WO2011052329A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2011052329A1 WO2011052329A1 PCT/JP2010/066919 JP2010066919W WO2011052329A1 WO 2011052329 A1 WO2011052329 A1 WO 2011052329A1 JP 2010066919 W JP2010066919 W JP 2010066919W WO 2011052329 A1 WO2011052329 A1 WO 2011052329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- light
- cooling
- light receiving
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
- G09G3/3426—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133382—Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
- G02F1/133385—Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell with cooling means, e.g. fans
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/3413—Details of control of colour illumination sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/66—Transforming electric information into light information
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/58—Arrangements comprising a monitoring photodetector
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0237—Switching ON and OFF the backlight within one frame
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/041—Temperature compensation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/064—Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/0646—Modulation of illumination source brightness and image signal correlated to each other
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/0653—Controlling or limiting the speed of brightness adjustment of the illumination source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/066—Adjustment of display parameters for control of contrast
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0464—Positioning
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/144—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2360/00—Aspects of the architecture of display systems
- G09G2360/14—Detecting light within display terminals, e.g. using a single or a plurality of photosensors
- G09G2360/145—Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
Definitions
- the present invention relates to a display device, particularly a liquid crystal display device.
- a liquid crystal display device includes a liquid crystal panel in which a pair of substrates are bonded to face each other, and a backlight arranged to face the back side of the liquid crystal panel.
- the liquid crystal panel has a liquid crystal layer between a pair of substrates, and can control light transmittance by controlling a voltage applied between the pair of substrates.
- the liquid crystal display device displays an image in a display area of the liquid crystal panel by irradiating light from an irradiating unit arranged in the backlight while operating the liquid crystal layer of the liquid crystal panel.
- external light When external light is irradiated onto the display area of such a liquid crystal display device, the external light is reflected on the surface of the liquid crystal panel, and the contrast of the display image may be reduced.
- external light means light emitted from other than a display device (including a liquid crystal display device). For example, even when the display device is placed indoors, it does not matter whether the light is emitted by indoor lighting or from outside the room.
- Patent Document 1 a plurality of optical sensors are attached at different positions around the front side (display surface side) of the liquid crystal display device, light reception information obtained by the optical sensors is compared and calculated, and based on the calculation result.
- a method for controlling a backlight is disclosed. As described above, the method disclosed in the document adjusts the contrast of the display image based on the brightness of the external light around the display area.
- the distribution of external light in the display area is detected by arranging a plurality of photosensors in the display area.
- This liquid crystal display device controls the voltage applied to the liquid crystal layer of the liquid crystal panel based on the distribution of external light in the display region, and adjusts the light transmittance of the liquid crystal layer for each region.
- the liquid crystal display device disclosed in the document adjusts the contrast of the display image by adjusting the light transmittance of the liquid crystal layer.
- the liquid crystal display device disclosed in Patent Document 3 has a cooling unit in which a flow path through which cooling water circulates is formed immediately below the illumination unit of the backlight. In this liquid crystal display device, cooling water is circulated through this flow path, and the light emitting diode is cooled by water cooling.
- liquid crystal display devices with one side exceeding 1 m may be created.
- the display area becomes large, the brightness of the external light that irradiates the display area is likely to be partially different.
- the upper part of the display area is brighter than the lower part due to the effect of indoor illumination light, or one side of the display area is less than the opposite side due to the light incident from the window. And bright cases may occur.
- the external light that irradiates the display area partially heats the display area, the temperature distribution in the entire display area varies.
- the temperature distribution in the entire display region varies, when the irradiation unit made of a light emitting diode is used, the brightness of the illumination light generated from the irradiation unit varies.
- the response characteristics of the liquid crystal molecules contained in the liquid crystal layer of the liquid crystal panel change depending on the temperature, variations in the temperature distribution in the display region also affect the light transmittance of the liquid crystal panel.
- the variation in the temperature distribution caused by the external light that irradiates the display area causes disturbance in the image displayed in the display area.
- the present invention has been made in view of such problems.
- the disturbance of the display image due to the variation in the temperature distribution of the display region may occur not only in the liquid crystal display device but also in other display devices (for example, an organic EL display, a plasma display, etc.).
- the display device of the present invention includes a display panel, a first light receiving sensor, a cooling device, and a cooling control unit.
- the first light receiving sensor receives external light applied to the display panel at a plurality of positions in the display area.
- the cooling device performs cooling for each of a plurality of areas obtained by dividing the display area.
- the cooling control unit controls the cooling device so that the cooling is performed for each area based on the light reception information obtained by the first light receiving sensor.
- the cooling device is controlled so that cooling is performed for each area based on the light receiving information obtained by the first light receiving sensor. For this reason, since the display area whose temperature has been increased by being irradiated with external light can be cooled for each area, it is possible to prevent variations in temperature distribution generated in the display area by being irradiated with external light. . Further, in this display device, since the area not irradiated with the external light is not cooled, the driving power of the cooling device can be saved and the noise caused by the driving sound of the cooling device can be suppressed.
- 1 is a cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the circuit diagram which showed the pixel typically.
- the enlarged plan view of a backlight The flowchart which showed typically the control by a backlight control part.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the expanded sectional view of a liquid crystal panel The expanded sectional view of a liquid crystal panel.
- the expanded sectional view of a liquid crystal panel. The circuit diagram which showed the pixel typically.
- FIG. 1 is a cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the flowchart which showed typically the control by a backlight control part.
- the flowchart which showed typically the control by a backlight control part.
- FIG. 6 is a block diagram of a liquid crystal display device using area active processing.
- the graph which showed typically the wavelength range of the external light reflected on the surface of a liquid crystal panel.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the enlarged plan view of a backlight The figure which shows an example of the circuit for utilizing the electromotive force which a light receiving sensor produced.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the front view of a liquid crystal panel The front view of a liquid crystal panel.
- the front view of a liquid crystal panel The front view of a liquid crystal panel.
- the front view of a liquid crystal panel The front view of a liquid crystal panel.
- the front view of a liquid crystal panel. 1 is a cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- 1 is a block diagram schematically showing a liquid crystal display device according to an embodiment of the present invention.
- the three-dimensional view which shows an example of a cooling device.
- the three-dimensional view which shows an example of a cooling device.
- the block diagram which shows a liquid crystal module typically.
- the block diagram which shows a backlight typically.
- the figure which showed the control by a cooling control part typically.
- a liquid crystal display device 100 will be described as an example of a display device according to an embodiment of the present invention.
- Each drawing is prepared to help understanding of the present invention and its embodiments. For this reason, the dimension on drawing does not reflect the dimension of an actual implementation product. Moreover, even if the drawings are for explaining the same embodiment, the drawings do not necessarily match. Moreover, the same code
- FIG. 1 is a longitudinal sectional view of a liquid crystal display device 100 according to an embodiment of the present invention.
- FIG. 2 is a block diagram schematically showing the structure of the liquid crystal display device 100. In FIG. 2, for convenience of explanation, the liquid crystal panel 10 and the backlight 20 are illustrated separately.
- the liquid crystal display device 100 includes a liquid crystal panel 10 and a backlight 20 as shown in FIG.
- a plurality of pixels 30 are arranged in the display area 10a.
- the backlight 20 is disposed to face the back surface of the liquid crystal panel 10 and includes a plurality of irradiation units 22 that irradiate illumination light to the back surface of the liquid crystal panel 10.
- the liquid crystal display device 100 includes a first light receiving sensor 122 and a backlight control unit 240. As shown in FIG. 2, the first light receiving sensor 122 receives the external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display area 10a, and obtains light receiving information a1 to d1.
- the backlight control unit 240 Based on the light reception information a1 to d1 obtained by the first light receiving sensor 122, the backlight control unit 240 adjusts the brightness of the illumination light for each of the plurality of areas A to D obtained by dividing the display area 10a. Each of the plurality of irradiation units 22 is controlled.
- the liquid crystal display device 100 a plurality of areas obtained by dividing the display region 10a based on light reception information obtained by a first light receiving sensor that receives external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display region 10a.
- the brightness of the illumination light is appropriately adjusted for each of A to D. Thereby, the influence of the external light irradiated to the liquid crystal panel 10 is relieved, and a display image becomes easy to see.
- liquid crystal display device 100 according to this embodiment will be described.
- the structure of the liquid crystal panel 10 and the backlight 20 will be described in order, and then the control of the liquid crystal display device 100 will be described.
- the liquid crystal panel 10 is provided with a display area 10a that is an area for displaying an image.
- a plurality of pixels 30 are arranged in the display area 10 a of the liquid crystal panel 10.
- the liquid crystal panel 10 has a generally rectangular shape as a whole, and the shape of the display region 10a is also generally rectangular.
- the liquid crystal panel 10 includes a pair of translucent substrates 40 and 50 (here, glass substrates) sandwiching the liquid crystal layer 13.
- the back side (back side, backlight side) substrate 40 is the array substrate 40 (TFT substrate), and the front side (front side, display side) substrate.
- Reference numeral 50 denotes a color filter substrate 50 (CF substrate).
- the array substrate 40 and the color filter substrate 50 are arranged to face each other.
- a seal 15 is provided between the array substrate 40 and the color filter substrate 50 so as to surround the periphery (outer peripheral edge) of the rectangular display region 10a in the circumferential direction.
- a liquid crystal layer 13 is formed in a space surrounded by the array substrate 40, the color filter substrate 50 and the seal 15.
- the liquid crystal layer 13 is filled with a liquid crystal material containing liquid crystal molecules.
- the alignment direction of such a liquid crystal material is manipulated by an electric field generated between the array substrate 40 and the color filter substrate 50.
- the liquid crystal panel 10 changes in optical characteristics according to the alignment direction of the liquid crystal molecules.
- FIG. 3 is an enlarged view of the cross section of the liquid crystal panel 10. As shown in FIG. 3, a spacer 16 is interposed between the array substrate 40 and the color filter substrate 50. The spacer 16 maintains a predetermined distance between the array substrate 40 and the color filter substrate 50. Next, detailed structures of the array substrate 40 and the color filter substrate 50 will be described in order.
- the array substrate 40 includes a pixel electrode 42, a bus line 43, a planarizing layer 44, an alignment film 46, a thin film transistor 47 (TFT) on the front side (liquid crystal layer 13 side) of the glass substrate 41.
- Thin film (transistor) (see FIG. 4 and FIG. 5).
- the pixel electrode 42 is made of ITO (indium tin oxide), which is a transparent conductive material, and is formed in each pixel 30. A voltage corresponding to an image is supplied to these pixel electrodes 42 at a predetermined timing via a bus line 43 and a thin film transistor 47.
- the planarization layer 44 is made of an insulating material and covers the pixel electrode 42 and the bus line 43.
- An alignment film 46 made of polyimide or the like is formed on the planarizing layer 44.
- the bus line 43 transmits a data signal to the thin film transistor 47 as shown in FIG.
- the data signal line 43 not only the data signal line 43 but also various signal lines are wired on the array substrate 40. The wiring structure and control of the signal lines of the array substrate 40 will be described later.
- the color filter substrate 50 has a black matrix 52, a colored layer 53, a planarizing layer 54, a counter electrode 55, and an alignment film 56 (horizontal alignment film) on the back side (liquid crystal layer 13 side) of the glass substrate 51. Is formed.
- the black matrix 52 is formed of a material that does not transmit light (for example, a metal such as Cr (chromium)), and is provided between the colored layers 53 so as to partition each pixel 30.
- the colored layer 53 is a filter that adjusts the color tone. In this embodiment, the colored layer 53 adjusts the color tone of transmitted light by absorbing light having a wavelength corresponding to a color other than the color of the colored layer 53.
- a colored layer 53 of three colors red (R), green (G), and blue (B) is sequentially formed on a glass substrate 51 for one pixel 30.
- the planarization layer 54 of the color filter substrate 50 is formed so as to cover the black matrix 52 and the coloring layer 53.
- a counter electrode 55 made of ITO (indium tin oxide) is formed so as to cover the planarizing layer 54.
- an alignment film 56 is formed so as to cover the counter electrode 55.
- the alignment film 56 faces the alignment film 46 of the array substrate 40.
- the alignment films 46 and 56 of both the substrates 40 and 50 determine the alignment direction of the liquid crystal molecules in a state where no voltage is applied. In this embodiment, the alignment direction of the alignment film 56 of the color filter substrate 50 and the alignment film 46 of the array substrate 40 are different by 90 °.
- polarizing plates 17 and 18 are attached to the front surface side of the color filter substrate 50 (glass substrate 51) and the back surface side of the array substrate 40 (glass substrate 41), respectively.
- the polarizing plates 17 and 18 are arranged so that the polarization axes thereof are orthogonal to each other.
- the polarization axes of the two polarizing plates 17 and 18 are arranged in parallel.
- the liquid crystal panel 10 is supported in a state of being sandwiched between a bezel 60 mounted on the front side (front side) and a frame 63 mounted on the back side (back side). Yes.
- the bezel 60 is a frame provided along the outer periphery of the display region 10a of the liquid crystal panel 10, and a portion corresponding to the display region 10a is opened.
- the frame 63 is also a frame provided along the outer periphery of the display area 10 a of the liquid crystal panel 10, and a portion corresponding to the display area 10 a of the liquid crystal panel 10 is opened.
- the backlight 20 is disposed to face the back surface of the liquid crystal panel 10.
- the backlight 20 includes a backlight chassis 24 that is a substantially rectangular box-shaped member as a housing.
- the backlight chassis 24 is provided with an opening having a shape substantially the same as that of the display area 10a.
- the backlight 20 is disposed to face the back surface of the liquid crystal panel 10 with the opening facing the liquid crystal panel 10 side.
- FIG. 6 is an enlarged plan view schematically showing the backlight 20.
- the backlight 20 includes a plurality of irradiation units 22 that irradiate light to the back surface of the liquid crystal panel 10.
- a reflection plate 25 is mounted inside the backlight chassis 24.
- the irradiation part 22 is arrange
- the irradiation unit 22 is formed of a plurality of point light sources 22a.
- the illumination light emitted from the backlight 20 can be partially adjusted by controlling the irradiation unit 22 including a plurality of point light sources 22a.
- the irradiation part 22 is arrange
- positioning of the irradiation part 22 is not limited to a grid
- a light emitting diode (LED: Light Emitting Diode) is used as the point light source 22a.
- one irradiation part 22 is formed of a plurality of light emitting diodes 22a.
- the illumination light generated from the backlight 20 may be desirably white light.
- the irradiation part 22 is formed by light emitting diodes 22a of three colors of R (red), G (green), and B (blue), and illumination is performed by mixing light generated from the light emitting diodes 22a of three colors of RGB.
- the light is white light.
- the method of making illumination light white light is not limited to the above-mentioned method.
- the irradiation unit 22 may be formed of a white LED that emits white light.
- a white LED further, a method of obtaining white by combining RGB phosphors with a short wavelength LED chip, a method of obtaining white by combining yellow phosphors with a blue LED chip, or RGB three-color LEDs A method of obtaining white as the mixed light of the chips, a method of obtaining white as the mixed light of the two-color LED chips which are complementary colors, and the like can be used.
- the brightness of the illumination light is adjusted by controlling the electric power supplied to each light emitting diode 22a of the irradiation unit 22.
- the illumination light becomes bright (the luminance is high) when the power input to the irradiation unit 22 is high, and the illumination light is dark (the luminance is low) when the power is low.
- the power input to the irradiation unit 22 may be controlled by, for example, a pulse width modulation method, a PWM method (pulse width modulation), or the like.
- a plurality of optical sheets 26 are arranged between the liquid crystal panel 10 and the backlight 20.
- the optical sheet 26 is sandwiched between the surface of the backlight chassis 24 and the back surface of the frame 63 attached to the liquid crystal panel 10 and covers the opening of the backlight chassis 24.
- the optical sheet 26 is configured by laminating a plurality of sheets (for example, a diffusing plate, a diffusing sheet, a lens sheet, and a brightness increasing sheet) that have a required function.
- the structure of the liquid crystal display device 100 has been described above.
- the liquid crystal display device 100 includes a control unit 200.
- FIG. 4 is a diagram schematically showing the wiring structure of the liquid crystal display device 100 and the control unit 200. As shown in FIG. 4, the control unit 200 is connected to the liquid crystal panel 10 and the backlight 20 via signal lines, and the liquid crystal panel 10 and the backlight so that the liquid crystal display device 100 performs a required function. 20 is controlled.
- the control unit 200 is an electronic processing device, and includes a calculation unit having a calculation function configured by an MPU, a CPU, and the like, and a storage unit configured by a nonvolatile memory or the like.
- the control unit 200 controls the liquid crystal display device 100 (the liquid crystal panel 10 and the backlight 20) by a program stored in advance or an installed electric or electronic circuit. (Hereinafter, for the control unit 200, a pre-stored program, and mounted electric and electronic circuits are appropriately referred to as “programs”.)
- the control of the liquid crystal display device 100 by the control unit 200 is performed by the above-described program or the like. Are appropriately set and modified.
- control unit 200 includes a liquid crystal panel control unit 220 and a backlight control unit 240 as shown in FIG.
- the liquid crystal panel control unit 220 controls the liquid crystal panel 10 based on the image signal 302 obtained by converting the image to be displayed on the display area 10a, and adjusts the light transmittance of the liquid crystal panel 10. More specifically, the liquid crystal panel control unit 220 creates liquid crystal panel control signals 81 a and 82 a based on the image signal 302. The liquid crystal panel control signals 81 a and 82 a are sent to the liquid crystal panel 10. In the liquid crystal panel 10, a voltage is applied to the color filter substrate 50 and the array substrate 40 based on the liquid crystal panel control signals 81a and 82a, and the alignment direction of the liquid crystal molecules in the liquid crystal layer 13 is manipulated. Thereby, the light transmittance of the liquid crystal panel 10 is adjusted for each pixel 30 (more specifically, for each sub-pixel defined by RGB).
- a plurality of pixels 30 are arranged in a grid pattern in the display area 10a of the liquid crystal panel 10. As shown in FIGS. 4 and 5, each pixel 30 is provided with a thin film transistor 47 as a switching element.
- the thin film transistor 47 is provided on the array substrate 40 as an active matrix substrate.
- signal lines 43 are arranged on the array substrate 40 in a lattice shape (matrix shape).
- a plurality of scanning signal lines 48 (1) to (m) and a plurality of data signal lines 43 (1) to (n) are wired.
- the subscripts in parentheses are given to distinguish the scanning signal line 48 and the data signal line 43.
- the scanning signal line 48 and the data signal line 43 will be described with appropriate suffixes in parentheses.
- the scanning signal lines 48 (1) to (m) and the data signal lines 43 (1) to (n) are connected to the thin film transistors 47 of the respective pixels 30.
- the meanings of the subscripts in parentheses are the same for the auxiliary capacitance wiring 62 described later.
- the scanning signal line 48 is connected to the gate electrode 47a of the thin film transistor 47 as shown in FIG.
- the data signal line 43 is connected to the source electrode 47 b of the thin film transistor 47.
- the drain electrode 47c of the TFT 47 is connected to one electrode 42a constituting the auxiliary capacitance C CS to be described later, further, is connected to the pixel electrode 42 via the electrode 42a.
- each pixel 30 as shown in FIGS. 3 and 5, the pixel electrode 42 of the array substrate 40 and the counter electrode 55 of the color filter substrate 50 are opposed to each other with the liquid crystal layer 13 interposed therebetween.
- the counter electrode 55 constitutes a capacitor C LC that operates the liquid crystal layer 13.
- auxiliary capacitor CCS is composed of a pair of electrodes 42a and 61 that are opposed to each other with an insulating layer interposed therebetween.
- One electrode 42a of the storage capacitor C CS is connected to the drain electrode 47c as described above.
- the other electrode 61 of the storage capacitor C CS is provided in the auxiliary capacitor line 62.
- the auxiliary capacitor CCS has a function of receiving a control signal from the auxiliary capacitor wiring 62 and maintaining the voltage applied to the pixel 30 (capacitor C LC for operating the liquid crystal layer 13).
- the scanning signal lines 48 (1) to (m) are wired in parallel at a predetermined interval as shown in FIG. That is, the scanning signal lines 48 (1) to (m) are respectively arranged in one direction of the lattice. Further, the scanning signal lines 48 (1) to (m) are arranged in parallel at a predetermined interval in the other direction of the grid so that the scanning signal line 48 is connected to each pixel 30 arranged in a grid pattern. Wired to Similarly, the auxiliary capacity wirings 62 (1) to (m) are wired along one direction of the lattice as shown in FIG.
- auxiliary capacitance lines 62 (1) to (m) are arranged in the other direction of the lattice so that the electrode 61 of the auxiliary capacitance CCS of each pixel 30 arranged in the lattice shape is connected to the auxiliary capacitance line 62. They are wired in parallel at a predetermined interval (see FIG. 5).
- the scanning signal lines 48 (1) to (m) are connected to the gate driver 81, and the data signal lines 43 (1) to (n) are connected to the source driver 82. Further, the gate driver 81 and the source driver 82 are each connected to the liquid crystal panel control unit 220. The liquid crystal panel control unit 220 is connected to the signal input unit 201 and the power source 203.
- the image signal 302 obtained by converting the image displayed in the display area 10a is input to the signal input unit 201.
- the image signal 302 is input from the external system 300 to the broadcast receiving unit 201 a of the signal input unit 201.
- the signal input unit 201 sends the image signal 302 to the liquid crystal panel control unit 220.
- the liquid crystal panel control unit 220 creates liquid crystal panel control signals 81 a and 82 a based on the image signal 302.
- the liquid crystal panel control unit 220 according to this embodiment includes a timing controller 222, and transmits liquid crystal panel control signals 81 a and 82 a to the gate driver 81 and the source driver 82 through the timing controller 222. At this time, the timing controller 222 adjusts the timing at which the liquid crystal panel control signals 81 a and 82 a are transmitted to the gate driver 81 and the source driver 82.
- the power source 203 supplies an operating power source 203a to each component (the liquid crystal panel 10, the backlight 20, etc.) of the liquid crystal display device 100.
- the power supply 203 also supplies a common electrode voltage (Vcom) to the counter electrode 55 (see FIG. 3) of the color filter substrate 50, as shown in FIG.
- the common electrode voltage (Vcom) supplied to the counter electrode 55 is used as a voltage for applying the liquid crystal layer 13 sandwiched between the array substrate 40 and the color filter substrate 50.
- the gate driver 81 creates a scanning signal based on the liquid crystal panel control signal 81a, and sends the scanning signal to each of the scanning signal lines 48 (1) to (m).
- the source driver 82 creates a data signal based on the liquid crystal panel control signal 82a and sends the data signal to each of the data signal lines 43 (1) to (n).
- the thin film transistor 47 is turned on in accordance with the scanning signal input to the scanning signal lines 48 (1) to (m). That is, the thin film transistor 47 is turned on for each row of pixels 30 arranged in one direction of the lattice. At a timing when the thin film transistor 47 is turned on, a data signal is sent to the data signal lines 43 (1) to (n).
- the backlight control unit 240 controls each of the plurality of irradiation units 22 so that the brightness of the illumination light is partially adjusted.
- the backlight control unit 240 generates backlight control signals a2 to d2 based on the image signal 302. Electric power controlled based on the backlight control signals a2 to d2 is input to the irradiation unit 22 of the backlight 20. Thereby, the illumination light irradiated from the backlight 20 is adjusted.
- the control unit 200 displays a desired image in the display area 10a by controlling the liquid crystal panel 10 and the backlight 20 in this way.
- the backlight control unit 240 controls the power input to each light emitting diode (point light source) 22a that forms the irradiation unit 22, thereby controlling the brightness of the illumination light emitted from the backlight 20.
- the color tone can be adjusted.
- the liquid crystal panel control signal 240 a is input from the liquid crystal panel control unit 220 to the backlight control unit 240. Based on the liquid crystal panel control signal 240a, the backlight control unit 240 determines the brightness and color tone of the illumination light emitted from the backlight 20 to the back surface of the liquid crystal panel 10 according to the luminance distribution of the image displayed on the liquid crystal panel 10. The backlight control signals a2 to d2 are generated so that is partially adjusted. In this embodiment, the liquid crystal display device 100 is connected to a power input unit 242 that adjusts the power input to each light emitting diode 22a.
- the power input unit 242 supplies predetermined power to each light emitting diode 22a (irradiation unit 22) based on the backlight control signals a2 to d2 generated by the backlight control unit 240. Thereby, the brightness and color tone of the illumination light emitted from the backlight 20 are partially adjusted according to the luminance distribution of the image displayed on the liquid crystal panel 10.
- the liquid crystal display device 100 includes a first light receiving sensor 122 that receives external light applied to the liquid crystal panel 10 at a plurality of positions in the display region 10a and obtains light reception information a1 to d1. Yes.
- the backlight control unit 240 can adjust the brightness of the illumination light for each of a plurality of areas A to D obtained by dividing the display area 10a based on the light reception information a1 to d1 obtained by the first light reception sensor 122. it can.
- the configuration of the first light receiving sensor 122 will be described, and then the control by the backlight control unit 240 will be described.
- the first light receiving sensor 122 receives the external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display area 10a.
- the first light receiving sensors 122 are distributed and arranged in the display area 10a of the liquid crystal panel 10 as shown in FIG. For this reason, the 1st light reception sensor 122 can obtain the light reception information of the external light which irradiates the display area 10a in various parts in the display area 10a.
- the first light receiving sensor 122 is arranged in a region where each of the plurality of pixels 30 is formed in a plan view of the liquid crystal panel 10. Therefore, light reception information a1 to d1 of external light that irradiates the display region 10a can be obtained in units of 30 pixels.
- each pixel 30 is provided with the first light receiving sensor 122, but the present invention is not limited to such a form.
- the first light receiving sensor 122 may be provided for each pixel group composed of a plurality of pixels (a pixel group of 8 pixels ⁇ 8 pixels, a pixel group of 10 pixels ⁇ 10 pixels). In this case, the light reception information a1 to d1 of the external light that irradiates the display area 10a can be obtained for each pixel group. In this case, the pixel group can be set arbitrarily.
- each pixel 30 of the liquid crystal panel 10 is composed of R (red), G (green), and B (blue) sub-pixels.
- the first light receiving sensor 122 is provided in one sub-pixel of R (red), G (green), and B (blue). In this embodiment, the first light receiving sensor 122 is provided in a G (green) sub-pixel.
- the first light receiving sensor 122 a sensor that generates electrical information according to the received light can be used.
- the first light receiving sensor 122 may be one that generates a photovoltaic force by external light received by the light receiving unit 122a.
- a photodiode or a phototransistor can be used.
- the first light receiving sensor 122 may be a photoresistor whose electric resistance changes according to the intensity of received light.
- what kind of information the “light reception information” specifically depends on the type of sensor, circuit configuration, and the like.
- a photodiode is used as the first light receiving sensor 122.
- the first light receiving sensor 122 may be disposed with the light receiving portion 122 a facing the front of the liquid crystal panel 10 so as to receive external light.
- the first light receiving sensor 122 is connected to the backlight control unit 240 via a signal line as shown in FIG. Then, the photovoltaic power generated by the first light receiving sensor 122 is sent to the backlight control unit 240 as “light receiving information a1 to d1”.
- FIG. 7 shows a flowchart when the backlight control unit 240 controls the irradiation unit 22.
- a mode in which the irradiation unit 22 is controlled based on the light reception information a1 to d1 of the first light receiving sensor 122 is referred to as a “control mode”.
- a mode in which the control mode is not executed is referred to as a “non-control mode”.
- the control mode and the non-control mode are switched by a predetermined operation.
- the backlight control unit 240 is configured to irradiate the irradiation unit 22 based on the light reception information a1 to d1 of the first light reception sensor 122 when the control mode is turned on by a predetermined operation. Is started (S1). In such a control mode, the backlight control unit 240 first acquires the light reception information a1 to d1 from the first light reception sensor 122 (S2). Next, the backlight control unit 240, based on the light reception information a1 to d1 obtained by the first light receiving sensor 122, the backlight control signals a2 to a corresponding to a plurality of areas A to D obtained by dividing the display area 10a. d2 is created (S3).
- the power supplied to the irradiation unit 22 (each light emitting diode 22a) is controlled for each of the areas A to D (S4).
- the plurality of irradiation units 22 are controlled based on the light reception information a1 to d1 obtained by the first light reception sensor 122, respectively.
- the first light receiving sensor 122 obtains light reception information a1 to d1 corresponding to the luminance distribution of the external light that irradiates the display region 10a.
- the brightness and color tone of the illumination light emitted from the backlight 20 are partially adjusted for each of a plurality of areas A to D obtained by dividing the display area 10a.
- the upper part of the display area 10a of the liquid crystal panel 10 may be brighter than the lower part of the display area 10a due to the influence of external light such as indoor illumination light.
- the backlight control unit 240 irradiates the areas C and D set above the display area 10a based on the light reception information a1 to d1 obtained by the first light reception sensor 122. Make the illumination light brighter.
- the liquid crystal display device 100 can appropriately correct the apparent luminance distribution of the display image (the luminance distribution of the display image actually observed by the viewer) between the upper and lower portions of the display area 10a.
- the brightness of the external light that irradiates the display area 10a may become brighter on the left side than on the right side of the display area 10a.
- the backlight control unit 240 brightens the illumination light applied to the areas A and D set on the left side of the display area 10a based on the light reception information a1 to d1 obtained by the light reception sensor 122. Accordingly, the liquid crystal display device 100 can appropriately correct the apparent luminance distribution generated on the right side and the left side of the display region 10a.
- the power supplied to the irradiation unit 22 is controlled based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the electric power supplied to the irradiation unit 22 is reduced so that the illumination light does not become brighter than necessary.
- the liquid crystal display device 100 can reduce the total amount of power used to turn on the irradiation unit 22 and save driving power.
- human visible rays are about 360 nm to 830 nm.
- a silicon photodiode is used for the first light receiving sensor 122
- light having a wavelength exceeding the visible light range for example, light having a wavelength in the range of 190 nm to 1100 nm
- the first light receiving sensor 122 acquires light reception information even when light having a wavelength that cannot be detected by humans is received.
- the irradiation unit 22 is controlled based on such light reception information, the brightness of the adjusted illumination light may deviate from the brightness that is easy for the viewer to see.
- the first light receiving sensor 122 may be disposed in a region where one colored layer of the colored layers 53 of the plurality of colors is formed in a plan view of the liquid crystal panel 10.
- the first light receiving sensor 122 may be arranged to receive external light through the color filter substrate 50 of the liquid crystal panel 10. Accordingly, the first light receiving sensor 122 outputs the light receiving information a1 to d1 caused by the external light transmitted through the one colored layer 53.
- the backlight control unit 240 controls the irradiation unit 22 based on the light reception information a1 to d1 obtained by the first light reception sensor 122, respectively.
- the backlight control unit 240 can display a display image that is easy for the viewer to view in consideration of the influence of light in the visible region of human beings out of external light.
- the first light receiving sensor may be disposed in a region where the green color layer 53 (G) is formed.
- the light having a green wavelength (495 nm to 570 nm) is the light having the wavelength that is most easily seen in human visual characteristics. For this reason, if the irradiation part 22 is controlled based on the received light information of the external light which permeate
- the irradiating unit 22 is composed of a point light source (light emitting diode) 22a of a plurality of colors (RGB three colors).
- the backlight control unit 240 controls each of the multiple color point light sources 22a.
- the backlight control unit 240 controls the plurality of color point light sources 22a based on the light reception information a1 to d1 obtained by the first light reception sensor 122, thereby irradiating illumination light emitted from the irradiation unit 22. Can be adjusted.
- the backlight control unit 240 can adjust the illumination light of the backlight to an appropriate color tone according to the color tone of the external light detected by the first light receiving sensor 122.
- the voltage applied to the liquid crystal layer 13 by the liquid crystal panel control unit 220 is controlled for each pixel 30 based on the light reception information a 1 to d 1 obtained by the first light reception sensor 122.
- the liquid crystal panel control unit 220 creates liquid crystal panel control signals 81a and 82a based on the light reception information a1 to d1 obtained by the first light reception sensor 122 and the image signal 302, and the gate driver 81, The data is sent from the source driver 82 to each pixel 30.
- the gate driver 81 and the source driver 82 create control signals (scanning signals and data signals) based on the liquid crystal panel control signals 81a and 82a, and control the voltage applied to the liquid crystal layer 13 for each pixel 30.
- the liquid crystal panel control unit 220 controls the voltage applied to the liquid crystal layer 13 based on the light reception information a1 to d1 obtained by the first light reception sensor 122 and the image signal 302, and the light is emitted in units of pixels 30.
- the permeability can be adjusted. Accordingly, the liquid crystal display device 100 can finely adjust the contrast of the display image based on the light reception information a1 to d1.
- the liquid crystal display device 100 has been described above.
- the liquid crystal display device 100 can be variously changed.
- a modified example of the liquid crystal display device 100 according to this embodiment will be described.
- the first light receiving sensor 122 is disposed for each pixel group including a plurality of pixels.
- the arrangement position of the first light receiving sensor 122 is not limited to this.
- the first light receiving sensor 122 only needs to be arranged so that external light irradiated on the liquid crystal panel 10 can be received at a plurality of positions in the display region 10a.
- the arrangement position of the first light receiving sensor 122 will be exemplified.
- the first light receiving sensors 122 may be arranged in a distributed manner, for example, along a line set so as to traverse or longitudinally cross the display area 10a. As a result, it is possible to acquire the light reception information of the external light irradiated on the display area 10a along the line set to traverse or vertically cross the display area 10a. In this case, for example, the brightness of the external light can be detected along a line set to traverse or vertically cross the display area 10a. In this case, the number of the first light receiving sensors 122 can be reduced as compared with the case where the first light receiving sensors 122 are disposed for each pixel group including a plurality of pixels. Further, by reducing the number of the first light receiving sensors 122 arranged, it is possible to simplify the circuit and wiring for acquiring the light receiving information of the external light.
- the first light receiving sensor 122 is along a line connecting the midpoints of at least two opposite sides of the four sides of the display area 10a. You may arrange
- the first light receiving sensor 122 can obtain the light receiving information a1 to d1 of the external light that irradiates the display region 10a along the line connecting the intermediate points.
- the number of the first light receiving sensors 122 may be reduced as compared with the case where the first light receiving sensors 122 are disposed in the region where each of the plurality of pixels 30 is disposed in a plan view of the liquid crystal panel 10. it can.
- the circuit and wiring for acquiring the light reception information of the external light can be simplified, and the manufacturing cost can be kept low.
- the first light receiving sensor 122 is along a line connecting the midpoints of two sides in the short direction of the display area 10a. May be arranged.
- light reception information a1 to d1 of external light in the longitudinal direction of the rectangular display area 10a can be obtained. Therefore, it is possible to obtain the received light information a1 to d1 that roughly reflects the luminance distribution of the external light that irradiates the entire display area 10a.
- a line connecting the midpoints of the two sides in the short direction of the display area 10a may be disposed along the line connecting the midpoints of the two sides in the longitudinal direction of the display region 10a.
- the light receiving sensor 122 is disposed along at least two opposite sides of the four sides of the display area 10a at the peripheral portion of the display area 10a. You may arrange. In this case as well, by reducing the number of the first light receiving sensors 122 arranged, it is possible to contribute to the reduction of the manufacturing cost and to suppress the luminance reduction of the display image due to the reduction in the aperture ratio of the pixels 30.
- the aperture ratio of the pixel 30 is lowered, and the luminance of the display image is lowered.
- the first light receiving sensor 122 is arranged at the center of the display area 10a and the brightness of the display image is reduced at the center of the display area 10a, the brightness of the display image is easily recognized by the user.
- the first light receiving sensor 122 is disposed at the peripheral portion of the display area 10a, the first light receiving sensor 122 is disposed at the center of the display area 10a. In comparison, it is difficult for the user to recognize a decrease in luminance of the display image.
- the first light receiving sensor 122 can be arranged at another position in the plan view of the liquid crystal panel 10.
- the first light receiving sensor 122 may be arranged along at least one diagonal line of the display area 10a.
- the first light receiving sensor 122 may be disposed near the center of each side in the peripheral portion of the display area 10a.
- the first light receiving sensors 122 may be arranged so as to gather at the four corners of the peripheral edge of the display area 10a.
- the display area 10a is set with four areas A, B, C, and D.
- the number of divisions of the display area 10a is not limited to four and can be changed as appropriate according to the application.
- a plurality of areas A to Z obtained by dividing the display area 10a may be set corresponding to the position where the first light receiving sensor 122 is arranged.
- the irradiating unit 22 may be disposed in correspondence with the positions of the areas A to Z (each first light receiving sensor 122), and the irradiating unit 22 may be controlled.
- the backlight control unit 240 controls the irradiation unit 22 for each of the areas A to Z set for each irradiation unit 22 based on the light reception information a1 to z1 obtained by the first light receiving sensor 122. Can do.
- the pixel 30 is provided with an opening through which the illumination light irradiated from the backlight 20 to the back surface of the liquid crystal panel 10 and the external light irradiating the display region 10a are transmitted.
- the black matrix 52 is formed along a region between adjacent openings in a plan view of the liquid crystal panel 10 and blocks illumination light and external light, respectively.
- the first light receiving sensor 122 may be disposed on the front side of the liquid crystal panel 10 with respect to the black matrix 52 in a region where the black matrix 52 is formed in a plan view of the liquid crystal panel 10. In this case, the first light receiving sensor 122 can be disposed in the region where the pixel 30 is formed without covering the opening of the pixel 30. Thereby, a decrease in the aperture ratio of the pixel 30 can be suppressed.
- the first light receiving sensor 122 may be disposed so that the surface on the backlight 20 side is covered with the black matrix 52, as shown in FIG. As a result, the illumination light emitted from the backlight 20 is shielded by the black matrix 52 before being received by the first light receiving sensor 122. Therefore, the light reception information a1 to d1 from which the illumination light has been removed is used as the first light receiving sensor. 122.
- the first light receiving sensor 122 may be arranged in the black matrix 52.
- the first light receiving sensor 122 may be disposed in a region where the thin film transistor 47 and / or the signal line 43 is formed in a plan view of the liquid crystal panel 10. Since the thin film transistor 47 and the signal line 43 are not light transmissive members, the illumination light from the backlight 20 is blocked by the thin film transistor 47 and the signal line 43. Since the first light receiving sensor 122 disposed in the region where the thin film transistor 47 and / or the signal line 43 is formed is disposed in the region where the illumination light is originally shielded, it does not reduce the aperture ratio of the pixel 30. Thereby, it is possible to prevent the brightness of the display image from being lowered by the first light receiving sensor 122 being arranged.
- the first light receiving sensor 122 may not be disposed inside the liquid crystal panel 10.
- the first light receiving sensor 122 may be disposed on the polarizing plate 17 attached to the front surface of the liquid crystal panel 10. Even in this case, the first light receiving sensor 122 can receive the external light applied to the liquid crystal panel 10.
- the first light receiving sensor 122 may be disposed in a region where the black matrix 52 is formed in a plan view of the liquid crystal panel 10. The area where the black matrix 52 is formed is originally shielded from light. For this reason, by arranging the first light receiving sensor 122 in the region where the black matrix 52 is formed, the first light receiving sensor 122 can be arranged without reducing the aperture ratio of the pixel 30.
- the first light receiving sensor 122 may be disposed on a member other than the liquid crystal panel 10.
- the first light receiving sensor 122 may be disposed in the backlight 20.
- the first light receiving sensor 122 can be arranged in the display area 10a without covering the opening formed in the pixel 30 of the liquid crystal panel 10, and therefore the aperture ratio of the pixel 30 can be prevented from being lowered.
- the first light receiving sensor 122 may be disposed between the liquid crystal panel 10 and the backlight 20.
- the first light receiving sensor 122 since the first light receiving sensor 122 is not directly provided on the liquid crystal panel 10 or the backlight 20, the first light receiving sensor 122 can be provided without changing the structure of the liquid crystal panel 10 or the backlight 20.
- the first light receiving sensor 122 is disposed between the liquid crystal panel 10 and the backlight 20, as shown in FIG. It is good to arrange
- the light receiving sensor support member 120 is preferably a transparent substrate having optical transparency, and an optical sheet 26 sandwiched between the liquid crystal panel 10 and the backlight 20 can also be used.
- the first light receiving sensor 122 can be disposed in a portion that cannot be disposed in the liquid crystal panel 10 or the backlight 20. For this reason, the freedom degree of the layout of a 1st light receiving sensor can be improved.
- the first light receiving sensor 122 when the first light receiving sensor 122 is arranged using such a light receiving sensor support member 120, a plurality of light receiving sensor support members 120 having different arrangement patterns of the first light receiving sensors 122 can be prepared.
- the arrangement position of the first light receiving sensors 122 can be changed only by replacing the light receiving sensor support members 120. it can. Therefore, the position of the first light receiving sensor 122 can be easily changed according to the use of the liquid crystal display device 100 (for television broadcast receiver, information display, etc.).
- the irradiation part 22 of the backlight 20 should just be provided with two or more irradiation parts 22 which irradiate illumination light to the back surface of the liquid crystal panel 10.
- FIG. Hereinafter, a modification example of the irradiation unit 22 of the backlight 20 will be exemplified.
- the irradiation unit 22 may be formed of a plurality of linear light sources 22b (for example, cold cathode fluorescent lamps (CCFL)).
- the cold cathode tubes 22b are arranged in parallel in 24.
- the first light receiving sensor 122 may be arranged along each linear light source 22b in a plan view of the liquid crystal panel 10. Accordingly, it is possible to obtain the received light information a1 to d1 of the external light that irradiates the display area 10a corresponding to the position where each of the linear light sources 22b is arranged.
- the irradiation unit 22 (linear light source 22b) is controlled based on the light reception information a1 to d1 obtained corresponding to the arrangement position of the linear light source 22b, and is irradiated from the backlight 20. As described above, the brightness of the bright light is adjusted for each area, and even when the irradiation unit 22 is formed by the plurality of linear light sources 22b, the light reception information a1 to d1 of the external light that irradiates the display region 10a. Based on the above, the brightness of the illumination light can be adjusted for each area.
- the backlight control unit 240 may control the irradiation unit 22 based on the light reception information a1 to d1 obtained by the first light reception sensor 122, respectively.
- the control content of the backlight control unit 240 can be changed as appropriate.
- a modification example of the control of the irradiation unit 22 by the backlight control unit 240 will be illustrated.
- the backlight control unit 240 may control each of the plurality of irradiation units 22 so that the brightness of the boundary portions of the plurality of areas A to D changes stepwise.
- the backlight control unit 240 includes each irradiation unit 22 in addition to the light reception information a1 to d1 obtained by the first light reception sensor 122. Based on the areas A to D, the backlight control signals a2 to d2 are created. Specifically, the backlight control unit 240 corrects the backlight control signals a2 to d2 so that the brightness changes stepwise between the irradiation units 22 located near the boundaries of the areas A to D.
- the power input to the irradiation unit 22 (light emitting diode 22a) is controlled based on the backlight control signals a2 to d2 created in this way, the brightness of the boundary portions of the areas A to D is stepwise. To change. As a result, it is possible to prevent an event in which the brightness of the illumination light generated from the irradiation unit 22 changes significantly at the boundary portions of the areas A to D.
- the backlight control unit 240 receives the light reception information a1 to d1 obtained by the first light receiving sensor 122 serving as a predetermined reference among the first light receiving sensors 122 and the other first light receiving sensors 122. It is preferable to obtain a difference from the light reception information a1 to d1 and to control the irradiation unit 22 based on the difference between the light reception information a1 to d1.
- the reference first light receiving sensor 122 may be set in the backlight control unit 240 in advance.
- the backlight control unit 240 can control the irradiation unit 22 by accurately reflecting the luminance distribution of the external light that irradiates each of the areas A to D.
- the backlight control unit 240 obtains the difference between the received light information a1 to d1 obtained by the same first light receiving sensor 122 at a plurality of predetermined timings, and based on the difference between the received light information a1 to d1. You may control the irradiation part 22, respectively.
- the appropriate brightness of the irradiation unit 22 with respect to the difference, the timing of adopting the light reception information a1 to d1 obtained by the first light reception sensor 122, and the like may be set in the backlight control unit 240 in advance. Accordingly, the backlight control unit 240 can accurately control the amount of change over time of the light reception information a1 to d1 obtained by the first light reception sensor 122 to control the irradiation unit 22.
- the received light information a1 to d1 obtained by the first light receiving sensor 122 temporarily changes greatly. To do.
- the irradiation unit 22 is controlled based on the light reception information a1 to d1 obtained at this time, the brightness of the illumination light is unnecessarily adjusted. If this unnecessary adjustment of the illumination light is performed, there is a possibility that a defect such as flickering of the display image occurs.
- the backlight control unit 240 continues the predetermined light reception information a1 to d1 when the constant light reception information a1 to d1 is obtained by the first light reception sensor 122 for a predetermined time.
- the irradiation units 22 may be controlled based on d1.
- FIG. 25 is a flowchart schematically showing control by the backlight control unit 240.
- the backlight control unit 240 obtains light reception information X (n) and X (m) at different predetermined timings T (n) and T (m) (S1).
- the timings T (n) and T (m) at which the light reception information X (n) and X (m) are acquired are temporarily changed by external light such as when a person passes in front of the liquid crystal display device. It should be determined to be excluded.
- the backlight control unit 240 reads “the light reception information obtained by the first light reception sensor 122.
- the “predetermined value (P)” in the determination process S2 may be set to a value suitable for determining a sudden change in the light reception information X (n) and X (m).
- the control unit 200 performs the process of (S1). repeat.
- the backlight control unit 240 performs the next determination process (S3 )I do.
- next determination process (S3) “whether the received light information X (n) acquired in S1 was continuously obtained during a predetermined time T (L) (T (n) ⁇ T (m) ⁇ T (L)) ”is determined.
- This determination process (S3) is intended to eliminate the case where a sudden change in the light reception information X (n) and X (m) is temporary. Therefore, the “predetermined predetermined time T (L)” of the determination process S3 may be set to a time suitable for the purpose.
- the control unit 200 repeats the process of S1.
- step S4 backlight control signals a2 to d2 are created based on the light reception information X (n) obtained in S1.
- step S5 the irradiation unit 22 is controlled for each of the areas A to D based on the backlight control signals a2 to d2 created in step S4.
- threshold values may be set in advance for the light reception information a1 to d1 obtained by the first light reception sensor 122. Then, the backlight control unit 240 compares the threshold value with the light reception information a1 to d1 obtained by the first light reception sensor 122. As a result, the backlight control unit 240 sets the plurality of irradiation units 22 so that illumination light brighter than other portions is irradiated to the areas A to D in which the light reception information a1 to d1 exceeds the threshold value. It is good to control. According to the liquid crystal display device 100, it is possible to irradiate an area irradiated with bright external light exceeding the threshold value with illumination light brighter than other portions. Thereby, the apparent luminance of the display image can be corrected more appropriately.
- FIG. 26 is a flowchart schematically showing control by the backlight control unit 240.
- the backlight control unit 240 acquires the light reception information a1 to d1 obtained by the first light reception sensor 122 (S1). At this time, a fixed threshold value P1 is set in advance in the backlight control unit 240 for the light reception information a1 to d1. The backlight control unit 240 determines whether each of the received light information a1 to d1 is larger than a certain threshold value P1 (a1 to d1> P1) (S2). The backlight control unit 240 creates a backlight control signal that reduces the brightness of the illumination light applied to the area for an area where light reception information smaller than the threshold value P1 is obtained (S3).
- the backlight control unit 240 creates a backlight control signal for increasing the brightness of the illumination light applied to the area for the area where the light reception information larger than the threshold value P1 is obtained (S4). ). Then, the power input unit 206 controls the power input to each light emitting diode 22a (irradiation unit 22) for each of the areas A to D based on the backlight control signals a2 to d2 (S5).
- the liquid crystal display device 100 may use area active processing.
- a control method of the liquid crystal display device 100 using the area active process will be described with reference to FIGS.
- FIG. 27 is a block diagram of the liquid crystal display device 100 using area active processing
- FIG. 28 is a diagram schematically showing control of the liquid crystal display device 100 using area active processing.
- the image signal 302, the backlight control signal 402, and the liquid crystal panel control signal 403 are visually represented.
- the liquid crystal display device 100 includes a signal input unit 201 to which an image signal 302 is input.
- the image signal 302 is obtained by converting an image to be displayed in the display area 10a as shown in FIG.
- the image signal 302 is sent from the signal input unit 201 to the liquid crystal panel control unit 220.
- the liquid crystal panel control unit 220 controls the liquid crystal panel 10 based on the image signal 302 and adjusts the light transmittance of the display area 10a.
- the signal input unit 201 sends the image signal 302 to the backlight control unit 240 in addition to the liquid crystal panel control unit 220.
- an image signal 302 is sent to the backlight control unit 240 (S1, S2 in FIG. 28).
- the backlight control unit 240 creates backlight control signals a2 to d2 for controlling the irradiation unit 22 respectively (S3).
- the created backlight control signals a 2 to d 2 are sent to the liquid crystal panel control unit 220 in addition to the power input unit 206.
- the liquid crystal panel control unit 220 adjusts the light transmittance of the display area 10a for each of the areas A to D based on the backlight control signals a2 to d2 in addition to the image signal 302. Specifically, the liquid crystal panel control unit 220 creates the liquid crystal panel control signals 81a and 82a based on the backlight control signals a2 to d2 and the image signal 302 (S4). Then, the backlight control unit 240 controls the irradiation unit 22 based on the backlight control signals a2 to d2 (S5), and the brightness of the illumination light (L1 in FIG. 27) that irradiates the back surface of the liquid crystal panel 10. Is adjusted for each of areas A to D. Further, the liquid crystal panel 10 is controlled based on the liquid crystal panel control signals 81a and 82a reflecting the brightness of the illumination light (S6), and the light transmittance of the liquid crystal panel 10 is adjusted.
- the light transmittance of the display area 10a is adjusted for each of the areas A to D based on the backlight control signals a2 to d2 in addition to the image signal 302.
- the external light which irradiates the display area 10a can be accurately reflected, and the light transmittance of the display area 10a can be adjusted.
- a decrease in contrast due to external light can be compensated for each predetermined area, the dynamic range of the image displayed in the display area 10a is expanded, and a high contrast, wide viewing angle, and wide color reproducibility are obtained.
- An image can be displayed.
- part of the external light that irradiates the display area 10 a is reflected by the surface of the liquid crystal panel 10.
- an image of an object existing in the surrounding area may be reflected in the display area 10a, making it difficult to see the display image.
- the surface of the liquid crystal panel 10 is subjected to anti-reflection processing such as AR (Anti-Reflection) processing, in which thin films made of materials having different refractive indexes are laminated, and LR (Low-Reflection) processing. May be.
- AR Anti-Reflection
- LR Low-Reflection
- light of a specific wavelength may be mixed in the display image and the display image may be colored.
- the reflectance of the blue component (wavelength 480 nm or less) or the red component (wavelength 610 nm or more) is the green component (wavelength 480 to 610 nm).
- the display image of the liquid crystal panel 10 subjected to the AR process or the LR process may be colored blue or red.
- the color tone of the external light reflected on the surface of the display area 10a is set in the backlight control unit 240 in advance.
- the backlight control part 240 is a point light source of multiple colors so that the color tone of the illumination light irradiated from the irradiation part 22 may be adjusted according to the color tone of the external light reflected by the surface of this display area 10a. It is good to be comprised so that 22a may be controlled, respectively.
- the display area 10a is mixed with light mixed at an appropriate ratio. An image can be displayed on the screen.
- the surface of the liquid crystal panel 10 of the liquid crystal display device 100 is subjected to AR treatment.
- the backlight control unit 240 is preset with the color tone of the external light reflected from the surface of the display region 10a based on the color tone of the reflected light of the AR-processed liquid crystal panel 10. For example, in the AR-processed liquid crystal panel 10, as shown in FIG. 29, the reflectance of blue light and red light is increased. At this time, it is preferable that the backlight control unit 240 is set so that the external light reflected from the surface of the display region 10a contains a large amount of blue and red components.
- the backlight control unit 240 is based on the color tone of the reflected light that is predetermined that the reflectance of the blue light and the red light is high.
- the electric power supplied to each point light source 22a is controlled.
- the backlight control unit 240 controls the electric power supplied to each light emitting diode 22a so that the luminance of the green light emitting diode 22a is higher than that of the red and blue light emitting diodes 22a.
- the liquid crystal display device 100 has been described above. However, the present invention is not limited to the above-described embodiment. Next, a liquid crystal display device according to another embodiment of the present invention will be described. For the entire configuration of the liquid crystal display device 100, refer to FIG. 22 as appropriate.
- the liquid crystal display device 100 may include a second light receiving sensor 124 in addition to the first light receiving sensor 122, as shown in FIG.
- the second light receiving sensor 124 is disposed at a position where the illumination light irradiated from the backlight 20 (see FIG. 22) to the back surface of the liquid crystal panel 10 is received at a plurality of positions in the display area 10a.
- an example of the liquid crystal display device 100 including the second light receiving sensor 124 will be described.
- the second light receiving sensor 124 may be provided on the pixel electrode 42 of the array substrate 40 in the same manner as the first light receiving sensor 122, as shown in FIG. At this time, the second light receiving sensor 124 is preferably arranged with the light receiving portion 124a facing the backlight 20 (see FIG. 22). As a result, the light receiving unit 124a of the second light receiving sensor 124 is irradiated with illumination light from the irradiation unit 22 (see FIG. 22), and light reception information a3 to d3 of the illumination light is obtained by the second light receiving sensor 124.
- the second light receiving sensor 124 may be disposed closer to the backlight 20 than the black matrix 52 in a region where the black matrix 52 is formed in a plan view of the liquid crystal panel 10. Accordingly, the second light receiving sensor 124 can receive the illumination light of the backlight 20 (see FIG. 22) without receiving the external light that irradiates the display region 10a.
- the green colored layer 53 (G ) May be replaced with the black matrix 52 at a predetermined frequency.
- the first light receiving sensor 122 is arranged in a region where the green colored layer 53 (G) is formed.
- the green colored layer The second light receiving sensor 124 may be disposed in a region where 53 (G) is replaced with the black matrix 52.
- the first light receiving sensor 122 is disposed so as to transmit the colored layer 53 (G) that irradiates the display region 10 a and to receive external light.
- a part of the green colored layer 53 (G) is replaced with the black matrix 52 at a predetermined frequency.
- the second light receiving sensor 124 is disposed in a region where the green colored layer 53 (G) is replaced with the black matrix 52 in a plan view of the liquid crystal panel 10. In this case, the first light receiving sensor 122 receives the external light transmitted through the green colored layer 53 (G).
- the second light receiving sensor 124 since the second light receiving sensor 124 is disposed in the area where the green colored layer 53 (G) is replaced with the black matrix 52, the external light is blocked. That is, the light receiving unit 124a of the second light receiving sensor 124 cannot receive external light. For this reason, the light reception information a3 to d3 obtained by the second light reception sensor 124 does not include light reception information of external light. On the other hand, since the second light receiving sensor 124 receives the illumination light of the backlight 20, it can output light reception information a3 to d3 obtained from the illumination light of the backlight 20 (see FIG. 22).
- the arrangement position of the second light receiving sensor 124 is not limited to the above, and can be selected as appropriate.
- FIG. 31 is a block diagram when performing such control.
- the received light information a3 to d3 of the illumination light of the backlight 20 obtained by the second light receiving sensor 124 is sent to the backlight control unit 240 as shown in FIG.
- the backlight control unit 240 irradiates the irradiation unit 22 based on the light reception information a3 to d3 obtained by the second light reception sensor 124 in addition to the light reception information a1 to d1 obtained by the first light reception sensor 122 (see FIG. 22). It is good to control each.
- the backlight control unit 240 uses the light reception information a1 to d1 obtained by the first light reception sensor 122 based on the light reception information a3 to d3 of the illumination light of the backlight 20 obtained by the second light reception sensor 124. Further, it is possible to perform correction to remove the influence caused by the illumination light of the backlight 20 (see FIG. 22). Then, the backlight control signals a2 to d2 created through such correction may be created. The backlight control signals a2 to d2 created in this way are sent to the power input unit 242 and control the power input to each irradiation unit 22 (see FIG. 22) of the backlight 20. Thereby, the influence caused by the illumination light of the backlight 20 can be removed from the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the control of the irradiation unit 22 can be corrected based on the light reception information a3 to d3 obtained by the second light reception sensor 124. .
- the illumination unit 22 of the backlight 20 is controlled based on the backlight control signals a2 to d2 having the same contents, the brightness of the generated illumination light is different due to the influence of ambient temperature change and aging deterioration.
- the brightness of the irradiation unit 22 is controlled based on the light reception information a3 to d3 of the illumination light. While correcting, each irradiation unit 22 can be appropriately controlled based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the backlight control unit 240 determines the irradiation unit based on the difference between the light reception information a1 to d1 obtained by the first light reception sensor 122 and the light reception information a3 to d3 obtained by the second light reception sensor 124. Control each one.
- the difference is obtained by excluding the light reception information a3 to d3 of the illumination light from the light reception information a1 to d1 obtained by the first light reception sensor 122, and the accurate light reception information of the external light that irradiates the display region 10a.
- the liquid crystal display device 100 since the irradiation units 22 can be controlled based on accurate light reception information, the brightness of the external light that irradiates the display region 10a is accurately reflected to adjust the illumination light. Can do.
- the liquid crystal display device 100 including the second light receiving sensor 124 may include an error current calculation unit 208.
- the error current calculation unit 208 compares the light reception information a3 to d3 obtained by the second light reception sensor 124 at a plurality of predetermined timings, and calculates the current generated in the light reception sensor due to external factors other than light. To do.
- the “plural timings” here may be set a plurality of times within a period until the irradiation unit 22 is controlled (within a period in which the brightness of the illumination light is maintained constant).
- the light receiving information a3 to d3 of the illumination light is acquired by the second light receiving sensor.
- the error current calculation unit 208 compares the light reception information a3 to d3 obtained by the second light reception sensor 124 at a plurality of predetermined timings. At this time, since the brightness of the illumination light is maintained at the timing when the light reception information a3 to d3 is acquired, if the light reception information a3 to d3 obtained by the second light reception sensor 124 has changed, The change value is a current generated in the light receiving sensor due to an external factor other than light.
- the backlight control unit 240 has a current generated in the second light receiving sensor 124 due to an external factor other than the light calculated by the error current calculation unit 208. Based on the above, the irradiation unit 22 is controlled. As a result, errors due to external factors other than light can be eliminated, and the irradiation unit 22 can be accurately controlled.
- the liquid crystal display device 100 may include a third light receiving sensor 126 as shown in FIGS. 22 and 30.
- the third light receiving sensor 126 is shielded against the external light that irradiates the display area 10 a and the illumination light that is emitted from the backlight 20.
- an example of the liquid crystal display device 100 including the third light receiving sensor 126 will be described.
- the third light receiving sensor 126 is arranged on the backlight side of the black matrix 52 in the region where the black matrix 52 is formed in a plan view of the liquid crystal panel 10. Further, in this embodiment, the light shielding member 128 is disposed so as to cover the region where the third light receiving sensor 126 is formed in plan view of the liquid crystal panel 10. The light shielding member 128 is disposed closer to the backlight 20 than the third light receiving sensor 126, and is made of a material that blocks illumination light. Note that the arrangement position of the third light receiving sensor 126 can also be appropriately selected in the same manner as the first light receiving sensor 122 and the second light receiving sensor 124.
- the liquid crystal display device 100 of this embodiment includes the third light receiving sensor 126 that is shielded against the external light that irradiates the display region 10a and the external light that is irradiated from the backlight 20. .
- the light receiving sensor having photovoltaic power a fine electromotive current is generated due to external factors other than light such as ambient temperature. Therefore, in the third light receiving sensor 126 shielded from external light or illumination light, the external light causes Only the resulting error current is obtained.
- the backlight control unit 240 controls the irradiation unit 22 based on the current (error current) generated in the third light receiving sensor 126 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122.
- FIG. 32 is a block diagram when performing such control.
- the error currents a4 to d4 generated by the third light receiving sensor 126 are sent to the backlight control unit 240 as shown in FIG.
- the backlight control unit 240 creates backlight control signals a2 to d2 based on error currents a4 to d4 generated by the third light receiving sensor 126 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122. To do.
- the backlight control unit 240 determines an error current caused by external factors other than light from the light reception information a1 to d1 obtained by the first light reception sensor 122 based on the electromotive current generated by the third light reception sensor 126.
- the backlight control signals a2 to d2 are generated by excluding a4 to d4, and the irradiation unit 22 is controlled.
- the current (error current) a4 to the third light reception sensor 126 is generated.
- the irradiation unit 22 is controlled based on d4.
- the error current caused by external factors other than light can be eliminated, and the irradiation unit 22 can be accurately controlled.
- the light reception information a1 to d1 obtained by the first light reception sensor 122 may be corrected based on the currents (error currents) a4 to d4 generated in the third light reception sensor 126.
- the influence which arises in a light receiving sensor due to external factors, such as ambient temperature can be removed, and the irradiation part 22 can be controlled more correctly.
- the liquid crystal display device 100 may include a backlight 20 that is controlled so as to be intermittently driven.
- a backlight 20 that is controlled so as to be intermittently driven.
- FIG. 33 is a block diagram schematically showing the liquid crystal display device 100 including the backlight 20 that is controlled so as to be intermittently driven.
- the liquid crystal display device 100 alternately switches between the turn-off period and the turn-on period in which the backlight 20 is turned on so that there is a turn-off period in which the backlight 20 is turned off during the period in which the image displayed in the display area 10a is switched.
- An intermittent drive control unit 205 is provided.
- the intermittent drive control unit 205 may be provided as a part of the control unit 200 as shown in FIG.
- a liquid crystal panel control signal 205 a is input to the intermittent drive control unit 205.
- the intermittent drive control unit 205 detects a period during which the display image is switched from the liquid crystal panel control signal 205 a, creates a turn-off signal 242 a based on the period during which the display image is switched, and sends the signal to the power input unit 242.
- the power input unit 242 stops the power supply to the irradiation unit 22 in a predetermined period during a period (one frame) in which the displayed image is switched.
- the irradiation unit 22 of the backlight 20 is controlled so that there is an extinguishing period in one frame, as shown in FIG.
- the backlight control unit 240 is based on the light reception information a1 to d1 obtained by the first light reception sensor 122 during the backlight 20 extinguishing period. It is good to control each.
- the backlight control unit 240 has a predetermined adoption period in which the light reception information a1 to d1 obtained by the first light reception sensor 122 is employed. This adoption period is set to be the same period as the backlight 20 extinguishing period. In this way, the backlight control unit 240 acquires the light reception information a1 to d1 during the extinguishing period of the backlight 20.
- the light reception information a1 to d1 during the extinguishing period obtained in this way does not include illumination light emitted from the backlight 20.
- the backlight control unit 240 reflects the brightness of the illumination light so as to more accurately reflect the external light that irradiates the display region 10a. Can be adjusted.
- the second light receiving sensor 124 described above may not be provided. For this reason, compared with the case where the 2nd light reception sensor 124 mentioned above is provided, the increase in component cost can be prevented. Moreover, it is not necessary to attach a new component in the display area 10a as compared with the case where the second light receiving sensor 124 is provided. For this reason, a decrease in the aperture ratio of the pixel can be prevented.
- light reception information a1 to d1 obtained during the lighting period obtained by each first light reception sensor 122 is a1 to d1 (ON)
- light reception information a1 to d1 obtained during the extinguishing period is a1 to d1 (OFF).
- the difference between the received light information a1 to d1 (ON) obtained during the lighting period obtained by each first light receiving sensor 122 and the received light information a1 to d1 (OFF) obtained during the extinguishing period is expressed as a1 to d1 (ON-OFF).
- the backlight control unit 240 further receives the light reception information a1 to d1 (ON) obtained by the first light reception sensor 122 during the lighting period and the light reception information a1 to d1 (OFF) obtained by the first light reception sensor 122 during the extinction period.
- Each of the irradiation units 22 may be controlled based on the difference between them.
- the backlight control unit 240 determines the difference a1 to d1 (ON ⁇ OFF) between the light reception information a1 to d1 (ON) obtained during the lighting period and the light reception information a1 to d1 (OFF) obtained during the extinguishing period.
- the differences a1 to d1 (ON-OFF) are light reception information substantially corresponding to the brightness of the illumination light.
- the brightness of the illumination light can be corrected by reflecting the current brightness of the illumination light.
- the brightness of the irradiation unit 22 can be corrected even if the brightness of the illumination light generated from the irradiation unit 22 changes due to ambient temperature change or aging deterioration.
- the liquid crystal display device 100 including the backlight 20 that is intermittently driven may include a second light receiving sensor 124 that receives illumination light applied to the back surface of the liquid crystal panel 10 at a plurality of positions in the display region 10a. .
- the second light receiving sensor 124 arranged to receive the illumination light is not irradiated with light. For this reason, if a current is generated in the second light receiving sensor during the turn-off period of the backlight 20, the current is a current generated in the light receiving sensor due to an external factor other than light.
- the backlight control unit 240 is based on the current generated by the second light receiving sensor 124 during the turn-off period of the backlight 20 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122. It is good to control each. Accordingly, it is possible to control the irradiation unit 22 by eliminating an error caused by a current generated in the light receiving sensor due to an external factor other than light.
- the liquid crystal display device 100 may include a switching unit 290.
- the switching unit 290 switches between the control mode and the non-control mode.
- the backlight control unit 240 controls the irradiation unit 22 as described above when the control mode is set.
- FIG. 35 is a block diagram schematically showing the liquid crystal display device 100 including the switching unit 290.
- the switching unit 290 may be connected to the control unit 200 via a signal line as shown in FIG.
- the switching unit 290 generates a control stop signal 290a for stopping control of the control unit 200 and a control start signal 290b for starting control of the control unit 200 according to switching between the control mode and the non-control mode.
- the control stop signal 290a is transmitted from the switching unit 290 to the control unit 200
- the control unit 200 switches from the control mode to the non-control mode.
- the control start signal 290b is transmitted, the control unit 200 switches from the non-control mode to the control mode.
- the liquid crystal display device 100 including the switching unit 290 may include a timer 292 as shown in FIG.
- the timer 292 is connected to the switching unit 290.
- the timer 292 is set in advance with a time period for executing control in the control mode.
- the switching unit 290 switches between the control mode and the non-control mode based on a time zone preset in the timer 292.
- control for dimming the backlight 20 is performed by selecting a control mode only in a time zone in which the intensity of the external light that irradiates the display region 10a is high or a time zone in which the intensity of the external light is likely to change. It can be carried out. As a result, it is possible to reduce power consumption that is constantly consumed during the control mode.
- the time zone preset in the timer 292 may be during the daytime when the intensity of external light is likely to change.
- the switching unit 290 creates a control stop signal 290 a or a control start signal 290 b based on a time zone preset in the timer 292 and sends it to the control unit 200. Thereby, the backlight control unit 200 is switched between the control mode and the non-control mode.
- the switching unit 290 may switch between the control mode and the non-control mode based on the light reception information a1 to d1 obtained by the switching light reception sensor.
- the light-receiving sensor for switching is a light-receiving sensor that receives external light applied to the liquid crystal panel 10 at a plurality of positions in the display area 10a.
- the first light receiving sensor 122 described above is used as the light receiving sensor for switching. Since the first light receiving sensor 122 is a light receiving sensor that receives external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display area 10a, it can be used as a switching light receiving sensor. Note that a light receiving sensor different from the first light receiving sensor 122 may be disposed in the liquid crystal display device 100 as a switching light receiving sensor.
- the light reception information a1 to d1 obtained by the switching light receiving sensor (first light receiving sensor) 122 is sent to the switching control unit 294.
- the switching control unit 294 creates a switching control signal 292a based on the light reception information a1 to d1 obtained by the first light receiving sensor 122 and sends it to the switching unit 290.
- the switching unit 290 generates a control stop signal 290a or a control start signal 290b based on the switching control signal 292b and sends it to the backlight control unit 240 to switch between the control mode and the non-control mode.
- the liquid crystal display device 100 selects the control mode when the intensity of the external light that irradiates the display area 10a changes, and selects the non-control mode when the intensity of the external light does not change. be able to.
- the control mode in which the backlight 20 is controlled based on the light reception information a1 to d1 obtained by the first light reception sensor (switching light reception sensor) 122, the liquid crystal display device 100 always consumes power for performing such control. is doing.
- the non-control mode the backlight 20 is dimmed based on the light reception information a1 to d1 obtained by the first light reception sensor (switching light reception sensor) 122 only when necessary. Can do. For this reason, power consumption can be kept low.
- the liquid crystal display device 100 since the first light receiving sensor 122 is diverted to the switching light receiving sensor, the number of light receiving sensors can be reduced as compared with the case where the switching light receiving sensor is provided separately. For this reason, it is possible to prevent a decrease in luminance of the display image due to the switching light receiving sensor covering the opening of the pixel 30 and an increase in component cost due to the installation of a new component.
- the switching unit 290 may be configured to manually switch between the control mode and the non-control mode. In this case, control for dimming the backlight 20 can be performed as desired by the viewer.
- the liquid crystal display device 100 may include a temperature sensor 170 in addition to the light receiving sensor such as the first light receiving sensor 122.
- the temperature sensors 170 may be arranged at a plurality of positions of the backlight 20 and may be configured by elements that generate thermoelectromotive force.
- FIG. 36 is a diagram schematically showing the backlight 20 in which the temperature sensor 170 is arranged.
- the temperature sensor 170 detects the temperature of the backlight 20 for each area.
- the temperature sensor 170 is connected to the backlight control unit 240 via a signal line, and the temperature for each area of the backlight 20 is sent to the backlight control unit 240.
- the backlight control unit 240 controls the irradiation unit 22 based on the temperature for each area of the backlight 20 obtained by the temperature sensor 170 in addition to the light reception information a1 to d1 obtained by the first light reception sensor 122. .
- the irradiation unit 22 is affected by ambient temperature changes.
- each irradiation part 22 can be appropriately controlled.
- the electromotive force generated by the first light receiving sensor 122 can be used as driving power for the liquid crystal display device 100. it can.
- the liquid crystal display device 100 may include a power storage unit 130 that stores the electromotive force generated in the first light receiving sensor 122.
- a power storage unit 130 that stores the electromotive force generated in the first light receiving sensor 122.
- examples of an element that can generate photovoltaic power include a photodiode and a phototransistor.
- an electromotive force is generated.
- the first light receiving sensor 122 may be connected to the power storage unit 130 by an electric circuit 132 as shown in FIG.
- the electric circuit 132 includes a multiplexer 134.
- the electromotive force generated in the first light receiving sensor 122 is integrated into one circuit by the multiplexer 134.
- the integrated electromotive force is stored in the power storage unit 130.
- the power storage unit 130 is connected to, for example, a power supply 203 and the stored electromotive force is used for an applied voltage to the liquid crystal panel 10 and other power. As a result, power for driving the liquid crystal display device 100 can be saved.
- the liquid crystal display device 100 is stopped driving, the first light receiving sensor 122 is irradiated with external light and an electromotive force is generated. For this reason, in the liquid crystal display device 100, the driving power can be further saved by storing the electromotive force generated during the driving stop in the power storage unit 130.
- Such a liquid crystal display device 100 is often used outdoors, for example, and can be particularly preferably used for an information display that is irradiated with a large amount of external light during the day.
- the first light receiving sensor 122 is placed at a position where both the external light irradiated on the display region 10a and the illumination light irradiated from the backlight 20 can be received. It is good to arrange. In this case, not only the external light that irradiates the display region 10 a but also the illumination light that is emitted from the backlight 20 can be stored in the power storage unit 130.
- the second light receiving sensor 124 configured by an element having a photovoltaic power (for example, a photodiode) is disposed.
- the electromotive force generated by the second light receiving sensor 124 can be stored in the power storage unit 130 and used for driving the liquid crystal display device 100.
- a larger amount of power can be used as compared with the liquid crystal display device 100 including only the first light receiving sensor 122.
- the power generated by the temperature sensor 170 is stored in the power storage unit 130, and the stored power is stored in the liquid crystal display device 100. It can be used for driving. In this case, a larger amount of power can be stored, and the stored power can be used to drive the liquid crystal display device 100.
- the liquid crystal display device 100 including the backlight control unit 240 that controls the irradiation unit 22 based on the light reception information a1 to d1 obtained by the first light reception sensor 122 has been described above.
- the liquid crystal display device 100 including the image changing unit 250 that changes the image displayed in the display area 10a based on the light reception information a1 to d1 obtained by the first light receiving sensor 122 will be described. To do.
- Example 8 In the image changing unit 250, reference values are predetermined for the light receiving information a1 to d1 obtained by the light receiving sensor (first light receiving sensor 122). When the light receiving information a1 to d1 exceeding the reference value is obtained by the first light receiving sensor 122, the image changing unit 250 changes the image displayed in the display area 10a based on the light receiving information a1 to d1.
- the liquid crystal display device 100 can appropriately change the display image to an easily viewable image when the display area 10a is irradiated with strong external light that exceeds a predetermined reference value. Therefore, according to the liquid crystal display device 100, it is possible to reduce the stress generated when the viewer tries to recognize the image.
- liquid crystal display device 100 can be preferably used for an information display or the like disposed outdoors so that high intensity external light can be easily applied to the display region 10a and can be seen only for a short time.
- FIG. 38 is a block diagram schematically showing the liquid crystal display device 100 including the image changing unit 250.
- the first light receiving sensor 122 receives the external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display region 10a.
- the first light receiving sensors 122 may be arranged in a distributed manner in the display area 10 a of the liquid crystal panel 10. Accordingly, the first light receiving sensor 122 can obtain light reception information of external light that irradiates the display region 10a at various parts in the display region 10a.
- the first light receiving sensor 122 may be arranged for each pixel group composed of a plurality of pixels (a pixel group of 8 pixels ⁇ 8 pixels, a pixel group of 10 pixels ⁇ 10 pixels). In this case, the light reception information a1 to d1 of the external light that irradiates the display area 10a can be obtained for each pixel group.
- the image changing unit 250 is provided in the control unit 200 as shown in FIG.
- the image changing unit 250 is connected to the first light receiving sensor 122, and the light reception information a 1 to d 1 obtained by the first light receiving sensor 122 is sent to the image changing unit 250.
- the image changing unit 250 is also connected to the signal input unit 201. Image signals 302 a to 302 c input from the external system 300 are sent to the image changing unit 250 through the signal input unit 201.
- reference values are predetermined for the light receiving information a1 to d1 obtained by the first light receiving sensor 122.
- the reference value may be predetermined light reception information obtained when external light having a brightness that makes it difficult to visually recognize an image displayed in the display area 10a.
- FIG. 39 to FIG. 44 show a liquid crystal panel in which a portion L that has become difficult to see is partially generated. For example, there may be a portion L that is difficult to see in a part of the liquid crystal panel due to an event that a part of the liquid crystal panel is irradiated with high intensity external light.
- the image changing unit 250 displays an image displayed in the display area 10a based on the light reception information a1 to d1.
- the liquid crystal display device 100 can appropriately change the display image to an easily viewable image when the display area 10a is irradiated with strong external light that exceeds a predetermined reference value. .
- the contents of the “change to an easy-to-see image” are exemplified below.
- the image changing unit 250 removes the portion of the display area 10a from which the light receiving information a1 to d1 exceeding the reference value is obtained based on the light receiving information a1 to d1 obtained by the first light receiving sensor 122.
- the image display area 10a1 for displaying an image may be set.
- the image display area 10a1 refers to an area for displaying an image in the display area 10a.
- the image changing unit 250 reduces the image display area 10a1 and arranges the image display area 10a1 in the display area 10a so as to avoid a portion that is difficult to see due to irradiation with high intensity external light.
- the liquid crystal display device 100 displays an image at a position where the external light with high intensity is not irradiated and is easily visible.
- an easy-to-view display image can be provided to the viewer. Further, no image is displayed in the display area 10a irradiated with external light having high intensity. For this reason, the electric power used in order to display an image which is hard to see can be reduced, and the driving power can be saved.
- the image changing unit 250 acquires the light reception information a1 to d1 obtained by the first light reception sensor 122 (S1). Then, the image changing unit 250 creates display area change signals 250a1 and 250a2 based on the light reception information a1 to d1 (S2).
- the display area change signals 250a1 and 250a2 include information for setting the image display area 10a1.
- the image changing unit 250 sends the display area change signals 250a1 and 250a2 to the liquid crystal panel control unit 220 and the backlight control unit 240.
- the liquid crystal panel control unit 220 controls the pixels 30 based on the display area change signal 250a1 (S3), changes the size of the image display area 10a1 in the display area 10a, and has an intensity exceeding the reference value.
- the position of the image display area 10a1 is set so as to avoid the part irradiated with the external light L.
- the backlight control unit 240 controls the irradiating unit 22 based on the display area change signal 250a2 so that the display image is not displayed in a plan view of the display area 10a (part other than the image display area 10a1).
- the irradiation unit 22 located is turned off (S4).
- the image changing unit 250 changes the size of the display image according to the image display area 10a1 set in the display area 10a excluding the region where the light reception information a1 to d1 exceeding the reference value is obtained. Good.
- the image displayed in the display area 10a may be reduced in accordance with the size of the image display area 10a1.
- the liquid crystal display device 100 can display an image having the same content as the image before the change in the display area 10a.
- the image changing unit 250 acquires the received light information a1 to d1 from the first light receiving sensor 122 (see S1 in FIG. 55). Then, the image changing unit 250 is based on the received light information a1 to d1. Display area change signals 250a1 and 250a2 are created (S2). The image changing unit 250 corrects the image signal 302a based on the generated display area change signal 250a1 (S3). A display area change signal 250a1 and a corrected image signal 302a are sent to the liquid crystal panel control unit 220, and a display area change signal 250a2 is sent to the backlight control unit 240.
- the liquid crystal panel control unit 220 controls the pixels 30 based on the display area change signal 250a1 and the corrected image signal 302a (S4).
- the backlight control unit 240 controls the irradiation unit 22 based on the display area change signal 250a2 (S5).
- the image changing unit 250 receives a plurality of image signals 302a to 302c including a partial image signal 302b obtained by converting a partial display image to be displayed in the part 10a1 of the display area. It may be.
- the image changing unit 250 employs the partial image signal 302b as a signal for displaying an image in the image display area 10a1 based on the size of the image display area 10a1, and the partial display image is displayed in the display area 10a. You may comprise so that it may display. For example, when the image display area 10a1 becomes horizontally long or vertically long, the image changing unit 250 displays the image for partial display as the horizontally or vertically long image display area 10a1 like a telop as shown in FIG.
- the partial image signal 302b is obtained by converting such a telop into a signal.
- a plurality of image signals including the partial image signal 302b may be input to the image changing unit 250.
- the image changing unit 250 may appropriately employ the partial image signal 302b as a signal for displaying an image in the image display area 10a1 based on the image display area 10a1.
- the liquid crystal display device 100 can display a partial display image such as a telop in the changed image display area 10a when the image display area 10a1 becomes a horizontally long or vertically long area. Thereby, the liquid crystal display device 100 can appropriately display an image suitable for the image display area 10a1 when the size or shape of the image display area 10a1 changes.
- the image changing unit 250 acquires the light reception information a1 to d1 from the first light reception sensor 122 (see S1 in FIG. 56).
- the image changing unit 250 creates display area change signals 250a1 and 250a2 based on the received light information a1 to d1 obtained by the first light receiving sensor 122 (S2).
- the image changing unit 250 receives a plurality of image signals 302a to 302c.
- the image changing unit 250 adopts the partial image signal 302b from among the plurality of image signals 302a to 302c based on the display area change signal 250a1 (S3).
- the partial image signal 302b and the display area change signal 250a1 are sent to the liquid crystal panel control unit 220 as shown in FIG.
- the liquid crystal panel control unit 220 controls the pixels 30 based on the display area change signal 250a1 and the partial image signal 302b (S4), and changes the image to be displayed in the display area 10a to a partial display image.
- both the display image reduced to the image display area 10a1 and the partial display image are simultaneously displayed. It may be displayed.
- the image changing unit 250 sets the image display area 10a1 in the area excluding the region where the light reception information a1 to d1 exceeding the reference value is obtained, and displays the image in the image display area 10a1. .
- the image changing unit 250 can change the display image to an “easy-to-see image” by another method.
- the image changing unit 250 may change the display image displayed in the display area 10a to an image prepared in advance when the light receiving information a1 to d1 exceeding the reference value is obtained by the first light receiving sensor 122. .
- the display image displayed in the display area 10a is changed to an image prepared in advance.
- a low-contrast image can be used as an image prepared in advance.
- the low-contrast image refers to an image that is easy for the viewer to visually recognize even when the contrast ratio of the display area 10a is low.
- the low-contrast image for example, as shown in FIG. 41, there is an image like a digitally displayed clock that can be expressed in monotone.
- An image such as a digitally displayed clock that can be expressed in monotone is easily viewed by the viewer even when the contrast ratio of the display area 10a is low.
- low contrast images include monotone logos, simple figures (eg, geometric figures such as triangles, squares, circles, ellipses, etc.), characters, etc. Can be used. Note that the low-contrast image is not limited to the above example as long as it is easily visible to the viewer even when the contrast ratio of the display area 10a is low.
- the image changing unit 250 may be supplied with a low-contrast image signal 302c for displaying a low-contrast image in the display area 10a in addition to the image signal 302a. .
- the image changing unit 250 acquires the light reception information a1 to d1 from the first light reception sensor 122 (see S1 in FIG. 57).
- the image changing unit 250 creates display area change signals 250a1 and 250a2 based on the received light information a1 to d1 obtained by the first light receiving sensor 122 (S2).
- the image changing unit 250 employs the low-contrast image signal 302c as a signal for displaying an image on the display region 10a based on the light reception information a1 to d1 obtained by the first light receiving sensor 122 (see S3). Then, the low contrast image signal 302 c is sent to the liquid crystal panel control unit 220. The liquid crystal panel control unit 220 controls the pixels 30 based on the display area change signal 250a1 and the low contrast image signal 302c (S4). Then, the image displayed in the display area 10a is changed to a low contrast image. As a result, the displayed image is appropriately changed to a low contrast image.
- the image changing unit 250 changes the image displayed in the display area 10a based on the light receiving information a1 to d1. do it.
- the content of the image to be changed is not limited to the above. Hereinafter, other embodiments will be described.
- the image changing unit 250 when the area of the part where the light reception information a1 to d1 exceeding the reference value is obtained exceeds a certain ratio with respect to the area of the display region 10a, You may stop displaying an image on a display area. For example, when high intensity external light is irradiated over a wide range of the display area 10a, the display image 10a becomes difficult to see as a whole. When the display image 10a becomes difficult to see as a whole, according to the image changing unit 250, no image is displayed in the display area 10a, and the viewer does not feel stress. In addition, power consumed by the display device can be saved.
- the image changing unit 250 may be connected to the power source 203, for example. Then, when the area of the part where the light reception information a1 to d1 exceeding the reference value is obtained exceeds a certain ratio with respect to the area of the display region 10a, the image changing unit 250 generates the operation stop signal 250b. Then, the image changing unit 250 may be configured to control the power supply 203 by the operation stop signal 250b to stop the supply of power to the liquid crystal panel control unit 220, the backlight control unit 240, and the like.
- the image changing unit 250 displays the display area 10a when the received light information a1 to d1 of the external light having an intensity exceeding a predetermined reference value is obtained in the center of the screen in the display area 10a.
- the display of the image may be stopped. Since the center of the display area 10a is easy to enter the viewer's field of view, if it becomes difficult to see the center of the display area 10a, it is difficult to grasp the contents of the entire display image.
- the image changing unit 250 can stop displaying an image on the display area 10a when the center of the display area 10a becomes difficult to see. Thus, by displaying an image that is difficult to see, it is possible to eliminate stress on the viewer and to save power for driving the display device. In order to control the contents, it is necessary to acquire the light reception information at the center of the screen. For this reason, as shown in FIG. 43, it is preferable that the first light receiving sensor 122 be disposed near the central portion of the display area 10a.
- the image changing unit 250 includes the light reception information obtained by the first light reception sensor 122 serving as a predetermined reference among the first light reception sensors 122 and the light reception information obtained by the other first light reception sensors 122.
- the difference may be obtained.
- the image changing unit 250 may change the image (display image) displayed in the display area 10a based on the difference in the light reception information. Accordingly, the image changing unit 250 can change the display image by accurately reflecting the luminance distribution of the external light that irradiates each of the areas A to D.
- the appropriate brightness of the irradiation unit 22 with respect to the difference may be set in the image changing unit 250 in advance.
- a reference value may be set in the image changing unit 250 with respect to the difference in the light reception information obtained by the first light reception sensor 122 at different predetermined timings.
- the image changing unit 250 obtains the difference between the received light information obtained by the first light receiving sensor 122 at different predetermined timings.
- the image changing unit 250 may change the display image when the difference in the received light information exceeds the reference value. Accordingly, the image changing unit 250 can change the display image by accurately reflecting the change over time of the light reception information a1 to d1 obtained by the first light receiving sensor 122.
- the image changing unit 250 may also change the display image as described above based on the light reception information a1 to d1 that has temporarily changed significantly.
- the display image changes rapidly. For this reason, a defect such as flickering of the display image may occur, and the viewer may be stressed.
- the image change unit 250 receives the light reception information a1.
- the display image may be changed based on .about.d1.
- the timing of adopting the light reception information a1 to d1 obtained by the first light reception sensor 122 may be set in the image changing unit 250 in advance. According to the image changing unit 250, it is possible to prevent the display image from being changed unnecessarily, even when the brightness of the external light changes temporarily.
- the image change unit 250 may include a switching unit that switches between an image change mode in which an image displayed in the display area 10a is changed and a non-image change mode in which the image change mode is not executed.
- a timer in which a time zone for executing the image change mode is set in advance may be provided.
- the switching unit may switch between the image change mode and the non-image change mode based on a time zone preset in the timer.
- the liquid crystal display device 100 includes a timer 292 in which a time zone for executing the image change mode is preset, and the switching unit 290 changes the image based on the time zone preset in the timer 292. It is preferable to switch between the mode and the non-image change mode. As a result, control is performed to select the image change mode only in a time zone in which the intensity of the external light that irradiates the display region 10a is high or in a time zone in which the intensity of the external light is likely to change, and change the image displayed in the display region 10a. It can be carried out.
- the timer 292 may be set in advance for a time zone in which sunlight is strongly applied and the display image is difficult to see. In this case, the image is changed in a time zone in which sunlight is strongly applied and the display image is difficult to see.
- the switching unit 290 may switch between the image change mode and the non-image change mode based on the light reception information a1 to d1 obtained by the switching light receiving sensor.
- the image change mode can be selected when the intensity of the external light that irradiates the display area 10a is changing, and the non-image change mode can be selected when the intensity of the external light is not changing.
- the first light receiving sensor 122 can be used as the light receiving sensor for switching.
- the image changing unit 250 illuminates the image display area 10a1 with illumination light. It is good to turn on the irradiation part 22 which irradiates, and make the other irradiation part 22 light-extinguish. In this case, since the irradiation unit 22 that does not irradiate the image display area 10a1 with illumination light is turned off, the driving power of the backlight 20 can be saved.
- the liquid crystal display device 100 may be provided with an internal reflector 80 that reflects the external light that irradiates the display area 10a toward the back surface of the liquid crystal panel 10.
- the external light reflected toward the back surface of the liquid crystal panel 10 by the internal reflection plate 80 is used as light for displaying an image.
- the liquid crystal display device 100 provided with the internal reflection plate 80 it is possible to prevent the luminance of the entire display region 10a from greatly decreasing even when the irradiation unit 22 is partially turned off.
- the luminance of the boundary portion of the image display area 10a1 slightly decreases. It may be.
- the liquid crystal display device 100 including the internal reflection plate 80 external light can be reflected toward the back surface of the liquid crystal panel 10 by the internal reflection plate 80. For this reason, part of the external light reflected toward the back surface of the liquid crystal panel 10 by the internal reflector 80 at the boundary portion of the image display area 10a1 can be used as light for displaying an image.
- the internal reflector 80 may reflect the external light that irradiates the display region 10a toward the back surface of the liquid crystal panel 10 and transmit the illumination light emitted from the backlight 20 to the liquid crystal panel 10 side. .
- the illumination light generated from the irradiation unit 22 can be irradiated on the back surface of the liquid crystal panel 10
- external light for irradiating the display region 10 a can be irradiated on the back surface of the liquid crystal panel 10.
- the liquid crystal display device 100 including the image changing unit 250 has been described.
- the display image change by the image changing unit 250 can be used not only for the liquid crystal display device 100 but also for other display devices (for example, an organic EL display, a plasma display, etc.).
- the first light receiving sensor 122 that transmits the light reception information a1 to d1 to the image changing unit 250 can be variously changed in the same manner as the first light reception sensor 122 that transmits the light reception information a1 to d1 to the backlight control unit 240 described above. It is.
- Example 9 In the above-described eighth embodiment, the liquid crystal display device 100 including the image changing unit 250 has been described.
- an image display system 500 including a display device for example, the liquid crystal display device 100
- an image changing unit 250 for example, the liquid crystal display device 100
- an external processing device 400 for example, the liquid crystal display device 100
- FIG. 46 is a block diagram schematically showing such an image display system 500.
- the liquid crystal display device 100 used in the image display system 500 includes a display panel (liquid crystal panel) 10 in which a plurality of pixels are arranged in a display area 10a.
- the external light applied to the liquid crystal panel 10 is received by a light receiving sensor (first light receiving sensor 122) at a plurality of positions in the display area 10a.
- the external processing device 400 creates an image signal 402 for displaying an image in the display area 10 a and sends the image signal 402 to the liquid crystal display device 100.
- a PC including an arithmetic device such as a CPU can be used.
- reference values are set in advance for the light receiving information a1 to d1 obtained by the first light receiving sensor 122.
- the image changing unit 250 changes the image signal 402 generated by the external processing device 400 based on the light receiving information a1 to d1. To do.
- This image display system by changing the image signal 402 created by the external processing device 400 based on the light reception information a1 to d1, it is possible to display an easy-to-see image with respect to the state of the external light in the display area 10a. it can.
- This image display system 500 can be preferably used for, for example, a digital signage system that displays video advertisements and the like outdoors.
- an image changing unit 250 is built in the liquid crystal display device 100.
- Light reception information a 1 to d 1 obtained by the first light receiving sensor 122 is input to the image changing unit 250.
- the image changing unit 250 creates the image change signal 250c based on the received light information a1 to d1.
- the image change signal 250c is sent to the external processing device 400.
- the external processing device 400 Based on the image change signal 250c, the external processing device 400 newly creates an image signal 402 so that an easy-to-view image is displayed on the display area 10a with respect to the state of the external light applied to the display area 10a.
- the image signal 402 created by the external processing device 400 is sent to the liquid crystal display device 100 and input to the liquid crystal panel control unit 220 through the signal input unit 201 of 100.
- the liquid crystal panel control unit 220 controls the liquid crystal panel 10 based on the image signal 402. In this case, the image signal 402 is changed based on the light reception information a1 to d1.
- the image changing unit 250 may not be built in the liquid crystal display device 100.
- the image changing unit 250 may be built in the external processing device 400.
- the image display system 500 includes other devices of the liquid crystal display device 100 and the external processing device 400, the image changing unit 250 may be provided in the other devices.
- the liquid crystal display device 100 including the image changing unit 250 that changes the image displayed in the display area 10a based on the light reception information a1 to d1 obtained by the first light receiving sensor 122 has been described above.
- FIG. 47 or FIG. 48 schematically shows a liquid crystal display device 100 according to another embodiment.
- the liquid crystal display device 100 shown in FIG. 47 or FIG. 48 has a cooling device 90 (90a to 90a) so that cooling is performed for each of a plurality of areas based on the light reception information a1 to d1 obtained by the first light receiving sensor 122. 90d) is provided for cooling control unit 280.
- 47 or 48 shows the approximate positional relationship between the backlight 20 and the cooling device 90 (90a to 90d).
- the liquid crystal display device 100 includes a cooling device 90 and a cooling control unit 280.
- the cooling device 90 performs cooling for each of a plurality of areas obtained by dividing the display area 10a.
- the cooling control unit 280 controls the cooling device 90 so that cooling is performed for each of a plurality of areas based on the light reception information a1 to d1 obtained by the first light receiving sensor 122.
- a plurality of areas A to D obtained by dividing the display area 10a can be selectively cooled according to the intensity of external light that irradiates the display area 10a.
- the portion where the temperature is increased can be selectively cooled. Therefore, according to the liquid crystal display device 100, it is possible to prevent the light transmittance of the liquid crystal panel 10 and the brightness of the irradiation unit 22 (see FIG. 45) of the backlight 20 from being changed due to a partial temperature rise.
- information displays are one of the uses of liquid crystal display devices.
- the information display is generally arranged outdoors. For this reason, when the external light with high intensity
- the liquid crystal display device 100 can selectively cool a portion where the temperature is rising. For this reason, the liquid crystal display device 100 is particularly preferably used for an information display.
- the responsiveness of the liquid crystal molecules in the liquid crystal layer 13 may become unstable not only when the temperature rises but also when it is cooled excessively. For this reason, when the entire surface of the liquid crystal panel 10 is equally cooled, the response characteristics of the liquid crystal molecules become partially unstable, and the display image may be disturbed. For example, when the temperature of the liquid crystal panel 10 is partially increased and the entire surface of the liquid crystal panel 10 is equally cooled, the response characteristics of the liquid crystal molecules become partially unstable. For this reason, the display image may be disturbed.
- the cooling device 90 can be controlled based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the liquid crystal display device 100 drives the cooling device 90 as necessary, it contributes to the reduction of noise caused by the driving sound of the cooling device 90 and the saving of driving power for the cooling device 90. You can also.
- liquid crystal display device 100 including the cooling device 90 and the cooling control unit 280 will be described.
- the first light receiving sensors 122 may be distributed in the display area 10a. Accordingly, the first light receiving sensor 122 can obtain light reception information of external light that irradiates the display region 10a at various parts in the display region 10a. In this case, the first light receiving sensor 122 may be disposed in a region where each of the plurality of pixels 30 is disposed in a plan view of the liquid crystal panel 10. As a result, the light reception information a1 to d1 of the external light that irradiates the display area 10a can be obtained in units of pixels.
- the cooling device 90 includes a tank 92, a transfer pump 94, and a plurality of cooling pipes 98.
- the tank 92 stores a cooling medium.
- the transfer pump 94 transfers the cooling medium stored in the tank 92.
- the plurality of cooling pipes 98a to 98d are arranged for each of a plurality of areas A to D obtained by dividing the display area 10a.
- a cooling medium is supplied to the plurality of cooling pipes 98a to 98d by a transfer pump 94, respectively.
- the cooling device 90 can cool a plurality of areas A to D obtained by dividing the display area 10a by supplying a cooling medium to the plurality of cooling pipes 98a to 98d.
- the cooling medium supplied to the cooling pipes 98a to 98d is preferably a liquid having a refrigerant function, and for example, pure water or antifreeze liquid (ethylene glycol) can be used. Further, the cooling medium may not be liquid as long as it has a refrigerant function, and for example, cooled air may be used.
- the tank 92 and the transfer pump 94 communicate with each other via an annular pipe 93, and the transfer pump 94 draws the cooling medium from the tank 92 and circulates the pipe 93.
- an annular pipe 93 is branched downstream of the circulation pump 94, and a plurality of cooling pipes 98a to 98d are respectively arranged downstream thereof.
- the cooling pipes 98a to 98d are arranged on the back side of the irradiation unit 22 (see FIG. 45).
- the branched pipes 93 are integrated downstream of the cooling pipes 98a to 98d.
- the integrated pipe 93 is connected to the tank 92.
- the cooling medium stored in the tank 92 is pulled out by the transfer pump 94 and supplied to the cooling pipes 98a to 98d.
- the cooling device 90 cools the periphery of the cooling pipes 98a to 98d arranged for each of the areas A to D.
- the cooling medium supplied to the cooling pipes 98 a to 98 d is integrated into one pipe 93 and collected in the tank 92.
- valve 47 includes a plurality of valve portions 96a to 96d that block the cooling medium supplied to the plurality of cooling pipes 98a to 98d for each of the cooling pipes 98a to 98d.
- the valve parts 96a to 96d are connected to the cooling control part 280 via signal lines.
- the cooling control unit 280 controls the plurality of valve units 96a to 96d based on the light reception information a1 to d1 obtained by the first light receiving sensor 122, and supplies the cooling medium to the plurality of cooling pipes 98a to 98d. adjust.
- the cooling can be performed for each of the areas A to D by adjusting the supply of the cooling medium to the cooling pipes 98a to 98d.
- the plurality of valve portions 96a to 96d may be arranged upstream of the cooling medium flow path (pipe 93) of the respective cooling pipes 98a to 98d, for example, as shown in FIG.
- each of the valve parts 96a to 96d is connected to the cooling control part 280 via a signal line.
- the cooling control unit 280 acquires the light reception information a1 to d1 obtained by the first light reception sensor 122 (S1). Then, the cooling control unit 280 creates cooling control signals a5 to d5 based on the light reception information a1 to d1 (S2). The cooling control signals a5 to d5 are sent to the valve portions 96a to 96d.
- the valve portions 96a to 96d are opened and closed based on the cooling control signals a5 to d5, respectively (S3), and the supply of the cooling medium to the cooling pipes 98a to 98d arranged downstream of the valve portions 96a to 96d is adjusted.
- the liquid crystal display device 100 performs cooling for each of the plurality of areas A to D based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the cooling device 90 is not limited to the above-described configuration as long as it can perform cooling for each of a plurality of areas obtained by dividing the display area 10a.
- cooling devices 90a to 90d that circulate a cooling medium independently may be used as the cooling device.
- the cooling control unit 280 controls the transfer pumps 94a to 94d of the respective cooling devices 90a to 90d based on the received light information a1 to d1 obtained by the first light receiving sensor 122, and each cooling pipe 98a to The supply of the cooling medium to 98d is adjusted.
- the cooling devices 90a to 90d do not include the valve portions 96a to 96d as shown in FIG. 47, the cooling medium can be selectively supplied to the respective cooling pipes 98a to 98d.
- cooling device is not limited to the above.
- the cooling device 90 may include a cooling fan 91 as shown in FIGS. 49 and 50.
- the cooling fan 91 ventilates the inside of the liquid crystal display device 100.
- the cooling device 90 further includes a heat sink 95 arranged for each of a plurality of areas obtained by dividing the display region 10a.
- the heat sink 95 communicates with the outside of the liquid crystal display device 100 through the cooling fan 91.
- the liquid crystal display device 100 includes a cooling fan 91 that ventilates the inside, and a heat sink 95 that communicates with the outside of the liquid crystal display device 100 through the cooling fan 91.
- the cooling device 90 can perform cooling by driving the cooling fan 91 and discharging the high-temperature air staying inside the heat sink 95 to the outside of the liquid crystal display device 100. Further, according to the liquid crystal display device 100, since the heat sink 95 is arranged for each of the plurality of areas A to D obtained by dividing the display area 10a, the cooling can be performed for each of the plurality of areas A to D.
- the cooling fan 91 and the heat sink 95 may be disposed on the back surface of the irradiation unit 22. Further, the portion where the cooling fan 91 is provided may be open to the outside of the liquid crystal display device 100.
- the heat sink 95 is a member having a hollow inside, and the air staying in the hollow inside may be discharged to the outside of the liquid crystal display device 100 by driving the cooling fan 91.
- a plurality of cooling fans 91 may be provided corresponding to each of the heat sinks 95.
- the cooling control unit 280 may operate the plurality of cooling fans 91 individually so that the inside of the heat sink 95 is individually ventilated based on the light reception information obtained by the first light receiving sensor 122. .
- the plurality of cooling fans 91 are individually operated, the air staying in the internal cavity of the heat sink 95 is individually ventilated.
- the heat sink 95 is arranged for each of the areas A1 to D1
- cooling is performed for each of the areas A to D obtained by dividing the display region 10a by individually ventilating each heat sink 95.
- the cooling can be efficiently performed for each of the plurality of areas A to D.
- the heat sink 95 may include an opening / closing part 97 that closes a space between the inside cavity and the cooling fan 91.
- the cooling control unit 280 (see FIG. 47 or FIG. 48) opens and closes the opening and closing unit so that the inside of the heat sink 95 is individually ventilated based on the light reception information a1 to d1 obtained by the first light reception sensor 122. 97 is controlled.
- the liquid crystal display device 100 by controlling the opening / closing part 97 based on the light reception information a1 to d1 obtained by the first light reception sensor 122, the inside of the heat sink 95 is individually ventilated, and the areas A to D are thereby vented. Cooling can be performed every time.
- the heat sink 95 is individually ventilated by opening and closing the opening / closing part 97. For this reason, it is not necessary to provide a plurality of cooling fans 91 corresponding to the number of heat sinks 95 arranged. For this reason, it is possible to contribute to the reduction of the number of parts of the liquid crystal display device 100 and the suppression of noise caused by the driving of the cooling fan 91.
- the cooling device 90 includes the liquid crystal panel control unit 220 in addition to the plurality of areas obtained by dividing the display region 10a. May be cooled.
- the cooling control unit 280 responds to the driving of the liquid crystal panel control unit 220 (panel control unit) in addition to the cooling for each area performed based on the light reception information a1 to d1 obtained by the first light receiving sensor 122.
- the cooling device 90 may be controlled so that the cooling is performed.
- the liquid crystal panel control unit 220 includes a CPU, a GPU, a chip set, and the like as described above.
- the CPU, GPU, chipset, etc. generate heat when driving and controlling the pixels 30. For this reason, when the drive control of the pixel 30 is performed, the temperature around the liquid crystal panel control unit 220 may increase. Due to this temperature rise, the response characteristics of the liquid crystal molecules may be lowered in the liquid crystal layer 13 located around the liquid crystal panel control unit 220.
- cooling is performed for each of the plurality of areas A to D obtained by dividing the display area 10a, and the periphery of the liquid crystal panel control unit 220 is cooled, thereby preventing deterioration in response characteristics of liquid crystal molecules. Can do.
- the liquid crystal panel control unit 220 when the liquid crystal panel control unit 220 generates heat, the temperature of the liquid crystal panel control unit 220 itself also increases. In this case, the drive control of the pixels 30 by the liquid crystal panel control unit 220 may become unstable, and the entire display image may be disturbed. According to the liquid crystal display device 100, since the liquid crystal panel control unit 220 can be cooled, the drive control of the pixels 30 can be stabilized.
- control method of the backlight control unit 240 (see, for example, FIG. 2 and FIGS. 9 to 16) already described can be applied to the control method of the cooling control unit 280.
- a control method of the cooling control unit 280 will be described.
- the liquid crystal display device 100 including the cooling control unit 280 shown in FIG. 47 or 48 may include the second light receiving sensor 124 (see FIG. 30).
- the second light receiving sensor 124 receives illumination light emitted from the backlight 20 at a plurality of positions in the display region 10a.
- the cooling control unit 280 receives the illumination light obtained by the second light receiving sensor 124 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122, as shown in FIG.
- the cooling device 90 may be controlled based on the information a3 to d3 (see FIG. 31).
- the cooling control unit 280 can correct the control of the cooling unit 90 based on the light reception information a3 to d3 obtained by the second light receiving sensor 124.
- the cooling control unit 280 is based on the difference between the light reception information a1 to d1 obtained by the first light reception sensor 122 and the light reception information a3 to d3 obtained by the second light reception sensor 124. Then, the cooling device 90 may be controlled. Accordingly, the cooling control unit 280 excludes the received light information a3 to d3 of the illumination light from the obtained received light information a1 to d1, and sets the cooling device 90 based on the accurate received light information of the external light that irradiates the display region 10a. Can be controlled.
- the liquid crystal display device 100 including the second light receiving sensor 124 may include an error current calculation unit 208 as shown in FIG.
- the error current calculation unit 208 compares the light reception information a3 to d3 obtained by the second light reception sensor 124 at a plurality of predetermined timings, and is generated in the second light reception sensor due to external factors other than light. Calculate the error current.
- the cooling control unit 280 controls the cooling unit 90 based on the error current calculated by the error current calculation unit 208 in addition to the light reception information a1 to d1 obtained by the first light reception sensor 122. Accordingly, the cooling control unit 280 can control the cooling device 90 based on more accurate light reception information by eliminating error current caused by external factors other than light.
- the liquid crystal display device 100 including the second light receiving sensor 124 may include a backlight control unit 240 that controls the irradiation unit 22 based on the light reception information a3 to d3 of the illumination light. According to this configuration, the liquid crystal display device 100 can correct the brightness of the illumination light by controlling the illumination unit 22 based on the light reception information a3 to d3 of the illumination light illumination unit 22 that has changed due to the cooling. .
- the liquid crystal display device 100 including the cooling control unit 280 illustrated in FIG. 47 or 48 is similar to the liquid crystal display device 100 including the backlight control unit 240 in intermittent drive control unit 205 (see FIG. 33). May be provided.
- the intermittent drive control unit 205 includes a turn-off period and a turn-on period in which the backlight 20 is turned on so that there is a turn-off period in which the backlight 20 is turned off during the period in which the image of the display area 10a is switched. Switch alternately.
- the cooling control unit 280 controls the cooling device 90 based on the light reception information a1 to d1 obtained by the first light reception sensor 122 during the backlight 20 extinguishing period. May be. Accordingly, the illumination light is excluded from the light reception information a1 to d1 obtained by the first light reception sensor 122, and the cooling device 90 can be controlled based on the light reception information a1 to d1 of the external light that irradiates the display region 10a. .
- the cooling device 90 may be controlled based on the difference.
- the cooling control unit 280 performs such control in addition to the light reception information a1 to d1 obtained by the first light reception sensor 122 during the lighting period of the backlight 20.
- the cooling control unit 280 can control the cooling unit 90 based on the brightness of the illumination light emitted from the backlight 20.
- the liquid crystal display device 100 including the intermittent drive control unit 205 may further include the second light receiving sensor 124 (see FIG. 30 and FIG. 31) already described.
- the cooling control unit 280 controls the cooling unit 90 based on the current generated by the second light receiving sensor 124 during the extinguishing period of the backlight 20 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122. You may control.
- the cooling control unit 280 can accurately control the cooling device 90 by eliminating errors caused by external factors other than light.
- the liquid crystal display device 100 including the intermittent drive control unit 205 may also include a backlight control unit 240 that controls the irradiation unit 22 based on the light reception information a3 to d3 of the illumination light.
- the liquid crystal display device 100 controls the irradiating unit 22 based on the received light information a3 to d3 of the illuminating light irradiating unit 22 changed by cooling, as in the liquid crystal display device 100 including the second light receiving sensor 124.
- the brightness of the illumination light can be corrected.
- the liquid crystal display device 100 including the cooling control unit 280 may include the already described third light receiving sensor 126 (see FIG. 32), similarly to the liquid crystal display device 100 including the backlight control unit 240. Good.
- the third light receiving sensor 126 is shielded against external light that irradiates the display region 10a and light (for example, illumination light) generated from the liquid crystal display device 100. Accordingly, the third light receiving sensor 126 can detect an error current caused by an external factor other than light.
- the cooling control unit 280 controls the cooling device 90 based on the currents a3 to d3 generated in the third light receiving sensor 126 in addition to the light receiving information a1 to d1 obtained by the first light receiving sensor 122. May be. As a result, the cooling control unit 280 can accurately control the cooling device 90 by eliminating an error current caused by an external factor other than light.
- the liquid crystal display device 100 including the cooling control unit 280 may include the backlight control unit 240 described above.
- a reference value is set in advance for the light reception information a1 to d1 for each of the areas A to D obtained by the first light reception sensor 122. Then, the backlight control unit 240 compares the reference value with the light reception information a1 to d1 for each of the areas A to D, and with respect to the areas A to D where the light reception information exceeding the reference value is obtained.
- Each of the plurality of irradiation units 22 is controlled so that illumination light brighter than other portions is irradiated.
- the cooling device 90 is controlled based on the light reception information a1 to d1 obtained by the first light receiving sensor 122, the portion irradiated with bright illumination light is preferentially cooled. . Thereby, it is possible to prevent variations in temperature distribution caused by adjusting the brightness of the illumination light for each area.
- the image changing unit 250 in which reference values are predetermined for the light reception information a1 to d1 obtained by the first light reception sensor 122. May be provided.
- the image changing unit 250 is an area excluding the part that has obtained the received light information a1 to d1 exceeding the reference value in the display area 10a based on the received light information a1 to d1 obtained by the first light receiving sensor 122.
- An image display area 10a1 for displaying an image may be set.
- the cooling control unit 280 is configured to stop the cooling of the part for which no image is displayed on the display area 10a. May control the cooling device 90.
- the cooling is not performed at the site where the image is not displayed. For this reason, power for cooling the liquid crystal display device 100 can be saved, and noise caused by the driving sound of the cooling device 90 can be suppressed to a low level.
- no cooling is performed on a portion where no image is displayed. For this reason, it is possible to prevent the liquid crystal panel 10 from being excessively cooled.
- the image changing unit 250 may stop driving performed by the liquid crystal display device to display an image on the display area 10a under a predetermined condition.
- the predetermined condition is, for example, when the area of the part where the received light information a1 to d1 exceeding a certain threshold exceeds a certain ratio with respect to the area of the display area 10a, This is a case where the intensity of external light exceeding a certain threshold is detected at the center of the screen (see, for example, FIG. 42).
- the image changing unit 250 may stop the liquid crystal display device.
- a cooling device 90 (FIG. 47 or FIG. 47) that cools the part of the display area 10a that has been changed from the image displayed on the display area 10a as a result of the image change unit 250 changing the image displayed on the display area 10a. 48) may be stopped. This can save labor.
- the mode switching by the switching unit 290 described above may be used in the liquid crystal display device 100 including the cooling device 90 and the cooling control unit 280.
- the switching unit 290 switches between the cooling mode and the non-cooling mode.
- the cooling mode means a state in which the cooling device 90 is controlled based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the non-cooling mode means a state where the cooling mode is not executed.
- the liquid crystal display device 100 may include a timer 292 in which a time zone for executing the cooling mode is set in advance.
- the switching unit 290 switches between the cooling mode and the non-cooling mode based on a time zone preset in the timer 292.
- the cooling mode is selected only in a time zone in which the intensity of the external light that irradiates the display region 10a is strong or a time zone in which the intensity of the external light is likely to change, and control for changing the image displayed in the display region 10a is performed. be able to.
- the liquid crystal display device 100 may include a switching light receiving sensor that receives external light irradiating the display region 10a at a plurality of positions.
- the first light receiving sensor 122 can be used as the switching light receiving sensor.
- the switching unit 290 switches between the cooling mode and the non-cooling mode based on the light reception information a1 to d1 obtained by the switching light receiving sensor.
- the cooling mode can be selected when the intensity of the external light that irradiates the display region 10a is increased, and the non-cooling mode can be selected when the intensity of the external light is weak.
- the first light receiving sensor 122 can be used as the light receiving sensor for switching.
- the cooling control unit 280 may control the cooling device 90 when the first light receiving sensor 122 obtains light reception information that exceeds a reference value continuously for a predetermined time.
- the cooling control unit 280 can prevent the cooling device 90 from driving and excessive cooling.
- the liquid crystal display device 100 including the liquid crystal panel 10 as a display panel and the backlight 20 including the irradiation unit 22 that irradiates light on the back surface of the liquid crystal panel 10 has been described.
- the cooling device 90 provided in the liquid crystal display device 100 cools the liquid crystal panel 10 and the backlight 20 for each of a plurality of areas A to D obtained by dividing the display region 10a.
- the cooling for each area performed by the cooling device 90 and the cooling control unit 280 can be used not only for the liquid crystal display device 100 but also for other display devices (for example, an organic EL display and a plasma display).
- the first light receiving sensor 122 that sends the light reception information a1 to d1 to the cooling control unit 280 can be variously changed in the same manner as the first light reception sensor 122 that sends the light reception information a1 to d1 to the backlight control unit 240 described above. It is.
- the liquid crystal display device 100 has been described as an example of the display device according to the embodiment of the present invention.
- the above-described liquid crystal display device 100 can be used as a television receiver.
- the liquid crystal display device 100 includes a broadcast receiving unit 201a that receives a television broadcast.
- the broadcast receiving unit 201a receives a television broadcast and outputs a video signal.
- the control unit 200 displays a television video (image) in the display area 10a based on the television broadcast video signal output from the broadcast receiving unit 201a.
- the broadcast receiving unit 201a is provided as a part of the signal input unit 201, and the control unit 200 is configured to display an image based on the television broadcast received by the broadcast receiving unit 201a. Also good.
- the control part 200 which performs control based on television broadcast controls the liquid crystal panel 10 and the backlight 20, and displays a television image on the display area 10a.
- the liquid crystal display device 100 having such a configuration is used as a television receiver, for example, as shown in FIG. It is better to wrap it around.
- the opening 180a corresponding to the display area 10a is formed in the first housing 180.
- the second casing 190 covers the back surface of the liquid crystal display device 100 and has an operation circuit 150 for operating the liquid crystal display device 100.
- a support member 160 that supports the liquid crystal display device 100 is attached to the second casing 10.
- the use of the liquid crystal display device 100 according to the embodiment of the present invention is not limited to a television receiver, and may be an image display device that uses images sent from various video devices as video information.
- the liquid crystal module 110 is manufactured during the manufacturing process.
- the liquid crystal module 110 includes the liquid crystal panel 10, a first light receiving sensor 122, a calculation unit 112, and an output terminal 114.
- the liquid crystal panel 10 has a plurality of pixels 30 arranged in the display area 10a.
- the first light receiving sensor 122 receives the external light irradiated on the liquid crystal panel 10 at a plurality of positions in the display area 10a.
- the calculation unit 112 creates a signal for adjusting the illumination light emitted for each of a plurality of areas obtained by dividing the display area 10a based on the light reception information a1 to d1 obtained by the first light reception sensor.
- the output terminal 114 outputs a signal created by the calculation unit 112. Further, based on the light reception information a1 to d1 obtained by the first light reception sensor 122, the calculation unit 112 performs predetermined processing according to the program. The calculation unit 112 can change the signal to be generated by changing the program.
- this liquid crystal module 110 When this liquid crystal module 110 is used, it becomes easy to manufacture various liquid crystal display devices in which predetermined processing is performed based on the light reception information a1 to d1 obtained by the first light reception sensor 122. For example, on the basis of the received light information a1 to d1 obtained by the first light receiving sensor 122, a liquid crystal display device that controls the irradiation unit 22, a liquid crystal display device that changes an image displayed on the display region 10a, a display region 10a, and the like. It is possible to easily manufacture a liquid crystal display device that performs cooling for each divided area.
- the output terminal 114 is connected to a control device (for example, the backlight control unit 240) that controls the brightness of illumination light generated from an external illumination device such as the backlight 20, the signal generated by the arithmetic unit 112.
- the external lighting device can be controlled based on the above.
- the external illumination device adjusts the illumination light applied to the liquid crystal module 110 for each of a plurality of areas based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the output terminal 114 can be connected to the image changing unit 250 to create the liquid crystal module 110 including the image changing unit 250 (see FIG. 38 or FIG. 46).
- the image changing unit 250 has predetermined reference values for the received light information a1 to d1 obtained by the first light receiving sensor 122, and the received light information a1 to d1 exceeding the reference value is the first received light sensor. If obtained by 122, the liquid crystal panel 10 is controlled based on the received light information a1 to d1 to change the image displayed in the display area 10a.
- the output terminal 114 is connected to the cooling control unit 280 (see FIG. 47 or FIG. 48), and the liquid crystal module 110 including the cooling devices 90, 90a to 90d (see FIG. 47 or FIG. 48) and the cooling control unit 280 is created.
- the cooling devices 90 and 90a to 90d cool the liquid crystal panel 10 for each of a plurality of areas A to D obtained by dividing the display area 10a.
- the cooling control unit 280 controls the cooling devices 90 and 90a to 90d so that the cooling is performed for each of the areas A to D based on the light reception information a1 to d1 obtained by the first light receiving sensor 122.
- the liquid crystal panel 10 with the first light receiving sensor 122 can be manufactured during the manufacturing process of the liquid crystal display device 100.
- the liquid crystal panel 10 with the first light receiving sensor 122 includes a plurality of pixels 30 in the display area 10a.
- the first light receiving sensor 122 is arranged to receive external light irradiated to the display area 10a at a plurality of positions in the display area 10a.
- the liquid crystal panel 10 with the first light receiving sensor 122 can examine the variation in apparent luminance distribution generated in the display area due to the influence of the external light applied to the display area 10a.
- the liquid crystal display device 100 that controls the irradiation unit 22 can be manufactured based on the light receiving information a1 to d1 obtained by the first light receiving sensor 122. Further, the liquid crystal display device 100 including the image changing unit 250 (see FIG. 38 or 46) and the cooling control unit 280 (see FIG. 47 or 48) can be created using the liquid crystal panel 10.
- a backlight 20 (a backlight for a liquid crystal display device) may also be manufactured.
- the backlight 20 (backlight for a liquid crystal display device) is disposed to face the back surface of the liquid crystal panel 10.
- the backlight 20 includes a plurality of irradiation units 22, an input terminal 28, and a backlight control unit 240.
- the plurality of irradiation units 22 irradiate the back surface of the liquid crystal panel 10 with illumination light.
- the light receiving information a 1 to d 1 obtained by the light receiving sensor is input to the input terminal 28.
- the backlight control unit 240 controls the irradiation units 22 so that the brightness of the illumination light is partially adjusted based on the light reception information a1 to d1 input from the input terminal 28.
- the input terminal 28 may be connected to the output terminal 114 of the liquid crystal module 110 (see FIG. 52) described above.
- the light reception information a1 to d1 obtained by the first light reception sensor 122 is input to the input terminal 28 via the output terminal 114 of the liquid crystal module 110 (see FIG. 52).
- the backlight 20 (backlight for liquid crystal display device) can manufacture the liquid crystal display device 100 that controls the irradiation unit 22 based on the received light information a1 to d1.
- the backlight 20 (backlight for liquid crystal display devices) provided with the image change part 250 (refer FIG. 38 or FIG. 46) can also be created.
- the image changing unit 250 has predetermined reference values for the received light information a 1 to d 1 obtained by the first light receiving sensor 122, and the received light information a 1 to d 1 exceeding the reference value is the first received light sensor 122. Is obtained based on the received light information a1 to d1, the irradiation unit 22 is controlled.
- a backlight 20 (a backlight for a liquid crystal display device) including the cooling control unit 280 (see FIG. 47 or FIG. 48) and the cooling device 90 can be manufactured.
- the cooling device 90 cools the irradiation unit 22 for each of a plurality of areas A to D obtained by dividing the display area 10a, and for each area based on the light reception information a1 to d1 obtained by the first light reception sensor 122.
- the cooling device 90 is controlled so that the cooling is performed.
- the liquid crystal display device 100 As described above, various embodiments of the liquid crystal display device 100 have been illustrated. Each structure of each Example can be suitably combined also with respect to a different Example.
- the liquid crystal display device is mainly exemplified. However, the liquid crystal display device is not limited to the liquid crystal display device unless specifically limited, and can be applied to various display devices. Examples of the display device include a liquid crystal display device, an organic EL display, and a plasma display.
- the control method of the display panel (liquid crystal panel 10) in which a plurality of pixels are arranged in the display area includes the following first step (S1) and second step ( S2) may be provided.
- First step (S1) Light reception information (a1 to d1) of external light applied to the display panel (liquid crystal panel 10) is obtained at a plurality of positions in the display area (10a).
- the display device divides the display region (the liquid crystal panel 10) in which a plurality of pixels are arranged in the display region (10a) and the display region (10a). And a cooling device (90) for cooling each of the plurality of areas (A to D).
- a display device (liquid crystal display device 100) control method may include the following first step (S1) and second step (S2), for example, as shown in FIG. First step (S1): Light reception information (a to d) of external light irradiated on the display panel (liquid crystal panel 10) at a plurality of positions in the display area (10a) is obtained.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
この表示装置(液晶表示装置100)は、表示パネル10(液晶パネル10)と、受光センサ(第1受光センサ122)と、冷却部90と、冷却制御部280とを備えている。液晶パネル10の表示領域10aには、複数の画素30が配置されている。第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する。冷却装置90は、表示領域10aを分割した複数のエリアA~D毎に冷却を行う。冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、エリアA~D毎に冷却が行われるように、冷却装置90を制御する。
Description
本発明は表示装置、特に液晶表示装置に関する。
表示装置には、例えば、液晶表示装置(LCD:liquid crystal display)や有機ELディスプレイ(OEL:Organic Electro-Luminescence)、プラズマディスプレイ(PDP:Plasma Display Panel)などが挙げられる。例えば、液晶表示装置は、一対の基板を対向して貼り合わせた液晶パネルと、液晶パネルの背面側に対向して配置されたバックライトとを備えている。液晶パネルは、一対の基板の間に液晶層を有しており、一対の基板間に印加される電圧を制御することによって、光透過性を操作することができる。液晶表示装置は、液晶パネルの液晶層の態様を操作しながら、バックライト内に配置された照射部から光を照射することによって、液晶パネルの表示領域に画像を表示する。このような液晶表示装置の表示領域に外部光が照射されると、液晶パネルの表面で外部光が反射され、表示画像のコントラストが低下することがある。ここで、「外部光」は、表示装置(液晶表示装置を含む)以外によって照射される光を意味する。例えば、表示装置が室内に置かれている場合でも、室内照明によって照射された光か、室外からの光であるかを問わない。
特許文献1には、液晶表示装置の前面側(表示面側)の周囲における異なる位置に、複数の光センサを取り付け、光センサによって得られた受光情報を比較演算し、その演算結果に基づいてバックライトを制御する方法が開示されている。このように、当該文献に開示された方法は、表示領域の周囲における外部光の明るさに基づいて表示画像のコントラストを調整している。
また、特許文献2に開示された液晶表示装置では、表示領域内に複数の光センサを配置することによって、表示領域における外部光の分布を検知している。この液晶表示装置は、表示領域における外部光の分布に基づいて液晶パネルの液晶層に印加する電圧を制御し、液晶層の光透過率を領域毎に調整する。このように、当該文献に開示された液晶表示装置は、液晶層の光透過率を調整することによって、表示画像のコントラストを調整している。
また、バックライト内に配置された照射部に発光ダイオードを用いた場合、発光ダイオードから発生する熱によって発光効率の低下が生じることがある。この場合、発光ダイオードから必要な明るさの照明光が得られなくなる場合がある。このため、表示領域全体における温度分布にばらつきが生じると、表示画像の輝度むらや色むらが表示される可能性がある。特許文献3に開示された液晶表示装置は、バックライトの照明部の直下に、冷却水が循環する流路が形成された冷却部を有している。この液晶表示装置では、この流路に冷却水を循環させて、水冷で発光ダイオードを冷却している。
ところで、テレビ受信機などの用途において、1辺が1mを越えるような大型の液晶表示装置が作成されることがある。このような大型の液晶表示装置では、表示領域が大きくなるため、表示領域を照射する外部光の明るさが部分的に異なり易い。例えば、かかる液晶表示装置が室内に置かれると、室内の照明光の影響で表示領域の上部が下部に比べて明るい場合や、窓から入射した光の影響で表示領域の片側が反対側に比べて明るい場合などが生じ得る。この場合、表示領域を照射する外部光は、表示領域を部分的に加熱するので、表示領域全体における温度分布にばらつきが生じる。
上述のように、表示領域全体における温度分布にばらつきが生じると、発光ダイオードからなる照射部を用いている場合、照射部から生じる照明光の明るさにばらつきが生じる。また、液晶パネルの液晶層中に含まれている液晶分子は、温度によって応答特性が変化するため、表示領域の温度分布のばらつきは、液晶パネルの光透過性にも影響する。このように、表示領域を照射する外部光に起因する温度分布のばらつきは、表示領域に表示される画像に乱れを生じさせる。本発明は、かかる問題を鑑みてなされたものである。また、表示領域の温度分布のばらつきによる表示画像の乱れは、液晶表示装置だけではなく、その他の表示装置(例えば、有機ELディスプレイ、プラズマディスプレイなど)にも生じ得る。
本発明の表示装置は、表示パネルと、第1受光センサと、冷却装置と、冷却制御部とを備えている。第1受光センサは、表示パネルに照射された外部光を表示領域の複数の位置で受光する。冷却装置は、表示領域を分割した複数のエリア毎に冷却を行う。また、冷却制御部は、第1受光センサによって得られた受光情報に基づいて、エリア毎に冷却が行われるように、冷却装置を制御する。
この表示装置では、第1受光センサによって得られた受光情報に基づいて、エリア毎に冷却が行われるように、冷却装置を制御する。このため、外部光が照射されることによって温度が上昇した表示領域をエリア毎に冷却することができるので、外部光が照射されることによって表示領域に生じる温度分布のばらつきを防止する事ができる。また、この表示装置では、外部光が照射されていないエリアに冷却が行われないので、冷却装置の駆動用電力を節約するとともに、冷却装置の駆動音に起因した騒音を抑制することができる。
以下、本発明の一実施形態に係る表示装置として、液晶表示装置100を例示して説明する。なお、各図面は本発明及びその実施形態の理解を助けるために作成されている。このため、図面上の寸法は実際の実施品の寸法を反映しない。また、同一の実施形態を説明する図であっても各図は必ずしも整合しない。また、同一の作用を奏する部材部位には、適宜同一の符号を付して説明する。
(実施例1)
図1は、本発明の一実施形態に係る液晶表示装置100の縦断面図である。図2は、当該液晶表示装置100の構造を概略的に示すブロック図である。なお、図2では、説明の便宜上、液晶パネル10とバックライト20とを分離して表している。
図1は、本発明の一実施形態に係る液晶表示装置100の縦断面図である。図2は、当該液晶表示装置100の構造を概略的に示すブロック図である。なお、図2では、説明の便宜上、液晶パネル10とバックライト20とを分離して表している。
この液晶表示装置100は、図1に示すように、液晶パネル10とバックライト20とを備えている。液晶パネル10は、表示領域10aに複数の画素30が配置されている。バックライト20は、液晶パネル10の背面に対向して配置されており、当該液晶パネル10の背面に照明光を照射する照射部22を複数備えている。また、この液晶表示装置100は、第1受光センサ122とバックライト制御部240を備えている。第1受光センサ122は、図2に示すように、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光し、受光情報a1~d1を得る。バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリアA~D毎に照明光の明るさが調整されるように、複数の照射部22をそれぞれ制御する。
この液晶表示装置100では、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する第1受光センサによって得られた受光情報に基づいて、表示領域10aを分割した複数のエリアA~D毎に照明光の明るさが適当に調整される。これにより、液晶パネル10に照射された外部光の影響が緩和され、表示画像が見易くなる。
以下、この実施形態に係る液晶表示装置100について説明する。ここでは、まず、液晶パネル10とバックライト20の構造を順に説明し、その後、液晶表示装置100の制御を説明する。
≪液晶パネル10≫
液晶パネル10には、画像を表示する領域である表示領域10aが設けられている。液晶パネル10の表示領域10aには、複数の画素30が配置されている。この実施形態では、液晶パネル10は、全体として概ね矩形の形状を有しており、表示領域10aの形状も概ね矩形である。液晶パネル10は、液晶層13を挟む一対の透光性基板40、50(ここでは、ガラス基板)で構成されている。この実施形態では、一対の透光性基板40、50のうち、背面側(裏側、バックライト側)の基板40がアレイ基板40(TFT基板)であり、前面側(表側、表示側)の基板50がカラーフィルタ基板50(CF基板)である。
液晶パネル10には、画像を表示する領域である表示領域10aが設けられている。液晶パネル10の表示領域10aには、複数の画素30が配置されている。この実施形態では、液晶パネル10は、全体として概ね矩形の形状を有しており、表示領域10aの形状も概ね矩形である。液晶パネル10は、液晶層13を挟む一対の透光性基板40、50(ここでは、ガラス基板)で構成されている。この実施形態では、一対の透光性基板40、50のうち、背面側(裏側、バックライト側)の基板40がアレイ基板40(TFT基板)であり、前面側(表側、表示側)の基板50がカラーフィルタ基板50(CF基板)である。
図1に示すように、アレイ基板40とカラーフィルタ基板50は、互いに対向して配置されている。アレイ基板40とカラーフィルタ基板50の間には、矩形の表示領域10aの周囲(外周縁部)を周方向に囲むようにシール15が設けられている。アレイ基板40とカラーフィルタ基板50とシール15で囲まれた空間には液晶層13が形成されている。この液晶層13には液晶分子を含む液晶材料が封入されている。かかる液晶材料は、アレイ基板40とカラーフィルタ基板50の間に生じた電界によって配向方向が操作される。液晶パネル10は、液晶分子の配向方向に応じて光学特性が変化する。
図3は、液晶パネル10の断面を拡大した図である。図3に示すように、アレイ基板40とカラーフィルタ基板50の間には、スペーサ16が介在している。かかるスペーサ16によって、アレイ基板40とカラーフィルタ基板50との間は所定の間隔に維持されている。次に、アレイ基板40とカラーフィルタ基板50の詳しい構造を順に説明する。
アレイ基板40は、図3に示すように、ガラス基板41の表側(液晶層13側)に、画素電極42、バスライン43(bus line)、平坦化層44及び配向膜46、薄膜トランジスタ47(TFT:thin film transistor)(図4及び図5参照)などを備えている。画素電極42は、透明導電材料であるITO(indium tin oxide:酸化インジウムスズ)からなり、各画素30に形成されている。これらの画素電極42には、バスライン43及び薄膜トランジスタ47を介して、画像に応じた電圧が所定のタイミングで供給される。平坦化層44は、絶縁材料によって形成されており、画素電極42及びバスライン43を覆っている。平坦化層44の上にはポリイミド等からなる配向膜46が形成されている。なお、バスライン43は、図4に示すように、データ信号を薄膜トランジスタ47に送信している。また、図4及び図5に示すように、アレイ基板40には、データ信号線43だけでなく種々の信号線が配線されている。このアレイ基板40の信号線の配線構造及びその制御については後で述べる。
カラーフィルタ基板50は、図3に示すように、ガラス基板51の裏側(液晶層13側)にブラックマトリクス52、着色層53、平坦化層54、対向電極55及び配向膜56(水平配向膜)が形成されている。ブラックマトリクス52は、光が透過しない材料(例えば、Cr(クロム)等の金属)によって形成されており、各画素30を区画するように、着色層53の間に設けられている。着色層53は、色調を調整するフィルタである。この実施形態では、着色層53は、当該着色層53の色以外に対応する波長の光を吸収することによって、透過光の色調を調整する。この実施形態では、ガラス基板51には1つの画素30に対して、赤(R)、緑(G)、青(B)3色の着色層53が順に形成されている。カラーフィルタ基板50の平坦化層54は、図3に示すように、ブラックマトリクス52及び着色層53を覆うように形成されている。また、この平坦化層54を覆うように、ITO(indium tin oxide)からなる対向電極55が形成されている。さらに、対向電極55を覆うように配向膜56が形成されている。配向膜56は、アレイ基板40の配向膜46と対向している。両基板40、50の配向膜46、56によって、電圧を印加されていない状態の液晶分子の配向方向が決定される。この実施形態では、カラーフィルタ基板50の配向膜56と、アレイ基板40の配向膜46とは配向方向が90°異なっている。
図1及び図3に示すように、カラーフィルタ基板50(ガラス基板51)の表面側及びアレイ基板40(ガラス基板41)の裏面側には、それぞれ偏光板17、18が貼り付けられている。この液晶表示装置100がいわゆるノーマリホワイト型の液晶表示装置である場合は、2枚の偏光板17、18の偏光軸が互いに直交するように配置される。また、液晶表示装置100がいわゆるノーマリブラック型の液晶表示装置の場合は、2枚の偏光板17、18の偏光軸が並行に配置される。
また、液晶パネル10は、図1及び図2に示すように、表側(前面側)に装着されたベゼル60と、裏側(背面側)に装着されたフレーム63によって挟まれた状態で支持されている。図2に示すように、ベゼル60は、液晶パネル10の表示領域10aの外周に沿って設けられた額縁であり、表示領域10aに相当する部分が開口している。また、フレーム63も、液晶パネル10の表示領域10aの外周に沿って設けられた額縁であり、液晶パネル10の表示領域10aに相当する部分が開口している。
≪バックライト20≫
バックライト20は、液晶パネル10の背面に対向して配置されている。バックライト20は、筐体として、略矩形の箱状部材であるバックライトシャーシ24を備えている。バックライトシャーシ24には、表示領域10aと略同等の形状の開口部が設けられている。バックライト20は、当該開口部を液晶パネル10側に向けた状態で液晶パネル10の背面に対向して配置されている。
バックライト20は、液晶パネル10の背面に対向して配置されている。バックライト20は、筐体として、略矩形の箱状部材であるバックライトシャーシ24を備えている。バックライトシャーシ24には、表示領域10aと略同等の形状の開口部が設けられている。バックライト20は、当該開口部を液晶パネル10側に向けた状態で液晶パネル10の背面に対向して配置されている。
図6は、バックライト20を概略的に示す拡大平面図である。バックライト20は、図6に示すように、液晶パネル10の背面に光を照射する照射部22を複数備えている。この実施形態では、図1に示すように、バックライトシャーシ24の内側には反射板25が装着されている。照射部22は、かかる反射板25の液晶パネル10に対向する面25a(反射面)上に配置されている。照射部22は、図6に示すように、複数の点光源22aで形成されている。この実施形態に係る液晶表示装置100によれば、複数の点光源22aからなる照射部22をそれぞれ制御することによって、バックライト20から照射される照明光を部分的に調整することができる。また、この実施形態では、図6に示すように、照射部22が格子状に配置されている。なお、照射部22の配置は、格子状に限定されない。例えば、照射部22の位置が列毎にずれるような配置(千鳥格子状又はジグザグ状の配置)でもよい。
また、この実施形態では、点光源22aとして発光ダイオード(LED:Light Emitting Diode)が用いられている。また、この実施形態では、複数の発光ダイオード22aによって1つの照射部22が形成されている。ところで、バックライト20から生じる照明光は、白色光が望ましい場合がある。この実施形態では、R(赤),G(緑),B(青)3色の発光ダイオード22aで照射部22が形成されており、RGB3色の発光ダイオード22aから生じる光を混色することによって照明光を白色光にしている。なお、照明光を白色光にする方法は、上述の方法に限定されない。例えば、照射部22は、白色光を発する白色LEDから形成されていてもよい。ここで、白色LEDには、さらに、短波長LEDチップにRGB蛍光体を組み合わせて白色を得る方式や、青色LEDチップに黄色の蛍光体を組み合わせて白色を得る方式、或いはRGBの3色のLEDチップの混光として白色を得る方式、補色となる2色のLEDチップの混光として白色を得る方式等を用いることができる。
また、照明光の明るさは、照射部22の各発光ダイオード22aに投入される電力を制御することによって調整される。この実施形態では、照射部22に投入される電力が高くなると照明光が明るく(輝度が高く)なり、投入される電力が低くなると照明光が暗く(輝度が低く)なる。照射部22に投入する電力は、例えば、パルス幅変調方式、PWM方式(pulse width modulation)などによって制御されているとよい。
また、この実施形態では、液晶パネル10とバックライト20との間に複数枚の光学シート26が配置されている。光学シート26は、バックライトシャーシ24の表面と、液晶パネル10に装着されたフレーム63の裏面との間に挟まれており、バックライトシャーシ24の開口部を覆っている。光学シート26は、所要の機能を奏する複数のシート(例えば、拡散板、拡散シート、レンズシート、及び輝度上昇シート)を積層させることによって、構成されている。
以上、この実施形態に係る液晶表示装置100の構造を説明した。この液晶表示装置100は、制御部200を備えている。図4は、この液晶表示装置100の配線構造と制御部200とを模式的に示す図である。制御部200は、図4に示すように、信号線を介して、液晶パネル10とバックライト20とに接続されており、液晶表示装置100が所要の機能を奏するように液晶パネル10とバックライト20とを制御する。
≪制御部200≫
制御部200は、電子的な処理装置であり、MPUやCPUなどで構成された演算機能を有する演算手段と、不揮発性メモリーなどで構成された記憶手段とを備えている。制御部200は、予め記憶されたプログラムや、実装された電気、電子回路によって、液晶表示装置100(液晶パネル10、バックライト20)を制御する。(以下、制御部200について、予め記憶されたプログラムや、実装された電気、電子回路は、適宜、「プログラム等」という。)制御部200による液晶表示装置100の制御は、上述したプログラム等によって、適当に設定され、また改変される。
制御部200は、電子的な処理装置であり、MPUやCPUなどで構成された演算機能を有する演算手段と、不揮発性メモリーなどで構成された記憶手段とを備えている。制御部200は、予め記憶されたプログラムや、実装された電気、電子回路によって、液晶表示装置100(液晶パネル10、バックライト20)を制御する。(以下、制御部200について、予め記憶されたプログラムや、実装された電気、電子回路は、適宜、「プログラム等」という。)制御部200による液晶表示装置100の制御は、上述したプログラム等によって、適当に設定され、また改変される。
この実施形態では、制御部200は、図4に示すように、液晶パネル制御部220と、バックライト制御部240とを備えている。
液晶パネル制御部220は、表示領域10aに表示する画像を信号化した画像信号302に基づいて液晶パネル10を制御し、液晶パネル10の光透過性を調整する。詳しく説明すると、液晶パネル制御部220は、画像信号302に基づいて液晶パネル制御信号81a、82aを作成する。この液晶パネル制御信号81a、82aは、液晶パネル10に送られる。液晶パネル10では、液晶パネル制御信号81a、82aに基づいて、カラーフィルタ基板50とアレイ基板40に電圧が印加され、液晶層13中の液晶分子の配向方向が操作される。これによって、画素30毎(より詳しくは、RGBで規定されるサブ画素毎)に液晶パネル10の光透過率が調整される。
この実施形態では、液晶パネル10の表示領域10aに複数の画素30が格子状に並んで配置されている。図4及び図5に示すように、各画素30には、スイッチング素子として薄膜トランジスタ47が配置されている。この薄膜トランジスタ47は、アクティブマトリクス基板としてのアレイ基板40に設けられている。また、アレイ基板40には、格子状(マトリクス状)に信号線43が配線されている。
この実施形態では、図4に示すように、複数の走査信号線48(1)~(m)と複数のデータ信号線43(1)~(n)とが配線されている。()内の添え字は、走査信号線48、データ信号線43を区別するために付与している。走査信号線48、データ信号線43については、適宜に()内に添え字を付して説明する。走査信号線48(1)~(m)とデータ信号線43(1)~(n)とは、それぞれ各画素30の薄膜トランジスタ47に接続されている。なお、()内の添え字の意味は、後述する補助容量配線62についても同様である。走査信号線48は、図5に示すように、薄膜トランジスタ47のゲート電極47aに接続されている。データ信号線43は薄膜トランジスタ47のソース電極47bに接続されている。また、薄膜トランジスタ47のドレイン電極47cは、後述する補助容量CCSを構成する一方の電極42aに接続され、さらに、当該電極42aを通じて画素電極42に接続されている。
また、各画素30では、図3及び図5に示すように、アレイ基板40の画素電極42とカラーフィルタ基板50の対向電極55とが、液晶層13を挟んで対向しており、画素電極42と対向電極55は、液晶層13を操作するコンデンサCLCを構成している。
また、前述の補助容量CCSは、絶縁層を介して対向する一対の電極42a、61で構成されている。補助容量CCSの一方の電極42aは、上述したようにドレイン電極47cに接続されている。これに対して、補助容量CCSの他方の電極61は補助容量配線62に設けられている。補助容量CCSは、補助容量配線62から制御信号を受けて、画素30に印加された電圧(液晶層13を操作するコンデンサCLC)を維持する機能を奏する。
また、この実施形態では、走査信号線48(1)~(m)は、図4に示すように、所定の間隔をあけて並列に配線されている。すなわち、走査信号線48(1)~(m)は、それぞれ格子の一方向に向けて配設されている。さらに、格子状に配置された各画素30に、走査信号線48が接続されるように、走査信号線48(1)~(m)は格子の他の一方向に所定の間隔をあけて並列に配線されている。補助容量配線62(1)~(m)についても同様に、図6に示すように、格子の一方向に沿って配線されている。さらに、格子状に配置された各画素30の補助容量CCSの電極61が補助容量配線62に接続されるように、補助容量配線62(1)~(m)は格子の他の一方向において所定の間隔をあけて並列に配線されている(図5参照)。
走査信号線48(1)~(m)は、ゲートドライバ81に接続されており、データ信号線43(1)~(n)は、ソースドライバ82に接続されている。また、ゲートドライバ81とソースドライバ82は、それぞれ液晶パネル制御部220に接続されている。液晶パネル制御部220は、信号入力部201と、電源203とに接続されている。
信号入力部201には、表示領域10aに表示される画像を信号化した画像信号302が入力される。この実施形態では、画像信号302は、外部システム300から信号入力部201の放送受信部201aに入力される。信号入力部201は、画像信号302を液晶パネル制御部220に送る。液晶パネル制御部220は、画像信号302に基づいて液晶パネル制御信号81a、82aを作成する。また、この実施形態に係る液晶パネル制御部220は、タイミングコントローラ222を備えており、タイミングコントローラ222を通じて、液晶パネル制御信号81a、82aをゲートドライバ81、ソースドライバ82に送信する。このとき、タイミングコントローラ222は、液晶パネル制御信号81a、82aをゲートドライバ81とソースドライバ82に送信するタイミングを調整している。
電源203は、液晶表示装置100の各構成部(液晶パネル10、バックライト20など)に動作電源203aを供給する。また、電源203は、図4に示すように、動作電源203aの他に、カラーフィルタ基板50の対向電極55(図3参照)への共通電極電圧(Vcom)の供給も行っている。対向電極55に供給された共通電極電圧(Vcom)は、アレイ基板40及びカラーフィルタ基板50の間に挟まれた液晶層13を印加する電圧として用いられる。
ゲートドライバ81は、液晶パネル制御信号81aに基づいて走査信号を作成し、走査信号線48(1)~(m)のそれぞれに走査信号を送る。一方、ソースドライバ82は、液晶パネル制御信号82aに基づいてデータ信号を作成し、データ信号線43(1)~(n)のそれぞれにデータ信号を送る。画素30では、走査信号線48(1)~(m)に入力される走査信号に伴って薄膜トランジスタ47がONになる。すなわち、格子の一方向に並べられた一列の画素30毎に薄膜トランジスタ47がONになる。そして、薄膜トランジスタ47がONになるタイミングで、データ信号がデータ信号線43(1)~(n)に送られる。このようにして、液晶パネル制御信号82aに基づいた画像情報が、格子の一方向に並べられた画素30毎に書き込まれていく。また、画素30に画像情報が書き込まれるタイミングに合わせて、補助容量配線62にもデータ信号が送られる。これにより、補助容量CCSが作用し、薄膜トランジスタ47がOFFになった後も、液晶層13(CLC)に印加された電圧が維持される。このようにして、液晶パネル10は、画像信号302に応じて、液晶層13への印加電圧を調整して、画素30単位で光透過性を調整することができる。
≪バックライト20の制御≫
次に、バックライト制御部240を説明する。バックライト制御部240は、照明光の明るさが部分的に調整されるように、複数の照射部22をそれぞれ制御する。この実施形態では、バックライト制御部240は、画像信号302に基づいてバックライト制御信号a2~d2を作成する。このバックライト制御信号a2~d2に基づいて制御された電力が、バックライト20の照射部22に投入される。これによって、バックライト20から照射される照明光が調整される。制御部200は、このようにして、液晶パネル10とバックライト20とを制御することによって、表示領域10aに所望の画像を表示する。なお、この実施形態では、バックライト制御部240は、照射部22を形成する各発光ダイオード(点光源)22aに投入する電力を制御することによって、バックライト20から照射される照明光の明るさや色調を調整することができる。
次に、バックライト制御部240を説明する。バックライト制御部240は、照明光の明るさが部分的に調整されるように、複数の照射部22をそれぞれ制御する。この実施形態では、バックライト制御部240は、画像信号302に基づいてバックライト制御信号a2~d2を作成する。このバックライト制御信号a2~d2に基づいて制御された電力が、バックライト20の照射部22に投入される。これによって、バックライト20から照射される照明光が調整される。制御部200は、このようにして、液晶パネル10とバックライト20とを制御することによって、表示領域10aに所望の画像を表示する。なお、この実施形態では、バックライト制御部240は、照射部22を形成する各発光ダイオード(点光源)22aに投入する電力を制御することによって、バックライト20から照射される照明光の明るさや色調を調整することができる。
また、この実施形態では、バックライト制御部240には、液晶パネル制御部220から液晶パネル制御信号240aが入力される。バックライト制御部240は、液晶パネル制御信号240aに基づいて、液晶パネル10に表示される画像の輝度分布に応じて、バックライト20から液晶パネル10の背面に照射される照明光の明るさや色調が部分的に調整されるように、バックライト制御信号a2~d2を作成する。また、この実施形態では、液晶表示装置100は、各発光ダイオード22aに投入する電力を調整する電力投入部242に接続されている。電力投入部242は、バックライト制御部240によって生成されたバックライト制御信号a2~d2に基づいて、各発光ダイオード22a(照射部22)に所定の電力を投入する。これにより、液晶パネル10に表示される画像の輝度分布に応じて、バックライト20から照射される照明光の明るさや色調が、部分的に調整されている。
以上、この実施形態における液晶表示装置100の基本的な構成及びその制御を説明した。この液晶表示装置100は、図2に示すように、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光し、受光情報a1~d1を得る第1受光センサ122を備えている。バックライト制御部240は、当該第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリアA~D毎に照明光の明るさを調整することができる。以下、かかる第1受光センサ122の構成を説明し、その後、バックライト制御部240による制御を説明する。
≪第1受光センサ122≫
第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する。この実施形態では、第1受光センサ122は、図2に示すように、液晶パネル10の表示領域10aに分散して配置されている。このため、第1受光センサ122は、表示領域10aにおける様々な部位において、表示領域10aを照射する外部光の受光情報を得ることができる。
第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する。この実施形態では、第1受光センサ122は、図2に示すように、液晶パネル10の表示領域10aに分散して配置されている。このため、第1受光センサ122は、表示領域10aにおける様々な部位において、表示領域10aを照射する外部光の受光情報を得ることができる。
この実施形態では、第1受光センサ122は、図3に示すように、液晶パネル10の平面視において複数の画素30のそれぞれが形成された領域に配置されている。このため、表示領域10aを照射する外部光の受光情報a1~d1を画素30単位で得ることができる。なお、この実施形態では、各画素30に、第1受光センサ122が設けられているが、かかる形態に限定されない。例えば、複数の画素からなる1つの画素群(8画素×8画素の画素群、10画素×10画素の画素群)毎に第1受光センサ122を設けてもよい。この場合、表示領域10aを照射する外部光の受光情報a1~d1を画素群毎に得ることができる。この場合、画素群は任意に設定することができる。
また、この実施形態では、液晶パネル10の各画素30は、R(赤)・G(緑)・B(青)のサブ画素で構成されている。第1受光センサ122は、R(赤)・G(緑)・B(青)のうち1つのサブ画素に設けられている。この実施形態では、第1受光センサ122は、G(緑)のサブ画素に設けられている。
第1受光センサ122は、受光した光に応じて電気的な情報を生じさせるセンサを用いることができる。例えば、第1受光センサ122には、受光部122aで受光した外部光によって光起電力を生じさせるものを用いることができる。このような第1受光センサ122としては、例えば、フォトダイオード(photodiode)や、フォトトランジスタ(phototransistor)などを用いることができる。また、第1受光センサ122は、受光する光の強度に応じて電気抵抗が変化するフォトレジスタ(photoresistor)を用いることもできる。また、「受光情報」が具体的にどのような情報かは、センサの種類や回路構成等に応じて異なる。この実施形態では、第1受光センサ122としてフォトダイオード(photodiode)が用いられている。第1受光センサ122は、外部光を受光し得るように、図3に示すように、液晶パネル10の前方に受光部122aを向けて配置するとよい。
この実施形態では、第1受光センサ122は、図4に示すように、信号線を介して、バックライト制御部240に接続されている。そして、第1受光センサ122で生じた光起電力が「受光情報a1~d1」としてバックライト制御部240に送られる。
≪バックライト制御部240≫
バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリア毎に照明光の明るさを調整する。以下、バックライト制御部240のかかる制御を説明する。図7は、バックライト制御部240が照射部22を制御する際のフローチャートを表している。ここで、第1受光センサ122の受光情報a1~d1に基づいて照射部22が制御されるモードを「制御モード」という。これに対して、当該制御モードが実行されていないモードを「非制御モード」という。この実施形態では、所定の操作によって、当該制御モードと非制御モードとが切り替えられる。
バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリア毎に照明光の明るさを調整する。以下、バックライト制御部240のかかる制御を説明する。図7は、バックライト制御部240が照射部22を制御する際のフローチャートを表している。ここで、第1受光センサ122の受光情報a1~d1に基づいて照射部22が制御されるモードを「制御モード」という。これに対して、当該制御モードが実行されていないモードを「非制御モード」という。この実施形態では、所定の操作によって、当該制御モードと非制御モードとが切り替えられる。
バックライト制御部240は、例えば、図2及び図7に示すように、所定の操作によって、制御モードがONにされた場合に、第1受光センサ122の受光情報a1~d1に基づく照射部22の制御が開始される(S1)。かかる制御モードでは、バックライト制御部240は、まず、第1受光センサ122から受光情報a1~d1を取得する(S2)。次に、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数の各エリアA~Dに対応したバックライト制御信号a2~d2を作成する(S3)。そして、バックライト制御部240で作成されたバックライト制御信号a2~d2に基づいて、照射部22(各発光ダイオード22a)に投入する電力をエリアA~D毎に制御する(S4)。
このように、この液晶表示装置100では、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数の照射部22がそれぞれ制御される。この際、この液晶表示装置100では、第1受光センサ122によって、表示領域10aを照射する外部光の輝度分布に応じた受光情報a1~d1が得られる。そして、当該受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリアA~D毎にバックライト20から照射される照明光の明るさや色調が部分的に調整される。このように、バックライト20から生じる照明光の明るさを部分的に調整することによって、表示領域10aを照射する外部光の影響を緩和して、見やすい画像を表示することができる。
以下、具体例を説明する。
例えば、室内の照明光など、外部光の影響によって、液晶パネル10の表示領域10aの上部が表示領域10aの下部よりも明るくなる場合がある。この場合、この実施形態では、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aの上部に設定されたエリアC、Dに照射される照明光を明るくする。これによって、液晶表示装置100は、表示領域10aの上部と下部とで表示画像の見かけの輝度分布(視聴者から実際に観察される表示画像の輝度分布)を適切に補正することができる。
また、表示領域10aの右側に比べて左側の方が、表示領域10aを照射する外部光の明るさが明るくなることもある。この場合、バックライト制御部240は、受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aの左側に設定されたエリアA、Dに照射される照明光を明るくする。これによって、液晶表示装置100は、表示領域10aの右側と左側とで生じた見かけの輝度分布を適切に補正することができる。
また、この液晶表示装置100では、第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22に投入される電力が制御されている。この場合、表示領域10aを照射する外部光の強度が弱くなると、必要以上に照明光が明るくならないように照射部22に投入される電力を減少させる。これによって、この液晶表示装置100は、照射部22の点灯に使用する電力の総量を減らし、駆動用電力を節約することができる。
ところで、図8に示すように、一般的に、人間の可視光線は、360nm~830nm程度である。これに対して、シリコン製のフォトダイオードを第1受光センサ122に用いた場合、かかる可視光線の範囲を超える波長の光(例えば、190nm~1100nmの範囲の波長の光)を受光することができる。このため、第1受光センサ122は、人間が感知できない波長の光を受光した場合でも受光情報を取得する。かかる受光情報に基づいて照射部22が制御されると、調整された照明光の明るさが視聴者の見やすい明るさからずれる可能性がある。
このため、第1受光センサ122は、液晶パネル10の平面視において複数色の着色層53のうち一の着色層が形成された領域に配置されているとよい。例えば、第1受光センサ122は、液晶パネル10のカラーフィルタ基板50を通して外部光を受光するように配置されているとよい。これにより、第1受光センサ122は、一の着色層53を透過した外部光に起因する受光情報a1~d1を出力する。バックライト制御部240は、かかる第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22をそれぞれ制御する。このように着色層53を通して外部光を受光することによって、第1受光センサ122は人間の可視領域内の光を受光することができる。これによって、バックライト制御部240によって、外部光のうち、人間の可視領域内の光の影響を勘案して視聴者の見やすい表示画像を映すことができる。
また、複数色の着色層53がRGB3色の着色層53から構成されている場合、第1受光センサは、緑色の着色層53(G)が形成された領域に配置されているとよい。緑色の波長の光(495nm~570nm)は、人間の視覚特性において最も見やすい波長の光である。このため、緑色の着色層53(G)を透過した外部光の受光情報に基づいて照射部22を制御すると、人間の視覚特性に応じて照明光の明るさを調整することができる。
また、この実施形態では、照射部22は、複数色(RGB3色)の点光源(発光ダイオード)22aから構成されている。また、この実施形態では、バックライト制御部240は、複数色の点光源22aをそれぞれ制御する。この場合、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数色の点光源22aをそれぞれ制御することによって、照射部22から照射される照明光の色調を調整することができる。例えば、液晶パネル10のカラーフィルタ基板50のRGBの各着色層を通して外部光を受光するように第1受光センサ122を配置することによって、第1受光センサ122の受光情報に基づいて外部光の色調を検出することができる。この場合、バックライト制御部240は、第1受光センサ122で検出された外部光の色調に応じて、バックライトの照明光を適当な色調に調整することができる。
また、この実施形態では、第1受光センサ122によって得られた受光情報a1~d1に基づいて、液晶パネル制御部220が液晶層13に印加する電圧を画素30毎に制御している。具体的には、液晶パネル制御部220は、第1受光センサ122によって得られた受光情報a1~d1と、画像信号302とに基づいて液晶パネル制御信号81a、82aを作成し、ゲートドライバ81、ソースドライバ82から各画素30に送る。ゲートドライバ81、ソースドライバ82は、この液晶パネル制御信号81a、82aに基づいて制御信号(走査信号、データ信号)を作成し、液晶層13に印加される電圧を画素30毎に制御する。これによって、液晶パネル制御部220は、第1受光センサ122によって得られた受光情報a1~d1と、画像信号302とに基づいて、液晶層13へ印加する電圧を制御し、画素30単位で光透過性を調整することができる。これによって、液晶表示装置100は、受光情報a1~d1に基づいて表示画像のコントラストをきめ細かく調整することができる。
以上、本発明の一実施形態に係る液晶表示装置100を説明した。なお、この液晶表示装置100は、種々の変更が可能である。以下、この実施形態に係る液晶表示装置100の改変例について説明する。
≪第1受光センサ122の改変例≫
上述した実施形態では、第1受光センサ122は、複数の画素からなる1つの画素群毎に第1受光センサ122が配置されていた。しかし、第1受光センサ122の配置位置は、これに限定されない。第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光することができるように配置されていればよい。以下、第1受光センサ122の配置位置を例示する。
上述した実施形態では、第1受光センサ122は、複数の画素からなる1つの画素群毎に第1受光センサ122が配置されていた。しかし、第1受光センサ122の配置位置は、これに限定されない。第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光することができるように配置されていればよい。以下、第1受光センサ122の配置位置を例示する。
第1受光センサ122は、例えば、表示領域10aを横断又は縦断するように設定された線に沿って分散して配置してもよい。これによって、表示領域10aを横断又は縦断するように設定された線に沿って、表示領域10aに照射された外部光の受光情報を取得することができる。この場合、例えば、表示領域10aを横断又は縦断するように設定された線に沿って、外部光の明るさを検知できる。この場合、複数の画素からなる1つの画素群毎に第1受光センサ122を配置する場合に比べて、第1受光センサ122を配置する数を減らすことができる。また、第1受光センサ122を配置する数を減らすことによって、外部光の受光情報を取得するための回路や配線を簡素化させることができる。
例えば、表示領域10aが方形形状である場合、図9及び図10に示すように、第1受光センサ122は、表示領域10aの四辺のうち少なくとも対向した二辺の中間点を結ぶ線に沿って表示領域10aに配置してもよい。この場合、第1受光センサ122は、当該中間点を結ぶ線に沿って、表示領域10aを照射する外部光の受光情報a1~d1を得ることができる。また、この場合、液晶パネル10の平面視において複数の画素30のそれぞれが配置された領域に第1受光センサ122を配置した場合に比べて、第1受光センサ122の配置数を少なくすることができる。これによって、外部光の受光情報を取得するための回路や配線を簡素化させることができ、製造コストを低く抑えることができる。また、図9に示すように、液晶表示装置100が矩形の表示領域10aを有している場合、表示領域10aの短手方向における二辺の中間点を結ぶ線に沿って第1受光センサ122を配置してもよい。この場合、矩形の表示領域10aの長手方向における外部光の受光情報a1~d1を得ることができる。このため、表示領域10a全体を照射する外部光の輝度分布を大まかに反映した受光情報a1~d1を得ることができる。また、表示領域10aの短手方向における外部光の受光情報a1~d1を正確に取得したい場合には、図10に示すように、表示領域10aの短手方向における二辺の中間点を結ぶ線に沿って第1受光センサ122を配置するとともに、表示領域10aの長手方向における二辺の中間点を結ぶ線に沿って第1受光センサ122を配置してもよい。
また、表示領域10aが方形形状である場合、図11及び図12に示すように、表示領域10aの周縁部において、表示領域10aの四辺のうち少なくとも対向した二辺に沿って、受光センサ122を配置してもよい。この場合も、第1受光センサ122の配置数を少なくすることによって、製造コストの削減に貢献するとともに、画素30の開口率の低下による表示画像の輝度低下を抑制することができる。
上述したように、表示領域10aに第1受光センサ122を配置すると、画素30の開口率が低下して、表示画像の輝度が低下する。特に、表示領域10aの中心部に第1受光センサ122を配置し、表示領域10aの中心部で表示画像の輝度が低下すると、かかる表示画像の輝度低下がユーザに認知され易い。これに対して、この液晶表示装置100によれば、表示領域10aの周縁部に第1受光センサ122が配置されているので、表示領域10aの中心部に第1受光センサ122を配置した場合と比べて、表示画像の輝度低下がユーザに認知されにくくなる。
なお、第1受光センサ122は、液晶パネル10の平面視において、他の位置に配置することができる。例えば、図13に示すように、表示領域10aが方形形状であった場合、表示領域10aの少なくとも一方の対角線に沿って第1受光センサ122が配置されていてもよい。また、第1受光センサ122は、図14に示すように、表示領域10aの周縁部において、各辺の中心部付近に配置してもよい。また、第1受光センサ122は、図15に示すように、表示領域10aの周縁部の四隅に集合するように配置してもよい。
また、上述の実施形態では、表示領域10aには、A、B、C、Dの四つに分割されたエリアが設定されている。しかし、表示領域10aの分割数は、4つに限定されず、用途に合わせて適宜変更することができる。例えば、図16に示すように、第1受光センサ122が配置された位置に対応させて、表示領域10aを分割した複数のエリアA~Zを設定してもよい。この場合、各エリアA~Z(各第1受光センサ122)の位置に対応させて、照射部22を配置させ、照射部22をそれぞれ制御するとよい。この場合、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~z1に基づいて、照射部22毎に設定されたエリアA~Z毎に照射部22をそれぞれ制御することができる。
また、画素30には、バックライト20から液晶パネル10の背面に照射される照明光と表示領域10aを照射する外部光とを透過させる開口部が設けられている。この場合、ブラックマトリクス52は、液晶パネル10の平面視において隣り合った開口部の間の領域に沿って形成されており、照明光及び外部光をそれぞれ遮断している。このとき、第1受光センサ122は、液晶パネル10の平面視におけるブラックマトリクス52が形成された領域において、ブラックマトリクス52よりも液晶パネル10の前面側に配置されているとよい。この場合、画素30の開口部を覆わずに、第1受光センサ122を画素30が形成された領域内に配置することができる。これによって、画素30の開口率低下を抑制することができる。
液晶パネル10の平面視におけるブラックマトリクス52が形成された領域に第1受光センサ122が配置されている場合の具体例を以下に示す。
例えば、第1受光センサ122は、図17に示すように、バックライト20側の面をブラックマトリクス52によって覆われるように配置されているとよい。これによって、バックライト20から照射される照明光は、第1受光センサ122に受光される前にブラックマトリクス52によって遮光されるので、照明光が排除された受光情報a1~d1を第1受光センサ122によって得ることができる。
また、図18に示すように、第1受光センサ122は、ブラックマトリクス52の中に配置されていてもよい。
例えば、第1受光センサ122は、図17に示すように、バックライト20側の面をブラックマトリクス52によって覆われるように配置されているとよい。これによって、バックライト20から照射される照明光は、第1受光センサ122に受光される前にブラックマトリクス52によって遮光されるので、照明光が排除された受光情報a1~d1を第1受光センサ122によって得ることができる。
また、図18に示すように、第1受光センサ122は、ブラックマトリクス52の中に配置されていてもよい。
また、第1受光センサ122は、液晶パネル10の平面視において薄膜トランジスタ47及び/又は信号線43が形成された領域に配置されていてもよい。薄膜トランジスタ47や信号線43は光透過性の部材ではないので、バックライト20からの照明光は、薄膜トランジスタ47や信号線43によって遮光される。薄膜トランジスタ47及び/又は信号線43が形成された領域に配置された第1受光センサ122は、照明光が元々遮光されている領域に配置されているので、画素30の開口率を低下させない。これによって、第1受光センサ122が配置されることによって、表示画像の輝度が低下するのを防止できる。
また、第1受光センサ122は、液晶パネル10の内部に配置されていなくてもよい。例えば、図19に示すように、第1受光センサ122は、液晶パネル10の前面に取り付けられた偏光板17に配置してもよい。この場合であっても、第1受光センサ122は、液晶パネル10に照射された外部光を受光することができる。また、偏光板17に第1受光センサ122を配置する場合、液晶パネル10の平面視におけるブラックマトリクス52が形成された領域に第1受光センサ122を配置してもよい。ブラックマトリクス52が形成された領域は元々遮光されている。このため、ブラックマトリクス52が形成された領域に第1受光センサ122を配置することによって、画素30の開口率を低下させずに第1受光センサ122を配置することができる。
また、第1受光センサ122は、液晶パネル10以外の部材にも配置してもよい。
例えば、図21に示すように、第1受光センサ122は、バックライト20に配置されていてもよい。この場合、液晶パネル10の画素30に形成された開口部を覆わずに、第1受光センサ122を表示領域10aに配置できるので、画素30の開口率低下を防止できる。
例えば、図21に示すように、第1受光センサ122は、バックライト20に配置されていてもよい。この場合、液晶パネル10の画素30に形成された開口部を覆わずに、第1受光センサ122を表示領域10aに配置できるので、画素30の開口率低下を防止できる。
また、第1受光センサ122は、液晶パネル10とバックライト20との間に配置されていてもよい。この場合、第1受光センサ122が液晶パネル10やバックライト20に直接設けられていないので、液晶パネル10やバックライト20の構造を変えずに、第1受光センサ122を設けることができる。液晶パネル10とバックライト20との間に第1受光センサ122を配置する場合の具体例として、第1受光センサ122は、図22に示すように、液晶パネル10とバックライト20との間に挟み込まれた受光センサ支持部材120に配置されているとよい。この受光センサ支持部材120は、光透過性を有した透明基板が好ましく、液晶パネル10とバックライト20との間に挟み込まれている光学シート26を利用することもできる。このような受光センサ支持部材120を用いると、液晶パネル10やバックライト20では配置できなかった部位に第1受光センサ122を配置させることができる。このため、第1受光センサのレイアウトの自由度を向上させることができる。
また、このような受光センサ支持部材120を用いて、第1受光センサ122を配置する場合、第1受光センサ122の配置パターンが異なった複数の受光センサ支持部材120を用意することができる。例えば、液晶パネル10内部に第1受光センサ122を配置する場合、第1受光センサ122を配置するために、液晶パネル10の他の内部構造を変更する必要が生じる場合がある。これに対して、第1受光センサ122の配置パターンが異なった複数の受光センサ支持部材120を用意すると、受光センサ支持部材120を取り替えるだけで、第1受光センサ122の配置位置を変更することができる。このため、液晶表示装置100の用途(テレビ放送受信機用、インフォメーションディスプレイ用など)に応じて、容易に第1受光センサ122の位置を変更することができる。
≪バックライト20の改変例≫
また、バックライト20の照射部22は、液晶パネル10の背面に照明光を照射する照射部22を複数備えていればよい。以下、バックライト20の照射部22の改変例を例示する。
また、バックライト20の照射部22は、液晶パネル10の背面に照明光を照射する照射部22を複数備えていればよい。以下、バックライト20の照射部22の改変例を例示する。
例えば、照射部22は、図23に示すように、複数の線状光源22b(例えば、冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)で形成されていてもよい。この実施形態では、バックライトシャーシ24内において、各々の冷陰極管22bが並列に配置されている。また、第1受光センサ122は、液晶パネル10の平面視において、各々の線状光源22bに沿って配置されているとよい。これによって、線状光源22bのそれぞれが配置された位置に対応して、表示領域10aを照射する外部光の受光情報a1~d1を得ることができる。このため、バックライト制御部240は、線状光源22bの配置位置に対応して得られた受光情報a1~d1に基づいて照射部22(線状光源22b)をそれぞれ制御し、バックライト20から照射される照明光の明るさをエリア毎に調整する。このように、複数の線状光源22bで照射部22が形成されている場合であっても、表示領域10aを照射する外部光の受光情報a1~d1に基づいて照明光の明るさをエリア毎に調整することができる。
≪バックライト制御部240の改変例≫
また、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22をそれぞれ制御すればよい。バックライト制御部240の制御内容は適宜変更することができる。以下、バックライト制御部240による照射部22の制御の改変例を例示する。
また、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22をそれぞれ制御すればよい。バックライト制御部240の制御内容は適宜変更することができる。以下、バックライト制御部240による照射部22の制御の改変例を例示する。
バックライト制御部240は、複数のエリアA~Dの境界部分の明るさが段階的に変化するように、複数の照射部22をそれぞれ制御してもよい。例えば、図24に示すような構成の液晶表示装置100の場合、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加え、各々の照射部22が配置されているエリアA~Dに基づいてバックライト制御信号a2~d2を作成する。具体的には、バックライト制御部240は、各エリアA~Dの境界付近に位置する照射部22同士で段階的に明るさが変化するようにバックライト制御信号a2~d2を補正する。このようにして作成されたバックライト制御信号a2~d2に基づいて照射部22(発光ダイオード22a)に投入される電力が制御されると、各エリアA~Dの境界部分の明るさが段階的に変化する。これによって、照射部22から生じる照明光の明るさが各エリアA~Dの境界部分で顕著に変化する事象を防止できる。
また、バックライト制御部240は、第1受光センサ122のうち予め定められた基準となる第1受光センサ122によって得られた受光情報a1~d1と、その他の第1受光センサ122によって得られた受光情報a1~d1との差分を求め、当該受光情報a1~d1の差分に基づいて照射部22を制御するとよい。この場合、基準となる第1受光センサ122は、予めバックライト制御部240に設定しておくとよい。また、基準となる第1受光センサ122によって得られた受光情報a1~d1と、その他の第1受光センサ122によって得られた受光情報a1~d1との差分に対して照射部22をどのように制御するかについては、バックライト制御部240に予め設定してもよい。この場合、バックライト制御部240は、各エリアA~Dを照射する外部光の輝度分布を正確に反映して、照射部22を制御することができる。
また、バックライト制御部240は、予め定められた複数のタイミングにおいて、同一の第1受光センサ122によって得られた受光情報a1~d1の差分を求め、当該受光情報a1~d1の差分に基づいて照射部22をそれぞれ制御してもよい。この場合、当該差分に対する照射部22の適切な明るさや、第1受光センサ122によって得られた受光情報a1~d1を採用するタイミングなどは、予めバックライト制御部240に設定しておくとよい。これによって、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1の経時的な変化量を正確に反映して、照射部22を制御することができる。
また、液晶表示装置の前を人が通行するなどによって、表示領域10aを照射する外部光が一時的に遮られると、第1受光センサ122によって得られる受光情報a1~d1が一時的に大きく変化する。このときに得られた受光情報a1~d1に基づいて照射部22を制御すると、照明光の明るさが不必要に調整される。この不必要な照明光の調整が行われると、表示画像がちらつくなどの不良が生じる可能性がある。
かかる不良を防ぐために、バックライト制御部240は、予め定められた時間に継続して、一定の受光情報a1~d1が第1受光センサ122によって得られた場合に、当該一定の受光情報a1~d1に基づいて照射部22をそれぞれ制御するとよい。このように構成することによって、外部光の明るさが一時的に大きく変化した場合であっても、照明光の明るさが不必要に調整されることを防止し、表示画像のちらつきを抑制することができる。
かかるバックライト制御部240による制御について、以下で詳しく説明する。図25は、バックライト制御部240による制御を模式的に示したフローチャートである。
バックライト制御部240は、図25に示すように、予め定められた異なったタイミングT(n)、T(m)における受光情報X(n)、X(m)を取得する(S1)。ここで、受光情報X(n)、X(m)を取得するタイミングT(n)、T(m)は、液晶表示装置の前を人が通行する場合など、一時的な外部光の変化が除外されるように定めるとよい。バックライト制御部240は、第1受光センサ122から得られた受光情報X(n)、X(m)が一定であるかを調べるために、「第1受光センサ122によって得られた受光情報の変化量(X(n)-X(m))が予め定められた値(P)の範囲内であるか(X(n)-X(m)<P)」を判定する(S2)。この判定処理(S2)では、第1受光センサ122が一時的に影で覆われた場合に生じる受光情報の急激な変化が生じているかを判定している。したがって、判定処理S2の「予め定められた値(P)」は、かかる受光情報X(n)、X(m)の急激な変化を判定するのに適した値に設定するとよい。かかる判定処理S2において、受光情報の変化量(X(n)-X(m))が予め定められた値(P)よりも大きくなった場合(NO)、制御部200は(S1)の処理を繰り返す。一方、受光情報の変化量(X(n)-X(m))が予め定められた値(P)の範囲内であった場合(YES)、バックライト制御部240が次の判定処理(S3)を行う。
次の判定処理(S3)では、「S1で取得した受光情報X(n)が、予め定められた所定時間T(L)中に継続して得られたか(T(n)-T(m)<T(L))」を判定する。この判定処理(S3)は、受光情報X(n)、X(m)の急激な変化が一時的なものである場合を排除することを目的にしている。したがって、判定処理S3の「予め定められた所定時間T(L)」は、かかる目的に適った時間を設定するとよい。S1において得られた受光情報X(n)が、予め定められた所定時間T(L)に継続して得られない場合(NO)、制御部200はS1の処理を繰り返す。一方、予め定められた所定時間T(L)に、受光情報X(n)が継続して得られた場合(YES)には、バックライト制御部240は、ステップS4、ステップS5の処理を順に行う。ステップS4の処理では、S1で得られた受光情報X(n)に基づいてバックライト制御信号a2~d2が作成される。そして、ステップS5の処理では、ステップS4で作成されたバックライト制御信号a2~d2に基づいて照射部22がエリアA~D毎に制御される。
また、バックライト制御部240には、第1受光センサ122によって得られた受光情報a1~d1に対して閾値が予め定められているとよい。そして、バックライト制御部240は、当該閾値と第1受光センサ122によって得られた受光情報a1~d1とを対比する。その結果、バックライト制御部240は、受光情報a1~d1が当該閾値を上回っているエリアA~Dに対して、他の部分よりも明るい照明光が照射されるように複数の照射部22を制御するとよい。この液晶表示装置100によれば、閾値を上回るような明るい外部光が照射されているエリアに対して、他の部分よりも明るい照明光を照射することができる。これによって、より適切に表示画像の見かけの輝度を補正することができる。
かかるバックライト制御部240による制御について、以下で詳しく説明する。図26は、バックライト制御部240による制御を模式的に示したフローチャートである。
バックライト制御部240は、図26に示すように、第1受光センサ122によって得られた受光情報a1~d1を取得する(S1)。このとき、バックライト制御部240には、受光情報a1~d1に対して、一定の閾値P1が予め設定されている。バックライト制御部240は、それぞれの受光情報a1~d1が一定の閾値P1よりも大きいか(a1~d1>P1)を判定する(S2)。バックライト制御部240は、当該閾値P1よりも小さな受光情報が得られたエリアに対して、当該エリアに照射される照明光の明るさを弱めるようなバックライト制御信号を作成する(S3)。また、バックライト制御部240は、当該閾値P1よりも大きな受光情報が得られたエリアに対して、当該エリアに照射される照明光の明るさを強めるようなバックライト制御信号を作成する(S4)。そして、電力投入部206は、それぞれのバックライト制御信号a2~d2に基づいて、各発光ダイオード22a(照射部22)に投入する電力をエリアA~D毎に制御する(S5)。
また、この液晶表示装置100は、エリアアクティブ処理を利用してもよい。以下、エリアアクティブ処理を利用した液晶表示装置100の制御方法について、図27及び図28を参照しながら説明する。図27は、エリアアクティブ処理を利用した液晶表示装置100のブロック図であり、図28は、エリアアクティブ処理を利用した液晶表示装置100の制御を模式的に示した図である。なお、図27中では、画像信号302、バックライト制御信号402、液晶パネル制御信号403を視覚的に表している。
この液晶表示装置100は、画像信号302が入力される信号入力部201を備えている。ここで、画像信号302とは、図27に示すように、表示領域10aに表示させる画像を信号化したものである。この画像信号302は、信号入力部201から液晶パネル制御部220に送られる。液晶パネル制御部220は、画像信号302に基づいて、液晶パネル10を制御し、表示領域10aの光透過性を調整する。
また、信号入力部201は、液晶パネル制御部220に加えて、バックライト制御部240にも画像信号302を送る。バックライト制御部240には、第1受光センサ122によって得られた受光情報a1~d1に加え、画像信号302が送られる(図28中のS1、S2)。バックライト制御部240は、この受光情報a1~d1と、画像信号302とに基づいて、照射部22をそれぞれ制御するバックライト制御信号a2~d2を作成する(S3)。作成されたバックライト制御信号a2~d2は、電力投入部206の他に、液晶パネル制御部220に送られる。液晶パネル制御部220は、画像信号302に加え、バックライト制御信号a2~d2に基づいて、表示領域10aの光透過性をエリアA~D毎に調整する。具体的には、液晶パネル制御部220は、バックライト制御信号a2~d2と、画像信号302とに基づいて、液晶パネル制御信号81a、82aを作成する(S4)。そして、バックライト制御部240は、バックライト制御信号a2~d2に基づいて、照射部22を制御し(S5)、液晶パネル10の背面に照射する照明光(図27中のL1)の明るさをエリアA~D毎に調整する。また、当該照明光の明るさを反映した液晶パネル制御信号81a、82aに基づいて液晶パネル10を制御し(S6)、液晶パネル10の光透過性を調整する。
この液晶表示装置100によれば、画像信号302に加え、バックライト制御信号a2~d2に基づいて、表示領域10aの光透過性をエリアA~D毎に調整する。これにより、表示領域10aを照射する外部光を正確に反映して表示領域10aの光透過性を調整することができる。このため、外部光によるコントラストの低下を所定エリア毎に補償することができるとともに、表示領域10aに表示される画像のダイナミックレンジを拡大させ、高コントラストで広視野角、広色再現性を有した画像を表示することができる。
また、表示領域10aを照射する外部光の一部は、液晶パネル10の表面で反射する。このとき、周囲に存在する物体の像が表示領域10aに写り込み、表示画像が見づらくなる場合がある。かかる現象を防ぐために、液晶パネル10の表面には、屈折率の異なる材料で構成された薄膜を積層するAR(Anti-Reflection)処理や、LR(Low-Reflection)処理等の反射防止処理が施される場合がある。しかし、これらの反射防止処理を液晶パネル10の表面に施すと、液晶パネル10の表面に積層された薄膜の性質によって、特定の波長の光のみが反射されやすくなる。この場合、表示画像に特定の波長の光が混ざり込み、表示画像が着色されてしまうことがある。具体的には、図29に示すように、AR処理やLR処理を施した液晶パネル10では、青色成分(波長480nm以下)や、赤色成分(波長610nm以上)の反射率が、緑色成分(波長480~610nm)よりも高くなる。このため、AR処理やLR処理を施した液晶パネル10の表示画像は、青色や赤色に着色される可能性がある。
これに対して、バックライト制御部240には、表示領域10aの表面で反射される外部光の色調が予め設定されているとよい。そして、バックライト制御部240は、この表示領域10aの表面で反射される外部光の色調に応じて、照射部22から照射される照明光の色調が調整されるように、複数色の点光源22aをそれぞれ制御するように構成されているとよい。この液晶表示装置100によれば、表示領域10aの表面で反射される外部光の色調に応じて複数色の点光源22aをそれぞれ制御することによって、適切な割合で混色された光で表示領域10aに画像を表示させることができる。
以下、かかる液晶表示装置100について具体的に説明する。この液晶表示装置100の液晶パネル10には、表面にAR処理が施されている。また、バックライト制御部240には、AR処理の液晶パネル10の反射光の色調に基づいて、表示領域10aの表面で反射される外部光の色調が予め設定される。例えば、AR処理の液晶パネル10では、図29に示すように、青色の光と、赤色の光の反射率が高くなる。このとき、バックライト制御部240には、表示領域10aの表面で反射される外部光に青色成分と赤色成分とが多く含まれていると設定されているとよい。バックライト制御部240は、第1受光センサ122によって得られた受光情報に加えて、青色の光と、赤色の光の反射率が高くなっていると予め定められた反射光の色調に基づいて、各々の点光源22aに投入する電力を制御する。この場合、バックライト制御部240は、赤色及び青色の発光ダイオード22aよりも、緑色の発光ダイオード22aの輝度の方が高くなるように、各発光ダイオード22aに投入する電力を制御する。
以上、本発明の一実施形態に係る液晶表示装置100について説明した。しかし、本発明は上述の実施形態に限定されない。次に、本発明の他の実施形態にかかる液晶表示装置について説明する。なお、液晶表示装置100の全体構成は、適宜、図22を参照されたい。
(実施例2)
液晶表示装置100(図22参照)は、図30に示すように、第1受光センサ122の他に、第2受光センサ124を備えていてもよい。この第2受光センサ124は、バックライト20(図22参照)から液晶パネル10の背面に照射された照明光を表示領域10aの複数の位置で受光するような位置に配置されている。以下、第2受光センサ124を備えた液晶表示装置100の一例を説明する。
液晶表示装置100(図22参照)は、図30に示すように、第1受光センサ122の他に、第2受光センサ124を備えていてもよい。この第2受光センサ124は、バックライト20(図22参照)から液晶パネル10の背面に照射された照明光を表示領域10aの複数の位置で受光するような位置に配置されている。以下、第2受光センサ124を備えた液晶表示装置100の一例を説明する。
例えば、第2受光センサ124は、図30に示すように、第1受光センサ122と同様に、アレイ基板40の画素電極42に設けられていてもよい。このとき、第2受光センサ124は、受光部124aをバックライト20(図22参照)側に向けて配置されているとよい。これによって、第2受光センサ124の受光部124aには、照射部22(図22参照)からの照明光が照射され、照明光の受光情報a3~d3が第2受光センサ124によって得られる。
第2受光センサ124は、図30に示すように、液晶パネル10の平面視におけるブラックマトリクス52が形成された領域において、ブラックマトリクス52よりもバックライト20側に配置されているとよい。これによって、第2受光センサ124は、表示領域10aを照射する外部光を受光せずに、バックライト20(図22参照)の照明光を受光することができる。
かかる第2受光センサ124の配置位置について一例を説明する。
例えば、液晶パネル10の前面側の基板(カラーフィルタ基板50)に、RGB3色の着色層53が繰り返し形成されている場合において、当該RGB3色の着色層53のうち、緑色の着色層53(G)が所定の頻度でブラックマトリクス52に置き換えられていてもよい。そして、液晶パネル10の平面視において、緑色の着色層53(G)が形成されている領域には、第1受光センサ122が配置されており、液晶パネル100の平面視において、緑色の着色層53(G)がブラックマトリクス52に置き換えられている領域に、第2受光センサ124が配置されていてもよい。
例えば、液晶パネル10の前面側の基板(カラーフィルタ基板50)に、RGB3色の着色層53が繰り返し形成されている場合において、当該RGB3色の着色層53のうち、緑色の着色層53(G)が所定の頻度でブラックマトリクス52に置き換えられていてもよい。そして、液晶パネル10の平面視において、緑色の着色層53(G)が形成されている領域には、第1受光センサ122が配置されており、液晶パネル100の平面視において、緑色の着色層53(G)がブラックマトリクス52に置き換えられている領域に、第2受光センサ124が配置されていてもよい。
ここでは、液晶パネル10の前面側の基板50(カラーフィルタ基板50)には、RGB3色の着色層53が順に繰り返して形成されている。また、表示領域10aを照射する着色層53(G)を透過して、外部光を受光するように第1受光センサ122が配置されている。また、繰り返し形成されたRGB3色の着色層53のうち、緑色の着色層53(G)の一部が所定の頻度でブラックマトリクス52に置き換えられている。第2受光センサ124は、この液晶パネル10の平面視において、緑色の着色層53(G)がブラックマトリクス52に置き換えられている領域に配置されている。この場合、第1受光センサ122は、緑色の着色層53(G)を透過した外部光を受光する。これに対して、第2受光センサ124は、緑色の着色層53(G)がブラックマトリクス52に置き換えられた領域に配置されているので、外部光が遮断される。すなわち、第2受光センサ124の受光部124aは、外部光を受光し得ない。このため、第2受光センサ124によって得られた受光情報a3~d3には外部光の受光情報が含まれていない。これに対して、第2受光センサ124は、バックライト20の照明光は受光するので、バックライト20(図22参照)の照明光から得られる受光情報a3~d3を出力することができる。なお、第2受光センサ124の配置位置は、上記に限らず、適宜選択することができる。
例えば、図31は、かかる制御を行う際のブロック図である。第2受光センサ124によって得られた、バックライト20の照明光の受光情報a3~d3は、図31に示すように、バックライト制御部240に送られる。バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、第2受光センサ124によって得られた受光情報a3~d3に基づいて照射部22(図22参照)をそれぞれ制御するとよい。例えば、バックライト制御部240は、第2受光センサ124で得られた、バックライト20の照明光の受光情報a3~d3に基づいて、第1受光センサ122で得られた受光情報a1~d1から、バックライト20(図22参照)の照明光に起因する影響を除去する補正することができる。そして、かかる補正を経て作成されたバックライト制御信号a2~d2を作成するとよい。このようにして作成されたバックライト制御信号a2~d2は、電力投入部242に送られ、バックライト20の各照射部22(図22参照)に投入される電力を制御する。これにより、第1受光センサ122で得られた受光情報a1~d1から、バックライト20の照明光に起因する影響を除去することができる。
また、この液晶表示装置100によれば、図22及び図30に示すように、第2受光センサ124によって得られた受光情報a3~d3に基づいて、照射部22の制御を補正することができる。バックライト20の照射部22は、同じ内容のバックライト制御信号a2~d2に基づいて制御された場合でも、周囲の温度変化や経年劣化などの影響を受けて、生じる照明光の明るさが異なることがある。この液晶表示装置100によれば、照射部22が周囲の温度変化や経年劣化などの影響を受けた場合であっても、照明光の受光情報a3~d3に基づいて照射部22の明るさを補正しながら、第1受光センサ122によって得られた受光情報a1~d1に基づいて、各々の照射部22を適切に制御することができる。
また、例えば、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1と、第2受光センサ124によって得られた受光情報a3~d3との差分に基づいて照射部をそれぞれ制御するとよい。この場合、当該差分は、第1受光センサ122によって得られた受光情報a1~d1から照明光の受光情報a3~d3を排除したものであり、表示領域10aを照射する外部光の正確な受光情報を表している。この液晶表示装置100によれば、正確な受光情報に基づいて、照射部22をそれぞれ制御できるので、表示領域10aを照射する外部光の明るさを正確に反映して、照明光を調整することができる。
また、第2受光センサ124を備えた液晶表示装置100は、誤差電流算出部208を備えているとよい。この誤差電流算出部208は、予め定められた複数のタイミングにおいて、第2受光センサ124によって得られた受光情報a3~d3を比較し、光以外の外的要因によって受光センサに生じた電流を算出する。ここでいう「複数のタイミング」は、照射部22が制御されるまでの期間内(照明光の明るさが一定に維持されている期間内)に複数回設定されているとよい。この液晶表示装置100では、まず、照明光の受光情報a3~d3を第2受光センサ124によって取得する。誤差電流算出部208は、予め定められた複数のタイミングにおいて、第2受光センサ124によって得られた受光情報a3~d3を比較する。このとき、受光情報a3~d3が取得されたタイミングでは、照明光の明るさが維持されているため、第2受光センサ124によって得られた受光情報a3~d3に変化が生じている場合、当該変化値が光以外の外的要因によって受光センサに生じた電流となる。
バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、誤差電流算出部208によって算出された光以外の外的要因によって第2受光センサ124に生じた電流に基づいて、照射部22をそれぞれ制御する。これによって、光以外の外的要因に起因した誤差を排除して、照射部22を正確に制御することができる。
(実施例3)
また、液晶表示装置100は、図22及び図30に示すように、第3受光センサ126を備えていてもよい。第3受光センサ126は、表示領域10aを照射する外部光と、バックライト20から照射される照明光とに対して遮光されている。以下、第3受光センサ126を備えた液晶表示装置100の一例を説明する。
また、液晶表示装置100は、図22及び図30に示すように、第3受光センサ126を備えていてもよい。第3受光センサ126は、表示領域10aを照射する外部光と、バックライト20から照射される照明光とに対して遮光されている。以下、第3受光センサ126を備えた液晶表示装置100の一例を説明する。
この実施例では、第3受光センサ126は、図30に示すように、液晶パネル10の平面視におけるブラックマトリクス52が形成された領域において、ブラックマトリクス52よりもバックライト側に配置されている。さらに、この実施形態では、液晶パネル10の平面視における第3受光センサ126が形成された領域を覆うように遮光部材128が配置されている。この遮光部材128は、第3受光センサ126よりもバックライト20側に配置されており、照明光を遮光する素材で構成されている。なお、第3受光センサ126も、第1受光センサ122や第2受光センサ124と同じように、配置位置を適宜選択することができる。
このように、この実施例の液晶表示装置100は、表示領域10aを照射する外部光と、バックライト20から照射される外部光とに対して遮光されている第3受光センサ126を備えている。光起電力を有する受光センサには、周囲の温度など光以外の外的要因によって微細な起電流が生じるため、外部光や照明光から遮光された第3受光センサ126では、かかる外的要因によって生じる誤差電流のみが得られる。
このとき、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、第3受光センサ126に生じた電流(誤差電流)に基づいて照射部22をそれぞれ制御する。図32は、かかる制御を行う際のブロック図である。
第3受光センサ126で生じた誤差電流a4~d4は、図32に示すように、バックライト制御部240に送られる。バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、第3受光センサ126で生じた誤差電流a4~d4に基づいてバックライト制御信号a2~d2を作成する。このとき、バックライト制御部240は、第3受光センサ126で生じた起電流に基づいて、第1受光センサ122によって得られた受光情報a1~d1から光以外の外的要因に起因する誤差電流a4~d4を排除して、バックライト制御信号a2~d2を作成し、照射部22をそれぞれ制御する。
このように、この実施形態に係る液晶表示装置100によれば、第1受光センサ122によって得られた受光情報a1~d1に加えて、第3受光センサ126に生じた電流(誤差電流)a4~d4に基づいて照射部22をそれぞれ制御する。これによって、光以外の外的要因に起因した誤差電流を排除して、照射部22を正確に制御することができる。例えば、第3受光センサ126に生じた電流(誤差電流)a4~d4に基づいて、第1受光センサ122によって得られた受光情報a1~d1を補正するとよい。これにより、周囲の温度のような外的要因に起因して受光センサに生じる影響を除去することができ、照射部22をより正確に制御することができる。
(実施例4)
また、液晶表示装置100は、間欠駆動するように制御されたバックライト20を備えていてもよい。以下、かかるバックライト20を備えた液晶表示装置100の一例を説明する。図33は、間欠駆動するように制御されたバックライト20を備えた液晶表示装置100を模式的に示すブロック図である。
また、液晶表示装置100は、間欠駆動するように制御されたバックライト20を備えていてもよい。以下、かかるバックライト20を備えた液晶表示装置100の一例を説明する。図33は、間欠駆動するように制御されたバックライト20を備えた液晶表示装置100を模式的に示すブロック図である。
この液晶表示装置100は、表示領域10aに表示される画像が切り替わる期間中にバックライト20を消灯させる消灯期間が存在するように、消灯期間とバックライト20を点灯する点灯期間とを交互に切り替える間欠駆動制御部205を備えている。例えば、間欠駆動制御部205は、図33に示すように、制御部200の一部として設けられていてもよい。間欠駆動制御部205には、液晶パネル制御信号205aが入力されている。間欠駆動制御部205は、液晶パネル制御信号205aから表示画像が切り替わる期間を検出し、当該表示画像が切り替わる期間に基づいて消灯信号242aを作成し、電力投入部242に送る。電力投入部242は、消灯信号242aに基づいて、表示される画像が切り替わる期間(1フレーム)中の所定期間において、照射部22への電力の投入を停止する。これによって、バックライト20の照射部22は、図34に示すように、1フレーム中に消灯期間が存在するように制御される。
このようにバックライト20を間欠駆動させる液晶表示装置100において、バックライト制御部240は、バックライト20の消灯期間に第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22をそれぞれ制御するとよい。このとき、図34に示すように、バックライト制御部240には、第1受光センサ122によって得られた受光情報a1~d1を採用する採用期間が予め定められている。この採用期間は、バックライト20の消灯期間と同じ期間になるように定められている。このようにして、バックライト制御部240は、バックライト20の消灯期間において受光情報a1~d1を取得する。このようにして得られた消灯期間の受光情報a1~d1には、バックライト20から照射される照明光が含まれてない。
照明光が含まれていない受光情報に基づいて照射部22が制御されることによって、バックライト制御部240は、表示領域10aを照射する外部光をより正確に反映するように、照明光の明るさを調整することができる。また、この液晶表示装置100によれば、上述した第2受光センサ124を設けなくてもよい。このため、上述した第2受光センサ124を設ける場合に比べて、部品コストの増加を防止できる。また、上述した第2受光センサ124を設ける場合に比べて、表示領域10a内に新たに部品を取り付ける必要がない。このため、画素の開口率低下を防ぐことができる。
照明光が含まれていない受光情報に基づいて照射部22が制御されることによって、バックライト制御部240は、表示領域10aを照射する外部光をより正確に反映するように、照明光の明るさを調整することができる。また、この液晶表示装置100によれば、上述した第2受光センサ124を設けなくてもよい。このため、上述した第2受光センサ124を設ける場合に比べて、部品コストの増加を防止できる。また、上述した第2受光センサ124を設ける場合に比べて、表示領域10a内に新たに部品を取り付ける必要がない。このため、画素の開口率低下を防ぐことができる。
また、他の方法を説明する。ここでは、各第1受光センサ122によって得られる点灯期間に得られる受光情報a1~d1をa1~d1(ON)とし、消灯期間に得られる受光情報a1~d1をa1~d1(OFF)とする。また、各第1受光センサ122によって得られる点灯期間に得られる受光情報a1~d1(ON)と、消灯期間に得られる受光情報a1~d1(OFF)の差分を、a1~d1(ON-OFF)とする。
バックライト制御部240は、さらに点灯期間に第1受光センサ122によって得られた受光情報a1~d1(ON)と、消灯期間に第1受光センサ122によって得られた受光情報a1~d1(OFF)との差分に基づいて照射部22をそれぞれ制御してもよい。この場合、バックライト制御部240は、点灯期間に得られた受光情報a1~d1(ON)と、消灯期間に得られた受光情報a1~d1(OFF)との差分a1~d1(ON-OFF)を求める。差分a1~d1(ON-OFF)は、実質的に照明光の明るさに相当する受光情報である。
これによって照明光から得られる実質的な受光情報をそれぞれ算出することができる。このように、現在の照明光の明るさを反映して、照明光の明るさを補正することができる。この液晶表示装置100によれば、周囲の温度変化や経年劣化などに伴って、照射部22から生じる照明光の明るさが変化しても、照射部22の明るさを補正することができる。
バックライト制御部240は、さらに点灯期間に第1受光センサ122によって得られた受光情報a1~d1(ON)と、消灯期間に第1受光センサ122によって得られた受光情報a1~d1(OFF)との差分に基づいて照射部22をそれぞれ制御してもよい。この場合、バックライト制御部240は、点灯期間に得られた受光情報a1~d1(ON)と、消灯期間に得られた受光情報a1~d1(OFF)との差分a1~d1(ON-OFF)を求める。差分a1~d1(ON-OFF)は、実質的に照明光の明るさに相当する受光情報である。
これによって照明光から得られる実質的な受光情報をそれぞれ算出することができる。このように、現在の照明光の明るさを反映して、照明光の明るさを補正することができる。この液晶表示装置100によれば、周囲の温度変化や経年劣化などに伴って、照射部22から生じる照明光の明るさが変化しても、照射部22の明るさを補正することができる。
また、間欠駆動するバックライト20を備えた液晶表示装置100は、液晶パネル10の背面に照射された照明光を表示領域10aの複数の位置で受光する第2受光センサ124を備えていてもよい。この場合、バックライト20の消灯期間中では、照明光を受光するように配置された第2受光センサ124に光が照射されない。このため、バックライト20の消灯期間中に第2受光センサで電流が生じているならば、当該電流は光以外の外的要因によって受光センサに生じる電流となる。この場合、バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、バックライト20の消灯期間に第2受光センサ124で生じた電流に基づいて照射部22をそれぞれ制御するとよい。これによって、光以外の外的要因によって受光センサに生じる電流に起因した誤差を排除して、照射部22を制御することができる。
(実施例5)
また、液晶表示装置100は、切替部290を備えていてもよい。切替部290は、制御モードと、非制御モードとを切り替える。バックライト制御部240は、制御モードに設定されている場合に、上述したような照射部22の制御を行う。(図7中のS1参照)以下、かかる切替部290を備えた液晶表示装置100の一例を説明する。図35は、切替部290を備えた液晶表示装置100を模式的に示したブロック図である。
また、液晶表示装置100は、切替部290を備えていてもよい。切替部290は、制御モードと、非制御モードとを切り替える。バックライト制御部240は、制御モードに設定されている場合に、上述したような照射部22の制御を行う。(図7中のS1参照)以下、かかる切替部290を備えた液晶表示装置100の一例を説明する。図35は、切替部290を備えた液晶表示装置100を模式的に示したブロック図である。
例えば、切替部290は、図35に示すように、制御部200に信号線を介して接続されているとよい。この実施例では、切替部290は、制御部200の制御を停止させる制御停止信号290aと、制御部200の制御を開始させる制御開始信号290bとを、制御モードと非制御モードとの切り替えに応じて作成し、制御部200に送る。切替部290から制御部200に制御停止信号290aが送信されると、制御部200は制御モードから非制御モードに切り替わる。一方、制御開始信号290bが送信されると、制御部200は非制御モードから制御モードに切り替わる。
また、切替部290を備えた液晶表示装置100は、図35に示すように、タイマー292を備えているとよい。このタイマー292は、切替部290と接続されている。また、このタイマー292には、制御モードによる制御を実行させる時間帯が予め設定されている。切替部290は、タイマー292に予め設定されている時間帯に基づいて、制御モードと非制御モードとを切り替える。この液晶表示装置100では、表示領域10aを照射する外部光の強度が強い時間帯や外部光の強度が変化しやすい時間帯にのみ制御モードを選択して、バックライト20を調光する制御を行うことができる。これによって、制御モード中に常時消費されている消費電力を削減することができる。
例えば、タイマー292に予め設定された時間帯は、外部光の強度が変化しやすい日中であるとよい。切替部290は、タイマー292に予め設定されている時間帯に基づいて制御停止信号290a又は制御開始信号290bを作成し、制御部200へ送る。これによって、バックライト制御部200は、制御モードと非制御モードとが切り替えられる。
また、図35に示すように、切替部290は、切替用受光センサによって得られた受光情報a1~d1に基づいて制御モードと非制御モードとを切り替えてもよい。切替用受光センサは、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する受光センサである。ここでは、切替用受光センサとして、上述した第1受光センサ122を用いている。第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する受光センサであるので、切替用受光センサとして用いることができる。なお、第1受光センサ122とは別の受光センサを切替用受光センサとして、液晶表示装置100に配置してもよい。
図35に示されている液晶表示装置100では、切替用受光センサ(第1受光センサ)122によって得られた受光情報a1~d1が切替制御部294に送られる。切替制御部294は、第1受光センサ122によって得られた受光情報a1~d1に基づいて切替制御信号292aを作成し、切替部290に送る。切替部290は、切替制御信号292bに基づいて、制御停止信号290a又は制御開始信号290bを作成し、バックライト制御部240へ送り、制御モードと非制御モードとを切り替える。このため、かかる液晶表示装置100は、表示領域10aを照射する外部光の強度が変化している場合に制御モードを選択し、外部光の強度が変化していない場合に非制御モードを選択することができる。第1受光センサ(切替用受光センサ)122によって得られた受光情報a1~d1に基づいてバックライト20が制御される制御モードでは、液晶表示装置100は、かかる制御を行うための電力を常時消費している。これに対して、非制御モードでは、必要な場合にのみ、第1受光センサ(切替用受光センサ)122によって得られた受光情報a1~d1に基づいてバックライト20を調光する制御を行うことができる。このため、消費電力を低く抑えることができる。また、この液晶表示装置100では、第1受光センサ122を切替用受光センサに流用しているので、切替用受光センサを別に設ける場合に比べて、受光センサの数を少なくすることができる。このため、切替用受光センサが画素30の開口部を覆うことによる表示画像の輝度低下や、新たな部品を取り付けることによる部品コストの増加を防止できる。
また、切替部290は、手動で制御モードと非制御モードとを切り替える構成を備えていてもよい。この場合、視聴者の希望に応じて、バックライト20を調光する制御を行うことができる。
(実施例6)
また、液晶表示装置100は、第1受光センサ122などの受光センサの他に、温度センサ170を備えていてもよい。温度センサ170は、例えば、バックライト20の複数の位置にそれぞれ配置されており、熱起電力を生じさせる素子で構成するとよい。以下、温度センサ170を備えた液晶表示装置100の一例を説明する。図36は、温度センサ170が配置されたバックライト20を模式的に示した図である。
また、液晶表示装置100は、第1受光センサ122などの受光センサの他に、温度センサ170を備えていてもよい。温度センサ170は、例えば、バックライト20の複数の位置にそれぞれ配置されており、熱起電力を生じさせる素子で構成するとよい。以下、温度センサ170を備えた液晶表示装置100の一例を説明する。図36は、温度センサ170が配置されたバックライト20を模式的に示した図である。
温度センサ170は、バックライト20の温度をエリア毎に検知する。温度センサ170は、信号線を介して、バックライト制御部240に接続されており、バックライト20のエリア毎の温度はバックライト制御部240に送られる。バックライト制御部240は、第1受光センサ122によって得られた受光情報a1~d1に加えて、温度センサ170によって得られたバックライト20のエリア毎の温度に基づいて照射部22をそれぞれ制御する。上述したように、照射部22は周囲の温度変化の影響を受ける。この液晶表示装置100では、温度センサ170によって得られたバックライト20の温度に基づいて照射部22の明るさを補正しながら、第1受光センサ122によって得られた受光情報a1~d1に基づいて照射部22をそれぞれ適切に制御することができる。
(実施例7)
また、光起電力を生じさせることができる素子で第1受光センサ122が構成されている場合、第1受光センサ122で生じた起電力は、液晶表示装置100の駆動用電力に利用することができる。この起電力を液晶表示装置100の駆動用電力として利用するために、液晶表示装置100は、第1受光センサ122に生じた起電力を蓄電する蓄電部130を備えているとよい。以下、第1受光センサ122で生じた起電力を駆動用電力として利用する液晶表示装置100の一例を説明する。
また、光起電力を生じさせることができる素子で第1受光センサ122が構成されている場合、第1受光センサ122で生じた起電力は、液晶表示装置100の駆動用電力に利用することができる。この起電力を液晶表示装置100の駆動用電力として利用するために、液晶表示装置100は、第1受光センサ122に生じた起電力を蓄電する蓄電部130を備えているとよい。以下、第1受光センサ122で生じた起電力を駆動用電力として利用する液晶表示装置100の一例を説明する。
上述のように、光起電力を生じさせることができる素子には、例えば、フォトダイオード(photodiode)や、フォトトランジスタ(phototransistor)などが挙げられる。これらの素子からなる第1受光センサ122の受光部122aに光が照射されると、起電力を生じる。また、第1受光センサ122は、図37に示すような電気回路132で蓄電部130にそれぞれ接続されているとよい。この電気回路132は、マルチプレクサ134を備えている。第1受光センサ122に生じた起電力は、マルチプレクサ134によって一つの回路へ統合される。統合された起電力は、蓄電部130に蓄電される。蓄電部130は、例えば、電源203などに接続されており、蓄電された起電力は、液晶パネル10への印加電圧やその他の電力などに利用される。これによって、液晶表示装置100の駆動用電力を節約することができる。
また、液晶表示装置100の駆動停止中であっても、第1受光センサ122には、外部光が照射され、起電力が生じている。このため、かかる液晶表示装置100では、駆動停止中に生じた起電力を蓄電部130に蓄電することによって、駆動用電力をさらに節約することができる。かかる液晶表示装置100は、例えば、屋外に置かれることが多く、日中に多くの外部光が照射されるインフォメーションディスプレイなどに特に好ましく用いることができる。
また、蓄電部130を備えた液晶表示装置100では、表示領域10aに照射された外部光と、バックライト20から照射された照明光の両方を受光できるような位置に、第1受光センサ122を配置するとよい。この場合、表示領域10aを照射する外部光だけでなく、バックライト20から照射される照明光も蓄電部130に蓄電することができる。
また、蓄電部130を備えた液晶表示装置100において、光起電力を有する素子(例えば、フォトダイオードなど)で構成された第2受光センサ124が配置されているとよい。この場合、第1受光センサ122と同様の電気回路を作成することによって、第2受光センサ124で生じた起電力を蓄電部130に蓄電し、液晶表示装置100の駆動に利用することができる。また、この場合、第1受光センサ122のみを備えた液晶表示装置100に比べて、多量の電力を利用することができる。
また、上述した温度センサ170が熱起電力を生じさせることができる素子で構成されている場合も、温度センサ170で生じた電力を蓄電部130に蓄電し、蓄電した電力を液晶表示装置100の駆動に利用することができる。この場合、さらに多量の電力を蓄電して、蓄電した電力を液晶表示装置100の駆動に利用することができる。
以上、第1受光センサ122によって得られた受光情報a1~d1基づいて、照射部22をそれぞれ制御するバックライト制御部240を備えた液晶表示装置100について説明した。
次に、以下の説明では、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更する画像変更部250を備えた液晶表示装置100について説明する。
(実施例8)
画像変更部250には、受光センサ(第1受光センサ122)よって得られた受光情報a1~d1に対して基準値が予め定められている。画像変更部250は、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更する。この液晶表示装置100は、予め定められた基準値を上回るような強度の強い外部光が表示領域10aに照射された際に、表示画像を見やすい画像に適宜変更することができる。従って、この液晶表示装置100によれば、視聴者が画像を認識しようとする際に生じるストレスを軽減することができる。また、画像変更部250によって変更された表示画像は、視聴者にとって見易いものであるため、表示画像の内容を視聴者が誤認することを防ぐこともできる。また、このような液晶表示装置100は、強度の高い外部光が表示領域10aに照射されやすく、短い時間だけ目にするような屋外に配置されたインフォメーションディスプレイなどに好ましく用いることができる。
画像変更部250には、受光センサ(第1受光センサ122)よって得られた受光情報a1~d1に対して基準値が予め定められている。画像変更部250は、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更する。この液晶表示装置100は、予め定められた基準値を上回るような強度の強い外部光が表示領域10aに照射された際に、表示画像を見やすい画像に適宜変更することができる。従って、この液晶表示装置100によれば、視聴者が画像を認識しようとする際に生じるストレスを軽減することができる。また、画像変更部250によって変更された表示画像は、視聴者にとって見易いものであるため、表示画像の内容を視聴者が誤認することを防ぐこともできる。また、このような液晶表示装置100は、強度の高い外部光が表示領域10aに照射されやすく、短い時間だけ目にするような屋外に配置されたインフォメーションディスプレイなどに好ましく用いることができる。
以下、画像変更部250を備えた液晶表示装置100の一例を説明する。図38は、画像変更部250を備えた液晶表示装置100を模式的に示したブロック図である。
上述の実施例と同様に、かかる液晶表示装置100において、第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する。例えば、第1受光センサ122は、液晶パネル10の表示領域10aに分散して配置されているとよい。これによって、第1受光センサ122は、表示領域10aにおける様々な部位において、表示領域10aを照射する外部光の受光情報を得ることができる。この場合、例えば、複数の画素からなる1つの画素群(8画素×8画素の画素群、10画素×10画素の画素群)毎に第1受光センサ122を配置してもよい。この場合、表示領域10aを照射する外部光の受光情報a1~d1を画素群毎に得ることができる。
この実施形態では、画像変更部250は、図38に示すように、制御部200内に設けられている。画像変更部250は、第1受光センサ122に接続されており、第1受光センサ122によって得られた受光情報a1~d1は、画像変更部250に送られる。また、画像変更部250は、信号入力部201にも接続されている。外部システム300から入力された画像信号302a~302cは、信号入力部201を通じて、画像変更部250に送られている。
画像変更部250には、第1受光センサ122によって得られた受光情報a1~d1に対して基準値が予め定められている。この基準値は、例えば、表示領域10aに表示された画像を視認しにくくなるような明るさの外部光を受光した場合に得られる受光情報を予め定めるとよい。図39から図44までは、見難くなった部分Lが部分的に生じた液晶パネルを示している。例えば、強度が高い外部光が液晶パネルの一部に照射されるというような事象によって、液晶パネルの一部に見難くなった部分Lが生じる場合がある。
画像変更部250は、予め定められた基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更する。上述したように、この液晶表示装置100は、予め定められた基準値を上回るような強度の強い外部光が表示領域10aに照射された際に、表示画像を見易い画像に適宜変更することができる。この「見易い画像への変更」の内容を、以下に例示する。
例えば、画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aのうち、基準値を上回る受光情報a1~d1を得た部位を除いた領域に、画像を表示させる画像表示エリア10a1を設定するとよい。この画像表示エリア10a1とは、表示領域10a内における画像を表示させる領域を指すものである。画像変更部250は、画像表示エリア10a1を縮小させ、強度が高い外部光を照射されて、見難くなった部分を避けるように画像表示エリア10a1を表示領域10aに配置する。液晶表示装置100は、強度の高い外部光が照射されておらず、容易に視認できる位置に画像を表示させる。その結果、見やすい表示画像を視聴者に提供することができる。また、強度が高い外部光を照射された表示領域10aには、画像が表示されない。このため、見難い画像を表示させるために使用する電力を削減し、駆動用電力を節約することができる。
例えば、画像変更部250は、図54に示すように、第1受光センサ122によって得られた受光情報a1~d1を取得する(S1)。そして、画像変更部250は、受光情報a1~d1に基づいて表示エリア変更信号250a1、250a2を作成する(S2)。表示エリア変更信号250a1、250a2には、画像表示エリア10a1を設定するための情報が含まれている。図38に示すように、画像変更部250は、この表示エリア変更信号250a1、250a2を液晶パネル制御部220とバックライト制御部240に送る。液晶パネル制御部220は、表示エリア変更信号250a1に基づいて、画素30をそれぞれ制御し(S3)、表示領域10aにおける画像表示エリア10a1の大きさを変更するとともに、基準値を上回るような強度の外部光Lが照射されている部位を避けるように画像表示エリア10a1の位置を設定する。一方、バックライト制御部240は、表示エリア変更信号250a2に基づいて、照射部22を制御し、表示領域10aの平面視において表示画像が表示されなくなった部位(画像表示エリア10a1以外の部分)に位置する照射部22を消灯させる(S4)。
また、画像変更部250は、表示領域10aのうち、基準値を上回る受光情報a1~d1を得た部位を除いた領域に設定された画像表示エリア10a1に応じて、表示画像の大きさを変更するとよい。例えば、画像表示エリア10a1の大きさが縮小された場合、表示領域10aに表示される画像が画像表示エリア10a1の大きさに合わせて、縮小されるとよい。これによって、液晶表示装置100は、画像表示エリア10a1の大きさが変化した場合でも、変化前の画像と同じ内容の画像を表示領域10aに表示させることができる。
以下、かかる画像変更部250の制御について説明する。画像変更部250は、図38に示すように、第1受光センサ122から受光情報a1~d1を取得する(図55のS1参照)そして、画像変更部250は、受光情報a1~d1に基づいて表示エリア変更信号250a1、250a2を作成する(S2)。画像変更部250は、作成した表示エリア変更信号250a1に基づいて、画像信号302aを補正する(S3)。液晶パネル制御部220には、表示エリア変更信号250a1と補正後の画像信号302aが送られ、バックライト制御部240には表示エリア変更信号250a2が送られる。液晶パネル制御部220は、表示エリア変更信号250a1と、補正後の画像信号302aに基づいて画素30をそれぞれ制御する(S4)。一方、バックライト制御部240は、表示エリア変更信号250a2に基づいて照射部22をそれぞれ制御する(S5)。
また、他の形態として、画像変更部250には、表示領域の一部10a1に表示されるべき部分表示用画像を信号化した部分画像信号302bを含んだ複数の画像信号302a~302cが入力されていてもよい。この場合、画像変更部250は、画像表示エリア10a1の大きさに基づいて、画像表示エリア10a1に画像を表示させるための信号として部分画像信号302bを採用し、部分表示用画像を表示領域10aに表示させるように構成してもよい。
例えば、画像変更部250は、画像表示エリア10a1が横長や縦長になってしまうような場合、部分表示用画像は、図40に示すようなテロップのように、当該横長や縦長の画像表示エリア10a1に表示することができる画像で構成するとよい。この場合、部分画像信号302bは、かかるテロップを信号化したものである。また、画像変更部250には、部分画像信号302bを含んだ複数の画像信号が入力されているとよい。画像変更部250は、画像表示エリア10a1に基づいて、画像表示エリア10a1に画像を表示させるための信号として部分画像信号302bを適宜に採用するとよい。この場合、液晶表示装置100は、画像表示エリア10a1が横長や縦長のエリアになってしまった場合に、変更された画像表示エリア10aにテロップなどの部分表示用画像を表示することができる。これによって、液晶表示装置100は、画像表示エリア10a1の大きさや形が変化した場合に、当該画像表示エリア10a1に適合した画像を適宜に表示することができる。
例えば、画像変更部250は、画像表示エリア10a1が横長や縦長になってしまうような場合、部分表示用画像は、図40に示すようなテロップのように、当該横長や縦長の画像表示エリア10a1に表示することができる画像で構成するとよい。この場合、部分画像信号302bは、かかるテロップを信号化したものである。また、画像変更部250には、部分画像信号302bを含んだ複数の画像信号が入力されているとよい。画像変更部250は、画像表示エリア10a1に基づいて、画像表示エリア10a1に画像を表示させるための信号として部分画像信号302bを適宜に採用するとよい。この場合、液晶表示装置100は、画像表示エリア10a1が横長や縦長のエリアになってしまった場合に、変更された画像表示エリア10aにテロップなどの部分表示用画像を表示することができる。これによって、液晶表示装置100は、画像表示エリア10a1の大きさや形が変化した場合に、当該画像表示エリア10a1に適合した画像を適宜に表示することができる。
以下、かかる画像変更部250の制御について説明する。画像変更部250は、図38及び図56に示すように、第1受光センサ122から受光情報a1~d1を取得する(図56のS1参照)。画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1に基づいて表示エリア変更信号250a1、250a2を作成する(S2)。また、画像変更部250には、複数の画像信号302a~302cが入力されている。画像変更部250は、表示エリア変更信号250a1に基づいて、複数の画像信号302a~302cの中から部分画像信号302bを採用する(S3)。この部分画像信号302bと表示エリア変更信号250a1は、図38に示すように、液晶パネル制御部220に送られる。液晶パネル制御部220は、表示エリア変更信号250a1と部分画像信号302bとに基づいて画素30をそれぞれ制御し(S4)、表示領域10aに表示させる画像を部分表示用画像に変更する。
また、上述した表示画像の縮小や、部分表示画像の表示は、それぞれ個別に行う必要はなく、図44に示すように、画像表示エリア10a1に縮小された表示画像と部分表示画像の両方を同時に表示させてもよい。
上述の説明では、画像変更部250は、基準値を上回る受光情報a1~d1を得た部位を除いた領域に画像表示エリア10a1を設定して、当該画像表示エリア10a1に画像を表示させていた。しかし、画像変更部250は、他の方法で表示画像を「見易い画像」に変更することができる。
例えば、画像変更部250は、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、表示領域10aに表示される表示画像を、予め用意された画像に変更するとよい。この液晶表示装置100によれば、表示領域10aに表示される表示画像を、予め用意された画像に変更する。かかる構成によって、強度の高い外部光が表示領域10aに照射されている場合でも視聴者が容易に認識できる画像を表示領域10aに表示させることができる。このため、この液晶表示装置100は、視聴者のストレスを軽減することができるとともに、内容の誤認を防ぐことができる。
この場合、予め用意された画像として、例えば、低コントラスト用画像を用いることができる。ここで、低コントラスト用画像とは、表示領域10aのコントラスト比が低い場合であっても、視聴者にとって視認が容易な画像を指すものである。この低コントラスト用画像の一例として、例えば、図41に示すように、モノトーンで表現可能なデジタル表示された時計のような画像が挙げられる。モノトーンで表現可能なデジタル表示された時計のような画像は、表示領域10aのコントラスト比が低い場合であっても、視聴者にとって視認されやすい。また、低コントラスト用画像には、このような時計の画像の他にもモノトーンで表現されたロゴマーク、簡単な図形(例えば、三角形や四角形、円、楕円などの幾何学図形)、文字などを用いることができる。なお、低コントラスト用画像は、表示領域10aのコントラスト比が低い場合であっても、視聴者にとって視認されやすい画像であればよく、上記の例に限定されない。
この場合、例えば、図38に示すように、画像変更部250には、画像信号302aの他に、低コントラスト用画像を表示領域10aに表示させる低コントラスト用画像信号302cが入力されているとよい。画像変更部250は、図38及び図57に示すように、第1受光センサ122から受光情報a1~d1を取得する(図57のS1参照)。画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1に基づいて表示エリア変更信号250a1、250a2を作成する(S2)。画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aに画像を表示させるための信号として低コントラスト用画像信号302cを採用する(S3参照)。そして、低コントラスト用画像信号302cは、液晶パネル制御部220に送られる。液晶パネル制御部220は、表示エリア変更信号250a1と低コントラスト用画像信号302cとに基づいて画素30をそれぞれ制御する(S4)。そして、表示領域10aに表示させる画像が低コントラスト用画像に変更される。これにより、表示される画像は、適宜に、低コントラスト用画像に変更される。
以上、画像変更部250によって表示画像が「見易い画像」に変更される際に行われる制御を説明した。しかし、画像変更部250は、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更すればよい。変更する画像の内容は上記に限定されない。以下、他の形態を説明する。
例えば、画像変更部250は、図42に示すように、基準値を上回る受光情報a1~d1が得られた部位の面積が、表示領域10aの面積に対して一定の割合を上回った場合に、表示領域に画像を表示させるのを停止させてもよい。例えば、高い強度の外部光が表示領域10aの広い範囲に亘って照射されると、表示画像10aが全体的に見づらくなる。表示画像10aが全体的に見難くなった際、かかる画像変更部250によれば、表示領域10aに画像が表示されず、視聴者がストレスを感じることがない。また、表示装置に消費される電力を節約することができる。
この場合、画像変更部250は、例えば、電源203と接続されているとよい。そして、基準値を上回る受光情報a1~d1が得られた部位の面積が、表示領域10aの面積に対して一定の割合を上回った場合に、画像変更部250は動作停止信号250bを作成する。そして、画像変更部250は、動作停止信号250bによって電源203を制御して、液晶パネル制御部220やバックライト制御部240などへの電力の供給を停止するように構成してもよい。これによって、基準値を上回る受光情報a1~d1が得られた部位の面積が、表示領域10aの面積に対して一定の割合を上回った場合に、表示領域10aに画像を表示させるのを停止させることができる。
また、他の形態として、画像変更部250は、表示領域10aにおける画面中央部分において、予め定められた基準値を上回る強度の外部光の受光情報a1~d1が得られた場合に、表示領域10aに画像を表示するのを停止させてもよい。表示領域10aの中心部は視聴者の視界に入りやすいので、表示領域10aの中心部が見難くなると、表示画像全体の内容を把握するのが困難になりやすい。かかる画像変更部250は、表示領域10aの中心部が見難くなった際に、表示領域10aに画像を表示するのを停止させることができる。これによって、見難い画像を表示することによって、視聴者にストレスを生じさせることをなくすとともに、表示装置の駆動用電源を節約させることができる。なお、かかる内容の制御を行うためには、画面中央部分の受光情報を取得する必要がある。このため、図43に示すように、表示領域10aの中央部分付近に第1受光センサ122が配置されているとよい。
以下、画像変更部250の制御方法についてさらに他の形態を説明する。
例えば、画像変更部250は、第1受光センサ122のうち予め定められた基準となる第1受光センサ122によって得られた受光情報と、その他の第1受光センサ122によって得られた受光情報との差分を求めてもよい。この場合、画像変更部250は、当該受光情報の差分に基づいて、表示領域10aに表示される画像(表示画像)を変更してもよい。これによって、画像変更部250は、各エリアA~Dを照射する外部光の輝度分布を正確に反映して、表示画像を変更することができる。また、このような構成において、当該差分に対する照射部22の適切な明るさは、予め画像変更部250に設定しておくとよい。
また、他の形態として、予め定められた異なるタイミングにおいて、第1受光センサ122によって得られた受光情報の差分に対して画像変更部250に基準値が設定されていてもよい。この場合、画像変更部250は、予め定められた異なるタイミングにおいて、第1受光センサ122によって得られた受光情報の差分を求める。さらに、画像変更部250は、当該受光情報の差分が基準値を上回る場合に、表示画像を変更するとよい。これによって、画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1の経時的な変化量を正確に反映して、表示画像を変更することができる。
また、例えば、液晶表示装置の前を人が通行する場合において、表示領域10aを照射する外部光が一時的に遮られる。このような場合に、第1受光センサ122によって得られる受光情報a1~d1が一時的に大きく変化することがある。このとき、画像変更部250は、一時的に大きく変化した受光情報a1~d1に基づいて、上記のように表示画像を変更する事象も生じうる。一時的に大きく変化した受光情報a1~d1に基づいて表示画像が変更されると、表示画像がめまぐるしく変化することになる。このため、表示画像がちらつくなどの不良が生じる可能性があるとともに、視聴者にストレスを与えかねない。かかる事象を防ぐために、画像変更部250は、例えば、予め定められた時間に継続して、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて表示画像を変更するように構成してもよい。これによって、液晶表示装置の前を人が通行する場合のように、第1受光センサ122によって得られる受光情報a1~d1が一時的に大きく変化する場合に、表示画像が変化するのを防止できる。また、このような構成において、第1受光センサ122によって得られた受光情報a1~d1を採用するタイミングは、予め画像変更部250に設定しておくとよい。かかる画像変更部250によれば、外部光の明るさが一時的に大きく変化した場合であっても、表示画像が不必要に変更されることを防止できる。
また、他の形態として、画像変更部250によって表示領域10aに表示される画像が変更される画像変更モードと、当該画像変更モードが実行されない非画像変更モードとを切り替える切替部を備えていてもよい。
また、この場合、画像変更モードを実行させる時間帯が予め設定されているタイマーを備えていてもよい。この場合、切替部は、タイマーに予め設定されている時間帯に基づいて、画像変更モードと非画像変更モードとを切り替えてもよい。
また、この場合、画像変更モードを実行させる時間帯が予め設定されているタイマーを備えていてもよい。この場合、切替部は、タイマーに予め設定されている時間帯に基づいて、画像変更モードと非画像変更モードとを切り替えてもよい。
この場合、例えば、液晶表示装置100は、画像変更モードを実行させる時間帯が予め設定されているタイマー292を備え、切替部290は、タイマー292に予め設定されている時間帯に基づいて画像変更モードと非画像変更モードとを切り替えるとよい。これによって、表示領域10aを照射する外部光の強度が強い時間帯や外部光の強度が変化しやすい時間帯にのみ画像変更モードを選択して、表示領域10aに表示する画像を変更する制御を行うことができる。例えば、液晶表示装置100が屋外に配置される場合に、太陽光が強く当たり、表示画像が見難くなる時間帯を予めタイマー292に設定してもよい。この場合、太陽光が強く当たり、表示画像が見難くなる時間帯に画像が変更される。
また、切替部290は、切替用受光センサによって得られた受光情報a1~d1に基づいて、画像変更モードと非画像変更モードとを切り替えてもよい。この場合、表示領域10aを照射する外部光の強度が変化している場合に画像変更モードを選択し、外部光の強度が変化していない場合に非画像変更モードを選択することができる。なお、前述のように、切替用受光センサは第1受光センサ122を流用することができる。
また、基準値を上回る受光情報a1~d1を得た部位を除いた領域に、表示領域10aを表示させる画像表示エリア10a1を設定する場合、画像変更部250は、当該画像表示エリア10a1に照明光を照射する照射部22を点灯させ、他の照射部22を消灯させるとよい。この場合、画像表示エリア10a1に照明光を照射しない照射部22が消灯されるので、バックライト20の駆動電力を節約することができる。
また、かかる液晶表示装置100には、図45に示すように、表示領域10aを照射する外部光を液晶パネル10の背面に向けて反射させる内部反射板80が取り付けられているとよい。この場合、内部反射板80によって液晶パネル10の背面に向けて反射された外部光は、画像を表示させるための光に利用される。このため、内部反射板80を備えた液晶表示装置100では、照射部22を部分的に消灯させた場合であっても、表示領域10a全体の輝度が大きく低下するのを防止できる。また、画像変更部250によって、当該画像表示エリア10a1に照明光を照射する照射部22を点灯させ、他の照射部22を消灯させると、画像表示エリア10a1の境界部分の輝度がわずかに低下するかもしれない。これに対して、内部反射板80を備えた液晶表示装置100では、内部反射板80によって外部光を液晶パネル10の背面に向けて反射させることができる。このため、画像表示エリア10a1の境界部分において、内部反射板80によって液晶パネル10の背面に向けて反射された外部光の一部が、画像を表示させるための光として利用され得る。このため、上記他の照射部22が消灯された際に、画像表示エリア10a1の境界部分で輝度が低下した場合でも、画像表示エリア10a1の境界部分で輝度が低下する影響を小さく抑え得る。
また、さらに、内部反射板80は、表示領域10aを照射する外部光を液晶パネル10の背面に向けて反射させるとともに、バックライト20から照射された照明光を液晶パネル10側に透過させるとよい。これによって、照射部22から生じた照明光を液晶パネル10の背面に照射できるとともに、表示領域10aを照射する外部光を液晶パネル10の背面に照射できる。
また、上述の実施例では、画像変更部250を備えた液晶表示装置100について説明した。しかし、画像変更部250による表示画像の変更は、液晶表示装置100だけでなく、その他の表示装置(例えば、有機ELディスプレイ、プラズマディスプレイなど)にも用いることができる。
なお、画像変更部250に受光情報a1~d1を送る第1受光センサ122は、上述したバックライト制御部240に受光情報a1~d1を送る第1受光センサ122と同様に、種々の変更が可能である。
(実施例9)
上述の実施例8では、画像変更部250を内蔵した液晶表示装置100について説明した。次に、実施例9では、表示装置(例えば、液晶表示装置100)と、画像変更部250と、外部処理装置400とから構成される画像表示システム500について説明する。図46は、かかる画像表示システム500を模式的に示したブロック図である。
上述の実施例8では、画像変更部250を内蔵した液晶表示装置100について説明した。次に、実施例9では、表示装置(例えば、液晶表示装置100)と、画像変更部250と、外部処理装置400とから構成される画像表示システム500について説明する。図46は、かかる画像表示システム500を模式的に示したブロック図である。
この画像表示システム500に用いられる液晶表示装置100は、表示領域10aに複数の画素が配置された表示パネル(液晶パネル)10を備えている。この液晶パネル10に照射された外部光は、受光センサ(第1受光センサ122)によって、表示領域10aの複数の位置で受光される。また、外部処理装置400は、表示領域10aに画像を表示させる画像信号402を作成し、画像信号402を液晶表示装置100に送る。外部処理装置400には、例えば、CPUなどの演算装置を備えたPCを用いることができる。
また、この画像表示システム500の画像変更部250には、第1受光センサ122によって得られた受光情報a1~d1に対して基準値が予め定められている。画像変更部250は、この基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて外部処理装置400が作成する画像信号402を変更する。
この画像表示システムによれば、受光情報a1~d1に基づいて外部処理装置400が作成する画像信号402を変更することによって、外部光の状態に対して見やすい画像を表示領域10aに表示することができる。この画像表示システム500は、例えば、屋外にて映像広告などを表示するデジタルサイネージシステムなどに好ましく用いることができる。
この画像表示システム500の一例を以下で説明する。この画像表示システム500では、図46に示すように、画像変更部250が液晶表示装置100に内蔵されている。この画像変更部250には、第1受光センサ122によって得られた受光情報a1~d1が画像変更部250に入力される。この受光情報a1~d1が画像変更部250に定められた基準値を上回っている場合、画像変更部250は、受光情報a1~d1に基づいて画像変更信号250cを作成する。この画像変更信号250cは、外部処理装置400に送られる。外部処理装置400は、当該画像変更信号250cに基づいて、表示領域10aに照射されている外部光の状態に対して見やすい画像を表示領域10aに表示させるべく画像信号402を新たに作成する。このようにして、外部処理装置400によって作成された画像信号402は、画像信号402は、液晶表示装置100に送られ、100の信号入力部201を経て、液晶パネル制御部220に入力される。液晶パネル制御部220は、画像信号402に基づいて液晶パネル10を制御する。この場合、画像信号402は、受光情報a1~d1に基づいて変更される。
なお、画像表示システム500において、画像変更部250は、液晶表示装置100に内蔵されていなくてもよい。例えば、画像変更部250は、外部処理装置400に内蔵されていてもよい。また、液晶表示装置100、外部処理装置400の他の装置を、画像表示システム500が備えている場合、画像変更部250は、当該他の装置に設けられていてもよい。
以上、第1受光センサ122によって得られた受光情報a1~d1に基づいて、表示領域10aに表示される画像を変更する画像変更部250を備えた液晶表示装置100について説明した。
次に、図47又は図48は、他の実施例に係る液晶表示装置100を模式的に示している。図47又は図48に示される液晶表示装置100は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数のエリア毎に冷却が行われるように、冷却装置90(90a~90d)を制御する冷却制御部280を備えている。また、図47又は図48には、バックライト20と、冷却装置90(90a~90d)との凡その位置関係が示されている。
(実施例10)
この液晶表示装置100は、冷却装置90と冷却制御部280とを備えている。冷却装置90は、表示領域10aを分割した複数のエリア毎に冷却を行う。冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数のエリア毎に冷却が行われるように、冷却装置90を制御する。この液晶表示装置100によれば、表示領域10aを照射する外部光の強度に応じて、表示領域10aを分割した複数のエリアA~Dを選択的に冷却できる。このため、強度の強い外部光が照射されて、表示領域10aの温度が部分的に上昇している場合でも、当該温度が上昇している部分を選択的に冷却できる。したがって、この液晶表示装置100によれば、部分的な温度上昇によって、液晶パネル10の光透過性やバックライト20の照射部22(図45参照)の明るさが変化するのを防止できる。
この液晶表示装置100は、冷却装置90と冷却制御部280とを備えている。冷却装置90は、表示領域10aを分割した複数のエリア毎に冷却を行う。冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数のエリア毎に冷却が行われるように、冷却装置90を制御する。この液晶表示装置100によれば、表示領域10aを照射する外部光の強度に応じて、表示領域10aを分割した複数のエリアA~Dを選択的に冷却できる。このため、強度の強い外部光が照射されて、表示領域10aの温度が部分的に上昇している場合でも、当該温度が上昇している部分を選択的に冷却できる。したがって、この液晶表示装置100によれば、部分的な温度上昇によって、液晶パネル10の光透過性やバックライト20の照射部22(図45参照)の明るさが変化するのを防止できる。
また、液晶表示装置の用途の一つとして、インフォメーションディスプレイがある。インフォメーションディスプレイは、一般的に屋外に配置される。このため、強度の高い外部光が表示領域10aに照射された場合に、表示領域10aの温度が上昇しやすい。この液晶表示装置100は、温度が上昇している部分を選択的に冷却することができる。このため、この液晶表示装置100は、インフォメーションディスプレイに特に好ましく用いられる。
また、液晶層13中の液晶分子の応答性は、温度が上昇した場合だけでなく、過剰に冷却された場合にも不安定になる場合がある。このため、液晶パネル10の全面を等しく冷却すると、部分的に液晶分子の応答特性が不安定になり、表示画像に乱れが生じることがある。例えば、液晶パネル10の温度が部分的に上昇している場合に、液晶パネル10の全面を等しく冷却すると、液晶分子の応答特性が部分的に不安定になる。このため、表示画像が乱れるかもしれない。
しかし、この液晶表示装置100では、第1受光センサ122によって得られた受光情報a1~d1に基づいて、冷却装置90を制御することができる。このため、液晶パネル10の過剰な冷却を抑制し、表示画像の乱れを防止することができる。例えば、液晶パネル10の温度が部分的に上昇している場合において、液晶パネル10の温度が上昇している部分を選択的に冷却することができる。このため表示画像が乱れるのを防止できる。
また、この液晶表示装置100では、必要な場合に応じて冷却装置90を駆動させるので、冷却装置90の駆動音に起因した騒音の軽減や、冷却装置90の駆動用電力の節約にも貢献することもできる。
しかし、この液晶表示装置100では、第1受光センサ122によって得られた受光情報a1~d1に基づいて、冷却装置90を制御することができる。このため、液晶パネル10の過剰な冷却を抑制し、表示画像の乱れを防止することができる。例えば、液晶パネル10の温度が部分的に上昇している場合において、液晶パネル10の温度が上昇している部分を選択的に冷却することができる。このため表示画像が乱れるのを防止できる。
また、この液晶表示装置100では、必要な場合に応じて冷却装置90を駆動させるので、冷却装置90の駆動音に起因した騒音の軽減や、冷却装置90の駆動用電力の節約にも貢献することもできる。
以下、かかる冷却装置90と冷却制御部280を備えた液晶表示装置100について説明する。
上述の実施形態と同様に、かかる液晶表示装置100では、第1受光センサ122は、表示領域10aに分散して配置されていてもよい。これによって、第1受光センサ122は、表示領域10aにおける様々な部位において、表示領域10aを照射する外部光の受光情報を得ることができる。また、この場合に、第1受光センサ122は、液晶パネル10の平面視において複数の画素30のそれぞれが配置された領域に配置されていてもよい。これによって、表示領域10aを照射する外部光の受光情報a1~d1を画素単位で得ることができる。
かかる液晶表示装置100では、図47及び図48に示すように、冷却装置90は、タンク92と、移送ポンプ94と、複数の冷却管98とを備えている。タンク92は、冷却媒体を貯蔵している。移送ポンプ94は、タンク92に貯蔵された冷却媒体を移送する。複数の冷却管98a~98dは、表示領域10aを分割した複数のエリアA~D毎に配置されている。この複数の冷却管98a~98dには、移送ポンプ94によって冷却媒体がそれぞれ供給される。この冷却装置90は、複数の冷却管98a~98dに冷却媒体が供給されることによって、表示領域10aを分割した複数のエリアA~Dに冷却を行うことができる。
なお、冷却管98a~98dに供給される冷却媒体は、冷媒の機能を有している液体が好ましく、例えば、純水や不凍液(エチレングリコール)などを用いることができる。また、冷却媒体は、冷媒の機能を有していれば、液体でなくともよく、例えば、冷却した大気を用いてもよい。
次に、図47を参照しながら、この冷却装置90の一例を説明する。タンク92と移送ポンプ94とは、環状の配管93を介して連通しており、移送ポンプ94は、タンク92内から冷却媒体を引き抜き、配管93内を循環させている。また、循環ポンプ94の下流で環状の配管93が分岐しており、その下流に複数の冷却管98a~98dがそれぞれ配置されている。この実施形態では、冷却管98a~98dが照射部22(図45参照)の背面側に配置されている。この冷却管98a~98dの下流では、分岐した配管93が統合している。統合された配管93は、タンク92に接続されている。
この冷却装置90では、タンク92内に貯蔵された冷却媒体は、移送ポンプ94に引き抜かれて、冷却管98a~98dに供給される。冷却媒体が冷却管98a~98dに供給されることによって、冷却装置90は、エリアA~D毎に配置された冷却管98a~98dの周囲を冷却する。また、冷却管98a~98dに供給された冷却媒体は、一本の配管93に統合され、タンク92に回収される。
また、図47に示す冷却装置90は、複数の冷却管98a~98dに供給される冷却媒体を冷却管98a~98d毎に遮断する複数の弁部96a~96dを備えている。この実施形態では、弁部96a~96dは、信号線を介して、冷却制御部280に接続されている。冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数の弁部96a~96dをそれぞれ制御し、複数の冷却管98a~98dへの冷却媒体の供給を調整する。この液晶表示装置100では、冷却管98a~98dへの冷却媒体の供給を調整することによって、エリアA~D毎に冷却を行うことができる。
また、複数の弁部96a~96dは、例えば、図47に示すように、それぞれの冷却管98a~98dの冷却媒体の流路(配管93)における上流に配置されていてもよい。この場合、それぞれの弁部96a~96dは、信号線を介して、冷却制御部280と接続されている。冷却制御部280は、図58に示すように、第1受光センサ122によって得られた受光情報a1~d1を取得する(S1)。そして、冷却制御部280は、受光情報a1~d1に基づいて、冷却制御信号a5~d5を作成する(S2)。この冷却制御信号a5~d5は、弁部96a~96dに送られる。弁部96a~96dは、冷却制御信号a5~d5に基づいてそれぞれ開閉され(S3)、各々の弁部96a~96dの下流に配置された冷却管98a~98dへの冷却媒体の供給が調整される。このようにして、液晶表示装置100は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、複数のエリアA~D毎に冷却を行う。
また、冷却装置90は、表示領域10aを分割した複数のエリア毎に冷却を行うことができればよく、上述の構成に限定されない。
例えば、図48に示すように、表示領域10aを分割したエリアA~D毎に、各々が独立して冷却媒体を循環させる冷却装置90a~90dを冷却装置として用いてもよい。この場合、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、各々の冷却装置90a~90dの移送ポンプ94a~94dを制御し、各々の冷却管98a~98dへの冷却媒体の供給を調整する。この場合、冷却装置90a~90dは、図47に示すような弁部96a~96dを備えていないけれども、それぞれの冷却管98a~98dに選択的に冷却媒体を供給することができる。
また、冷却装置は、上記に限定されない。
他の形態として、例えば、冷却装置90は、図49及び図50に示すように、冷却ファン91を備えていてもよい。冷却ファン91は、液晶表示装置100の内部を換気する。図49及び図50に示す形態では、さらに、この実施形態では、冷却装置90は、表示領域10aを分割した複数のエリア毎に配置されたヒートシンク95を備えている。ヒートシンク95は、冷却ファン91を通じて液晶表示装置100の外部と連通している。この実施形態では、液晶表示装置100は、内部を換気する冷却ファン91と、冷却ファン91を通じて液晶表示装置100の外部と連通しているヒートシンク95とを備えている。この場合、冷却装置90は、冷却ファン91を駆動させ、ヒートシンク95の内部に滞留した温度の高い空気を液晶表示装置100の外部に排出することによって冷却を行うことができる。また、この液晶表示装置100によれば、表示領域10aを分割した複数のエリアA~D毎にヒートシンク95が配置されているので、当該複数のエリアA~D毎に冷却することができる。
この場合、例えば、冷却ファン91及びヒートシンク95は、照射部22の背面に配置されていてもよい。また、冷却ファン91が設けられている部位は、液晶表示装置100の外部に開放されていてもよい。ヒートシンク95は、内部に空洞を有した部材であり、冷却ファン91の駆動によって、内部の空洞に滞留した空気が液晶表示装置100の外部に排出されるように構成してもよい。
また、例えば、図49に示すように、ヒートシンク95のそれぞれに対応して、冷却ファン91が複数設けられていてもよい。この場合、冷却制御部280は、第1受光センサ122によって得られた受光情報に基づいて、ヒートシンク95の内部が個別に換気されるように、複数の冷却ファン91を個別に稼働させてもよい。
この場合、複数の冷却ファン91が個別に稼働されると、ヒートシンク95の内部空洞に滞留した空気が個別に換気される。前述のように、ヒートシンク95は、エリアA1~D1毎に配置されているので、各ヒートシンク95が個別に換気されることによって、表示領域10aを分割したエリアA~D毎に冷却が行われる。これにより、当該複数のエリアA~D毎により効率よく冷却することができる。
この場合、複数の冷却ファン91が個別に稼働されると、ヒートシンク95の内部空洞に滞留した空気が個別に換気される。前述のように、ヒートシンク95は、エリアA1~D1毎に配置されているので、各ヒートシンク95が個別に換気されることによって、表示領域10aを分割したエリアA~D毎に冷却が行われる。これにより、当該複数のエリアA~D毎により効率よく冷却することができる。
また、ヒートシンク95は、図50に示すように、内部に有した空洞と冷却ファン91との間を塞ぐ開閉部97を備えていてもよい。この場合、冷却制御部280(図47又は図48参照)は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、ヒートシンク95の内部が個別に換気されるように、開閉部97をそれぞれ制御する。この液晶表示装置100によれば、第1受光センサ122によって得られた受光情報a1~d1に基づいて開閉部97を制御することによって、ヒートシンク95の内部を個別に換気して、エリアA~D毎に冷却を行うことができる。また、この液晶表示装置100では、開閉部97を開閉させることによって、ヒートシンク95内を個別に換気する。このため、ヒートシンク95の配置数に対応させて、冷却ファン91を複数設ける必要がない。このため、液晶表示装置100の部品点数の減少や、冷却ファン91の駆動に起因する騒音の抑制に貢献することができる。
また、液晶表示装置100が複数の画素30をそれぞれ駆動制御する液晶パネル制御部220を備えている場合、冷却装置90は、表示領域10aを分割した複数のエリアに加えて、液晶パネル制御部220を冷却してもよい。この場合、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて行われるエリア毎の冷却に加えて、液晶パネル制御部220(パネル制御部)の駆動に応じた冷却が行われるように、冷却装置90を制御するとよい。
液晶パネル制御部220は、上述のように、CPU、GPU、チップセットなどを備えている。CPU、GPU、チップセットなどは、画素30を駆動制御する際に発熱する。このため、画素30の駆動制御が行われると、液晶パネル制御部220の周辺の温度が上昇することがある。この温度上昇によって、液晶パネル制御部220の周辺に位置する液晶層13において、液晶分子の応答特性が低下する可能性がある。この液晶表示装置100によれば、表示領域10aを分割した複数のエリアA~D毎に冷却を行うとともに、液晶パネル制御部220の周辺を冷却するので、液晶分子の応答特性低下を防止することができる。
また、液晶パネル制御部220が発熱すると、液晶パネル制御部220自体の温度も上昇する。この場合、液晶パネル制御部220による画素30の駆動制御が不安定になり、表示画像全体に乱れが生じる可能性がある。この液晶表示装置100によれば、液晶パネル制御部220を冷却することができるので、画素30の駆動制御を安定させることもできる。
また、既に説明したバックライト制御部240(例えば、図2及び図9~図16参照)の制御方法は、冷却制御部280の制御方法に応用することができる。以下、冷却制御部280の制御方法について説明する。
例えば、図47又は図48に示された冷却制御部280を備えた液晶表示装置100は、第2受光センサ124(図30参照)を備えていてもよい。この第2受光センサ124は、例えば、図2及び図9~図16に示すように、バックライト20から照射された照明光を表示領域10aの複数の位置で受光する。
この場合、冷却制御部280は、図47又は図48に示すように、第1受光センサ122によって得られた受光情報a1~d1に加えて、第2受光センサ124によって得られた照明光の受光情報a3~d3(図31参照)に基づいて冷却装置90を制御してもよい。この場合、冷却制御部280は、第2受光センサ124によって得られた受光情報a3~d3に基づいて冷却部90の制御を補正することができる。
また、この液晶表示装置100において、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1と、第2受光センサ124によって得られた受光情報a3~d3との差分に基づいて冷却装置90を制御してもよい。これによって、冷却制御部280は、得られた受光情報a1~d1から照明光の受光情報a3~d3を排除し、表示領域10aを照射する外部光の正確な受光情報に基づいて冷却装置90を制御することができる。
また、第2受光センサ124を備えた液晶表示装置100は、図31に示すように、誤差電流算出部208を備えていてもよい。ここで、誤差電流算出部208は、予め定められた複数のタイミングにおいて、第2受光センサ124によって得られた受光情報a3~d3を比較し、光以外の外的要因によって第2受光センサに生じた誤差電流を算出する。この場合、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に加えて、誤差電流算出部208によって算出された誤差電流に基づいて、冷却部90を制御する。これによって、冷却制御部280は、光以外の外的要因に起因した誤差電流を排除し、より正確な受光情報に基づいて冷却装置90を制御することができる。
また、バックライト20の照射部22から生じる照明光は、冷却装置90による冷却によって変化することがある。このため、第2受光センサ124を備えた液晶表示装置100は、照明光の受光情報a3~d3に基づいて照射部22をそれぞれ制御するバックライト制御部240を備えていてもよい。かかる構成によれば、液晶表示装置100は、当該冷却によって変化した照明光の照射部22の受光情報a3~d3に基づいて照射部22を制御し、照明光の明るさを補正することができる。
また、図47又は図48に示された冷却制御部280を備えた液晶表示装置100は、バックライト制御部240を備えた液晶表示装置100と同様に、間欠駆動制御部205(図33参照)を備えていてもよい。この間欠駆動制御部205は、既に説明したように、表示領域10aの画像が切り替わる期間中にバックライト20を消灯させる消灯期間が存在するように、消灯期間とバックライト20を点灯する点灯期間とを交互に切り替える。
間欠駆動制御部205を備えた液晶表示装置100では、冷却制御部280は、バックライト20の消灯期間に第1受光センサ122によって得られた受光情報a1~d1に基づいて冷却装置90を制御してもよい。これによって、第1受光センサ122によって得られた受光情報a1~d1から照明光を排除し、表示領域10aを照射する外部光の受光情報a1~d1に基づいて冷却装置90を制御することができる。
また、さらにバックライト20の点灯期間に第1受光センサ122によって得られた受光情報a1~d1と消灯期間に第1受光センサ122によって得られた受光情報(照明光の受光情報)a3~d3との差分に基づいて冷却装置90を制御してもよい。かかる制御は、間欠駆動制御部205を備えた液晶表示装置100では、冷却制御部280は、バックライト20の点灯期間に第1受光センサ122によって得られた受光情報a1~d1に加えて行なうとよい。これによって、冷却制御部280は、バックライト20から照射される照明光の明るさに基づいて冷却部90を制御することができる。
また、間欠駆動制御部205を備えた液晶表示装置100は、さらに既に説明した第2受光センサ124(図30及び図31参照)を備えていてもよい。この場合、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に加えて、バックライト20の消灯期間に第2受光センサ124で生じた電流に基づいて冷却部90を制御してもよい。これによって、冷却制御部280は、光以外の外的要因に起因した誤差を排除して、冷却装置90を正確に制御することができる。
また、間欠駆動制御部205を備えた液晶表示装置100も、照明光の受光情報a3~d3に基づいて照射部22をそれぞれ制御するバックライト制御部240を備えていてもよい。この場合、液晶表示装置100は、第2受光センサ124を備えた液晶表示装置100と同様に、冷却によって変化した照明光の照射部22の受光情報a3~d3に基づいて照射部22を制御し、照明光の明るさを補正することができる。
また、かかる冷却制御部280を備えた液晶表示装置100は、バックライト制御部240を備えた液晶表示装置100と同様に、既に説明した第3受光センサ126(図32参照)を備えていてもよい。第3受光センサ126は、表示領域10aを照射する外部光と、液晶表示装置100から生じた光(例えば、照明光)とに対して遮光されている。これによって、第3受光センサ126は、光以外の外的要因に起因して生じる誤差電流を検出することができる。また、この場合に、冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に加えて、第3受光センサ126に生じた電流a3~d3に基づいて冷却装置90を制御してもよい。これによって、冷却制御部280は、光以外の外的要因に起因して生じる誤差電流を排除して、冷却装置90を正確に制御することができる。
また、冷却制御部280を備えた液晶表示装置100は、既に説明したバックライト制御部240を備えていてもよい。このバックライト制御部240には、第1受光センサ122で得られたエリアA~D毎の受光情報a1~d1に対して予め基準値が定められている。そして、バックライト制御部240は、当該基準値とエリアA~D毎の受光情報a1~d1とを対比して、当該基準値を上回った受光情報が得られたエリアA~Dに対して、他の部分よりも明るい照明光が照射されるように複数の照射部22をそれぞれ制御する。かかる制御を行うと、部分的なコントラストの低下を防止することができる反面、照射部22から照射される照明光の明るさがエリア毎に異なるため、表示領域10aの温度分布にばらつきが生じやすくなる。この液晶表示装置100によれば、第1受光センサ122によって得られた受光情報a1~d1に基づいて、冷却装置90を制御するので、明るい照明光が照射される部位が優先的に冷却される。これによって、エリア毎に照明光の明るさを調整することで生じる温度分布のばらつきを防ぐことができる。
さらに、エリア毎に表示領域10aを冷却する液晶表示装置100は、上述のように、第1受光センサ122によって得られた受光情報a1~d1に対して基準値が予め定められた画像変更部250を備えていてもよい。画像変更部250は、例えば、第1受光センサ122によって得られた受光情報a1~d1に基づいて、当該表示領域10aのうち、基準値を上回る受光情報a1~d1を得た部位を除いた領域に画像を表示させる画像表示エリア10a1を設定してもよい。この場合、画像変更部250によって表示領域10aに表示される画像が変更された結果、表示領域10aに画像が表示されなくなった部位に対して、当該部位の冷却停止させるように、冷却制御部280は冷却装置90を制御するとよい。この場合、画像が表示されていない部位では、冷却が行われない。このため、液晶表示装置100の冷却用電力を節約することができるとともに、冷却装置90の駆動音に起因した騒音を小さく抑えることができる。また、この液晶表示装置100によれば、画像が表示されていない部位に冷却が行われない。このため、液晶パネル10が過剰に冷却されることを防止できる。
また、画像変更部250は、予め定められた所定の条件において、表示領域10aに画像を表示させるために液晶表示装置が行う駆動を停止させてもよい。ここで、所定の条件とは、例えば、表示領域10aの面積に対して、一定の閾値を超える受光情報a1~d1が得られた部位の面積が一定の割合を超えた場合や、表示領域10a内における画面中央部分で一定の閾値を超える外部光の強度が検出された場合(例えば、図42参照)である。このような場合には、画像変更部250は液晶表示装置を停止させてもよい。このような場合には、画面全体が見難く、また、画像を表示させるのに適した領域が分断されるため、適切に画像を表示できない場合がある。
また、この場合、画像変更部250によって表示領域10aに表示される画像が変更された結果、表示領域10aに画像が表示されなくなった部位について、当該部位を冷却する冷却装置90(図47又は図48参照)を停止させるとよい。これにより省力化を図ることができる。
また、この場合、画像変更部250によって表示領域10aに表示される画像が変更された結果、表示領域10aに画像が表示されなくなった部位について、当該部位を冷却する冷却装置90(図47又は図48参照)を停止させるとよい。これにより省力化を図ることができる。
さらに、冷却装置90と冷却制御部280とを備えた液晶表示装置100には、上述した切替部290によるモードの切り替えが用いられていてもよい。この場合、切替部290は、冷却モードと、非冷却モードとを切り替える。ここで、冷却モードは、第1受光センサ122によって得られた受光情報a1~d1に基づいて冷却装置90が制御される状態を意味する。また、非冷却モードは、当該冷却モードが実行されていない状態を意味する。
この液晶表示装置100は、例えば、冷却モードを実行させる時間帯が予め設定されているタイマー292を備えているとよい。この場合、切替部290は、タイマー292に予め設定されている時間帯に基づいて冷却モードと非冷却モードとを切り替える。これによって、表示領域10aを照射する外部光の強度が強い時間帯や外部光の強度が変化しやすい時間帯にのみ冷却モードを選択して、表示領域10aに表示する画像を変更する制御を行うことができる。
また、この液晶表示装置100は、表示領域10aを照射する外部光を複数の位置で受光する切替用受光センサを備えていてもよい。この切替用受光センサは、例えば、第1受光センサ122を流用することができる。この場合、切替部290は、切替用受光センサによって得られた受光情報a1~d1に基づいて、冷却モードと非冷却モードとを切り替える。これによって、表示領域10aを照射する外部光の強度が強くなった場合に冷却モードを選択し、外部光の強度が弱い場合に非冷却モードを選択することができる。なお、前述のように、切替用受光センサは第1受光センサ122を流用することができる。
また、例えば、冷却制御部280は、予め定められた時間に継続して基準値を上回る受光情報が第1受光センサ122によって得られた場合に、冷却装置90を制御してもよい。この場合、液晶表示装置の前を人が通行するなどの場合に、表示領域10aを照射する外部光が一時的に遮られ、第1受光センサ122によって得られる受光情報a1~d1が一時的に変化することがある。この冷却制御部280は、かかる場合に冷却装置90が駆動して、過剰な冷却が行われることを防ぐことができる。
また、この実施例では、表示パネルとして液晶パネル10を備え、当該液晶パネル10の背面に光を照射する照射部22を備えたバックライト20とからなる液晶表示装置100について説明した。この液晶表示装置100に備えられた冷却装置90は、表示領域10aを分割した複数のエリアA~D毎に液晶パネル10とバックライト20とを冷却する。しかし、冷却装置90と冷却制御部280によって行われるエリア毎の冷却は、液晶表示装置100だけでなく、その他の表示装置(例えば、有機ELディスプレイ、プラズマディスプレイなど)にも用いることができる。
なお、冷却制御部280に受光情報a1~d1を送る第1受光センサ122は、上述したバックライト制御部240に受光情報a1~d1を送る第1受光センサ122と同様に、種々の変更が可能である。
以上、本発明の一実施形態に係る表示装置の一例として、液晶表示装置100を説明した。
上述した液晶表示装置100は、テレビ受信機として用いることができる。この場合、液晶表示装置100は、テレビ放送を受信する放送受信部201aを備えている。放送受信部201aは、テレビ放送を受信して、映像信号を出力する。この場合、制御部200は、放送受信部201aから出力されたテレビ放送の映像信号に基づいて表示領域10aにテレビジョン映像(画像)を表示させる。このとき、図4に示すように、放送受信部201aを信号入力部201の一部として備え、放送受信部201aで受信したテレビ放送に基づく画像が表示されるように制御部200を構成してもよい。これにより、テレビ放送に基づいて制御を行う制御部200が、液晶パネル10とバックライト20とを制御し、表示領域10aにテレビジョン映像を表示させる。
また、このような構成の液晶表示装置100をテレビ受信機にする際には、例えば、図51に示すように、第1の筐体180と第2の筐体190とで、液晶表示装置100を包み込むようにして挟持するとよい。このとき、第1の筐体180には、表示領域10aに対応した開口部180aが形成されている。また、第2の筐体190は、液晶表示装置100の背面を覆っており、液晶表示装置100を操作するための操作用回路150を有している。更に、第2の筐体10には、液晶表示装置100を支持する支持用部材160が取り付けられている。なお、本発明の実施形態に係る液晶表示装置100の用途は、テレビ受信機に限定されず、種々の映像デバイスから送られる画像を映像情報とする画像表示装置であればよい。
また、上述したような液晶表示装置100を製造する際、製造工程の途中で液晶モジュール110が作製される。この液晶モジュール110は、図52に示すように、液晶パネル10と、第1受光センサ122と、演算部112と、出力端子114とを備えている。液晶パネル10は、上述のように、表示領域10aに複数の画素30が配置されている。第1受光センサ122は、液晶パネル10に照射された外部光を表示領域10aの複数の位置で受光する。また、演算部112は、第1受光センサによって得られた受光情報a1~d1に基づいて、表示領域10aを分割した複数のエリア毎に照射される照明光を調整するための信号を作成する。そして、出力端子114は、演算部112によって作成された信号を出力する。また、第1受光センサ122によって得られた受光情報a1~d1に基づいて、演算部112はプログラムに沿って所定の処理が行なわれる。演算部112は、プログラムを変更することによって、生成する信号を変更できる。
この液晶モジュール110を用いると、第1受光センサ122によって得られた受光情報a1~d1に基づいて、所定の処理が行なわれる種々の液晶表示装置の製造が容易になる。例えば、第1受光センサ122によって得られた受光情報a1~d1に基づいて、照射部22をそれぞれ制御する液晶表示装置や、表示領域10aに表示させる画像を変更する液晶表示装置や、表示領域10aを分割したエリア毎に冷却を行う液晶表示装置などを容易に製造することができる。例えば、バックライト20のなどの外部照明装置から生じる照明光の明るさを制御する制御装置(例えば、バックライト制御部240)に、出力端子114を接続させると、演算部112によって作成された信号に基づいて外部照明装置を制御することができる。このとき、外部照明装置は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、液晶モジュール110に照射される照明光を複数のエリア毎に調整する。
また、画像変更部250に出力端子114を接続させ、画像変更部250(図38又は図46参照)を備えた液晶モジュール110を作成することもできる。この場合、画像変更部250には、第1受光センサ122によって得られた受光情報a1~d1に対して基準値が予め定められており、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、液晶パネル10を制御して、表示領域10aに表示される画像を変更する。
さらに、冷却制御部280(図47又は図48参照)に出力端子114を接続させ、冷却装置90、90a~90d(図47又は図48参照)と冷却制御部280を備えた液晶モジュール110を作成することもできる。この場合、冷却装置90、90a~90dは、表示領域10aを分割した複数のエリアA~D毎に液晶パネル10を冷却する。冷却制御部280は、第1受光センサ122によって得られた受光情報a1~d1に基づいて、エリアA~D毎に冷却が行われるように冷却装置90、90a~90dを制御する。
また、液晶表示装置100の製造工程の途中では、第1受光センサ122付き液晶パネル10を製造できる。この第1受光センサ122付きの液晶パネル10は、表示領域10aに複数の画素30を備えている。また、第1受光センサ122は、表示領域10aに照射された外部光を表示領域10aの複数の位置で受光するように配置されている。この第1受光センサ122付き液晶パネル10は、表示領域10aに照射される外部光の影響によって表示領域で生じる見かけの輝度分布のばらつきを調べることができる。かかる第1受光センサ122付き液晶パネル10を用いると、第1受光センサ122によって得られた受光情報a1~d1に基づいて、照射部22をそれぞれ制御する液晶表示装置100を製造することができる。また、液晶パネル10を用いて、画像変更部250(図38又は図46参照)や冷却制御部280(図47又は図48参照)を備えた液晶表示装置100を作成することができる。
また、液晶表示装置100の製造工程の途中では、図53に示すように、バックライト20(液晶表示装置用バックライト)も製造してもよい。このバックライト20(液晶表示装置用バックライト)は、液晶パネル10の背面に対向して配置される。バックライト20は、図53に示すように、複数の照射部22と、入力端子28と、バックライト制御部240とを備えている。複数の照射部22は、液晶パネル10の背面に照明光を照射する。また、入力端子28には、受光センサによって得られた受光情報a1~d1が入力される。バックライト制御部240は、入力端子28から入力された受光情報a1~d1に基づいて、照明光の明るさが部分的に調整されるように、照射部22をそれぞれ制御する。このバックライト20(液晶表示装置用バックライト)は、例えば、上述した液晶モジュール110(図52参照)の出力端子114に、入力端子28を接続するとよい。これにより、液晶モジュール110(図52参照)の出力端子114を介して、第1受光センサ122によって得られた受光情報a1~d1が入力端子28に入力される。バックライト20(液晶表示装置用バックライト)は、かかる受光情報a1~d1に基づいて、照射部22をそれぞれ制御する液晶表示装置100を製造することができる。
また、画像変更部250(図38又は図46参照)を備えたバックライト20(液晶表示装置用バックライト)を作成することもできる。この場合、画像変更部250は、第1受光センサ122によって得られた受光情報a1~d1に対して基準値が予め定められており、基準値を上回る受光情報a1~d1が第1受光センサ122によって得られた場合に、当該受光情報a1~d1に基づいて、照射部22を制御する。
さらに、冷却制御部280(図47又は図48参照)と冷却装置90とを備えたバックライト20(液晶表示装置用バックライト)を製造することができる。この場合、冷却装置90は、表示領域10aを分割した複数のエリアA~D毎に照射部22を冷却し、第1受光センサ122によって得られた受光情報a1~d1に基づいて、エリア毎に冷却が行われるように、冷却装置90を制御する。
さらに、冷却制御部280(図47又は図48参照)と冷却装置90とを備えたバックライト20(液晶表示装置用バックライト)を製造することができる。この場合、冷却装置90は、表示領域10aを分割した複数のエリアA~D毎に照射部22を冷却し、第1受光センサ122によって得られた受光情報a1~d1に基づいて、エリア毎に冷却が行われるように、冷却装置90を制御する。
以上、液晶表示装置100について、種々の実施例を例示した。各実施例の各構成は、異なる実施例に対しても適宜に組み合わせることができる。また、上述した実施形態では、主として液晶表示装置を例示したが、特に限定されない限りにおいて、液晶表示装置に限定されず、種々の表示装置に適用できる。表示装置には、例えば、液晶表示装置の他、有機ELディスプレイやプラズマディスプレイが挙げられる。
また、表示領域に複数の画素が配置された表示パネル(液晶パネル10)の制御方法は、例えば、図54~図57に示すように、次の第1ステップ(S1)と、第2ステップ(S2)を備えているとよい。
第1ステップ(S1):表示領域(10a)の複数の位置で、表示パネル(液晶パネル10)に照射された外部光の受光情報(a1~d1)を得る。
第2ステップ(S2):第1ステップ(S1)において、予め定められた基準値を上回る受光情報が得られた場合に、当該受光情報(a1~d1)に基づいて、表示領域(10a)に表示される画像を変更する。
第1ステップ(S1):表示領域(10a)の複数の位置で、表示パネル(液晶パネル10)に照射された外部光の受光情報(a1~d1)を得る。
第2ステップ(S2):第1ステップ(S1)において、予め定められた基準値を上回る受光情報が得られた場合に、当該受光情報(a1~d1)に基づいて、表示領域(10a)に表示される画像を変更する。
また、表示装置(液晶表示装置100)は、例えば、図47に示すように、表示領域(10a)に複数の画素が配置された表示パネル(液晶パネル10)と、表示領域(10a)を分割した複数のエリア(A~D)毎に冷却を行う冷却装置(90)とを備えている。かかる表示装置(液晶表示装置100)の制御方法は、例えば、図58に示すように、以下の第1ステップ(S1)と、第2ステップ(S2)を備えているとよい。
第1ステップ(S1):表示領域(10a)の複数の位置で表示パネル(液晶パネル10)に照射された外部光の受光情報(a~d)を得る。
第2ステップ(S2):第1ステップ(S1)において得られた受光情報(a~d)に基づいて、表示領域(a~d)を分割した複数のエリア(A~D)毎に冷却が行われるように冷却装置(90)を制御する。
第1ステップ(S1):表示領域(10a)の複数の位置で表示パネル(液晶パネル10)に照射された外部光の受光情報(a~d)を得る。
第2ステップ(S2):第1ステップ(S1)において得られた受光情報(a~d)に基づいて、表示領域(a~d)を分割した複数のエリア(A~D)毎に冷却が行われるように冷却装置(90)を制御する。
10 液晶パネル
10a 表示領域
10a1 画像表示エリア
13 液晶層
15 シール
16 スペーサ
17 偏光板
20 バックライト
22 照射部
22a 点光源(発光ダイオード)
22b 線状光源(冷陰極管)
22c1 導光板
22c2 光源
24 バックライトシャーシ
25 反射板
25a 面
26 光学シート
28 入力端子
30 画素
40 アレイ基板
41 ガラス基板
42 画素電極
42a 電極
43 バスライン(データ信号線)
44 平坦化層
46 配向膜
47 薄膜トランジスタ
47a ゲート電極
47b ソース電極
47c ドレイン電極
48 走査信号線
50 カラーフィルタ基板
51 ガラス基板
52 ブラックマトリクス
53 着色層
54 平坦化層
55 対向電極
56 配向膜
60 ベゼル
61 電極
62 補助容量配線
63 フレーム
80 内部反射板
81 ゲートドライバ
82 ソースドライバ
81a、82a 液晶パネル制御信号
90 冷却装置
91 冷却ファン
92 タンク
93 配管
94 循環ポンプ
95 ヒートシンク
96 冷却弁
97 遮断部
98 冷却管
100 液晶表示装置
110 液晶モジュール
112 演算部
114 出力端子
120 受光センサ支持部材
122 第1受光センサ
124 第2受光センサ
126 第3受光センサ
128 遮光部材
130 蓄電部
132 電気回路
134 マルチプレクサ
150 操作用回路
160 支持用部材
170 温度センサ
180 第1の筺体
190 第2の筺体
200 制御部
201 信号入力部
201a 放送受信部
203 電源
205 間欠駆動制御部
206 電力投入部
220 液晶パネル制御部
222 タイミングコントローラ
240 バックライト制御部
242 電力投入部
250 画像変更部
280 冷却制御部
290 切替部
292 タイマー
294 切替制御部
300 外部システム
302 画像信号
CCS 補助容量
CLC コンデンサ
10a 表示領域
10a1 画像表示エリア
13 液晶層
15 シール
16 スペーサ
17 偏光板
20 バックライト
22 照射部
22a 点光源(発光ダイオード)
22b 線状光源(冷陰極管)
22c1 導光板
22c2 光源
24 バックライトシャーシ
25 反射板
25a 面
26 光学シート
28 入力端子
30 画素
40 アレイ基板
41 ガラス基板
42 画素電極
42a 電極
43 バスライン(データ信号線)
44 平坦化層
46 配向膜
47 薄膜トランジスタ
47a ゲート電極
47b ソース電極
47c ドレイン電極
48 走査信号線
50 カラーフィルタ基板
51 ガラス基板
52 ブラックマトリクス
53 着色層
54 平坦化層
55 対向電極
56 配向膜
60 ベゼル
61 電極
62 補助容量配線
63 フレーム
80 内部反射板
81 ゲートドライバ
82 ソースドライバ
81a、82a 液晶パネル制御信号
90 冷却装置
91 冷却ファン
92 タンク
93 配管
94 循環ポンプ
95 ヒートシンク
96 冷却弁
97 遮断部
98 冷却管
100 液晶表示装置
110 液晶モジュール
112 演算部
114 出力端子
120 受光センサ支持部材
122 第1受光センサ
124 第2受光センサ
126 第3受光センサ
128 遮光部材
130 蓄電部
132 電気回路
134 マルチプレクサ
150 操作用回路
160 支持用部材
170 温度センサ
180 第1の筺体
190 第2の筺体
200 制御部
201 信号入力部
201a 放送受信部
203 電源
205 間欠駆動制御部
206 電力投入部
220 液晶パネル制御部
222 タイミングコントローラ
240 バックライト制御部
242 電力投入部
250 画像変更部
280 冷却制御部
290 切替部
292 タイマー
294 切替制御部
300 外部システム
302 画像信号
CCS 補助容量
CLC コンデンサ
Claims (43)
- 表示領域に複数の画素が配置された表示パネルと、
前記表示パネルに照射された外部光を前記表示領域の複数の位置で受光する第1受光センサと、
前記表示領域を分割した複数のエリア毎に冷却を行う冷却装置と、
前記第1受光センサによって得られた受光情報に基づいて、前記エリア毎に冷却が行われるように、前記冷却装置を制御する冷却制御部と
を備えた表示装置。 - 前記冷却装置は、
冷却媒体を貯蔵するタンクと、
前記タンクに接続されており、前記タンク中の冷却媒体を移送する移送ポンプと、
前記表示領域を分割した複数のエリア毎に配置されており、前記移送ポンプによって前記冷却媒体が供給される複数の冷却管と、
を備えている、請求項1に記載された表示装置。 - 前記冷却装置は、
前記複数の冷却管に供給される前記冷却媒体を冷却管毎に遮断する複数の弁部を備え、
前記冷却制御部は、第1受光センサによって得られた受光情報に基づいて、前記複数の冷却管に前記冷却媒体が個別に供給されるように、前記複数の弁部を制御する、請求項2に記載された表示装置。 - 前記冷却装置は、
前記表示装置の内部を換気する冷却ファンと、
前記表示領域を分割した複数のエリア毎に配置されており、前記冷却ファンを通じて前記表示装置の外部と連通しているヒートシンクと、
を備えている、請求項1に記載された表示装置。 - 前記ヒートシンクのそれぞれに対応して、前記冷却ファンが複数設けられており、
前記冷却制御部は、第1受光センサによって得られた受光情報に基づいて、前記ヒートシンクの内部が個別に換気されるように、複数の前記冷却ファンを個別に稼働させる、請求項4に記載された表示装置。 - 前記ヒートシンクは、前記冷却ファンとの間を適宜に開閉する開閉部を備え、
前記冷却制御部は、第1受光センサによって得られた受光情報に基づいて、前記ヒートシンクの内部が個別に換気されるように、前記開閉部をそれぞれ制御する、請求項5に記載された表示装置。 - 前記複数の画素をそれぞれ駆動制御する表示パネル制御部を備え、
前記冷却装置は、前記表示領域を分割した複数のエリアに加えて、前記表示パネル制御部を冷却し、
前記冷却制御部は、前記パネル制御部の駆動に応じて、前記表示パネルを冷却するように前記冷却装置を制御する、請求項1から6までの何れか一項に記載された表示装置。 - 前記第1受光センサによって得られた受光情報に対して基準値が予め定められており、前記第1受光センサによって得られた受光情報に基づいて、当該表示領域のうち、前記基準値を上回る受光情報を得た部位を除いた領域に画像を表示させる画像表示エリアを設定する画像変更部を備え、
前記冷却制御部は、前記画像変更部によって画像表示エリアが設定された結果、前記表示領域に画像が表示されなくなった部位の冷却が停止されるように、前記冷却装置を制御する、請求項1から7までの何れか一項に記載された表示装置。 - 前記第1受光センサによって得られた受光情報に対して基準値が予め定められており、前記第1受光センサによって得られた受光情報に基づいて、前記基準値を上回る受光情報が得られた部位の面積が、前記表示領域の面積に対して一定の割合を上回った場合に、前記表示領域に画像を表示させるのを停止させる画像変更部を備え、
前記冷却制御部は、前記画像変更部によって前記表示装置の駆動が停止された場合に、冷却が停止されるように、前記冷却装置を制御する、請求項1から7までの何れか一項に記載された表示装置。 - 前記第1受光センサによって得られた受光情報に対して基準値が予め定められており、前記第1受光センサによって得られた受光情報に基づいて、前記表示領域内に予め定められた画面中央部分で前記基準値を上回る受光情報が得られた場合に、前記表示領域に画像を表示するのを停止させる画像変更部を備え、
前記冷却制御部は、前記画像変更部によって前記表示装置の駆動が停止された場合に、冷却が停止されるように、前記冷却装置を制御する、請求項1から7までの何れか一項に記載された表示装置。 - 前記表示領域を照射する外部光と、前記表示装置から生じた光とに対して遮光されている第3受光センサを備え、
前記冷却制御部は、前記第1受光センサによって得られた受光情報に加えて、前記第3受光センサに生じた電流に基づいて前記冷却装置を制御する、請求項1から10までの何れか一項に記載された表示装置。 - 前記冷却制御部によって冷却装置が制御される冷却モードと、当該冷却モードが実行されない非冷却モードとを切り替える切替部と、
前記冷却モードによる制御を実行させる時間帯が予め設定されているタイマーと、
を備え、
前記切替部は、前記タイマーに予め設定されている時間帯に基づいて前記冷却モードと前記非冷却モードとを切り替える、請求項1から11までの何れか一項に記載された表示装置。 - 前記冷却制御部によって冷却装置が制御される冷却モードと、当該冷却モードが実行されない非冷却モードとを切り替える切替部と、
前記表示パネルに照射された外部光を前記表示領域の複数の位置で受光する切替用受光センサと、
を備え、
前記切替部は、前記切替用受光センサによって得られた受光情報に基づいて、前記冷却モードと前記非冷却モードとを切り替える、請求項1から11までの何れか一項に記載された表示装置。 - 前記冷却制御部は、予め定められた時間に継続して、一定の受光情報が前記第1受光センサによって得られた場合に、当該一定の受光情報に基づいて前記冷却装置を制御する、請求項1から13までの何れか一項に記載された表示装置。
- 前記第1受光センサは、前記表示領域に分散して配置されている、請求項1から14までの何れか一項に記載された表示装置。
- 前記第1受光センサは、前記複数の画素からなる1つの画素群毎に配置されている、請求項15に記載された表示装置。
- 前記第1受光センサは、前記表示領域を横断又は縦断するように設定された線に沿って分散して配置されている、請求項15に記載された表示装置。
- 前記表示パネルは方形の表示領域を備えており、
前記第1受光センサは、前記表示領域の四辺のうち少なくとも対向した二辺の中間点を結ぶ線に沿って配置されている、請求項17に記載された表示装置。 - 前記表示パネルは方形の表示領域を備えており、
前記第1受光センサは、前記表示領域の四辺のうち少なくとも対向した二辺に沿った前記表示領域の周縁部に配置されている、請求項17に記載された表示装置。 - 前記表示パネルは方形の表示領域を備えており、
前記第1受光センサは、前記表示領域の少なくとも一方の対角線に沿って配置されている、請求項17に記載された表示装置。 - 請求項1から20までの何れか一項に記載された表示装置であって、
前記表示パネルとしての液晶パネルと、
当該液晶パネルの背面に光を照射する照射部を備えたバックライトと、
前記冷却装置は、前記表示領域を分割した複数のエリア毎に前記液晶パネルと前記バックライトとを冷却する液晶表示装置。 - 前記表示領域の画像が切り替わる期間中に前記バックライトを消灯させる消灯期間が存在するように、前記消灯期間と前記バックライトを点灯する点灯期間とを交互に切り替える間欠駆動制御部を備え、
前記冷却制御部は、前記バックライトの前記消灯期間に前記第1受光センサによって得られた受光情報に基づいて前記冷却装置を制御する、請求項21に記載された液晶表示装置。 - 前記表示領域の画像が切り替わる期間中に前記バックライトを消灯させる消灯期間が存在するように、前記消灯期間と前記バックライトを点灯する点灯期間とを交互に切り替える間欠駆動制御部を備え、
前記冷却制御部は、前記点灯期間に前記第1受光センサによって得られた受光情報に加えて、前記点灯期間に前記第1受光センサによって得られた受光情報と前記消灯期間に前記第1受光センサによって得られた受光情報との差分に基づいて、前記冷却装置を制御する、請求項21又は22に記載された液晶表示装置。 - 前記表示領域の画像が切り替わる期間中に前記バックライトを消灯させる消灯期間が存在するように、前記消灯期間と前記バックライトを点灯する点灯期間とを交互に切り替える間欠駆動制御部と、
前記バックライトの前記消灯期間に前記第1受光センサによって得られた受光情報に基づいて、前記照射部をそれぞれ制御するバックライト制御部と
を備えた請求項21から23までの何れか一向に記載された液晶表示装置。 - 前記バックライトから照射された照明光を前記表示領域の複数の位置で受光する第2受光センサを備え、
前記冷却制御部は、前記第1受光センサによって得られた受光情報に加えて、前記第2受光センサによって得られた照明光の受光情報に基づいて、前記冷却装置を制御する、請求項21から24までの何れか一項に記載された液晶表示装置。 - 前記液晶パネルは、対向する二つの基板から構成されており、
前記液晶パネルの一方の基板には、前記表示領域を照射する外部光を遮光するブラックマトリクスが形成されており、
前記第2受光センサは、前記液晶パネルの平面視においてブラックマトリクスが形成された領域に配置されている、請求項25に記載された液晶表示装置。 - 前記冷却制御部は、前記第1受光センサによって得られた受光情報と、前記第2受光センサによって得られた受光情報との差分に基づいて前記冷却装置を制御する、請求項25又は26に記載された液晶表示装置。
- 前記第2受光センサによって得られた照明光の受光情報に基づいて、前記照明光の明るさが複数のエリア毎に調整するように、前記照射部を制御するバックライト制御部を備えた、請求項25から27の何れか一項に記載された液晶表示装置。
- 前記第1受光センサで得られた前記エリア毎の受光情報に対して予め基準値が定められており、当該基準値と前記エリア毎の受光情報とを対比して、当該基準値を上回った受光情報が得られた前記エリアに対して、他の部分よりも明るい照明光が照射されるように、前記複数の照射部をそれぞれ制御するバックライト制御部を備え、
前記冷却制御部は、前記第1受光センサによって得られた受光情報に基づいて、前記冷却装置を制御し、前記複数のエリアを冷却する、請求項21から28までの何れか一項に記載された液晶表示装置。 - 前記バックライトから前記液晶パネルの背面に照射された照明光を前記表示領域の複数の位置で受光する第2受光センサと、
予め定められた複数のタイミングにおいて、前記第2受光センサによって得られた受光情報を比較し、光以外の外的要因によって前記第2受光センサに生じた誤差電流を算出する誤差電流算出部と、
を備え、
前記冷却制御部は、前記第1受光センサによって得られた受光情報に加えて、前記誤差電流算出部によって算出された前記誤差電流に基づいて、前記冷却装置を制御する、請求項21から29までの何れか一項に記載された液晶表示装置。 - 前記バックライトから前記液晶パネルの背面に照射された照明光を前記表示領域の複数の位置で受光する第2受光センサと、
前記表示領域の画像が切り替わる期間中に前記バックライトを消灯させる消灯期間が存在するように、前記消灯期間と前記バックライトを点灯する点灯期間とを交互に切り替える間欠駆動制御部と、
を備え、
前記冷却制御部は、前記第1受光センサによって得られた受光情報に加えて、前記バックライトの消灯期間に前記第2受光センサで生じた誤差電流に基づいて、前記冷却装置を制御する、請求項21から29までの何れか一項に記載された液晶表示装置。 - 前記第1受光センサは、前記液晶パネルの内部に配置されている、請求項21から31までの何れか一項に記載された液晶表示装置。
- 前記複数の画素には、前記バックライトから前記液晶パネルの背面に照射される照明光と、前記表示領域を照射する外部光とを透過させる開口部がそれぞれ設けられており、
前記液晶パネルの平面視において、隣り合った前記開口部の間の領域に沿って、格子状に形成されており、照射された光を遮るブラックマトリクスを備え、
前記第1受光センサは、前記液晶パネルの平面視における前記ブラックマトリクスが形成された領域において、前記ブラックマトリクスよりも前記液晶パネルの前面側に配置されている、請求項32に記載された液晶表示装置。 - 前記第1受光センサの前記バックライト側の面は、前記ブラックマトリクスによって覆われている、請求項33に記載された液晶表示装置。
- 前記第1受光センサは、前記ブラックマトリクスの中に配置されている、請求項33に記載された液晶表示装置。
- 前記液晶パネルは、対向する二つの基板から構成されており、
前記液晶パネルの一方の基板は、薄膜トランジスタと、前記薄膜トランジスタに信号を送る信号線を有しており、
前記第1受光センサは、前記液晶パネルの平面視において前記薄膜トランジスタ及び/又は前記信号線が形成された領域に配置されている、請求項32に記載された液晶表示装置。 - 前記液晶パネルの前面には、偏光板が取り付けられており、
前記第1受光センサは、前記液晶パネルの平面視における前記ブラックマトリクスが形成された領域において、前記液晶パネルの前面側の偏光板に配置されている、請求項21から31までの何れか一項に記載された液晶表示装置。 - 前記第1受光センサは前記バックライトに配置されている、請求項21から31までの何れか一項に記載された液晶表示装置。
- 前記第1受光センサは、前記液晶パネルと前記バックライトとの間に配置されている、請求項21から31までの何れか一項に記載された液晶表示装置。
- バックライトと共に液晶表示装置を構成し、複数の画素が配置された表示領域を備えた液晶パネルと、
前記表示パネルに照射された外部光を前記表示領域の複数の位置で受光する第1受光センサと、
前記表示領域を分割した複数のエリア毎に前記液晶パネルを冷却する冷却装置と、
前記第1受光センサによって得られた受光情報に基づいて、前記エリア毎に冷却が行われるように、前記冷却装置を制御する冷却制御部と、
を備えた液晶モジュール。 - 請求項21から39までの何れか一項に記載された液晶表示装置に用いられる液晶パネルであって、
複数の画素が配置された表示領域を備えた液晶パネルと、
前記表示パネルに照射された外部光を前記表示領域の複数の位置で受光する第1受光センサと、
を備えた受光センサ付き液晶パネル。 - 前記液晶パネルの背面に照明光を照射する複数の照射部と、
前記表示領域を分割した複数のエリア毎に前記照射部を冷却する冷却装置と、
前記第1受光センサによって得られた受光情報に基づいて、前記エリア毎に冷却が行われるように、前記冷却装置を制御する冷却制御部と、
を備えた液晶表示装置用バックライト。 - 表示領域に複数の画素が配置された表示パネルと、前記表示領域を分割した複数のエリア毎に冷却を行う冷却装置とを備えた表示装置の制御方法であって、
前記表示領域の複数の位置で前記表示パネルに照射された外部光の受光情報を得る第1ステップと、
前記第1ステップにおいて得られた受光情報に基づいて、表示領域を分割した複数のエリア毎に冷却が行われるように冷却装置を制御する第2ステップと
を備えた表示装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/504,595 US20120212466A1 (en) | 2009-10-30 | 2010-09-29 | Display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-250158 | 2009-10-30 | ||
JP2009250158 | 2009-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052329A1 true WO2011052329A1 (ja) | 2011-05-05 |
Family
ID=43921757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066919 WO2011052329A1 (ja) | 2009-10-30 | 2010-09-29 | 表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20120212466A1 (ja) |
WO (1) | WO2011052329A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI491058B (zh) * | 2011-12-15 | 2015-07-01 | Sony Corp | 影像拾取面板及影像拾取處理系統 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9317146B1 (en) * | 2012-08-23 | 2016-04-19 | Rockwell Collins, Inc. | Haptic touch feedback displays having double bezel design |
DE102013206536A1 (de) | 2013-04-12 | 2014-10-16 | Zumtobel Lighting Gmbh | Verfahren zum Ansteuern einer Leuchte mit mehreren Teileinheiten |
JP5865435B2 (ja) * | 2013-07-10 | 2016-02-17 | キヤノン株式会社 | 画像表示装置及びその制御方法 |
KR102098208B1 (ko) * | 2015-06-03 | 2020-04-07 | 삼성전자주식회사 | 시인성이 개선된 디스플레이 시스템 및 그 방법 |
KR102593452B1 (ko) * | 2015-12-28 | 2023-10-24 | 엘지디스플레이 주식회사 | 차량용 표시 장치의 영상 처리 장치 및 방법 |
CN108604621B (zh) * | 2016-02-02 | 2021-03-09 | 三菱电机株式会社 | 显示装置及显示方法 |
JP2017215361A (ja) * | 2016-05-30 | 2017-12-07 | 三菱電機株式会社 | 表示装置 |
WO2018002784A1 (en) * | 2016-06-29 | 2018-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, operation method of the electronic device, and moving vehicle |
US10733946B2 (en) * | 2016-08-26 | 2020-08-04 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
CN106873204B (zh) * | 2017-02-21 | 2020-04-21 | 合肥鑫晟光电科技有限公司 | 显示装置及其制作方法和驱动方法和对置基板 |
EP3477627A1 (en) * | 2017-10-26 | 2019-05-01 | Vestel Elektronik Sanayi ve Ticaret A.S. | Display device and method of operation |
CN109523957B (zh) * | 2018-12-24 | 2021-06-18 | 惠科股份有限公司 | 驱动电路、背光模组和显示面板 |
US12099269B2 (en) * | 2021-12-01 | 2024-09-24 | Lawrence Livermore National Security, Llc | Optically addressable light valves for high power operation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06110563A (ja) * | 1992-09-30 | 1994-04-22 | Toshiba Lighting & Technol Corp | 温度コントロールシステム |
JP2003533751A (ja) * | 2000-05-17 | 2003-11-11 | イー − マジン ディスプレイ テクノロジーズ リミテッド | 屋外広告用カラー反射電子掲示板装置 |
JP2005241806A (ja) * | 2004-02-25 | 2005-09-08 | Mitsubishi Electric Corp | 表示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005084166A (ja) * | 2003-09-05 | 2005-03-31 | Fuji Photo Film Co Ltd | 画像表示装置および画像表示方法 |
JP4706206B2 (ja) * | 2004-08-18 | 2011-06-22 | ソニー株式会社 | 放熱装置及び表示装置 |
TWI417604B (zh) * | 2005-12-28 | 2013-12-01 | Semiconductor Energy Lab | 顯示裝置 |
US7959341B2 (en) * | 2006-07-20 | 2011-06-14 | Rambus International Ltd. | LED color management and display systems |
-
2010
- 2010-09-29 WO PCT/JP2010/066919 patent/WO2011052329A1/ja active Application Filing
- 2010-09-29 US US13/504,595 patent/US20120212466A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06110563A (ja) * | 1992-09-30 | 1994-04-22 | Toshiba Lighting & Technol Corp | 温度コントロールシステム |
JP2003533751A (ja) * | 2000-05-17 | 2003-11-11 | イー − マジン ディスプレイ テクノロジーズ リミテッド | 屋外広告用カラー反射電子掲示板装置 |
JP2005241806A (ja) * | 2004-02-25 | 2005-09-08 | Mitsubishi Electric Corp | 表示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI491058B (zh) * | 2011-12-15 | 2015-07-01 | Sony Corp | 影像拾取面板及影像拾取處理系統 |
Also Published As
Publication number | Publication date |
---|---|
US20120212466A1 (en) | 2012-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011052331A1 (ja) | 表示装置 | |
WO2011052329A1 (ja) | 表示装置 | |
WO2010134438A1 (ja) | 液晶表示装置 | |
JP5070331B2 (ja) | 照明装置およびこれを備えた表示装置 | |
EP2940680B1 (en) | Transparent display device and method for controlling same | |
US8736543B2 (en) | Liquid crystal display device with backlight | |
TWI393100B (zh) | Display device and driving method thereof | |
US8797254B2 (en) | Liquid crystal display device | |
RU2467366C1 (ru) | Жидкокристаллическое устройство отображения | |
WO2012147651A1 (ja) | マルチディスプレイ装置及び画像表示装置 | |
WO2010016440A1 (ja) | バックライトおよびこれを用いた表示装置 | |
US20120299891A1 (en) | Light emitting device for image display, and image display device | |
JP4839379B2 (ja) | バックライト装置、及びこれを用いた表示装置 | |
WO2011121687A1 (ja) | 表示装置、液晶モジュール及び画像表示システム | |
CN107293261B (zh) | 一种拼接墙亮度均匀性控制系统及其控制方法 | |
WO2011125271A1 (ja) | 表示装置、液晶モジュール及び画像表示システム | |
US20140111560A1 (en) | Liquid crystal display device | |
CA2633864A1 (en) | Display device having a plurality of pixels and method for displaying images | |
WO2009125663A1 (ja) | 表示装置、及びテレビ受信装置 | |
WO2011052330A1 (ja) | 液晶表示装置 | |
JP5957289B2 (ja) | 表示装置 | |
WO2010092713A1 (ja) | 照明装置、表示装置、データ生成方法、データ生成プログラム、および、記録媒体 | |
KR101768668B1 (ko) | 액정 표시 장치의 구동 방법 | |
TWI426498B (zh) | 顯示器及顯示器之顏色調整方法 | |
JP2007163520A (ja) | 表示パネルおよび表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826463 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13504595 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10826463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |