WO2011051498A1 - Setting member for a wristwatch, and timepiece comprising such a setting member - Google Patents

Setting member for a wristwatch, and timepiece comprising such a setting member Download PDF

Info

Publication number
WO2011051498A1
WO2011051498A1 PCT/EP2010/066640 EP2010066640W WO2011051498A1 WO 2011051498 A1 WO2011051498 A1 WO 2011051498A1 EP 2010066640 W EP2010066640 W EP 2010066640W WO 2011051498 A1 WO2011051498 A1 WO 2011051498A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulating member
balance
magnetic
magnets
permanent magnet
Prior art date
Application number
PCT/EP2010/066640
Other languages
French (fr)
Inventor
Bertrand Pichon
Original Assignee
Lvmh Swiss Manufactures Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lvmh Swiss Manufactures Sa filed Critical Lvmh Swiss Manufactures Sa
Priority to EP10773314A priority Critical patent/EP2497095A1/en
Publication of WO2011051498A1 publication Critical patent/WO2011051498A1/en

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/064Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling indirectly, i.e. without mechanical connection, contacts, e.g. by magnetic or optic means
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt

Definitions

  • a regulating organ for a wristwatch, and a timepiece comprising such a regulating organ.
  • the present invention relates to a regulating organ for a wristwatch, and a timepiece for a wristwatch provided with such a movement.
  • the usual mechanical watches comprise an energy accumulator constituted by a barrel, a kinematic chain, or a train, driving needles, a regulating organ determining the running of the watch, and an escapement for transmitting the oscillations of the regulating organ. at the wheel.
  • the present invention relates in particular to the regulating organ.
  • the regulating organs of conventional mechanical watches comprise most often a rocker mounted on a rotating axis and a return member exerting a torque on the beam to bring it back to a rest position.
  • the escapement maintains oscillations of the balance around the rest position.
  • the return member generally comprises a spring, the spiral, which transmits a restoring torque to the balance beam through the ferrule.
  • the oscillator formed by the sprung-balance pair offers remarkable properties for the measurement of time.
  • it has the disadvantage of being sensitive to gravity, which tends to deform the spiral differently depending on the inclination of the watch.
  • the manufacture of spiral is delicate, and these organs are traditionally difficult to obtain.
  • Electric watches are also known whose running is regulated by an electromechanical oscillator comprising coils and magnets.
  • US4266291 discloses an oscillating mechanism for horological application based on permanent magnets and requiring a power source to energize a stator with a pulsed current.
  • GB1 175550 discloses a resonator comprising an H part provided with of oscillating magnets in a magnetic field created by coils or electrostatic elements. The oscillation frequency is determined by the geometry of the resonator.
  • an object of the present invention is in particular to propose a regulating organ which can also
  • CH615314 describes a regulating member with a balance and a conventional spiral spring; the regularity of the oscillations is improved by means of a magnet mounted on a vibrating tongue and vibrating in the magnetic field of a fixed magnet.
  • US2003 / 0137901 discloses a mechanical watch comprising magnets for detecting or correcting the position of the balance; the frequency of oscillations of the pendulum is, however, determined by an ordinary spiral.
  • EP1 122619 describes different embodiments of a mechanical watch whose balance is provided with magnets generating a magnetic field in fixed induction coils linked to the movement. The intensity of the current in the coils makes it possible to control the amplitude of oscillation and therefore the running of the watch. It is also suggested to correct this step in case of irregular oscillations.
  • the movements of the balance are however stabilized by a spiral, and not by magnets.
  • US3183426 discloses a magnetic escapement for watch movement. This device uses magnets arranged on the pendulum. However, it is not suggested to remove or replace the hairspring.
  • CH274901 describes different variants of mechanical escapements associated with a conventional spiral spring regulating member. These different solutions therefore require an additional magnetic system in addition to the spiral spring. They therefore have all the disadvantages of spiral springs, adding further complexity. An object of the present invention with respect to these various solutions is therefore to remove the spiral spring.
  • US387721 5 describes a member which comprises a tuning fork whose vibrations are transmitted to the balance by magnetic coupling.
  • GB1 142676 discloses another mechanical and magnetic oscillator with a tuning fork.
  • CH235718 discloses a regulating organ for a watch comprising an oscillating flexible rod whose end is provided with a magnet vibrating in the magnetic field of a fixed magnetic pole.
  • US 3621424 discloses a pendulum oscillating in a magnetic field caused by a single magnet connected to the exhaust.
  • the magnet serves both the exhaust and bring the pendulum back to its equilibrium position.
  • the pendulum must be subjected to the gravitational force and can only operate in a vertical position, that is to say in a clock.
  • US4308605 discloses a regulating member for a timepiece provided with a vertical axis balance. Magnets make it possible to compensate for the gravitational force to compensate for the pressure differences on the two bearings and to limit the bending of the balance wheel shaft due to its own weight. The oscillations are controlled by a conventional spiral.
  • US5638340 relates to a table clock with a pendulum oscillating in levitation in a magnetic field, and which in a variant determines the running of the watch.
  • the oscillating member is thus totally decoupled from the drive train of the needles.
  • This device however requires a source of electrical energy to produce the levitation magnetic field and for the sensors
  • Optoelectronic position control of the pendulum The mechanism is not suitable for a wristwatch.
  • GB615139 evokes a vertical gravitational pendulum clock.
  • the end of the pendulum oscillates in a circular path controlled by magnets, and thus causes the movement of the watch.
  • an object of the present invention is in particular to propose a regulating organ adapted to a wristwatch, and whose operation and running are practically independent of the gravity and the orientation of the organ. adjusting relative to the vertical.
  • GB644948 discloses a galvanometer with a mass of inertia which is provided with two movable magnets.
  • a permanent fixed magnet generates a magnetic field for bringing the balance back into its equilibrium position.
  • the oscillations are maintained by a conventional anchor escapement.
  • This solution is only sketched schematically; magnets of relatively large size are however necessary. These magnets generate a magnetic field around the regulating organ, which is likely to disrupt the operation of the device and attract parts or organs nearby.
  • Applicant whose content is incorporated herein by reference, proposes to replace the spiral spring of the prior art with at least one permanent magnet which pushes the balance to its rest position against the pulses of the exhaust.
  • the magnetic force of the magnet is independent of its orientation in space, and thus avoids the isochrononism disturbances that characterize the spiral springs when they deform under the action of gravity.
  • the solution described in the patent application WO2006 / 045824 employs stationary magnets relatively remote from the movable magnets on the balance, in order to push these mobile magnets to the rest position at a distance. It is therefore necessary to use strong and therefore bulky magnets to generate a sufficient repulsion force.
  • magnets are generally formed of sintered materials that are difficult to machine accurately. It is therefore difficult to produce magnets of dimension and volume perfectly reproducible, and difficult to mount and position precisely in a device.
  • An object of the present invention is therefore to provide a regulating member whose isochronism is improved over the regulating members of the prior art.
  • another object of the present invention is to provide a dimensioned magnetic regulating member which can, if necessary, also be integrated in a small mechanical wristwatch movement, or even in an additional module superimposed over a movement of existing base.
  • Another aim is to propose a regulating organ that is less sensitive to shocks and accelerations than the regulating members of the prior art, in particular a regulating organ whose period is less disturbed by external shocks than known regulating devices.
  • Another aim is to propose a regulating organ which is not very sensitive to temperature variations.
  • Another object of the present invention is also to propose a mechanical timepiece based on a magnetic regulating member and without a spiral spring.
  • An object of the present invention is therefore also to propose a regulating member for a wristwatch which is new and different from the regulating members of the prior art. According to the invention, these objects are achieved by means of a regulating member having the features of the main claim, preferred variants being indicated in the claims.
  • a regulating member for a wristwatch comprising:
  • At least one said permanent magnet being formed of a non-sintered crystalline material.
  • the permanent magnets are made of an alloy of platinum and cobalt.
  • the ferromagnetic properties of these alloys are certainly known. However, their use has become largely obsolete, because the alloy is expensive and the coercive field Hc is lower than that which can be obtained with more economical materials.
  • platinum-cobalt alloys have the advantage of being available in crystalline and ductile form, which allows them to machining with very precise tolerances using conventional machining tools, such as milling, electro-erosion, etc.
  • the dimensional accuracies that can be obtained are excellent, which makes it possible to ensure reproducibility of the volumes of magnetic material and therefore of the magnetic fields produced. Precise air gap and magnetic path distances can also be guaranteed by using these easy-to-machine materials.
  • the dimensional accuracy obtained is furthermore sufficient to avoid the use of glues for fixing the magnets, which can be maintained by mechanical means, for example by driving them into a housing provided for this purpose. This avoids disturbances of magnetic fields caused by the glue.
  • Platinum-cobalt alloys are also slightly oxidizable and insensitive to temperature variations.
  • at least one permanent magnet is made of a material consisting of 75 to 78% platinum (for example 76.85%) and less than 24% cobalt.
  • unsintered magnetic materials may be employed for permanent magnets, including micropowder-based magnets, plastic magnets, or other ductile magnetic alloys (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc. ).
  • the weak coercive field of these other materials makes their use less suitable for horological applications; it is necessary to use large volumes to generate the necessary magnetic fields.
  • the magnetic field produced depends very much on temperature variations.
  • the permanent magnets comprise several layers arranged so that the magnetic field variations compensate at least partially.
  • the stationary magnets are connected to the plate or to a bridge, and polarized so as to attract the mobile magnets of the balance to the equilibrium position. The distance between the opposite poles of the fixed and mobile magnets is therefore minimal at the rest position, so that the attraction torque to this rest position is important.
  • This important torque makes it possible to oscillate the balance at a high frequency, and thus to obtain an improved resolution in the measurement of time. If a very high frequency is not essential, it is also possible to reduce this torque by using permanent magnets of small volume, which allows to miniaturize the movement.
  • the restoring torque C of the pendulum varies proportionally or substantially
  • the regulating member operates almost isochronously, that is to say that the oscillation period is almost independent of its amplitude.
  • FIG. 1 is a plan view of a regulating member according to a first embodiment.
  • Figure 2 is a perspective view of a regulating member according to a second embodiment.
  • Figure 3 is a perspective view of a regulating member according to a third embodiment.
  • Figure 4 a sectional view of a regulating member according to the third embodiment.
  • Figure 5 is a sectional view of a multilayer magnet.
  • Figure 1 shows a top view of a regulating member for wristwatch movement, according to a first embodiment of the invention.
  • the regulating organ mainly comprises an oscillator with a rocker 1 of which only the parts in the plane of the magnets are represented; the complete pendulum preferably includes a not shown serge mounted on the same axis 1 1 but in another plane.
  • the oscillator also includes fixed permanent magnets 2 and an escapement of which only the escape wheel 6 and a portion of the anchor 5 are shown.
  • the exhaust 5, 6 is in this example entirely conventional, and may be constituted by a known anchor escapement. Other types of exhaust, including for example magnetic exhausts, can however also be used in this variant as well as in the other embodiments described in the application.
  • the pendulum 1 of the oscillator rotates about an axis 1 1 linked to a bridge and the plate by means of unrepresented bearings, for example incabloc bearings or magnetic bearings.
  • an annular portion 10 at the periphery of the balance 1 is magnetized permanently and without discontinuities all around the balance. This annular portion 10 constitutes a dipole with two opposite poles spaced in this example by 180 ° and represented symbolically with the symbols + and -.
  • the permanent magnets 10 of the beam 1 are constituted by a ring magnetized continuously. This provision is advantageous because it is easier to obtain a return torque that varies linearly and continuously with the angular deviation ⁇ of the balance relative to the rest position.
  • the balance 1 it is also possible to provide the balance 1 of several discrete magnets glued or reported, or to use a zone or a magnetization intensity which varies depending on the angular position around the balance.
  • the ring 10 is discontinuous, and for example provided with one or more air gaps, or magnetized with jumps / discontinuities of
  • the magnetization of the periphery 10 of the beam 1 can for example be obtained by magnetizing it by means of a head
  • the regulating member of this example comprises two fixed permanent magnets 2 arranged at 180 ° from each other on either side of the balance. One of the poles of each magnet is towards the inside of the regulating organ and the opposite pole towards the outside. In addition, the polarities of the two fixed permanent magnets 2 are opposite to each other, as illustrated with symbols + and -.
  • Reference 7 corresponds to the air gap
  • the fixed permanent magnets 10 advantageously have in this example a shape comprising a central portion 21 and peripheral portions 20 on either side of the central portion 21.
  • the section of the two peripheral portions 20 in a radial plane perpendicular to the page increases gradually away from the central portion 21. This results in a magnetic field, and therefore a mechanical return torque, which grow linearly throughout the section 20 when the rocker 1 moves away from the rest position.
  • the central portion 21 of the fixed permanent magnets 2 however forms a protuberance and thus has a large radial section. These two protuberances 21 have several important effects:
  • these protuberances make it possible to create a very strong localized magnetic attraction zone close to the desired resting zone, and thus to prevent the pendulum from stopping or being attracted towards one on several others. possible equilibrium zones (for example towards the discontinuities formed by the junction between the magnets 2 and the cylinder head 3).
  • protuberances have the disadvantage of introducing a discontinuity in the relationship between the angular deflection and the mechanical return torque; the torque increases instead of decreasing when the magnetic poles of the balance 1 are in the immediate vicinity of these protuberances 21 and that the balance approaches the rest position. This disturbance is however very local and however
  • a yoke 3 made of soft magnetic material holds and connects the two stationary magnets 2 to each other. This yoke also makes it possible to guide the magnetic flux between these magnets and to limit the portion of the flux
  • the magnetic field re-emitted by this yoke 3 also contributes to the generation of the pendulum return torque, and is used to control the direction and amplitude of this field in space.
  • “Substantially elliptical” means here that the ellipse is deformed at both longitudinal ends by the protuberances 21; a not strictly elliptical oval shape could also be
  • Mechanical or magnetic stops may be provided to limit the maximum amplitude of oscillations of the balance 1.
  • a magnetic stop for example a zone of strong magnetization integral with the cylinder head 3, makes it possible to push the rocker arm towards its rest position without presenting the disadvantages of the mechanical stops causing shocks likely to disturb the isochronic movement of the rocker arm.
  • Figure 2 illustrates another variant of magnetic regulating member according to the invention.
  • the rocker 1 is made in the same manner as in the example of Figure 1, and has a magnetic annular peripheral section 10.
  • the fixed permanent magnets 2 however, have a simpler shape and comprise a single magnetic circular ring around the balance.
  • a cylinder head 3 here in two parts surrounds this ring 2 and thus constitutes a magnetic shielding preventing the field
  • the balance 1 is forced here to perform oscillations of small amplitude over a sufficiently small angular segment so that the non-linearity can be practically neglected.
  • the regulating member comprises a reduction gear with a wheel 20 on the axis 1 1 of the beam and a pinion 21 actuated by the fork of the anchor 5.
  • the pulses given by the exhaust 5 , 6 cause a rotation of limited amplitude of the balance, so that the restoring torque is almost linear in this limited area.
  • a similar reduction can also be used with a regulating member similar to that of Figure 1, or Figure 3 for example.
  • the reduction 20, 21, however, has the disadvantage of introducing additional losses by friction.
  • Figures 3 and 4 illustrate another embodiment in which two permanent magnets 2 are arranged in two planes above, respectively below the plane of the balance 1.
  • the positive pole of the upper permanent magnet 2 is directed towards the balance, while the negative pole of the lower permanent magnet is directed towards the balance.
  • a yoke 3 connects and holds the two permanent magnets 2 and thus strengthens the magnetic field in the gap 7 between the two magnets and the balance.
  • the balance 1 is provided with a single magnet 10, here a non-permanent magnet (punctual magnet) made of a ferromagnetic material.
  • This magnet forms one of the spokes connecting the periphery of the balance to its axis 1 January.
  • the outer extremity of this ray widens in the shape of a half-moon. The magnetization of this magnet is therefore determined by the field
  • the half-moon shape of the magnetic zone 10 ensures a return torque that varies linearly with the deflection angle with respect to the rest position (not shown).
  • Other variants can be imagined in the context of the invention.
  • the fixed yoke - or the bolt - can be provided with an air gap to avoid the risk of saturation of the ferromagnetic material.
  • yokes formed of ferromagnetic sheets or grains of ferromagnetic materials
  • the variation of the magnetic field and the magnetic torque as a function of the angular deflection can also be controlled by modifying the thickness, the section in a radial plane, and / or the magnetization of the fixed or moving magnets as a function of the angular position.
  • the accuracy of the isochronism depends in a significant way on the shape of the permanent magnets.
  • the regulating member implements permanent magnets in materials which are certainly a little less powerful than the neodymiums and other modern materials usually used, but which have the advantage of being unsintered and available. in crystalline form; they can therefore be machined more easily with the required accuracy.
  • the magnets are based on unsintered platinum cobalt, which is one of the materials whose magnetic remanence is insensitive to temperature variations. This material also has the advantage of being slightly oxidizable, and therefore does not need to be nickel plated to protect it. Convincing tests were obtained with magnets consisting of 75 to 78% platinum (for example 76.85%) and less than 24% cobalt.
  • a heat treatment is preferably applied to the magnets after machining, to make it magnetizable.
  • Permanent magnets made of these materials can be machined with such precision that they are preferably simply driven out or mechanically held in motion; this avoids the use of glues, which disturb the direction of the magnetic field lines.
  • unsintered magnetic materials may be employed for permanent magnets, including micropowder-based magnets, plastic magnets, or other ductile magnetic alloys (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc. ).
  • the weak coercive field of these other materials makes their use less suitable for horological applications; it is necessary to use large volumes to generate the necessary magnetic fields.
  • the magnetic field produced depends very much on temperature variations.
  • the regulating member advantageously comprises means for adjusting the position of at least one individual magnet, making it possible to adjust it to the mounting in order to adjust the running of the watch.
  • these means are for example constituted by at least one micrometer screw, or another threaded element, allowing to bring closer or to separate at least one corresponding permanent fixed magnet from the balance, in order to influence the magnetic field. exerted by this magnet on the magnetized portions of the balance. It is also possible to adjust the angular distance between two permanent magnets.
  • temperature compensation means can also be implemented, for example by employing a conventional bimetallic balance which is deformed under the action of temperature.
  • components with a high coefficient of expansion, or bimetallic components are used to move the fixed or moving permanent magnets as a function of temperature, so that
  • FIG. 5 illustrates a sectional view of a multilayer magnet generating a magnetic field almost independent of the temperature in the useful temperature ranges.
  • the magnet comprises a layer 25 and another 27 polarized in the same direction and both made of a material whose magnetic remanence varies little with temperature.
  • the intermediate layer 26 is made of another material (for example neodymium, etc.) polarized in the opposite direction and which generates a magnetic field smaller than the sum of the fields generated by the two layers 25 and 27.
  • the magnetic remanence of the layer 26 however varies greatly with temperature.
  • Stacking resulting from layers 25 to 27 is equivalent to a polarized magnet in the same direction as the layers 25 and 27, the amplitude of the resulting field being reduced by the layer 26.
  • the number of layers and / or materials used to make temperature-insensitive magnets may be different from the illustrative example shown in Fig. 4.
  • the magnets are formed from a variety of materials including variations in remanence. offset each other but without arranging the materials in layers.
  • Multilayer or multi-material magnets can be used for permanent magnets as well as for mobile permanent magnets.
  • the currents induced by the rotating magnetic field created by the rotation of the magnetic balance are used to adjust the operation of the watch.
  • These currents can for example be measured by means of a coil connected to the movement, and their frequency or their phase used by an electronic circuit (which can itself be supplied by these currents) to determine the running of the watch, and possibly correct it.
  • the bridges, plates, wheels and other mobile elements close to the regulating member are preferably made of a material
  • Magnetic shields may be provided for magnetically separating the regulating member from sensitive elements in at least some directions.
  • a grounding that is to say platinum
  • the regulating organ described proves particularly effective for generating high return torques, and therefore frequencies oscillation.
  • One possible application relates for example to a regulating organ for a chronograph organ; the high oscillation frequency significantly improves the resolution and
  • Such a regulating member may for example be added to the main regulating member used in a wristwatch movement to give the time.
  • the watch comprises in this case a very high resolution and very high precision regulating member dedicated to the measurement of timed durations.
  • This magnetic regulating member may also be mounted in the same movement as the main regulating member, or in an auxiliary module superimposed over the basic movement, for example in an additional chronograph module.
  • the claimed solution also has the advantage of being devoid of a spiral spring.
  • the removal of this organ allows to see through the regulating member, between the spokes of the beam, without the hairspring shields the components backwards. plan.
  • the regulating organ of the invention will therefore advantageously be disposed behind an opening of the dial or in the bottom of the watch. so as to clearly show the pendulum oscillating rapidly and the components behind this pendulum.
  • the regulating member of the invention is preferably mounted in a movement and in a watch case revealing at least part of the balance, which allows the user to control his

Abstract

Magnetic setting member for a wristwatch movement, comprising: a balance (1); permanent magnets (2, 10) for bringing said balance into at least one rest position; and an escapement (5, 6) for transmitting pulses to the balance in order to move the balance (1) away from the rest position; at least one of said permanent magnets being formed from a non-sintered crystalline material, for example based on platinum and cobalt.

Description

Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant.  A regulating organ for a wristwatch, and a timepiece comprising such a regulating organ.
La présente invention concerne un organe réglant pour montre bracelet, et une pièce d'horlogerie pour montre bracelet muni d'un tel mouvement. The present invention relates to a regulating organ for a wristwatch, and a timepiece for a wristwatch provided with such a movement.
Les montres mécaniques usuelles comportent un accumulateur d'énergie constitué par un barillet, une chaîne cinématique, ou rouage, entraînant des aiguilles, un organe réglant déterminant la marche de la montre, ainsi qu'un échappement pour transmettre les oscillations de l'organe réglant au rouage. La présente invention concerne en particulier l'organe réglant. The usual mechanical watches comprise an energy accumulator constituted by a barrel, a kinematic chain, or a train, driving needles, a regulating organ determining the running of the watch, and an escapement for transmitting the oscillations of the regulating organ. at the wheel. The present invention relates in particular to the regulating organ.
Les organes réglant de montres mécaniques conventionnelles comportent le plus souvent un balancier monté sur un axe en rotation et un organe de rappel exerçant un couple sur le balancier pour le ramener vers une position de repos. L'échappement entretient les oscillations du balancier autour de la position de repos. L'organe de rappel comporte généralement un ressort, le spiral, qui transmet un couple de rappel au balancier au travers de la virole. The regulating organs of conventional mechanical watches comprise most often a rocker mounted on a rotating axis and a return member exerting a torque on the beam to bring it back to a rest position. The escapement maintains oscillations of the balance around the rest position. The return member generally comprises a spring, the spiral, which transmits a restoring torque to the balance beam through the ferrule.
L'oscillateur formé par le couple balancier-spiral offre des propriétés remarquables pour la mesure du temps. Il présente cependant l'inconvénient d'être sensible à la gravité, qui tend à déformer le spiral différemment selon l'inclinaison de la montre. Par ailleurs, la fabrication des spiraux est délicate, et ces organes sont traditionnellement difficiles à se procurer. On connaît par ailleurs des montres électriques dont la marche est réglée par un oscillateur électromécanique comportant des bobines et des aimants. Par exemple, US4266291 décrit un mécanisme oscillant pour application horlogère basé sur des aimants permanents et nécessitant une source d'alimentation électrique pour exciter un stator avec un courant puisé. GB1 175550 décrit un résonateur comprenant une pièce en H munie d'aimants oscillants dans un champ magnétique crée par des bobines ou des éléments électrostatiques. La fréquence d'oscillation est déterminée par la géométrie du résonateur. The oscillator formed by the sprung-balance pair offers remarkable properties for the measurement of time. However, it has the disadvantage of being sensitive to gravity, which tends to deform the spiral differently depending on the inclination of the watch. Moreover, the manufacture of spiral is delicate, and these organs are traditionally difficult to obtain. Electric watches are also known whose running is regulated by an electromechanical oscillator comprising coils and magnets. For example, US4266291 discloses an oscillating mechanism for horological application based on permanent magnets and requiring a power source to energize a stator with a pulsed current. GB1 175550 discloses a resonator comprising an H part provided with of oscillating magnets in a magnetic field created by coils or electrostatic elements. The oscillation frequency is determined by the geometry of the resonator.
Par rapport à ces documents, un but de la présente invention est notamment de proposer un organe réglant qui puisse également With respect to these documents, an object of the present invention is in particular to propose a regulating organ which can also
fonctionner dans une pièce d'horlogerie entièrement mécanique et dépourvue de batterie ou d'autre source de courant. operate in a timepiece entirely mechanical and without battery or other source of power.
D'autre part, CH615314 décrit un organe réglant avec un balancier et un ressort spiral conventionnel ; la régularité des oscillations est améliorée au moyen d'un aimant monté sur une langue vibrante et vibrant dans le champ magnétique d'un aimant fixe. De façon similaire, US2003/0137901 décrit une montre mécanique comportant des aimants pour détecter ou corriger la position du balancier ; la fréquence des oscillations du balancier est cependant déterminée par un spiral ordinaire. EP1 122619 décrit différents modes réalisation d'une montre mécanique dont le balancier est pourvu d'aimants générant un champ magnétique dans des bobines d'induction fixes liées au mouvement. L'intensité du courant dans les bobines permet de contrôler l'amplitude d'oscillation et donc la marche de la montre. Il est aussi suggéré de corriger cette marche en cas oscillations irrégulières. Les mouvements du balancier sont toutefois stabilisés par un spiral, et non par les aimants. On the other hand, CH615314 describes a regulating member with a balance and a conventional spiral spring; the regularity of the oscillations is improved by means of a magnet mounted on a vibrating tongue and vibrating in the magnetic field of a fixed magnet. Similarly, US2003 / 0137901 discloses a mechanical watch comprising magnets for detecting or correcting the position of the balance; the frequency of oscillations of the pendulum is, however, determined by an ordinary spiral. EP1 122619 describes different embodiments of a mechanical watch whose balance is provided with magnets generating a magnetic field in fixed induction coils linked to the movement. The intensity of the current in the coils makes it possible to control the amplitude of oscillation and therefore the running of the watch. It is also suggested to correct this step in case of irregular oscillations. The movements of the balance are however stabilized by a spiral, and not by magnets.
Différents documents décrivent par ailleurs un échappement magnétique associé à un organe réglant conventionnel. Par exemple, US3183426 décrit un échappement magnétique pour mouvement de montre. Ce dispositif emploie des aimants disposés sur le balancier. Il n'est cependant pas suggéré de supprimer ou de remplacer le spiral. Various documents also describe a magnetic escapement associated with a conventional regulating organ. For example, US3183426 discloses a magnetic escapement for watch movement. This device uses magnets arranged on the pendulum. However, it is not suggested to remove or replace the hairspring.
De la même façon, CH274901 décrit différentes variantes d'échappements mécaniques associés à un organe réglant à ressort spiral conventionnel. Ces différentes solutions requièrent donc un système magnétique additionnel en plus du ressort spiral. Elles présentent donc tous les inconvénients liés aux ressorts spiraux, en ajoutant en outre une complexité supplémentaire. Un but de la présente invention par rapport à ces différentes solutions est donc de supprimer le ressort spiral. In the same way, CH274901 describes different variants of mechanical escapements associated with a conventional spiral spring regulating member. These different solutions therefore require an additional magnetic system in addition to the spiral spring. They therefore have all the disadvantages of spiral springs, adding further complexity. An object of the present invention with respect to these various solutions is therefore to remove the spiral spring.
US387721 5 décrit un organe qui comporte un diapason dont les vibrations sont transmises au balancier par couplage magnétique. US387721 5 describes a member which comprises a tuning fork whose vibrations are transmitted to the balance by magnetic coupling.
GB1 142676 décrit un autre oscillateur mécanique et magnétique avec un diapason. CH235718 décrit un organe réglant pour montre comprenant une tige flexible oscillante dont l'extrémité est munie d'un aimant vibrant dans le champ magnétique d'un pôle magnétique fixe. GB1 142676 discloses another mechanical and magnetic oscillator with a tuning fork. CH235718 discloses a regulating organ for a watch comprising an oscillating flexible rod whose end is provided with a magnet vibrating in the magnetic field of a fixed magnetic pole.
Ces solutions permettent de supprimer le ressort spiral, mais le remplacent par un diapason dont les déformations élastiques déterminent la marche de la montre. La fabrication d'un diapason précis pose des problèmes similaires ou même plus complexes que la fabrication d'un spiral de haute précision. These solutions make it possible to suppress the spiral spring, but replace it with a tuning fork whose elastic deformations determine the running of the watch. The manufacture of a precise tuning fork poses similar or even more complex problems than the manufacture of a high precision hairspring.
US3621424 décrit un pendule oscillant dans un champ magnétique provoqué par un seul aimant lié à l'échappement. L'aimant sert donc à la fois à l'échappement et à ramener le pendule dans sa position d'équilibre. Le pendule doit toutefois être soumis à la force gravitationnelle et ne peut fonctionner qu'en position verticale, c'est-à-dire dans une horloge. US 3621424 discloses a pendulum oscillating in a magnetic field caused by a single magnet connected to the exhaust. The magnet serves both the exhaust and bring the pendulum back to its equilibrium position. The pendulum, however, must be subjected to the gravitational force and can only operate in a vertical position, that is to say in a clock.
US4308605 décrit un organe réglant pour pièce d'horlogerie muni d'un balancier à axe vertical. Des aimants permettent de compenser la force gravitationnelle pour compenser les différences de pression sur les deux paliers et limiter la flexion de l'arbre de la roue de balancier due à son propre poids. Les oscillations sont contrôlées par un spiral conventionnel. US4308605 discloses a regulating member for a timepiece provided with a vertical axis balance. Magnets make it possible to compensate for the gravitational force to compensate for the pressure differences on the two bearings and to limit the bending of the balance wheel shaft due to its own weight. The oscillations are controlled by a conventional spiral.
US5638340 concerne une horloge de table avec un pendule oscillant en lévitation dans un champ magnétique, et qui dans une variante détermine la marche de la montre. L'organe oscillant est ainsi totalement découplé de la chaîne cinématique d'entraînement des aiguilles. Ce dispositif nécessite cependant une source d'énergie électrique pour produire le champ magnétique de lévitation et pour les capteurs US5638340 relates to a table clock with a pendulum oscillating in levitation in a magnetic field, and which in a variant determines the running of the watch. The oscillating member is thus totally decoupled from the drive train of the needles. This device however requires a source of electrical energy to produce the levitation magnetic field and for the sensors
optoélectroniques d'asservissement de position du pendule. Le mécanisme n'est pas adapté à une montre bracelet. Optoelectronic position control of the pendulum. The mechanism is not suitable for a wristwatch.
GB615139 évoque une horloge à pendule gravitationnel vertical. L'extrémité du pendule oscille selon une trajectoire circulaire contrôlée par des aimants, et entraîne ainsi le mouvement de la montre. GB615139 evokes a vertical gravitational pendulum clock. The end of the pendulum oscillates in a circular path controlled by magnets, and thus causes the movement of the watch.
Par rapport à ces quatre derniers documents, un but de la présente invention est notamment de proposer un organe réglant adapté à une montre-bracelet, et dont le fonctionnement et la marche sont pratiquement indépendant de la gravité et de l'orientation de l'organe réglant par rapport à la verticale. With respect to these last four documents, an object of the present invention is in particular to propose a regulating organ adapted to a wristwatch, and whose operation and running are practically independent of the gravity and the orientation of the organ. adjusting relative to the vertical.
GB644948 décrit un galvanomètre avec une masse d'inertie qui est munie de deux aimants mobiles. Un aimant fixe permanent génère un champ magnétique permettant de ramener le balancier dans sa position d'équilibre. Les oscillations sont entretenues par un échappement à ancre conventionnel. Cette solution est uniquement esquissée de manière schématique ; des aimants de relativement grande dimension sont cependant nécessaires. Ces aimants génèrent un champ magnétique tout autour de l'organe réglant, qui est susceptible de perturber la marche du dispositif et d'attirer des pièces ou des organes à proximité. GB644948 discloses a galvanometer with a mass of inertia which is provided with two movable magnets. A permanent fixed magnet generates a magnetic field for bringing the balance back into its equilibrium position. The oscillations are maintained by a conventional anchor escapement. This solution is only sketched schematically; magnets of relatively large size are however necessary. These magnets generate a magnetic field around the regulating organ, which is likely to disrupt the operation of the device and attract parts or organs nearby.
La demande de brevet WO2006/045824 au nom de la Patent application WO2006 / 045824 in the name of the
demanderesse, dont le contenu est intégré ici par référence, propose de remplacer le ressort spiral de l'art antérieur par au moins un aimant permanent qui repousse le balancier vers sa position de repos à l'encontre des impulsions de l'échappement. La force magnétique de l'aimant est indépendante de son orientation dans l'espace, et on évite ainsi les perturbations de l'isochrononisme qui caractérisent les ressorts spiraux lorsqu'ils se déforment sous l'action de la gravité. La solution décrite dans la demande de brevet WO2006/045824 emploie des aimants fixes relativement éloignés des aimants mobiles sur le balancier, afin de repousser ces aimants mobiles vers la position de repos à distance. Il est donc nécessaire d'employer des aimants puissants et donc volumineux pour générer une force de répulsion suffisante. Il a cependant été observé au cours de tests et de simulations dans le cadre de l'invention qu'une grande partie du flux magnétique créé par ces aimants ne contribue pas à la marche du balancier, et s'échappe vers d'autres composants du mouvement dont elle perturbe le fonctionnement. La plupart des documents ci-dessus emploient des aimants permanents dans des matériaux conventionnels choisis pour leur Applicant, whose content is incorporated herein by reference, proposes to replace the spiral spring of the prior art with at least one permanent magnet which pushes the balance to its rest position against the pulses of the exhaust. The magnetic force of the magnet is independent of its orientation in space, and thus avoids the isochrononism disturbances that characterize the spiral springs when they deform under the action of gravity. The solution described in the patent application WO2006 / 045824 employs stationary magnets relatively remote from the movable magnets on the balance, in order to push these mobile magnets to the rest position at a distance. It is therefore necessary to use strong and therefore bulky magnets to generate a sufficient repulsion force. It has however been observed during tests and simulations in the context of the invention that a large part of the magnetic flux created by these magnets does not contribute to the progress of the balance, and escapes to other components of the invention. movement which it disrupts the operation. Most of the above documents use permanent magnets in conventional materials chosen for their
rémanence importante, par exemple des néodymes etc. Les aimants conventionnels sont cependant généralement formés de matériaux frittés qui sont difficiles à usiner avec précision. Il est donc difficile de produire des aimants de dimension et de volume parfaitement reproductible, et difficile de les monter et de les positionner précisément dans un dispositif. significant remanence, eg neodymium etc. Conventional magnets, however, are generally formed of sintered materials that are difficult to machine accurately. It is therefore difficult to produce magnets of dimension and volume perfectly reproducible, and difficult to mount and position precisely in a device.
Un but de la présente invention est donc de proposer un organe réglant dont l'isochronisme est amélioré par rapport aux organes réglants de l'art antérieur. En particulier, un autre but de la présente invention est de proposer un organe réglant magnétique dimensionné et qui puisse si nécessaire aussi être intégré dans un mouvement de montre bracelet mécanique de dimension réduite, ou même dans un module additionnel superposé par-dessus un mouvement de base existant. Un autre but est de proposer un organe réglant qui soit moins sensible aux chocs et aux accélérations que les organes réglants de l'art antérieur, en particulier un organe réglant dont la période soit moins perturbée par des chocs extérieurs que des organes réglants connus. An object of the present invention is therefore to provide a regulating member whose isochronism is improved over the regulating members of the prior art. In particular, another object of the present invention is to provide a dimensioned magnetic regulating member which can, if necessary, also be integrated in a small mechanical wristwatch movement, or even in an additional module superimposed over a movement of existing base. Another aim is to propose a regulating organ that is less sensitive to shocks and accelerations than the regulating members of the prior art, in particular a regulating organ whose period is less disturbed by external shocks than known regulating devices.
Un autre but est de proposer un organe réglant qui soit peu sensible aux variations de température. Un autre but de la présente invention est aussi de proposer une pièce d'horlogerie mécanique basée sur un organe réglant magnétique et dépourvu de ressort spiral. Another aim is to propose a regulating organ which is not very sensitive to temperature variations. Another object of the present invention is also to propose a mechanical timepiece based on a magnetic regulating member and without a spiral spring.
Il est important pour la plupart des marques horlogères de proposer régulièrement des innovations techniques ; il s'agit d'un véritable défi étant donné la quantité de documents publiés concernant des montres mécaniques. Un but de la présente invention est donc aussi de proposer un organe réglant pour montre bracelet qui soit nouveau et différent des organes réglants de l'art antérieur. Selon l'invention, ces buts sont atteints au moyen d'un organe réglant comportant les caractéristiques de la revendication principale, des variantes préférentielles étant indiquées dans les revendications It is important for most watch brands to regularly offer technical innovations; this is a real challenge given the amount of published material concerning mechanical watches. An object of the present invention is therefore also to propose a regulating member for a wristwatch which is new and different from the regulating members of the prior art. According to the invention, these objects are achieved by means of a regulating member having the features of the main claim, preferred variants being indicated in the claims.
dépendantes. dependent.
Ces buts sont notamment atteints au moyen d'un organe réglant pour montre-bracelet, comprenant : These goals are achieved in particular by means of a regulating member for a wristwatch, comprising:
un balancier ;  a pendulum;
des aimants permanents pour amener ledit balancier vers au moins une position de repos;  permanent magnets for bringing said balance to at least one rest position;
un échappement pour transmettre au balancier des impulsions afin d'éloigner le balancier de la position de repos ;  an escapement for transmitting impulses to the balance to move the balance from the rest position;
au moins un dit aimant permanent étant formé d'un matériau cristallin non fritté.  at least one said permanent magnet being formed of a non-sintered crystalline material.
Dans un mode de réalisation avantageux, les aimants permanents sont réalisés dans un alliage de platine et de cobalt. Les propriétés ferromagnétiques de ces alliages sont certes connues. Leur usage est cependant largement tombé en désuétude, car l'alliage est coûteux et le champ coercitif Hc est inférieur à celui qui peut être obtenu avec des matériaux plus économiques. In an advantageous embodiment, the permanent magnets are made of an alloy of platinum and cobalt. The ferromagnetic properties of these alloys are certainly known. However, their use has become largely obsolete, because the alloy is expensive and the coercive field Hc is lower than that which can be obtained with more economical materials.
Les alliages platine-cobalt présentent cependant l'avantage d'être disponibles sous forme cristalline et ductile, ce qui permet de les usiner avec des tolérances très précises en employant des outils d'usinage conventionnels, par exemple par fraisage, électro-érosion etc. Les précisions dimensionnelles qui peuvent être obtenues sont excellentes, ce qui permet d'assurer une reproductibilité des volumes de matériau magnétique et donc des champs magnétiques produits. On peut aussi garantir des distances d'entrefer et de chemin magnétiques très précises grâce au recours à ces matériaux faciles à usiner. However, platinum-cobalt alloys have the advantage of being available in crystalline and ductile form, which allows them to machining with very precise tolerances using conventional machining tools, such as milling, electro-erosion, etc. The dimensional accuracies that can be obtained are excellent, which makes it possible to ensure reproducibility of the volumes of magnetic material and therefore of the magnetic fields produced. Precise air gap and magnetic path distances can also be guaranteed by using these easy-to-machine materials.
Les précisions dimensionnelles obtenues sont en outre suffisantes pour éviter l'usage de colles pour fixer les aimants, qui peuvent être maintenus par des moyens mécaniques, par exemple en les chassant dans un logement prévu à cet effet. On évite ainsi les perturbations des champs magnétiques causées par la colle. The dimensional accuracy obtained is furthermore sufficient to avoid the use of glues for fixing the magnets, which can be maintained by mechanical means, for example by driving them into a housing provided for this purpose. This avoids disturbances of magnetic fields caused by the glue.
Les alliages platine-cobalt sont par ailleurs peu oxydables, et peu sensibles aux variations de température. Dans un mode de réalisation préférentiel, au moins un aimant permanent est réalisé dans un matériau constitué de 75 à 78% de platine (par exemple 76.85%) et de moins de 24% de cobalt. Platinum-cobalt alloys are also slightly oxidizable and insensitive to temperature variations. In a preferred embodiment, at least one permanent magnet is made of a material consisting of 75 to 78% platinum (for example 76.85%) and less than 24% cobalt.
D'autres matériaux magnétiques non frittés peuvent être employés pour les aimants permanents, y compris des aimants à base de micropoudres, des aimants plastiques, ou d'autres alliages magnétiques ductiles (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc). Le champ coercitif faible de ces autres matériaux rend cependant leur usage moins approprié à des applications horlogères ; il est nécessaire d'employer des volumes importants pour générer les champs magnétiques nécessaires. D'autre part, le champ magnétique produit dépend beaucoup des variations de température. Other unsintered magnetic materials may be employed for permanent magnets, including micropowder-based magnets, plastic magnets, or other ductile magnetic alloys (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc. ). The weak coercive field of these other materials, however, makes their use less suitable for horological applications; it is necessary to use large volumes to generate the necessary magnetic fields. On the other hand, the magnetic field produced depends very much on temperature variations.
Dans un mode de réalisation avantageux, les aimants permanents comportent plusieurs couches arrangées de manière à ce que les variations de champ magnétique se compensent au moins partiellement. Dans un mode de réalisation avantageux, les aimants fixes sont liés à la platine ou à un pont, et polarisés de façon à attirer les aimants mobiles du balancier vers la position d'équilibre. La distance entre les pôles opposés des aimants fixes et mobiles est donc minimale à la position de repos, en sorte que le couple d'attraction vers cette position de repos est important. In an advantageous embodiment, the permanent magnets comprise several layers arranged so that the magnetic field variations compensate at least partially. In an advantageous embodiment, the stationary magnets are connected to the plate or to a bridge, and polarized so as to attract the mobile magnets of the balance to the equilibrium position. The distance between the opposite poles of the fixed and mobile magnets is therefore minimal at the rest position, so that the attraction torque to this rest position is important.
Ce couple important permet de faire osciller le balancier à une fréquence élevée, et donc d'obtenir une résolution améliorée dans la mesure du temps. Si une fréquence très élevée n'est pas indispensable, il est aussi possible de réduire ce couple en utilisant des aimants permanents de petit volume, ce qui permet de miniaturiser le mouvement. This important torque makes it possible to oscillate the balance at a high frequency, and thus to obtain an improved resolution in the measurement of time. If a very high frequency is not essential, it is also possible to reduce this torque by using permanent magnets of small volume, which allows to miniaturize the movement.
Dans un mode de réalisation avantageux, le couple de rappel C du balancier varie de manière proportionnelle ou sensiblement In an advantageous embodiment, the restoring torque C of the pendulum varies proportionally or substantially
proportionnelle à la position angulaire Θ du balancier : C≡ k Θ proportional to the angular position Θ of the pendulum: C≡ k Θ
K étant une constante et Θ indiquant l'angle de déviation du balancier par rapport à la position de repos. Cette relation est de K being a constant and Θ indicating the deflection angle of the balance relative to the rest position. This relationship is
préférence vraie pour au moins une partie du segment angulaire parcouru par le balancier lors de ses oscillations normales, de préférence pour la plus grande partie de ce segment. Grâce à cette relation linéaire, l'organe réglant fonctionne de façon quasi isochrone, c'est-à-dire que la période d'oscillation est quasiment indépendante de son amplitude. preferably true for at least a portion of the angular segment traversed by the balance during its normal oscillations, preferably for most of this segment. With this linear relationship, the regulating member operates almost isochronously, that is to say that the oscillation period is almost independent of its amplitude.
L'invention sera mieux comprise à la lecture de la description de différents modes de réalisation illustrés par les figures qui montrent : La figure 1 une vue de dessus d'un organe réglant selon un premier mode de réalisation. The invention will be better understood on reading the description of various embodiments illustrated by the figures which show: FIG. 1 is a plan view of a regulating member according to a first embodiment.
La figure 2 une vue en perspective d'un organe réglant selon un deuxième mode de réalisation. La figure 3 une vue en perspective d'un organe réglant selon un troisième mode de réalisation. Figure 2 is a perspective view of a regulating member according to a second embodiment. Figure 3 is a perspective view of a regulating member according to a third embodiment.
La figure 4 une vue en coupe d'un organe réglant selon le troisième mode de réalisation. La figure 5 une vue en coupe d'un aimant multicouche. Figure 4 a sectional view of a regulating member according to the third embodiment. Figure 5 is a sectional view of a multilayer magnet.
La figure 1 illustre une vue de dessus d'un organe réglant pour mouvement de montre-bracelet, selon un premier mode de réalisation de l'invention. L'organe réglant comporte principalement un oscillateur avec un balancier 1 dont seules les parties dans le plan des aimants sont représentées ; le balancier complet inclut de préférence une serge non représentée montée sur le même axe 1 1 mais dans un autre plan. Figure 1 shows a top view of a regulating member for wristwatch movement, according to a first embodiment of the invention. The regulating organ mainly comprises an oscillator with a rocker 1 of which only the parts in the plane of the magnets are represented; the complete pendulum preferably includes a not shown serge mounted on the same axis 1 1 but in another plane.
L'oscillateur comporte également des aimants permanents fixes 2, ainsi qu'un échappement dont seuls la roue d'échappement 6 et une portion de l'ancre 5 sont représentés. L'échappement 5, 6 est dans cet exemple entièrement conventionnel, et peut être constitué par un échappement à ancre connu. D'autres types d'échappement, y compris par exemple des échappements magnétiques, peuvent cependant aussi être utilisés dans cette variante ainsi que dans les autres modes de réalisation décrits dans la demande. Le balancier 1 de l'oscillateur tourne autour d'un axe 1 1 lié à un pont et à la platine au moyen de paliers non représentés, par exemple de paliers incabloc ou de paliers magnétiques. Dans le mode de réalisation représentée, une portion annulaire 10 à la périphérie du balancier 1 est magnétisée de façon permanente et sans discontinuités tout autour du balancier. Cette portion annulaire 10 constitue un dipôle avec deux pôles opposés espacés dans cet exemple de 180° et représentés symboliquement avec les symboles + et -. The oscillator also includes fixed permanent magnets 2 and an escapement of which only the escape wheel 6 and a portion of the anchor 5 are shown. The exhaust 5, 6 is in this example entirely conventional, and may be constituted by a known anchor escapement. Other types of exhaust, including for example magnetic exhausts, can however also be used in this variant as well as in the other embodiments described in the application. The pendulum 1 of the oscillator rotates about an axis 1 1 linked to a bridge and the plate by means of unrepresented bearings, for example incabloc bearings or magnetic bearings. In the embodiment shown, an annular portion 10 at the periphery of the balance 1 is magnetized permanently and without discontinuities all around the balance. This annular portion 10 constitutes a dipole with two opposite poles spaced in this example by 180 ° and represented symbolically with the symbols + and -.
Sur la variante de la figure 1, les aimants permanents 10 du balancier 1 sont constitués par un anneau magnétisé en continu. Cette disposition est avantageuse car il est plus facile ainsi d'obtenir un couple de rappel qui varie de façon linéaire et continue avec la déviation angulaire Θ du balancier par rapport à la position de repos. Il est cependant également possible de munir le balancier 1 de plusieurs aimants discrets collés ou rapportés, ou d'employer une zone ou une intensité de magnétisation qui varie en fonction de la position angulaire autour du balancier. Dans une autre variante, l'anneau 10 est discontinu, et par exemple muni d'un ou plusieurs entrefers, ou aimantés avec des sauts/discontinuités de In the variant of Figure 1, the permanent magnets 10 of the beam 1 are constituted by a ring magnetized continuously. This provision is advantageous because it is easier to obtain a return torque that varies linearly and continuously with the angular deviation Θ of the balance relative to the rest position. However, it is also possible to provide the balance 1 of several discrete magnets glued or reported, or to use a zone or a magnetization intensity which varies depending on the angular position around the balance. In another variant, the ring 10 is discontinuous, and for example provided with one or more air gaps, or magnetized with jumps / discontinuities of
magnétisation. L'aimantation de la périphérie 10 du balancier 1 peut par exemple être obtenue en le magnétisant au moyen d'une tête magnetization. The magnetization of the periphery 10 of the beam 1 can for example be obtained by magnetizing it by means of a head
d'enregistrement. recording.
L'organe réglant de cet exemple comporte deux aimants permanents fixes 2 disposés à 180° l'un de l'autre de part et d'autre du balancier. Un des pôles de chaque aimant se trouve vers l'intérieur de l'organe réglant et le pôle opposé vers l'extérieur. En outre, les polarités des deux aimants permanents fixes 2 sont opposées l'une à l'autre, comme illustré avec symboles + et -. La référence 7 correspond à l'entrefer The regulating member of this example comprises two fixed permanent magnets 2 arranged at 180 ° from each other on either side of the balance. One of the poles of each magnet is towards the inside of the regulating organ and the opposite pole towards the outside. In addition, the polarities of the two fixed permanent magnets 2 are opposite to each other, as illustrated with symbols + and -. Reference 7 corresponds to the air gap
(interstice) entre les aimants permanents fixes 2 du stator et les aimants mobiles 10 du rotor. Sur la figure, le balancier 1 est représenté en position de repos, et les deux pôles du balancier 1 se trouvent chacun en regard du milieu de l'aimant fixe 2 de polarité opposé. Lorsque le balancier 1 s'éloigne de cette position de repos, par exemple sous l'effet de l'échappement ou d'un choc, un des deux aimants permanent fixes 2 l'attire à nouveau, tandis que l'autre aimant opposé le repousse vers cette position de repos. (gap) between the fixed permanent magnets 2 of the stator and the movable magnets 10 of the rotor. In the figure, the balance 1 is shown in the rest position, and the two poles of the balance 1 are each facing the middle of the fixed magnet 2 of opposite polarity. When the rocker 1 moves away from this rest position, for example under the effect of the escapement or shock, one of the two fixed permanent magnets 2 attracts it again, while the other magnet opposite the pushes back towards this position of rest.
Les aimants permanents fixes 10 ont avantageusement dans cet exemple une forme comportant une portion centrale 21 et des portions périphériques 20 de part et d'autre de la portion centrale 21 . La section des deux portions périphériques 20 dans un plan radial perpendiculaire à la page augmente graduellement en s'éloignant de la portion centrale 21 . 11 en résulte un champ magnétique, et donc un couple mécanique de rappel, qui croissent linéairement tout au long de la section 20 lorsque le balancier 1 s'éloigne de la position de repos. The fixed permanent magnets 10 advantageously have in this example a shape comprising a central portion 21 and peripheral portions 20 on either side of the central portion 21. The section of the two peripheral portions 20 in a radial plane perpendicular to the page increases gradually away from the central portion 21. This results in a magnetic field, and therefore a mechanical return torque, which grow linearly throughout the section 20 when the rocker 1 moves away from the rest position.
La portion centrale 21 des aimants permanents fixes 2 forme cependant une protubérance et a ainsi une section radiale importante. Ces deux protubérances 21 ont plusieurs effets importants : The central portion 21 of the fixed permanent magnets 2 however forms a protuberance and thus has a large radial section. These two protuberances 21 have several important effects:
-d'une part, elles permettent de contrôler la direction des lignes de champ magnétique et de s'assurer que ces lignes sont aussi rectilignes que possible le long de l'axe de symétrie du stator, en évitant les on the one hand, they make it possible to control the direction of the magnetic field lines and to make sure that these lines are as straight as possible along the axis of symmetry of the stator, avoiding the
déformations qui se présenteraient immanquablement aux deux extrémités si le champ magnétique était trop faible dans cette portion 21 . deformations that would inevitably occur at both ends if the magnetic field was too weak in this portion 21.
-d'autre part, ces protubérances permettent de créer une zone d'attraction magnétique localisée très forte à proximité de la zone de repos souhaitée, et d'éviter ainsi que le balancier ne s'arrête ou ne soit attiré vers une on plusieurs autres zones d'équilibre possibles (par exemple vers les discontinuités constituées par la jonction entre les aimants 2 et la culasse 3). on the other hand, these protuberances make it possible to create a very strong localized magnetic attraction zone close to the desired resting zone, and thus to prevent the pendulum from stopping or being attracted towards one on several others. possible equilibrium zones (for example towards the discontinuities formed by the junction between the magnets 2 and the cylinder head 3).
Ces protubérances ont certes l'inconvénient d'introduire une discontinuité dans la relation entre la déviation angulaire et le couple de rappel mécanique ; le couple augmente au lieu de diminuer lorsque les pôles magnétiques du balancier 1 se trouvent à proximité immédiate de ces protubérances 21 et que le balancier s'approche de la position de repos. Cette perturbation est cependant très locale et cependant peu These protuberances have the disadvantage of introducing a discontinuity in the relationship between the angular deflection and the mechanical return torque; the torque increases instead of decreasing when the magnetic poles of the balance 1 are in the immediate vicinity of these protuberances 21 and that the balance approaches the rest position. This disturbance is however very local and however
préjudiciable à l'isochronisme, car elle se produit uniquement au moment où le balancier 1 reçoit l'impulsion de l'échappement ; cette impulsion introduit une perturbation sensiblement plus importante que celle produite par les protubérances 21 , dont l'effet sur l'isochronisme peut être négligé. detrimental to isochronism, because it occurs only when the balance 1 receives the pulse of the exhaust; this pulse introduces a disturbance substantially greater than that produced by the protuberances 21, whose effect on isochronism can be neglected.
D'autres moyens que des protubérances peuvent être imaginées pour renforcer très localement le champ magnétique à proximité des positions de repos ; par exemple, il serait possible de magnétiser davantage les aimants à cet endroit, ou d'augmenter leur épaisseur. Une culasse 3 en matériau magnétique doux maintient et relie les deux aimants fixes 2 l'un à l'autre. Cette culasse permet aussi de guider le flux magnétique entre ces aimants et de limiter la portion du flux Other means than protrusions can be imagined to very locally strengthen the magnetic field near the rest positions; for example, it would be possible to magnetize more magnets at this location, or increase their thickness. A yoke 3 made of soft magnetic material holds and connects the two stationary magnets 2 to each other. This yoke also makes it possible to guide the magnetic flux between these magnets and to limit the portion of the flux
magnétique qui s'échappe vers d'autres composants de la montre. D'autre part, le champ magnétique ré-émis par cette culasse 3 participe également à la génération du couple de rappel du balancier, et est utilisé pour contrôler la direction et l'amplitude de ce champ dans l'espace. On notera la forme sensiblement en forme d'ellipse non circulaire de l'entrefer 7 entre la culasse 3 et le balancier 1 . Cette forme déterminée par calcul et simulation numérique est optimisée afin de garantir la linéarité entre angle de déviation et couple et notamment d'assurer une force de rappel importante lorsque le balancier 1 s'éloigne de la position de repos et dépasse le segment angulaire d'environ 60° défini par les deux aimants permanents 20. « Sensiblement en forme d'ellipse » signifie ici que l'ellipse est déformée aux deux extrémités longitudinales par les protubérances 21 ; une forme ovaloide non strictement elliptique pourrait aussi être magnetic escaping to other components of the watch. On the other hand, the magnetic field re-emitted by this yoke 3 also contributes to the generation of the pendulum return torque, and is used to control the direction and amplitude of this field in space. Note the substantially non-circular elliptical shape of the gap 7 between the yoke 3 and the rocker 1. This shape determined by calculation and numerical simulation is optimized in order to guarantee the linearity between deflection angle and torque and in particular to ensure a high restoring force when the rocker 1 moves away from the rest position and exceeds the angular segment of about 60 ° defined by the two permanent magnets 20. "Substantially elliptical" means here that the ellipse is deformed at both longitudinal ends by the protuberances 21; a not strictly elliptical oval shape could also be
envisagée. considered.
Des butées mécaniques ou magnétiques peuvent être prévues afin de limiter l'amplitude maximale des oscillations du balancier 1 . Une butée magnétique, par exemple une zone de forte aimantation solidaire de la culasse 3, permet de repousser le balancier vers sa position de repos sans présenter les inconvénients des butées mécaniques provoquant des chocs susceptibles de perturber la marche isochronique du balancier. Mechanical or magnetic stops may be provided to limit the maximum amplitude of oscillations of the balance 1. A magnetic stop, for example a zone of strong magnetization integral with the cylinder head 3, makes it possible to push the rocker arm towards its rest position without presenting the disadvantages of the mechanical stops causing shocks likely to disturb the isochronic movement of the rocker arm.
La figure 2 illustre une autre variante d'organe réglant magnétique selon l'invention. Le balancier 1 est réalisé de la même manière que dans l'exemple de la figure 1 , et comporte une section annulaire périphérique 10 aimantée. Les aimants permanents fixes 2 ont cependant une forme plus simple et comportent un seul anneau circulaire aimanté autour du balancier. Une culasse 3 ici en deux parties entoure cet anneau 2 et constitue ainsi un blindage magnétique empêchant le champ Figure 2 illustrates another variant of magnetic regulating member according to the invention. The rocker 1 is made in the same manner as in the example of Figure 1, and has a magnetic annular peripheral section 10. The fixed permanent magnets 2, however, have a simpler shape and comprise a single magnetic circular ring around the balance. A cylinder head 3 here in two parts surrounds this ring 2 and thus constitutes a magnetic shielding preventing the field
magnétique de sortir. Dans cet arrangement, le couple de rappel n'est que très approximativement proportionnel à la déviation angulaire Θ du balancier. Afin de garantir néanmoins l'isochronisme, on force ici le balancier 1 à effectuer des oscillations de faible amplitude sur un segment angulaire suffisamment réduit pour que la non linéarité puisse être pratiquement négligée. magnetic to go out. In this arrangement, the return torque is only very approximately proportional to the angular deflection Θ of the balance. Nevertheless, in order to guarantee isochronism, the balance 1 is forced here to perform oscillations of small amplitude over a sufficiently small angular segment so that the non-linearity can be practically neglected.
Dans ce but, l'organe réglant comporte un démultiplicateur avec une roue 20 sur l'axe 1 1 du balancier et un pignon 21 actionné par la fourchette de l'ancre 5. Grâce à cette démultiplication, les impulsions données par l'échappement 5, 6 provoquent une rotation d'amplitude limitée du balancier, en sorte que le couple de rappel est presque linéaire dans cette zone limitée. For this purpose, the regulating member comprises a reduction gear with a wheel 20 on the axis 1 1 of the beam and a pinion 21 actuated by the fork of the anchor 5. With this gearing, the pulses given by the exhaust 5 , 6 cause a rotation of limited amplitude of the balance, so that the restoring torque is almost linear in this limited area.
Une démultiplication similaire peut aussi être utilisée avec un organe réglant similaire à celui de la figure 1 , ou de la figure 3 par exemple. Par ailleurs, il est aussi possible d'introduire une démultiplication en amont de la roue d'échappement 6, plutôt qu'en aval comme sur l'exemple ; cette variante permet de réduite les frottements dans l'organe réglant, mais présente l'inconvénient de ne pas pouvoir être intégrée dans un mouvement existant sans une reconception complète. La démultiplication 20, 21 a cependant l'inconvénient d'introduire des pertes supplémentaires par frottement. A similar reduction can also be used with a regulating member similar to that of Figure 1, or Figure 3 for example. Furthermore, it is also possible to introduce a gear upstream of the escape wheel 6, rather than downstream as in the example; this variant reduces the friction in the regulating member, but has the disadvantage of not being able to be integrated into an existing movement without a complete redesign. The reduction 20, 21, however, has the disadvantage of introducing additional losses by friction.
Les figures 3 et 4 illustrent un autre mode de réalisation dans lequel deux aimants permanents 2 sont disposés dans deux plans au-dessus, respectivement au-dessous du plan du balancier 1 . Dans l'exemple, le pôle positif de l'aimant permanent supérieur 2 est dirigé vers le balancier, tandis que le pôle négatif de l'aimant permanent inférieur est dirigé vers le balancier. Une culasse 3 relie et maintient les deux aimants permanents 2 et renforce ainsi le champ magnétique dans l'entrefer 7 entre les deux aimants et le balancier. Le balancier 1 est muni d'un seul aimant 10, ici un aimant non permanent (aimant ponctuel) constitué d'un matériau ferromagnétique. Cet aimant forme un des rayons reliant la périphérie du balancier à son axe 1 1 . L'extrémité extérieure de ce rayon s'élargit en forme de demi-lune. La magnétisation de cet aimant est donc déterminée par le champ Figures 3 and 4 illustrate another embodiment in which two permanent magnets 2 are arranged in two planes above, respectively below the plane of the balance 1. In the example, the positive pole of the upper permanent magnet 2 is directed towards the balance, while the negative pole of the lower permanent magnet is directed towards the balance. A yoke 3 connects and holds the two permanent magnets 2 and thus strengthens the magnetic field in the gap 7 between the two magnets and the balance. The balance 1 is provided with a single magnet 10, here a non-permanent magnet (punctual magnet) made of a ferromagnetic material. This magnet forms one of the spokes connecting the periphery of the balance to its axis 1 January. The outer extremity of this ray widens in the shape of a half-moon. The magnetization of this magnet is therefore determined by the field
magnétique généré par les deux aimants permanents fixes 2. La forme en demi-lune de la zone aimantée 10 garantit un couple de rappel qui varie linéairement avec l'angle de déviation par rapport à la position de repos (non représentée). D'autres variantes peuvent être imaginées dans le cadre de l'invention. Par exemple, il est possible de munir le balancier 1 d'un ou plusieurs aimants permanents et d'une culasse mobile en matériau ferromagnétique (ou non) pour diriger le champ magnétique entre ces aimants. La culasse fixe - ou la culasse mobile - peuvent être munies d'un entrefer pour éviter le risque de saturation du matériau ferromagnétique. Il est aussi possible d'utiliser des culasses formées de tôles ferromagnétiques ou de grains de matériaux ferromagnétiques, afin de contrôler les courants induits qui peuvent y circuler. Dans une variante préférentielle, on The half-moon shape of the magnetic zone 10 ensures a return torque that varies linearly with the deflection angle with respect to the rest position (not shown). Other variants can be imagined in the context of the invention. For example, it is possible to provide the balance 1 of one or more permanent magnets and a movable breech ferromagnetic material (or not) to direct the magnetic field between these magnets. The fixed yoke - or the bolt - can be provided with an air gap to avoid the risk of saturation of the ferromagnetic material. It is also possible to use yokes formed of ferromagnetic sheets or grains of ferromagnetic materials, in order to control the induced currents that can circulate there. In a preferred variant,
emploiera cependant une culasse dans un alliage 50-50 de Fer et de Nickel, présentant peu d'hystérèse magnétique. however, will use a cylinder head in a 50-50 alloy of Iron and Nickel, with little magnetic hysteresis.
La variation du champ magnétique et du couple magnétique en fonction de la déviation angulaire peut être contrôlés également en modifiant l'épaisseur, la section dans un plan radial, et/ou la magnétisation des aimants fixes ou mobiles en fonction de la position angulaire. Dans toutes les variantes ci-dessus, la précision de l'isochronisme dépend dans une manière importante de la forme des aimants permanents. Des essais initiaux de fabrication avec des aimants de type néodyme courants, ou avec d'autres aimants permanents courants, se sont cependant avérés peu concluants, car il est difficile ou coûteux d'usiner avec la précision dimensionnelle requise les matériaux frittés qui constituent ces aimants permanents usuels. Selon une caractéristique indépendante de l'invention, l'organe réglant met en œuvre des aimants permanents dans des matériaux certes un peu moins puissants que les néodymes et autres matériaux modernes habituellement utilisés, mais qui ont l'avantage d'être non frittés et disponibles sous forme cristalline ; ils peuvent donc être usinés plus facilement avec la grande précision requise. Dans un mode de réalisation avantageux, les aimants sont à base de platine cobalt non fritté, qui fait partie des matériaux dont la rémanence magnétique est peu sensible aux variations de température. Ce matériau présente aussi l'avantage d'être peu oxydable, et n'a donc pas besoin d'être nickelé pour le protéger. Des essais convaincants ont été obtenus avec des aimants constitués de 75 à 78% de platine (par exemple 76.85%) et de moins de 24% de cobalt. The variation of the magnetic field and the magnetic torque as a function of the angular deflection can also be controlled by modifying the thickness, the section in a radial plane, and / or the magnetization of the fixed or moving magnets as a function of the angular position. In all the above variants, the accuracy of the isochronism depends in a significant way on the shape of the permanent magnets. Initial manufacturing tests with standard neodymium-type magnets, or with other common permanent magnets, have, however, proved inconclusive, since it is difficult or expensive to machine the sintered materials that make up these magnets with the required dimensional accuracy. usual permanent. According to an independent characteristic of the invention, the regulating member implements permanent magnets in materials which are certainly a little less powerful than the neodymiums and other modern materials usually used, but which have the advantage of being unsintered and available. in crystalline form; they can therefore be machined more easily with the required accuracy. In an advantageous embodiment, the magnets are based on unsintered platinum cobalt, which is one of the materials whose magnetic remanence is insensitive to temperature variations. This material also has the advantage of being slightly oxidizable, and therefore does not need to be nickel plated to protect it. Convincing tests were obtained with magnets consisting of 75 to 78% platinum (for example 76.85%) and less than 24% cobalt.
Un traitement thermique est de préférence appliqué aux aimants après leur usinage, afin de le rendre magnétisable. A heat treatment is preferably applied to the magnets after machining, to make it magnetizable.
Les aimants permanents réalisés dans ces matériaux peuvent être usinés avec une précision telle qu'ils sont de préférence simplement chassés ou maintenus mécaniquement dans le mouvement ; on évite ainsi l'usage de colles, qui perturbent la direction des lignes de champ magnétique. Permanent magnets made of these materials can be machined with such precision that they are preferably simply driven out or mechanically held in motion; this avoids the use of glues, which disturb the direction of the magnetic field lines.
D'autres matériaux magnétiques non frittés peuvent être employés pour les aimants permanents, y compris des aimants à base de micropoudres, des aimants plastiques, ou d'autres alliages magnétiques ductiles (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc). Le champ coercitif faible de ces autres matériaux rend cependant leur usage moins approprié à des applications horlogères ; il est nécessaire d'employer des volumes importants pour générer les champs magnétiques nécessaires. D'autre part, le champ magnétique produit dépend beaucoup des variations de température. Other unsintered magnetic materials may be employed for permanent magnets, including micropowder-based magnets, plastic magnets, or other ductile magnetic alloys (Fe-Cr-Co, Remalloy, Cunife, Cunico, Vicalloy etc. ). The weak coercive field of these other materials, however, makes their use less suitable for horological applications; it is necessary to use large volumes to generate the necessary magnetic fields. On the other hand, the magnetic field produced depends very much on temperature variations.
La marche de la montre est déterminée au moins en partie par le champ magnétique développé par les différents aimants permanents, et par la force d'attraction magnétique exercée sur le balancier. Ce champ et cette force varient cependant avec chaque aimant individuel, et il est difficile d'assurer une reproductibilité parfaite lors d'une fabrication en série. Afin de compenser cette variabilité, l'organe réglant comporte avantageusement des moyens de réglage de la position d'au moins un aimant individuel, permettant de l'ajuster au montage afin de régler la marche de la montre. Dans un mode de réalisation avantageux, ces moyens sont par exemple constitués par au moins une vis micrométrique, ou un autre élément fileté, permettant de rapprocher ou d'écarter au moins un aimant permanent fixe correspondant du balancier, afin d'influencer le champ magnétique exercé par cet aimant sur les portions aimantées du balancier. Il est aussi possible de régler la distance angulaire entre deux aimants permanents. The march of the watch is determined at least in part by the magnetic field developed by the different permanent magnets, and by the magnetic attraction force exerted on the balance. This field and this force, however, vary with each individual magnet, and it is difficult to ensure perfect reproducibility during mass production. In order to compensate for this variability, the regulating member advantageously comprises means for adjusting the position of at least one individual magnet, making it possible to adjust it to the mounting in order to adjust the running of the watch. In an advantageous embodiment, these means are for example constituted by at least one micrometer screw, or another threaded element, allowing to bring closer or to separate at least one corresponding permanent fixed magnet from the balance, in order to influence the magnetic field. exerted by this magnet on the magnetized portions of the balance. It is also possible to adjust the angular distance between two permanent magnets.
D'autres moyens d'ajustage peuvent être prévus, par exemple jouant sur la taille d'un entrefer dans la culasse, ou en ajoutant ou déplaçant des masses compensatrices sur le balancier. D'autre part, des moyens de compensation de température peuvent aussi être mis en œuvre, par exemple en employant un balancier bimétallique classique qui se déforme sous l'action de la température. Dans une variante, des composants avec un coefficient de dilatation élevé, ou des composants bimétalliques, sont utilisés pour déplacer les aimants permanents fixes ou mobiles en fonction de la température, afin Other means of adjustment can be provided, for example playing on the size of an air gap in the cylinder head, or by adding or moving compensating masses on the balance. On the other hand, temperature compensation means can also be implemented, for example by employing a conventional bimetallic balance which is deformed under the action of temperature. Alternatively, components with a high coefficient of expansion, or bimetallic components, are used to move the fixed or moving permanent magnets as a function of temperature, so that
notamment de compenser les variations de l'efficacité des aimants lorsque la température varie. in particular to compensate for variations in the efficiency of the magnets when the temperature varies.
La figure 5 illustre une vue en coupe d'un aimant multicouche générant un champ magnétique presque indépendant de la température dans les plages de température utiles. Dans cet exemple, l'aimant comporte une couche 25 et une autre 27 polarisée dans le même sens et toutes deux réalisées dans un matériau dont la rémanence magnétique varie peu avec la température. La couche intermédiaire 26 est réalisée dans un autre matériau (par exemple en néodyme, etc) polarisé en sens inverse et qui génère un champ magnétique plus faible que la somme des champs généré par les deux couches 25 et 27. La rémanence magnétique de la couche 26 varie cependant beaucoup avec la température. L'empilage résultant des couches 25 à 27 est équivalent à un aimant polarisé dans le même sens que les couches 25 et 27, l'amplitude du champ résultant étant diminuée par la couche 26. En choisissant judicieusement les matériaux et les épaisseurs des couches 25 à 27, on peut ainsi produire un aimant dont les variations de rémanence dans les couches 25 et 27 sont presque totalement annulées par les variations dans la ou les couches 26 polarisées en sens inverse. FIG. 5 illustrates a sectional view of a multilayer magnet generating a magnetic field almost independent of the temperature in the useful temperature ranges. In this example, the magnet comprises a layer 25 and another 27 polarized in the same direction and both made of a material whose magnetic remanence varies little with temperature. The intermediate layer 26 is made of another material (for example neodymium, etc.) polarized in the opposite direction and which generates a magnetic field smaller than the sum of the fields generated by the two layers 25 and 27. The magnetic remanence of the layer 26 however varies greatly with temperature. Stacking resulting from layers 25 to 27 is equivalent to a polarized magnet in the same direction as the layers 25 and 27, the amplitude of the resulting field being reduced by the layer 26. By judiciously choosing the materials and the thicknesses of the layers 25 to 27, it is possible to thus producing a magnet whose variations of remanence in the layers 25 and 27 are almost completely canceled by the variations in the layer or layers 26 polarized in opposite direction.
Le nombre de couches et/ou de matériaux utilisé pour fabriquer des aimants insensibles à la température peut être différent de l'exemple illustratif indiqué sur la figure 4. Dans un mode de réalisation, les aimants sont formés de plusieurs matériaux dont les variations de rémanence se compensent mais sans arranger les matériaux en couches. Des aimants multicouches ou multimatériaux peuvent être utilisés aussi bien pour les aimants permanents fixes que pour les aimants permanents mobiles. The number of layers and / or materials used to make temperature-insensitive magnets may be different from the illustrative example shown in Fig. 4. In one embodiment, the magnets are formed from a variety of materials including variations in remanence. offset each other but without arranging the materials in layers. Multilayer or multi-material magnets can be used for permanent magnets as well as for mobile permanent magnets.
Dans un mode de réalisation, les courants induits par le champ magnétique tournant créé par la rotation du balancier magnétique sont utilisés pour régler la marche de la montre. Ces courants peuvent par exemple être mesurés au moyen d'une bobine liée au mouvement, et leur fréquence ou leur phase utilisée par un circuit électronique (qui peut lui- même être alimenté par ces courants) pour déterminer la marche de la montre, et éventuellement la corriger. In one embodiment, the currents induced by the rotating magnetic field created by the rotation of the magnetic balance are used to adjust the operation of the watch. These currents can for example be measured by means of a coil connected to the movement, and their frequency or their phase used by an electronic circuit (which can itself be supplied by these currents) to determine the running of the watch, and possibly correct it.
Les ponts, platines, rouages et autres éléments mobiles proches de l'organe réglant sont de préférence réalisés dans un matériau The bridges, plates, wheels and other mobile elements close to the regulating member are preferably made of a material
amagnétique afin de limiter les perturbations causées par les flux non-magnetic in order to limit the disturbances caused by the flows
magnétiques parasites qui s'échappent de l'organe malgré la culasse. Des blindages magnétiques peuvent être prévus pour séparer magnétiquement l'organe réglant des éléments sensibles, dans certaines directions au moins. On prévoira en outre avantageusement une mise à la terre (c'est-à-dire à la platine) des éléments proches dans lesquels des courants peuvent être induits, afin de protéger ces éléments. L'organe réglant décrit s'avère particulièrement efficace pour générer des couples de rappel important, et donc des fréquences d'oscillation élevées. Une application possible concerne par exemple un organe réglant pour organe chronographe ; la fréquence d'oscillation élevée permet d'améliorer considérablement la résolution et de magnetic parasites that escape the organ despite the breech. Magnetic shields may be provided for magnetically separating the regulating member from sensitive elements in at least some directions. Advantageously, a grounding (that is to say platinum) of the adjacent elements in which currents can be induced is advantageously provided in order to protect these elements. The regulating organ described proves particularly effective for generating high return torques, and therefore frequencies oscillation. One possible application relates for example to a regulating organ for a chronograph organ; the high oscillation frequency significantly improves the resolution and
chronométrer mécaniquement des durées avec une résolution du dixième, du centième ou même du millième de seconde. Par exemple, il est possible dans le cadre de l'invention de réaliser des organes réglants avec plus de 72Ό00 alternances à l'heure, par exemple 360Ό00 alternances, 720Ό00 alternances, ou davantage. Même si l'énergie dissipée par l'échappement et le rouage à de telles fréquences est importante, cela n'est pas préjudiciable pour un usage dans un chronomètre qui est destiné à un usage pendant des durées limitées. Par ailleurs, il est possible d'entraîner cet organe réglant à haute fréquence avec un barillet supplémentaire, par exemple un indépendant du barillet principal utilisé pour l'affichage de l'heure. mechanically time durations with a resolution of one tenth, one hundredth or even one thousandth of a second. For example, it is possible in the context of the invention to produce regulating members with more than 72Ό00 alternations per hour, for example 360Ό00 alternations, 720Ό00 alternations, or more. Even if the energy dissipated by the exhaust and gear at such frequencies is important, it is not detrimental for use in a stopwatch which is intended for use for limited periods. Furthermore, it is possible to drive this high frequency regulating member with an additional barrel, for example an independent of the main barrel used for displaying the time.
Des fréquences élevées requièrent cependant des aimants puissants ou très épais, ce qui nuit à la volonté de miniaturisation. High frequencies, however, require powerful magnets or very thick, which affects the desire for miniaturization.
Un tel organe réglant peut par exemple être ajouté à l'organe réglant principal utilisé dans un mouvement de montre bracelet pour donner l'heure. La montre comporte dans ce cas un organe réglant à très haute résolution et très haute précision dédié à la mesure de durées chronométrées. Such a regulating member may for example be added to the main regulating member used in a wristwatch movement to give the time. The watch comprises in this case a very high resolution and very high precision regulating member dedicated to the measurement of timed durations.
Cet organe réglant magnétique peut en outre être monté dans le même mouvement que l'organe réglant principal, ou dans un module auxiliaire superposé par-dessus le mouvement de base, par exemple dans un module chronographe additionnel. La solution revendiquée présente par ailleurs également l'avantage d'être dépourvue de ressort spiral. Outre les avantages évoqués plus haut (approvisionnement, perturbations dues à la gravité etc), la suppression de cet organe permet de voir à travers l'organe réglant, entre les rayons du balancier, sans que le spiral ne fasse écran aux composants en arrière-plan. On disposera donc avantageusement l'organe réglant de l'invention derrière une ouverture du cadran ou dans le fond de la montre, de manière à montrer clairement le balancier qui oscille rapidement et les composants derrière ce balancier. This magnetic regulating member may also be mounted in the same movement as the main regulating member, or in an auxiliary module superimposed over the basic movement, for example in an additional chronograph module. The claimed solution also has the advantage of being devoid of a spiral spring. In addition to the advantages mentioned above (supply, disturbances due to gravity etc), the removal of this organ allows to see through the regulating member, between the spokes of the beam, without the hairspring shields the components backwards. plan. The regulating organ of the invention will therefore advantageously be disposed behind an opening of the dial or in the bottom of the watch. so as to clearly show the pendulum oscillating rapidly and the components behind this pendulum.
L'organe réglant de l'invention est de préférence monté dans un mouvement et dans une boîte de montre laissant apparaître au moins une partie du balancier, ce qui permet à l'utilisateur de contrôler ses The regulating member of the invention is preferably mounted in a movement and in a watch case revealing at least part of the balance, which allows the user to control his
déplacements en tout temps. travel at all times.

Claims

Revendications claims
1 . Organe réglant magnétique pour mouvement de montre- bracelet, comprenant : 1. Magnetic regulating member for wristwatch movement, comprising:
un balancier (1 ) ;  a balance (1);
des aimants permanents (2, 10) pour amener ledit balancier vers au moins une position de repos;  permanent magnets (2, 10) for bringing said balance to at least one rest position;
un échappement (5, 6) pour transmettre au balancier des impulsions afin d'éloigner le balancier (1 ) de la position de repos ;  an escapement (5, 6) for transmitting impulses to the balance to move the balance (1) away from the rest position;
caractérisé en ce que au moins un dit aimant permanent est formé d'un matériau cristallin non fritté.  characterized in that at least one said permanent magnet is formed of a non-sintered crystalline material.
2. L'organe réglant de la revendication 1 , dans lequel ledit au moins un aimant permanent (2, 10) est réalisé dans un alliage à base de platine et de cobalt. 2. The regulating member of claim 1, wherein said at least one permanent magnet (2, 10) is made of a platinum-cobalt alloy.
3. L'organe réglant de l'une des revendications 1 à 2, dans lequel ledit au moins un aimant permanent (2, 10) est fixé sans colle. 3. The regulating member of one of claims 1 to 2, wherein said at least one permanent magnet (2, 10) is fixed without glue.
4. L'organe réglant de l'une des revendications 1 à 3, dans lequel ledit au moins un aimant permanent (2, 10) comporte plusieurs matériaux (25, 26, 27) arrangés de manière à ce que les variations de rémanence magnétique en fonction de la température se compensent au moins partiellement. 4. The regulating member of one of claims 1 to 3, wherein said at least one permanent magnet (2, 10) comprises a plurality of materials (25, 26, 27) arranged so that the variations of magnetic remanence depending on the temperature at least partially compensate.
5. L'organe réglant de la revendication 4, dans lequel ledit au moins un aimant permanent (2, 10) comporte plusieurs couches de matériaux (25, 26, 27) dont les variations de rémanence magnétique en fonction de la température se compensent au moins partiellement. 5. The regulating member of claim 4, wherein said at least one permanent magnet (2, 10) comprises several layers of materials (25, 26, 27) whose variations of magnetic remanence as a function of the temperature compensate for the less partially.
6. L'organe réglant de l'une des revendications 1 à 5, dans lequel ledit au moins un aimant permanent (2, 10) est formé d'un matériau traité thermiquement après usinage. 6. The regulating member of one of claims 1 to 5, wherein said at least one permanent magnet (2, 10) is formed of a heat-treated material after machining.
7. L'organe réglant de l'une des revendications 1 à 6, 7. The regulating member of one of claims 1 to 6,
comportant des moyens pour ajuster la position d'au moins un aimant permanent fixe (2) afin de le rapprocher ou de l'écarter du balancier (1 ) et de régler ainsi la marche de la montre. comprising means for adjusting the position of at least one fixed permanent magnet (2) in order to bring it closer to or away from the balance (1) and thus to adjust the running of the watch.
8. L'organe réglant de l'une des revendications 1 à 7, dans lequel au moins un des aimants (2, 10) présente une forme non 8. The regulating member of one of claims 1 to 7, wherein at least one of the magnets (2, 10) has a shape not
parallélépipédique, non annulaire et non cylindrique, adaptée de manière à assurer la proportionnalité entre le couple de rappel mécanique et la déviation angulaire du balancier (1) par rapport à la position de repos. parallelepipedal, non-annular and non-cylindrical, adapted to ensure the proportionality between the mechanical return torque and the angular deflection of the balance (1) relative to the rest position.
9. L'organe réglant de l'une des revendications 1 à 8, 9. The regulating member of one of claims 1 to 8,
comportant un échappement magnétique. having a magnetic escapement.
10. L'organe réglant de l'une des revendications 1 à 9, le balancier étant maintenu par un palier magnétique. 10. The regulating member of one of claims 1 to 9, the rocker being held by a magnetic bearing.
1 1 . Mouvement de montre mécanique comportant un 1 1. Mechanical watch movement comprising a
chronographe dont la marche est déterminé par un organe réglant selon l'une des revendications 1 à 10. chronograph whose running is determined by a regulating member according to one of claims 1 to 10.
12. Le mouvement de la revendication 1 1 , comportant : The movement of claim 11, comprising:
un premier organe réglant pour déterminer la marche de la montre ; et :  a first regulating organ for determining the running of the watch; and
ledit organe réglant magnétique pour déterminer la marche du chronographe, la fréquence de l'organe réglant magnétique utilisé pour déterminer la marche de la montre étant supérieure à la fréquence du premier organe réglant.  said magnetic regulating member for determining the chronograph operation, the frequency of the magnetic regulating member used to determine the running of the watch being greater than the frequency of the first regulating member.
PCT/EP2010/066640 2009-11-02 2010-11-02 Setting member for a wristwatch, and timepiece comprising such a setting member WO2011051498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10773314A EP2497095A1 (en) 2009-11-02 2010-11-02 Setting member for a wristwatch, and timepiece comprising such a setting member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1692/09 2009-11-02
CH01692/09A CH702188B1 (en) 2009-11-02 2009-11-02 A regulating organ for a wristwatch, and a timepiece comprising such a regulating organ.

Publications (1)

Publication Number Publication Date
WO2011051498A1 true WO2011051498A1 (en) 2011-05-05

Family

ID=42118788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/066640 WO2011051498A1 (en) 2009-11-02 2010-11-02 Setting member for a wristwatch, and timepiece comprising such a setting member

Country Status (3)

Country Link
EP (1) EP2497095A1 (en)
CH (1) CH702188B1 (en)
WO (1) WO2011051498A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998799A1 (en) * 2014-09-18 2016-03-23 Montres Breguet SA Contactless notching
TWI691819B (en) * 2015-12-10 2020-04-21 瑞士商尼瓦克斯 法爾公司 Timepiece escapement mechanism, timepiece movement and watch

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH235718A (en) 1943-02-16 1944-12-15 Straumann Reinhard Regulator with oscillating tongue for keeping the running speed of a driven circulating element constant.
GB615139A (en) 1946-07-29 1949-01-03 Claude Francis Neville Boxwell Improvements in the application of pendulums to clocks
GB644948A (en) 1948-05-19 1950-10-18 Automatic Telephone & Elect Improvements in or relating to mechanical oscillating elements with magnetic torsioncontrol
CH274901A (en) 1939-04-18 1951-04-30 Clifford Cecil F Magnetic escapement device.
US2986683A (en) * 1956-07-26 1961-05-30 Hatot Leon Ets Driving balance-wheels more particularly applicable to timing instruments
US3183426A (en) 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
GB1142676A (en) 1965-08-12 1969-02-12 Movado S A Fab Improvements in or relating to devices for stabilising the oscillation frequency of a mechanical oscillator
GB1175550A (en) 1966-09-26 1969-12-23 Straumann Inst Ag Mechanical Oscillator having a Torsion Bar as an Elastic Member
US3621424A (en) 1970-10-19 1971-11-16 Joseph Query Magnetic engine
US3877215A (en) 1972-12-13 1975-04-15 Ebauches Sa Resonator for a timepiece
US4266291A (en) 1977-12-27 1981-05-05 Iida Sankyo Co., Ltd. Electromagnetic swing device
US4308605A (en) 1980-02-12 1981-12-29 Ayer Henry E Balance wheel assembly
US5638340A (en) 1996-04-15 1997-06-10 Schiefele; Walter P. Clock having magnetically-levitated pendulum
EP1122619A1 (en) 1999-08-12 2001-08-08 Seiko Instruments Inc. Mechanical timepiece with posture detector
US20030137901A1 (en) 2000-12-20 2003-07-24 Takeshi Tokoro Mechanical timepiece with posture detector and the posture detector
WO2006045824A2 (en) 2004-10-26 2006-05-04 Tag Heuer Sa Wristwatch regulating member and mechanical movement comprising one such regulating member

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH274901A (en) 1939-04-18 1951-04-30 Clifford Cecil F Magnetic escapement device.
CH235718A (en) 1943-02-16 1944-12-15 Straumann Reinhard Regulator with oscillating tongue for keeping the running speed of a driven circulating element constant.
GB615139A (en) 1946-07-29 1949-01-03 Claude Francis Neville Boxwell Improvements in the application of pendulums to clocks
GB644948A (en) 1948-05-19 1950-10-18 Automatic Telephone & Elect Improvements in or relating to mechanical oscillating elements with magnetic torsioncontrol
US2986683A (en) * 1956-07-26 1961-05-30 Hatot Leon Ets Driving balance-wheels more particularly applicable to timing instruments
US3183426A (en) 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
GB1142676A (en) 1965-08-12 1969-02-12 Movado S A Fab Improvements in or relating to devices for stabilising the oscillation frequency of a mechanical oscillator
GB1175550A (en) 1966-09-26 1969-12-23 Straumann Inst Ag Mechanical Oscillator having a Torsion Bar as an Elastic Member
US3621424A (en) 1970-10-19 1971-11-16 Joseph Query Magnetic engine
US3877215A (en) 1972-12-13 1975-04-15 Ebauches Sa Resonator for a timepiece
US4266291A (en) 1977-12-27 1981-05-05 Iida Sankyo Co., Ltd. Electromagnetic swing device
US4308605A (en) 1980-02-12 1981-12-29 Ayer Henry E Balance wheel assembly
US5638340A (en) 1996-04-15 1997-06-10 Schiefele; Walter P. Clock having magnetically-levitated pendulum
EP1122619A1 (en) 1999-08-12 2001-08-08 Seiko Instruments Inc. Mechanical timepiece with posture detector
US20030137901A1 (en) 2000-12-20 2003-07-24 Takeshi Tokoro Mechanical timepiece with posture detector and the posture detector
WO2006045824A2 (en) 2004-10-26 2006-05-04 Tag Heuer Sa Wristwatch regulating member and mechanical movement comprising one such regulating member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRAIK D J: "Cobalt-Platinum Permanent Magnets MODELS FOR STUDY AND TECHNICAL DEVELOPMENT", PLATINUM METALS REVIEW, LONDON, GB, vol. 16, no. 4, 1 January 1972 (1972-01-01), pages 129 - 137, XP007912981 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998799A1 (en) * 2014-09-18 2016-03-23 Montres Breguet SA Contactless notching
WO2016041772A1 (en) 2014-09-18 2016-03-24 Montres Breguet S.A. Non-contact notching
TWI691819B (en) * 2015-12-10 2020-04-21 瑞士商尼瓦克斯 法爾公司 Timepiece escapement mechanism, timepiece movement and watch

Also Published As

Publication number Publication date
CH702188B1 (en) 2017-12-29
CH702188A1 (en) 2011-05-13
EP2497095A1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2496990B1 (en) Regulating member for a wristwatch, and timepiece comprising such a regulating member
EP1805565B1 (en) Wristwatch regulating member and mechanical movement comprising one such regulating member
EP1521141B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP2990885B1 (en) Mechanical clock movement with magnetic escapement
EP1521142B1 (en) Timepiece with a mechanical movement coupled to an electronic regulator mechanism
EP2487547B1 (en) Regulator of a clockwork wheel or an alarm wheel
EP2463732B1 (en) Chiming mechanism of a watch or a music box
EP2908188B1 (en) Adjustment of a clock piece resonator by changing the rigidity of a resilient return means
EP2463731B1 (en) Chiming mechanism of a watch
EP3120199B1 (en) Clock oscillator
EP2887156B1 (en) Regulator device
WO2011051498A1 (en) Setting member for a wristwatch, and timepiece comprising such a setting member
CH707990A1 (en) Mechanical watch movement.
EP3719588B1 (en) Auto-adjustable clock oscillator
EP4063973A1 (en) Timepiece including an actuator comprising an electromechanical device
CH718445A2 (en) Timepiece incorporating an actuator comprising an electromechanical device.
CH709018A2 (en) Magnetic device controller and watch movement comprising such a device.
CH704685A1 (en) Magnetic adjusting element for use in clock movement of mechanical wristwatch to adjust running operation of watch, has magnetic circuit including deformable zones formed in manner to compensate variations in magnetic field in circuit
CH716038A2 (en) Self-adjusting clock oscillator.
CH522914A (en) Magneto-electric time instrument
BE390661A (en)
BE635520A (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10773314

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010773314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010773314

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE