WO2011051019A1 - Pu-klebstoff mit viskositätsregler - Google Patents

Pu-klebstoff mit viskositätsregler Download PDF

Info

Publication number
WO2011051019A1
WO2011051019A1 PCT/EP2010/062686 EP2010062686W WO2011051019A1 WO 2011051019 A1 WO2011051019 A1 WO 2011051019A1 EP 2010062686 W EP2010062686 W EP 2010062686W WO 2011051019 A1 WO2011051019 A1 WO 2011051019A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
adhesive according
component
prepolymer
viscosity
Prior art date
Application number
PCT/EP2010/062686
Other languages
English (en)
French (fr)
Inventor
Lothar Thiele
Patrik Matusik
Andreas Brenger
Silvana Pölitz
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43020422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011051019(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to EP10747632.7A priority Critical patent/EP2493951B2/de
Priority to ES10747632T priority patent/ES2684472T5/es
Publication of WO2011051019A1 publication Critical patent/WO2011051019A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/089Reaction retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters

Definitions

  • the invention relates to liquid reactive adhesives based on polyurethane prepolymers having a low content of monomeric isocyanates which contain a viscosity-lowering substance. These prepolymers can be formulated as a 1-component or 2-component adhesive.
  • adhesives are known based on low-monomer PU prepolymers, which are prepared by reacting low molecular weight diols with diisocyanates, which are then freed from monomeric diisocyanates.
  • the NCO group-containing prepolymers are then reacted with diols, and there are obtained reactive polymers as hot melt adhesives.
  • the melt viscosity of the adhesives is above 4.5 Pas at 130 ° C, these are solid at room temperature.
  • DE 10150722 discloses solid adhesive compositions which are prepared from 2,4'-diphenylmethane diisocyanate, these isocyanates being reacted with low molecular weight polyols. It should be included in the adhesive only a small proportion of residual monomers. At room temperature, liquid adhesives are not described.
  • Reactive moisture-curing polyurethane adhesives / sealants contain polymers with urethane groups, possibly urea groups and reactive isocyanate groups.
  • these compositions are solvent-containing, very high viscosity or pasty because of the urea and urethane groups contained. They are therefore processed at elevated temperature between about 50 ° C and about 100 ° C, or at room temperature and then organic solvents are added.
  • organic solvents are added to reduce the viscosity of such prepolymers with only a low content of monomeric diisocyanates.
  • liquid isocyanate reaction products for example isocyanates with carbodiimides.
  • inert solvents for example hydrocarbons or plasticizers. It is also known that liquid silane-containing
  • Solvent in the technical application often undesirable. These volatile compounds are often of concern to health. In addition, solvents must evaporate before joining the substrates, which complicates an application in thick layers, or there are long bonding times. In addition, many solvents have the disadvantage in the bonding of
  • Plastic substrates dissolve these and destroy them on the surface. If known plasticizers are added, they can migrate in the adhesive joint and possibly adversely affect adhesion.
  • the addition of silane compounds can lead to an impairment of the isocyanate reaction, since monohydric alcohols are formed on hydrolysis of the silane compounds.
  • the object is achieved by the provision of a low-monomer
  • crosslinkable 1-component or 2-component polyurethane adhesive containing at least one polyurethane prepolymer having NCO groups having a molecular weight of less than 5000 g / mol and conventional additives and auxiliaries, with a content of monomeric diisocyanates below 0.5 wt .-%, based on the PU prepolymer 0.5 to 30 wt .-% esters of C 2 to C 24 mono- or dicarboxylic acids are included.
  • the inventively suitable PU prepolymer is a per se known reaction product of polyols and polyisocyanates containing only a small proportion of monomeric, unreacted diisocyanates. It can be obtained by reacting diisocyanates with polyols.
  • polyols for the synthesis of the PU prepolymer while polyhydroxy compounds can be used, selected from polyether or polyester polyols.
  • Suitable polyols are preferably polyhydroxy compounds having two or three hydroxyl groups per molecule in the
  • polyethers examples are di- and / or trifunctional polypropylene glycols or polyethylene glycols; it is also possible to use random and / or block copolymers of ethylene oxide and propylene oxide.
  • Another group of polyethers to be used are the polytetramethylene glycols (poly (oxytetramethylene) glycol, polyTHF), e.g. produced by the acidic polymerization of tetrahydrofuran.
  • polyesters which are obtained by condensation of di- or tricarboxylic acids, e.g. Adipic acid, sebacic acid, glutaric acid, azelaic acid, suberic acid, undecanedioic acid, dodecanedioic acid, 3,3-dimethylglutaric acid, terephthalic acid, isophthalic acid, hexahydrophthalic acid, dimer fatty acid or mixtures thereof with low molecular weight diols or triols, such as e.g.
  • di- or tricarboxylic acids e.g. Adipic acid, sebacic acid, glutaric acid, azelaic acid, suberic acid, undecanedioic acid, dodecanedioic acid, 3,3-dimethylglutaric acid, terephthalic acid, isophthalic acid, hexahydrophthalic acid, dimer fatty acid or mixtures thereof with low molecular weight diols or triol
  • Ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 10-decanediol, 1, 12-dodecanediol, dimer fatty alcohol, glycerol, trimethylolpropane or mixtures thereof can.
  • Another group of the invention to be used Polyols are the polyesters based on ⁇ -caprolactone, also called polycaprolactones. In this case, the molecular weight of such
  • polyester polyols of oleochemical origin can be prepared, for example, by complete ring opening of epoxidized triglycerides of an at least partially olefinically unsaturated fatty acid-containing fat mixture with one or more alcohols having 1 to 12 carbon atoms and subsequent partial transesterification of the triglyceride derivatives to alkyl ester polyols having 1 to 12 C atoms in the alkyl radical getting produced. It may be, for example, castor oil.
  • polystyrene resin polystyrene resin
  • polycaprolactone diols polycaprolactone diols
  • dimer diols dimer diols
  • hydroxy-functional polybutadienes may optionally be contained in the polyol mixture, if appropriate.
  • It may also contain aliphatic alkylenediols. It may be linear or branched C 2 to C 24 diols having terminal or laterally in the carbon chain OH groups. Examples are ethylene glycol,
  • higher-functional alcohols such as glycerol, trimethylolpropane, pentaerythritol or sugar alcohols.
  • higher-functionality polyols are less preferred and should only be present in proportions in the polyols.
  • the polyols should preferably be liquid.
  • the molecular weight should preferably be below 2000 g / mol, in particular below 1500 g / mol (number average molecular weight, MN, as determinable by GPC). It is preferred if diols are used or mixtures thereof.
  • MN number average molecular weight
  • Embodiment uses polyether diols, another embodiment castor oil, it can also be used mixtures.
  • Monomeric diisocyanates which are suitable for the preparation of the prepolymers are those aromatic, aliphatic or cycloaliphatic di- or triisocyanates whose molecular weight is less than 500 g / mol.
  • suitable aromatic diisocyanates are all isomers of toluene diisocyanate (TDI) either in isomerically pure form or as a mixture of several isomers, naphthalene-1, 5-diisocyanate (NDI), naphthalene-1, 4-diisocyanate (NDI),
  • Diphenylmethane-4,4'-diisocyanate (MDI), diphenylmethane-2,4'-diisocyanate and mixtures of 4,4'-diphenylmethane diisocyanate with the 2,4'-isomeric, xylylene diisocyanate (XDI), 4,4 'Di-phenyl-dimethylmethane diisocyanate, di- and tetraalkyl-diphenylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, 1, 3-phenylene diisocyanate, 1, 4-phenylene diisocyanate.
  • MDI Diphenylmethane-4,4'-diisocyanate
  • XDI xylylene diisocyanate
  • 4,4 'Di-phenyl-dimethylmethane diisocyanate di- and tetraalkyl-diphenylmethane diisocyanate
  • Suitable cycloaliphatic diisocyanates are the hydrogenation products of the aforementioned aromatic diisocyanates, e.g. 4,4'-dicyclohexylmethane diisocyanate (H12MDI), 1-isocyanatomethyl-3-isocyanato-1, 5,5-trimethylcyclohexane
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • IPDI Isophorone diisocyanate
  • H6XDI hydrogenated xylylene diisocyanate
  • m-TMXDI, p-TMXDI dimer fatty acid diisocyanate
  • aliphatic diisocyanates are tetramethoxybutane-1,4-diisocyanate, butane-1,4-diisocyanate, hexane-1,6-diisocyanate (HDI), 1,6-diisocyanato-2,2,4-trimethylhexane, 1, 6-diisocyanato-2,4,4-trimethylhexane, lysine diisocyanate and 1,12-dodecane diisocyanate (C12DI).
  • HDI hexane-1,6-diisocyanate
  • C12DI 1,12-dodecane diisocyanate
  • One embodiment uses isocyanates, the isocyanate groups
  • TDI toluene diisocyanate
  • NDI naphthalene-1
  • MDI diphenylmethane-2,4'-diisocyanate
  • IPDI isophorone diisocyanate
  • hydrogenated 2,4 ' -MDI Preferably, an aromatic isocyanate is used.
  • the reaction product can be as far as possible freed from monomeric diisocyanate.
  • the purification step can be carried out by methods known per se.
  • the monomeric isocyanate can be removed by selective extraction using, for example, supercritical carbon dioxide or other supercritical aprotic solvents.
  • the excess monomeric diisocyanate can preferably be removed from the reaction mixture by distillation.
  • the distillation is preferably carried out in vacuo with the aid of a thin-film evaporator or a thin-film evaporator. Such distillation processes are described in the literature.
  • the PU prepolymer is prepared by selecting the starting materials, for example by asymmetric isocyanates, so that only small amounts of monomeric isocyanates are present.
  • the resulting PU prepolymers having NCO groups should contain at most 0.5% by weight of monomeric diisocyanate, based on the prepolymer, in particular less than 0.2% by weight.
  • the resulting low-monomer prepolymers are highly viscous in the solvent-free state, for example with a viscosity of 10,000 to 400,000 mPas (measured at 50 ° C) Brookfield viscometer, according to EN ISO 2555, at specified temperature) or they have a low melting temperature, for example below 80 ° C. Preferred are such
  • the PU adhesives of the invention contain a proportion of 0.5 to 30 wt .-% of esters of mono- or dicarboxylic acids. These must be compatible with the prepolymer. It may be C 2 to C 24 carboxylic acid ester.
  • the alcohol component turns off monohydric alcohols having 1 to 12 carbon atoms selected. The sum of all C atoms of the esters must be at least 8.
  • esters according to the invention are those which have a boiling point above 160 ° C., preferably above 200 ° C., in particular above 250 ° C. These may be esters of saturated or
  • Suitable carboxylic acids are aliphatic carboxylic acids such as succinic acid, adipic acid, sebacic acid, unsaturated carboxylic acids such as oleic acid, linolenic acid, azelaic acid, aromatic carboxylic acids such as benzoic acid, isophthalic acid, phthalic acid, cyclic carboxylic acid such as cyclohexa carboxylic acid or cyclohexanedicarboxylic acid. These acids should be completely esterified.
  • a particular embodiment uses aliphatic saturated or unsaturated carboxylic acid esters of C 6 to C 22 -carboxylic acids, in particular aliphatic linear or branched carboxylic acids having 10 to 22 C-atoms. Very particular preference is given to monocarboxylic acid esters. Preference is given to mixtures of esters of different carboxylic acids, in particular from natural raw materials.
  • the carboxylic acid esters should have a viscosity below 1000 mPas at 25 ° C., preferably below 200 mPas, in particular below 100 mPas.
  • the amount of ester is chosen so that the viscosity of the prepolymers is lowered.
  • the viscosity of the mixture of prepolymer and carboxylic ester should be below 75,000 mPas (measured at 25 ° C.), in particular below 50,000 mPas.
  • the polyurethane adhesives of the invention may further contain auxiliaries.
  • auxiliaries substances which are usually added to change the properties of the adhesive, e.g. their processability, shelf life and also performance characteristics to fit the specific application. Examples are finely divided fillers, thixotropic agents, catalysts, resins, anti-aging agents, stabilizers, dyes,
  • Adhesive or wetting agent Suitable fillers are non-reactive to isocyanates inorganic compounds such as chalk, coated chalk, lime, calcium magnesium carbonates, aluminum oxides, precipitated silica, zeolites, bentonites, glass, hollow spheres, ground minerals, color pigments as far as these are present as a powder, ie a particle size have between 1 to 200 ⁇ , in particular between 3 to 100 ⁇ .
  • Such fillers are finely dispersed after mixing in the PU adhesive. In particular, the amount should be less than 5 wt .-% or be free of fillers,
  • compositions according to the invention may optionally additionally
  • Suitable catalysts for use in accordance with the invention are e.g. the organometallic compounds of tin, iron, titanium, zirconium or bismuth, such as tin (II) salts of carboxylic acids, dialkyl-tin (IV) carboxylates, such as dibutyl, dioctyltin diacetate or dilaurate, mixed or not. mixed-substituted titanium or zirconium alkoxides, such as tetramethoxyzirconium, tetraethoxyzirconium.
  • organometallic compounds of tin, iron, titanium, zirconium or bismuth such as tin (II) salts of carboxylic acids, dialkyl-tin (IV) carboxylates, such as dibutyl, dioctyltin diacetate or dilaurate, mixed or not.
  • mixed-substituted titanium or zirconium alkoxides such as
  • iron II or iron III salts such as iron (III) oleate, iron (II) 2-ethylhexanoate or bismuth carboxylates.
  • iron II or iron III salts such as iron (III) oleate, iron (II) 2-ethylhexanoate or bismuth carboxylates.
  • iron II or iron III salts such as iron (III) oleate, iron (II) 2-ethylhexanoate or bismuth carboxylates.
  • aliphatic tertiary amines in particular with a cyclic structure, for example triethanolamine, trimethanolamine, diethanolhexylamine, diaza-bic
  • DMDEE Dimorpholinodiethyl ether
  • the catalysts may also be in oligomerized or polymerized form, e.g. as N-methylated polyethyleneimine.
  • Suitable stabilizers for the purposes of this invention are, on the one hand, stabilizers which bring about a viscosity stability of the polyurethane prepolymer during the preparation, storage or application, for example carboxylic acid chlorides. Furthermore, as stabilizers in the context of this invention
  • UV stabilizers or hydrolysis stabilizers to understand. If the polyurethane prepolymer is composed predominantly of polyether units, antioxidants, if necessary in combination with UV protectants, are necessary in most cases. If essential constituents of the polyurethane prepolymer consist of polyester units, preference is given to using hydrolysis stabilizers, for example of the carbodiimide type.
  • the adhesive according to the invention may also contain adhesion promoters. These can be reactive substances that can react with the substrate surface. As adhesion promoters are preferably
  • organofunctional silanes such as hydroxy-functional, (meth) acryloxy-functional, mercapto-functional, amino-functional or epoxy-functional silanes used. Such compounds are known to the person skilled in the art.
  • the adhesive may additionally contain a resin.
  • a resin These are liquid to solid organic products, for which a more or less broad distribution of the relative molar mass is characteristic. They usually have an amorphous structure.
  • the known resins may be used, whether of natural or synthetic origin.
  • the natural resins can be of both plant and animal origin. Examples are
  • Shellac and rosin resins such as tall resin, balsam resin or root resin. Not only the natural resins but also their derivatives are suitable, such as dimerized, hydrogenated, esterified or neutralized resins. Examples of these are urea, melamine, hydrocarbon, terpene, coumarone / indene, furan, aldehyde, ketone, ketone / aldehyde, phenol, alkyd, glycerol ester, polyester, epoxide, Polyamide and isocyanate resins. These resins may contain isocyanate-reactive groups or they may not have such groups.
  • adhesives can be formulated. It is possible to prepare 1 K PU adhesives, these then containing 95.5 to 70 wt .-% of inventive NCO-containing PU prepolymers, and 0.5 to 30 wt .-% carboxylic acid ester. Optionally, up to 25% by weight of additives and auxiliaries may still be present in these 1-component PU adhesives be included. In particular, it is useful if 0.01 to 2 wt .-%
  • the PU adhesive according to the invention can have various auxiliaries and additives.
  • the mixture is free of other organic solvents which have a boiling point of below 160 or 200 ° C.
  • it has proved to be expedient if no further plasticizers such as naphthenic mineral oils, paraffinic
  • Hydrocarbons or similar low molecular weight products are included.
  • the additives to be used can be mixed with the prepolymer, provided that they have no groups reactive with NCO groups, in particular also contain no moisture.
  • the 1K PU adhesives according to the invention are storage stable. Selection of the polymers and the additives ensures that no premature reaction of the NCO groups with other constituents can take place.
  • 2K PU adhesives can also be formulated from the inventively suitable PU prepolymers with NCO groups together with an OH-containing component.
  • additives and auxiliaries may be present in the NCO-reactive PU prepolymer component, but in particular they are added to the OH group-containing component.
  • the amount of the OH group-containing component is chosen so that an NCO: OH ratio is obtained, which is a small
  • the NCO: OH ratio should be from 1.2 to 2: 1, in particular from 1.05 to 1.5: 1. These two components are stored separately until use and mixed immediately before use and then used as an adhesive.
  • OH-group-containing component liquid polyols with a
  • Functionality can be selected from 2 to 5. It may be one or more of the polyols listed above. The molecular weight may also be higher, it may be, for example, up to 10,000 g / mol. Preferably, these polyols have a functionality above two and can increase the crosslink density. Likewise, OH-group-containing resins may be contained in this component. The corresponding reactive groups should be taken into account when determining the mixing ratio.
  • the inventively suitable low-monomer prepolymers have a high viscosity. These are less suitable for direct application as an adhesive.
  • the viscosity of a 1K adhesive according to the invention should be between 1000 to 75,000 mPas, preferably up to 50,000 mPas, in particular below 40,000 mPas, measured at the application temperature. This should in particular be between 15 and 50 ° C, in particular, this viscosity should be present at room temperature (20 to 30 ° C). Due to the low viscosity, direct application as a 1K PU adhesive is possible.
  • the adhesive can be heated to temperatures up to 50 ° C, while the viscosity can then be lowered to less than 10,000 mPas at application temperature.
  • 2K PU adhesives can be provided, which in one component comprise a mixture of PU prepolymer and
  • this NCO-reactive component can be constructed analogously to the above-described 1 K adhesive and the like
  • the PU adhesives according to the invention can be applied to various substrates. Due to the low viscosity they can be processed at room temperature. They flow well to the substrate and can be applied in a thin layer. The adhesives crosslink by atmospheric moisture or by the OH group-containing second component. In this case, the crosslinking can be accelerated by increased temperature.
  • the known substrates of wood, plastic, metal, ceramic or stone are suitable. At the same time the surface of adhering loose should be provided.
  • Dust particles are cleaned, then the adhesive can be applied and the second substrate are placed on the first substrate.
  • the adhesive can be applied and the second substrate are placed on the first substrate.
  • the bonded substrates show a stable bond with each other.
  • the adhesion to the surface is good, the cohesion within the adhesive is also excellent. Impairment of the bond can be avoided by the selected carboxylic esters. A migration of these components is not observed even after networking.
  • the additives based on the carboxylic acid esters and sensitive plastic substrates can be bonded without the surface is damaged by solvents.
  • Another advantage of the adhesives of the invention is the good storage stability. Even with forced storage, only a slight increase in
  • Viscosity The viscosity-reducing additives remain stable mixed in the adhesive, a phase separation does not occur.
  • the simple molar amount of polypropylene glycol 400 is slowly added and heated to 80 ° C after the exothermic reaction has subsided for 2 hours. This is followed by removal of the excess isocyanate by means of thin-film evaporation at pressures of up to 0.07 mbar and temperatures between 165 and 170.degree.
  • the content of monomeric 2,4-TDI is then below 0.02%, and the viscosity is 266 000 mPas at 25 ° C.
  • the product is stabilized with 0.2% benzoyl chloride.
  • Analog prepolymers are prepared with polypropylene glycol of average molecular weights of 575 g / mol. In this case, mixtures of polypropylene glycol 400 and 1000 are used. The content of free 2,4-TDI is less than 0.02%, and the viscosity determined at 25 ° C is 133,000 mPas.
  • Analog prepolymers are prepared with polypropylene glycol of average molecular weights of 675 g / mol. In this case, mixtures of polypropylene glycol 400 and 1000 are used. The content of free 2,4-TDI is less than 0.02%, and the viscosity determined at 25 ° C is 74,000 mPas.
  • (4,4'-MDI) is also reacted with polypropylene glycol 750.
  • the thin-film evaporation takes place at the same pressure but in the temperature range around 200 ° C.
  • the content of free 4,4-MDI is 0.08%, the viscosity at 25 ° C at 212 000 mPas.
  • the prepol is diluted with 15% dried linseed oil.
  • the viscosity is at 25 ° C at 42 400 mPas. After 7 days storage at
  • test specimens are glued from beech wood, the tensile shear strength is 12.5 MPa. (DIN 53504)
  • the prepol is diluted with 10% dried butyl acetate.
  • Prepo4 is diluted with 15% dried linseed oil.
  • the Prepo3 is diluted with 5% dried isobutyl stearate.
  • Prepo 2 is diluted with 6% dried methyl laurate.
  • the Prepo 1 is diluted with 5% dried methyl laurate.
  • Example 3 as component A is blended with component OH component consisting of a polyol blend of castor oil (21.0%), polypropylene glycol 400 (5.2%), glycerine-based trifunctional polyether polyol having OH number 370.5 (7.0 %), as well as coated calcium carbonate (20.5%), calcium magnesium carbonate (41, 5%) and molecular sieve A3 (4.8%), dibutyltin dilaurate (0.05%).
  • component OH component consisting of a polyol blend of castor oil (21.0%), polypropylene glycol 400 (5.2%), glycerine-based trifunctional polyether polyol having OH number 370.5 (7.0 %), as well as coated calcium carbonate (20.5%), calcium magnesium carbonate (41, 5%) and molecular sieve A3 (4.8%), dibutyltin dilaurate (0.05%).
  • the Prepo 1 is diluted with 5% dried isobutyl laurate.
  • Coated calcium carbonate 6.5 g
  • Aerosil R202 0.5 g
  • dimorpholinodiethyl ether 0.5 g
  • Examples 1 to 4 are easy to process and apply to the substrates.
  • the bonds are stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Die Erfindung betrifft monomerarmer vernetzbarer 1-Komponenten oder 2-Komponenten Polyurethanklebstoff enthaltend ein Polyurethanprepolymer mit NCO-Gruppen mit einem Molekulargewicht von unter 5000 g/mol sowie übliche Additive und Hilfsstoffe, mit einem Gehalt an monomeren Diisocyanaten unter 0,5 Gew.-%, wobei bezogen auf das PU-Prepolymer 0,5 bis 30 Gew.-% Ester von Mono- oder Dicarbonsäuren mit 2 bis 24 C-Atomen enthalten sind.

Description

PU-Klebstoff mit Viskositätsregler
Die Erfindung betrifft flüssige reaktive Klebstoffe auf Basis von Polyurethan- prepolymeren mit einem geringen Gehalt an monomeren Isocyanaten, die eine die Viskosität absenkende Substanz enthalten. Diese Prepolymere können als 1 Komponenten- oder 2Komponenten-Klebstoff formuliert werden.
Aus der DE 19957351 sind Klebstoffe bekannt auf Basis monomerarmer PU- Prepolymere, die durch Umsetzung von niedermolekularen Diolen mit Diiso- cyanaten hergestellt werden, die anschließend von monomeren Diisocyanaten befreit werden. Die NCO-Gruppen-haltigen Prepolymere werden anschließend mit Diolen umgesetzt, und es werden reaktive Polymere als Schmelzklebstoffe erhalten. Die Schmelzviskosität der Klebstoffe liegt über 4,5 Pas bei 130°C, diese sind bei Raumtemperatur fest.
Aus der DE 10150722 sind feste Klebstoffzusammensetzungen bekannt, die aus 2,4'-Diphenylmethandiisocyanat hergestellt werden, wobei diese Isocyanate mit niedermolekularen Polyolen umgesetzt werden. Dabei soll nur ein geringer Teil an Restmonomeren im Klebstoff enthalten sein. Bei Raumtemperatur flüssige Klebstoffe sind nicht beschrieben.
Reaktive feuchtigkeitshärtende Polyurethan-Kleb-/Dichtstoffe enthalten Polymere mit Urethangruppen, ggf. Harnstoffgruppen und reaktiven Isocyanatgruppen. Für viele Anwendungsfälle sind diese Zusammensetzungen wegen der enthaltenen Harnstoff- und Urethangruppen lösungsmittelhaltig, sehr hochviskos oder pastös. Sie werden deshalb bei erhöhter Temperatur zwischen etwa 50°C und etwa 100°C verarbeitet, oder bei Raumtemperatur und es werden dann organische Lösemittel zugesetzt. Um die Viskosität solcher Prepolymere mit nur mit einem geringen Gehalt an monomeren Diisocyanaten zu vermindern, sind üblicherweise niedermolekulare Verbindungen enthalten. Es kann sich dabei um zugesetzte flüssige Isocyanat- umsetzungsprodukte handeln, beispielsweise um Isocyanate mit Carbodiimiden. Es können auch inerte Lösemittel hinzugegeben werden, z.B. Kohlenwasserstoffe oder Weichmacher. Es ist ebenfalls bekannt, dass flüssige silanhaltige
Verbindungen zugesetzt werden können. Solche Zusätze, die notwendig sind, um bei Raumtemperatur eine geeignete Applikationsviskosität der Klebstoffe zu erhalten, haben verschiedene Nachteile. Beispielsweise sind organische
Lösemittel in der technischen Anwendung häufig unerwünscht. Diese flüchtigen Verbindungen sind oft gesundheitlich bedenklich. Außerdem müssen Lösemittel vor dem Zusammenfügen der Substrate verdampfen, was eine Applikation in dicken Schichten erschwert, oder es werden lange Verklebungszeiten erhalten. Außerdem haben viele Lösemittel den Nachteil, bei der Verklebung von
Kunststoffsubstraten diese anzulösen und so an der Oberfläche zu zerstören. Werden bekannte Weichmacher zugegeben, so können diese in der Klebefuge migrieren und ggf. die Haftung beeinträchtigen. Das Zusetzen von Silan- verbindungen kann zu einer Beeinträchtigung der Isocyanatreaktion führen, da bei Hydrolyse der Silanverbindungen monofunktionelle Alkohole entstehen.
Trotz des vorgenannten Standes der Technik besteht also weiterhin Bedarf an verbesserten Polyurethan-Zusammensetzungen mit einem niedrigen Anteil an monomeren Diisocyanaten, deren Viskosität einen Einsatz bei Raumtemperatur zulässt. Sie sollen eine gute Haftung zu verschiedenen Oberflächen aufweisen. Dabei sollen mögliche, die Haftung beeinträchtigende migrierende Bestandteile, vermieden werden, weiterhin sollen Kunststoffsubstratoberflächen nicht angegriffen werden.
Die Aufgabe wird gelöst durch die Bereitstellung eines monomerarmen
vernetzbaren 1 -Komponenten oder 2-Komponenten Polyurethanklebstoffs, enthaltend mindestens ein Polyurethanprepolymer mit NCO-Gruppen mit einem Molekulargewicht von unter 5000 g/mol sowie übliche Additive und Hilfsstoffe, mit einem Gehalt an monomeren Diisocyanaten unter 0,5 Gew.-% , wobei bezogen auf das PU-Prepolymer 0,5 bis 30 Gew.-% Ester von C2 bis C24 -Mono- oder Dicarbonsäuren enthalten sind.
Das erfindungsgemäß geeignete PU-Prepolymer ist ein an sich bekanntes Umsetzungsprodukt aus Polyolen und Polyisocyanaten, das nur einen geringen Anteil an monomeren, nicht umgesetzten Diisocyanaten enthält. Es kann durch Umsetzung von Diisocyanaten mit Polyolen erhalten werden.
Als Polyole für die Synthese des PU-Prepolymeren können dabei Polyhydroxy- verbindungen eingesetzt werden, ausgewählt aus Polyetherpolyolen oder Polyesterpolyolen. Als Polyole eignen sich vorzugsweise Polyhydroxy- verbindungen mit zwei bzw. drei Hydroxylgruppen pro Molekül im
Molekulargewichts-Bereich von 200 bis 3000 g/mol, vorzugsweise im Bereich von 400 bis 2000 g/mol.
Beispiele sind di- und/oder trifunktionelle Polypropylenglycole oder Polyethylen- glycole, es können auch statistische und/oder Blockcopolymere des Ethylenoxids und Propylenoxids eingesetzt werden. Eine weitere Gruppe von einzusetzenden Polyethern sind die Polytetramethylenglycole (Poly(oxytetramethylen)glycol, Poly- THF), die z.B. durch die saure Polymerisation von Tetrahydrofuran hergestellt werden.
Weiterhin sind als Polyole solche Polyester geeignet, die durch Kondensation von Di- bzw. Tricarbonsäuren, wie z.B. Adipinsäure, Sebacinsäure, Glutarsäure, Azelainsäure Korksäure, Undecandisäure Dodecandisäure, 3,3-Dimethylglutar- säure, Terephthalsäure, Isophthalsäure, Hexahydrophthalsäure, Dimerfettsäure oder deren Mischungen mit niedermolekularen Diolen bzw. Triolen wie z.B.
Ethylenglycol, Propylenglycol, Diethylenglycol, Triethylenglycol, Dipropylenglycol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,8-Octandiol, 1 ,10-Decandiol, 1 ,12-dodecandiol, Dimerfettalkohol, Glycerin, Trimethylolpropan oder deren Mischungen hergestellt werden können. Eine weitere Gruppe der erfindungsgemäß einzusetzenden Polyole sind die Polyester auf der Basis von ε-Caprolacton, auch Polycaprolactone genannt. Dabei soll das Molekulargewicht solcher
Polyesterpolyole unter 2000 g/mol betragen.
Es können aber auch Polyesterpolyole oleochemischer Herkunft verwendet werden. Derartige Polyesterpolyole können beispielsweise durch vollständige Ringöffnung von epoxidierten Triglyceriden eines wenigstens teilweise olefinisch ungesättigte Fettsäure-enthaltenden Fettgemisches mit einem oder mehreren Alkoholen mit 1 bis 12 C-Atomen und anschließender partieller Umesterung der Triglycerid-Derivate zu Alkylesterpolyolen mit 1 bis 12 C-Atomen im Alkylrest hergestellt werden. Es kann sich dabei beispielsweise um Ricinusöl handeln.
Weitere geeignete Polyole sind Polycarbonat-Polyole, Polycaprolactondiole, Dimerdiole oder Hydroxy-funktionellen Polybutadiene. Diese können ggf anteilsweise in der Polyolmischung enthalten sein.
Es können auch aliphatische Alkylendiole enthalten sein. Es kann sich dabei um lineare oder verzweigte C2 bis C24 Diole handeln, die endständig oder lateral in der Kohlenstoff kette OH-Gruppen aufweisen. Beispiele sind Ethylenglykol,
Propylenglykol, Butandiol-1 ,4, Pentandiol-1 ,5, Hexandiol-1 ,6, Heptandiol-1 ,7, Octandiol-1 ,8 und deren höhere Homologen oder Isomeren. Ebenfalls geeignet sind höherfunktionelle Alkohole wie beispielsweise Glycerin, Trimethylolpropan, Pentaerythrit oder Zuckeralkohole. Solche höherfunktionellen Polyole sind aber weniger bevorzugt und sollen nur in Anteilen in den Polyolen enthalten sein.
Die Polyole sollen bevorzugt flüssig sein. Das Molekulargewicht soll bevorzugt unter 2000 g/mol betragen insbesondere unter 1500 g/mol (zahlenmittleres Molekulargewicht, MN, wie durch GPC bestimmbar). Dabei ist es bevorzugt, wenn Diole eingesetzt werden oder Mischungen derselben. Eine besondere
Ausführungsform setzt Polyetherdiole ein, eine andere Ausführungsform Ricinusöl, es können auch Mischungen eingesetzt werden. Monomere Diisocyanate, die für die Herstellung der Prepolymere geeignet sind, sind solche aromatischen, aliphatischen oder cycloaliphatischen Di- oder Triisocyanate, deren Molekulargewicht kleiner als 500 g/mol ist. Beispiele für geeignete aromatische Diisocyanate sind alle Isomeren des Toluyiendiisocyanats (TDI) entweder in isomerenreiner Form oder als Mischung mehrerer Isomerer, Naphthalin-1 ,5-diisocyanat (NDI), Naphthalin-1 ,4-diisocyanat (NDI),
Diphenylmethan-4,4'-diisocyanat (MDI), Diphenylmethan-2,4'-diisocyanat sowie Mischungen des 4,4'-Diphenyl-methandiisocyanats mit dem 2,4'-lsomeren, Xylylen-diisocyanat (XDI), 4,4'-Di-phenyl-dimethylmethandiisocyanat, Di- und Tetraalkyl-diphenylmethan-diisocyanat, 4,4'-Dibenzyldiisocyanat, 1 ,3- Phenylendiisocyanat, 1 ,4-Phenylen-diisocyanat. Beispiele für geeignete cycloaliphatische Diisocyanate sind die Hydrierungsprodukte der vorgenannten aromatischen Diisocyanate wie z.B. das 4,4'-Dicyclohexylmethandiisocyanat (H12MDI), 1 -lsocyanatomethyl-3-isocyanato-1 ,5,5-trimethyl-cyclohexan
(Isophorondiisocyanat, IPDI), Cyclohexan-1 ,4-diisocyanat, hydriertes Xylylen- diisocyanat (H6XDI), 1 -Methyl-2,4-diisocyanato-cyclohexan, m- oder p-Tetra- methylxylendiisocyanat (m-TMXDI, p-TMXDI) und Dimerfettsäure-Diisocyanat. Beispiele für aliphatische Diisocyanate sind Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4-diisocyanat, Hexan-1 ,6-diisocyanat (HDI), 1 ,6-Diiso-cyanato-2,2,4- trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan, Lysindiisocyanat sowie 1 , 12-Dodecandiisocyanat (C12DI).
Eine Ausführungsform setzt Isocyanate ein, die Isocyanatgruppen
unterschiedlicher Reaktivität aufweisen. Beispiele dafür sind die Isomeren des Toluyiendiisocyanats (TDI), Naphthalin-1 ,4-diisocyanat (NDI), Diphenylmethan- 2,4'-diisocyanat (MDI), Isophorondiisocyanat (IPDI) oder hydriertes 2,4'-MDI. Bevorzugt wird ein aromatisches Isocyanat eingesetzt.
Die Umsetzung der monomeren Diisocyanate mit den Polyolen erfolgt dabei in an sich bekannter Weise, gegebenenfalls unter Zusatz von aprotischen Lösungsmitteln. Um die Bildung höherer Oligomere zu vermeiden, ist es vorteilhaft ein Überschuss an Diisocyanaten im Verhältnis zu den Diolen einzusetzen. Die Bildung von höher molekularen Prepolymeren soll weitgehend vermieden werden. Es ist zweckmäßig nur ein Diisocyanat einzusetzen.
In einer Ausführungsform kann nach Abschluss der Reaktion das Umsetzungsprodukt möglichst weitgehend von monomerem Diisocyanat befreit werden. Der Reinigungsschritt kann nach an sich bekannten Verfahren erfolgen. Beispielsweise kann das monomere Isocyanat durch selektive Extraktion, beispielsweise unter Verwendung von überkritischem Kohlendioxid oder anderen überkritischen aprotischen Lösemitteln, entfernt werden. Bevorzugt kann bei der Verwendung von monomeren Diisocyanaten, wie TDI, IPDI, MDI, das überschüssige monomere Diisocyanat destillativ aus dem Reaktionsgemisch entfernt werden. Hierzu erfolgt die Destillation vorzugsweise im Vakuum mit Hilfe eines Dünnschichtverdampfers oder eines Dünnfilmverdampfers. Derartige Destillationsverfahren sind in der Literatur beschrieben. In einer weiteren bevorzugten Ausführungsform wird das PU-Prepolymer durch Auswahl der Ausgangsmaterialien, beispielsweise durch asymmetrische Isocyanate, so hergestellt, dass nur geringe Anteile von monomeren Isocyanaten enthalten sind.
Die erhaltenen PU-Prepolymere mit NCO-Gruppen sollen maximal 0,5 Gew.-% monomeres Diisocyanat, bezogen auf das Prepolymer, enthalten, insbesondere weniger als 0,2 Gew.-%. Die entstehenden monomerarmen Prepolymere sind im lösemittelfreien Zustand hochviskos, beispielsweise mit einer Viskosität von 10000 bis 400000 mPas (gemessen bei 50°C) Brookfield-Viskosimeter, nach EN ISO 2555, bei angegebener Temperatur) oder sie besitzen eine niedrige Schmelztemperatur, beispielsweise unterhalb von 80°C. Bevorzugt sind solche
Prepolymere bei Raumtemperatur noch fließfähig.
Es ist erfindungsgemäß notwendig, dass die erfindungsgemäßen PU-Klebstoffe einen Anteil von 0,5 bis 30 Gew.-% an Estern von mono- oder Dicarbonsäuren enthalten. Diese müssen mit dem Prepolymer verträglich sein, Es kann sich dabei um C2 bis C24- Carbonsäureester handeln. Die Alkoholkom-ponente wird aus einwertige Alkoholen mit 1 bis 12 C-Atomen ausgewählt. Dabei muss die Summe aller C-Atome der Ester mindestens 8 betragen.
Bei den erfindungsgemäß enthaltenen Estern handelt es sich um solche, die einen Siedepunkt oberhalb von 160°C aufweisen, bevorzugt über 200°C, insbesondere oberhalb von 250°C. Es kann sich dabei um Ester von gesättigten oder
ungesättigten aliphatischen, cycloaliphatischen oder aromatischen Carbonsäuren handeln. Beispiele für geeignete Carbonsäuren sind aliphatische Carbonsäuren wie Bernsteinsäure, Adipinsäure, Sebacinsäure, ungesättigte Carbonsäuren wie Ölsäure, Linolensäure, Azelainsäure, aromatische Carbonsäuren wie Benzoesäure, Isophthalsäure, Phthahlsäure, cyclische Carbonsäure wie Cyclohexa- carbonsäure oder Cyclohexandicarbonsäure. Diese Säuren sollen vollständig verestert vorliegen. Eine besondere Ausführungsform verwendet aliphatische gesättigte oder ungesättigte Carbonsäureester aus C6 bis C22- Carbonsäuren, insbesondere aliphatische lineare oder verzweigte Carbonsäuren mit 10 bis 22 C- Atomen. Ganz besonders bevorzugt sind Monocarbonsäureester. Bevorzugt liegen Mischungen von Estern unterschiedlicher Carbonsäuren vor, insbesondere aus natürlichen Rohstoffen.
Die Carbonsäureester sollen bei 25°C eine Viskosität unter 1000 mPas aufweisen, bevorzugt unter 200 mPas, insbesondere unter 100 mPas. Die Menge der Ester wird so gewählt, dass die Viskosität der Prepolymere erniedrigt wird. Insbesondere soll die Viskosität der Mischung aus Prepolymer und Carbonsäureester unterhalb von 75000 mPas (gemessen bei 25°C) liegen, insbesondere unter 50000 mPas.
Die erfindungsgemäßen Polyurethan-Klebstoffe können weiterhin Hilfsstoffe enthalten. Darunter werden Stoffe verstanden, die in der Regel zugesetzt werden, um die Eigenschaften des Klebstoffs zu verändern, z.B. deren Verarbeitbarkeit, Lagerfähigkeit und auch Gebrauchseigenschaften dem konkreten Anwendungsgebiet anzupassen. Beispiele dafür sind fein verteilte Füllstoffe, Thixotropiermittel, Katalysatoren, Harze, Alterungsschutzmittel, Stabilisatoren, Farbstoffe,
Haftvermittler oder Netzmittel. Als Füllstoffe geeignet sind gegenüber Isocyanaten nicht reaktive anorganische Verbindungen wie Kreide, beschichtete Kreide, Kalkmehl, Calcium-Magnesium- Carbonate, Aluminiumoxide, gefällte Kieselsäure, Zeolithe, Bentonite, Glas, Hohlkugeln, gemahlene Mineralien, Farbpigmente soweit diese als Pulver vorliegen, d.h. eine Korngröße zwischen 1 bis 200 μιη aufweisen, insbesondere zwischen 3 bis 100 μιη. Solche Füllstoffe liegen nach dem Mischen im PU- Klebstoff fein verteilt vor. Insbesondere soll die Menge weniger als 5 Gew.-% betragen oder auch frei von Füllstoffen sein,
Die erfindungsgemäßen Zusammensetzungen können ggf. zusätzlich
Katalysatoren enthalten, die die Vernetzung des PU-Prepolymeren nach der Applikation beschleunigen. Als erfindungsgemäß einsetzbare Katalysatoren eignen sich z.B. die metallorganische Verbindungen des Zinns, Eisens, Titans, Zirkons oder Wismuts, wie Zinn(l l)salze von Carbonsäuren, Dialkyl-Zinn(IV)-Carb- oxylate, wie Dibutyl-, Dioctyl-zinndiacetat oder -dilaurat, gemischt- oder nicht- gemischt-substituierte Titan- oder Zirkonalkoxide, wie Tetramethoxyzirkon, Tetraethoxyzirkon. Tetramethoxytitan, Tetraethoxytitan, Tetraallyloxytitan, Ti oder Zr-Chelatverbindungen, Eisen II oder Eisen III- Salze, wie Eisen(lll)oleat, Eisen (ll l)2-ethylhexanoat oder Wismutcarboxylate. Zusätzlich geeignet sind auch aliphatische tertiäre Amine insbesondere bei cyclischer Struktur, beispielsweise Triethanolamin, Trimethanolamin, Diethanolhexylamin, Diaza-bicyclo-octan (DABCO), Triethylamin, Dimethylbenzylamin, Diazabicycloundecen (DBU)
Dimorpholinodiethylether (DMDEE) oder Di-2,6-dimethylmorpholinoethyl)ether. Die Katalysatoren können auch in oligomerisierter oder polymerisierter Form vorliegen, z.B. als N-methyliertes Polyethylenimin.
Als Stabilisatoren im Sinne dieser Erfindung sind einerseits Stabilisatoren zu verstehen, die eine Viskositätsstabilität des Polyurethanprepolymeren während der Herstellung, Lagerung bzw. Applikation bewirken, beispielsweise Carbonsäurechloride. Desweiteren sind als Stabilisatoren im Sinne dieser Erfindung
Antioxidantien, UV-Stabilisatoren oder Hydrolyse-Stabilisatoren zu verstehen. Wenn das Polyurethanprepolymer überwiegend aus Polyetherbausteinen aufgebaut ist, sind hauptsächlich Antioxidantien, ggf. in Kombination mit UV- Schutzmitteln, notwendig. Bestehen wesentliche Bestandteile des Polyurethan- prepolymers aus Polyesterbausteinen, werden vorzugsweise Hydrolyse- Stabilisatoren, z.B. vom Carbodiimid-Typ, eingesetzt.
Der erfindungsgemäße Klebstoff kann auch Haftvermittler enthalten. Es kann sich dabei um reaktive Substanzen handeln, die mit der Substratoberfläche eine Reaktion eingehen können. Als Haftvermittler werden vorzugsweise
organofunktionelle Silane wie hydroxyfunktionelle, (meth)acryloxyfunktionelle, mercaptofunktionelle, aminofunktionelle oder epoxyfunktionelle Silane verwendet. Solche Verbindungen sind dem Fachmann bekannt.
Der Klebstoff kann zusätzlich ein Harz enthalten. Dabei handelt es sich um flüssige bis feste organische Produkte, für die eine mehr oder weniger breite Verteilung der relativen Molmasse charakteristisch ist. Sie weisen meistens eine amorphe Struktur auf. Es können die bekannten Harze verwendet werden, seien sie natürlichen oder synthetischen Ursprungs. Die natürlichen Harze können sowohl pflanzlicher als auch tierischer Herkunft sein. Beispiele dafür sind
Schellack und Kolophoniumharze, wie Tallharz, Balsamharz oder Wurzelharz. Nicht nur die natürlichen Harze, sondern auch deren Derivate sind geeignet, wie dimerisierte, hydrierte, veresterte oder neutralisierte Harze. Beispiele dafür sind Harnstoff-, Melamin-, Kohlenwasserstoff-, Terpen-, Cumaron/Inden-, Furan-, Aldehyd-, Keton-, Keton-/Aldehyd-, Phenol-, Alkyd-, Glycerinester-, Polyester-, Epoxid-, Polyamid- und Isocyanat-Harze. Diese Harze können mit Isocyanaten reaktive Gruppen enthalten, oder sie weisen keine solchen Gruppen auf.
Aus den PU-Prepolymeren können Klebstoffe formuliert werden. Dabei ist es möglich, 1 K-PU-Klebstoffe herzustellen, wobei diese dann 95,5 bis 70 Gew.-% von erfindungsgemäßen geeigneten NCO-Gruppen-haltigen PU-Prepolymeren enthalten, sowie 0,5 bis 30 Gew.-% Carbonsäureester. Gegebenenfalls können in diesen 1 K-PU-Klebstoffen noch bis zu 25 Gew.-% Additive und Hilfsstoffe enthalten sein. Insbesondere ist es zweckmäßig, wenn 0,01 bis 2 Gew.-%
Katalysatoren enthalten sind. Die Summe der Bestandteile soll 100 % ergeben. Diese erfindungsgemäßen Klebstoffe enthalten dabei nur geringe Mengen an monomerarmen, nicht umgesetzten Isocyanaten, beispielsweise weniger als 0,5 Gew.-% oder weniger als 0,1 . Gew.-%.
Der erfindungsgemäße PU-Klebstoff kann verschiedene Hilfsstoffe und Additive aufweisen. Insbesondere ist es zweckmäßig, wenn die Mischung frei von anderen organischen Lösemitteln ist, die einen Siedepunkt von unterhalb von 160 oder 200°C aufweisen. Ebenso hat es sich als zweckmäßig erwiesen, wenn keine weiteren Weichmacher wie naphthenische Mineralöle, paraffinische
Kohlenwasserstoffe oder ähnliche niedermolekulare Produkte enthalten sind.
Die einzusetzenden Additive können mit dem Prepolymeren gemischt werden, soweit sie keine mit NCO-Gruppen reaktive Gruppen aufweisen, insbesondere auch keine Feuchtigkeit enthalten.
Die erfindungsgemäßen 1 K-PU-Klebstoffe sind lagerstabil. Durch Auswahl der Polymeren und der Additive wird sichergestellt, dass keine vorzeitige Reaktion der NCO-Gruppen mit weiteren Bestandteilen erfolgen kann.
Weiterhin können aus den erfindungsgemäß geeigneten PU-Prepolymeren mit NCO-Gruppen zusammen mit einer OH-haltigen Komponente auch 2K-PU- Klebstoffe formuliert werden. Dabei können gegebenenfalls bis zu 25 Gew.-% Additive und Hilfsstoffe in der NCO-reaktiven PU-Prepolymerkomponente enthalten sein, insbesondere werden diese aber der OH-Gruppen-haltigen Komponente zugesetzt. Die Menge der OH-Gruppen-haltigen Komponente wird so gewählt, dass ein NCO:OH-Verhältnis erhalten wird, das einen geringen
Überschuss an Isocyanatgruppen aufweist. Beispielsweise soll das NCO:OH- Verhältnis von 1 ,2 bis 2:1 , insbesondere von 1 ,05 bis 1 ,5:1 betragen. Diese zwei Komponenten werden bis zur Anwendung getrennt gelagert und unmittelbar vor Anwendung gemischt und dann als Klebstoff eingesetzt. Als OH-Gruppen-haltige Komponente können flüssige Polyole mit einer
Funktionalität von 2 bis 5 ausgewählt werden. Es kann sich um einen oder mehrere der oben aufgeführten Polyole handeln. Dabei kann das Molekulargewicht auch höher liegen, es kann beispielsweise bis 10000 g/mol betragen. Bevorzugt weisen diese Polyole eine Funktionalität über zwei auf und können die Vernetzungsdichte erhöhen. Ebenfalls können OH-Gruppen-haltige Harze in dieser Komponente enthalten sein. Die entsprechenden reaktiven Gruppen sind bei der Festlegung des Mischungsverhältnisses zu berücksichtigen.
Die erfindungsgemäß geeigneten monomerarmen Prepolymere besitzen eine hohe Viskosität. Diese sind zu einer direkten Applikation als Klebstoff weniger geeignet. Die Viskosität eines erfindungsgemäßen 1 K-Klebstoffs soll zwischen 1000 bis 75000 mPas betragen, bevorzugt bis zu 50000 mPas, insbesondere unterhalb von 40 000 mPas, gemessen bei Applikationstemperatur. Diese soll insbesondere zwischen 15 und 50°C liegen, insbesondere soll diese Viskosität bei Raumtemperatur (20 bis 30 °C) vorliegen. Durch die niedrige Viskosität ist eine direkte Applikation als 1 K-PU-Klebstoff möglich. Gegebenenfalls kann zusätzlich der Klebstoff erwärmt werden auf Temperaturen bis zu 50°C, dabei kann dann die Viskosität auf weniger als 10 000 mPas bei Applikationstemperatur abgesenkt werden.
Auch als 2K-Klebstoff sind monomerarme Prepolymere ohne Carbonsäureester ungeeignet, da eine Mischung mit einer zweiten Komponente bei
Umgebungstemperatur schwierig ist und einen erheblichen Geräteaufwand erfordert. Erfindungsgemäß können aber 2K-PU-Klebstoffe bereitgestellt werden, die in einer Komponente eine Mischung aus PU-Prepolymer und
Carbonsäureester enthalten. Dabei kann diese NCO-reaktive Komponente analog dem oben beschriebenen 1 K-Klebstoff aufgebaut sein und ähnliche
Eigenschaften aufweisen.
In diesem Fall wird eine Mischung mit einer zweiten Komponente erleichtert. Es ist dem Fachmann bekannt, dass Flüssigkeiten ähnlicher Viskosität besonders einfach und anwendungssicher zu vermischen sind. Die erfindungsgemäßen PU-Klebstoffe können auf verschiedene Substrate aufgetragen werden. Durch die niedrige Viskosität können sie bei Raumtemperatur verarbeitet werden. Sie fließen gut an das Substrat an und können in dünner Schicht appliziert werden. Die Klebstoffe vernetzen durch Luftfeuchtigkeit oder durch die OH-Gruppen-haltige zweite Komponente. Dabei kann die Vernetzung durch erhöhte Temperatur beschleunigt werden.
Als Substrate sind die bekannten Substrate aus Holz, Kunststoff, Metall, Keramik oder Stein geeignet. Dabei soll die Oberfläche von anhaftenden losen
Staubteilchen gereinigt werden, danach kann der Klebstoff aufgetragen werden und das zweite Substrat auf das erste Substrat gebracht werden. Je nach Dauer der Reaktionszeit ist es zweckmäßig, ggf. beide Substrate gegeneinander zu fixieren. Die verklebten Substrate zeigen eine stabile Verklebung miteinander. Die Haftung zu der Oberfläche ist gut, die Kohäsion innerhalb des Klebstoffs ist ebenfalls hervorragend. Eine Beeinträchtigung der Verklebung kann durch die ausgewählten Carbonsäureester vermieden werden. Eine Migration dieser Bestandteile ist auch nach Vernetzung nicht zu beobachten. Durch die Auswahl der Zusatzmittel auf Basis der Carbonsäureester können auch empfindliche Kunststoffsubstrate verklebt werden, ohne dass die Oberfläche durch Lösemittel geschädigt wird.
Ein weiterer Vorteil der erfindungsgemäßen Klebstoffe ist die gute Lagerstabilität. Dabei zeigt sich auch bei forcierter Lagerung nur ein geringer Anstieg der
Viskosität. Die viskositätsvermindernden Zusatzmittel bleiben stabil im Klebstoff gemischt, eine Phasentrennung tritt nicht ein.
Die nachfolgenden Beispiele erläutern die Erfindung.
Präpolymerherstellung:
Prepol :
Zur fünffachen Molmenge (2,4-TDI) wird die einfache Molmenge Polypropylenglycol 400 langsam zugegeben und nach Abklingen der exothermen Reaktion 2 Stunden auf 80°C erwärmt. Danach erfolgt Entfernung des überschüssigen Iso- cyanats mittels Dünnschichtverdampfung bei Drücken bis zu 0,07 mbar und Temperaturen zwischen 165 und 170°C. Der Gehalt an monomerem 2,4-TDI liegt dann unter 0,02 %, und die Viskosität beträgt 266 000 mPas bei 25 °C. Das Produkt wird mit 0,2 % Benzoylchlorid stabilisiert.
Prepo2:
Analog werden Präpolymere mit Polypropylenglycol der mittleren Molmassen von 575 g/mol hergestellt. Dabei kommen Mischungen aus Polypropylenglycol 400 und 1000 zum Einsatz. Der Gehalt an freiem 2,4-TDI liegt unter 0,02 %, und die bei 25°C bestimmte Viskosität beträgt 133 000 mPas.
Prepo3:
Analog werden Präpolymere mit Polypropylenglykol der mittleren Molmassen von 675 g/mol hergestellt. Dabei kommen Mischungen aus Polypropylenglycol 400 und 1000 zum Einsatz. Der Gehalt an freiem 2,4-TDI liegt unter 0,02 %, und die bei 25°C bestimmte Viskosität beträgt 74 000 mPas.
Prepo4:
Nach gleichem Versuchsschema wird auch (4,4'-MDI) mit Polypropylenglycol 750 umgesetzt. Die Dünnschichtverdampfung erfolgt bei gleichem Druck jedoch im Temperaturbereich um 200°C. Der Gehalt an freiem 4,4 -MDI liegt bei 0,08 %, die Viskosität bei 25°C bei 212 000 mPas.
Die Prepolymere sind hochviskos und ziehen bei der Verarbeitung Fäden. Vergleichsbeispiel 1
Das Prepol wird mit 15 % getrocknetem Leinöl verdünnt.
Die Viskosität liegt bei 25°C bei 42 400 mPas. Nach 7 Tagen Lagerung bei
40°C ist diese Viskosität auf 68 000 mPas angestiegen.
Von diesem 1 -K-Klebstoff wird Styrofoam angegriffen.
Mit dem so hergestellten Produkt werden Prüfkörper aus Buchenholz verklebt, Die Zugscherfestigkeit liegt bei 12,5 MPa. ( DIN 53504)
Vergleichsbeispiel 2
Das Prepol wird mit 10 % getrocknetem Butylacetat verdünnt.
Ausgangsviskosität (25°C): 35 000 mPas
Viskosität (25°C) nach 7d bei 40°C: 63 000 mPas
Anlösen von Styrofoam
Zugscherfestigkeit Buche: 8,3 MPa
Vergleichsbeispiel 3
Prepo4 wird mit 15 % getrocknetem Leinöl verdünnt.
Ausgangsviskosität (25°C): 45 250 mPas
Viskosität (25°C) nach 7d bei 40°C: 80 500 mPas
Zugscherfestigkeit Buche: 3,9 MPa
Anlösen von Styrofoam
Beispiel 1
Es wird das Prepo3 mit 5 % getrocknetem Isobutylstearat verdünnt.
Ausgangsviskosität (25°C): 24 000 mPas
Viskosität (25°C) nach 7d bei 40°C: 28 000 mPas
Zugscherfestigkeit Buche: 5,3 MPa
Kein Anlösen von Styrofoam
Beispiel 2
Es wird das Prepo 2 mit 6 % getrocknetem Methyllaurat verdünnt. Ausgangsviskosität (25°C): 45 200 mPas
Viskosität (25°C) nach 7d bei 40°C: 48 300 mPas
Zugscherfestigkeit Buche: 8,7 MPa
Kein Anlösen von Styrofoam
Beispiel 3
Es wird das Prepo 1 mit 5 % getrocknetem Methyllaurat verdünnt.
Ausgangsviskosität (25°C): 70 500 mPas
Viskosität (25°C) nach 7d bei 40°C: 71 800 mPas
Beispiel 3 als Komponente A wird gemischt mit Komponente OH-Komponente, bestehend aus einer Polyolmischung aus Rizinusöl (21 ,0 %), Polypropylenglykol 400 (5,2 %), trifunktionellem Polyetherpolyol auf Glyzerinbasis mit OH-Zahl 370,5 (7,0 %), sowie gecoatetem Calciumcarbonat (20,5 %), Calciummagnesium- carbonat (41 ,5 %) und Molsieb A3 (4,8 %), Dibutylzinndilaurat (0,05%).
NCO:OH = 1 , 18 : 1 .
Zugscherfestigkeit Aluminium: 7,7 MPa Beispiel 4
Es wird das Prepo 1 mit 5 % getrocknetem Isobutyllaurat verdünnt.
Ausgangsviskosität (25°C): 72 000 mPas
Viskosität (25°C) nach 7d bei 40°C: 73 200 mPas
Zu dieser Mischung werden gecoatetem Calciumcarbonat (6,5g), Aerosil R202 (0,5g) und Dimorpholinodiethylether (0,5g ) gegeben.
NCO:OH = 1 , 18 : 1 .
Zugscherfestigkeit Buche: 4,8 MPa
Die Beispiele 1 bis 4 sind gut zu verarbeiten und auf die Substrate aufzutragen.
Die Verklebungen sind stabil.
Die Lagerstabilität der Beispiele ist verbessert.

Claims

Patentansprüche
1 . Monomerarmer vernetzbarer 1 -Komponenten oder 2-Komponenten
Polyurethanklebstoff enthaltend ein Polyurethanprepolymer mit NCO-Gruppen mit einem Molekulargewicht (MN) von unter 5000 g/mol sowie übliche Additive und Hilfsstoffe, mit einem Gehalt an monomeren Diisocyanaten unter 0,5 Gew.- % , wobei bezogen auf das PU-Prepolymer 0,5 bis 30 Gew.-% Ester von C2 bis C24 -Mono- oder Dicarbonsäuren enthalten sind.
2. PU-Klebstoff nach Anspruch 1 , dadurch gekennzeichnet, dass das Prepolymer durch Umsetzung von zwei- oder drei-funktionellen Polyetherpolyolen oder Polyesterpolyolen mit einem Überschuss an Diisocyanaten hergestellt wird.
3. PU-Klebstoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass als Isocyanat aromatische Diisocyanate eingesetzt werden, insbesondere TDI oder MDI und deren Isomere.
4. PU-Klebstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Polyol Polyethylenglykole oder Polypropylenglykole eingesetzt werden, insbesondere dass das Molekulargewicht der Polyole unter 1500 g/mol beträgt.
5. PU- Klebstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass 3 bis 15 % Gew. der Carbonsäureester eingesetzt werden.
6. PU-Klebstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Alkoholkomponente der Carbonsäureester Ci bis Ci2-Alkohole vorliegen, wobei der Ester mindestens insgesamt 8 C-Atome aufweisen soll.
7. PU-Klebstoff nach Anspruch 6, dadurch gekennzeichnet, dass aliphatische Carbonsäuren mit 10 bis 22 C-Atomen als Ester eingesetzt werden.
8. PU-Klebstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Klebstoff einen Haftvermittler enthält, insbesondere auf Silanbasis.
9. PU-Klebstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Viskosität des Klebstoffs unter 75000 mPas (DIN ISO 2555, 25°C) beträgt.
10. PU-Klebstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Klebstoff frei von Füllstoffen und Pigmenten ist.
1 1 . PU-Klebstoff nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Klebstoff zusätzlich 0,1 bis 25 Gew.-% Additive enthält.
12. PU-Klebstoff nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der 2K-Klebstoff aus einer OH-funktionellen Komponente und einer NCO- funktionellen Komponente besteht, wobei die NCO-Komponente ein PU- Prepolymer zusammen mit entsprechenden Carbonsäureestern enthält.
13. Verwendung von Carbonsäureestern aus C2 bis C24-Mono- oder Di- Carbonsäuren und mit insgesamt mindestens 8 C-Atomen als Verdünner für reaktive monomerarme PU-Prepolymere.
PCT/EP2010/062686 2009-10-27 2010-08-31 Pu-klebstoff mit viskositätsregler WO2011051019A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10747632.7A EP2493951B2 (de) 2009-10-27 2010-08-31 Pu-klebstoff mit viskositätsregler
ES10747632T ES2684472T5 (es) 2009-10-27 2010-08-31 Adhesivo de PU con regulador de la viscosidad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009046050A DE102009046050A1 (de) 2009-10-27 2009-10-27 PU-Klebstoff mit Viskositätsregler
DE102009046050.0 2009-10-27

Publications (1)

Publication Number Publication Date
WO2011051019A1 true WO2011051019A1 (de) 2011-05-05

Family

ID=43020422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/062686 WO2011051019A1 (de) 2009-10-27 2010-08-31 Pu-klebstoff mit viskositätsregler

Country Status (4)

Country Link
EP (1) EP2493951B2 (de)
DE (1) DE102009046050A1 (de)
ES (1) ES2684472T5 (de)
WO (1) WO2011051019A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2949677A1 (de) 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem 2,4-tdi und geringem gehalt an tdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
EP2949676A1 (de) 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem mdi und geringem gehalt an mdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
EP2493951B1 (de) 2009-10-27 2018-07-11 Henkel AG & Co. KGaA Pu-klebstoff mit viskositätsregler
WO2020030608A1 (de) 2018-08-08 2020-02-13 Sika Technology Ag Isocyanatgruppen-haltiges polymer mit niedrigem gehalt an monomeren diisocyanaten

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014209213A1 (en) 2013-06-27 2014-12-31 Välinge Innovation AB Building panel with a mechanical locking system
DE102014209019A1 (de) * 2014-05-13 2015-11-19 Henkel Ag & Co. Kgaa Bindemittel-System mit schnellerer Aushärtung
TWI713479B (zh) * 2014-12-15 2020-12-21 美商陶氏全球科技責任有限公司 黏著劑組合物
EP3450477B1 (de) * 2017-08-30 2020-11-04 fischerwerke GmbH & Co. KG Mehrkomponentige klebstoffsysteme und deren verwendung
KR20220137874A (ko) * 2020-02-03 2022-10-12 시카 테크놀러지 아게 선형 아이소사이아네이트기-함유 중합체
EP4292998A1 (de) 2022-06-17 2023-12-20 Sika Technology AG Starre anorganische schäume

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464483A1 (de) * 1990-07-03 1992-01-08 Bayer Ag Verwendung von Klebstoffen auf Basis von Polyolen und Polyisocyanaten
DE19957351A1 (de) 1999-11-29 2001-10-31 Henkel Kgaa Polyurethan-Zusammensetzungen mit niedrigem Gehalt an Isocyanatmonomeren
DE10150722A1 (de) 2001-10-13 2003-04-30 Henkel Kgaa Reaktive Polyurethan-Zusammensetzungen mit niedrigem Restmonomergehalt
WO2003076545A1 (en) * 2002-03-07 2003-09-18 Lord Corporation Environmentally preferred high solids, low viscosity flock adhesives
US20050010013A1 (en) * 2002-02-07 2005-01-13 Marcinko Joseph J. Cold curable isocyanate adhesives with reduced foaming
DE102008025793A1 (de) * 2008-05-29 2009-12-03 Henkel Ag & Co. Kgaa Reaktive Klebstoffe mit sehr geringem Gehalt an monomeren Diisocyanaten

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101410A (en) 1965-06-23 1968-01-31 American Cyanamid Co Polyurethane prepolymers
CA2041532C (en) 1991-04-30 2002-01-01 Hamdy Khalil Urethane sealant having improved sag properties
US5907014A (en) 1995-08-25 1999-05-25 Uniroyal Chemical Company, Inc. Castable liquid prepolymers and polyurethanes
DE19851182A1 (de) * 1997-11-11 1999-05-12 Henkel Kgaa Polyurethanbindemittel mit einem niedrigen Gehalt an leichtflüchtigen Monomeren
JP2002053636A (ja) 2000-08-10 2002-02-19 Asahi Kasei Corp 機械物性、耐汚染性に優れたポリイソシアネート組成物
GB0108060D0 (en) 2001-03-30 2001-05-23 Baxenden Chem Low monomer prepolymer
JP2002348463A (ja) 2001-05-24 2002-12-04 Asahi Glass Polyurethane Material Co Ltd ウレタン系硬化性組成物
EP1595902A1 (de) 2004-05-10 2005-11-16 Sika Technology AG Polyurethanzusammensetzung mit hoher Frühfestigkeit
WO2006042305A1 (en) 2004-10-08 2006-04-20 Dow Global Technologies Inc. Low volatile isocyanate monomer containing polyurethane prepolymer and adhesive system
JP2008285616A (ja) 2007-05-21 2008-11-27 Seikoh Chem Co Ltd 一液湿気硬化型ウレタン樹脂系接着剤
DE102009046050A1 (de) 2009-10-27 2011-04-28 Henkel Ag & Co. Kgaa PU-Klebstoff mit Viskositätsregler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464483A1 (de) * 1990-07-03 1992-01-08 Bayer Ag Verwendung von Klebstoffen auf Basis von Polyolen und Polyisocyanaten
DE19957351A1 (de) 1999-11-29 2001-10-31 Henkel Kgaa Polyurethan-Zusammensetzungen mit niedrigem Gehalt an Isocyanatmonomeren
DE10150722A1 (de) 2001-10-13 2003-04-30 Henkel Kgaa Reaktive Polyurethan-Zusammensetzungen mit niedrigem Restmonomergehalt
US20050010013A1 (en) * 2002-02-07 2005-01-13 Marcinko Joseph J. Cold curable isocyanate adhesives with reduced foaming
WO2003076545A1 (en) * 2002-03-07 2003-09-18 Lord Corporation Environmentally preferred high solids, low viscosity flock adhesives
DE102008025793A1 (de) * 2008-05-29 2009-12-03 Henkel Ag & Co. Kgaa Reaktive Klebstoffe mit sehr geringem Gehalt an monomeren Diisocyanaten

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2493951B1 (de) 2009-10-27 2018-07-11 Henkel AG & Co. KGaA Pu-klebstoff mit viskositätsregler
EP2949677A1 (de) 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem 2,4-tdi und geringem gehalt an tdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
EP2949676A1 (de) 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem mdi und geringem gehalt an mdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
FR3021659A1 (fr) * 2014-05-28 2015-12-04 Bostik Sa Composition de polyurethane a terminaisons nco a base de 2,4-tdi non thermofusible et a faible teneur en monomere tdi, comprenant au moins un compose isocyanate de volume molaire particulier.
FR3021658A1 (fr) * 2014-05-28 2015-12-04 Bostik Sa Composition de polyurethane a terminaisons nco a base mdi non thermofusible et a faible teneur en monomere mdi, comprenant au moins un compose isocyanate de volume molaire particulier.
US10358523B2 (en) 2014-05-28 2019-07-23 Bostik Sa Non-hot-melt MDI-based polyurethane composition bearing NCO end groups and having a low content of MDI monomer, comprising at least one isocyanate compound of particular molar volume
US10370481B2 (en) 2014-05-28 2019-08-06 Bostik Sa Non-hot-melt 2,4-TDI-based polyurethane composition bearing NCO end groups and having a low content of TDI monomer, comprising at least one isocyanate compound of particular molar volume
US11078322B2 (en) 2014-05-28 2021-08-03 Bostik Sa Non-hot-melt MDI-based polyurethane composition bearing NCO end groups and having a low content of MDI monomer, comprising at least one isocyanate compound of particular molar volume
WO2020030608A1 (de) 2018-08-08 2020-02-13 Sika Technology Ag Isocyanatgruppen-haltiges polymer mit niedrigem gehalt an monomeren diisocyanaten

Also Published As

Publication number Publication date
ES2684472T3 (es) 2018-10-03
ES2684472T5 (es) 2021-12-13
EP2493951B2 (de) 2021-08-18
DE102009046050A1 (de) 2011-04-28
EP2493951B1 (de) 2018-07-11
EP2493951A1 (de) 2012-09-05

Similar Documents

Publication Publication Date Title
EP2493951B1 (de) Pu-klebstoff mit viskositätsregler
EP2621981B1 (de) Polyurethan-schmelzklebstoff aus polyacrylaten und polyestern
EP1237971B1 (de) Haftungsverstärker für monomerfreie reaktive polyurethane
EP2948487B1 (de) Feuchtigkeitshärtende polyurethan-zusammensetzung enthaltend nachhaltig erzeugte rohstoffe
EP2621980B1 (de) Polyurethan-schmelzklebstoff mit verminderter viskosität
EP3402834B1 (de) Reaktive polyurethan-schmelzklebstoffe enthaltend füllstoffe
EP2523986B1 (de) 1k- kaschierklebstoff mit silanvernetzung
EP2440594B1 (de) Silan-vernetzender 1-komponenten kaschierklebstoff
EP2288635A1 (de) Reaktive klebstoffe mit sehr geringem gehalt an monomeren diisocyanaten
EP3625279A1 (de) Polyurethan-basiertes bindemittel-system
DE19957351A1 (de) Polyurethan-Zusammensetzungen mit niedrigem Gehalt an Isocyanatmonomeren
EP2386586B1 (de) PU-Klebstoff mit Fließgrenze
WO2012097929A1 (de) Lagerstabiler nco-freier kaschierklebstoff
WO2018036849A1 (en) Plastic adhesion promotion for 2k polyurethane adhesives
WO2009056375A1 (de) Modifizierte polyurethanklebstoffe
DE10055786A1 (de) Haftungsverstärker für monomerfreie reaktive Polyurethane
WO2010026002A1 (de) Verfahren zum kaschieren von folien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10747632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010747632

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE