material reactor use from Catalysts in different regeneration zones (different regeneration levels) of the same regenerator; the regenerator simultaneously regenerates the regenerant in the two reactors;
  • the regenerator includes a catalyst regeneration zone and a gas-solid separation zone.
  • the catalyst regeneration is divided into a three-stage regeneration zone connected in series, namely a first regeneration zone (also referred to as a first catalyst regeneration zone) and a second regeneration zone (also referred to as a second catalyst regeneration zone). Zone) and the third regeneration zone (also known as the third catalyst regeneration zone).
  • the three-stage regeneration zone is set up and down. The first regeneration zone is at the bottom, the second regeneration zone is at the top, and the third regeneration zone is at the first regeneration zone.
  • a partition is arranged between the first regeneration zone and the third regeneration zone; above the second regeneration zone is a gas-solid separation zone; the first regeneration zone outlet is provided with a first regeneration zone logistics conveying pipe (The first regeneration zone logistics conveying pipe is located in the third regeneration zone), the exit or upper end of the first regeneration zone logistics conveying pipe is provided with a flue gas and a catalyst orifice plate; preferably, the flue gas and catalyst orifice plate is a second regeneration zone Distribution plate, the gas and catalyst in the first regeneration zone enter the second regeneration zone through the distribution plate;
  • the regeneration process is:
  • Compressed air that is, fresh compressed oxygen-containing gas with high oxygen content
  • the compressed air enters different regeneration zones separately.
  • the first compressed air enters the first regeneration zone from the first compressed air distributor to carry out the catalyst (this Part of the waiting catalyst has high carbon and hydrogen) preliminary regeneration;
  • the first regeneration zone is in the form of a turbulent fluidized bed or a circulating fluidized bed, that is, the first regeneration zone is designed according to the conditions of a turbulent fluidized bed or a circulating fluidized bed,
  • the apparent flow velocity of the gas is generally not greater than 2.5 m / s;
  • the catalyst and gas after the initial regeneration in the first regeneration zone (54A) enter the second regeneration zone (54B) through the first regeneration zone logistics delivery pipe (53), and continue the catalyst regeneration;
  • the catalyst and gas after the initial regeneration in the first regeneration zone enter the second regeneration zone through the first regeneration zone logistics conveying pipe (the flue gas and catalyst orifice plate can be set on the top of the first regeneration zone logistics conveying pipe) to continue the catalyst regeneration;
  • the catalyst regeneration generates a regenerant (also referred to as a regenerated catalyst) or a semi-regenerated catalyst (or a semi-regenerated agent). Specifically, the remaining oxygen in the gas and the catalyst remaining coke after the regeneration in the first regeneration zone continue in the second regeneration zone.
  • the second compressed air enters the third regeneration zone from the second compressed air distributor.
  • the semi-regenerated catalyst or regenerant in the second regeneration zone is returned to the third regeneration zone through the catalyst or semi-regenerant return pipe (that is, gravity transport).
  • the compressed air and the regenerant or semi-regenerated catalyst from the second regeneration zone continue the regeneration reaction to complete the catalyst regeneration (that is, to complete the oxidation reaction of the remaining carbon of the catalyst to generate a regenerated catalyst) or to cool the catalyst after being mixed and fluidized; the second regeneration
  • the zone and the third regeneration zone are in the form of a turbulent fluidized bed;
  • the regenerated catalyst after the regeneration or cooling in the third regeneration zone is transported from the catalyst fluidized bed in the third regeneration zone to the raw material oil or the first raw material reactor through the regeneration agent conveying pipe for the raw material oil or the first raw material catalytic reaction; the second regeneration zone
  • the regenerated regenerant or semi-regenerated catalyst is transported from the regenerant or semi-regenerated agent pipeline to the light hydrocarbon or second raw material reaction zone of the second raw material reactor to perform the light hydrocarbon or second raw material catalytic reaction;
  • the oxygen-containing gas regenerated in the third regeneration zone enters the second regeneration zone through the gas orifice plate, and the remaining oxygen continues to be used for catalyst regeneration (realizing the oxygen in series and the catalyst countercurrent regeneration);
  • a catalyst return line may be provided between the second regeneration zone and the first regeneration zone, so that part of the catalyst in the second regeneration zone is returned to the first regeneration zone;
  • the inlet of the external heater catalyst is set in the second regeneration zone, and the heat-removed catalyst enters the third regeneration zone;
  • the reaction process is:
  • the catalytic raw material oil or the first raw material is atomized by steam and enters the raw material oil or the first raw material reactor, and is contacted with and mixed with the regenerant sent from the third regeneration zone through the regenerant conveying pipe, and then gasified and catalytically cracked.
  • the raw material oil or the first raw material reaction product also known as the raw material oil or the first raw material reaction product stream or the raw material oil or the first raw material reaction oil and gas
  • the light hydrocarbon or second raw material reactor contains a pre-lifting zone, a gasification zone, and a catalytic cracking reaction zone that raises the temperature from the bottom up, that is, a light hydrocarbon or a second raw material reaction zone (also called a light hydrocarbon or a second raw material catalytic cracking reaction zone).
  • the catalyst after the reaction of light hydrocarbons or the second raw material is mixed in the gasification zone to realize the gasification of the light hydrocarbons or the second raw material; after the gasification of the light hydrocarbons or the second raw material, the catalyst enters the light hydrocarbon or the second raw material reaction zone together with the catalyst.
  • the regeneration agent or semi-regenerated catalyst in the second regeneration zone is gravity-transported (also referred to as sedimentation) from the regeneration agent or semi-regeneration agent pipe to the light hydrocarbon or the second raw material.
  • the reaction zone is mixed with the gasified light hydrocarbon or the second raw material and regenerated.
  • Agent or semi-regenerated catalyst Heat required for the hydrocarbon or second raw material reactor, and increase the temperature of the stream entering the reaction zone of the light hydrocarbon or the second raw material, so that the light hydrocarbon or the second raw material is subjected to a catalytic cracking reaction, and the reaction temperature is determined by the regeneration agent from the second regeneration zone.
  • semi-regenerated catalyst amount control light hydrocarbon or second raw material reactor or settler shared with raw oil or first raw material reactor, or separate light hydrocarbon or second raw material reactor settler; light hydrocarbon or second The raw material reaction product and the catalyst enter the light hydrocarbon or the second raw material reactor cyclone for gas-solid separation.
  • the light hydrocarbon or the second raw material reaction product is mixed with the raw material oil or the first raw material reaction product to react from the raw material oil or the first raw material.
  • the product outlet flows out of the settler or directly exits the settler or light hydrocarbon or second raw material reactor settler from the independent light hydrocarbon or second raw material reaction product outlet; the reacted catalyst is stripped and returned to the first regeneration zone.
  • the feedstock or the first feedstock in the present invention refers to a catalytic feedstock used in FCC (Fluid Catalytic Cracking) technology, including heavy oil from atmospheric and vacuum distillation, wax oil, and heavy oil from hydrocracking of residue oil. It is well known to those skilled in the art.
  • FCC Fluid Catalytic Cracking
  • the catalytic reaction regeneration method for propylene-producing propylene contains C4, C5, catalytic gasoline, naphtha, catalytic light gasoline, coking One or more of gasoline, catalytic light diesel (the single ring-dominated light diesel part of catalytic diesel) and catalytically cracked diesel after hydrogenation.
  • a graded feed reaction is adopted according to the degree of cracking difficulty.
  • the graded feed order is C4, C5, naphtha, catalytic light gasoline, catalytic gasoline, coking gasoline, catalytic Light diesel or catalytically cracked diesel.
  • the boiling point range and composition of the above-mentioned catalytic cracked diesel oil are well known to those skilled in the art.
  • the boiling point and composition range of the components of the hydrogenation of the catalytic cracked diesel oil are also well-known technologies.
  • C4 is a hydrocarbon of four carbon atoms.
  • C5 is a hydrocarbon of five carbon atoms, which will not be described in detail here.
  • the light hydrocarbon or the second raw material is gasoline or a raw material having a final boiling point lower than 200 ° C (such as the light
  • the hydrocarbon or second raw material is naphtha, catalytic light gasoline, C4, C5 components).
  • the light hydrocarbon or second raw material While the light hydrocarbon or the second raw material reaction zone is reacting, part of the light hydrocarbon or the second raw material reaction product, or the refining oil or the catalytic cracked diesel oil in the raw material oil or the first raw material reaction product, or the hydrogenated catalytic cracked diesel oil Enter the light hydrocarbon at the exit (or downstream) of the light hydrocarbon or second raw material reaction zone or at the light hydrocarbon or second raw material reaction product delivery pipe (both of which are technically downstream of the light hydrocarbon or second raw material reaction zone).
  • Hydrocarbon or second raw material reactor using the heat of the light hydrocarbon or second raw material reaction zone stream and the catalyst to realize the reaction of this part of the stream, while reducing the temperature of the light hydrocarbon or second raw material reaction product in the light hydrocarbon or second raw material reaction zone . Therefore, the post-reaction degree of the reaction product of the light hydrocarbon or the second raw material can be reduced, and the depth of the high-temperature catalytic cracking reaction of the light hydrocarbon or the second raw material can be controlled.
  • catalytic cracked diesel oil or hydrogenated catalytic cracked diesel oil (that is, the catalytic cracked diesel oil is first hydrotreated) can be separated into a single ring-based portion (or a low-boiling point-based portion) and a polycyclic ring.
  • the main part, the monocyclic main part can be used in the present invention, and the light hydrocarbon or the second raw material reaction product delivery pipe enters the light hydrocarbon or the second raw material reactor to perform the reaction again.
  • the low-boiling point-based portion (low-boiling hydrogenated catalytic diesel oil) is a component having a boiling point lower than 280 ° C.
  • the method for regenerating catalytically-produced propylene, further, the light hydrocarbon or the second raw material is catalytically cracked diesel or hydrogenated catalytically cracked diesel (ie, catalytically cracked diesel) Hydrotreating first), or the single-ring-based part separated from the hydrogenation of diesel or catalytic diesel.
  • the light hydrocarbon or second raw material reactor further includes a catalyst splitting zone, and the catalyst splitting zone is arranged between the light hydrocarbon or second raw material reaction zone and the light hydrocarbon or second raw material reaction product delivery pipe so that the light hydrocarbon Or the catalyst and gas reacted in the reaction zone of the second raw material enter the catalyst splitting zone through the split conveying pipe, and the separated catalyst is returned to the light hydrocarbon through the catalyst return pipe or the light hydrocarbon at the bottom of the second raw material reactor or the second raw material reactor is pre-lifted. Zone, the gas and undivided catalyst enter the light hydrocarbon or secondary raw material reaction product delivery pipe above.
  • the catalytic reaction regeneration method described above The catalyst generated in the regenerator is either a completely regenerated regeneration agent or an incompletely regenerated semi-regeneration agent. The difference is that the amount of coke is different, but the activity of the semi-regeneration agent is different. Normal catalytic reactions can also be achieved; in the present invention, when the catalyst generated after regeneration in the second regeneration zone is a semi-regenerant, the carbon content is usually greater than 0.08%; the catalyst generated after regeneration in the third regeneration zone is a regenerant or after cooling down Specifically, in the multi-stage regeneration mode of the regenerator, the second regeneration zone is above, the first regeneration zone is below, and the third regeneration zone is in the middle.
  • the logistics conveying pipe in the first regeneration zone enters the second regeneration zone to generate regenerant or semi-regenerant.
  • the carbon content of the catalyst is controlled by the residence time and temperature of the catalyst in the second regeneration zone. The temperature can increase the regeneration ratio and reduce the carbon content of the catalyst.
  • the catalyst or semi-regenerant in the second regeneration zone enters the third regeneration through the catalyst or semi-regenerant return pipe. The regeneration zone continues to regenerate. When the regeneration ratio in the third regeneration zone is low, the compressed air in the third regeneration zone cools down the regenerant; the regenerant from the third regeneration zone enters the feedstock oil or the first feedstock reactor; Multi-stage regeneration, carbon content, etc., are well-known technologies in the technical field to which they belong and will not be described in detail here.
  • the regeneration reaction can be completed in the second regeneration zone by adjusting the catalyst storage amount.
  • the third regeneration zone is used as a catalyst storage or circulation link, that is, the second regeneration zone can generate both Semi-regenerant, can also generate regenerant;
  • the amount of catalyst to be conveyed to the first regeneration zone through the amount of catalyst delivered from the catalyst or semi-regenerant return pipe, and the amount of catalyst to be delivered to the first regeneration zone by the regenerant pipe and the light hydrocarbon or second raw material reactor regenerant pipe.
  • the ratio of the amount of catalyst stored in the second-agent regeneration zone to the degree of regeneration in the second regeneration zone; the amount of catalyst in the third regeneration zone is controlled by the amount of catalyst delivered from the catalyst or semi-regenerant return pipe and the amount of regeneration delivered by the regenerant pipe, Furthermore, the gas is allowed to carry the catalyst into the second regeneration zone; the catalyst storage amount in each regeneration zone can adjust the regeneration ratio of each zone.
  • the regeneration ratio refers to the reaction ratio of carbon and hydrogen.
  • the light hydrocarbon or the second raw material broadly includes C4, C5, light gasoline, gasoline or naphtha (including naphtha, catalytic light gasoline, coking gasoline), light cycle oil, light diesel, catalytic diesel, Catalytic diesel after hydrogenation, light diesel oil separated after hydrogenation of catalytic diesel oil; preferably, the light hydrocarbon or the second raw material may be a gasoline component or a single ring component separated from the diesel;
  • the feedstock is a fraction with a final boiling point below 200 ° C.
  • the reaction temperature of the light hydrocarbon or second raw material reaction zone is 530 ° C to 620 ° C.
  • the light hydrocarbon or The reaction temperature of the second raw material reaction zone is 640 to 700 ° C;
  • the reaction temperature in the catalytic cracking reaction zone of the light hydrocarbon or the second raw material is 510 to 540 ° C;
  • the ideal gasification temperature of the light hydrocarbon or second raw material in the light hydrocarbon or second raw material reactor is not more than 450 ° C, and the ideal light hydrocarbon or second raw material reaction temperature is 530 ° C-670 ° C;
  • the light hydrocarbon or the second raw material is preferably selected from catalytic gasoline, catalytic light gasoline, and catalytic light diesel oil;
  • the light hydrocarbon or second raw material is light diesel oil or hydrogenated light catalytic diesel oil
  • the recommended reaction temperature is not higher than 540 ° C.
  • the light diesel oil or light catalytic diesel oil preferably uses components with a boiling point lower than 280 ° C, especially Components with a boiling point below 260 ° C;
  • the catalytic feedstock or the first feedstock and the light hydrocarbon or the second feedstock are reacted in the feedstock or the first feedstock reactor and the light hydrocarbon or the second feedstock reactor, respectively.
  • the refining oil from the bottom of the fractionation tower is based on the light hydrocarbon or
  • the reaction temperature of the second raw material is preferentially reacted in the light hydrocarbon or the second raw material reactor in the light hydrocarbon or the second raw material reaction product delivery pipe.
  • the feed amount of the refining oil in the light hydrocarbon or the second raw material reactor is based on the light hydrocarbon or the second raw material.
  • the reactor outlet temperature is not lower than 490 ° C, and the remaining refining oil is still reacted in the feedstock or the first feedstock reactor according to the conventional method.
  • the catalytic cracking reaction of light hydrocarbons or the second feedstock uses specific catalysis. High reaction temperature of feedstock or first feedstock;
  • single-ring-based catalytic cracking diesel also called light catalytic diesel
  • hydrogenated light catalytic diesel can be Reaction in the light pipe of the raw material reactor or the reaction tube of the second raw material reaction product
  • the catalytic cracking or cracking reaction of petroleum hydrocarbon is an endothermic reaction, and the heat required for the reaction is provided by the catalyst from the regenerator.
  • a catalyst distributor may be provided in the light hydrocarbon or second raw material reaction zone. Allowing the regenerant or semi-regenerant to be distributed within the cross section of the reaction zone of the light hydrocarbon or the second feedstock by means of distribution measures;
  • the present invention decomposes the reaction of the light hydrocarbon or the second raw material into a low-temperature gasification process and a high-temperature catalytic cracking reaction process. ;
  • Light hydrocarbon or second feedstock enters the light hydrocarbon or second feedstock reactor in the gasification zone, and is gasified with a low-temperature catalyst after the reaction of the light hydrocarbon or the second feedstock, even if the light hydrocarbon or the second feedstock reacts with the catalyst in the light hydrocarbon.
  • the pre-lifting zone below the entry point of the second raw material is refluxed to the light hydrocarbon or second raw material reactor, and the light hydrocarbon or the second raw material is gasified after being mixed with the light hydrocarbon or the second raw material.
  • Raw materials and steam transport catalyst enter the light hydrocarbon or second raw material reaction zone for catalytic cracking reaction;
  • C4 can enter the raw material oil or the first raw material riser below the raw material oil or the first raw material feeding position;
  • the catalytic reaction regeneration method for propylene-producing further, the light hydrocarbon or the second raw material reactor further includes a catalyst split zone (ie, a reflux zone), and the catalyst split zone is set in the light hydrocarbon or the second raw material reaction zone and the light
  • a catalyst split zone ie, a reflux zone
  • the catalyst split zone is set in the light hydrocarbon or the second raw material reaction zone and the light
  • the catalyst and gas reacted in the light hydrocarbon or second raw material reaction zone enter the catalyst diverting zone through the diverting conveying pipe, and the separated outflow catalyst is settled to the catalyst zone.
  • This zone is returned to the light hydrocarbon or second raw material reactor pre-lifting zone (below the light hydrocarbon or second raw material inlet) through the catalyst return pipe (i.e., reflux).
  • the raw material reactor pre-lifting medium is sent to the gasification zone and mixed with light hydrocarbons or second raw materials to achieve gasification of light hydrocarbons or second raw materials.
  • the gas and undivided catalyst enter the upper light hydrocarbon or second raw material reaction product delivery pipe. It is sent to the cyclone separator of light hydrocarbon or the second raw material reactor for gas-solid separation; the splitter in the catalyst splitting zone uses a swirling form, that is, a cyclone separator is arranged in the catalyst splitting zone.
  • the light hydrocarbon or the second raw material reaction zone adopts turbulent fluidized bed or circulating fluidized bed conditions.
  • the apparent gas flow rate of the light hydrocarbon or second feedstock reaction zone is generally less than 4.0 m / s.
  • the apparent gas flow velocity is less than 1.2 m / s, and preferably the apparent gas flow velocity is 0.6 m / s to 1.2 m / s; Or when a circulating fluidized bed is used in the second raw material reaction zone, the apparent gas flow velocity is greater than 1.2 m / s, preferably 1.2 m / s to 4.0 / s.
  • the catalysts in the turbulent fluidized bed or circulating fluidized bed of the light hydrocarbon or second raw material reaction zone have a weight hourly space velocity of 4 to 20 (1 / h).
  • the turbulent fluidized bed and the circulating fluidized bed are professional technical names of gas-solid fluidization, and have clear definitions.
  • the apparent flow velocity of the gas in the turbulent fluidized bed in the second regeneration zone and the third regeneration zone is not greater than 1.1 m / s.
  • the catalyst inlet pipe of the external heat extractor is set in the second regeneration zone, and the heat-recovered catalyst enters the third regeneration zone;
  • the distribution ratio of the second regeneration zone and the third regeneration zone realizes the control of the temperature of the second regeneration zone and the third regeneration zone.
  • the heat-removed catalyst does not affect the regeneration efficiency of the green catalyst in the first regeneration zone.
  • the light hydrocarbon or the second raw material reactor shares a settler with the raw oil or the first raw material reactor.
  • the reaction products of the second feedstock and the catalyst enter the light hydrocarbons in the settler or the cyclone separator of the second feedstock reactor for gas-solid separation.
  • the light hydrocarbons or the second feedstock reaction products are mixed with the feedstock oil or the first feedstock reaction product from the feedstock oil.
  • the outlet of the reaction product of the first raw material flows out of the settler, or directly from the outlet of the independent light hydrocarbon or the reaction product of the second raw material flows out of the settler; the reacted catalyst is settled in the stripper of the regenerant for stripping.
  • the standby agent delivery pipe returns to the first regeneration zone.
  • the light hydrocarbon or the second raw material reactor is provided with an independent light hydrocarbon or the second raw material reactor settler, and the light hydrocarbon Or the reaction product of the second raw material and the catalyst enter the light hydrocarbon or the light hydrocarbon in the second raw material reactor settler or the cyclone separator of the second raw material reactor for gas-solid separation, and the light hydrocarbon or the second raw material reaction product is directly separated from the light
  • the outlet of the reaction product of the hydrocarbon or the second raw material flows out of the light hydrocarbon or the second raw material reactor settler; the catalyst after the reaction is settled to the light hydrocarbon or the second raw material reactor stripper for stripping, and the light hydrocarbon or the first
  • the feedstock pipe of the two raw material reactor returns to the first regeneration zone; part of the light hydrocarbon or second raw material reacted catalyst is reacted from the light hydrocarbon or the second raw material reactor stripper through the catalyst return pipe to react in the light hydrocarbon or the second raw material.
  • the pre-lift zone at the bottom of the reactor is returned to the light hydrocarbon or second feedstock reactor, thereby gasifying the light hydrocarbon or second feedstock.
  • an independent stripper also called a stripping section
  • the rear catalyst is returned to the pre-lifting zone of the light hydrocarbon or second raw material reactor to realize gasification of the light hydrocarbon or second raw material.
  • the raw oil or the reaction product of the first feedstock and the light hydrocarbon or the second feedstock reaction product are separated from the catalyst by a gas-solid separator in a settler, and the catalyst is stripped and then regenerated;
  • the light hydrocarbon or the second feedstock reactor and the feedstock oil or the first feedstock reactor can share a settler. Two reactors are located outside the settler or one reactor is coaxial with the settler. Light hydrocarbons are settled in the settler. Or an independent light hydrocarbon or second raw material reactor gas-solid separator is directly set at the outlet of the second raw material reactor. The light hydrocarbon or second raw material reaction catalyst and oil and gas enter the light hydrocarbon or second raw material reactor gas-solid separator.
  • light hydrocarbon or second raw material reaction product after separation of catalyst flows out of settler;
  • light hydrocarbon or second raw material reaction product can be mixed with raw oil or first raw material reaction product and flow out of settler, or An independent pipeline flows out of the settler; when necessary, the settler is provided with an independent light hydrocarbon or second raw material reaction product outlet, and the light hydrocarbon or second raw material reaction product flows out of the settler directly through the gas-solid separator, not with the raw oil Or mixing the products of the first raw material reactor;
  • the light hydrocarbon or the second raw material reactor gas-solid separator is disposed in the light hydrocarbon or the second raw material reactor settler.
  • the hydrocarbon or second raw material reaction product flows out of the light hydrocarbon or second raw material reaction product outlet provided at the top of the light hydrocarbon or second raw material reactor settler, and is not mixed with the raw oil or the first raw material reaction product.
  • the light hydrocarbon or the second raw material reactor when the light hydrocarbon or the second raw material reactor is intended to produce propylene, the light hydrocarbon or the second raw material reactor is added with steam to reduce the hydrocarbon partial pressure, and the light hydrocarbon or the second raw material is atomized and supplemented with the total mass of steam.
  • the flow rate is greater than 10% of the mass flow rate of the light hydrocarbon or the second feedstock entering the light hydrocarbon or the second feedstock reactor, generally 15 to 40%; when the light hydrocarbon or the second feedstock is a diesel component or a catalytic light diesel component or a For hydrogen-catalyzed diesel, for the purpose of producing gasoline, the amount of steam is 2% to 10% of the amount of light hydrocarbons or the second raw material; steam enters the pre-lift zone, the gasification zone, or the light hydrocarbon or the second raw material reaction zone Light hydrocarbon or second feedstock reactor; steam enters the light hydrocarbon or second feedstock reactor preferentially in the gasification zone upstream of the light hydrocarbon or second feedstock reaction zone.
  • the present invention adopts a multi-stage regeneration method, in which the regenerant enters the regenerator from the bottom of the regenerator, and the regenerant and semi-regenerant flow out of the regenerator from above the inlet of the regenerant, in the case of the conventional reaction settler and regenerator arrangement.
  • Multi-stage countercurrent regeneration of regenerant and double-cycle reaction of regenerant and semi-regenerant are realized, semi-regenerant cycle is achieved between light hydrocarbon or second raw material reaction zone and regenerator, and in raw oil or first raw material reactor and Regenerant circulation is achieved between regenerators; the height of the reaction settler and the reaction time of the feedstock oil or the first feedstock are not affected;
  • the light hydrocarbon or the second raw material of the present invention is first contacted with a low-temperature moderately carbon-semi-regenerating agent to realize low-temperature gasification. After the light hydrocarbon or the second raw material is gasified, the light hydrocarbon or the second raw material is subjected to high-temperature cracking. Reaction can improve propylene selectivity;
  • the invention realizes the optimization of the reaction regeneration system, improves the regeneration effect, and reduces the energy consumption for regeneration.
  • FIG. 1 is a schematic diagram of Embodiment 1 of a catalytic reaction regeneration method for producing propylene of the present invention
  • FIG. 2 is a schematic diagram of a second embodiment of a catalytic reaction regeneration method for producing propylene in accordance with the present invention, and the regenerator is provided with an external heat extractor;
  • FIG. 3 is a schematic diagram of Embodiment 3 of a catalytic reaction regeneration method for producing propylene of the present invention.
  • a light hydrocarbon or second raw material reactor adopts a riser reactor and is provided with an independent settler.
  • a propylene-producing catalytic reaction regeneration method which includes setting up two independent reactors and a regenerator of raw oil or first raw material reactor 1 and light hydrocarbon or second raw material reactor 2;
  • raw oil or first raw material reactor 1 is a riser reactor, which is used to catalyze the reaction of the feedstock oil or the first feedstock;
  • the light hydrocarbon or the second feedstock is reacted in the light hydrocarbon or the second feedstock reactor 2, the feedstock oil or the first feedstock reactor 1 and the light hydrocarbon or the first feedstock reactor;
  • the two raw material reactor 2 uses catalysts with different regeneration levels from different regeneration zones of the same regenerator; the regenerator simultaneously regenerates the regenerant of the two reactors;
  • the regenerator includes a catalyst regeneration zone 5 and a gas-solid separation zone 6.
  • the catalyst regeneration zone 5 is divided into a three-stage regeneration zone, namely a first regeneration zone 54A, a second regeneration zone 54B, and a third regeneration zone 54C.
  • the first regeneration area 54A is at the bottom, the second regeneration area 54B is at the top, and the third regeneration area 54C is between the first regeneration area 54A and the second regeneration area 54B.
  • a partition 55 is provided between the third regeneration zone 54C;
  • a gas-solid separation zone 6 is located above the second regeneration zone 54B; a first regeneration zone logistics transfer pipe 53 and a first regeneration zone logistics transfer pipe 53 are provided at the exit of the first regeneration zone 54A.
  • the outlet or upper end is provided with a flue gas and catalyst orifice plate 56A; a regenerator cyclone 61, a lean phase area 63 and a flue gas outlet pipe 62 are provided in the gas-solid separation zone 6;
  • the regeneration process is:
  • Compressed air is used for catalyst regeneration.
  • the compressed air is divided into two parts and separated into different regeneration zones.
  • the first compressed air 51A enters the first regeneration zone 54A from the first compressed air distributor 52A to perform the preliminary regeneration of the catalyst to be produced.
  • the regeneration zone 54A is in the form of a turbulent fluidized bed or a circulating fluidized bed.
  • the first compressed air 51A entering the first regeneration zone 54A accounts for 40% to 75% (based on the total compressed air volume of 100%); the first regeneration zone gas
  • the apparent velocity is generally not greater than 2.5m / s;
  • the catalyst and gas after the preliminary regeneration in the first regeneration zone 54A enter the second regeneration zone 54B through the first regeneration zone logistics conveying pipe 53 to continue the catalyst regeneration;
  • the second compressed air 51B enters the third regeneration zone 54C from the second compressed air distributor 52B. Part of the regenerant or semi-regenerated catalyst in the second regeneration zone 54B is returned to the third regeneration zone 54C through the catalyst or semi-regenerant return pipe 57.
  • the second compressed air 51B continues to react with the regenerant or semi-regenerated catalyst from the second regeneration zone 54B to complete the catalyst regeneration; the second regeneration zone 54B and the third regeneration zone 54C are in the form of a turbulent fluidized bed and enter the third regeneration zone
  • the second compressed air 51B of 54C accounts for 25% to 60%; the apparent velocity of the gas in the turbulent fluidized bed of the second regeneration zone 54B and the third regeneration zone 54C is not greater than 1.1 m / s;
  • the regeneration catalyst after the regeneration in the third regeneration zone 54C is transported from the regeneration agent conveying pipe 58 to the feedstock oil or the first feedstock reactor 1 for the catalytic reaction of the feedstock oil or the first feedstock; the partially regenerated regeneration agent in the second regeneration zone 54B or The semi-regenerated catalyst is transported from the regenerant or semi-regenerant transfer pipe 59 to the light hydrocarbon or second raw material reactor 2 for catalytic reaction of the light hydrocarbon or second raw material, and the regenerated flue gas 66 is discharged from the regenerator through the flue gas outlet pipe 62;
  • the oxygen-containing gas regenerated in the third regeneration zone 54C enters the second regeneration zone 54B through the gas orifice plate 56B, and the remaining oxygen continues to be used for catalyst regeneration;
  • the reaction process is:
  • the catalytic feedstock or first feedstock 13 preheated to 250 ° C to 300 ° C is atomized by steam and enters the feedstock or first feedstock reactor 1. It is about the same as that delivered from the third regeneration zone 54C via the regenerant delivery pipe 58. At 660 ° C, the regenerant is contacted, and then gasification and catalytic cracking are performed.
  • C4 is simultaneously used as the feedstock of the raw material oil or the first raw material reactor, and C4 enters under the catalytic raw material oil or the first raw material 13 to be regenerated.
  • the agent first enters the pre-lifting zone 12 and is transported with the pre-lifting medium 11.
  • regenerant is first contacted and reacted with C4, and then transported to the raw material oil or the first raw material reaction zone 14 and mixed with the catalytic raw material oil or the first raw material 13. Or the first raw material reaction zone 14 flows upward to complete the catalytic cracking reaction;
  • the raw material oil or the first raw material reaction product 46 that is, the raw material oil or the first raw material reaction oil and gas is separated in the settler 4 by the raw material oil or the first raw material cyclone separator 41, and the entrained catalyst is separated along the raw material oil or the first raw material reaction product.
  • the outlet pipe 44 flows out of the settler 4; the reacted catalyst settles from the settler dilute phase zone 43 and enters the stand-by stripper 33, and the stripping steam 31 is introduced. After the stand-by stripper 3 completes the stripping, Return to the first regeneration zone 54A at the bottom of the regenerator from the regenerant delivery pipe 32.
  • the reaction temperature of the catalytic feedstock or the first feedstock is 500 ° C to 530 ° C
  • the reaction time is about 2.0 seconds
  • the reaction depth is 20%.
  • Left and right refining control the temperature in the third regeneration zone is about 650 ° C to 670 ° C
  • the reactant-to-oil ratio is about 7.5.
  • the proportion of the refining oil is adjusted by the reaction temperature and the temperature of the regenerant;
  • the light hydrocarbon or second raw material reactor 2 includes a pre-lifting zone 22, a gasification zone 22A, a light hydrocarbon or second raw material reaction zone 24, a split conveyance pipe 25, and a catalyst split zone 26 (split transfer pipe 25, catalyst) from bottom to top.
  • the shunt zone 26 and the catalyst return pipe 27 constitute a catalyst reflux zone) and the light hydrocarbon or the second raw material reaction product delivery pipe 29; the light hydrocarbon or the second raw material 23 enters the gasification zone 22A, and the catalyst split zone 26 is provided in the light hydrocarbon or the second Between the raw material reaction zone 24 and the light hydrocarbon or second raw material reaction product conveying pipe 29, the catalyst and gas reacted by the light hydrocarbon or the second raw material reaction zone are passed through the diverting conveying pipe 25 into the catalyst diverting zone 26 to separate the outflowing catalyst ( The catalyst return flow rate is determined according to the temperature requirement in 22A.) It first enters the catalyst zone 27A outside the split conveying pipe 25, and returns to the light hydrocarbon or the second raw material reactor at the bottom of the second raw material reactor 2 through the catalyst return pipe 27 to be pre-lifted.
  • the light hydrocarbon or the second raw material reactor pre-lifting medium 21 is transported to the gasification zone 22A to realize the low-temperature gasification of the light hydrocarbon or the second raw material.
  • the gasification temperature is between 250 ° C and 500 ° C, preferably between 300 ° C and 400 ° C.
  • the catalyst area 27A replenishes steam 21A to the light hydrocarbon or second raw material reactor 2 to reduce the hydrocarbon partial pressure; after the light hydrocarbon or second raw material is gasified, it enters the light hydrocarbon or second raw material reaction zone 24 together with the catalyst and comes from the second regeneration zone 54B
  • the light hydrocarbon or second raw material from the regeneration agent or semi-regeneration catalyst transported from the regeneration agent or semi-regeneration agent transfer pipe 59 to the gasification zone or the second raw material catalytic cracking reaction zone is mixed with the gasified light hydrocarbon or the second raw material.
  • the semi-regenerated catalyst provides the heat and catalytic environment required by the light hydrocarbon or the second raw material reactor 2 and increases the temperature of the stream entering the light hydrocarbon or the second raw material reaction zone 24 so that the light hydrocarbon or the second raw material undergoes a catalytic cracking reaction.
  • the refining oil 28 from the fractionation column enters the light hydrocarbon or second raw material reactor 2 in the light hydrocarbon or second raw material reactant conveying pipe 29, and utilizes the light hydrocarbon or second raw material
  • the heat of the reaction zone stream and the catalyst realize the reaction of this part of the stream, while reducing the temperature of the light hydrocarbon or second raw material reaction product in the light hydrocarbon or second raw material reaction zone 24, and the temperature after the refining reaction (light hydrocarbon or second raw material)
  • the reactor outlet temperature) is about 500 ° C; the amount of refining oil is controlled according to the light hydrocarbon or the second raw material reactor outlet temperature; in specific implementation, the refining oil 28 may be the refining oil from the bottom of the fractionation tower, or a boiling point of 180 to 350 ° C circulating oil or diesel component;
  • the light hydrocarbon or second feedstock reactor 2 shares the settler 4 with the feedstock oil or the first feedstock reactor 1, and an independent light hydrocarbon or second feedstock reactor cyclone separator 42 is provided in the settler 4; the light hydrocarbon or the second feedstock
  • the reaction products and catalyst enter the light hydrocarbon or second raw material reactor cyclone separator 42 for gas-solid separation, and the light hydrocarbon or second raw material reaction product 47 flows out of the settler 4 from the independent light hydrocarbon or second raw material reaction product outlet 45; the reaction After the subsequent catalyst is stripped, it returns to the first regeneration zone 54A at the bottom of the regenerator from the regenerant delivery pipe 32.
  • the light hydrocarbon or second feedstock reactor 2 shares the settler 4 with the feedstock oil or the first feedstock reactor 1 and the second stage cyclone separator (not shown in the figure).
  • the light hydrocarbon or second feedstock reaction product and catalyst The light hydrocarbon or second raw material reactor cyclone separator 42 is used for the first-stage gas-solid separation.
  • the light hydrocarbon or second raw material reaction product 47 is mixed with the raw material oil or the first raw material reaction product to form a mixed reaction product stream 48. Or the first raw material reaction product outlet 44 flows out of the settler;
  • the regenerator 5 is provided with an external heat extractor 7, the catalyst inlet of the external heat extractor catalyst inlet pipe 71 is set in the second regeneration zone 54B, and the heat-recovered catalyst enters the third regeneration zone 54C through the external heat extractor catalyst outflow pipe 72. .
  • the regeneration process is:
  • Compressed air is divided into two parts and separated into different regeneration zones.
  • the first compressed air 51A enters the first regeneration zone 54A from the first compressed air distributor 52A to perform the preliminary regeneration of the catalyst to be grown; the catalyst after the preliminary regeneration in the first regeneration zone 54A And gas enters the second regeneration zone 54B through the first regeneration zone logistics conveying pipe 53 and continues the catalyst regeneration; the second compressed air 51B enters the third regeneration zone 54C from the second compressed air distributor 52B, and half of the second regeneration zone 54B
  • the regenerated catalyst is returned to the third regeneration zone 54C through the catalyst or semi-regenerant return pipe 57.
  • the second compressed air 51B and the semi-regenerated catalyst from the second regeneration zone 54B continue to react to complete the catalyst regeneration; the third regeneration zone 54C is regenerated after regeneration
  • the catalyst is transferred from the regenerant delivery pipe 58 to the raw material oil or the first raw material reactor 1 for the catalytic reaction of the raw material oil or the first raw material; the semi-regenerated catalyst regenerated in the second regeneration zone 54B is delivered from the regenerant or semi-regenerant delivery pipe 59
  • the light hydrocarbon or the second raw material reactor 2 is used to perform the light hydrocarbon or the second raw material catalytic reaction, and the regenerated flue gas 66 is discharged from the regenerator through the flue gas outlet pipe 62;
  • the oxygen-containing gas regenerated in the third regeneration zone 54C enters the second regeneration zone 54B through the gas orifice plate 56B, and the remaining oxygen continues to be used for catalyst regeneration; part of the semi-regenerant in the second regeneration zone 54B is taken along the outer heater catalyst inlet pipe 71 to enter In the
  • the reaction process is:
  • the preheated catalytic raw material oil or the first raw material 13 is atomized by steam and enters the raw material oil or the first raw material reactor 1 and comes into contact with the regenerant sent from the third regeneration zone 54C through the regenerant delivery pipe 58 and then gasifies. And performing a catalytic cracking reaction;
  • the raw material oil or the first raw material reaction product 46 is separated from the entrained catalyst by the raw material oil or the first raw material reactor cyclone 41 in the settler 4 and flows out of the settler 4 along the raw oil or first raw material reaction product outlet pipe 44; After the catalyst has settled from the dilute phase zone 43 of the settler, it enters the regeneration agent stripping zone 33, and the stripping steam 31 is introduced.
  • the light hydrocarbon or the second raw material 23 enters the gasification zone 22A, and the catalyst flowing out through the catalyst splitting zone 26 returns to the light hydrocarbon or the light hydrocarbon or the second raw material reactor pre-lifting zone at the bottom of the second raw material reactor 2 through the catalyst return pipe 27.
  • 22 Use a light hydrocarbon or second raw material reactor to pre-lift the medium 21 and transfer it to the gasification zone 22A to achieve low temperature gasification of the light hydrocarbon or second raw material.
  • the light hydrocarbon or second raw material After the light hydrocarbon or second raw material is vaporized, it enters the light hydrocarbon or The second raw material reaction zone 24 is mixed with the semi-regenerated catalyst from the second regeneration zone 54B, so that the light hydrocarbon or the second raw material is subjected to a catalytic cracking reaction; the catalyst and the gas after the reaction of the light hydrocarbon or the second raw material reaction zone are passed through the split pipe 25 enters the catalyst splitting zone 26 and exits part of the catalyst to return to the light hydrocarbon or second raw material reactor pre-lifting zone 22, and the gas and the undivided catalyst enter the light hydrocarbon or second raw material reaction product conveying pipe 29 above, and comes into contact with the refining oil 28 reaction;
  • the light hydrocarbon or second raw material reaction product and catalyst enter the light hydrocarbon or second raw material reactor cyclone 42 for gas-solid separation.
  • the light hydrocarbon or second raw material reaction product 47 is mixed with the raw oil or first raw material reaction product to form a mixed reaction.
  • Product stream 48 flows out of the settler.
  • the light hydrocarbon or second raw material reactor 2 adopts the form of a riser, and includes a pre-lifting zone 22, a gasification zone 22A, a light hydrocarbon or second raw material reaction zone 24, and a light hydrocarbon or second raw material reaction product delivery pipe 29 from the bottom up. ;
  • the light hydrocarbon or second raw material reactor 2 is separately provided with a light hydrocarbon or second raw material reactor settler 8 and a light hydrocarbon or second raw material reactor stripper 81, and the light hydrocarbon or second raw material reactor cyclone 42 is provided at Light hydrocarbon or second raw material reactor settler 8, light hydrocarbon or second raw material reactor settler 8 is provided with light hydrocarbon or second raw material reactor settler lean phase zone 83, light hydrocarbon or second raw material reactor vapor
  • the stripper 81 is provided with a light hydrocarbon or second raw material reactor biomass stripping zone 84; the light hydrocarbon or second raw material reaction product 47 is removed from the light hydrocarbon or
  • the second raw material reaction product outlet pipe 45 flows out and is not mixed with the raw material oil or the first raw material reaction product;
  • the catalyst is stripped from the light hydrocarbon or the second raw material reactor stripping zone 84, and then partially refluxed from the catalyst reflux pipe 27 to the light hydrocarbon or the second raw material reactor pre-lifting zone 22
  • the rest of the catalyst to be regenerated enters the first regeneration zone 54A of the regenerator 5 from the light hydrocarbon or the second raw material reactor regenerant delivery pipe 82;
  • the regenerator 5 is provided with an external heat extractor 7, the catalyst inlet of the external heat extractor catalyst inlet pipe 71 is set in the second regeneration zone 54B, and the heat-recovered catalyst enters the third regeneration zone 54C through the external heat extractor catalyst outflow pipe 72. .
  • FIG. 1 The device used in this embodiment is shown in FIG. 1.
  • Catalytic feedstock or first feedstock 150t / h heavy oil, see Table 1 for properties.
  • the heavy oil is preheated at 280 ° C; the feedstock or the first feedstock reactor is in the form of a riser and comes from the regenerator (the apparent velocity of the gas in the first regeneration zone is 1.5m / s, and the turbulent fluidization in the second and third regeneration zones) The apparent gas flow rate of the bed gas is 0.8m / s.)
  • the regenerant in the third regeneration zone at 660 ° C enters the feedstock or the first feedstock reactor from the pre-lift zone, the exit temperature of the feedstock or the first feedstock reactor is 520 ° C, and the reaction time is 1.8. s;
  • Gasoline is used as the light hydrocarbon or the second raw material.
  • the light hydrocarbon or the second raw material reactor is the gasoline reactor.
  • the catalytic cracking reaction zone of the gasoline reactor is a circulating fluidized bed.
  • the reaction raw material is the raw oil or the first raw material. Produce crude gasoline, 50t / h, gasoline liquid feed.
  • Gasoline reactor uses 560 °C gasoline reaction catalyst to gasify, the temperature after gasification is 350 °C, the temperature of semi-regenerant from the second regeneration zone of regenerator is 680 °C, carbon content is 0.18%, semi-regenerant enters catalytic cracking
  • the temperature of the circulating fluidized bed is 560 ° C
  • the weight hourly space velocity is 12 (1 / h)
  • the oil and gas flow velocity is 1.5 m / s
  • the residence time is 4.0 s;
  • the fraction of the refining oil obtained by fractional distillation of the reaction oil and gas enters the light hydrocarbon or second raw material reaction product delivery pipe above the catalytic cracking reaction zone of the light hydrocarbon or second raw material reactor, and continues the reaction, while reducing the reaction rate of the light hydrocarbon or second raw material.
  • the outlet temperature of the light hydrocarbon or second raw material reaction product delivery pipe is 500 ° C; the amount of refining oil is 30t / h, and the temperature is 350 ° C;
  • the two reactors share a settler, and the gasoline reaction product and the feedstock oil or the first feedstock reaction product are sent to the gasoline product fractionation tower and the feedstock oil or the first feedstock fractionation tower from separate pipelines.
  • the original dual riser reaction technology uses a feedstock or first feedstock reactor with an oil and gas residence time of 3 seconds; a gasoline riser reactor with an oil and gas residence time of 3 seconds.
  • the reactor design operating conditions and product distribution are shown in Table 2.
  • the present invention is compared with the conventional double riser catalytic process: the yield of low-value products such as dry gas and coke is significantly reduced, and the yield of high-value products such as propylene is significantly increased, among which the dry gas yield It decreased by 1.35 percentage points, the coke yield decreased by 1.03 percentage points, and the propylene yield increased by 1.61 percentage points for the amount of feedstock or primary feedstock. It can be seen that the present invention greatly increases the propylene yield, the dry gas and coke yields are greatly reduced, and the propylene selectivity is improved.

Abstract

一种多产丙烯的流化催化反应再生方法,提供了催化剂再生和催化剂循环方法,催化原料油或第一原料(13)和轻烃或第二原料(23)分别在原料油或第一原料反应器(1)和轻烃或第二原料反应器(2)内反应;原料油或第一原料(13)反应使用再生催化剂,轻烃或第二原料(23)反应采用半再生剂;轻烃或第二原料(23)反应过程由低温的气化和高温的催化裂化反应构成,轻烃或第二原料反应器(2)需要的热量由半再生剂在气化后提供,在一个再生器内实现三区催化剂再生。该方法能显著降低干气和焦炭等副产品的收率。

Description

一种多产丙烯的催化反应再生方法 技术领域
本发明属于石油烃类催化转化技术领域,特别涉及一种多产丙烯的催化反应再生方法,能提高丙烯产率。
背景技术
丙烯是最重要的石油化工原料之一。70%的丙烯是石油烃经管式炉裂解法生产的,另外30%的丙烯由催化裂化工艺过程提供。借鉴常规重油催化裂化反应-再生系统的操作、设计经验,国内外研究人员开发了一系列重油催化裂化生产丙烯的工艺技术。
通过催化裂化方法产丙烯的可行路线之一是双反应器轻烃或第二原料或汽油回炼。如FDFCC、Maxofin等。
KBR与Mobil Technology公司共同开发了以重质油为原料生产丙烯的Maxofin技术。该技术采用双提升管反应器,第一根提升管中裂化常规的FCC原料,反应生成的石脑油进第二根提升管裂化增产丙烯,两个提升管共用一个沉降器和再生器。
UOP公司开发了以碳四以上低碳烯烃为原料生产丙烯的RxPro技术,该技术同样采用双提升管反应器结构,第一提升管反应器用于重质原料的裂化,第二提升管反应器用于回炼第一反应器生成的C4组分和石脑油,两个反应产物分别进入单独的分馏系统。
中国石油大学(华东)在两段提升管催化裂化技术基础上开发了TMP技术。该技术以重质油为原料,利用两段提升管催化裂化工艺分段反应、催化剂接力和大剂油比的工艺特点,针对不同性质的反应物料进行进料方式的优化组合,控制不同物料适宜的反应条件,以达到提高丙烯产率的目的。
已有技术主要从催化剂和反应温度、时间这些反应条件角度进行改进,对反应器和反应器内催化剂适应性研究不多,更不能把反应过程和反应器相结合。各种工艺技术仅仅把反应器看做管道即提升管。
常规提升管反应器由于自身流动和传递的本质特点,只能是温度由高到低、催化剂活性逐渐降低的过程。
不同的原料、不同的目的产品需要的反应过程不同,对催化剂要求也不同。轻烃或第二原料或汽油与催化原料油或第一原料性质也存在显著的差别。轻烃或第二原料 终馏点低,很容易气化,气化温度常常与反应温度相差较多;而催化裂化反应是气固相反应,反应原料需要气化后才能进行催化裂化反应。
已有技术中使用再生催化剂,反应器需要的热量全部或大部分是从反应器底部提供的,来自再生器的催化剂也主要从反应器底部进入反应器,反应器底部是反应器内温度最高的部位,随反应进行逐渐降低;低温的反应原料先与最高温度的催化剂接触。
发明内容
本发明的一个目的在于提供一种改进的多产丙烯的催化反应再生方法。
本发明的技术方案,主要是待生剂再生过程在一个再生器内实现待生催化剂三级串联逆流再生,可以为两个反应器提供不同的催化剂,而且反应器和再生器之间催化剂仍保持重力输送;反应方法实现轻烃或第二原料低温气化和高温反应分开、半再生剂反应和先与适度含碳的轻烃或第二原料反应后的催化剂接触低温气化,提高丙烯选择性,实现轻烃或第二原料反应器内催化剂条件的优化;在增加丙烯产率的同时,显著降低了干气和焦炭等副产品的收率。本发明改变了原有的再生剂分配方式和供热方式,为轻烃或第二原料反应提供了更好的微观反应条件和反应气固接触形式。
具体而言,本发明技术方案如下:
一种多产丙烯的催化反应再生方法,该方法包括再生过程和反应过程,其中设置原料油或第一原料反应器(又称主反应器)和轻烃或第二原料反应器(又称次反应器)两个独立的反应器和一个再生器;原料油或第一原料反应器用于催化原料油或第一原料(即新鲜原料油或第一原料)反应;优选地,原料油或第一原料反应器为提升管反应器(又称原料油或第一原料提升管),由预提升区(或催化剂输送区)和原料油或第一原料反应区组成;轻烃或第二原料在轻烃或第二原料反应器反应,优选地,轻烃或第二原料反应器可以同时用于循环油或回炼油反应;原料油或第一原料反应器和轻烃或第二原料反应器使用来自同一再生器不同再生区(再生程度不同)的催化剂;再生器同时对两个反应器的待生剂进行再生;
所述再生器包括催化剂再生区和气固分离区,催化剂再生区分成上下串联的三级再生区即第一再生区(又称第一催化剂再生区)、第二再生区(又称第二催化剂再生区)和第三再生区(又称第三催化剂再生区),三级再生区上下重叠设置,第一再生区在最下方,第二再生区在最上方,第三再生区在第一再生区和第二再生区之间;在第一再生区与第三再生区之间设置有隔板;第二再生区上方是气固分离区;第一再生区出口设 置有第一再生区物流输送管(该第一再生区物流输送管位于第三再生区内),第一再生区物流输送管出口或上端设置烟气和催化剂孔板;优选地,该烟气和催化剂孔板即第二再生区的分布板,第一再生区内的气体和催化剂经过该分布板进入第二再生区;
再生过程为:
使用压缩空气(即高含氧的新鲜压缩含氧气体)进行催化剂再生,压缩空气分开进入不同再生区,第一压缩空气从第一压缩空气分布器进入第一再生区,进行待生催化剂(此部分待生催化剂高含碳和氢)的初步再生;所述第一再生区为湍流流化床或循环流化床形式,即第一再生区按湍流流化床或循环流化床条件设计,优选地,其气体的表观流速一般不大于2.5m/s;
第一再生区(54A)内初步再生后的催化剂和气体经第一再生区物流输送管(53)进入第二再生区(54B),继续进行催化剂再生;
第一再生区内初步再生后的催化剂和气体经第一再生区物流输送管(第一再生区物流输送管顶部可设有烟气和催化剂孔板)进入第二再生区,继续进行催化剂再生;本发明中,催化剂再生生成再生剂(又称再生催化剂)或半再生催化剂(或称半再生剂),具体地,第一再生区再生后气体中剩余氧和催化剂剩余焦炭在第二再生区继续参与催化剂再生,在第二再生区完成对来自第一再生区催化剂剩余的氢和大部分碳氧化,通过第二再生区内的催化剂藏量和温度控制第二再生区内催化剂的再生程度和该区催化剂含碳量;
第二压缩空气从第二压缩空气分布器进入第三再生区,第二再生区的半再生催化剂或再生剂通过催化剂或半再生剂回流管回流(即重力输送)到第三再生区,第二压缩空气与来自第二再生区的再生剂或半再生催化剂继续再生反应完成催化剂再生(即,完成催化剂剩余碳的氧化反应,生成再生催化剂)或混合流化后使催化剂降温;所述第二再生区和第三再生区为湍流流化床形式;
第三再生区再生或降温后的再生催化剂从第三再生区催化剂流化床层经再生剂输送管输送到原料油或第一原料反应器进行原料油或第一原料催化反应;第二再生区再生后的再生剂或半再生催化剂从再生剂或半再生剂输送管输送到轻烃或第二原料反应器的轻烃或第二原料反应区进行轻烃或第二原料催化反应;
第三再生区再生后的含氧气体通过气体孔板进入第二再生区内,剩余氧气继续进行催化剂再生(实现氧的串联和催化剂逆流再生);
可选择地,当需要提高第一再生区的温度时,可在第二再生区和第一再生区之间设置催化剂回流管线,使部分第二再生区的催化剂返回第一再生区;
可选择地,当设置催化剂外取热器时,外取热器催化剂入口设在第二再生区,取热后的催化剂进入第三再生区;
反应过程为:
催化原料油或第一原料由蒸汽雾化后进入原料油或第一原料反应器,与从第三再生区经再生剂输送管输送来的再生剂接触混合,随即气化和进行催化裂化反应,原料油或第一原料反应产物(又称原料油或第一原料反应产品物流或原料油或第一原料反应油气)在沉降器内经原料油或第一原料反应器旋风分离器分离出夹带的催化剂后流出沉降器;反应后的催化剂沉降到待生剂汽提器进行汽提,在待生剂汽提器完成汽提后从待生剂输送管返回(即重力输送或沉降)第一再生区;
轻烃或第二原料反应器自下而上包含预提升区、气化区、提高温度的催化裂化反应区即轻烃或第二原料反应区(又称轻烃或第二原料催化裂化反应区)和轻烃或第二原料反应产物输送管;轻烃或第二原料进入气化区,部分轻烃或第二原料反应后的催化剂经催化剂回流管在轻烃或第二原料反应器底部(轻烃或第二原料进料位置下方)的预提升区返回轻烃或第二原料反应器,被轻烃或第二原料反应器预提升介质输送到气化区,轻烃或第二原料与轻烃或第二原料反应后的催化剂在气化区混合实现轻烃或第二原料的气化;轻烃或第二原料气化后与催化剂一起向上进入轻烃或第二原料反应区,来自第二再生区的再生剂或半再生催化剂从再生剂或半再生剂输送管重力输送(又称沉降)到轻烃或第二原料反应区与气化后的轻烃或第二原料混合,再生剂或半再生催化剂提供轻烃或第二原料反应器需要的热量,并提高进入轻烃或第二原料反应区内物流的温度,使轻烃或第二原料进行催化裂化反应,反应温度由来自第二再生区的再生剂或半再生催化剂量控制;轻烃或第二原料反应器或者与原料油或第一原料反应器共用沉降器,或者设置有独立的轻烃或第二原料反应器沉降器;轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器旋风分离器进行气固分离,轻烃或第二原料反应产物或者与原料油或第一原料反应产物混合后从原料油或第一原料反应产物出口流出沉降器,或者直接从独立的轻烃或第二原料反应产物出口流出沉降器或轻烃或第二原料反应器沉降器;反应后的催化剂汽提后返回第一再生区。
本发明中所述原料油或第一原料是指FCC(流化催化裂化)技术使用的催化原料油,包括来自常减压蒸馏的重油、蜡油,来自渣油加氢裂化的重油,是本领域技术人员熟知的。
在本发明的一些具体实施方式中,所述的多产丙烯的催化反应再生方法,进一步地,所述轻烃或第二原料包含C4、C5、催化汽油、石脑油、催化轻汽油、焦化汽油、 催化轻柴油(催化柴油中单环为主的轻柴油部分)、催化裂化柴油加氢后的组分中的一种或多种。当多种组分分开进料时,根据裂化难易程度采用分级进料反应,分级进料顺序自下而上依次为C4、C5、石脑油、催化轻汽油、催化汽油、焦化汽油、催化轻柴油或催化裂化柴油加氢后的催化柴油。本发明中,上述催化裂化柴油的沸点范围及组成成分为本领域技术人员熟知,催化裂化柴油加氢后的组分的沸点及成分组成范围也属于公知技术,C4即四个碳原子的烃,C5即五个碳原子的烃,此处不再详述。
在本发明的一些具体实施方式中,所述的多产丙烯的催化反应再生方法,进一步地,所述轻烃或第二原料为汽油或终馏点低于200℃的原料(如所述轻烃或第二原料为石脑油、催化轻汽油、C4、C5组分),以多产烯烃为目的时,或轻烃或第二原料反应温度高于540℃时,轻烃或第二原料在轻烃或第二原料反应区反应的同时,使部分轻烃或第二原料反应产物,或原料油或第一原料反应产物中的回炼油或催化裂化柴油,或加氢后的催化裂化柴油在所述轻烃或第二原料反应区出口(或下游)或在轻烃或第二原料反应产物输送管(上述两位置均在工艺上属于轻烃或第二原料反应区的下游)进入轻烃或第二原料反应器,利用轻烃或第二原料反应区物流的热量和催化剂实现该部分物流的反应,同时降低轻烃或第二原料反应区中轻烃或第二原料反应产物的温度。从而,可降低轻烃或第二原料反应产物的后反应程度,实现对轻烃或第二原料高温催化裂化反应深度的控制。更进一步地,领域中催化裂化柴油或加氢后的催化裂化柴油(即催化裂化柴油先进行加氢处理)可分离成单环为主的部分(或称低沸点为主的部分)和多环为主的部分,所述单环为主的部分可用于本发明,在轻烃或第二原料反应产物输送管进入轻烃或第二原料反应器进行再次反应。所述低沸点为主的部分(低沸点的加氢后的催化柴油)为沸点低于280℃的组分。本发明中,由于石油烃是复杂的混合组分,不适宜采用组分确切的化学成分描述。本领域技术人员清楚汽油的沸点范围,石油烃的限定是以终馏点为依据,本领域技术人员清楚终馏点低于200℃的原料是如何界定和获得的,如石脑油、催化轻汽油、C4、C5组分均属于终馏点低于200℃的原料。
在本发明的一些具体实施方式中,所述的多产丙烯的催化反应再生方法,进一步地,所述轻烃或第二原料为催化裂化柴油或加氢后的催化裂化柴油(即催化裂化柴油先进行加氢处理),或从柴油或催化柴油加氢后分离出的单环为主的部分。
本发明方法中,轻烃或第二原料反应器还包括有催化剂分流区,催化剂分流区设置在轻烃或第二原料反应区和轻烃或第二原料反应产物输送管之间,使轻烃或第二原料反应区反应后的催化剂和气体通过分流输送管进入催化剂分流区,分流出的催化剂 经催化剂回流管返回轻烃或第二原料反应器底部的轻烃或第二原料反应器预提升区,气体和未分流的催化剂进入上方的轻烃或第二原料反应产物输送管。
本发明方法中:
(1)所述的催化反应再生方法,再生器中产生的催化剂,或者为完全再生的再生剂,或者为未完全再生的半再生剂,其区别在于积炭量不同,但半再生剂的活性也能够实现正常的催化反应;本发明中,第二再生区再生后产生的催化剂为半再生剂时,通常含碳量大于0.08%;第三再生区再生后产生的催化剂为再生剂或降温后的再生剂;具体地,再生器多段再生形式,第二再生区在上方,第一再生区在下方,第三再生区在中间,待生剂进入下方的第一再生区初步再生后,沿第一再生区物流输送管向上进入第二再生区再生生成再生剂或半再生剂,催化剂的含碳量由第二再生区催化剂的停留时间和温度控制,增加第二再生区内催化剂的藏量或温度可以增加再生比例,使催化剂含碳量降低,第二再生区的催化剂或半再生剂通过催化剂或半再生剂回流管进入第三再生区继续再生,当第三再生区的再生比例较低时,第三再生区的压缩空气实现对再生剂的降温;来自第三再生区的再生剂进入原料油或第一原料反应器;关于多段再生、含炭量等,均属于所属技术领域公知的技术,此处不再详述。本发明方法中,再生器使用过程中,可通过调整催化剂藏量使再生反应在第二再生区完成,而此时第三再生区作为催化剂储存或循环环节,即第二再生区内既可以生成半再生剂,也可以生成再生剂;
(2)通过从催化剂或半再生剂回流管输送的催化剂量,及待生剂输送管和轻烃或第二原料反应器待生剂输送管输送到第一再生区的待生剂量,控制第二剂再生区内催化剂藏量和第二再生区的再生程度比例;通过从催化剂或半再生剂回流管输送的催化剂量和再生剂输送管输送的再生剂量控制第三再生区的催化剂藏量,进而限制气体携带催化剂进入第二再生区;各再生区的催化剂藏量可以调节各区的再生比例。再生比例是指碳和氢的反应比例。
(3)所述轻烃或第二原料广义地包含C4、C5、轻汽油、汽油或石脑油(包括石脑油、催化轻汽油、焦化汽油)、轻循环油、轻柴油、催化柴油、加氢后的催化柴油、催化柴油加氢后分离出的轻柴油;优选地,轻烃或第二原料可以是汽油组分或从柴油中分离出的单环组分;当轻烃或第二原料为终馏点低于200℃的馏分,以多产丙烯为目的时,轻烃或第二原料反应区反应温度为530℃到620℃,以多产丙烯和乙烯为目的时,轻烃或第二原料反应区的反应温度为640到700℃;
当轻烃或第二原料为180℃到350℃轻循环油或催化轻柴油馏分,以汽油为目的产 品时,轻烃或第二原料催化裂化反应区反应温度为510到540℃;
所述轻烃或第二原料反应器中轻烃或第二原料理想的气化温度不大于450℃,理想的轻烃或第二原料反应温度530℃-670℃;
具体实施时,轻烃或第二原料优先选用催化汽油、催化轻汽油、催化轻柴油组分;
轻烃或第二原料为轻柴油或加氢后的轻催化柴油时,建议的反应温度不高于540℃,所述轻柴油或轻催化柴油优先使用沸点低于280℃的组分,尤其是沸点低于260℃的组分;
(4)催化原料油或第一原料和轻烃或第二原料分别在原料油或第一原料反应器和轻烃或第二原料反应器内反应,来自分馏塔底的回炼油根据轻烃或第二原料的反应温度优先在轻烃或第二原料反应器轻烃或第二原料反应产物输送管内反应,回炼油在轻烃或第二原料反应器的进料量按轻烃或第二原料反应器出口温度不低于490℃控制,剩余的回炼油仍然按常规方法在原料油或第一原料反应器反应;以多产丙烯为目的时,轻烃或第二原料催化裂化反应采用比催化原料油或第一原料高的反应温度;
当轻烃或第二原料反应区有其他轻烃或第二原料时,以单环为主的催化裂化柴油(或称轻催化柴油)或加氢后的轻催化柴油可以在轻烃或第二原料反应器的轻烃或第二原料反应产物输送管内反应;
石油烃催化裂化或裂解反应是吸热反应,反应需要的热量由来自再生器的催化剂提供。具体实施时,为了使进入轻烃或第二原料反应区的再生剂或半再生剂在轻烃或第二原料反应区均匀分布,可以在轻烃或第二原料反应区内设置催化剂分配器,使再生剂或半再生剂通过分配措施在轻烃或第二原料反应区横截面内分配;
由于轻烃或第二原料的沸点较低,终馏点也远低于多产烯烃需要的反应温度,本发明将轻烃或第二原料的反应分解成低温气化过程和高温催化裂化反应过程;轻烃或第二原料在气化区进入轻烃或第二原料反应器,用轻烃或第二原料反应后的低温催化剂气化,即使轻烃或第二原料反应后的催化剂在轻烃或第二原料进入点下方的预提升区回流到轻烃或第二原料反应器,与轻烃或第二原料混合后使轻烃或第二原料气化,气化后的轻烃或第二原料和蒸汽输送催化剂进入轻烃或第二原料反应区进行催化裂化反应;
(5)当有C4回炼时,C4可以在原料油或第一原料进料位置下方进入原料油或第一原料提升管;
(6)轻烃或第二原料反应区的催化剂和气体全部输送到上方的次反应器(轻烃或 第二原料反应器)产物输送管。
所述的多产丙烯的催化反应再生方法,进一步地,轻烃或第二原料反应器还包括有催化剂分流区(即回流区),催化剂分流区设置在轻烃或第二原料反应区和轻烃或第二原料反应产物输送管之间,使轻烃或第二原料反应区反应后的催化剂和气体通过分流输送管进入催化剂分流区,分流出部分催化剂沉降到催化剂区,分流出的催化剂从该区经催化剂回流管返回(即回流)轻烃或第二原料反应器底部的轻烃或第二原料反应器预提升区(在轻烃或第二原料进口下方),被轻烃或第二原料反应器预提升介质输送到气化区与轻烃或第二原料混合,实现轻烃或第二原料气化,气体和未分流的催化剂进入上方的轻烃或第二原料反应产物输送管,输送到轻烃或第二原料反应器旋风分离器进行气固分离;催化剂分流区的分流器使用旋流形式,即催化剂分流区设置旋流分离器。
所述的多产丙烯的催化反应再生方法,进一步地,所述轻烃或第二原料反应区采用湍流流化床或循环流化床条件。当轻烃或第二原料反应器以产丙烯为目标时,轻烃或第二原料反应区的气体表观流速一般小于4.0m/s。
本发明方法中,当轻烃或第二原料反应区采用湍流流化床时,气体表观流速小于1.2m/s,优选气体表观流速0.6m/s至1.2m/s;所述轻烃或第二原料反应区采用循环流化床时,气体表观流速大于1.2m/s,优选1.2m/s至4.0/s。轻烃或第二原料反应区湍流流化床或循环流化床的催化剂重时空速为4至20(1/h)。所述湍流流化床和循环流化床是气固流态化专业的技术名称,有明确的定义。
所述的多产丙烯的催化反应再生方法,进一步地,所述第二再生区和第三再生区的湍流流化床的气体表观流速不大于1.1m/s。
本发明方法中,再生器设置外取热器时,外取热器的催化剂入口管设置在第二再生区,取热后的催化剂进入第三再生区;通过调节外取热器取热量在第二再生区和第三再生区的分配比例,实现第二再生区和第三再生区温度的控制,取热后的催化剂对待生催化剂在第一再生区的再生效率不产生影响。
在本发明的一些具体实施方式中,所述的多产丙烯的催化反应再生方法,进一步地,轻烃或第二原料反应器与原料油或第一原料反应器共用沉降器,轻烃或第二原料反应产物和催化剂进入沉降器内的轻烃或第二原料反应器旋风分离器进行气固分离,轻烃或第二原料反应产物或者与原料油或第一原料反应产物混合后从原料油或第一原料反应产物出口流出沉降器,或者直接从独立的轻烃或第二原料反应产物出口流出沉降器;反应后的催化剂沉降到待生剂汽提器进行汽提,完成汽提后从待生剂输送管返 回第一再生区。
在本发明的一些具体实施方式中,所述的多产丙烯的催化反应再生方法,进一步地,轻烃或第二原料反应器设置有独立的轻烃或第二原料反应器沉降器,轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器沉降器内的轻烃或第二原料反应器旋风分离器进行气固分离,轻烃或第二原料反应产物直接从独立的轻烃或第二原料反应产物出口流出轻烃或第二原料反应器沉降器;反应后的催化剂沉降到轻烃或第二原料反应器汽提器进行汽提,完成汽提后从轻烃或第二原料反应器待生剂输送管返回第一再生区;部分轻烃或第二原料反应后的催化剂从轻烃或第二原料反应器汽提器经催化剂回流管在轻烃或第二原料反应器底部的预提升区返回轻烃或第二原料反应器,从而对轻烃或第二原料进行气化。本发明方法中,当轻烃或第二原料反应器使用独立的沉降器时,同时设置独立的汽提器(或称汽提段),从该汽提器使部分轻烃或第二原料反应后的催化剂返回到轻烃或第二原料反应器的预提升区,实现对轻烃或第二原料的气化。
本发明中:
原料油或第一原料反应产物和轻烃或第二原料反应产物在沉降器内用气固分离器实现与催化剂的分离,催化剂进入汽提器汽提后进行再生;
轻烃或第二原料反应器和原料油或第一原料反应器可以共用一个沉降器,两个反应器设在沉降器的外部或一个反应器与沉降器同轴设置;在沉降器内轻烃或第二原料反应器出口直接设置独立的轻烃或第二原料反应器气固分离器,轻烃或第二原料反应后的催化剂和油气进入轻烃或第二原料反应器气固分离器实现油气和催化剂的分离,分离出催化剂后的轻烃或第二原料反应产物流出沉降器;轻烃或第二原料反应产物可以与原料油或第一原料反应产物混合一起流出沉降器,也可以从独立的管线流出沉降器;需要时,沉降器设置独立的轻烃或第二原料反应产物出口,轻烃或第二原料反应产物经由气固分离器直接从该出口流出沉降器,不与原料油或第一原料反应器产物混合;
当轻烃或第二原料反应器单独设置轻烃或第二原料反应器沉降器时,轻烃或第二原料反应器气固分离器设置在轻烃或第二原料反应器沉降器内,轻烃或第二原料反应产物从设置在轻烃或第二原料反应器沉降器顶部的轻烃或第二原料反应产物出口流出,不与原料油或第一原料反应产物混合。
本发明中,当轻烃或第二原料反应器以多产丙烯为目的时,轻烃或第二原料反应器加入蒸汽降低烃分压,轻烃或第二原料雾化和补充的蒸汽总质量流量大于进入轻烃 或第二原料反应器的轻烃或第二原料质量流量的10%,一般为15~40%;当轻烃或第二原料为柴油组分或催化轻柴油组分或加氢后的催化柴油,以产汽油为目的时,蒸汽量为轻烃或第二原料量的2%~10%;蒸汽在预提升区、气化区或在轻烃或第二原料反应区进入轻烃或第二原料反应器;蒸汽优先在轻烃或第二原料反应区上游的气化区进入轻烃或第二原料反应器。
本发明的效果在于:
1.本发明采用多级再生方法,待生剂从再生器底部进入再生器,再生剂和半再生剂从待生剂进入口上方流出再生器,在常规反应沉降器和再生器布置方式的情况下实现待生剂多级逆流再生和再生剂、半再生剂双循环反应,在轻烃或第二原料反应区和再生器之间实现半再生剂循环,在原料油或第一原料反应器和再生器间实现再生剂循环;反应沉降器高度和原料油或第一原料反应时间不受影响;
2.本发明轻烃或第二原料首先与低温的适度积碳的半再生剂接触,实现了低温气化,轻烃或第二原料气化后在轻烃或第二原料反应区进行高温裂化反应,可以提高丙烯选择性;
3.本发明实现对反应再生系统的优化,改进再生效果,降低再生能耗。
附图说明
图1为本发明多产丙烯的催化反应再生方法实施方式一示意图;
图2为本发明多产丙烯的催化反应再生方法实施方式二示意图,再生器设置有外取热器;
图3为本发明多产丙烯的催化反应再生方法实施方式三示意图,轻烃或第二原料反应器采用提升管反应器,并设置有独立的沉降器。
图中编号标记内容如下:
1原料油或第一原料反应器,11预提升介质,12预提升区,13原料油或第一原料,14原料油或第一原料反应区;2轻烃或第二原料反应器,21轻烃或第二原料反应器预提升介质,21A蒸汽,22轻烃或第二原料反应器预提升区,22A气化区,23轻烃或第二原料,24轻烃或第二原料反应区,25分流输送管,26催化剂分流区,27催化剂回流管,27A催化剂区,28回炼油,29轻烃或第二原料反应产物输送管;3待生剂汽提器,31汽提蒸汽,32待生剂输送管,33待生剂汽提区;4沉降器,41原料油或第一原料反应器旋风分离器,42轻烃或第二原料反应器旋风分离器,43沉降器稀相区,44原料油或第一原料反应产物出口,45轻烃或第二原料反应产物出口,46原料油或第 一原料反应产物,47轻烃或第二原料反应产物,48混合反应产品物流;5催化剂再生区,51A第一压缩空气,51B第二压缩空气,52A第一压缩空气分布器,52B第二压缩空气分布器,53第一再生区物流输送管,54A第一再生区,54B第二再生区,54C第三再生区,55隔板,56A烟气和催化剂孔板,56B气体孔板,57催化剂或半再生剂回流管;58再生剂输送管,59再生剂或半再生剂输送管,6气固分离区,61再生器旋风分离器,62烟气出口管,63稀相区,66再生烟气;7外取热器,71外取热器催化剂进入管,72外取热器催化剂流出管;8轻烃或第二原料反应器沉降器,81轻烃或第二原料反应器汽提器,82轻烃或第二原料反应器待生剂输送管,83轻烃或第二原料反应器沉降器稀相区,84轻烃或第二原料反应器待生剂汽提区。
具体实施方式
以下以具体实施方式和实施例来说明本发明的技术方案,但本发明的保护范围不限于此。
具体实施过程如下:
实施方式一:
如图1所示:
一种多产丙烯的催化反应再生方法,设置原料油或第一原料反应器1和轻烃或第二原料反应器2两个独立的反应器和一个再生器;原料油或第一原料反应器1为提升管反应器,用于催化原料油或第一原料反应;轻烃或第二原料在轻烃或第二原料反应器2反应,原料油或第一原料反应器1和轻烃或第二原料反应器2使用来自同一再生器不同再生区再生程度不同的催化剂;再生器同时对两个反应器的待生剂进行再生;
所述再生器包括催化剂再生区5和气固分离区6,催化剂再生区5分成上下串联的三级再生区即第一再生区54A、第二再生区54B和第三再生区54C,三级再生区上下重叠设置,第一再生区54A在最下方,第二再生区54B在最上方,第三再生区54C在第一再生区54A和第二再生区54B之间;在第一再生区54A与第三再生区54C之间设置有隔板55;第二再生区54B上方是气固分离区6;第一再生区54A出口设置有第一再生区物流输送管53,第一再生区物流输送管53出口或上端设置烟气和催化剂孔板56A;气固分离区6内设有再生器旋风分离器61、稀相区63和烟气出口管62;
再生过程为:
使用压缩空气进行催化剂再生,压缩空气分成两部分分开进入不同再生区,第一压缩空气51A从第一压缩空气分布器52A进入第一再生区54A,进行待生催化剂的初 步再生;所述第一再生区54A为湍流流化床或循环流化床形式,进入第一再生区54A的第一压缩空气51A占40%到75%(以压缩空气总量为100%计);第一再生区气体表观流速一般不大于2.5m/s;
第一再生区54A内初步再生后的催化剂和气体经第一再生区物流输送管53进入第二再生区54B,继续进行催化剂再生;
第二压缩空气51B从第二压缩空气分布器52B进入第三再生区54C,第二再生区54B的部分再生剂或半再生催化剂通过催化剂或半再生剂回流管57回流到第三再生区54C,第二压缩空气51B与来自第二再生区54B的再生剂或半再生催化剂继续反应完成催化剂再生;所述第二再生区54B和第三再生区54C为湍流流化床形式,进入第三再生区54C的第二压缩空气51B占25%到60%;第二再生区54B和第三再生区54C的湍流流化床的气体表观流速不大于1.1m/s;
第三再生区54C再生后的再生催化剂从再生剂输送管58输送到原料油或第一原料反应器1进行原料油或第一原料催化反应;第二再生区54B的部分再生后的再生剂或半再生催化剂从再生剂或半再生剂输送管59输送到轻烃或第二原料反应器2进行轻烃或第二原料催化反应,再生烟气66经烟气出口管62排出再生器;
第三再生区54C再生后的含氧气体通过气体孔板56B进入第二再生区54B内,剩余氧气继续进行催化剂再生;
反应过程为:
预热到250℃到300℃的催化原料油或第一原料13由蒸汽雾化后进入原料油或第一原料反应器1,与从第三再生区54C经再生剂输送管58输送来的约660℃的再生剂接触,随即气化和进行催化裂化反应;本实施例中,C4同时作为原料油或第一原料反应器的进料,C4在催化原料油或第一原料13下方进入,再生剂先进入预提升区12,用预提升介质11输送,再生剂先与C4接触反应,之后再输送到原料油或第一原料反应区14与催化原料油或第一原料13混合,沿原料油或第一原料反应区14向上流动完成催化裂化反应;
原料油或第一原料反应产物46即原料油或第一原料反应油气在沉降器4内经原料油或第一原料反应器旋风分离器41分离出夹带的催化剂后沿原料油或第一原料反应产物出口管44流出沉降器4;反应后的催化剂从沉降器稀相区43沉降后进入待生剂汽提区33,引入汽提蒸汽31汽提,在待生剂汽提器3完成汽提后从待生剂输送管32返回再生器最下方的第一再生区54A;具体实施时,催化原料油或第一原料反应温度500℃到530℃,反应时间约2.0秒,反应深度按产生20%左右回炼油控制;第三再生区的温度约 650℃到670℃,反应剂油比7.5左右,通过反应温度和再生剂温度调节回炼油比例;
轻烃或第二原料反应器2自下而上包含预提升区22、气化区22A、轻烃或第二原料反应区24、分流输送管25、催化剂分流区26(分流输送管25、催化剂分流区26和催化剂回流管27组成催化剂回流区)以及轻烃或第二原料反应产物输送管29;轻烃或第二原料23进入气化区22A,催化剂分流区26设置在轻烃或第二原料反应区24和轻烃或第二原料反应产物输送管29之间,使轻烃或第二原料反应区反应后的催化剂和气体通过分流输送管25进入催化剂分流区26,分流出的催化剂(催化剂回流量根据22A内温度的要求确定)先进入分流输送管25外部的催化剂区27A,经催化剂回流管27返回轻烃或第二原料反应器2底部的轻烃或第二原料反应器预提升区22,用轻烃或第二原料反应器预提升介质21输送到气化区22A实现轻烃或第二原料的低温气化,气化温度在250℃-500℃优选300℃到400℃,在催化剂区27A向轻烃或第二原料反应器2补充蒸汽21A以降低烃分压;轻烃或第二原料气化后与催化剂一起向上进入轻烃或第二原料反应区24,来自第二再生区54B的再生剂或半再生催化剂从再生剂或半再生剂输送管59输送到气化区上方的轻烃或第二原料催化裂化反应区与气化后的轻烃或第二原料混合,再生剂或半再生催化剂提供轻烃或第二原料反应器2需要的热量和催化环境,并提高进入轻烃或第二原料反应区24内物流的温度使轻烃或第二原料进行催化裂化反应,反应温度由来自第二再生区54B的再生剂或半再生催化剂量控制;气体和未分流的催化剂进入上方的轻烃或第二原料反应产物输送管29;轻烃或第二原料反应区24采用湍流流化床或循环流化床形式,气体表观流速不大于4.0m/s,催化剂重时空速4到15(1/h);反应温度(即轻烃或第二原料反应区24内的温度)530℃到660℃;来自再生器第二再生区54B的半再生剂温度680℃到740℃,半再生剂含碳重量比0.10%到0.30%;
从分馏塔(现有技术公知部分,本说明书未显示)来的回炼油28在轻烃或第二原料反应物输送管29进入轻烃或第二原料反应器2,利用轻烃或第二原料反应区物流的热量和催化剂实现该部分物流的反应,同时降低轻烃或第二原料反应区24中轻烃或第二原料反应产物的温度,回炼油反应后的温度(轻烃或第二原料反应器出口温度)约500℃;根据轻烃或第二原料反应器出口温度控制回炼油进料量;具体实施时,回炼油28可以为来自分馏塔底的回炼油,或者为沸点为180~350℃的循环油或柴油组分;
轻烃或第二原料反应器2与原料油或第一原料反应器1共用沉降器4,在沉降器4设置独立的轻烃或第二原料反应器旋风分离器42;轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器旋风分离器42进行气固分离,轻烃或第二原料反应产物47 从独立的轻烃或第二原料反应产物出口45流出沉降器4;反应后的催化剂汽提后从待生剂输送管32返回再生器最下方的第一再生区54A。
其他不再详述,根据以上条件,技术人员可以完成本发明的实施。
实施方式二:
如图2所示的多产丙烯的催化反应再生方法:
轻烃或第二原料反应器2与原料油或第一原料反应器1共用沉降器4,并共用第二级旋风分离器(图中未示出),轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器旋风分离器42进行第一级气固分离,轻烃或第二原料反应产物47与原料油或第一原料反应产物混合成为混合反应产品物流48,从原料油或第一原料反应产品出口44流出沉降器;
再生器5设置有外取热器7,外取热器催化剂进入管71的催化剂入口设置在第二再生区54B,取热后的催化剂经外取热器催化剂流出管72进入第三再生区54C。
其他与实施方式一相同。
再生过程为:
压缩空气分成两部分分开进入不同再生区,第一压缩空气51A从第一压缩空气分布器52A进入第一再生区54A,进行待生催化剂的初步再生;第一再生区54A内初步再生后的催化剂和气体经第一再生区物流输送管53进入第二再生区54B,继续进行催化剂再生;第二压缩空气51B从第二压缩空气分布器52B进入第三再生区54C,第二再生区54B的半再生催化剂通过催化剂或半再生剂回流管57回流到第三再生区54C,第二压缩空气51B与来自第二再生区54B的半再生催化剂继续反应完成催化剂再生;第三再生区54C再生后的再生催化剂从再生剂输送管58输送到原料油或第一原料反应器1进行原料油或第一原料催化反应;第二再生区54B再生后的半再生催化剂从再生剂或半再生剂输送管59输送到轻烃或第二原料反应器2进行轻烃或第二原料催化反应,再生烟气66经烟气出口管62排出再生器;第三再生区54C再生后的含氧气体通过气体孔板56B进入第二再生区54B内,剩余氧气继续进行催化剂再生;部分第二再生区54B的半再生剂沿外取热器催化剂进入管71进入外取热器7内,取出一部分热量,取热后的催化剂经外取热器催化剂流出管72进入第三再生区54C;
反应过程为:
预热的催化原料油或第一原料13由蒸汽雾化后进入原料油或第一原料反应器1,与从第三再生区54C经再生剂输送管58输送来的再生剂接触,随即气化和进行催化裂化反应;
原料油或第一原料反应产物46在沉降器4内经原料油或第一原料反应器旋风分离器41分离出夹带的催化剂后沿原料油或第一原料反应产物出口管44流出沉降器4;反应后的催化剂从沉降器稀相区43沉降后进入待生剂汽提区33,引入汽提蒸汽31汽提,在待生剂汽提器3完成汽提后从待生剂输送管32返回第一再生区54A;
轻烃或第二原料23进入气化区22A,经催化剂分流区26分流出的催化剂经催化剂回流管27返回轻烃或第二原料反应器2底部的轻烃或第二原料反应器预提升区22用轻烃或第二原料反应器预提升介质21输送到气化区22A,实现轻烃或第二原料的低温气化,轻烃或第二原料气化后与催化剂一起向上进入轻烃或第二原料反应区24,与来自第二再生区54B的半再生催化剂混合,使轻烃或第二原料进行催化裂化反应;轻烃或第二原料反应区反应后的催化剂和气体通过分流输送管25进入催化剂分流区26分流出部分催化剂返回轻烃或第二原料反应器预提升区22,气体和未分流的催化剂进入上方的轻烃或第二原料反应产物输送管29,与回炼油28接触反应;
轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器旋风分离器42进行气固分离,轻烃或第二原料反应产物47与原料油或第一原料反应产物混合成为混合反应产品物流48流出沉降器。
实施方式三:
如图3所示的多产丙烯的催化反应再生方法:
轻烃或第二原料反应器2采用提升管形式,自下而上包含预提升区22、气化区22A、轻烃或第二原料反应区24以及轻烃或第二原料反应产物输送管29;
轻烃或第二原料反应器2单独设置轻烃或第二原料反应器沉降器8和轻烃或第二原料反应器汽提器81,轻烃或第二原料反应器旋风分离器42设置在轻烃或第二原料反应器沉降器8内,轻烃或第二原料反应器沉降器8设有轻烃或第二原料反应器沉降器稀相区83,轻烃或第二原料反应器汽提器81设有轻烃或第二原料反应器待生剂汽提区84;轻烃或第二原料反应产物47从设置在轻烃或第二原料反应器沉降器8顶部的轻烃或第二原料反应产物出口管45流出,不与原料油或第一原料反应产物混合;
轻烃或第二原料反应后的催化剂经轻烃或第二原料反应器待生剂汽提区84汽提后,部分从催化剂回流管27回流到轻烃或第二原料反应器预提升区22,其余待生催化剂从轻烃或第二原料反应器待生剂输送管82进入再生器5的第一再生区54A;
再生器5设置有外取热器7,外取热器催化剂进入管71的催化剂入口设置在第二再生区54B,取热后的催化剂经外取热器催化剂流出管72进入第三再生区54C。
其他部分与实施方式一相同。
实施例:
本实施例使用的装置见图1。
原料油或第一原料反应:
催化原料油或第一原料为:150t/h重油,性质见表1。
表1催化原料油或第一原料性质
项目 数据
密度g/cm 3(20℃) 0.9035
残碳,w% 0.62
氢含量,w% 12.56
硫含量,w% 0.31
氮含量,w% 0.16
馏程,℃ 256~545
重油预热280℃;原料油或第一原料反应器为提升管形式,来自再生器(第一再生区气体表观流速为1.5m/s,第二再生区和第三再生区的湍流流化床气体表观流速为0.8m/s)第三再生区660℃的再生剂自预提升区进入原料油或第一原料反应器,原料油或第一原料反应器出口温度520℃,反应时间1.8s;
轻烃反应:
以汽油为轻烃或第二原料原料,轻烃或第二原料反应器即为汽油反应器,汽油反应器催化裂化反应区为循环流化床形式,反应原料为原料油或第一原料反应自产粗汽油,50t/h,汽油液相进料。汽油反应器采用560℃的汽油反应后的催化剂气化,气化后的温度350℃,来自再生器第二再生区的半再生剂温度680℃,含碳量0.18%,半再生剂进入催化裂化反应区的循环流化床内,循环流化床温度560℃,重时空速12(1/h),油气流速1.5m/s,停留时间4.0s;
反应油气经分馏得到的回炼油组分在轻烃或第二原料反应器催化裂化反应区上方进入轻烃或第二原料反应产物输送管,继续反应,同时降低轻烃或第二原料后反应速率,轻烃或第二原料反应产物输送管出口温度500℃;回炼油量30t/h,温度350℃;
两反应器共用一个沉降器,汽油反应产物和原料油或第一原料反应产物从独立的管线分别送入汽油产物分馏塔和原料油或第一原料产物分馏塔。
反应条件及产物分布如表2所示。
对比例:
原有双提升管反应技术,即采用一个原料油或第一原料反应器,油气停留时间3秒;一个汽油提升管反应器,油气停留时间3秒。反应器设计操作条件及产物分布如 表2所示。
表2实施例与对比例反应条件及产物分布对比
Figure PCTCN2019085280-appb-000001
从表2的对比结果可以看出,本发明与常规双提升管催化工艺相比:低价值产品如干气和焦炭产率明显下降,高价值产品如丙烯产率明显提高,其中干气产率下降了1.35个百分点,焦炭产率降低1.03个百分点,丙烯产率增加原料油或第一原料进料量的1.61个百分点。可见,本发明大幅地增加了丙烯产率,干气和焦炭产率大幅下降,提高了丙烯选择性。

Claims (9)

  1. 一种多产丙烯的催化反应再生方法,该方法包括再生过程和反应过程,其中设置原料油或第一原料反应器(1)和轻烃或第二原料反应器(2)两个独立的反应器和一个再生器;其特征在于,原料油或第一原料反应器(1)用于催化原料油或第一原料反应;轻烃或第二原料在轻烃或第二原料反应器(2)反应,原料油或第一原料反应器(1)和轻烃或第二原料反应器(2)使用来自同一再生器不同再生区的催化剂;再生器同时对两个反应器的待生剂进行再生;
    所述再生器包括催化剂再生区(5)和气固分离区(6),催化剂再生区(5)分成上下串联的三级再生区即第一再生区(54A)、第二再生区(54B)和第三再生区(54C),三级再生区上下重叠设置,第一再生区(54A)在最下方,第二再生区(54B)在最上方,第三再生区(54C)在第一再生区(54A)和第二再生区(54B)之间;在第一再生区(54A)与第三再生区(54C)之间设置有隔板(55);第二再生区(54B)上方是气固分离区(6);第一再生区(54A)出口设置有第一再生区物流输送管(53),第一再生区物流输送管(53)出口或上端设置烟气和催化剂孔板(56A);
    再生过程为:
    使用压缩空气进行催化剂再生,压缩空气分开进入不同再生区,第一压缩空气(51A)从第一压缩空气分布器(52A)进入第一再生区(54A),进行待生催化剂的初步再生;所述第一再生区(54A)为湍流流化床或循环流化床形式;
    第一再生区(54A)内初步再生后的催化剂和气体经第一再生区物流输送管(53)进入第二再生区(54B),继续进行催化剂再生;
    第二压缩空气(51B)从第二压缩空气分布器(52B)进入第三再生区(54C),第二再生区(54B)内的催化剂通过催化剂或半再生剂回流管(57)回流到第三再生区(54C),第二压缩空气(51B)与来自第二再生区(54B)的催化剂继续反应完成催化剂再生或混合流化后使催化剂降温;所述第二再生区(54B)和第三再生区(54C)为湍流流化床形式;
    第三再生区(54C)再生或降温后的再生催化剂从第三再生区催化剂流化床层经再生剂输送管(58)输送到原料油或第一原料反应器(1)进行原料油或第一原料催化反应;第二再生区(54B)再生后的再生剂或半再生催化剂从再生剂或半再生剂输送管(59)输送到轻烃或第二原料反应器(2)的轻烃或第二原料反应区(24)进行轻烃或第二原料催化反应;
    第三再生区(54C)再生后的的含氧气体通过气体孔板(56B)进入第二再生区(54B) 内,剩余氧气继续进行催化剂再生;
    反应过程为:
    催化原料油或第一原料(13)由蒸汽雾化后进入原料油或第一原料反应器(1),与从第三再生区(54C)经再生剂输送管(58)输送来的再生剂接触,随即气化和进行催化裂化反应,原料油或第一原料反应产物(46)在沉降器(4)内经原料油或第一原料反应器旋风分离器(41)分离出夹带的催化剂后流出沉降器(4);反应后的催化剂沉降到待生剂汽提器(3)进行汽提,在待生剂汽提器(3)完成汽提后从待生剂输送管(32)返回第一再生区(54A);
    轻烃或第二原料反应器(2)自下而上包含预提升区(22)、气化区(22A)、提高温度的催化裂化反应区即轻烃或第二原料反应区(24)和轻烃或第二原料反应产物输送管(29);轻烃或第二原料(23)进入气化区(22A),部分轻烃或第二原料反应后的催化剂经催化剂回流管(27)在轻烃或第二原料反应器(2)底部的预提升区(22)返回轻烃或第二原料反应器(2),被轻烃或第二原料反应器预提升介质(21)输送到气化区(22A),轻烃或第二原料与轻烃或第二原料反应后的催化剂在气化区(22A)混合实现轻烃或第二原料的气化;轻烃或第二原料气化后与催化剂一起向上进入轻烃或第二原料反应区(24),来自第二再生区(54B)的再生剂或半再生催化剂从再生剂或半再生剂输送管(59)输送到气化区上方的轻烃或第二原料反应区(24)与气化后的轻烃或第二原料混合,再生剂或半再生催化剂提供轻烃或第二原料反应器(2)需要的热量,并提高进入轻烃或第二原料反应区(24)内物流的温度使轻烃或第二原料进行催化裂化反应,反应温度由来自第二再生区(54B)的再生剂或半再生催化剂量控制;轻烃或第二原料反应器(2)或者与原料油或第一原料反应器(1)共用沉降器(4),或者设置独立的轻烃或第二原料反应器沉降器(8);轻烃或第二原料反应产物和催化剂进入轻烃或第二原料反应器旋风分离器(42)进行气固分离,轻烃或第二原料反应产物(47)或者与原料油或第一原料反应产物(46)混合后从原料油或第一原料反应产物出口(44)流出沉降器(4),或者直接从独立的轻烃或第二原料反应产物出口(45)流出沉降器(4)或轻烃或第二原料反应器沉降器(8);反应后的催化剂汽提后返回第一再生区(54A)。
  2. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,所述轻烃或第二原料(23)包括C4、C5、催化汽油、石脑油、催化轻汽油、焦化汽油、催化轻柴油、催化裂化柴油加氢后的组分中的一种或多种。
  3. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,所述轻烃 或第二原料(23)为汽油或终馏点低于200℃的原料,以多产烯烃为目的时,轻烃或第二原料(23)在轻烃或第二原料反应区(24)反应的同时,使部分轻烃或第二原料(23)的反应产物,或原料油或第一原料反应产物中的回炼油或催化裂化柴油,或加氢后的催化裂化柴油在所述轻烃或第二原料反应区(24)出口或在轻烃或第二原料反应产物输送管(29)进入轻烃或第二原料反应器(2),利用轻烃或第二原料反应区物流的热量和催化剂实现该部分物流的反应,同时降低轻烃或第二原料反应区(24)中轻烃或第二原料反应产物的温度。
  4. 根据权利要求2或3所述的多产丙烯的催化反应再生方法,其特征在于,催化裂化柴油或加氢后的催化裂化柴油分离出的单环为主的部分在轻烃或第二原料反应产物输送管(29)进入轻烃或第二原料反应器(2)进行再次反应。
  5. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,轻烃或第二原料反应器(2)还包括有催化剂分流区(26),催化剂分流区(26)设置在轻烃或第二原料反应区(24)和轻烃或第二原料反应产物输送管(29)之间,使轻烃或第二原料反应区反应后的催化剂和气体通过分流输送管(25)进入催化剂分流区(26),分流出的催化剂经催化剂回流管(27)返回轻烃或第二原料反应器(2)底部的轻烃或第二原料反应器预提升区(22),气体和未分流的催化剂进入上方的轻烃或第二原料反应产物输送管(29)。
  6. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,所述轻烃或第二原料反应区(24)采用湍流流化床或循环流化床条件。
  7. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,所述第二再生区(54B)和第三再生区(54C)的湍流流化床的气体表观流速不大于1.1m/s。
  8. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,轻烃或第二原料反应器(2)与原料油或第一原料反应器(1)共用沉降器(4),轻烃或第二原料反应产物和催化剂进入沉降器(4)内的轻烃或第二原料反应器旋风分离器(42)进行气固分离,轻烃或第二原料反应产物(47)或者与原料油或第一原料反应产物(46)混合后从原料油或第一原料反应产物出口(44)流出沉降器(4),或者直接从独立的轻烃或第二原料反应产物出口(45)流出沉降器(4);反应后的催化剂沉降到待生剂汽提器(3)进行汽提,完成汽提后从待生剂输送管(32)返回第一再生区(54A)。
  9. 根据权利要求1所述的多产丙烯的催化反应再生方法,其特征在于,轻烃或第二原料反应器(2)设置有独立的轻烃或第二原料反应器沉降器(8),轻烃或第二原 料反应产物和催化剂进入轻烃或第二原料反应器沉降器(8)内的轻烃或第二原料反应器旋风分离器(42)进行气固分离,轻烃或第二原料反应产物(47)直接从独立的轻烃或第二原料反应产物出口(45)流出轻烃或第二原料反应器沉降器(8);反应后的催化剂沉降到轻烃或第二原料反应器汽提器(81)进行汽提,完成汽提后从轻烃或第二原料反应器待生剂输送管(82)返回第一再生区(54A);部分轻烃或第二原料反应后的催化剂从轻烃或第二原料反应器汽提器(81)经催化剂回流管(27)在轻烃或第二原料反应器(2)底部的预提升区(22)返回轻烃或第二原料反应器(2)。
PCT/CN2019/085280 2018-05-29 2019-04-30 一种多产丙烯的催化反应再生方法 WO2019228131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810535701.3A CN110194967B (zh) 2018-05-29 2018-05-29 一种多产丙烯的催化反应再生方法
CN201810535701.3 2018-05-29

Publications (1)

Publication Number Publication Date
WO2019228131A1 true WO2019228131A1 (zh) 2019-12-05

Family

ID=67751359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085280 WO2019228131A1 (zh) 2018-05-29 2019-04-30 一种多产丙烯的催化反应再生方法

Country Status (2)

Country Link
CN (1) CN110194967B (zh)
WO (1) WO2019228131A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111689829B (zh) * 2020-07-09 2023-03-10 青岛京润石化设计研究院有限公司 一种石油烃催化转化制乙烯的方法及其装置
CN114195612A (zh) * 2020-09-02 2022-03-18 青岛京润石化设计研究院有限公司 一种石油烃催化转化制丙烯和乙烯的方法及其装置
CN115637166A (zh) * 2021-07-20 2023-01-24 青岛京润石化设计研究院有限公司 一种原料油和轻烃催化转化方法及反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101391234A (zh) * 2008-10-30 2009-03-25 石宝珍 一种催化剂多段再生方法及装置
WO2010023456A1 (en) * 2008-08-29 2010-03-04 Petróleo Brasileiro S A - Petrobas Method of production of light olefins in catalytic cracking units with energy deficiency
CN103739428A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 以甲醇为原料生产低碳烯烃的装置
CN205774340U (zh) * 2016-01-06 2016-12-07 石宝珍 一种催化裂化反应再生装置
CN109422617A (zh) * 2017-08-31 2019-03-05 中国石油化工股份有限公司 反应-再生装置及其用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201901660U (zh) * 2010-12-02 2011-07-20 石宝珍 一种催化裂化装置
CN102391889B (zh) * 2011-10-10 2013-12-18 石宝珍 一种催化转化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023456A1 (en) * 2008-08-29 2010-03-04 Petróleo Brasileiro S A - Petrobas Method of production of light olefins in catalytic cracking units with energy deficiency
CN101391234A (zh) * 2008-10-30 2009-03-25 石宝珍 一种催化剂多段再生方法及装置
CN103739428A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 以甲醇为原料生产低碳烯烃的装置
CN205774340U (zh) * 2016-01-06 2016-12-07 石宝珍 一种催化裂化反应再生装置
CN109422617A (zh) * 2017-08-31 2019-03-05 中国石油化工股份有限公司 反应-再生装置及其用途

Also Published As

Publication number Publication date
CN110194967B (zh) 2021-07-23
CN110194967A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
US10184088B2 (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or middle distillates and light olefins
CN108794292B (zh) 一种多产丙烯的催化转化方法
CN107286972B (zh) 一种多产丙烯的催化转化方法
CN105349172B (zh) 石脑油原料的催化裂解方法
CN110240925B (zh) 一种流化催化裂化反应再生方法
JP2020528053A (ja) オレフィン製造のための一体化された熱・接触分解
CN103540345B (zh) 一种催化裂化方法
WO2019228131A1 (zh) 一种多产丙烯的催化反应再生方法
CN110240932B (zh) 一种石油烃多级流化催化反应方法及反应器
CN107337574A (zh) 一种轻烃裂解制烯烃的催化转化方法
US20230256427A1 (en) Method and equipment for circulating cooled regenerated catalyst
CN111807916A (zh) 一种高效的含氧化合物生产低碳烯烃的装置
EP3919589A1 (en) Method for catalytic conversion of hydrocarbon with downer reactor and device thereof
CN103540346A (zh) 一种下行式催化裂化装置
CN111871343A (zh) 一种含氧化合物生产低碳烯烃的装置
CN111875465A (zh) 一种含氧化合物生产低碳烯烃的方法
CN110724561B (zh) 一种生产丙烯和轻芳烃的催化裂解方法和系统
CN110724560B (zh) 一种生产丙烯和轻芳烃的催化裂解方法和系统
WO2022048440A1 (zh) 一种石油烃催化转化制丙烯和乙烯的方法及其装置
CN103788992A (zh) 一种催化裂化方法
CN109385297B (zh) 一种增产汽油和减少油浆的催化裂化转化方法
US20220119719A1 (en) System for catalytic cracking of naphtha with mixed spent and regenerated catalyst
CN111875464A (zh) 一种高效的含氧化合物生产低碳烯烃的方法
CN105400546B (zh) 一种催化裂化方法
US20220119717A1 (en) Method for the conversion of feedstock containing naphtha to low carbon olefins and aromatics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811582

Country of ref document: EP

Kind code of ref document: A1