DE10055786A1 - Haftungsverstärker für monomerfreie reaktive Polyurethane - Google Patents

Haftungsverstärker für monomerfreie reaktive Polyurethane

Info

Publication number
DE10055786A1
DE10055786A1 DE2000155786 DE10055786A DE10055786A1 DE 10055786 A1 DE10055786 A1 DE 10055786A1 DE 2000155786 DE2000155786 DE 2000155786 DE 10055786 A DE10055786 A DE 10055786A DE 10055786 A1 DE10055786 A1 DE 10055786A1
Authority
DE
Germany
Prior art keywords
diisocyanate
molecular weight
isocyanato
methyl
monomeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2000155786
Other languages
English (en)
Inventor
Michael Krebs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2000155786 priority Critical patent/DE10055786A1/de
Priority to BRPI0015794-5A priority patent/BR0015794B1/pt
Priority to SK946-2002A priority patent/SK9462002A3/sk
Priority to PCT/EP2000/011771 priority patent/WO2001040342A1/de
Priority to US10/148,432 priority patent/US7129312B1/en
Priority to DE50015969T priority patent/DE50015969D1/de
Priority to EP00985095A priority patent/EP1237971B1/de
Priority to RU2002118323/04A priority patent/RU2272818C2/ru
Priority to AU21626/01A priority patent/AU774286B2/en
Priority to MXPA02005259A priority patent/MXPA02005259A/es
Priority to CNB008163472A priority patent/CN1256359C/zh
Priority to CZ20021146A priority patent/CZ20021146A3/cs
Priority to KR1020027006807A priority patent/KR100830384B1/ko
Priority to PL00356128A priority patent/PL356128A1/xx
Priority to AT00985095T priority patent/ATE476455T1/de
Priority to JP2001541094A priority patent/JP4823460B2/ja
Priority to CA002392960A priority patent/CA2392960C/en
Priority to NO20022527A priority patent/NO20022527D0/no
Publication of DE10055786A1 publication Critical patent/DE10055786A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Abstract

Polyurethan-Zusammensetzungen werden in einem zweistufigen Verfahren hergestellt, wobei in einem ersten Schritt eine Diolkomponente mit einem Molekulargewicht kleiner als 1000 mit einem monomeren Diisocyanat mit einem Molekulargewicht kleiner als 500 umgesetzt wird und aus diesem Umsetzungsprodukt das nicht umgesetzte monomere Diisocyanat entfernt wird und dann in einem zweiten Schritt das so entstandene hochmolekulare Diisocyanat mit einem Polyol umgesetzt wird, so daß ein reaktives Prepolymer mit Isocyanat-Endgruppen entsteht. DOLLAR A Ein Zusatz von migrationsfähigen Polyisocyanaten, die einen wesentlich niedrigeren Dampfdruck als Diphenylmethandiisocyanat aufweisen, verbessert das Haftverhalten der erfindungsgemäßen Polyurethan-Zusammensetzungen. DOLLAR A Derartige reaktive Polyurethan-Zusammensetzungen eignen sich zur Verwendung als Bindemittel für reaktive ein- oder zweikomponentige Kleb-/Dichtstoffe, die ggf. lösungsmittelhaltig sein können. Weiterhin eignen sich diese Zusammensetzungen bei entsprechender Auswahl der Polyole zur Herstellung von reaktiven Schmelzklebstoffen. Wesentlicher Vorteil dieser Zusammensetzungen gegenüber bekannten Polyurethan-Zusammensetzungen ist der drastisch reduzierte Anteil an monomeren Diisocyanaten mit einem Molekulargewicht unter 500.

Description

Die vorliegende Erfindung betrifft Zusammensetzungen auf der Basis von Polyolen und hochmolekularen Diisocyanaten mit einem niedrigen Gehalt an monomeren Diisocyanaten, sowie deren Herstellung und deren Verwendung als Bindemittel für reaktive ein- oder zweikomponentige Kleb-/Dichtstoffe, reaktive Schmelzklebstoffe oder lösungsmittelhaltige Polyurethanklebstoffe.
Reaktive Polyurethan-Kleb-/Dichtstoffe, insbesondere einkomponentig­ feuchtigkeitshärtende Systeme, enthalten in der Regel bei Raumtemperatur flüssige Polymere mit Urethangruppen, ggf. Harnstoffgruppen und reaktiven Isocyanatgruppen. Für viele Anwendungsfälle sind diese Zusammensetzungen lösungsmittelfrei und sehr hochviskos und/oder pastös, sie werden bei Raumtemperatur oder bei leicht erhöhter Temperatur zwischen etwa 50°C und etwa 100°C verarbeitet.
Reaktive, einkomponentige, feuchtigkeitshärtende Polyurethan-Schmelzklebstoffe sind feuchtigkeitshärtende bzw. feuchtigkeitsvernetzende Klebstoffe, die bei Raumtemperatur fest sind und in Form ihrer Schmelze als Klebstoff appliziert werden, und deren polymere Bestandteile Urethangruppen sowie reaktionsfähige Isocyanatgruppen enthalten. Durch das Abkühlen dieser Schmelze nach dem Auftrag und Fügen der zu verbindenden Substrat-Teile erfolgt zunächst eine rasche physikalische Abbindung des Schmelzklebstoffes durch dessen Erstarren. Daran schließt sich eine chemische Reaktion der noch vorhandenen Isocyanatgruppen mit Feuchtigkeit aus der Umgebung zu einem vernetzten unschmelzbaren Klebstoff an. Reaktive Schmelzklebstoffe auf der Basis von Isocyanat-terminierten Polyurethanprepolymeren sind z. B. bei H. F. Huber und H. Müller in "Shaping Reactive Hotmelts Using LMW Copolyesters", Adhesives Age, November 1987, Seite 32 bis 35 beschrieben.
Kaschierklebstoffe können entweder ähnlich aufgebaut sein wie die reaktiven Schmelzklebstoffe oder sie werden als einkomponentige Systeme aus der Lösung in organischen Lösungsmitteln appliziert, eine weitere Ausführungsform besteht aus zweikomponentigen lösungsmittelhaltigen oder lösungsmittelfreien Systemen, bei denen die polymeren Bestandteile der einen Komponente Urethangruppen sowie reaktionsfähige Isocyanatgruppen enthalten und, bei den zweikomponentigen Systemen, enthält die zweite Komponente Polymere bzw. Oligomere mit Hydroxylgruppen, Aminogruppen, Epoxigruppen und/oder Carboxylgruppen. Bei diesen zweikomponentigen Systemen werden die Isocyanat-gruppenhaltige Komponente und die zweite Komponente unmittelbar vor der Applikation gemischt, im Normalfall mit Hilfe eines Misch- und Dosiersystems.
Reaktive Polyurethan-Kleb-/Dichtstoffe zeichnen sich durch ein sehr hohes Leistungsprofil aus. Daher konnten in den letzten Jahren zunehmend neue Anwendungen für diese Kleb-/Dichtstoffe erschlossen werden. Zusammensetzungen für derartige Klebstoffe und/oder Dichtstoffe sind bereits aus sehr vielen Patentanmeldungen und sonstigen Veröffentlichungen bekannt.
Neben vielen Vorteilen weisen diese Polyurethan-Zusammensetzungen auch einige systembedingte Nachteile auf. Einer der gravierendsten Nachteile ist der Restmonomergehalt an Isocyanaten, insbesondere der flüchtigeren Diisocyanate. Kleb-/Dichtstoffe und insbesondere die Schmelzklebstoffe werden bei erhöhter Temperatur verarbeitet. Die Schmelzklebstoffe werden beispielsweise zwischen 100°C und 200°C verarbeitet, Kaschierklebstoffe zwischen Raumtemperatur und 150°C. Schon bei Raumtemperatur weisen flüchtige Isocyanate wie TDI oder IPDI einen nicht zu vernachlässigenden Dampfdruck auf. Dieser merkliche Dampfdruck ist insbesondere bei einem Sprühauftrag besonders gravierend, da hierbei signifikante Mengen an Isocyanatdämpfen über dem Applikationsobjekt auftreten können, die wegen ihrer reizenden und sensibilisierenden Wirkung toxisch sind.
Daher müssen Schutzmaßnahmen zur Verhütung von Gesundheitsschäden für die mit der Verarbeitung beauftragten Personen ergriffen werden. Diese Maßnahmen, wie z. B. die Überwachungspflicht der Einhaltung der maximalen Arbeitsplatzkonzentration sind aufwendig. Insbesondere Absaugungsmaßnahmen der Dämpfe an der Entstehungs- und Austrittsstelle sind sehr kostenintensiv und behindern zudem einige Auftragsverfahren, wie insbesondere den Sprühauftrag der reaktiven Polyurethan-Kleb-/Dichtstoffe.
Für die genannten Anwendungsfelder ist daher die Entwicklung von reaktiven Polyurethan-Zusammensetzungen mit einem drastisch reduzierten Anteil an monomeren Diisocyanaten in hohem Maße wünschenswert, da letztere zum Teil erst deren Einsatz bei vielen Applikationen ermöglicht, bei denen der Einsatz aus den oben erläuterten arbeitshygienischen Problemen bisher nicht möglich war.
Nach der Schulz-Flory-Statistik ist bei der Umsetzung von Diisocyanaten mit Isocyanatgruppen etwa gleicher Reaktivität mit hydroxylgruppenhaltigen Verbindungen der verbleibende Gehalt an monomerem Diisocyanat im Reaktionsprodukt vom NCO/OH-Verhältnis der Reaktanden bei der Prepolymer- Synthese abhängig. Bei einem NCO/OH-Verhältnis von 2, wie es häufig für die Prepolymerzusammensetzung notwendig ist, verbleiben etwa 25% des eingesetzten monomeren Diisocyanates als Monomer im Prepolymer. Werden bei einer Prepolymer-Synthese z. B. 10 Gew.-% Diphenylmethan-diisocyanat (MDI) bei einem NCO/OH-Verhältnis von 2 eingesetzt, so findet man in Übereinstimmung mit der oben genannten statistischen Abschätzung größenordnungsmäßig etwa 2 Gew.-% monomeres MDI im Prepolymeren. Bei 150°C hat das reine MDI bereits einen Dampfdruck von 0,8 mbar, in Zusammensetzungen ist dieser Dampfdruck zwar nach Maßgabe des Raoult'schen Gesetzes niedriger, er ist aber immer noch oberhalb des arbeitshygienisch unbedenklichen Bereiches. Unter den oben beschriebenen Applikationsbedingungen, insbesondere bei einer großflächigen Applikation als Schmelzklebstoff in dünner Schicht, gelangen also erhebliche Mengen des Restmonomers in den darüber liegenden Luftraum und müssen durch Absaugung entfernt werden. Eine signifikante Absenkung des Monomergehaltes um eine Zehnerpotenz durch Verringerung des NCO/OH- Verhältnisses ist in der Praxis in aller Regel nicht durchführbar, weil das durchschnittliche Molekulargewicht dann exponentiell ansteigen würde und die daraus resultierenden Polyurethan-Zusammensetzungen extrem hochviskos würden und nicht mehr zu verarbeiten wären. In der Praxis geht man daher bei daher bei der Prepolymer-Synthese auch andere Wege. So wird beispielsweise mit einem ausreichend hohen NCO/OH-Verhältnis synthetisiert und das monomere Diisocyanat nach der Prepolymerisierung in einem zweiten Schritt entfernt, dies kann beispielsweise durch Abdestillieren des nicht umgesetzten monomeren Diisocyanates im Vakuum geschehen oder durch nachträgliche chemische Bindung des monomeren Diisocyanates. So beschreibt die EP-A- 316738 ein Verfahren zur Herstellung von Urethangruppen aufweisenden Polyisocyanaten mit einem Urethangruppen-freien Ausgangs-Diisocyanat von maximal 0,4 Gew.-% durch Umsetzung von aromatischen Diisocyanaten mit mehrwertigen Alkoholen und anschließender Entfernung des nicht umgesetzten, überschüssigen Ausgangs-Diisocyanats, wobei die destillative Entfernung des überschüssigen Ausgangs Diisocyanat in Gegenwart eines Isocyanatgruppen aufweisenden aliphatischen Polyisocyanats durchgeführt wird.
Die EP-A-0393903 beschreibt ein Verfahren zur Herstellung von Prepolymeren, bei dem in einem ersten Schritt monomeres Diisocyanat mit einem Polyol umgesetzt wird. Anschließend wird ein Katalysator in ausreichender Menge zugegeben, so daß ein erheblicher Teil der restlichen Isocyanat-Funktionalität in Allophanat-Funktionalität übergeführt wird. Nach Erreichen des theoretischen NCO-Gehaltes wird die Reaktion durch rasches Abkühlen und Zusatz von Salicylsäure abgestoppt.
Die WO-95/06124 beschreibt Polyurethan-Zusammensetzungen mit einem niedrigen Anteil an monomeren Diisocyanaten, die durch Umsetzung von Polyolen mit trifunktionellen Isocyanaten und ggf. Zusatz von monofunktionellen Kettenabbrechern hergestellt werden. Nachteilig bei diesem Verfahren ist die geringe Verfügbarkeit von trifunktionellen, niedermolekularen Isocyanaten, insbesondere die trifunktionellen Homologen des Diphenylmethan-diisocyanates sind kommerziell in reiner Form nicht erhältlich.
Die Arbeit von V. A. Kudishina und E. F. Morgunova, Sin. Fiz.-Khim. Polim. (1970), No. 7, 125-129 werden kalthärtende Polyurethanklebstoffe auf der Basis von hydroxifunktionellen Polyestern bzw. Polyethern und isocyanathaltigen Härtern beschrieben. Bei den isocyanathaltigen Härtern handelt es sich um Umsetzungsprodukte des Toluyendiisocyanates (TDI) bzw. des Diphenylmethan­ diisocyanates (MDI) Ethylenglycol bzw. Glycerin. Es wird angegeben, daß diese Härterkomponenten zu einer wesentlichen Verminderung der Toxizität der Klebstoffe führt, obwohl diese noch eine Isocyanatmenge von 1,7% im Luftraum der entsprechenden Versuchskammer erzeugen. Derartige Arbeitsplatzkonzentrationen an Isocyanaten sind nach heutigen arbeitshygienischen Standards in westlichen Industrieländern nicht mehr tolerierbar.
Die noch unveröffentlichte DE 199 57 351.4 offenbart reaktive Polyurethan- Zusammensetzungen mit niedrigem Gehalt an Isocyanatmonomeren, insbesondere an flüchtigen Isocyanatmonomeren. Dazu werden Umsetzungsprodukte aus Polyolen und hochmolekularen Diisocyanaten vorgeschlagen. Hochmolekulare Diisocyanate im Sinne der genannten Schrift sind dabei solche Diisocyanate, die durch Umsetzung mit Diolen mit einem Molekulargewicht < 1000 mit monomeren Diisocyanaten mit einem Molekulargewicht < 500 erhalten werden. Dabei sollen die hochmolekularen Diisocyanate vor deren Umsetzung mit einem oder mehreren Polyolen maximal 10 mol% an monomeren Diisocyanat bezogen auf das niedermolekulare Diisocyanat enthalten. Die Abreicherung an monomerem Diisocyanat niederen Molekulargewichts soll dabei durch herkömmliche Reinigungsverfahren erfolgen. Die gereinigten Umsetzungsprodukte gemäß dieser Anmeldung zeichnen sich durch einen sehr niedrigen Anteil an monomerem, niedermolekularen Diisocyanat aus. Allerdings hat sich herausgestellt, daß die Haftungseigenschaften durch das "fehlende", niedermolekulare monomere Diisocyanat eine Einbuße erleiden. So entfallen bei einem typischen NCO : OH-Verhältnis von 2 : 1 bei der Prepolymer- Synthese nach Beendigung dieser Synthese größenordnungsmäßig etwa 50% der reaktiven NCO-Gruppen auf den Gehalt an niedermolekularen Monomeren.
Die Eliminierung dieser niedermolekularen Monomeren aus der Reaktionsmischung der so hergestellten Klebstoffe kann zu einer Verschlechterung in Bezug auf die Haftungseigenschaften auf einer Vielzahl von Substraten führen. Anderseits ist es aber in hohem Masse wünschenswert, monomerarme Systeme - d. h. Systeme mit einem niedrigen Gehalt an flüchtigen Isocyanat-Verbindungen - auch im kommerziellen Maßstab verfügbar zu machen.
Trotz des vorgenannten Standes der Technik besteht also weiterhin Bedarf an verbesserten Polyurethan-Zusammensetzungen mit einem niedrigen Anteil an monomeren Diisocyanaten, die sich für den Einsatz als Kleb-/Dichtstoffe, insbesondere für reaktive Schmelzklebstoffe eignen. Dabei sollen insbesondere die eingesetzten Rohstoffe leicht und kostengünstig zugänglich sein und sich leicht umsetzen lassen und das Haftverhalten dem der konventionellen Schmelzklebstoffe zumindest ebenbürtig sein.
Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen. Sie besteht im Wesentlichen in der Bereitstellung von Umsetzungsprodukten aus Polyolen und hochmolekularen Diisocyanaten, wie sie aus der DE 199 57 351.4 bekannt geworden sind, wobei diesen Umsetzungsprodukten migrationfähige Polyisocyanate zugesetzt werden, die aber einen wesentlich geringeren Dampfdruck haben als z. B. das monomere Diphenylmethandiisocyanat (MDI).
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung derartigen Umsetzungsprodukte aus Polyolen und hochmolekularen Diisocyanaten. Dabei wird in einem ersten Schritt die Diolkomponente mit einem Molekulargewicht kleiner als 1000 mit einem großen stöchiometrischen Überschuß an monomerem Diisocyanat mit einem Molekulargewicht kleiner als 500 zu einem hochmolekularen Diisocyanat umgesetzt. Nach dieser Umsetzung wird, ggf. durch Zugabe eines Nichtlösers, das hochmolekulare Diisocyanat aus dem Reaktionsgemisch ausgefällt und durch Filtration oder Zentrifugieren von nicht umgesetztem Diisocyanat befreit. In einem nachfolgenden zweiten Schritt wird dieses hochmolekulare Diisocyanat mit einem Polyol umgesetzt, so daß ein reaktives Prepolymer mit Isocyanat-Endgruppen entsteht, das einen sehr geringen Gehalt an monomeren Diisocyanaten mit einem Molekulargewicht kleiner als 500 aufweist. Diesem reaktiven Prepolymer mit sehr geringem Gehalt an monomeren flüchtigen Diisocyanaten wird anschließend mindestens ein migrationfähiges Polyisocyanat mit einem niedrigen Dampfdruck zugesetzt.
Ein weiteres Verfahren zur Herstellung derartiger Zusammensetzungen besteht darin, daß nach dem ersten Schritt der Umsetzung der Diolkomponente mit dem monomeren Diisocyanat, das überschüssige monomere Diisocyanat destillativ aus dem Reaktionsgemisch entfernt wird oder durch selektive Extraktion aus dem Reaktionsgemisch entfernt wird und danach in einem zweiten Schritt ebenfalls dieses hochmolekulare Diisocyanat mit einem Polyol zu einem reaktiven Prepolymer mit Isocyanat-Endgruppen umgesetzt wird. Auch bei einem derartig gereinigten Prepolymer mit Isocyanat-Endgruppen wird für erfindungsgemäße Klebstoffanwendungen mindestens ein migrationfähiges Polyisocyanat mit wesentlich geringerem Dampfdruck als MDI zugesetzt.
Monomere Diisocyanate im Sinne dieser Erfindung sind solche aromatischen, aliphatischen oder cycloaliphatischen Diisocyanate, deren Molekulargewicht kleiner als 500 ist. Beispiele für geeignete aromatische Diisocyanate sind alle Isomeren des Toluylendiisocyanats (TDI) entweder in isomerenreiner Form oder als Mischung mehrerer Isomerer, Naphthalin-1,5-diisocyanat (NDI), Naphthalin- 1,4-diisocyanat (NDI), Diphenylmethan-4,4'-diisocyanat (MDI), Diphenylmethan- 2,4'-diisocyanat sowie Mischungen des 4,4'-Diphenylmethandiisocyanats mit dem 2,4'-Isomeren, Xylylen-diisocyanat (XDI), 4,4'-Diphenyl­ dimethylmethandiisocyanat, Di- und Tetraalkyl-diphenylmethandiisocyanat, 4,4'-Di­ benzyldiisocyanat, 1,3-Phenylendiisocyanat, 1,4-Phenylendiisocyanat. Beispiele für geeignete cycloaliphatische Diisocyanate sind die Hydrierungsprodukte der vorgenannten aromatischen Diisocyanate wie z. B. das 4,4'- Dicyclohexylmethandiisocyanat (H12MDI), 1-Isocyanatomethyl-3-isocyanato-1,5,5- trimethyl-cyclohexan (Isophorondiisocyanat, IPDI), Cyclohexan-1,4-diisocyanat, hydriertes Xylylen-diisocyanat (H6XDI), 1 -Methyl-2,4-diisocyanato-cyclohexan, m- oder p-Tetramethylxylendiisocyanat (m-TMXDI, p-TMXDI) und Dimerfetisäure- Diisocyanat. Beispiele für aliphatische Diisocyanate sind Tetramethoxybutan-1,4- diisocyanat, Butan-1,4-diisocyanat, Hexan-1,6-diisocyanat (HDI), 1,6- Diisocyanato-2,2,4-trimethylhexan, 1,6-Diisocyanato-2,4,4-trimethylhexan, Lysindiisocyanat sowie 1,12-Dodecandiisocyanat (C12DI).
Diese monomeren Diisocyanate werden in einem ersten Reaktionsschritt mit niedermolekularen Diolen zu hochmolekularen Diisocyanaten umgesetzt. Die hierfür verwendeten Diole haben ein Molekulargewicht kleiner als 1000. Grundsätzlich können hierfür alle linearen oder schwach verzweigten C2-C18- Alkandiole verwendet werden. Weiterhin können die niedermolekularen Polyether verwendet werden sowie niedermolekulare Alkoxylierungsprodukte von aromatischen Dihydroxyverbindungen (Diphenolen).
Konkrete Beispiele für die erfindungsgemäß zu verwendenden Diole sind Ethylenglycol, 1,2-Propandiol, 1,3-Propandiol, 2,2-Dimethyl-1,3-propandiol, 2- Methylpropandiol, 1,6-Hexandiol, 2,4,4-Trimethylhexandiol-1,6, 2,2,4- Trimethylhexandiol-1,6, 1,4-Cyclohexandimethanol, Diethylenglycol, Triethylenglycol, Tetraethylenglycol, Dipropylenglycol, Tripropylenglycol, Tetrapropylenglycol, Poly(oxytetramethylen)glycol mit einem Molekulargewicht bis zu 650, Alkoxylierungsprodukte des Bisphenols A, Alkoxylierungsprodukte des Bisphenols F, der isomeren Dihydroxyanthracene, der isomeren Dihydroxynaphthaline, des Brenzkatechins, des Resorcins, des Hydrochinons mit bis zu 8 Alkoxy-Einheiten pro aromatischer Hydroxygruppe oder Mischungen der vorgenannten Diole.
Die Umsetzung der monomeren Diisocyanate mit den Diolen erfolgt dabei in an sich bekannter Weise, ggf. unter Zusatz von aprotischen Lösungsmitteln. Um die Bildung höherer Oligomere zu vermeiden, wird hierfür zweckmäßiger Weise ein hoher stöchiometrischer Überschuß an Diisocyanaten im Verhältnis zu den eingesetzten Diolen angewendet. Ggf. können an sich bekannte Katalysatoren zur Beschleunigung der Reaktion zwischen der Isocyanatgruppe und der Alkoholgruppe eingesetzt werden. Dabei soll die Reaktion und das stöchiometrische Verhältnis von monomerem Diisocyanat und Diol so gewählt werden, daß möglichst ausschließlich ein 2 : 1 Addukt aus monomeren Diisocyanat und Diol entsteht und die Bildung höherer Oligomerer weitgehend unterdrückt wird.
Nach Abschluß der Reaktion wird das Umsetzungsprodukt möglichst weitgehend von monomerem Diisocyanat befreit, das so entstandene hochmolekulare Diisocyanat im Sinne dieser Erfindung soll maximal 10 mol% monomeres Diisocyanat, bezogen auf das hochmolekulare Diisocyanat, enthalten. Der Reinigungsschritt kann nach an sich bekannten Verfahren erfolgen. Bei der Verwendung von niederen Alkandiolen hat es sich bewährt, die geringe Löslichkeit des hochmolekularen Diisocyanates in einigen Lösungsmitteln auszunutzen, in dem nach Abschluß der Diol/Diisocyanat-Reaktion ein Nichtlöser für das hochmolekulare Diisocyanat zugefügt wird, der gleichzeitig Löser für das monomere Diisocyanat ist. Dadurch wird das hochmolekulare Diisocyanat aus dem Reaktionsgemisch ausgefällt und durch Filtration oder durch Zentrifugieren von nicht umgesetzten monomerem Diisocyanat befreit. Dieses Verfahren ist insbesondere anzuwenden, wenn die schwerer flüchtigen monomeren Diisocyanate wie beispielsweise das MDI Verwendung finden sollen.
Nichtlöser sind dabei insbesondere unpolare aprotische organische Lösungsmittel wie z. B. Ethylacetat, Chlorbenzol, Xylole, Toluol, oder insbesondere Siedegrenzenbenzine.
Bei der Verwendung von flüchtigen monomeren Diisocyanaten wie z. B. TDI, TMXDI, IPDI, XDI kann das überschüssige monomere Diisocyanat auch destillativ aus dem Reaktionsgemisch entfernt werden. Hierzu erfolgt die Destillation vorzugsweise im Vakuum mit Hilfe eines Dünnschichtverdampfers oder eines Dünnfilmverdampfers. Derartige Destillationsverfahren sind z. B. im Kunststoff- Handbuch Band 7, "Polyurethane", G. W. Becker (Herausgeber), Hanser-Verlag, München, 3. Auflage 1993, Seite 425 beschrieben.
Eine weitere Möglichkeit der Entfernung des monomeren Diisocyanates aus dem Reaktionsgemisch ist die selektive Extraktion des monomeren Diisocyanates, beispielsweise unter Verwendung von überkritischem Kohlendioxyd oder anderen überkritischen aprotischen Lösungsmitteln. Dieses Extraktionsverfahren ist beispielsweise aus der WO-97/46603 bekannt.
Das derartig hergestellte monomerenfreie bzw. monomerenarme hochmolekulare Diisocyanat wird in einem zweiten Reaktionsschritt in an sich bekannter Weise mit Polyolen zu Prepolymeren umgesetzt. Dabei beträgt das NCO/OH-Verhältnis 1,2 : 1-5 : 1. Da das hochmolekulare Diisocyanat bereits weitestgehend monomerenfrei ist, können im zweiten Reaktionsschritt auch höhere NCO/OH- Verhältnisse bis 10 : 1 verwendet werden.
Als Polyole können dabei eine Vielzahl von höhermolekularen Polyhydroxyverbindungen verwendet werden. Als Polyole eignen sich vorzugsweise die bei Raumtemperatur flüssigen, glasartig fest/amorphen oder kristallinen Polyhydroxyverbindungen mit zwei bzw. drei Hydroxylgruppen pro Molekül im Molekulargewichts-Bereich von 400 bis 20000, vorzugsweise im Bereich von 1000 bis 6000. Beispiele sind di- und/oder trifunktionelle Polypropylenglycole, es können auch statistische und/oder Blockcopolymere des Ethylenoxids und Propylenoxids eingesetzt werden. Eine weitere Gruppe von vorzugsweise einzusetzenden Polyethern sind die Polytetramethylenglykole (Poly(oxytetramethylen)glycol, Poly-THF), die z. B. durch die saure Polymerisation von Tetrahydrofuran hergestellt werden, dabei liegt der Molekulargewichts- Bereich der Polytetramethylenglykole zwischen 600 und 6000, vorzugsweise im Bereich von 800 bis 5000.
Weiterhin sind als Polyole die flüssigen, glasartig amorphen oder kristallinen Polyester geeignet, die durch Kondensation von Di- bzw. Tricarbonsäuren, wie z. B. Adipinsäure, Sebacinsäure, Glutarsäure, Azelainsäure Korksäure, Undecandisäure Dodecandisäure, 3,3-Dimethylglutarsäure, Terephthalsäure, Isophthalsäure, Hexahydrophthalsäure, Dimerfettsäure oder deren Mischungen mit niedermolekularen Diolen bzw. Triolen wie z. B. Ethylenglycol, Propylenglycol, Diethylenglycol, Triethylenglycol, Dipropylenglycol, 1,4-Butandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,10-Decandiol, 1,12-dodecandiol, Dimerfettalkohol, Glycerin, Trimethylolpropan oder deren Mischungen hergestellt werden können.
Eine weitere Gruppe der erfindungsgemäß einzusetzenden Polyole sind die Polyester auf der Basis von ε-Caprolacton, auch "Polycaprolactone" genannt. Es können aber auch Polyesterpolyole oleochemischer Herkunft verwendet werden. Derartige Polyesterpolyole können beispielsweise durch vollständige Ringöffnung von epoxidierten Triglyceriden eines wenigstens teilweise olefinisch ungesättigte Fettsäure-enthaltenden Fettgemisches mit einem oder mehreren Alkoholen mit 1 bis 12 C-Atomen und anschließender partieller Umesterung der Triglycerid-Derivate zu Alkylesterpolyolen mit 1 bis 12 C-Atomen im Alkylrest hergestellt werden. Weitere geeignete Polyole sind Polycarbonat-Polyole und Dimerdiole (Fa. Henkel) sowie Rizinusöl und dessen Derivate. Auch die Hydroxy­ funktionellen Polybutadiene, wie sie z. B. unter dem Handelsnamen "Poly-bd" erhältlich sind, können für die erfindungsgemäßen Zusammensetzungen als Polyole eingesetzt werden.
Weiterhin eignen sich als Polyole lineare und/oder schwach verzweigte Acrylester- Copolymer-Polyole, die beispielsweise durch die radikalische Copolymerisation von Acrylsäureestern, bzw. Methacrylsäureestern mit Hydroxyfunktionellen Acrylsäure- und/oder Methacrylsäure-Verbindungen wie Hydroxyethyl(meth)acrylat oder Hydroxypropyl(meth)acrylat hergestellt werden können. Wegen dieser Herstellungsweise sind die Hydroxylgruppen bei diesen Polyolen in der Regel statistisch verteilt, so daß es sich hierbei entweder um lineare oder schwach verzweigte Polyole mit einer durchschnittlichen OH- Funktionalität handelt. Obwohl für die Polyole die difunktionellen Verbindungen bevorzugt sind, können auch, zumindest in untergeordneten Mengen, höherfunktionelle Polyole verwendet werden.
Die Auswahl des Polyols oder der Polyole richtet sich dabei nach der Verwendungsart dieser Kleb-/Dichtstoff-Zusammensetzung. Bei hochviskosen oder pastösen flüssigen Kleb-/Dichtstoffen werden vorzugsweise zumindest überwiegend flüssige Polyole eingesetzt. Bei zweikomponentigen Kleb- /Dichtstoffen kann dabei die eine Komponente ein Prepolymer mit reaktiven Isocyanat-Endgruppen aus den Polyolen enthalten und die zweite Komponente ein hydroxyfunktionelles Polyol oder hydroxyfunktionelles Polyurethan. Es kann aber auch das hochmolekulare Diisocyanat als Härter für eine hydroxyfunktionelle Komponente verwendet werden, wobei die hydroxyfunktionelle Komponente entweder eines oder mehrerer der vorgenannten Polyole oder ein hydroxylgruppenhaltigen Polyurethanprepolymer enthält.
Bei der Verwendung der erfindungsgemäßen Polyurethan-Zusammensetzungen als reaktive Schmelzklebstoffe werden die Polyolkomponenten so ausgewählt, daß die Zusammensetzung bei Raumtemperatur fest ist. Dies kann einerseits dadurch geschehen, daß feste amorphe und/oder feste kristalline Polyhydroxyverbindungen eingesetzt werden, es kann jedoch auch dadurch geschehen, daß ein erheblicher Anteil an kurzkettigen Polyhydroxyverbindungen mit verwendet wird, da durch die hohe Konzentration an Urethangruppierungen diese Zusammensetzungen ebenfalls bei Raumtemperatur fest sind. Auswahlkriterien für die Polyole finden sich z. B. in dem vorgenannten Aufsatz von H. F. Huber und H. Müller.
Die erfindungsgemäßen Zusammensetzungen können ggf. zusätzlich Kata­ lysatoren enthalten, die die Bildung des Polyurethanprepolymeren bei seiner Herstellung beschleunigen und/oder die die Feuchtigkeitsvernetzung nach der Applikation des Kleb-/Dichtstoffes beschleunigen. Als erfindungsgemäß einsetzbare Katalysatoren eignen sich z. B. die metallorganische Verbindungen des Zinns, Eisens, Titans oder Wismuts wie Zinn(II)salze von Carbonsäuren, z. B. Zinn-II-acetat, -ethylhexoat und -diethylhexoat verwendet werden. Eine weitere Verbindungsklasse stellen die Dialkyl-Zinn(IV)-Carboxylate dar. Die Carbonsäuren haben 2, vorzugsweise wenigstens 10, insbesondere 14 bis 32 C-Atome. Es können auch Dicarbonsäuren eingesetzt werden. Als Säuren seien ausdrücklich genannt: Adipinsäure, Maleinsäure, Fumarsäure, Malonsäure, Bernsteinsäure, Pimelinsäure, Terephthalsäure, Phenylessigsäure, Benzoesäure, Essigsäure, Propionsäure sowie 2-Ethylhexan-, Capryl-, Caprin-, Laurin-, Myristin-, Palmitin- und Stearinsäure. Konkrete Verbindungen sind Dibutyl- und Dioctyl-zinndiacetat, - maleat, -bis-(2-ethylhexoat), -dilaurat, Tributylzinnacetat, Bis(β-methoxycarbonyl­ ethyl)zinndilaurat und Bis(β-acetyl-ethyl)zinndilaurat.
Auch Zinnoxide und -sulfide sowie -thiolate sind brauchbar. Konkrete Verbindungen sind: Bis(tributylzinn)oxid, Bis(trioctylzinn)oxid, Dibutyl- und Dioc­ tylzinn-bis(2-ethylhexylthiolat) Dibutyl- und Dioctylzinndidodecylthiolat, Bis(β- methoxycarbonyl-ethyl)zinndidodecylthiolat, Bis(β-acetyl-ethyl)zinn-bis(2-ethyl­ hexylthiolat), Dibutyl- und Dioctylzinndidodecylthiolat, Butyl- und Octylzinn­ tris(thioglykolsäure-2-ethylhexoat), Dibutyl- und Dioctylzinn-bis(thioglykolsäure-2- ethylhexoat), Tributyl- und Trioctylzinn(thioglykolsäure-2-ethylhexoat) sowie Butyl- und Octylzinntris(thioethylenglykol-2-ethylhexoat), Dibutyl- und Dioctylzinn­ bis(thioethylenglykol-2-ethylhexoat), Tributyl- und Trioctylzinn(thioethylenglykol-2- ethylhexoat) mit der allgemeinen Formel Rn+1Sn(SCH2CH2OCOC8H17)3-n, wobei R eine Alkylgruppe mit 4 bis 8 C-Atomen ist, Bis(β-methoxycarbonyl-ethyl)zinn- bis(thioethylenglykol-2-ethylhexoat), Bis(β-methoxycarbonyl-ethyl)-zinn- bis(thioglykolsäure-2-ethylhexoat), und Bis(β-acetyl-ethyl)zinn-bis(thioethy­ lenglykol-2-ethylhexoat) und Bis(β-acetyl-ethyl)zinn-bis(thioglykolsäure-2-ethyl­ hexoat.
Zusätzlich geeignet sind auch aliphatische tertiäre Amine insbesondere bei cy­ clischer Struktur. Unter den tertiären Aminen sind auch solche geeignet, die zu­ sätzlich noch gegenüber den Isocyanaten reaktive Gruppen tragen, insbesondere Hydroxyl- und/oder Aminogruppen. Konkret genannt seien:
Dimethylmonoethanolamin, Diethylmonoethanolamin, Methylethylmonoethanola­ min, Triethanolamin, Trimethanolamin, Tripropanolamin, Tributanolamin, Trihexa­ nolamin, Tripentanolamin, Tricyclohexanolamin, Diethanolmethylamin, Diethano­ lethylamin, Diethanolpropylamin, Diethanolbutylamin, Diethanolpentylamin, Diet­ hanohexylamin, Diethanolcyclohexylamin, Diethanolphenylamin sowie deren Ethoxylierungs- und Propoxylierungs-Produkte, Diaza-bicyclo-octan (DABCO), Triethylamin, Dimethylbenzylamin (Desmorapid DB, BAYER), Bis- dimethylaminoethylether (Calalyst A 1, UCC), Tetramethylguanidin, Bis- dimethylaminomethyl-phenol, 2-(2-Dimethylaminoethoxy)ethanol, 2-Dimethylami­ noethyl-3-dimethylaminopropylether, Bis(2-dimethylaminoethyl)ether, N,N-Dime­ thylpiperazin, N-(2-hydroxyethoxyethyl)-2-azanorbornane, oder auch ungesättigte bicyclische Amine, z. B. Diazabicycloundecen (DBU) sowie Texacat DP-914 (Texaco Chemical), N,N,N,N-Tetramethylbutan-1,3-diamin, N,N,N,N-Tetramethylpropan-1,3-diamin und N,N,N,N-Tetramethylhexan-1,6-diamin. Die Katalysatoren können auch in oligomerisierter oder polymerisierter Form vor­ liegen, z. B. als N-methyliertes Polyethylenimin.
Ganz besonders bevorzugte Katalysatoren sind jedoch die Derivate des Morpholins. Konkrete Beispiele für geeignete Morpholino-Verbindungen sind Bis(2-(2,6-dimethyl-4-morpholino) ethyl)-(2-(4-morpholino)ethyl)amin, Bis(2-(2,6- dimethyl-4-morpholino)ethyl)-(2-(2,6-diethyl-4-morpholino)ethyl) amin, Tris(2-(4- morpholino)ethyl) amin, Tris(2-(4-morpholino)propyl)amin, Tris(2-(4-morpholino) butyl)amin, Tris(2-(2,6-dimethyl-4-morpholino)ethyl)amin, Tris(2-(2,6-diethyl-4- morpholino)ethyl)amin, Tris(2-(2-methyl-4-morpholino)ethyl)amin oder Tris(2-(2- ethyl-4-morpholino)ethyl)amin, Dimethylaminopropylmorpholin, Bis- (morpholinopropyl)-methylamin, Diethylaminopropylmorpholin, Bis-(morpholino­ propyl)-ethylamin, Bis-(morpholinopropyl)-propylamin, Morpholinopropylpyrrolidon oder N-Morpholinopropyl-N'-methyl-piperazin, Dimorpholinodiethylether (DMDEE) oder Di-2,6-dimethylmorpholinoethyl)ether.
Die vorgenannten Morpholin-Derivate weisen eine besonders hohe katalytische Aktivität, insbesondere der Wasser-(Feuchtigkeits-)Isocyanat-Reaktion, auf. Deshalb sind bereits sehr niedrige Katalysatorkonzentrationen hocheffizient für Vernetzung bzw. Aushärtung der Klebstoffe, die Konzentrationen des Katalysators in der Klebstoff-Formulierung können zwischen 0,001 und 2 Gew.-%, vorzugsweise zwischen 0,02 und 0,9 Gew.-% liegen.
Weiterhin kann die erfindungsgemäße Zusammensetzung ggf. zusätzlich Stabilisatoren, haftvermittelnde Zusätze wie klebrigmachende Harze, Füllstoffe, Pigmente, Weichmacher und/oder Lösungsmittel enthalten.
Als "Stabilisatoren" im Sinne dieser Erfindung sind einerseits Stabilisatoren zu verstehen, die eine Viskositätsstabilität des Polyurethanprepolymeren während der Herstellung, Lagerung bzw. Applikation bewirken. Hierfür sind z. B. monofunktionelle Carbonsäurechloride, monofunktionelle hochreaktive Isocyanate, aber auch nicht-korrosive anorganische Säuren geeignet, beispielhaft seien genannt Benzoylchlorid, Toluolsulfonylisocyanat, Phosphorsäure oder phosphorige Säure. Des weiteren sind als Stabilisatoren im Sinne dieser Erfindung Antioxidantien, UV-Stabilisatoren oder Hydrolyse-Stabilisatoren zu verstehen. Die Auswahl dieser Stabilisatoren richtet sich zum einen nach den Hauptkomponenten der Zusammensetzung und zum anderen nach den Applikationsbedingungen sowie den zu erwartenden Belastungen des ausgehärteten Produktes. Wenn das Polyurethanprepolymer überwiegend aus Polyetherbausteinen aufgebaut ist, sind hauptsächlich Antioxidantien, ggf. in Kombination mit UV-Schutzmitteln, notwendig. Beispiele hierfür sind die handelsüblichen sterisch gehinderten Phenole und/oder Thioether und/oder substituierten Benzotriazole oder die sterisch gehinderten Amine vom Typ des HALS ("Hindered Amine Light Stabilizer").
Bestehen wesentliche Bestandteile des Polyurethanprepolymers aus Polyesterbausteinen, können Hydrolyse-Stabilisatoren, z. B. vom Carbodiimid-Typ, eingesetzt werden.
Werden die erfindungsgemäßen Zusammensetzungen als Schmelzklebstoffe, Kaschierklebstoffe oder Kleb-/Dichtstoffe eingesetzt, so können diese noch klebrigmachende Harze, wie z. B. Abietinsäure, Abietinsäureester, Terpenharze, Terpenphenolharze oder Kohlenwasserstoffharze sowie Füllstoffe (z. B. Silikate, Talk, Calciumcarbonate, Tone oder Ruß), Weichmacher (z. B. Phthalate) oder Thixotropiermittel (z. B. Bentone, pyrogene Kieselsäuren, Harnstoffderivate, fibril­ lierte oder Pulp-Kurzfasern) oder Farbpasten bzw. Pigmente enthalten.
Als haftungsverstärkende Zusätze in der erfindungsgemäßen Ausführungsform eigenen sich insbesondere migrationsfähige Polyisocyanate, wobei diese einen wesentlich geringeren Dampfdruck als MDI aufweisen sollen.
Als migrationsfähige, haftungsverstärkende Polyisocyanate mit wesentlich geringerem Dampfdruck als MDI kommen dabei hauptsächlich Triisocyanate in Frage wie zum Beispiel der Thiophosphor-säure-tris-(p-Isocyanato-Phenylester), das Triphenylmethan-4,4',4"-Triisocyanat sowie insbesondere die verschiedenen isomeren trifunktionellen Homologen des Diphenylmethandiisocyanats (MDI). Zu den letzteren gehören hauptsächlich das Isocyanto-bis-((4-Isocyanatophenyl)- methyl)-benzol, das 2-Isocyanato-4-((3-Isocyanatophenyl)methyl)-1-((4- Isocyanatophenyl)methyl)-benzol, das 4-Iso-cyanato-1,2-bis((4-Isocyanato­ phenyl)methyl)-benzol, das 1-Isocyanato-4-((2-Isocyanatophenyl)methyl)-2-((3- Isocyana-tophenyl)methyl)benzol, das 4-Isocyanato-α-1-(o-Isocyana-tophenyl)-α- 3(p-Isocyanatophenyl)-m-Xylol, das 2-Isocyanato-(o-Isocyanatophenyl)-α'(p- Isocyanatophenyl)m-Xylol, das 2-Isocyanato-1,3-bis((2-Isocyanatophenyl)methyl)- benzol, das 2-Isocyanato-1,4-bis((4-Isocyanato-phenyl)methyl)-benzol, das Isocyanato-bis((Isocyanatophenyl)methyl)-benzol, das 1-Isocyanato-2,4- bis((bis((4-Isocyanatophenyl)methyl)-benzol sowie deren Mischungen, gegebenenfalls mit einem geringfügigem Anteil an höherfunktionellen Homologen. Da die trifunktionellen Homologen des Diphenylmethandiisocyanates analog zum Diphenylmethandiisocyanat durch Kondensation von Formaldehyd mit Anilin mit nachfolgender Phosgenierung hergestellt werden, sind im technischen Gemisch der trifunktionellen Homologen des MDI auch noch Anteile an Diisocyanat vorhanden, dieser darf jedoch nicht mehr als 20 Gew.-%, bezogen auf die Triisocyanatmischung, betragen und der Anteil an tetra- bzw. höherfunktionellen Isocyanaten nicht mehr als 25 Gew.-%.
Weiterhin sind als Triisocyanate auch Addukte aus Diisocyanaten und niedermolekularen Triolen geeignet, insbesondere die Addukte aus aromatischen Diisocyanten und Triolen wie zum Beispiel Trimethylolpropan oder Glycerin. Auch bei diesen Addukten gelten die oben genannten Einschränkungen bezüglich des Diisocyanatgehaltes und der höherfunktionellen Bestandteile.
Auch aliphatische Triisocyanate wie zum Beispiel das Biuretisierungsprodukt des Hexamethylendiisocyanates (HDI) oder das Isocyanuratisierungsprodukt des HDI oder auch die gleichen Trimerisierungsprodukte des Isophorondiisocyanats (IPDI) sind für die erfindungsgemäßen Zusammensetzungen geeignet, sofern der Anteil an Diisocyanaten < 1 Gew.-% beträgt und der Anteil an tetra- bzw. höherfunktionellen Isocyanaten nicht mehr als 25 Gew.-% ist.
Wegen ihrer guten Verfügbarkeit sind dabei die vorgenannten Trimerisierungsprodukte des HDI und des IPDI besonders bevorzugt.
Die vorgenannten migrationsfähigen Polyisocyanate können dabei entweder direkt bei der Prepolymersynthese mitverwendet werden, sie können jedoch unmittelbar im Anschluß an die Prepolymersynthese in einer sogenannten "Eintopfreaktion" in das noch im Reaktionskessel befindliche Prepolymergemisch eingearbeitet werden. Eine weitere Möglichkeit besteht in einer separaten Zumischung der haftungsverstärkenden, migrationsfähigen Polyisocyanate bei einem späteren Formulierungsschritt.
Bei der Verwendung als Kaschierklebstoff kann zum Erreichen bestimmter zusätzlicher Eigenschaften, wie thermischer und chemischer Beständigkeit noch ein Zusatz von Epoxidharzen, Phenolharzen, Novolaken, Resolen oder Melaminharzen und ähnliches notwendig sein. Außerdem können in diesem Falle die Prepolymeren auch in Lösung hergestellt werden, vorzugsweise in polaren, aprotischen Lösungsmitteln. Die bevorzugten Lösungsmittel haben dabei einen Siedebereich von etwa 50°C bis 140°C. Obwohl auch halogenierte Kohlenwasserstoffe geeignet sind, werden ganz besonders Ethylacetat, Methylethylketon (MEK) oder Aceton bevorzugt.
Die erfindungsgemäßen Kleb-/Dichtstoffzusammensetzungen lassen sich wie die üblichen bekannten Polyurethan-Kleb-/Dichtstoffe einsetzen als reaktiver ein- oder zweikomponentiger Kleb-/Dichtstoff, als reaktiver Schmelzklebstoff oder als lösungsmittelhaltiger Klebstoff in ein- oder zweikomponentiger Form. Wesentlicher Vorteil gegenüber den bekannten Polyurethan-Kleb-/Dichtstoffen der signifikant niedriger Anteil an arbeitshygienisch bedenklichen monomeren Diisocyanaten mit einem Molekulargewicht unterhalb 500.
Nachfolgend wird die Erfindung anhand einiger bevorzugter Ausführungsbeispiele näher erläutert, wobei die Auswahl der Beispiele keine Beschränkung des Umfanges des Erfindungsgegenstandes darstellen soll. Die Mengenangaben in den Beispielen sind Gewichtsteile bzw. Gewichtsprozente, wenn nicht anders angegeben.
Beispiele Beispiel 1
Gemäß der Lehre der DE 199 57 351.4 wurde aus einem Polypropylenglycol mit Mn = 880 und Diphenylmethandiisocyanat ein hochmolekulares Diisocyanat hergestellt, aus dem anschließend das monomere MDI soweit entfernt wurde, daß ein Restmonomer - Gehalt von 0,1% resultierte. Aus 100 Teilen einer Polyolmischung für einen Standardpolyurethanschmelzklebstoff (QR 6202, Fa. Henkel) mit einer gemittelten OH-Zahl von 32,5 und 76,5 Teilen des vorgenannten hochmolekularen Diisocyanats wurde ein Schmelzklebstoff hergestellt.
Beispiel 2
In analoger Weise wurden aus 100 Teilen einer Polyolmischung mit einer gemittelten Hydroxylzahl 32,5, 6 Teilen Ethylenvinylacetat-Copolymer, (Vinylacetatgehalt 28%) und 66,7 Teilen des vorgenannten hochmolekularen Diisocyanates ein Schmelzklebstoff hergestellt.
Beispiel 3
In den Schmelzklebstoff gemäß Beispiel 1 wurden nachträglich 2 Gew.-% Tris-(6- Isocyanatohexyl)-Isocyanurat - HDI Trimer, Restmonomergehalt 0,2% - eingearbeitet.
Beispiel 4
Analog zu Beispiel 3 wurde in den Schmelzklebstoff des Beispiels 2,2 Gew.-% HDI - Trimer eingearbeitet.
Anwendungstechnische Eignungstests
Die Schmelzklebstoffe der Beispiele 1 und 3 wurden im Vergleich zu einem Standardschmelzklebstoffen des Standes der Technik (PURMELT QR 6202, Fa. Henkel), Vergleichsbeispiel 6, auf ihre Eignung zur Folienummantelung von MDF (Mitteldichte Faser) getestet. Die Ergebnisse sind in der nachfolgenden Tabelle 1 zusammengefasst.
Tabelle 1
Wie aus der Tabelle ersichtlich ist, werden die Anfangsfestigkeiten des Klebstoffes gemäß Beispiel 1 als signifikant besser beurteilt, als die eines handelsüblichen Schmelzklebstoffes für den gleichen Anwendungsfall. Lediglich die Wärmestandfestigkeit ist niedriger als beim herkömmlichen Schmelzklebstoff.
Bei Verwendung des erfindungsgemäßen Klebstoffes gemäß Beispiel 3 ist die Anfangsfestigkeit gegenüber dem Vergleichsbeispiel 6 ebenfalls deutlich besser, die Endfestigkeit, d. h. die Wärmestandfestigkeit erreicht Werte < 150°C und beinhaltet damit eine deutliche Verbesserung gegenüber dem Beispiel 1. D. h. hier ist sowohl die Forderung nach einem sehr niedrigen Gehalt an flüchtigen niedermolekularen Diisocyanaten erfüllt, als auch gutes Haftungs- und Wärmestandverhalten.
Für eine Fensterprofilummantelung (geprimertes PVC-Profil mit PVC-Folie) wurden Schmelzklebstoffe des Beispiels 2 und 4 mit einem Schmelzklebstoff des Standes der Technik für diese Anwendung vergleichend getestet. Bei dem handelsüblichen Schmelzklebstoff des Standes der Technik handelte es sich um PURMELT QR 5300 (Fa. Henkel), Vergleichsversuch 5. Die Testergebnisse sind in der Tabelle 2 zusammengefasst.
Tabelle 2
Bewertung der Ergebnisse
Der Schmelzklebstoff gemäß Beispiel 2 zeigt sehr gute Verarbeitungseigenschaften, gute Benetzung auf den Substraten, Fadenziehen beim Schälen und eine etwas höhere Anfangsschälfestigkeit als das Vergleichsbeispiel 5 des Standes der Technik. Im Verlauf der chemischen Härtungsreaktion wird jedoch nicht der erwünschte Folienriss ohne zu Schälen (FR) beim Beispiel 2 erzielt. Beim erfindungsgemäßen Beispiel 4 werden nicht nur hohe Anfangsschälfestigkeiten erzielt, sondern auch der erwünschte Folienriss nach fortgeschrittener Aushärtung des Schmelzklebstoffes. Auch hier bewirkt der erfindungsgemäße haftverbessernde Zusatz deutlich verbesserte Klebstoffeigenschaften, bei gleichzeitiger Abwesenheit von flüchtigen, niedermolekularen monomeren Diisocyanaten.
Aus den vorstehenden Ergebnissen wird deutlich, daß die Schmelzklebstoffe gemäß Beispiel 1 und 2 zwar hervorragende Eigenschaften in Bezug auf ihren niedrigen Gehalt an monomeren, flüchtigen Diisocyanaten haben, daß ihre Haftungseigenschaften gegenüber handelsüblichen Schmelzklebstoffen auf der Basis konventioneller, nieder molekularer Diisocyanate unterlegen sind. Die erfindungsgemäßen Schmelzklebstoff-Zusammensetzungen gemäß Beispielen 3 und 4 weisen jedoch gleich gute Haftungseigenschaften wie die herkömmlichen Schmelzklebstoffe des Standes der Technik auf, zusätzlich weisen sie den niedrigen Gehalt an flüchtigen monomeren Diisocyanaten gemäß der Lehre der DE 199 57 351.4 auf.

Claims (10)

1. Reaktive Polyurethan-Kleb-/Dichtstoff-Zusammensetzung auf der Basis von Umsetzungsprodukten aus Polyolen und hochmolekularen Diisocyanaten, die durch Umsetzung von Diolen mit einem Molekulargewicht kleiner als 1000 mit monomeren Diisocyanaten mit einem Molekulargewicht kleiner als 500, wobei die eingesetzten hochmolekularen Diisocyanate vor deren Umsetzung mit dem /den Polyol(en) maximal 10 mol% monomeres Diisocyanat enthalten, dadurch gekennzeichnet, daß die Klebstoff-Zusammensetzung migrationsfähige Polyisocyanate zur Haftungsverstärkung enthalten, wobei die Polyisocyanate einen wesentlich niedrigeren Dampfdruck als Diphenylmethandiisocyanat aufweisen.
2. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das monomere Diisocyanat ausgewählt wird aus der Gruppe alle Isomeren des Toluylendiisocyanat (TDI), entweder in isomerenreiner Form oder als Mischung mehrerer Isomerer, Naphthalin-1,5-diisocyanat, 4,4'- Diphenylmethandiisocyanat, 2,4'-Diphenylmethandiisocyanat sowie deren Mischungen, Xylen-diisocyanat (XDI), 4,4'-Dicyclohexylmethandiisocyanat (H12MD1), 1-Isocyanatomethyl-3-isocyanato-1,5,5-trimethyl-diisocyanat (Isophorondiisocyanat, IPDI), Cyclohexan,1,4-diisocyanat, hydriertes Xylylen­ diisocyanat (H6XDI), 1-Methyl-2,4-diisocyanato-cyclohexan, Hexan-1,6- diisocyanat (HDI), m- oder p-Tetramethylxylendiisocyanat (m-TMXDI, p- TMXDI) oder Mischungen der vorgenannten Diisocyanate.
3. Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß die Diole ausgewählt werden aus der Gruppe der C2- bis C18-Alkandiole einschließlich der Isomeren wie z. B. Ethylenglycol, 1,2-Propandiol, 1,3-Propandiol, 2,2- Dimethyl-1,3-propandiol, 2-Methylpropandiol, 1,6-Hexandiol, 2,4,4- Trimethylhexandiol-1,6, 2,2,4-Trimethylhexandiol-1,6, 1,4- Cyclohexandimethanol, Diethylenglycol, Triethylenglycol, Tetraethylenglycol, Dipropylenglycol, Tripropylenglycol, Tetrapropylenglycol, Poly(oxytetramethylen)glycol mit einem Molekulargewicht bis zu 650, Alkoxylierungsprodukte des Bisphenols A, Alkoxylierungsprodukte des Bisphenols F, der isomeren Dihydroxyanthracene, der isomeren Dihydroxynaphthaline, des Brenzkatechins, des Resorcins, des Hydrochinons mit bis zu 8 Alkoxy-Einheiten pro aromatischer Hydroxygruppe oder Mischungen der vorgenannten Diole.
4. Zusammensetzung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als Polyol ein oder mehrere di- oder trifunktionelle Polyethylenglycole, Polypropylenglycole, statistische oder Blockcopolymere aus Ethylenoxid und Propylenoxid, Poly(oxytetramethylen)glycole, lineare oder verzweigte Polyesterpolyole, Poly-ε-Caprolactone, hydroxyfunktionelle Polybutadiene oder deren Hydrierungsprodukte, hydroxyfunktionelle Poly(meth)acrylate oder Mischungen der vorgenannten Polyole verwendet wird, wobei das Zahlenmittel der Molmasse des/der Polyol(e) 400 bis 20000, vorzugsweise 1000 bis 6000 beträgt.
5. Zusammensetzung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die migrationsfähigen, haftungsverstärkenden Polyisocyanate ausgewählt werden aus Thiophosphor-säure-tris-(p-Isocyanato-Phenylester), Triphenylmethan- 4,4',4"-Triisocyanat, isomere trifunktionelle Homologen des Diphenylmethan­ diisocyanats (MDI) insbesondere Isocyanto-bis-((4-Isocyanatophenyl)methyl)- benzol, 2-Isocyanato-4-((3-Isocyanatophenyl)methyl)-1-((4-Isocyanato­ phenyl)methyl)-benzol, 4-Iso-cyanato-1,2-bis((4-Isocyanatophenyl)methyl)- benzol, 1-Isocyanato-4-((2-Isocyanatophenyl)methyl)-2-((3-Isocyanato­ phenyl)methyl)benzol, 4-Isocyanato-α-1-(o-Isocyanatophenyl)-α-3(p-Iso­ cyanatophenyl)-m-Xylol, 2-Isocyanato-(o-Isocyanatophenyl)-α'(p-Isocyanato­ phenyl)m-Xylol, 2-Isocyanato-1,3-bis((2-Isocyanatophenyl)methyl)-benzol, 2- Isocyanato-1,4-bis((4-Isocyanato-phenyl)meth-yl)-benzol, Isocyanato­ bis((Isocyanatophenyl)methyl)-benzol, 1-Isocyanato-2,4-bis((bis((4-Isocyanato­ phenyl) methyl)-benzol, sowie Addukte aus Diisocyanaten und niedermolekularen Triolen, insbesondere die Addukte aus aromatischen Diisocyanten und Triolen wie zum Beispiel Trimethylolpropan oder Glycerin, das Biuretisierungsprodukt des Hexamethylendiisocyanates (HDI), das Isocyanuratisierungsprodukt des HDI, die Trimerisierungsprodukte des lsophorondiisocyanats (IPDI) oder Mischungen der vorgenannten Polyisocyanate.
6. Verfahren zur Herstellung einer Zusammensetzung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
  • a) in einem ersten Schritt die Diolkomponente mit einem stöchiometrischen Überschuß an monomerem Diisocyanat zu einem hochmolekularen Diisocyanat umgesetzt wird,
  • b) ggf. durch Zugabe eines Nichtlösers für das hochmolekulare Diisocyanat dieses aus dem Reaktionsgemisch ausgefällt wird,
  • c) durch Filtration oder Zentrifugieren von nicht umgesetztem monomeren Diisocyanat befreit wird und
  • d) in einem zweiten Schritt dieses hochmolekulare Diisocyanat mit einem Polyol umgesetzt wird, so daß ein reaktives Prepolymer mit Isocyanat- Endgruppen entsteht,
  • e) und anschließend ein oder mehreres migrationsfähiges Polyisocyanat gemäß Anspruch 5 zugesetzt wird.
7. Verfahren zur Herstellung einer Zusammensetzung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
  • a) in einem ersten Schritt die Diolkomponente mit einem stöchiometrischen Überschuß an monomerem Diisocyanat zu einem hochmolekularen Diisocyanat umgesetzt wird,
  • b) das überschüssige monomere Diisocyanat destillativ aus dem Reaktionsgemisch entfernt wird, und
  • c) in einem zweiten Schritt dieses hochmolekulare Diisocyanat mit einem Polyol umgesetzt wird, so daß ein reaktives Prepolymer mit Isocyanat-Endgruppen entsteht, und
  • d) anschließend ein oder mehreres migrationsfähiges Polyisocyanat gemäß Anspruch 5 zugesetzt wird.
8. Verfahren zur Herstellung einer Zusammensetzung gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
  • a) in einem ersten Schritt die Diolkomponente mit einem stöchiometrischen Überschuß an monomerem Diisocyanat zu einem hochmolekularen Diisocyanat umgesetzt wird,
  • b) das überschüssige monomere Diisocyanat durch selektive Extraktion aus dem Reaktionsgemisch entfernt wird, und
  • c) in einem zweiten Schritt dieses hochmolekulare Diisocyanat mit einem Polyol umgesetzt wird, so daß ein reaktives Prepolymer mit Isocyanat-Endgruppen entsteht
  • d) und anschließend ein oder mehreres migrationsfähiges Polyisocyanat gemäß Anspruch 5 zugesetzt wird.
9. Verfahren nach Anspruch 6 bis 8, dadurch gekennzeichnet, daß im zweiten Schritt das NCO/OH Verhältnis 1,2 : 1 bis 5 : 1 beträgt.
10. Verwendung einer Zusammensetzung nach Anspruch 6 bis 9 als Bindemittel für einen reaktiven ein- oder zweikomponentigen Kleb-/Dichtstoff, reaktiven Schmelzklebstoff oder lösungsmittelhaltigen Klebstoff.
DE2000155786 1999-11-29 2000-11-10 Haftungsverstärker für monomerfreie reaktive Polyurethane Ceased DE10055786A1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
DE2000155786 DE10055786A1 (de) 2000-11-10 2000-11-10 Haftungsverstärker für monomerfreie reaktive Polyurethane
BRPI0015794-5A BR0015794B1 (pt) 1999-11-29 2000-11-25 composição de adesivo/selante de poliuretano reativo, processo para a sua preparação, e seu uso.
SK946-2002A SK9462002A3 (en) 1999-11-29 2000-11-25 Adhesion promoters for monomer-free reactive polyurethanes
PCT/EP2000/011771 WO2001040342A1 (de) 1999-11-29 2000-11-25 Haftungsverstärker für monomerfreie reaktive polyurethane
US10/148,432 US7129312B1 (en) 1999-11-29 2000-11-25 Adhesion promoters for monomer-free reactive polyurethanes
DE50015969T DE50015969D1 (de) 1999-11-29 2000-11-25 Haftungsverstärker für monomerfreie reaktive polyurethane
EP00985095A EP1237971B1 (de) 1999-11-29 2000-11-25 Haftungsverstärker für monomerfreie reaktive polyurethane
RU2002118323/04A RU2272818C2 (ru) 1999-11-29 2000-11-25 Усилитель адгезии для не содержащих мономеров реакционноспособных полиуретанов
AU21626/01A AU774286B2 (en) 1999-11-29 2000-11-25 Adhesion promoters for monomer-free reactive polyurethanes
MXPA02005259A MXPA02005259A (es) 1999-11-29 2000-11-25 Promotores de la adhesion para poliuretanos reactivos sin monomeros.
CNB008163472A CN1256359C (zh) 1999-11-29 2000-11-25 无单体的反应性聚氨酯粘合促进剂
CZ20021146A CZ20021146A3 (cs) 1999-11-29 2000-11-25 Aktivátor přilnavosti pro reaktivní polyuretanový prostředek
KR1020027006807A KR100830384B1 (ko) 1999-11-29 2000-11-25 단량체가 없는 반응성 폴리우레탄을 위한 접착 촉진제
PL00356128A PL356128A1 (en) 1999-11-29 2000-11-25 Adhesion promoters for monomer-free reactive polyurethanes
AT00985095T ATE476455T1 (de) 1999-11-29 2000-11-25 Haftungsverstärker für monomerfreie reaktive polyurethane
JP2001541094A JP4823460B2 (ja) 1999-11-29 2000-11-25 モノマー不含反応性ポリウレタン用接着強化剤
CA002392960A CA2392960C (en) 1999-11-29 2000-11-25 Adhesion promoters for monomer-free reactive polyurethanes
NO20022527A NO20022527D0 (no) 1999-11-29 2002-05-28 Adhesjonsforsterkere for monomerfrie reaktive polyuretaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000155786 DE10055786A1 (de) 2000-11-10 2000-11-10 Haftungsverstärker für monomerfreie reaktive Polyurethane

Publications (1)

Publication Number Publication Date
DE10055786A1 true DE10055786A1 (de) 2002-05-29

Family

ID=7662843

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000155786 Ceased DE10055786A1 (de) 1999-11-29 2000-11-10 Haftungsverstärker für monomerfreie reaktive Polyurethane

Country Status (1)

Country Link
DE (1) DE10055786A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059464A1 (de) * 2006-12-14 2008-06-19 Henkel Kgaa Polyurethan-Kaschierklebstoff
DE102018113577A1 (de) 2017-08-30 2019-02-28 Fischerwerke Gmbh & Co. Kg Mehrkomponentige Klebstoffsysteme und deren Verwendung
EP3450476A1 (de) 2017-08-31 2019-03-06 Evonik Degussa GmbH Reaktivklebstoffe mit niedrigem gehalt an monomerem diisocyanat
EP3450477A1 (de) 2017-08-30 2019-03-06 fischerwerke GmbH & Co. KG Mehrkomponentige klebstoffsysteme und deren verwendung
DE102021114890A1 (de) 2020-07-02 2022-01-05 Fischerwerke Gmbh & Co. Kg Spezielle Imine und ihre Edukte, sowie Verwendung bei der Härtung von Reaktivharzen durch Polyaddition oder radikalische Polymerisation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316738A2 (de) * 1987-11-18 1989-05-24 Bayer Ag Verfahren zur Herstellung von Urethangruppen aufweisenden Polyisocyanaten
EP0393903A2 (de) * 1989-04-14 1990-10-24 Imperial Chemical Industries Plc Polyisocyanat-Zusammensetzungen sowie ihre Verwendung zur Herstellung von polymeren Schaumstoffen
WO1995006124A1 (en) * 1993-08-20 1995-03-02 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Dampening of an immunodominant epitope of an antigen for use in plant, animal and human vaccines and immunotherapies
WO1997046603A1 (en) * 1996-06-03 1997-12-11 Uniroyal Chemical Company, Inc. Removal of unreacted diisocyanate monomer from polyurethane prepolymers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0316738A2 (de) * 1987-11-18 1989-05-24 Bayer Ag Verfahren zur Herstellung von Urethangruppen aufweisenden Polyisocyanaten
EP0393903A2 (de) * 1989-04-14 1990-10-24 Imperial Chemical Industries Plc Polyisocyanat-Zusammensetzungen sowie ihre Verwendung zur Herstellung von polymeren Schaumstoffen
WO1995006124A1 (en) * 1993-08-20 1995-03-02 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Dampening of an immunodominant epitope of an antigen for use in plant, animal and human vaccines and immunotherapies
WO1997046603A1 (en) * 1996-06-03 1997-12-11 Uniroyal Chemical Company, Inc. Removal of unreacted diisocyanate monomer from polyurethane prepolymers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059464A1 (de) * 2006-12-14 2008-06-19 Henkel Kgaa Polyurethan-Kaschierklebstoff
US9458363B2 (en) 2006-12-14 2016-10-04 Henkel Ag & Co. Kgaa Polyurethane lamination adhesive
DE102018113577A1 (de) 2017-08-30 2019-02-28 Fischerwerke Gmbh & Co. Kg Mehrkomponentige Klebstoffsysteme und deren Verwendung
EP3450477A1 (de) 2017-08-30 2019-03-06 fischerwerke GmbH & Co. KG Mehrkomponentige klebstoffsysteme und deren verwendung
EP3450476A1 (de) 2017-08-31 2019-03-06 Evonik Degussa GmbH Reaktivklebstoffe mit niedrigem gehalt an monomerem diisocyanat
WO2019043054A1 (de) 2017-08-31 2019-03-07 Evonik Degussa Gmbh Reaktivklebstoffe mit niedrigem gehalt an monomerem diisocyanat
DE102021114890A1 (de) 2020-07-02 2022-01-05 Fischerwerke Gmbh & Co. Kg Spezielle Imine und ihre Edukte, sowie Verwendung bei der Härtung von Reaktivharzen durch Polyaddition oder radikalische Polymerisation
WO2022002567A1 (de) 2020-07-02 2022-01-06 Fischerwerke Gmbh & Co. Kg Spezielle imine und ihre edukte, sowie verwendung bei der härtung von reaktivharzen durch polyaddition oder radikalische polymerisation

Similar Documents

Publication Publication Date Title
EP1237971B1 (de) Haftungsverstärker für monomerfreie reaktive polyurethane
EP1404733B1 (de) Reaktive polyurethane mit einem geringen gehalt an monomeren diisocyanaten
EP1456266B1 (de) Reaktive polyurethane mit einem geringen gehalt an monomeren diisocyanaten
EP0777695B1 (de) Polyurethan-zusammensetzungen mit niedrigem gehalt an monomeren diisocyanaten
EP3288992B1 (de) Zweistufiges verfahren zur herstellung eines polyurethan-heissschmelzklebstoffs mit niedrigem gehalt an monomeren diisocyanaten und hoher anfangsfestigkeit
EP1490418B2 (de) Farbneutraler 1K Polyurethan-Klebstoff
EP1434811B1 (de) Reaktive polyurethan-zusammensetzungen mit niedrigem restmonomergehalt
EP0763067B1 (de) Schnell abbindender polyurethan-schmelzklebstoff
EP1250394B1 (de) Polyurethan-zusammensetzungen auf der basis von polyester-polyether-copolymeren
EP0576485B1 (de) Für reaktivsysteme geeignete polymerdispersionen, verfahren zu ihrer herstellung und ihre verwendung
EP3402834B1 (de) Reaktive polyurethan-schmelzklebstoffe enthaltend füllstoffe
DE10259248A1 (de) Verfahren zur Herstellung von Polyurethan-Prepolymeren
DE102011089783A1 (de) Niedrigviskose reaktive Polyurethan-Zusammensetzungen
EP2493951B1 (de) Pu-klebstoff mit viskositätsregler
DE10028810A1 (de) Polyurethan-Zusammensetzungen auf der Basis von Polyester-Block-Copolymeren
DE102008025793A1 (de) Reaktive Klebstoffe mit sehr geringem Gehalt an monomeren Diisocyanaten
DE19957351A1 (de) Polyurethan-Zusammensetzungen mit niedrigem Gehalt an Isocyanatmonomeren
DE19947563A1 (de) Umesterungspolyole für Polyurethan-Prepolymere mit gezielt einstellbarer Viskosität
DE10055786A1 (de) Haftungsverstärker für monomerfreie reaktive Polyurethane
EP0746577B1 (de) einkomponenten-polyurethanklebstoffe
EP2386586B1 (de) PU-Klebstoff mit Fließgrenze
DE2415467B2 (de) Verwendung eines flüssigen, lösungsmittelfreien und wasserfreien Gemisches als Klebstoff
WO2009056375A1 (de) Modifizierte polyurethanklebstoffe
EP2620457A1 (de) Beschleunigte Durchhärtung von 1K-Polyurethanen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

8131 Rejection