WO2011052033A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2011052033A1
WO2011052033A1 PCT/JP2009/068387 JP2009068387W WO2011052033A1 WO 2011052033 A1 WO2011052033 A1 WO 2011052033A1 JP 2009068387 W JP2009068387 W JP 2009068387W WO 2011052033 A1 WO2011052033 A1 WO 2011052033A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
flow
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2009/068387
Other languages
English (en)
French (fr)
Inventor
浩司 山下
裕之 森本
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/068387 priority Critical patent/WO2011052033A1/ja
Publication of WO2011052033A1 publication Critical patent/WO2011052033A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • an air conditioner such as a multi air conditioning system for buildings
  • a cooling operation or a heating operation is performed by circulating a refrigerant between an outdoor unit that is a heat source unit arranged outdoors and an indoor unit arranged indoors.
  • the air-conditioning target space is cooled or heated by air heated by heat released from the refrigerant or air cooled by heat absorbed by the refrigerant.
  • an HFC (hydrofluorocarbon) refrigerant is often used.
  • a natural refrigerant such as carbon dioxide (CO 2 ) has been proposed.
  • air conditioners with other configurations, such as chiller systems.
  • a heat exchanger such as water or antifreeze liquid is heated or cooled by a heat exchanger arranged in the outdoor unit, which is then air-conditioned It is transported to a fan coil unit or a panel heater, which is an indoor unit disposed in the room, and cooling or heating is performed (for example, see Patent Document 1).
  • an air conditioner configured to connect an outdoor unit and a branch unit having a heat exchanger with two pipes and transport a secondary refrigerant to the indoor unit (for example, (See Patent Document 4).
  • Japanese Patent Laying-Open No. 2005-140444 page 4, FIG. 1, etc.
  • JP-A-5-280818 (4th, 5th page, FIG. 1 etc.)
  • Japanese Patent Laid-Open No. 2001-289465 pages 5 to 8, FIG. 1, FIG. 2, etc.
  • JP 2003-343936 A (Page 5, FIG. 1)
  • the present invention relates to the discharge of gas generated in a circuit in which a heat medium circulates particularly during pipe connection (installation), operation, etc., and is an air conditioner that is safe, highly reliable, and can save energy. Is what you get.
  • An air conditioner includes an indoor unit having a plurality of use-side heat exchangers that exchange heat between air to be heat exchanged and a heat medium, and a plurality of heating / cooling devices that heat or cool the heat medium
  • a plurality of heat medium delivery devices that circulate a heat medium related to heating or cooling by each heating / cooling device to each of the plurality of flow paths, and a heat medium from the plurality of flow paths
  • a heat medium converter having a plurality of heat medium flow switching devices that respectively perform switching for allowing one or a plurality of heat media to flow into and out of each use side heat exchanger, and connected to any of the flow paths
  • An air venting device for discharging the air in the piping through which the heat medium circulates to the outside of the piping, and a pressure equalizing pipe for connecting the inlet-side flow paths or the outlet-side flow paths of the heat medium delivery device of each flow path are further provided. Efficient air venting in the piping. Ukoto can prevent chewing air in the heat medium delivery device,
  • an air venting device is provided in the path through which the heat medium circulates so that the gas in the pipe is efficiently discharged. It is possible to prevent and reduce power loss related to heat medium delivery. In addition, the drive of the heat medium delivery device can be stabilized, failure and the like can be prevented, and safety and reliability can be improved.
  • FIG. 1 The system block diagram of the air conditioning apparatus which concerns on Embodiment 1 of this invention.
  • FIG. The system circuit diagram at the time of the heating only operation mode of the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. FIG. 3 is a system circuit diagram of the air-conditioning apparatus according to Embodiment 1 in a cooling main operation mode.
  • FIG. 3 is a system circuit diagram of the air-conditioning apparatus according to Embodiment 1 in a heating main operation mode. The figure which shows the structure of the air vent apparatus 50 of the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. 6 is another system circuit diagram of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 6 is a system circuit diagram illustrating a flow of a heat medium of an air conditioner according to Embodiment 3.
  • Embodiment 1 FIG.
  • FIG. 1 and 2 are schematic diagrams illustrating an installation example of an air-conditioning apparatus according to an embodiment of the present invention. Based on FIG. 1 and FIG. 2, the installation example of an air conditioning apparatus is demonstrated.
  • This air conditioner uses a cycle (refrigerant circulation circuit A, heat medium circulation circuit B) for circulating a refrigerant (heat source side refrigerant, heat medium), so that each indoor unit can freely operate in a cooling mode or a heating mode as an operation mode. Can be selected.
  • a cycle refrigerant circulation circuit A, heat medium circulation circuit B
  • refrigerant heat source side refrigerant, heat medium
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. And a medium converter 3.
  • the heat medium relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the heat medium converter 3.
  • the air-conditioning apparatus includes one outdoor unit 1, a plurality of indoor units 2, and a plurality of divided heats interposed between the outdoor unit 1 and the indoor unit 2.
  • Medium converter 3 (parent heat medium converter 3a, child heat medium converter 3b).
  • the outdoor unit 1 and the parent heat medium converter 3a are connected by a refrigerant pipe 4.
  • the parent heat medium converter 3 a and the child heat medium converter 3 b are connected by a refrigerant pipe 4.
  • the child heat medium converter 3 b and the indoor unit 2 are connected by a pipe 5.
  • the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2 via the parent heat medium converter 3a and the child heat medium converter 3b.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • the outdoor unit 1 and the heat medium converter 3 use two refrigerant pipes 4, and the heat medium converter 3 and each The indoor unit 2 is connected to each other using two pipes 5.
  • each unit (outdoor unit 1, indoor unit 2, and heat medium converter 3) is connected using two pipes (refrigerant pipe 4, pipe 5). Therefore, construction is easy.
  • the heat medium converter 3 includes one parent heat medium converter 3 a and two child heat medium converters 3 b (child heat medium converter 3 b (1), derived from the parent heat medium converter 3 a, It can also be divided into a sub-heat medium converter 3b (2)). In this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a. In this configuration, there are three refrigerant pipes 4 that connect the parent heat medium converter 3a and the child heat medium converter 3b. Details of this circuit will be described later in detail (see FIG. 3A).
  • the heat medium converter 3 is installed in a space such as a ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • 1 and 2 show an example in which the indoor unit 2 is a ceiling cassette type, but the present invention is not limited to this, and the indoor space 7 such as a ceiling-embedded type or a ceiling-suspended type is shown. Any type of air can be used as long as the air for heating or the air for cooling can be blown out directly or by a duct or the like.
  • the outdoor unit 1 and 2 show an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the heat medium becomes considerably large, and the energy saving effect is diminished. Further, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number illustrated in FIGS. 1 and 2, and the air conditioner according to the present embodiment is installed. The number may be determined according to the building 9.
  • FIG. 3 is a schematic circuit configuration diagram showing an example of a circuit configuration of the air-conditioning apparatus (hereinafter referred to as the air-conditioning apparatus 100) according to the embodiment. Based on FIG. 3, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the outdoor unit 1 and the heat medium converter 3 are provided in the heat medium converter 3, and the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium serving as heating / cooling devices.
  • the refrigerant pipe 4 is connected via 15b.
  • the heat medium converter 3 and the indoor unit 2 are also connected by a pipe 5 via a heat exchanger related to heat medium 15a and a heat exchanger related to heat medium 15b.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and connected in series through a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. Regardless of the operation that the indoor unit 2 requires, heat is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the heat source side refrigerant flowing into the medium converter 3 can be in a certain direction.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to be in a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 is used in the heating operation (in the heating only operation mode and in the heating main operation mode) and in the cooling operation (in the cooling only operation mode and the cooling main operation mode).
  • the flow of the heat source side refrigerant is switched.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed to evaporate or condense the heat-source-side refrigerant.
  • the accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1).
  • the flow of the heat source side refrigerant is allowed.
  • the check valve 13 a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and only on a heat source side in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3).
  • the refrigerant flow is allowed.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the heat source side refrigerant discharged from the compressor 10 to flow to the heat medium converter 3 during the heating operation.
  • the check valve 13 c is provided in the second connection pipe 4 b and causes the heat source side refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the first connection pipe 4a is a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13d, and a refrigerant between the check valve 13a and the heat medium relay unit 3.
  • the pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a.
  • FIG. 3 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the pipe 5.
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 3 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Show.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
  • the number of indoor units 2 connected is not limited to four as shown in FIG.
  • the heat medium relay 3 includes two heat medium heat exchangers 15, two expansion devices 16, two opening / closing devices 17, two second refrigerant flow switching devices 18, and two pumps 21. Four first heat medium flow switching devices 22, four second heat medium flow switching devices 23, four heat medium flow control devices 25, and an air vent device 50 are mounted. In addition, what divided the heat medium converter 3 into the parent heat medium converter 3a and the child heat medium converter 3b will be described with reference to FIG. 3A.
  • the two heat exchangers between heat media 15 function as a condenser (heat radiator) or an evaporator, and heat is generated by the heat source side refrigerant and the heat medium. Exchange is performed, and the cold or warm heat generated in the outdoor unit 1 and stored in the heat source side refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A and serves to cool the heat medium in the cooling / heating mixed operation mode. is there.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A, and serves to heat the heat medium in the cooling / heating mixed operation mode. Is.
  • the two expansion devices 16 have functions as pressure reducing valves and expansion valves, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant during the cooling operation.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the two opening / closing devices 17 are constituted by two-way valves or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the heat source side refrigerant.
  • the opening / closing device 17b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the heat source side refrigerant.
  • the two second refrigerant flow switching devices 18 (second refrigerant flow switching device 18a and second refrigerant flow switching device 18b) are constituted by four-way valves or the like, and switch the flow of the heat source side refrigerant according to the operation mode.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the two pumps 21 serving as the heat medium delivery device circulate the heat medium in the heat medium circuit B.
  • the pump 21a is provided between the heat exchanger related to heat medium 15a and the second heat medium flow switching device 23, and circulates the heat medium related to heat exchange of the heat exchanger related to heat medium 15a by driving.
  • the pump 21b is provided between the heat exchanger related to heat medium 15b and the second heat medium flow switching device 23, and circulates the heat medium related to heat exchange of the heat exchanger related to heat medium 15b by driving. If each flow path does not communicate in the first heat medium flow switching device 22 and the second heat medium flow switching device 23 (hereinafter referred to as communication), a circulation path by two independent flow paths is formed, Circulation will take place.
  • the two pumps 21 may be configured to be capable of changing the delivery capacity under the control of the control device 70, for example.
  • the air vent device 50 is a device for discharging a gas such as air in the pipe 5 to the outside of the pipe. The air vent device 50 will be described later.
  • the four first heat medium flow switching devices 22 (first heat medium flow switching device 22a to first heat medium flow switching device 22d) have three inflow / outflow ports (openings) in the present embodiment.
  • the flow path of the heat medium is switched by opening and closing.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • one of the openings is in the heat exchanger related to heat medium 15a (pump 21a), and one of the openings is in the heat exchanger related to heat medium 15b (pump 21b).
  • One of the openings is connected corresponding to the heat medium flow control device 25 and is provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the first heat medium flow switching device 22a, the first heat medium flow switching device 22b, the first heat medium flow switching device 22c, and the first heat medium flow from the lower side of the drawing. This is illustrated as a switching device 22d.
  • the four second heat medium flow switching devices 23 (second heat medium flow switching device 23a to second heat medium flow switching device 23d) have three inlet / outlets (openings) in the present embodiment.
  • the flow path of the heat medium is switched by opening and closing.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • one of the openings is in the intermediate heat exchanger 15a
  • one of the openings is in the intermediate heat exchanger 15b
  • one of the openings is
  • the usage side heat exchangers 26 are respectively connected to the usage side heat exchangers 26 and provided on the inlet side of the heat medium flow path of the usage side heat exchangers 26.
  • the heat medium is caused to flow into the use-side heat exchanger 26 (heat medium flow rate adjusting device 25) in communication with any of the flow paths on the heat medium heat exchanger 15b side and the heat medium heat exchanger 15a side.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. This is illustrated as a switching device 23d.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 of the present embodiment can not only perform switching but also allow all flow paths to communicate.
  • the second heat medium flow switching device 23 merges the heat mediums of the two flow paths and flows them into the use-side heat exchanger 26.
  • the first heat medium flow switching device 22 branches the heat medium flowing out from the use side heat exchanger 26 into two flow paths.
  • the opening portions where the heat medium flows into and out of the pumps 21a and 21b respectively have an intermediate opening degree.
  • the intermediate opening basically, it is desirable that the opening areas of the portions where the heat medium flows into and out of the pumps 21a and 21b are approximately the same. However, it is not necessarily limited to this, and any opening degree through which the heat medium passes through each flow path may be used.
  • the four heat medium flow control devices 25 are composed of, for example, a two-way valve using a stepping motor, and the like. The opening can be changed and the flow rate of the heat medium is adjusted.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing. Further, the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium relay unit 3 is provided with various detection means (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36). Information (temperature information, pressure information) detected by these detection means is sent to a control device 70 that performs overall control of the operation of the air conditioner 100, and the driving frequency of the compressor 10, the rotational speed of the blower (not shown), This is used for control of switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, switching of the flow path of the heat medium, and the like.
  • the two first temperature sensors 31 are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the temperature of the heat medium at the outlet of the heat exchanger related to heat medium 15.
  • a thermistor may be used.
  • the first temperature sensor 31a is provided in the pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and use side heat exchangers.
  • the temperature of the heat medium that has flowed out of the heater 26 is detected, and it may be constituted by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the heat source side refrigerant of the heat exchanger related to heat medium 15, and the heat exchanger related to heat medium 15
  • the temperature of the heat source side refrigerant flowing into the heat source or the temperature of the heat source side refrigerant flowing out of the heat exchanger related to heat medium 15 is detected, and may be composed of a thermistor or the like.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing heat source side refrigerant is detected.
  • control apparatus 70 is comprised with the microcomputer etc., Based on the detection information in various detection means, and the instruction
  • the control device 70 is provided in the outdoor unit 1 here, the installation location and the like are not limited.
  • a control device in which processing functions performed by the control device 70 are distributed can be provided in the indoor unit 2 and the heat medium relay unit 3, and processing can be performed while signals are transmitted and received through a communication line or the like. It can also be provided outside the apparatus.
  • the pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium relay unit 3.
  • the pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the refrigerant in the compressor 10 the first refrigerant flow switching device 11, the heat source side heat exchanger 12, the switching device 17, the second refrigerant flow switching device 18, and the heat exchanger related to heat medium 15a.
  • the flow path, the expansion device 16 and the accumulator 19 are connected by the refrigerant pipe 4 to constitute the refrigerant circuit A.
  • the switching device 23 is connected by a pipe 5 to constitute a heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected to each other via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • FIG. 3A is a schematic circuit configuration diagram showing another example of the circuit configuration of the air-conditioning apparatus according to the embodiment (hereinafter, referred to as air-conditioning apparatus 100A).
  • air-conditioning apparatus 100A the circuit configuration of the air conditioner 100 ⁇ / b> A when the heat medium relay unit 3 is divided into a parent heat medium relay unit 3 a and a child heat medium relay unit 3 b will be described.
  • the heat medium relay unit 3 is configured by dividing the housing into a parent heat medium relay unit 3 a and a child heat medium relay unit 3 b. By configuring in this way, a plurality of child heat medium converters 3b can be connected to one parent heat medium converter 3a as shown in FIG.
  • the main heat exchanger 3a is provided with a gas-liquid separator 14 and an expansion device 16c. Other components are mounted on the child heat medium converter 3b.
  • the gas-liquid separator 14 includes one refrigerant pipe 4 connected to the outdoor unit 1, and two refrigerants connected to the intermediate heat exchanger 15a and the intermediate heat exchanger 15b of the child heat medium converter 3b.
  • the heat source side refrigerant connected to the pipe 4 and supplied from the outdoor unit 1 is separated into a vapor refrigerant and a liquid refrigerant.
  • the expansion device 16c is provided on the downstream side in the flow of the liquid refrigerant in the gas-liquid separator 14, has a function as a pressure reducing valve or an expansion valve, expands the heat source side refrigerant by reducing the pressure, and is mixed with cooling and heating. During operation, control is performed so that the pressure state of the refrigerant on the outlet side of the expansion device 16c is set to an intermediate pressure.
  • the expansion device 16c may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve. With this configuration, a plurality of child heat medium converters 3b can be connected to the parent heat medium converter 3a.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • description is abbreviate
  • the air conditioner 100 also includes the air conditioner 100A.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation. There is a mode. Further, there are a cooling main operation mode in which the cooling load is larger and a heating main operation mode in which the heating load is larger (the cooling main operation mode and the heating main operation mode may be collectively referred to as a cooling / heating mixed operation mode). Hereinafter, each operation mode will be described together with the flow of the heat source side refrigerant and the heat medium.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, the heat medium flow control device 25c and the heat medium flow control device 25d are closed, The heat medium is circulated between each of the intermediate heat exchanger 15a and the intermediate heat exchanger 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant flowing into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out from the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out from the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b.
  • the refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening of the expansion device 16a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b are operated to control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out of the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • an intermediate opening degree is used for communication.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • pipes represented by thick lines indicate pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, the heat medium flow control device 25c and the heat medium flow control device 25d are closed, The heat medium is circulated between each of the intermediate heat exchanger 15a and the intermediate heat exchanger 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circulation circuit B, and becomes a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out from the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the refrigerant flowing into the outdoor unit 1 is conducted through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air by the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is piped 5 by the pump 21a and the pump 21b.
  • the inside will be allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b are operated to control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out of the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the heat medium is directed from the second heat medium flow switching device 23 to the first heat medium flow switching device 22 via the heat medium flow control device 25.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • an intermediate opening degree is used for communication.
  • An efficient heating operation can be performed by using both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b for heating the heat medium and increasing the heat transfer area.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • the piping represented with the thick line has shown the piping through which a refrigerant
  • coolant (a heat-source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, the heat medium flow control device 25c and the heat medium flow control device 25d are closed,
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b are operated to control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, the heat medium flow control device 25c and the heat medium flow control device 25d are closed, The heat medium is circulated between each of the intermediate heat exchanger 15a and the intermediate heat exchanger 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows again into the outdoor unit 1 through the refrigerant pipe 4. To do.
  • the refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that functions as an evaporator. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium by the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the heat medium flow control device 25a and the heat medium flow control device 25b are operated to control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required indoors, so that the use side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium that has passed through the use-side heat exchanger 26b and has risen slightly in temperature passes through the heat medium flow control device 25b and the first heat medium flow switching device 22b, flows into the heat exchanger related to heat medium 15a, and again It is sucked into the pump 21a.
  • the heat medium that has passed through the use-side heat exchanger 26a and whose temperature has slightly decreased flows through the heat medium flow control device 25a and the first heat medium flow switching device 22a into the heat exchanger related to heat medium 15b, and again It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching device 22 from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the heat medium is flowing in the direction to
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • the air conditioner 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the pipe 4 connecting the outdoor unit 1 and the heat medium relay unit 3.
  • a heat medium such as water or antifreeze liquid flows through the pipe 5 connecting the heat medium converter 3 and the indoor unit 2.
  • the pipe 5 including a portion serving as a flow path of the heat medium other than between the heat medium converter 3 and the indoor unit 2.
  • the air vent device 50 shown in FIG. 3 After installing the equipment and connecting the pipe, before filling the heat medium, the pipe 5 contains air or a gas such as nitrogen (hereinafter referred to as gas) filled at the time of shipment. When filling the pipe 5 with the heat medium, it is necessary to carry out this gas while expelling the gas with the heat medium. Further, when the gas before filling is left or a gas dissolved in the heat medium is deposited, gas may be generated in the pipe 5 when the heat medium is circulated.
  • a gas such as nitrogen
  • the heat medium is circulated by the pump 21.
  • the pump 21 sucks the gas in the pipe 5, so-called air biting occurs, and not only the pump 21 cannot send out a heat medium with a predetermined flow rate, but also when the pump 21 is operated for a long time, the pump 21 It leads to damage. Therefore, in this Embodiment, the air venting apparatus 50 which discharges
  • FIG. 8 is a view showing the structure of the air vent device 50.
  • the air vent device 50 of FIG. 8 is an automatic air vent device, and includes a container 51, an air vent valve (valve) 52, and a float (floating device) 53.
  • the container 51 contains an air vent valve 52 and a float (floating device) 53.
  • the container 51 has a vent hole that allows the heat medium circulation circuit B to communicate with the external space.
  • the air vent valve 52 is displaced in the vertical direction in the container 51, thereby creating a gap in the vent hole and blocking it.
  • the float 53 has buoyancy with respect to the heat medium, and is displaced in the vertical direction in the container 51 according to the liquid level of the heat medium. In accordance with this displacement, the air vent valve 52 can also be displaced in the vertical direction.
  • the liquid level of the heat medium is also located on the container 51 as shown in FIG. For this reason, the air vent valve 52 is pushed up by the buoyancy of the float 53 to block the gap between the vent and the external space.
  • the manual air venting device is a manual valve whose one end is connected to the pipe 5 and one end is opened to the outside so that the opening degree can be adjusted manually.
  • the valve of the manual air venting device is opened, the gas in the pipe 5 is released to the outside, and when it is closed, the gas emission can be stopped.
  • the air conditioner keep the manual air venting device open and fill the pipe 5 with the heat medium, exhaust the gas sufficiently, and then close the manual valve of the manual air venting device. That's fine.
  • the air vent device 50 is provided in the heat medium relay unit 3.
  • the indoor unit 2 is installed at a high position in the heat medium circulation circuit B, for example, You may install the air venting apparatus 50 in the high position of piping.
  • a plurality two of heat medium flow paths that flow in and out of the pump 21a and heat medium flow paths that flow in and out of the pump 21b are circulated in the circuit.
  • the flow paths in the following, such as two flow paths, basically indicate the flow paths of the pump 21, the heat exchanger related to heat medium 15, the first heat medium switching device 22, and the second heat medium switching device 23.
  • the cooling / heating mixed operation mode such as the cooling main operation mode or the heating main operation mode, there is no place where the flow path communicates, and therefore the air vent device 50 connected to each flow path may be installed.
  • FIG. 9 is a diagram showing the air conditioner 100 in which the communication pipe 5c is connected by piping.
  • the air vent device 50 is connected to one of the flow paths, and each flow path is connected by the communication pipe 5c.
  • the communication pipe 5c By providing the communication pipe 5c, even in the cooling and heating mixed operation mode, the gas generated in each flow path is passed through the flow path connected to the air vent device 50 via the communication pipe 5c, so that the gas is supplied from the pipe. Can be discharged.
  • the pressure in the pipe 5 between the flow paths can be made uniform (equalized) by eliminating the variation in volume based on the temperature difference of the heat medium in each flow path.
  • the higher the temperature of the heat medium the higher the possibility of generating a gas dissolved in the heat medium. Therefore, for example, when the intermediate heat exchanger 15 that heats the heat medium is determined in the cooling / heating mixed operation mode, the air vent device 50 is provided in the flow path provided with the intermediate heat exchanger 15 for heating. Good.
  • the flow path provided with the air vent device 50 is the inlet side of the pump 21, and the flow path not provided is It can also be connected to the outlet side of the pump 21.
  • the communication pipe 5c of the present embodiment also serves to equalize the pressure between the flow paths. Moreover, in order to reduce energy loss, it is necessary to reduce the mixing of the heat medium between the flow paths as much as possible.
  • the communication pipe 5c connects the inlet-side flow paths or the outlet-side flow paths of the pump 21 in each flow path.
  • the inlet-side flow path of the pump 21 refers to a flow path from the inlet (suction side) of the pump 21 to the first heat medium switching device 22, and the outlet-side flow path of the pump 21 refers to the outlet ( It refers to a flow path from the discharge side) to the second heat medium switching device 23.
  • connection position between the flow path not provided with the air vent 50 and the communication pipe 5c is connected to the bent portion of the pipe 5 where gas tends to accumulate, and the gas is provided on the flow path side where the air vent 50 is provided. May be easy to move.
  • the communication pipe 5c is as thin as possible with a small pipe diameter, and the flow resistance of the heat medium in the communication pipe 5c is increased so that the heat medium does not easily flow into the communication pipe 5c. To do.
  • the flow resistance of the heat medium inside the communication pipe 5 c is set to be larger than the flow resistance in the pipe 5 connecting the heat medium converter 3 and each use side heat exchanger 26.
  • the communication pipe 5c is made too thin, it is difficult for the heat medium to move between the flow paths, and pressure equalization cannot be performed or time is required, so that an appropriate pipe diameter is required.
  • the pressure head h [m] and the pressure H [Pa] inside the heat medium pipe are obtained by Bernoulli's equation represented by the following equation (1), which is generally well known in fluid dynamics.
  • U is the flow velocity [m / s] of the heat medium
  • is the density [kg / m 3 ] of the heat medium
  • P is the pressure [Pa]. ].
  • the heat medium circulation circuit B has two heat medium flow paths.
  • the pressure head h [m] and the pressure H [Pa] in each flow path are expressed by the following equations (2) and (3).
  • a flow path that is created by driving the pump 21a is referred to as a flow path 1
  • a flow path that is created by driving the pump 21b is defined as a flow path 2
  • the flow rate of the heat medium in the flow channel 2 is about 1 ⁇ 2 of the flow rate of the heat medium in the flow channel 1. For example, if the flow velocity in the flow channel 1 is 2 [m / s], the flow velocity in the flow channel 2 is 1 [m / s].
  • the pressure difference ⁇ P2 of the flow path 2 is about 1 of the pressure difference ⁇ P1 of the flow path 1. / 2.
  • ⁇ P 1 is 70 [kPa] (7.14 [m])
  • ⁇ P 2 is 35 [kPa] (3.57 [m]).
  • the pressure loss h [m] due to friction when the heat medium flows inside the pipe can be obtained from the Darcy-Weisbach equation expressed by the following equation (7), which is a generally known equation in fluid mechanics. it can.
  • f is the friction coefficient of the pipe
  • U is the flow velocity of the heat medium [m / s]
  • d is the pipe diameter (inner diameter) [m] ]
  • L is the length [m] of the pipe.
  • the friction coefficient f can be obtained by using a Blasius equation represented by the following equation (8), which is a generally well-known equation in fluid mechanics.
  • Re is the Reynolds number
  • is the kinematic viscosity [m 2 / s] of the heat medium.
  • the pressure difference generated at both ends of the communication pipe 5c should be equal to the pressure loss due to friction inside the communication pipe 5c. Therefore, the flow rate flowing through the communication pipe 5c can be obtained using the equations (6) and (7).
  • the inner diameter d of the communication pipe 5c is 5 [mm]
  • the length L is 0.6 [m]
  • the kinematic viscosity of the heat medium is 1.5 ⁇ 10 ⁇ 6 [m 2 / s]
  • the pressure loss h of the pipe is 3.42 [m] (33500 [Pa]) as shown in the following equations (9) and (10).
  • the flow rate of the heat medium flowing through the pipe is determined by multiplying the flow velocity of the heat medium 4.4 [m] by the cross-sectional area of the pipe, and is about 5.2 [L / min].
  • the pipe diameter of the flow path 1 and the flow path 2 is different from the pipe diameter of the communication pipe 5c.
  • these become flow resistances, and the flow rate of the heat medium flowing through the communication pipe 5c is smaller than the flow rate calculated above. Since resistance related to branching and merging of the heat medium flowing through the flow path is also generated, the flow rate of the heat medium that actually flows through the communication pipe 5c is considerably smaller than the flow rate calculated previously.
  • the flow path 1 and the flow path 2 are connected only by the communication pipe 5c. For this reason, for example, in the cooling / heating mixed operation, when the heat medium flows from the flow path 2 to the flow path 1, the pressure of the flow path 1 increases and the pressure of the heat medium flow path 2 decreases, The pressure is balanced. Therefore, the flow rate of the heat medium flowing from the flow path 2 to the flow path 1 gradually decreases as the pressure difference decreases with time.
  • the communication pipe 5 c has a flow rate that flows through the pipe 5. In calculation, about 1/3 or less, actually 1/5 to 1/10 of the heat medium flows instantaneously and gradually decreases.
  • each value (especially the inner diameter) is determined by design so that a heat medium having such a flow rate flows into the pressure equalizing pipe 5c, heat loss is reduced, and pressure is moderately balanced between the flow paths. Become.
  • the air vent device 50 is connected (provided) to the heat medium circulation circuit B, and the gas contained in the heat medium circulation circuit B when the pipe is connected or repaired. Therefore, for example, it is possible to prevent the pump 21 from biting air and reduce power loss. Further, by stabilizing the drive, it is possible to prevent failures and improve safety and reliability.
  • the flow resistance of the pressure equalizing pipe 5c is smaller than the flow resistance of the pipe 5 serving as a flow path, and the flow is made difficult.
  • the temperature difference between the two flow paths is large and the pressure difference is large. Otherwise, the heat medium is prevented from flowing through the pressure equalizing pipe 5c, so that heat loss due to mixing of heat mediums having different temperatures can be reduced.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 cause the heat medium to flow into and out of the two flow paths.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 can also communicate with the flow passage provided with the air vent device 50 and the flow passage not provided. Air venting in the medium circulation circuit B can be performed efficiently.
  • the refrigerant circuit A having the heat exchanger 15 between the heat mediums is configured to heat or cool the heat medium, efficient air conditioning using the refrigerant can be performed.
  • the heat medium converter 3 is provided as a unit different from the outdoor unit 1 and the indoor unit 2, and the arrangement relationship of each unit is arranged so that the piping for circulating the heat medium is as short as possible. Therefore, less conveyance power is required compared with the case where the heat medium is directly circulated between the outdoor unit and the indoor unit. Therefore, energy saving can be achieved.
  • Embodiment 2 FIG.
  • only the communication pipe 5c is used to send gas from the flow path without the air vent device 50 to the flow path having the air vent device 50.
  • description will be given of enabling gas to be sent from other parts to the flow path having the air vent device 50.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 make all the flow paths communicate with each other by, for example, setting an intermediate opening degree. Can do. And when performing a heating only operation mode or a cooling only operation mode, the heat medium of two flow paths merges and branches. Therefore, after a heat medium is sealed in the pipe 5 to some extent, operation in the heating only operation mode or the cooling only operation mode is performed, and air is vented while the pump 21 is operated.
  • all the flow paths can be communicated in the first heat medium flow switching device 22 and the second heat medium flow switching device 23. Therefore, it is possible to increase the number of paths for sending gas to the flow path having the air vent device 50. For this reason, even when the communication pipe 5c is installed, it is possible to increase the number of places where the gas can come and go and finish air venting quickly. In addition, by completing the air venting earlier, it is possible to shorten the time that the pump 21 is engaged with the air, and to prevent damage to the pump 21, so that safety can be achieved. Further, in the normal heating only operation mode or cooling only operation mode, the two flow paths are made to communicate with each other, so that air can be vented even in cases other than installation (when piping is connected).
  • Embodiment 3 FIG.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 can be made to communicate with each other, whereby 2 other than the communication pipe 5c.
  • a description will be given of a procedure for discharging gas using two independent flow paths as one flow path by switching control of the first heat medium flow path switching device 22 and the second heat medium flow path switching device 23. To do.
  • FIG. 10 is a diagram for representing the path of the heat medium in the air discharge at the time of installation.
  • each use side heat exchanger 26 (indoor unit 2) is divided into two groups.
  • the method of grouping the indoor units 2 is not particularly limited.
  • the indoor units 2 may be divided into even numbers and odd numbers, or other methods may be used.
  • the heat medium which flows through the heat exchanger 15a (pump 21a) between heat media is used for the utilization side heat exchanger 26. Switch to allow inflow.
  • the heat medium flowing out from the use side heat exchanger 26 is converted into the heat exchanger related to heat medium 15b (pump 21b). Switch to flow into.
  • the heat medium flowing through the heat exchanger related to heat medium 15b (pump 21b) is caused to flow into the use side heat exchanger 26.
  • Switch as follows.
  • the heat medium flowing out from the use side heat exchanger 26 is transferred to the heat exchanger related to heat medium 15a (pump 21a). Switch to allow inflow.
  • the first heat is formed so as to form a flow path that flows from the heat exchanger related to heat medium 15b and the pump 21b to the heat exchanger related to heat medium 15a and the pump 21a via the use side heat exchangers 26b and 26d.
  • the medium flow switching devices 22b and 22d and the second heat medium flow switching devices 23b and 23d are switched.
  • the first heat medium flow is formed so as to form a flow path from the heat exchanger related to heat medium 15a and the pump 21a to the heat exchanger related to heat medium 15b and the pump 21b via the use side heat exchangers 26a and 26c.
  • the path switching devices 22a and 22c and the second heat medium flow path switching devices 23a and 23c are switched.
  • the two flow paths are usually divided into the first heat medium flow switching device 22 and the second heat. Since one flow path can be obtained by switching the medium flow path switching device 23, the gas in the entire heat medium circulation circuit B can be discharged from the pipe 5 using one air vent device 50. Therefore, even in the switching device that performs only switching of the flow path, the entire heat medium circulation circuit B can be vented.
  • Embodiment 4 FIG.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the above-described embodiment are switched by opening and closing the opening.
  • Such first heat medium flow switching device 22 and second heat medium flow switching device 23 can control mixing and branching of the heat medium.
  • heat medium flow control device 25 is a two-way valve
  • a bypass pipe that bypasses the use-side heat exchanger 26 as a control valve having a three-way flow path. You may make it install with.
  • the usage-side heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or one that closes one end of the three-way valve.
  • a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • coolant flow path switching device 18 was shown as if it were a four-way valve, it is not restricted to this, A two-way flow-path switching valve and a plurality of three-way flow-path switching valves are used similarly. You may comprise so that a refrigerant
  • the air-conditioning apparatus 100 has been described as being capable of cooling and heating mixed operation, the present invention is not limited to this.
  • One heat exchanger 15 and one expansion device 16 are connected to each other, and a plurality of use-side heat exchangers 26 and heat medium flow control valves 25 are connected in parallel to perform either a cooling operation or a heating operation. Even if there is no configuration, the same effect is obtained.
  • heat source side refrigerant examples include single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, It is possible to use a refrigerant containing a double bond, such as CF 3 CF ⁇ CH 2, which has a relatively low global warming potential, a mixture thereof, or a natural refrigerant such as CO 2 or propane.
  • single refrigerants such as R-22 and R-134a
  • pseudo-azeotropic mixed refrigerants such as R-410A and R-404A
  • non-azeotropic mixed refrigerants such as R-407C
  • a refrigerant containing a double bond such as CF 3 CF ⁇ CH 2 which has a relatively low global warming potential, a mixture thereof, or a natural refrigerant such as CO 2 or propane.
  • the refrigerant that performs a normal two-phase change is condensed and liquefied, and the refrigerant that becomes a supercritical state such as CO 2 is Although it is cooled in a supercritical state, in both cases, the other moves in the same way and produces the same effect.
  • the heat medium for example, brine (antifreeze), water, a mixture of brine and water, a mixture of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d are equipped with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive.
  • the use side heat exchangers 26a to 26d those such as panel heaters using radiation can be used.
  • the heat source side heat exchanger 12 a water-cooled type in which heat is transferred by water or antifreeze liquid. Any material can be used as long as it can dissipate or absorb heat.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small capacity pumps may be arranged in parallel.

Abstract

 安全で、信頼性が高く、省エネルギー化を図ることができる空気調和装置を得る。 熱交換対象となる空気と熱媒体との熱交換を行う複数の利用側熱交換器26を有する室内機2と、熱媒体を加熱または冷却する複数の熱媒体間熱交換器15、複数の熱媒体間熱交換器15による加熱または冷却に係る熱媒体を、各流路に送出して、循環させる複数のポンプ21、および、選択された流路からの熱媒体を、各利用側熱交換器26に流入出させるための切り替えをそれぞれ行う複数の熱媒体流路切替装置22、23とを有する熱媒体変換機3とを備え、いずれかの流路と接続し、熱媒体が循環する配管内の空気を配管外に排出する空気抜き装置50と、各流路の熱媒体送出装置の入口側流路同士または出口側流路同士を接続する均圧配管5cとを備える。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 従来から、ビル用マルチエアコンなどの空気調和装置においては、たとえば室外に配置した熱源機である室外機と室内に配置した室内機との間に冷媒を循環させることによって冷房運転または暖房運転を実行するようになっている。具体的には、冷媒が放熱して加熱された空気あるいは冷媒が吸熱して冷却された空気により空調対象空間の冷房または暖房を行なっていた。このような空気調和装置に使用される冷媒としては、たとえばHFC(ハイドロフルオロカーボン)系冷媒が多く使われている。また、二酸化炭素(CO)等の自然冷媒を使うものも提案されている。
 チラーシステムに代表される別の構成の空気調和装置も存在している。このような空気調和装置では、室外に配置した熱源機において、冷熱または温熱を生成し、室外機内に配置した熱交換器で水や不凍液等の熱媒体を加熱または冷却し、これを空調対象域に配置した室内機であるファンコイルユニットやパネルヒーター等に搬送し、冷房あるいは暖房を実行するようになっている(たとえば、特許文献1参照)。
 また、熱源機と室内機の間に4本の水配管を接続し、冷却、加熱した水等を同時に供給し、室内機において冷房または暖房を自由に選択できる排熱回収型チラーと呼ばれる熱源側熱交換器も存在している(たとえば、特許文献2参照)。
 1次冷媒および2次冷媒の熱交換器を各室内機の近傍に配置し、室内機に2次冷媒を搬送するように構成されている空気調和装置も存在している(たとえば、特許文献3参照)。
 また、室外機と熱交換器を持つ分岐ユニットとの間を2本の配管で接続し、室内機に2次冷媒を搬送するように構成されている空気調和装置も存在している(たとえば、特許文献4参照)。
特開2005-140444号公報(第4頁、図1等) 特開平5-280818号公報(第4、5頁、図1等) 特開2001-289465号公報(第5~8頁、図1、図2等) 特開2003-343936号公報(第5頁、図1)
 従来のビル用マルチエアコンなどの空気調和装置では、室内機まで冷媒を循環させているため、冷媒が室内等に漏れる可能性があった。一方、特許文献1および特許文献2に記載されているような空気調和装置では、冷媒が室内機を通過することはない。しかしながら、特許文献1および特許文献2に記載されているような空気調和装置では、建物外の熱源機において熱媒体を加熱または冷却し、室内機側に搬送する必要がある。このため、熱媒体の循環経路が長くなる。ここで、熱媒体により、所定の加熱あるいは冷却の仕事をする熱を搬送しようとすると、搬送動力等によるエネルギーの消費量が冷媒よりも高くなる。そのため、循環経路が長くなると、搬送動力が非常に大きくなる。このことから、空気調和装置において、熱媒体の循環をうまく制御することができれば省エネルギー化を図れることがわかる。
 特許文献2に記載されているような空気調和装置においては、室内機毎に冷房または暖房を選択できるようにするためには室外側から室内まで4本の配管を接続しなければならず、工事性が悪いものとなっていた。特許文献3に記載されている空気調和装置においては、ポンプ等の2次媒体循環手段を室内機個別に持つ必要があるため、高価なシステムとなるだけでなく、騒音も大きいものとなり、実用的なものではなかった。加えて、熱交換器が室内機の近傍にあるため、冷媒が室内に近い場所で漏れるという危険性を排除することができなかった。
 特許文献4に記載されているような空気調和装置においては、熱交換後の1次冷媒が熱交換前の1次冷媒と同じ流路に流入しているため、複数の室内機を接続した場合に、各室内機にて最大能力を発揮することができず、エネルギー的に無駄な構成となっていた。また、分岐ユニットと延長配管との接続が冷房2本、暖房2本の合計4本の配管でなされているため、結果的に室外機と分岐ユニットとが4本の配管で接続されているシステムと類似の構成となっており、工事性が悪いシステムとなっていた。
 本発明は、特に配管接続(設置)時、運転時等に熱媒体が循環する回路内に生じる気体の排出に係り、安全で、信頼性等が高く、省エネルギー化を図ることができる空気調和装置を得るものである。
 本発明に係る空気調和装置は、熱交換対象となる空気と熱媒体との熱交換を行う複数の利用側熱交換器を有する室内機と、熱媒体を加熱または冷却する複数の加熱・冷却機器、各加熱・冷却機器による加熱または冷却に係る熱媒体を複数の流路のそれぞれの流路に送出して循環させる複数の熱媒体送出装置、および、複数の流路からの熱媒体のうち、1または複数の熱媒体を各利用側熱交換器に流入出させるための切り替えをそれぞれ行う複数の熱媒体流路切替装置を有する熱媒体変換機とを備え、いずれかの流路と接続し、熱媒体が循環する配管内の空気を配管外に排出する空気抜き装置と、各流路の熱媒体送出装置の入口側流路同士または出口側流路同士を接続する均圧配管とをさらに備えたことにより、効率よく配管内の空気抜きを行うことができ、熱媒体送出装置におけるエア噛みを防ぎ、動力損失を抑え、効率よく安全に運転できるようにするものである。
 この発明の空気調和装置は、熱媒体が循環する経路に空気抜き装置を設け、配管内の気体を効率よく排出するようにしたので、たとえば熱媒体送出装置が気体を吸引等してしまうエア噛みを防ぎ、熱媒体送出に係る動力損失を低減することができる。また、熱媒体送出装置の駆動を安定させることができ、故障等を防ぎ、安全性、信頼性を向上させることができる。
この発明の実施の形態1に係る空気調和装置のシステム構成図。 この発明の実施の形態1に係る空気調和装置の別のシステム構成図。 この発明の実施の形態1に係る空気調和装置のシステム回路図。 この発明の実施の形態1に係る空気調和装置の別のシステム回路図。 実施の形態1に係る空気調和装置の全冷房運転モード時のシステム回路図。 実施の形態1に係る空気調和装置の全暖房運転モード時のシステム回路図。 実施の形態1に係る空気調和装置の冷房主体運転モード時のシステム回路図。 実施の形態1に係る空気調和装置の暖房主体運転モード時のシステム回路図。 実施の形態1に係る空気調和装置の空気抜き装置50の構造を示す図。 実施の形態1に係る空気調和装置の別のシステム回路図。 実施の形態3に係る空気調和装置の熱媒体の流れを表すシステム回路図。
 実施の形態1.
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1および図2は、本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。図1および図2に基づいて、空気調和装置の設置例について説明する。この空気調和装置は、冷媒(熱源側冷媒、熱媒体)を循環させるサイクル(冷媒循環回路A、熱媒体循環回路B)を利用することで各室内機が運転モードとして冷房モードあるいは暖房モードを自由に選択できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、を有している。熱媒体変換機3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、熱媒体を導通する配管(熱媒体配管)5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、熱媒体変換機3を介して室内機2に配送されるようになっている。
 図2においては、本実施の形態に係る空気調和装置は、1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する複数に分割した熱媒体変換機3(親熱媒体変換機3a、子熱媒体変換機3b)と、を有している。室外機1と親熱媒体変換機3aとは、冷媒配管4で接続されている。親熱媒体変換機3aと子熱媒体変換機3bとは、冷媒配管4で接続されている。子熱媒体変換機3bと室内機2とは、配管5で接続されている。そして、室外機1で生成された冷熱あるいは温熱は、親熱媒体変換機3aおよび子熱媒体変換機3bを介して室内機2に配送されるようになっている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1および室内機2とは別筐体として、室外空間6および室内空間7とは別の位置に設置できるように構成されており、室外機1および室内機2とは冷媒配管4および配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1および図2に示すように、本実施の形態に係る空気調和装置においては、室外機1と熱媒体変換機3とが2本の冷媒配管4を用いて、熱媒体変換機3と各室内機2とが2本の配管5を用いて、それぞれ接続されている。このように、本実施の形態に係る空気調和装置では、2本の配管(冷媒配管4、配管5)を用いて各ユニット(室外機1、室内機2および熱媒体変換機3)を接続することにより、施工が容易となっている。
 図2に示すように、熱媒体変換機3を、1つの親熱媒体変換機3aと、親熱媒体変換機3aから派生した2つの子熱媒体変換機3b(子熱媒体変換機3b(1)、子熱媒体変換機3b(2))と、に分けることもできる。このようにすることにより、1つの親熱媒体変換機3aに対し、子熱媒体変換機3bを複数接続できるようになる。この構成においては、親熱媒体変換機3aと子熱媒体変換機3bとを接続する冷媒配管4は、3本になっている。この回路の詳細については、後段で詳細に説明するものとする(図3A参照)。
 なお、図1および図2においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1および図2においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1および図2においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2および熱媒体変換機3の接続台数を図1および図2に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図3は、実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成の一例を示す概略回路構成図である。図3に基づいて、空気調和装置100の詳しい構成について説明する。図3に示すように、室外機1と熱媒体変換機3とが、熱媒体変換機3に備えられている、加熱・冷却機器となる熱媒体間熱交換器15aおよび熱媒体間熱交換器15bを介して冷媒配管4で接続されている。また、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bを介して配管5で接続されている。
[室外機1]
 室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4で直列に接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時および暖房主体運転モード時)における熱源側冷媒の流れと冷房運転時(全冷房運転モード時および冷房主体運転モード時)における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。アキュムレーター19は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
 逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10から吐出された熱源側冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた熱源側冷媒を圧縮機10の吸入側に流通させるものである。
 第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。なお、図3では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 この図3では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1および図2と同様に、室内機2の接続台数を図3に示す4台に限定するものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、空気抜き装置50とが搭載されている。なお、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けたものについては図3Aで説明する。
 2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)または蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱または温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において熱媒体の加熱に供するものである。
 2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁等で構成されており、冷媒配管4を開閉するものである。開閉装置17aは、熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁等で構成され、運転モードに応じて熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 熱媒体送出装置となる2つのポンプ21(ポンプ21a、ポンプ21b)は、熱媒体循環回路B内において熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間に設けられ、駆動により熱媒体間熱交換器15aの熱交換に係る熱媒体を循環させる。また、ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間に設けられ、駆動により熱媒体間熱交換器15bの熱交換に係る熱媒体を循環させる。第1熱媒体流路切替装置22、第2熱媒体流路切替装置23において各流路が通ずる(以下、連通するという)ことがなければ、独立した2つの流路による循環経路が形成され、循環が行われることになる。ここで、2つのポンプ21については、たとえば制御装置70の制御により送出容量を変化させることができるもので構成するとよい。空気抜き装置50は、配管5内の空気等の気体を管外に排出するための装置である。空気抜き装置50については後述する。
 4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a~第1熱媒体流路切替装置22d)は、本実施の形態では3つの流入出口(開口部)を有し、開閉等により熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、開口部のうちの一つが熱媒体間熱交換器15a(ポンプ21a)に、開口部のうちの一つが熱媒体間熱交換器15b(ポンプ21b)に、開口部のうちの一つが熱媒体流量調整装置25に対応して接続されており、利用側熱交換器26の熱媒体流路の出口側に設けられている。これにより、熱媒体間熱交換器15b側、熱媒体間熱交換器15a側のいずれかの流路と連通し、利用側熱交換器26(熱媒体流量調整装置25)から流出する熱媒体を流すことができる。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとして図示している。
 4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a~第2熱媒体流路切替装置23d)は、本実施の形態では3つの流入出口(開口部)を有し、開閉等により熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、開口部のうちの一つが熱媒体間熱交換器15aに、開口部のうちの一つが熱媒体間熱交換器15bに、開口部のうちの一つが利用側熱交換器26に、それぞれ対応して接続されており、利用側熱交換器26の熱媒体流路の入口側に設けられている。これにより、熱媒体間熱交換器15b側、熱媒体間熱交換器15a側のいずれかの流路と連通し、利用側熱交換器26(熱媒体流量調整装置25)に熱媒体を流入させることができる。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとして図示している。
 ここで、本実施の形態の第1熱媒体流路切替装置22、第2熱媒体流路切替装置23は、切り替えを行うだけでなく、すべての流路を連通させることができるものとする。ここで、熱媒体の流れにより、第2熱媒体流路切替装置23は、2つの流路の熱媒体を合流させて利用側熱交換器26に流入させることになる。また、第1熱媒体流路切替装置22は、利用側熱交換器26から流出する熱媒体を2つの流路に分岐させることになる。
 このとき、たとえば、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23の構造によっては、ポンプ21a、21bにそれぞれ熱媒体が流入、流出する開口部分が中間的な開度になるようにする。中間的な開度については、基本的には、ポンプ21a、21bにそれぞれ熱媒体が流入、流出する部分の開口面積がほぼ同程度となる開度であることが望ましい。ただ、必ずしもこれに限るものではなく、各流路を熱媒体が通過する開度であればよい。
 4つの熱媒体流量調整装置25(熱媒体流量調整装置25a~熱媒体流量調整装置25d)は、たとえばステッピングモーターを用いた二方弁等で構成されており、熱媒体流路となる配管5の開度を変更可能にし、熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。
 また、熱媒体変換機3には、各種検出手段(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、および、圧力センサー36)が設けられている。これらの検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置70に送られ、圧縮機10の駆動周波数、図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体の流路の切替等の制御に利用されることになる。
 2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものであり、たとえばサーミスター等で構成するとよい。第1温度センサー31aは、ポンプ21aの入口側における配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における配管5に設けられている。
 4つの第2温度センサー34(第2温度センサー34a~第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものであり、サーミスター等で構成するとよい。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。
 4つの第3温度センサー35(第3温度センサー35a~第3温度センサー35d)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものであり、サーミスター等で構成するとよい。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
 また、制御装置70は、マイクロコンピューター等で構成されており、各種検出手段での検出情報およびリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、および、熱媒体流量調整装置25の駆動等を制御し、後述する各運転モードを実行するようになっている。ここでは制御装置70を室外機1に設けているが、設置場所等については限定するものではない。たとえば、制御装置70が行う処理機能を分散した制御装置を、室内機2、熱媒体変換機3に設け、通信線等で信号の送受信を行いながら、処理を行うこともできる。また、装置外に設けることもできる。
 熱媒体を導通する配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5は、第1熱媒体流路切替装置22、および、第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22および第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15aの冷媒流路、絞り装置16、および、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15aの熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、および、第2熱媒体流路切替装置23を、配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15aおよび熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 図3Aは、実施の形態に係る空気調和装置(以下、空気調和装置100Aと称する)の回路構成の別の一例を示す概略回路構成図である。図3Aに基づいて、熱媒体変換機3を親熱媒体変換機3aと子熱媒体変換機3bとに分けた場合の空気調和装置100Aの回路構成について説明する。図3Aに示すように、熱媒体変換機3は、親熱媒体変換機3aと、子熱媒体変換機3bとで、筐体を分けて構成されている。このように構成することにより、図2に示したように1つの親熱媒体変換機3aに対し、複数の子熱媒体変換機3bを接続することができる。
 親熱媒体変換機3aには、気液分離器14と、絞り装置16cと、が設けられている。その他の構成要素については、子熱媒体変換機3bに搭載されている。気液分離器14は、室外機1に接続する1本の冷媒配管4と、子熱媒体変換機3bの熱媒体間熱交換器15aおよび熱媒体間熱交換器15bに接続する2本の冷媒配管4と、に接続され、室外機1から供給される熱源側冷媒を蒸気状冷媒と液状冷媒とに分離するものである。絞り装置16cは、気液分離器14の液状冷媒の流れにおける下流側に設けられ、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものであり、冷房暖房混在運転時に、絞り装置16cの出口側における冷媒の圧力状態を中圧にするように制御される。絞り装置16cは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。このように構成することにより、親熱媒体変換機3aに子熱媒体変換機3bを複数接続できるようになる。
 空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。なお、空気調和装置100Aが実行する各運転モードについても同様であるので、空気調和装置100Aが実行する各運転モードについては説明を省略する。以下、空気調和装置100には、空気調和装置100Aも含まれているものとする。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モードがある。また、冷房負荷の方が大きい冷房主体運転モード、および、暖房負荷の方が大きい暖房主体運転モードがある(冷房主体運転モード、暖房主体運転モードを合わせて冷暖混在運転モードという場合もある)。以下に、各運転モードについて、熱源側冷媒および熱媒体の流れとともに説明する。
[全冷房運転モード]
 図4は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26aおよび利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図4に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21aおよびポンプ21bを駆動させ、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを閉止し、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bのそれぞれと利用側熱交換器26aおよび利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16aおよび絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15aおよび熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15aおよび熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18aおよび第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aおよびポンプ21bによって配管5内を流動させられることになる。ポンプ21aおよびポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aおよび第2熱媒体流路切替装置23bを介して、利用側熱交換器26aおよび利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26aおよび利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26aおよび利用側熱交換器26bから流出して熱媒体流量調整装置25aおよび熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26aおよび利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25aおよび熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22aおよび第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bへ流入し、再びポンプ21aおよびポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、たとえば中間的な開度にして連通させる。熱媒体間熱交換器15aおよび熱媒体間熱交換器15bをともに熱媒体の冷却に用い、伝熱面積を大きくすることで、効率のよい冷房運転を行なうことができる。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図4においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図5は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aおよび利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の流れる配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21aおよびポンプ21bを駆動させ、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを閉止し、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bのそれぞれと利用側熱交換器26aおよび利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18aおよび第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15aおよび熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15aおよび熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16aおよび絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21aおよびポンプ21bによって配管5内を流動させられることになる。ポンプ21aおよびポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aおよび第2熱媒体流路切替装置23bを介して、利用側熱交換器26aおよび利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26aおよび利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから、熱媒体は、利用側熱交換器26aおよび利用側熱交換器26bから流出して熱媒体流量調整装置25aおよび熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26aおよび利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25aおよび熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22aおよび第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bへ流入し、再びポンプ21aおよびポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、たとえば中間的な開度にして連通させる。熱媒体間熱交換器15aおよび熱媒体間熱交換器15bをともに熱媒体の加熱に用い、伝熱面積を大きくすることで、効率のよい暖房運転を行なうことができる。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図5においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷房主体運転モード]
 図6は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21aおよびポンプ21bを駆動させ、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを閉止し、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11およびアキュムレーター19を介して、圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21aおよびポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aおよび第2熱媒体流路切替装置23bを介して、利用側熱交換器26aおよび利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26aおよび利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25bおよび第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25aおよび第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図6においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[暖房主体運転モード]
 図7は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図7では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図7では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示している。また、図7では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図7に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21aおよびポンプ21bを駆動させ、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを閉止し、熱媒体間熱交換器15aおよび熱媒体間熱交換器15bのそれぞれと利用側熱交換器26aおよび利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11およびアキュムレーター19を介して圧縮機10へ再度吸入される。
 このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって配管5内を流動させられることになる。ポンプ21aおよびポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23aおよび第2熱媒体流路切替装置23bを介して、利用側熱交換器26aおよび利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25aおよび熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26aおよび利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25bおよび第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25aおよび第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22および第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図7においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25cおよび熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[冷媒配管4]
 以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する配管4には熱源側冷媒が流れている。
[配管5]
 本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する配管5には水や不凍液等の熱媒体が流れる。ここで、特に区別する必要がなければ、以下では、熱媒体変換機3と室内機2との間以外の熱媒体の流路となる部分を含めて配管5として説明する。
[空気抜き装置50]
 次に図3に示している空気抜き装置50について説明する。機器を設置し、配管接続した後、熱媒体を充填する前の段階で、配管5内には空気や出荷時に充填した窒素等の気体(以下、気体という)が入っている。配管5内に熱媒体を充填する際、この気体を熱媒体で追い出しながら行う必要がある。また、充填を行う前の気体が残っていたり、熱媒体に溶解した気体が析出したりすることにより、熱媒体が循環等しているときに、配管5内に気体が発生することがある。
 たとえば、熱媒体循環回路Bでは、熱媒体の循環をポンプ21により行っている。ここで、ポンプ21が配管5内の気体を吸引すると、いわゆるエア噛みが生じ、ポンプ21が所定の流量の熱媒体を送り出せなくなるばかりか、長時間エア噛み状態で運転を行うと、ポンプ21の損傷に繋がる。そのために、本実施の形態では、熱媒体循環回路Bに、配管5内の気体を外部に排出する空気抜き装置50を設置する。
 図8は空気抜き装置50の構造を示す図である。図8の空気抜き装置50は、自動空気抜き装置であり、容器51、空気抜き弁(バルブ)52およびフロート(浮具)53を有している。図8において、上側が鉛直方向上向きの方向であり、下側が鉛直方向下向きの方向であるものとして説明する。容器51は空気抜き弁52およびフロート(浮具)53を収容する。また、容器51は熱媒体循環回路Bと外部空間とを連通する通気口を有している。空気抜き弁52は、容器51内において上下方向に変位することにより、通気口に隙間を生じさせ、また、遮断する。フロート53は熱媒体に対する浮力を有し、熱媒体の液面に合わせて容器51内において上下方向に変位する。そして、この変位に合わせて空気抜き弁52も上下方向に変位させることができる。
 容器51内の気体の量が少なく、熱媒体の量が多い場合、図8(a)に示すように、熱媒体の液面も容器51上の方に位置する。そのため、フロート53の浮力により、空気抜き弁52が押し上げられ、外部空間との通気口の隙間を遮断している。
 一方、容器51内の気体の量が多くなってくると、図8(b)に示すように、気体の圧力により容器51内における熱媒体の液面の位置が下がってくる。そのためフロート53の位置も下がり、空気抜き弁52を押し上げる力が弱くなって空気抜き弁52の位置も下がる。空気抜き弁52の位置が下がることにより、通気口に隙間ができ、容器51内の気体が外部空間に排出される。排出により容器51内の気体の量が少なくなると、熱媒体の液面が上がるため、空気抜き弁52は押し上げられ、再び通気口の隙間を遮断する。そのため、熱媒体は外部空間に流出しない。
 ここでは、空気抜き装置50として、自動空気抜き装置を例に説明を行ったが、これに限るものではなく、手動空気抜き装置でも構わない。手動空気抜き装置は、一端が配管5に接続され、一端が外部に開放されて、手動で開度を調整できる手動弁である。手動空気抜き装置の弁を開くと、配管5内の気体を外部に放出し、閉じると気体の放出を停止できる。空気調和装置の設置時においては、手動空気抜き装置を開状態にしながら熱媒体を配管5内に充填させていき、十分に気体を排出させた後、手動空気抜き装置の手動弁を閉止するようにすればよい。
 ここで、空気抜き装置50の容器51内に効率よく気体がたまるようにするためには、熱媒体循環回路Bのなるべく高い位置に空気抜き装置50を設置することが望ましい。そのため、本実施の形態では熱媒体変換機3に空気抜き装置50を設けるようにしたが、たとえば室内機2が、熱媒体循環回路Bにおける高い位置に設置される場合は、各室内機2内の配管の高い位置に空気抜き装置50を設置してもよい。
 たとえば本実施の形態の熱媒体循環回路Bでは、回路内において、ポンプ21aに流入出して循環する熱媒体の流路とポンプ21bに流入出して循環する熱媒体の流路との複数(2つ)の流路を形成している。2つの流路等、以下における流路は、基本的にポンプ21、熱媒体間熱交換器15と第1熱媒体切替装置22、第2熱媒体切替装置23との流路のことを指すものとする。ここで、冷房主体運転モードまたは暖房主体運転モードといった冷暖混在運転モード時には流路が連通する箇所がないため、各流路にそれぞれ接続する空気抜き装置50を設置してもよい。
 また、コスト削減、小型化を図るため、どちらか片方の流路のみに空気抜き装置50を設置する場合、熱媒体循環回路B全体の空気抜きを有効に行うために、各流路に発生した気体を空気抜き装置50を有する流路に常時誘導できる部分を設けるようにしてもよい。
 図9は連通配管5cを配管接続した空気調和装置100を表す図である。図9においては、空気抜き装置50をいずれかの流路に接続し、各流路を連通配管5cで接続する。連通配管5cを設けることで、冷暖混在運転モード時においても、連通配管5cを介して、各流路に発生した気体を空気抜き装置50を接続した流路に通過させることで、配管内から気体を排出することができる。また、各流路における熱媒体の温度の違いに基づく体積のばらつきをなくすようにして、流路間の配管5内の圧力を均一にする(均圧する)ことができる。
 ここで、熱媒体の温度が高い方が、熱媒体内に溶け込んだ気体が発生する可能性が高い。そのため、たとえば冷暖混在運転モード時に熱媒体を加熱する熱媒体間熱交換器15が決まっている場合、加熱に係る熱媒体間熱交換器15を設けた流路に空気抜き装置50を設けるようにするとよい。
 また、連通配管5cに関して、空気抜き装置50を設けた流路への気体の流れをよくすることを考えれば、空気抜き装置50を設けた流路はポンプ21の入口側、設けられていない流路はポンプ21の出口側に接続することもできる。ただ、本実施の形態の連通配管5cは流路間を均圧させる役割も果たす。また、エネルギーの損失を少なくするために、流路間の熱媒体の混合をできる限り少なくする必要がある。
 そこで、本実施の形態では連通配管5cは、各流路におけるポンプ21の入口側流路同士または出口側流路同士を接続するようにする。ここでポンプ21の入口側流路とは、ポンプ21の入口(吸入側)から第1熱媒体切替装置22に至る流路を指し、ポンプ21の出口側流路とは、ポンプ21の出口(吐出側)から第2熱媒体切替装置23に至る流路のことを指すものとする。
 また、たとえば、空気抜き装置50を設けていない流路と連通配管5cとの接続位置については、気体が溜まりやすい配管5の曲げ部分に接続するようにして、空気抜き装置50を設けた流路側に気体が移動しやすいようにしてもよい。
 ここで、連通配管5cとして配管径が大きく太い配管を用いると、通常運転時に連通配管5cを通して流路間の熱媒体の流れができてしまう。このため、流路間の温度差が大きい冷暖混在運転時モード等には、各流路の熱媒体が混ざってしまい(一般的には温度が高い熱媒体が温度が低い熱媒体と混じる)、熱量の損失によって効率が悪くなる。そこで、基本的に連通配管5cはできる限り配管径が小さく細い配管を用いるようにし、連通配管5c内部における熱媒体の流動抵抗を大きくすることにより、熱媒体が連通配管5cに流れ難くなるようにする。ここで、連通配管5cの内部の熱媒体の流動抵抗は、熱媒体変換機3と各利用側熱交換器26とを接続する配管5における流動抵抗よりも大きく設定する。一方で、連通配管5cを細くし過ぎると、流路間での熱媒体の移動も起き難くなり、均圧できないまたは時間を要することとなるため、適度の配管径が必要となる。
 次に連通配管5cの設計等について説明する。たとえば、熱媒体の配管の内部の圧力ヘッドh[m]、圧力H[Pa]は、流体力学では一般周知である、次式(1)で表されるベルヌーイの式により求められる。ここで、Uは熱媒体の流速[m/s]、gは重力加速度(=9.8)[m/s]、ρは熱媒体の密度[kg/m]、Pは圧力[Pa]である。
Figure JPOXMLDOC01-appb-M000001
 本実施の形態では、熱媒体循環回路Bが2つの熱媒体の流路を有している。それぞれの流路における圧力ヘッドh[m]、圧力H[Pa]は、次式(2)、(3)のようになる。ここで、ポンプ21aの駆動により流れがつくられる流路を流路1とし、ポンプ21bの駆動により流れがつくられる流路を流路2とし、添字1および2で表しているものとする。
Figure JPOXMLDOC01-appb-M000002
 ここで、ポンプ21aの回転数に対し、ポンプ21bの回転数が1/2である場合を考える。このとき、ポンプ21の回転数と流路における熱媒体の流速とが比例するものとする。流路2における熱媒体の流速は、流路1における熱媒体の流速に対して約1/2となる。たとえば、流路1における流速が2[m/s]であれば流路2における流速が1[m/s]になる。
 一方、各ポンプ21の回転数とポンプ21の前後(吸入側、吐出側)における圧力差ΔPとが比例するものとすると、流路2の圧力差ΔP2は流路1の圧力差ΔP1の約1/2となる。たとえば、ΔPが70[kPa](7.14[m])であれば、ΔPが35[kPa](3.57[m])となる。
 また、熱媒体の密度ρ、ρを1000[kg/m]、ポンプ前後の平均圧力を80[kPa]すると、ポンプ21a、21bの吸入側について、次式(4)、(5)が成り立つ。従って、流路1と流路2との間に連通配管5cを設けると、(6)式のように、双方の流路に係る圧力の差である約3.42[m](33500[Pa])の圧力差が連通配管5cの両端に生じることになる。
Figure JPOXMLDOC01-appb-M000003
 一方、配管の内部を熱媒体が流れる際の摩擦による圧力損失h[m]は、流体力学では一般周知の式である、次式(7)で表されるDarcy-Weisbachの式より求めることができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、fは配管の摩擦係数、Uは熱媒体の流速[m/s]、gは重力加速度(=9.8)[m/s]、dは配管の配管径(内径)[m]、Lは配管の長さ[m]である。摩擦係数fは、流体力学では一般周知の式である、次式(8)で表されるBlasiusの式等を用いて求めることができる。ここで、ReはReynolds数、νは熱媒体の動粘度[m/s]である。
Figure JPOXMLDOC01-appb-M000005
 流路1と流路2とを連通配管5cで接続した場合、連通配管5cの両端に生じる圧力差と連通配管5c内部の摩擦による圧力損失とが等しくなるはずである。従って、(6)式および(7)式を用いて、連通配管5cに流れる流量を求めることができる。
 たとえば、連通配管5cの内径dを5[mm]、長さLを0.6[m]、熱媒体の動粘度を1.5×10-6[m/s]とすると、熱媒体の流速Uを4.4[m/s]とした場合に、次式(9)、(10)で示すように、配管の圧力損失hが3.42[m](33500[Pa])となる。配管を流れる熱媒体の流量は、熱媒体の流速4.4[m]に配管の断面積を乗じることにより求まり、約5.2[L/min]となる。
Figure JPOXMLDOC01-appb-M000006
 実際は、流路1および流路2の配管径と連通配管5cの配管径とは異なる。また、連通配管5cに曲げ等が存在すると、それらが流動抵抗となり、連通配管5cに流れる熱媒体の流量は、上記で算出した流量よりも少なくなる。流路を流れている熱媒体の分岐、合流に係る抵抗も発生するため、実際に連通配管5cに流れる熱媒体の流量は、先に計算した流量よりもかなり少ない流量となる。
 本実施の形態では、特に流路1と流路2とは連通配管5cのみで接続されている。このため、たとえば冷房暖房混在運転において流路2から流路1へ熱媒体が流れ込むことで、流路1の圧力が上がっていき、熱媒体流路2の圧力が下がっていって各流路内の圧力が均衡していく。従って、流路2から流路1へ流れる熱媒体の流量は、時間の経過と共に圧力差が小さくっていくことで徐々に少なくなる。
 たとえば、熱媒体変換機3と室内機2とを接続する配管5には、約15L/minの熱媒体が流れるように設計するものとすると、連通配管5cには、配管5を流れる流量に対し、計算上は約1/3以下、実際は1/5~1/10の熱媒体が瞬間的に流れ、徐々に減っていく。
 この程度の流量の熱媒体が均圧配管5cに流れるように各値(特に内径)を設計により決定しておくと、熱損失が少なくなり、流路間で適度に均圧がなされることになる。
 以上のように、実施の形態1の空気調和装置100においては、熱媒体循環回路Bに空気抜き装置50を接続し(設け)、配管接続時、補修時、に熱媒体循環回路Bに含まれる気体を排出するようにしたので、たとえばポンプ21のエア噛みを防ぎ、動力損失を低減することができる。また、駆動を安定させることで故障等を防ぎ、安全性、信頼性を向上させることができる。
 また、均圧配管5cの流動抵抗が、流路となる配管5の流動抵抗よりも小さくなるようにして流れがたくし、たとえば2つの流路における温度差が大きく、圧力差が大きくなるような状態にならないと均圧配管5cに熱媒体が流れないようにしたので、温度の異なる熱媒体が混合することによる熱損失を少なくすることができる。
 さらに、全暖房運転モード時、全冷房運転モード時に、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23においては、2つの流路との間で熱媒体を流入出させるようにしたので、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23においても空気抜き装置50を設けた流路と設けていない流路とを連通させることができるので、熱媒体循環回路Bにおける空気抜きを効率よく行うことができる。
 そして、熱媒体間熱交換器15を有する冷媒循環回路Aを構成して熱媒体の加熱または冷却を行うようにしたので、冷媒を用いた効率の良い空気調和を行うことができる。また、熱媒体変換機3を、室外機1、室内機2とは別のユニットとして設け、各ユニットの配置関係について、熱媒体を循環する配管が可能な限り短くなるような配置をするようにしたので、室外機と室内機との間で直接熱媒体を循環させる場合に比べて、搬送動力が少なくてすむ。そのため、省エネルギー化を図ることができる。
 実施の形態2.
 上述の実施の形態1においては、連通配管5cのみを用いて、空気抜き装置50がない流路から空気抜き装置50を有する流路に気体を送るようにするものであった。ここでは、たとえば設置時等のような場合に、他の部分からも空気抜き装置50を有する流路に気体を送れるようにすることについて説明する。
 実施の形態1で説明したように、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23は、たとえば中間的な開度にすることで、すべての流路を連通させることができる。そして、全暖房運転モードまたは全冷房運転モードを行うときには、2つの流路の熱媒体を合流、分岐させている。そこで、配管5内にある程度熱媒体を封入した後、全暖房運転モードまたは全冷房運転モードによる運転を行い、ポンプ21を動作させながら空気抜きを行う。
 以上のように、実施の形態2の空気調和装置100によれば、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23において、すべての流路を連通させることができるようにしたので、空気抜き装置50を有する流路に気体を送る経路を増やすことができる。このため、連通配管5cが設置されている場合でも、気体が行き来できる場所を増やして早く空気抜きを終えることができる。また、空気抜きを早く終えることにより、ポンプ21がエア噛みする時間を短くすることができ、ポンプ21の損傷も防げるため安全をはかることができる。また、通常の全暖房運転モードまたは全冷房運転モードにおいて、2つの流路を連通させるようにすることで、設置時(配管接続時)以外の場合においても空気抜きを行うことができる。
 実施の形態3.
 上述の実施の形態では、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23について、すべての流路を連通させることができるようにし、これにより、連通配管5c以外に2つの流路を連通させて、設置時等の気体排出について説明した。本実施の形態では、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23の切替制御により、独立した2つの流路を1つの流路にして気体を排出する手順について説明する。
 図10は設置時の空気排出における熱媒体の経路を表すための図である。本実施の形態では、各利用側熱交換器26(室内機2)を2グループに分ける。ここで、室内機2をグループ分けする方法については、特に限定するものではなく、たとえば偶数番と奇数番等で分けるようにしてもよいし、その他の方法でもよい。
 そして、一方のグループの利用側熱交換器26に対応する第2熱媒体流路切替装置23については、熱媒体間熱交換器15a(ポンプ21a)を流れる熱媒体を利用側熱交換器26に流入させるように切り替える。また、そのグループの利用側熱交換器26に対応する第1熱媒体流路切替装置22については、利用側熱交換器26から流出した熱媒体を、熱媒体間熱交換器15b(ポンプ21b)に流入させるように切り替える。
 他方のグループの利用側熱交換器26に対応する第2熱媒体流路切替装置23については、熱媒体間熱交換器15b(ポンプ21b)を流れる熱媒体を利用側熱交換器26に流入させるように切り替える。また、そのグループの利用側熱交換器26に対応する第1熱媒体流路切替装置22については、利用側熱交換器26から流出した熱媒体を熱媒体間熱交換器15a(ポンプ21a)に流入させるように切り替える。
 図10では、熱媒体間熱交換器15b、ポンプ21bから利用側熱交換器26b、26dを介して、熱媒体間熱交換器15a、ポンプ21aに流れる流路を形成するように、第1熱媒体流路切替装置22b、22d、第2熱媒体流路切替装置23b、23dを切り替えている。また、熱媒体間熱交換器15a、ポンプ21aから利用側熱交換器26a、26cを介して、熱媒体間熱交換器15b、ポンプ21bに流れる流路を形成するように、第1熱媒体流路切替装置22a、22c、第2熱媒体流路切替装置23a、23cを切り替えている。
 以上のようにして、実施の形態3の空気調和装置100においては、通常、熱媒体循環回路Bにおいて、2つのに分かれている流路を、第1熱媒体流路切替装置22、第2熱媒体流路切替装置23の切替により1つの流路とすることができるので、1つの空気抜き装置50を用いて、熱媒体循環回路B全体の気体を配管5から排出することができる。そのため、流路の切り替えだけを行う切替装置においても、熱媒体循環回路B全体の空気抜きを行うことができる。
 実施の形態4.
 上述の実施の形態では特に示さなかったが、たとえば上述の実施の形態で説明した第1熱媒体流路切替装置22および第2熱媒体流路切替装置23については、開口部の開閉による切替装置だけでなく、ステッピングモーター駆動式の混合弁等の流路の流量を変化させられるものを用いるとよい。このような第1熱媒体流路切替装置22および第2熱媒体流路切替装置23は、熱媒体の混合、分岐の制御を行うことができる。また、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。
 さらに、上述の実施の形態では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、利用側熱媒体流量制御装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、利用側熱媒体流量制御装置25として、開閉弁等の二方流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 また、第2冷媒流路切替装置18が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 上述の実施の形態に係る空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15および絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整弁25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。
 また、利用側熱交換器26と熱媒体流量調整弁25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15および絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整弁25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 熱源側冷媒としては、たとえばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒やその混合物、あるいはCOやプロパン等の自然冷媒を用いることができる。加熱用として動作している熱媒体間熱交換器15aまたは熱媒体間熱交換器15bにおいて、通常の二相変化を行う冷媒は、凝縮液化し、CO等の超臨界状態となる冷媒は、超臨界の状態で冷却されるが、どちらでも、その他は同じ動きをし、同様の効果を奏する。
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、一般的に、熱源側熱交換器12および利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではなく、たとえば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。
 また、熱媒体間熱交換器15a、15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却または/および加熱できるように構成すれば、幾つ設置してもよい。
 また、ポンプ21a、21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べてもよい。
 1 室外機、1B 室外機、2 室内機、2a 室内機、2b 室内機、2c 室内機、2d 室内機、3 熱媒体変換機、3B 熱媒体変換機、3a 親熱媒体変換機、3b 子熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 配管、5c 均圧配管(冷媒配管)、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a 逆止弁、13b 逆止弁、13c 逆止弁、13d 逆止弁、14 気液分離器、15 熱媒体間熱交換器、15a 熱媒体間熱交換器、15b 熱媒体間熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、16c 絞り装置、17 開閉装置、17a 開閉装置、17b 開閉装置、18 第2冷媒流路切替装置、18a 第2冷媒流路切替装置、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a ポンプ、21b ポンプ、22 第1熱媒体流路切替装置、22a 第1熱媒体流路切替装置、22b 第1熱媒体流路切替装置、22c 第1熱媒体流路切替装置、22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a 第2熱媒体流路切替装置、23b 第2熱媒体流路切替装置、23c 第2熱媒体流路切替装置、23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a 熱媒体流量調整装置、25b 熱媒体流量調整装置、25c 熱媒体流量調整装置、25d 熱媒体流量調整装置、26 利用側熱交換器、26a 利用側熱交換器、26b 利用側熱交換器、26c 利用側熱交換器、26d 利用側熱交換器、31 第1温度センサー、31a 第1温度センサー、31b 第1温度センサー、34 第2温度センサー、34a 第2温度センサー、34b 第2温度センサー、34c 第2温度センサー、34d 第2温度センサー、35 第3温度センサー、35a 第3温度センサー、35b 第3温度センサー、35c 第3温度センサー、35d 第3温度センサー、36 圧力センサー、41 流路切替部、42 流路切替部、50 空気抜き装置、51 容器、52 空気抜き弁、53 フロート、100 空気調和装置、100A 空気調和装置、100B 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (8)

  1.  熱交換対象となる空気と前記熱媒体との熱交換を行う複数の利用側熱交換器を有する室内機と、
     前記熱媒体を加熱または冷却する複数の加熱・冷却機器、各加熱・冷却機器による加熱または冷却に係る熱媒体を複数の流路のそれぞれの流路に送出して循環させる複数の熱媒体送出装置、および、前記複数の流路からの熱媒体のうち、1または複数の熱媒体を各利用側熱交換器に流入出させるための切り替えをそれぞれ行う複数の熱媒体流路切替装置を有する熱媒体変換機とを備え、
     いずれかの前記流路と接続し、熱媒体が循環する配管内の空気を配管外に排出する空気抜き装置と、
     前記各流路の前記熱媒体送出装置の入口側流路同士または出口側流路同士を接続する均圧配管と
    をさらに備えることを特徴とする空気調和装置。
  2.  前記加熱・冷却機器は、冷媒と前記熱媒体による媒体間の熱交換を行う媒体間熱交換器であり、
     前記冷媒を加圧する圧縮機、前記冷媒の循環経路を切り替えるための冷媒流路切替装置、前記冷媒を熱交換させるための熱源側熱交換器、および、前記冷媒を圧力調整するための絞り装置を、前記中間熱交換器とを配管接続して冷凍サイクル回路を構成する室外機をさらに備えることを特徴とする請求項1に記載の空気調和装置。
  3.  前記室内機と、前記熱媒体変換機と、前記室外機とを、それぞれ別体に形成して互いに離れた場所に設置できるように構成することを特徴とする請求項1または2に記載の空気調和装置。
  4.  前記均圧配管内部における熱媒体の流動抵抗が、前記熱媒体変換機と前記室内機との間を接続する2本の配管のいずれの流動抵抗よりも大きくなるようにすることを特徴とする請求項1~3のいずれかに記載の空気調和装置。
  5.  前記複数の熱媒体流路切替装置はすべての流路から熱媒体を流入出させることができ、接続した配管に前記熱媒体を充填する際にすべての流路から熱媒体を流入出させることを特徴とする請求項1~4のいずれかに記載の空気調和装置。
  6.  すべての複数の加熱・冷却機器が前記熱媒体を加熱する全暖房運転モードと、
     すべての複数の加熱・冷却機器が前記熱媒体を冷却する全冷房運転モードとによる運転を可能とし、
     前記全暖房運転モードおよび前記全冷房運転モードにおいては、前記複数の熱媒体間熱交換器のすべてと、運転中の前記室内機に対応する熱媒体流路切替装置各流路からの熱媒体を各利用側熱交換器に流入出させるように切り替える制御を行う制御装置を備えることを特徴とする請求項1~5のいずれかに記載の空気調和装置。
  7.  接続した配管に前記熱媒体を充填する際、ある流路から流入する熱媒体を別の流路に流出させるように前記複数の熱媒体流路切替装置を切り替えて前記熱媒体の循環経路を1つにする制御を行う制御装置を備えることを特徴とする請求項1~6のいずれかに記載の空気調和装置。
  8.  熱交換対象となる空気と前記熱媒体との熱交換を行う複数の利用側熱交換器を有する室内機と、
     熱媒体を加熱または冷却する複数の加熱・冷却機器、該複数の加熱・冷却機器による加熱または冷却に係る熱媒体を、各流路に送出して、循環させる複数の熱媒体送出装置、および、選択された前記流路からの熱媒体を、各利用側熱交換器に流入出させるための切り替えをそれぞれ行う複数の熱媒体流路切替装置とを有する熱媒体変換機とを備え、
     いずれかの前記流路のみと接続し、熱媒体が循環する配管内の空気を配管外に排出する空気抜き装置を備え、
     すべての複数の加熱・冷却機器が前記熱媒体を加熱する全暖房運転モードと、
     すべての複数の加熱・冷却機器が前記熱媒体を冷却する全冷房運転モードとによる運転を可能とし、
     前記全暖房運転モードおよび前記全冷房運転モードにおいては、前記複数の熱媒体間熱交換器のすべてと、運転中の前記室内機に対応する熱媒体流路切替装置各流路からの熱媒体を各利用側熱交換器に流入出させるように切り替える制御を行う制御装置を備えることを特徴とする空気調和装置。
PCT/JP2009/068387 2009-10-27 2009-10-27 空気調和装置 WO2011052033A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068387 WO2011052033A1 (ja) 2009-10-27 2009-10-27 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068387 WO2011052033A1 (ja) 2009-10-27 2009-10-27 空気調和装置

Publications (1)

Publication Number Publication Date
WO2011052033A1 true WO2011052033A1 (ja) 2011-05-05

Family

ID=43921477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068387 WO2011052033A1 (ja) 2009-10-27 2009-10-27 空気調和装置

Country Status (1)

Country Link
WO (1) WO2011052033A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083682A1 (ja) * 2012-11-30 2014-06-05 三菱電機株式会社 空気調和装置
CN107192045A (zh) * 2017-06-26 2017-09-22 珠海格力电器股份有限公司 空调系统
EP3505846A4 (en) * 2016-08-25 2019-10-16 Mitsubishi Electric Corporation HEAT PUMP DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724478A (en) * 1980-07-22 1982-02-09 Toyota Motor Corp Water supply device
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
JP2006029658A (ja) * 2004-07-14 2006-02-02 Denso Corp 並列型複数給湯器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724478A (en) * 1980-07-22 1982-02-09 Toyota Motor Corp Water supply device
JP2004053069A (ja) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd 冷媒回路、およびそれを用いた自動販売機
JP2004226015A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷温水供給システム
JP2006029658A (ja) * 2004-07-14 2006-02-02 Denso Corp 並列型複数給湯器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083682A1 (ja) * 2012-11-30 2014-06-05 三菱電機株式会社 空気調和装置
JP5921714B2 (ja) * 2012-11-30 2016-05-24 三菱電機株式会社 空気調和装置
EP2927620A4 (en) * 2012-11-30 2016-08-10 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
JPWO2014083682A1 (ja) * 2012-11-30 2017-01-05 三菱電機株式会社 空気調和装置
US10408477B2 (en) 2012-11-30 2019-09-10 Mitsubishi Electric Corporation Air-conditioning apparatus
EP3505846A4 (en) * 2016-08-25 2019-10-16 Mitsubishi Electric Corporation HEAT PUMP DEVICE
CN107192045A (zh) * 2017-06-26 2017-09-22 珠海格力电器股份有限公司 空调系统

Similar Documents

Publication Publication Date Title
JP5614757B2 (ja) 空気調和装置
JP5188629B2 (ja) 空気調和装置
JP5236008B2 (ja) 空気調和装置
JP5452629B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
JP6141454B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP5452628B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5377653B2 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
WO2012104891A1 (ja) 空気調和装置
WO2014097438A1 (ja) 空気調和装置
WO2011064814A1 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
WO2011052049A1 (ja) 空気調和装置
WO2011099067A1 (ja) 冷凍サイクル装置
JP5312681B2 (ja) 空気調和装置
WO2012035573A1 (ja) 空気調和装置
WO2011052033A1 (ja) 空気調和装置
WO2011052050A1 (ja) 空気調和装置
WO2016113830A1 (ja) 空気調和装置
WO2014128971A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP