WO2011044967A1 - Verfahren zum betreiben eines partikelfilters - Google Patents

Verfahren zum betreiben eines partikelfilters Download PDF

Info

Publication number
WO2011044967A1
WO2011044967A1 PCT/EP2010/005200 EP2010005200W WO2011044967A1 WO 2011044967 A1 WO2011044967 A1 WO 2011044967A1 EP 2010005200 W EP2010005200 W EP 2010005200W WO 2011044967 A1 WO2011044967 A1 WO 2011044967A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
conditioning step
filter
particle filter
internal combustion
Prior art date
Application number
PCT/EP2010/005200
Other languages
English (en)
French (fr)
Inventor
Günter Wenninger
Ronny Meissner
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to EP10771317.4A priority Critical patent/EP2488734B1/de
Priority to US13/501,778 priority patent/US8713913B2/en
Priority to CN201080046488.1A priority patent/CN102575541B/zh
Priority to JP2012533491A priority patent/JP2013507564A/ja
Publication of WO2011044967A1 publication Critical patent/WO2011044967A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0411Methods of control or diagnosing using a feed-forward control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating a particulate filter provided for filtering out particles contained in the exhaust gas of motor vehicle internal combustion engines.
  • particulate filters For filtering out particles in the exhaust gas of motor vehicle internal combustion engines, in particular diesel engines, the use of particulate filters is customary. Frequently used are wall-flowed particulate filters in honeycomb or sintered metal filter. Such filters generally allow removal of 90% or more of the particulate mass or number of particles contained in the exhaust gas.
  • the particles which are present essentially as soot particles in the exhaust gas, are filtered out due to a surface and / or depth filtration effect and accumulate over time in the particle filter.
  • the flow resistance of the particulate filter undesirably increases, which is why the accumulated soot particles must be removed from time to time by a regeneration process. This is usually done by a forced Rußabbrand at an elevated temperature of typically more than 600 ° C.
  • the need for such a regeneration process by thermal Rußabbrand is usually carried out by monitoring the pressure drop across the particulate filter or based on model calculations for the particle loading of the particulate filter.
  • it is disadvantageous if the behavior of the particulate filter with respect to the efficiency of particulate filtering, ie the degree of separation changes over the useful life of the particulate filter.
  • a changing degree of separation is disadvantageous, in particular if it is temporarily less than required or desired.
  • the object of the invention is to specify a method for operating a particulate filter provided for filtering out particles contained in the exhaust gas of motor vehicle internal combustion engines, in which the mentioned disadvantages are avoided.
  • a conditioning step is carried out in a new state of the particle filter such that the degree of separation of the particle filter for particles is increased compared to the value present in the new state.
  • the degree of separation of a new, usable particle filter is initially more or less significantly less than desirable and necessary for particle removal or particle reduction required during normal use.
  • the degree of separation proves to be not constant, but gradually increases with a new particulate filter at the beginning of its useful life. This is disadvantageous insofar as it is possible to fall below the prescribed or desired particulate reduction values especially at the beginning of the period of use.
  • the conditioning step in a new, ready-to-use particle filter before its intended use with the usual intended operation is made.
  • the production process for the particulate filter is completed and the particulate filter is ready for its use in the vehicle for the filtering of particles. Nevertheless, the Connect the conditioning step to the production process before commissioning the particle filter.
  • the degree of separation from a lower initial value to more than 70%, preferably to more than 90% and more preferably to more than 97% based on the particle mass or particle number of the filtering of particles during normal use of the Particulate filter is increased.
  • the conditioning step is carried out in such a way that the degree of separation of the particulate filter after completion of the conditioning step during the subsequent intended use remains substantially constant above a threshold value which is higher than the initial value.
  • the invention is advantageously applicable to porous or closed-cell filters with predominantly surface or depth filtration effect.
  • the invention is applicable to wall-flowed particle filter in honeycomb construction.
  • a flow through the porous channel walls caused by end closure of elongated inflow channels results in a filtration effect.
  • the invention is applicable to such so-called wall-flow filter types based on silicon carbide, cordierite and / or aluminum titanate.
  • the invention is also applicable to other types of filters, such as foam-like ceramic or metal-based filters or sintered metal filters.
  • the conditioning step for increasing and stabilizing the degree of separation is carried out according to the invention in particulate filters present in the new condition.
  • a new condition here is a state of the particulate filter after completion of the actual manufacturing process, after which the particulate filter is in usable form to understand.
  • a new condition is also to be understood as a condition in which the particle filter is present after completion of a cleaning process for the removal of accumulated ash during a longer period of use.
  • the conditioning step is carried out according to the invention for a particulate filter of this type before its intended use in conventional operation.
  • the particulate filter is used in the motor vehicle installed and connected to a corresponding internal combustion engine state for filtering exhaust gases from the engine.
  • These have a motor and / or operating point-dependent particle content of typically 0.1 g to 3 g per km of driving or about 1 mg to 100 mg per m 3 of exhaust gas.
  • the particles typically have a mean aerodynamic diameter of 50 nm to 120 nm.
  • Particles are solid particles.
  • the conditioning step comprises a passage of particle-containing gas through the particle filter such that at least a portion of the particles contained in the gas is filtered by the particle filter and stored in the particle filter.
  • the particle-containing gas essentially has particles in a size distribution, as they are also found during the intended use of the particulate filter for filtering engine exhaust gas. It is preferably provided that the particle filter is acted upon by a gas which has a relation to the value encountered in normal operation increased particle content. The particle filter is thus operated when carrying out the conditioning in a particle-rich special mode.
  • the conditioning step takes place at the
  • the conditioning step is preferably carried out before or immediately after a delivery of the corresponding vehicle to the customer.
  • it may be provided to carry out the conditioning step before the normal driving operation of the corresponding vehicle.
  • the conditioning step following installation of a particle filter cleaned in a separate ash cleaning process into the exhaust system or into the vehicle.
  • this is preferably realized by appropriate programming of an engine control unit. This is preferably programmed so that the engine operation is modified for a given initial running distance such that the conditioning is performed.
  • the conditioning step of the internal combustion engine when performing the Konditionier suits when connected to the engine state is provided in a further embodiment of the invention that when performing the conditioning step of the internal combustion engine is at least temporarily operated such that the exhaust gas emitted from the engine in the Compared to normal operation has increased particle content.
  • the particle content of the exhaust gas is increased by about a factor of 1, 1 to 10, more preferably by a factor of 1, 5 to 5 compared to the normal operation.
  • the conditioning step is carried out, the internal combustion engine is operated such that the exhaust gas emitted by the internal combustion engine has a particle content of more than 0.01 g per m 3 or a particle count of more than 5 ⁇ 10 7 per cm Has 3 exhaust.
  • the setting of an increased particle content can be influenced by the number of times and / or the times of the fuel injections in the desired sense. Additionally or alternatively, exhaust gas recirculation rate, boost pressure of a turbocharger, oil or coolant temperature can be influenced such that an increased particle content occurs in the exhaust gas.
  • the start of injection of a main fuel injection is preferably retarded by about 10 degrees crank angle.
  • the exhaust gas recirculation rate is preferably increased by more than 1%, particularly preferably by more than 5%.
  • a boost pressure reduction may be provided by preferably more than 5% compared to the normally set value. Furthermore, it is possible, preferably only for carrying out the conditioning step, to add particle-forming additives to the fuel and / or the engine oil.
  • the particle filter is connected to a vehicle-external conditioning device.
  • the particulate filter can be arranged in the exhaust system of the vehicle.
  • the conditioning step can also be carried out on a particulate filter arranged outside the vehicle.
  • the particle filter is connected, for example, to a liquid, gas or solid fuel burner or to a soot generator or a particle generator which generates a corresponding desired size spectrum of particles.
  • the execution of the conditioning step is thus on a Limited time limit.
  • the predetermined period of time is preferably less than one hour, more preferably less than 20 minutes.
  • a particle-containing gas is passed through the particle filter with particles having an aerodynamic diameter of on average less than 0.1 mm.
  • the particle-containing gas has particles with a diameter substantially smaller than 100 nm. As could be proven, a particularly effective increase or stabilization of the degree of separation can be achieved with such a particle-containing gas.
  • a particle quantity of more than 10 mg per liter of particle filter volume is filtered out by the particle filter and stored in the particle filter. It is preferred that after carrying out the conditioning step, a particle amount of more than 100 mg per liter of particulate filter volume, particularly preferably more than 500 mg per liter, filtered out by the particulate filter and stored in the particulate filter. As could be proven, this can be a particularly effective increase or stabilization of the
  • a particle-containing gas is used such that the particles stored in the particulate filter can be substantially removed during the intended use of the particulate filter.
  • the particulate filter for example, under the action of an elevated temperature, thermally decompose, wherein the decomposition products are removable.
  • the use of particles that can be removed again from the particle filter can be dispensed with if these are selected such that they do not impair the normal operation of the particle filter due to their permanent presence in the particle filter.
  • the particles may be solids from one or more of the Elements C, H, Al, Si, Ti, Fe, Cu, Pt, Pd, Ce, S, O, N, P, Zn, Ca, Na, Li, Ba, Cl, Rh, F.
  • Particularly preferred is an initial loading of the particulate filter by soot or soot-like particles.
  • 1 is a schematic representation of an internal combustion engine with attached particulate filter
  • Fig. 2 is a schematic sectional view of a particulate filter, in which
  • the inventive method is used and
  • Fig. 3 is a schematic representation of a particle generator
  • FIG. 1 shows an internal combustion engine 1 of a motor vehicle, not shown, with a connected particulate filter 5.
  • Internal combustion engine 1 may be, for example, of the type of a direct-injection, stoichiometric or lean-burn gasoline engine or a direct-injection diesel engine with 4 cylinders by way of example here.
  • the exhaust gas of the internal combustion engine 1 is supplied via an exhaust pipe 3 to the built-in a housing 4 particulate filter 5, which is part of an exhaust system 2 of the internal combustion engine 1.
  • a housing 4 particulate filter 5 which is part of an exhaust system 2 of the internal combustion engine 1.
  • Internal combustion engine 1 and the exhaust system 2 are provided or may be provided, not shown. It is understood, however, that the exhaust system 2 may comprise further components, such as sensors and catalysts, which may be upstream and / or downstream of the particulate filter 5.
  • the internal combustion engine 1 is designed such that it typically emits an exhaust gas with a particle content of up to 5 g per km of driving distance of the associated motor vehicle or about 50 mg per m 3 of exhaust gas.
  • a size distribution is the substantially present as soot particles present solid particles, which has a maximum at an aerodynamic diameter of about 80 nm.
  • a preferred embodiment of the particulate filter 5 is shown schematically in longitudinal section.
  • the particle filter 5 is formed as a so-called wall-flow particle filter with extending from an end-side inlet side 10 to an opposite end-side outlet side 11 slender and straight flow channels 6a, 6b.
  • the flow channels 6a, 6b extend parallel to one another, with adjacent flow channels being separated from one another by porous, gas-permeable walls 7.
  • the thickness of the walls 7 is preferably in the range of 0.2 mm and 0.4 mm.
  • the porosity is preferably between 30% and 70%, wherein a mean pore size between 1 ⁇ and 50 ⁇ is preferred.
  • the invention has proved to be particularly advantageous in particulate filters with a pore size of the walls of on average 20 ⁇ and less and with a porosity of more than 40%.
  • the walls 7 are preferably formed throughout the same porous.
  • the flow channels 6a, 6b have a square cross-section which remains constant over their length, wherein other cross-sectional shapes are likewise possible.
  • the cell density is preferably between 100 cpsi (cells per square inch) and 400 cpsi. Particularly preferred is a cell density of about 300 cpsi corresponding to about 47 cells per cm 2 .
  • the particle filter 5 has a cylindrical shape with a preferably over the length constant square cross-section, with other cross-sectional shapes are of course possible. Furthermore, the particle filter 5 can also be constructed from a plurality of similar segments arranged in rows and columns according to the form shown in FIG. 2, wherein the segments abut one another and are preferably connected to a ceramic adhesive.
  • the flow channels 6a, 6b are mutually provided on the inlet side 10 and the outlet side 1 1 with a gas-impermeable sealing plug 8. Apart from the stopper 8, they are designed to be freely flowed through viewed over their other axial course. On the inlet side 10 unlocked, open flow channels Form inlet channels 6a and on the outlet side 11 unlocked, open flow channels form outlet channels 6b. As a result of the exit-side closure of the inlet channels 6a through a respective sealing plug 8, exhaust gas entering the inlet channels 6a flows through the porous channel walls 7, particles which are contained in the exhaust gas being filtered out.
  • a catalytic effective coating 9 is applied to the walls 7 of some or all of the flow channels 6a, 6b.
  • the catalytic coating 9 is illustrative only of FIG. 2
  • the catalytic coating 9 is preferably continuous on the walls 7 of the respective flow channels and is itself gas permeable.
  • the catalytic coating 9 may be in the nature of a three-way catalyst coating, an oxidation catalytic effective
  • Coating one with respect to a nitrogen oxide reduction selectively effective SCR catalyst coating or in the manner of a nitrogen oxide storage catalyst coating in their familiar to those skilled, each usual meaning and expression be formed. It can also be a radial stratification of different
  • a nitrogen oxide storage catalyst coating can be applied to an SCR catalyst coating or, conversely, an SCR catalyst coating can be applied to a nitrogen oxide storage catalyst coating.
  • a partially differently formed in the axial direction sections coating is formed. In this way, an exhaust gas purification component with combined catalytic and filter effective function is formed.
  • the particle filter 5 in the present new state has a particle separation efficiency of less than 70% relative to the particle mass and / or the particle number of the exhaust gas typically emitted by the internal combustion engine 1 and flowing through the particle filter 5.
  • a new particulate filter it is not uncommon for a new particulate filter to have far lower degrees of separation of 50% or less after completion of the manufacturing process. In these cases, the invention proves to be particularly advantageous because such low degrees of separation result in an intolerably high particle emission at least at the beginning of the particle filter system. need to result.
  • a conditioning step is provided according to the invention.
  • the conditioning step is carried out by temporarily supplying an exhaust gas from the internal combustion engine 1 to the new particle filter 5 in the installed state shown in FIG. 1, which has a particle content which is increased in relation to the value normally present.
  • the particle content is increased by about two to five times the normal value.
  • the size distribution of the particles emitted by the internal combustion engine 1 is preferably substantially unchanged from the normal value.
  • the internal combustion engine 1 is operated temporarily in a particle-rich combustion mode.
  • the particle-rich combustion operation is preferably maintained until the degree of separation of the particle filter 5 has risen to a predefinable value of more than 70%, preferably more than 90% and particularly preferably more than 97%.
  • the corresponding required time span can be determined empirically in advance by tests and determined accordingly.
  • the fixed period of time can also be determined by the mass of the particles filtered out by the particle filter 5. Typically, it is sufficient to carry out the conditioning process until about 0.1 g to 1.0 g of particles per liter of particle filter volume are stored in the particle filter 5.
  • the admission of the particulate filter 5 with exhaust gas is preferably terminated.
  • the conditioning step is completed and the internal combustion engine 1 is operated normally again in subsequent operating phases. It can also be provided directly after the conditioning step or as soon as possible after completion of the conditioning step to carry out a forced particle filter regeneration by thermal Rußabbrand. As has been stated, even after a thermal particle filter regeneration in which the particles previously introduced into the particle filter 5 in the conditioning step, essentially in the form of soot, are at least largely removed again, the increased particle separation efficiency is at least approximately present.
  • the procedure described for conditioning the particulate filter 5 may be prior to delivery of a brand new vehicle or a vehicle with a
  • the conditioning is preferably carried out in a dedicated workshop. It can also be provided to carry out the conditioning step directly after a delivery of the vehicle while driving. This is preferably done automatically by a programmed by an engine control unit process. It may be provided to carry out the conditioning step following the first start or one of the first starts of the internal combustion engine 1 after vehicle delivery to the corresponding user. It is preferably provided, the
  • the conditioning step can also be carried out in the case of a particle filter 5 connected to a particle-external particle generator 12.
  • the particle generator 12 may be formed, for example, as a liquid, gas or solid fuel burner or as a soot generator. It is preferably provided to pressurize the particle filter 5 in the new state before installation into the vehicle with particle-containing gas of the particle generator 12.
  • the particle generator preferably supplies a particle-containing gas having a particle size spectrum similar to that of an internal combustion engine as explained above with reference to FIG. 1.
  • the conditioning step is preferably performed outside the vehicle following the manufacturing process of the particulate filter 5 or a cleaning process.
  • the conditioning step is terminated analogously as above in a vehicle-mounted state of the particulate filter when the degree of separation has risen to the desired value, or a sufficient amount of particulate matter in the particulate filter 5 is stored.
  • a regeneration process with thermal Rußabbrand may follow the conditioning step.
  • the thus preconditioned particulate filter 5 is then installed in the vehicle and this passed to its intended operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines zur Ausfilterung von im Abgas von Kraftfahrzeugverbrennungsmotoren enthaltenen Partikeln vorgesehenen Partikelfilters (5). Erfindungsgemäß ist vorgesehen, dass bei einem Neuzustand des Partikelfilters (5) ein Konditionierschritt durchgeführt wird, wobei der Konditionierschritt derart durchgeführt wird, dass der Abscheidegrad des Partikelfilters (5) für Partikel gegenüber dem im Neuzustand vorhandenen Wert erhöht wird.

Description

Verfahren zum Betreiben eines Partikelfilters
Die Erfindung betrifft ein Verfahren zum Betreiben eines zur Ausfilterung von im Abgas von Kraftfahrzeugverbrennungsmotoren enthaltenen Partikeln vorgesehenen Partikelfilters.
Zum Ausfiltern von Partikeln im Abgas von Kraftfahrzeugverbrennungsmotoren, insbesondere von Dieselmotoren, ist der Einsatz von Partikelfiltern gebräuchlich. Häufige Verwendung finden wanddurchströmte Partikelfilter in Wabenkörperbauform oder Sintermetallfilter. Derartige Filter ermöglichen im Allgemeinen die Entfernung von 90 % oder mehr der im Abgas enthaltenen Partikelmasse oder Partikelanzahl. Die im Wesentlichen als Rußpartikel im Abgas vorliegenden Partikel werden aufgrund eines Oberflächen- und/oder Tiefenfiltrationseffekts ausgefiltert und sammeln sich mit der Zeit im Partikelfilter an. Dadurch steigt der Strömungswiderstand des Partikelfilters in unerwünschter Weise an, weshalb die angesammelten Rußpartikel von Zeit zu Zeit durch einen Regenerationsvorgang entfernt werden müssen. Dies geschieht üblicherweise durch einen erzwungenen Rußabbrand bei einer erhöhten Temperatur von typischerweise mehr als 600 °C. Die Notwendigkeit eines solchen Regenerationsvorgangs durch thermischen Rußabbrand wird meist durch Überwachung des Druckverlustes über dem Partikelfilter oder anhand von Modellberechnungen für die Partikelbeladung des Partikelfilters durchgeführt. Insbesondere bei Anwendung eines Rechenmodells zur Ermittlung der Partikelbeladung ist es nachteilig, wenn das Verhalten des Partikelfilters in Bezug auf den Wirkungsgrad der Partikelausfilterung, d.h. den Abscheidegrad, sich über die Gebrauchszeit des Partikelfilters verändert. Auch aus Gründen der Betriebssicherheit ist ein sich verändernder Abscheidegrad von Nachteil, insbesondere, wenn er zeitweise geringer als erforderlich bzw. erwünscht ist. Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben eines zur Ausfilterung von im Abgas von Kraftfahrzeugverbrennungsmotoren enthaltenen Partikeln vorgesehenen Partikelfilters anzugeben, bei welchem die genannten Nachteile vermieden werden.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
Bei dem erfindungsgemäßen Verfahren zum Betreiben eines zur Ausfilterung von im Abgas von Kraftfahrzeugverbrennungsmotoren enthaltenen Partikeln vorgesehenen Partikelfilters wird bei einem Neuzustand des Partikelfilters ein Konditionierschritt derart durchgeführt, dass der Abscheidegrad des Partikelfilters für Partikel gegenüber dem im Neuzustand vorhandenen Wert erhöht wird. Wie die Erfinder festgestellt haben, ist in vielen Fällen der Abscheidegrad eines neuen, gebrauchsfähigen Partikelfilters zunächst mehr oder weniger deutlich geringer als wünschenswert und notwendig für eine beim normalen Gebrauch geforderte Partikelausfilterung bzw. Partikelverminderung. Zudem erweist sich der Abscheidegrad als nicht konstant, sondern erhöht sich allmählich bei einem neuen Partikelfilter zu Beginn seiner Gebrauchszeit. Dies ist insofern auch nachteilig, als speziell zu Beginn der Gebrauchszeit vorgeschriebene bzw. angestrebte Partikelverminderungswerte unterschritten werden können. Die zeitliche Drift erschwert zudem eine Abschätzung der Partikelbeladung. Zur Abschätzung bzw. Berechnung der Partikelbeladung vorgesehene Modelle versagen oder liefern ungenaue Ergebnisse. Dies erschwert insbesondere zu Beginn der Gebrauchszeit eine zuverlässige Bestimmung von Regenerationszeitpunkten. Insgesamt erweist sich der Betrieb eines Partikelfilters durch das von den Erfindern festgestellte Phänomen speziell zu Beginn seines Gebrauchs in nachteiliger Weise als unzuverlässig und schwer kalkulierbar. Diese Problematik wird durch das ebenfalls beobachtete, allmählich eintretende Stabilisieren in Bezug auf den Abscheidegrad nicht oder nur unwesentlich entschärft. Infolge des erfindungsgemäß vorgesehenen Konditionierschritts wird das nachteilige Phänomen eines im Neuzustand verminderten und im Laufe der Zeit zunehmenden Abscheidegrads zumindest weitgehend beseitigt.
Es ist vorgesehen, dass der Konditionierschritt bei einem neuen, einsatzbereiten Partikelfilter vor dessen bestimmungsgemäßen Gebrauch mit der üblicherweise vorgesehenen Betriebsweise vorgenommen wird. Vor Durchführung des Konditionierschritts ist der Fertigungsprozess für den Partikelfilter abgeschlossen und der Partikelfilter liegt bereit für seinen Einsatz im Fahrzeug zur Ausfilterung von Partikeln. Gleichwohl kann sich der Konditionierschritt vor Inbetriebnahme des Partikelfilters an den Fertigungsprozess anschließen. Es ist vorgesehen, dass nach Abschluss des Konditionierschrittes der Abscheidegrad von einem niedrigeren Anfangswert auf mehr 70 %, bevorzugt auf mehr als 90 % und besonders bevorzugt auf mehr als 97 % bezogen auf die Partikelmasse oder die Partikelanzahl der Ausfilterung von Partikeln beim bestimmungsgemäßen normalen Gebrauch des Partikelfilters erhöht ist. Dabei ist es insbesondere vorgesehen, dass der Konditionierschritt derart vorgenommen wird, dass der Abscheidegrad des Partikelfilters nach Abschluss des Konditionierschrittes beim anschließenden bestimmungsgemäßen Gebrauch im Wesentlich konstant oberhalb eines gegenüber dem Anfangswert erhöhten Schwellenwerts bleibt.
Die Erfindung ist mit Vorteil anwendbar auf offenporige oder geschlossenporige Filter mit überwiegend Oberflächen- oder Tiefenfiltrationswirkung. Insbesondere ist die Erfindung anwendbar auf wanddurchströmte Partikelfilter in Wabenkörperbauform. Bei diesen Partikelfiltern resultiert eine durch endseitigen Verschluss von langgestreckten Einströmkanälen zwangsweise herbeigeführte Durchströmung der porösen Kanalwände in einem Filtrationseffekt. In besonders vorteilhafter Weise ist die Erfindung anwendbar auf solche so genannten wall-flow-Filtertypen auf Basis Siliziumcarbid, Cordierit- und/oder Alumini- umtitanat. Die Erfindung ist jedoch auch anwendbar auf andere Filtertypen, wie beispielsweise schaumartige Filter auf Keramik- oder Metallbasis oder auf Sintermetallfilter.
Der Konditionierschritt zu Erhöhung und Stabilisierung des Abscheidegrads wird erfindungsgemäß bei im Neuzustand vorliegenden Partikelfiltern vorgenommen. Unter einem Neuzustand ist hier ein Zustand des Partikelfilters nach Abschluss des eigentlichen Fertigungsprozesses, nach welchem der Partikelfilter in gebrauchsfähiger Form vorliegt, zu verstehen. Als Neuzustand soll auch ein Zustand verstanden werden, in welchem der Partikelfilter nach Abschluss eines Reinigungsprozesses zur Entfernung von sich im Laufe einer längeren Gebrauchszeit angesammelten Ascheablagerungen vorliegt.
Der Konditionierschritt wird erfindungsgemäß für einen solcherart vorliegenden Partikelfilter vor seinem in üblicher Betriebsweise vorgesehenen Einsatz vorgenommen. Bei diesem bestimmungsgemäßen Einsatz dient der Partikelfilter bei im Kraftfahrzeug eingebauten und an einen entsprechenden Verbrennungsmotor angeschlossenen Zustand zur Filterung von Abgasen des Motors. Diese weisen einen motor- und/oder betriebspunktabhängigen Partikelgehalt von typischerweise 0,1 g bis 3 g je km Fahr- strecke bzw. etwa 1 mg bis 100 mg je m3 Abgas auf. Dabei weisen die Partikel bei einer Anzahl von etwa 106 bis 108 je cm3 Abgas typischerweise einen mittleren aerodynamischen Durchmesser von 50 nm bis 120 nm auf. Als Partikel sind dabei Feststoffpartikel zu verstehen. Die vorstehend genannten Werte in Bezug auf Abscheidegrade im
bestimmungsgemäßen üblichen Einsatz des Partikelfilters beziehen sich auf diese Verhältnisse.
In Ausgestaltung der Erfindung umfasst der Konditionierschritt ein Durchleiten von partikelhaltigem Gas durch den Partikelfilter derart, dass wenigstens ein Teil der im Gas enthaltenen Partikel vom Partikelfilter ausgefiltert und im Partikelfilter gespeichert wird. Bevorzugt weist das partikelhaltige Gas im Wesentlichen Partikel in einer Größenverteilung auf, wie sie auch beim bestimmungsgemäßen Gebrauch des Partikelfilters zur Filterung von Motorenabgas anzutreffen sind. Dabei ist es bevorzugt vorgesehen, dass der Partikelfilter mit einem Gas beaufschlagt wird, welches ein gegenüber dem im normalen Betrieb anzutreffenden Wert erhöhten Partikelgehalt aufweist. Der Partikelfilter wird somit bei Durchführung der Konditionierung in einer partikelreichen Sonderbetriebsart betrieben.
In weiterer Ausgestaltung der Erfindung erfolgt der Konditionierschritt bei an den
Verbrennungsmotor angeschlossenem Zustand des Partikelfilters. Der Konditionierschritt wird bevorzugt vor oder auch unmittelbar nach einer Auslieferung des entsprechenden Fahrzeugs an den Kunden durchgeführt. Insbesondere kann vorgesehen sein, den Konditionierschritt vor dem normalen Fahrbetrieb des entsprechenden Fahrzeugs durchzuführen. Ebenfalls möglich ist die Durchführung des Konditionierschritts im Anschluss an einen Einbau eines in einem separaten Aschereinigungsprozess gereinigten Partikelfilters in die Abgasanlage bzw. ins Fahrzeug. Im Falle einer Durchführung des Konditionierschritts nach Fahrzeugauslieferung wird dies bevorzugt durch entsprechende Programmierung eines Motorsteuergeräts realisiert. Dieses ist vorzugsweise so programmiert, dass der Motorbetrieb für eine vorgegebene Anfangslaufstrecke derart modifiziert ist, dass die Konditionierung durchgeführt wird.
Insbesondere bei Durchführung des Konditionierschritts bei an den Verbrennungsmotor angeschlossenem Zustand ist in weiterer Ausgestaltung der Erfindung vorgesehen, dass bei Durchführung des Konditionierschrittes der Verbrennungsmotor wenigstens zeitweise derart betrieben wird, dass das vom Verbrennungsmotor abgegebene Abgas einen im Vergleich zum normalen Betrieb erhöhten Partikelgehalt aufweist. Bevorzugt ist der Partikelgehalt des Abgases etwa um den Faktor 1 ,1 bis 10, besonders bevorzugt um den Faktor 1 ,5 bis 5 gegenüber dem normalen Betrieb erhöht. Insbesondere ist in weiterer Ausgestaltung der Erfindung vorgesehen, dass bei Durchführung des Konditionier- schrittes der Verbrennungsmotor derart betrieben wird, dass das vom Verbrennungsmotor abgegebene Abgas einen Partikelgehalt von mehr als 0,01 g je m3 oder eine Partikelanzahl von mehr als 5x107 je cm3 Abgas aufweist. Damit kann der Konditionier- schritt in vergleichsweise kurzer Zeit durchgeführt und abgeschlossen werden. Die Einstellung eines erhöhten Partikelgehalts kann dabei durch die Anzahl der und/oder die Zeitpunkte der Kraftstoffeinspritzungen in dem gewünschten Sinne beeinflusst werden. Zusätzlich oder alternativ können Abgasrückführungsrate, Ladedruck eines Turboladers, Öl- oder Kühlmitteltemperatur derart beeinflusst werden, dass ein erhöhter Partikelgehalt im Abgas auftritt. Der Einspritzbeginn einer Kraftstoffhaupteinspritzung wird bevorzugt um etwa 10 Grad Kurbelwinkel nach spät verlegt. Die Abgasrückführrate wird bevorzugt um mehr als 1 %, besonders bevorzugt um mehr als 5 % erhöht. Zur Erhöhung des
Partikelgehalts kann eine Ladedruckabsenkung um bevorzugt mehr als 5 % gegenüber dem normalerweise eingestellten Wert vorgesehen sein. Weiterhin können, bevorzugt lediglich für die Durchführung des Konditionierschrittes, partikelbildende Zusätze dem Kraftstoff und/oder dem Motorenöl zugesetzt sein.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass zur Durchführung des Konditionierschritts der Partikelfilter an eine fahrzeugexterne Konditioniervorrichtung angeschlossen wird. Der Partikelfilter kann dabei in der Abgasanlage des Fahrzeugs angeordnet sein. Der Konditionierschritt kann jedoch auch an einem außerhalb des Fahrzeugs angeordneten Partikelfilter vorgenommen werden. Zur Durchführung des Konditionierschritts wird der Partikelfilter beispielsweise an einen Flüssig-, Gas- oder Feststoffbrenner oder an einen Rußgenerator oder einen Partikelgenerator angeschlossen, welcher ein entsprechend gewünschtes Größenspektrum von Partikeln erzeugt. Damit steht bei Auslieferung des Fahrzeugs oder nach Einbau eines gereinigten bzw. getauschten Partikelfilters ein Partikelfilter zur Verfügung, welcher sofort über einen stabil hohen Partikel-Abscheidegrad verfügt.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass bei Durchführung des Konditionierschrittes partikelhaltiges Gas eine vorgebbare Zeitspanne durch den
Partikelfilter geleitet wird. Die Durchführung des Konditionierschritts ist somit auf eine vorgegebene Zeitspanne begrenzt. Die vorgegebene Zeitspanne beträgt bevorzugt weniger als eine Stunde, besonders bevorzugt weniger als 20 Minuten.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass bei der Durchführung des Konditionierschritts ein partikelhaltiges Gas mit Partikeln mit einem aerodynamischen Durchmesser von im Mittel weniger als 0,1 mm durch den Partikelfilter geleitet wird.
Insbesondere ist vorgesehen, dass das partikelhaltige Gas Partikel mit einem im Wesentlichen geringeren Durchmesser als 100 nm aufweist. Wie nachgewiesen werden konnte, lässt sich mit einem solchen partikelhaltigen Gas eine besonders wirksame Erhöhung bzw. Stabilisierung des Abscheidegrads erzielen.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass nach Durchführung des Konditionierschritts eine Partikelmenge von mehr als 10 mg je Liter Partikelfiltervolumen vom Partikelfilter ausgefiltert und im Partikelfilter gespeichert ist. Bevorzugt ist es, dass nach Durchführung des Konditionierschritts eine Partikelmenge von mehr als 100 mg je Liter Partikelfiltervolumen, besonders bevorzugt mehr als 500 mg je Liter vom Partikelfilter ausgefiltert und im Partikelfilter gespeichert ist. Wie nachgewiesen werden konnte, lässt sich dadurch eine besonders wirksame Erhöhung bzw. Stabilisierung des
Abscheidegrads erzielen.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass bei der Durchführung des Konditionierschritts ein partikelhaltiges Gas derart eingesetzt wird, dass die im Partikelfilter gespeicherten Partikel während dem bestimmungsgemäßen Einsatz des Partikelfilters im Wesentlichen entfernt werden können. Bevorzugt handelt es sich um Partikel, welche anschließend beim Gebrauch des Partikelfilters beispielsweise durch Aufheizen auf bevorzugt über 250 °C und/oder durch Reaktion mit im Motorenabgas enthaltenen Bestandteilen zu flüchtigen Produkten entfernt werden können. Es können Feststoffpartikel eingesetzt werden, welche sich beispielsweise durch Sublimation verflüchtigen können. Es können auch Feststoffpartikel eingesetzt werden, welche sich beim
bestimmungsgemäßen Gebrauch des Partikelfilters, beispielsweise unter Einwirkung einer erhöhten Temperatur, thermisch zersetzen, wobei die Zersetzungsprodukte entfernbar sind. Es kann jedoch auf den Einsatz von wieder aus dem Partikelfilter entfernbaren Partikeln verzichtet werden, wenn diese so gewählt werden, dass sie den normalen Betrieb des Partikelfilters durch ihre bleibende Anwesenheit im Partikelfilter nicht beeinträchtigen. Die Partikel können aus Feststoffen eines oder mehrerer der Elemente C, H, AI, Si, Ti, Fe, Cu, Pt, Pd, Ce, S, O, N, P, Zn, Ca, Na, Li, Ba, Cl, Rh, F gebildet sein. Besonders bevorzugt ist eine anfängliche Beladung des Partikelfilters durch Ruß oder rußähnliche Partikel.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen veranschaulicht und werden nachfolgend beschrieben. Dabei sind die vorstehend genannten und nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Merkmalskombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Dabei zeigen:
Fig. 1 eine schematische Darstellung eines Verbrennungsmotors mit angeschlossenem Partikelfilter,
Fig. 2 eine schematische Schnitt-Darstellung eines Partikelfilters, bei welchem
bevorzugt das erfindungsgemäße Verfahren zum Einsatz kommt und
Fig. 3 eine schematische Darstellung eines an einen Partikelgenerator
angeschlossenen Partikelfilters.
Die schematische Darstellung von Fig. 1 zeigt einen Verbrennungsmotor 1 eines nicht dargestellten Kraftfahrzeugs mit einem angeschlossenen Partikelfilter 5. Der
Verbrennungsmotor 1 kann dabei beispielsweise vom Typ eines direkteinspritzenden, stöchiometrisch- oder magerbetriebsfähigen Ottomotors oder eines direkteinspritzenden Dieselmotors mit hier beispielhaft 4 Zylindern sein. Das Abgas des Verbrennungsmotors 1 wird über eine Abgasleitung 3 dem in einem Gehäuse 4 eingebauten Partikelfilter 5 zugeführt, welcher Bestandteil einer Abgasanlage 2 des Verbrennungsmotors 1 ist. Der Übersichtlichkeit halber sind weitere Komponenten, welche zum Betrieb des
Verbrennungsmotors 1 und der Abgasanlage 2 vorgesehen sind oder vorgesehen sein können, nicht eingezeichnet. Es versteht sich jedoch, dass die Abgasanlage 2 weitere Bauteile, wie beispielsweise Sensoren und Katalysatoren aufweisen kann, welche dem Partikelfilter 5 vor- und/oder nachgeschaltet sein können.
Der Verbrennungsmotor 1 ist dabei derart ausgebildet, dass er typischerweise ein Abgas mit einem Partikelgehalt von bis zu 5 g je km Fahrstrecke des zugehörigen Kraftfahrzeugs bzw. etwa 50 mg je m3 Abgas abgibt. Typischerweise ist eine Größenverteilung der im Wesentlichen als Rußpartikel vorliegenden Feststoffpartikel vorhanden, welches ein Maximum bei einem aerodynamischen Durchmesser von etwa 80 nm aufweist.
In Fig. 2 ist eine bevorzugte Ausführungsform des eingesetzten Partikelfilters 5 schematisch im Längsschnitt dargestellt. Der Partikelfilter 5 ist als so genannter wall-flow-Partikel- filter mit sich von einer stirnseitigen Eintrittsseite 10 zu einer gegenüberliegenden stirnseitigen Austrittseite 11 erstreckenden schlanken und gerade verlaufenden Strömungskanälen 6a, 6b ausgebildet. Dabei sind der Übersichtlichkeit halber nur einige einer Vielzahl von Strömungskanälen 6a, 6b dargestellt. Die Strömungskanäle 6a, 6b verlaufen parallel zueinander, wobei benachbarte Strömungskanäle durch poröse, gasdurchlässige Wände 7 voneinander getrennt sind. Die Dicke der Wände 7 liegt bevorzugt im Bereich von 0,2 mm und 0,4 mm. Die Porosität liegt bevorzugt zwischen 30 % und 70 %, wobei eine mittlere Porengröße zwischen 1 μηι und 50 μιη bevorzugt ist. Die Erfindung hat sich als besonders vorteilhaft bei Partikelfiltern mit einer Porengröße der Wände von im Mittel 20 μιτι und weniger und mit einer Porosität von mehr als 40 % erwiesen. Die Wände 7 sind vorzugsweise durchgehend gleichartig porös ausgebildet.
Die Strömungskanäle 6a, 6b weisen vorliegend einen über ihre Länge gleichbleibenden, quadratischen Querschnitt auf, wobei andere Querschnittsformen ebenfalls möglich sind. In einer nicht dargestellten Draufsicht auf die Eintrittsseite 10 oder die Austrittsseite 1 1 ergibt sich dabei ein Bild von Zellen, wobei die Zelldichte bevorzugt zwischen 100 cpsi (cells per square inch) und 400 cpsi liegt. Besonders bevorzugt ist eine Zelldichte von ca. 300 cpsi entsprechend etwa 47 Zellen je cm2.
Der Partikelfilter 5 weist eine zylindrische Form mit einem vorzugsweise über die Länge gleichbleibenden quadratischen Querschnitt auf, wobei andere Querschnittsformen natürlich möglich sind. Weiterhin kann der Partikelfilter 5 auch aus einer Mehrzahl von in Reihen und Spalten angeordneten gleichartigen Segmenten entsprechend der in Fig. 2 dargestellten Form aufgebaut sein, wobei die Segmente aneinander anliegen und vorzugsweise mit einem keramischen Kleber verbunden sind.
Die Strömungskanäle 6a, 6b sind wechselseitig an der Eintrittsseite 10 und der Austrittsseite 1 1 mit einem gasundurchlässigen Verschlussstopfen 8 versehen. Abgesehen vom Verschlussstopfen 8 sind sie über ihren sonstigen axialen Verlauf gesehen frei durchströmbar ausgebildet. An der Eintrittsseite 10 unverschlossene, offene Strömungskanäle bilden Eintrittskanäle 6a und an der Austrittsseite 11 unverschlossene, offene Strömungskanäle bilden Austrittskanäle 6b. Infolge des austrittsseitigen Verschlusses der Eintrittskanäle 6a durch einen jeweiligen Verschlussstopfen 8 strömt in die Eintrittskanäle 6a eintretendes Abgas durch die porösen Kanalwände 7, wobei im Abgas enthaltene Partikel ausgefiltert werden.
Es ist vorzugsweise vorgesehen, dass eine katalytische wirksame Beschichtung 9 auf die Wände 7 einiger oder aller Strömungskanäle 6a, 6b aufgebracht ist. In dem in Fig. 2 dargestellten Fall ist die katalytische Beschichtung 9 beispielhaft lediglich auf den
Wänden 7 der Eintrittskanäle 6a vorgesehen. Die katalytische Beschichtung 9 ist vorzugsweise durchgehend auf den Wänden 7 der entsprechenden Strömungskanäle vorhanden und selbst gasdurchlässig. Die katalytische Beschichtung 9 kann in der Art einer Dreiwege-Katalysatorbeschichtung, einer oxidationskatalytisch wirksamen
Beschichtung, einer in Bezug auf eine Stickoxidverminderung selektiv wirksamen SCR- Katalysatorbeschichtung oder in der Art einer Stickoxid-Speicherkatalysatorbeschichtung in ihrer dem Fachmann geläufigen, jeweiligen üblichen Bedeutung und Ausprägung ausgebildet sein. Dabei kann auch eine radiale Schichtung von unterschiedlichen
Beschichtungsformen vorteilhaft sein, wodurch eine kombinierte Wirkung ermöglicht ist. Beispielsweise kann eine Stickoxid-Speicherkatalysatorbeschichtung auf einer SCR- Katalysatorbeschichtung oder umgekehrt eine SCR-Katalysatorbeschichtung auf einer Stickoxid-Speicherkatalysatorbeschichtung aufgebracht sein. Ebenfalls möglich ist eine in axialer Richtung abschnittsweise unterschiedlich ausgebildete Beschichtung. Auf diese Weise wird ein Abgasreinigungsbauteil mit kombinierter katalytischer und filterwirksamer Funktion gebildet.
Nachfolgend wird davon ausgegangen, dass ein fabrikneuer oder ein frisch in einem Aschereinigungsprozess gereinigter gebrauchsfertiger Partikelfilter 5 vorliegt. Weiterhin wird davon ausgegangen, dass der Partikelfilter 5 in dem vorliegenden Neuzustand ein Partikel-Abscheidegrad von weniger als 70 % bezogen auf die Partikelmasse und/oder die Partikelanzahl des typischerweise vom Verbrennungsmotor 1 abgegebenem und den Partikelfilter 5 durchströmenden Abgases aufweist. Es ist jedoch nicht ungewöhnlich, dass bei einem neuen Partikelfilter nach Abschluss des Fertigungsprozesses noch weitaus geringere Abscheidgrade von 50 % oder weniger vorhanden sind. In diesen Fällen erweist sich die Erfindung als ganz besonders vorteilhaft, da solch niedrige Abscheidegrade eine untolerierbar hohe Partikelemission wenigstens zu Beginn des Partikelfilterge- brauchs zur Folge haben. Um diesen typischerweise im Neuzustand gegenüber dem erforderlichen und erwünschten Wert mehr oder weniger stark verminderten Abscheidegrad zu erhöhen, ist erfindungsgemäß ein Konditionierschritt vorgesehen. Vorliegend erfolgt der Konditionierschritt dadurch, dass dem neuen Partikelfilter 5 in dem in Fig. 1 dargestellten eingebauten Zustand vom Verbrennungsmotor 1 vorübergehend ein Abgas zugeführt wird, welches einen Partikelgehalt aufweist, der gegenüber dem normalerweise vorhandenen Wert erhöht ist. Bevorzugt ist der Partikelgehalt um etwa das Zweifache bis Fünffache gegenüber dem normalen Wert erhöht. Dabei ist die Größenverteilung der vom Verbrennungsmotor 1 abgegebenen Partikel bevorzugt im Wesentlichen gegenüber dem normalen Wert unverändert. Hierzu wird der Verbrennungsmotor 1 vorrübergehend in einem partikelreichen Verbrennungsmodus betrieben. Der partikelreiche Verbrennungsbetrieb wird bevorzugt solange aufrechterhalten, bis der Abscheidegrad des Partikelfilters 5 auf einen vorgebbaren Wert von mehr als 70 %, bevorzugt mehr als 90 % und besonders bevorzugt mehr als 97 % angestiegen ist. Die entsprechende erforderliche Zeitspanne kann durch Versuche vorab empirisch ermittelt und dementsprechend festgelegt sein. Die festgelegte Zeitspanne kann auch durch die Masse der vom Partikelfilter 5 ausgefilterten Partikel festgelegt sein. Typischerweise ist es ausreichend, den Konditionier- vorgang solange durchzuführen, bis etwa 0,1 g bis 1 , 0 g Partikel je Liter Partikelfiltervolumen im Partikelfilter 5 gespeichert sind.
Nachdem der gewünschte Abscheidegrad infolge der Beaufschlagung mit vergleichsweise partikelreichem Abgas erreicht ist, wird die Beaufschlagung des Partikelfilters 5 mit Abgas vorzugsweise beendet. Der Konditionierschritt ist damit abgeschlossen und der Verbrennungsmotor 1 wird in anschließenden Betriebsphasen wieder normal betrieben. Es kann auch vorgesehen sein, direkt im Anschluss an den Konditionierschritt oder sobald als möglich nach Beendigung des Konditionierschrittes eine erzwungene Partikelfilterregeneration durch thermischen Rußabbrand durchzuführen. Wie festgestellt wurde, ist auch nach einer thermischen Partikelfilterregeneration, bei welchem die zuvor im Konditionierschritt im Wesentlichen in Form von Ruß in den Partikelfilter 5 eingebrachten Partikel wieder wenigstens größtenteils entfernt werden, der erhöhte Partikel-Abscheidegrad wenigstens annähernd vorhanden.
Die beschriebene Vorgehensweise zur Konditionierung des Partikelfilters 5 kann vor einer Auslieferung eines fabrikneuen Fahrzeugs oder eines Fahrzeugs mit einem
beispielsweise durch Tausch eingesetzten neuen Partikelfilters vorgenommen werden. Bevorzugt wird die Konditionierung in einer hierzu vorgesehenen Werkstatt vorgenommen. Es kann auch vorgesehen sein, den Konditionierschritt direkt im Anschluss an eine Auslieferung des Fahrzeugs im Fahrbetrieb vorzunehmen. Dies wird bevorzugt durch einen von einem Motorsteuergerät programmierten Ablauf automatisiert vorgenommen. Es kann vorgesehen sein, den Konditionierschritt im Anschluss an den ersten Start oder einer der ersten Starts des Verbrennungsmotors 1 nach Fahrzeugauslieferung an den entsprechenden Benutzer durchzuführen. Dabei ist bevorzugt vorgesehen, den
Konditionierschritt innerhalb einer möglichst zusammenhängenden Fahrstrecke von ca. 10 km durchzuführen.
Wie in Fig. 3 schematisch dargestellt, kann der Konditionierschritt auch bei einem an einen fahrzeugexternen Partikelgenerator 12 angeschlossenen Partikelfilter 5 vorgenommen werden. Der Partikelgenerator 12 kann beispielsweise als Flüssig-, Gas- oder Feststoffbrenner oder als Rußgenerator ausgebildet sein. Es ist bevorzugt vorgesehen, den Partikelfilter 5 im Neuzustand vor Einbau ins Fahrzeug mit partikelhaltigem Gas des Partikelgenerators 12 zu beaufschlagen. Der Partikelgenerator liefert bevorzugt ein partikelhaltiges Gas mit einem Partikelgrößenspektrum ähnlich dem eines Verbrennungsmotors wie oben anhand Fig. 1 erläutert. Der Konditionierschritt wird bevorzugt außerhalb des Fahrzeugs im Anschluss an den Fertigungsprozess des Partikelfilters 5 oder einen Reinigungsprozess vorgenommen. Der Konditionierschritt wird analog wie oben bei einem im Fahrzeug eingebauten Zustand des Partikelfilters beendet, wenn der Abscheidegrad auf den gewünschten Wert angestiegen ist, bzw. eine hierfür ausreichende Partikelmenge im Partikelfilter 5 eingelagert ist. Insbesondere im Falle einer Beaufschlagung mit Rußpartikeln kann sich an den Konditionierschritt ein Regenerationsvorgang mit thermischem Rußabbrand anschließen. Der solcherart vorkonditionierte Partikelfilter 5 wird sodann ins Fahrzeug eingebaut und dieses seinem bestimmungsgemäßen Betrieb übergeben.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines zur Ausfilterung von im Abgas von Kraftfahrzeugverbrennungsmotoren enthaltenen Partikeln vorgesehenen Partikelfilters (5), bei welchem bei einem Neuzustand des Partikelfilters (5) ein Konditionierschritt durchgeführt wird, wobei der Konditionierschritt derart durchgeführt wird, dass der Abscheidegrad des Partikelfilters (5) für Partikel gegenüber dem im Neuzustand vorhandenen Wert erhöht wird.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
der Konditionierschritt ein Durchleiten von partikelhaltigem Gas durch den Partikelfilter (5) derart umfasst, dass wenigstens ein Teil der im Gas enthaltenen Partikel vom Partikelfilter (5) ausgefiltert und im Partikelfilter (5) gespeichert werden.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
der Konditionierschritt bei an den Verbrennungsmotor (1) angeschlossenem Zustand des Partikelfilters (5) erfolgt.
4. Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass
bei Durchführung des Konditionierschrittes der Verbrennungsmotor (1) wenigstens zeitweise derart betrieben wird, dass das vom Verbrennungsmotor (1) abgegebene Abgas einen im Vergleich zum normalen Betrieb erhöhten Partikelgehalt aufweist.
5. Verfahren nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
bei Durchführung des Konditionierschrittes der Verbrennungsmotor (1) derart betrieben wird, dass das vom Verbrennungsmotor (1) abgegebene Abgas einen Partikelgehalt von mehr als 0,01 g je m3 aufweist.
6. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
zur Durchführung des Konditionierschritts der Partikelfilter (5) an eine fahrzeugexterne Konditioniervorrichtung angeschlossen wird.
7. Verfahren nach einem der Ansprüche 2 bis 6,
dadurch gekennzeichnet, dass
bei Durchführung des Konditionierschrittes partikelhaltiges Gas eine vorgebbare Zeitspanne durch den Partikelfilter (5) geleitet wird.
8. Verfahren nach einem der Ansprüche 2 bis 7,
dadurch gekennzeichnet, dass
bei der Durchführung des Konditionierschritts ein partikelhaltiges Gas mit Partikeln mit einem aerodynamischen Durchmesser von im Mittel weniger als 0,1 mm durch den Partikelfilter (5) geleitet wird.
9. Verfahren nach einem der Ansprüche 2 bis 8,
dadurch gekennzeichnet, dass
nach Durchführung des Konditionierschritts eine Partikelmenge von mehr als 10 mg je Liter Partikelfiltervolumen vom Partikelfilter (5) ausgefiltert und im Partikelfilter (5) gespeichert ist.
10. Verfahren nach einem der Ansprüche 2 bis 9,
dadurch gekennzeichnet, dass
bei der Durchführung des Konditionierschritts ein partikelhaltiges Gas derart eingesetzt wird, dass die im Partikelfilter (5) gespeicherten Partikel während dem bestimmungsgemäßen Einsatz des Partikelfilters (5) im Wesentlichen entfernt werden können.
PCT/EP2010/005200 2009-10-16 2010-08-25 Verfahren zum betreiben eines partikelfilters WO2011044967A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10771317.4A EP2488734B1 (de) 2009-10-16 2010-08-25 Verfahren zum betreiben eines partikelfilters
US13/501,778 US8713913B2 (en) 2009-10-16 2010-08-25 Method for operating a particle filter
CN201080046488.1A CN102575541B (zh) 2009-10-16 2010-08-25 用于运行微粒滤清器的方法
JP2012533491A JP2013507564A (ja) 2009-10-16 2010-08-25 パティキュレートフィルタの作動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009049624A DE102009049624A1 (de) 2009-10-16 2009-10-16 Verfahren zum Betreiben eines Partikelfilters
DE102009049624.6 2009-10-16

Publications (1)

Publication Number Publication Date
WO2011044967A1 true WO2011044967A1 (de) 2011-04-21

Family

ID=43087005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/005200 WO2011044967A1 (de) 2009-10-16 2010-08-25 Verfahren zum betreiben eines partikelfilters

Country Status (6)

Country Link
US (1) US8713913B2 (de)
EP (1) EP2488734B1 (de)
JP (1) JP2013507564A (de)
CN (1) CN102575541B (de)
DE (1) DE102009049624A1 (de)
WO (1) WO2011044967A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071961A1 (en) * 2012-11-09 2014-05-15 Volvo Truck Corporation A method of conditioning a particle filter
EP2602462B1 (de) * 2011-12-09 2017-01-04 Peugeot Citroën Automobiles Sa Reduzierung der Emissionen des Verbrennungsmotors
WO2019092187A1 (de) * 2017-11-09 2019-05-16 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage für ein kraftfahrzeug, kraftfahrzeug mit einer solchen sowie verfahren zum konditionieren einer abgasanlage
WO2019092186A1 (de) * 2017-11-09 2019-05-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur einbringung von aschepartikeln in eine abgasanlage eines kraftfahrzeugs
DE102018207831A1 (de) * 2018-05-18 2019-11-21 Bayerische Motoren Werke Aktiengesellschaft Abgasreinigungsanlage für eine Brennkraftmaschine
AT521448A1 (de) * 2018-06-28 2020-01-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung II

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919106B2 (en) * 2012-09-06 2014-12-30 Daimler Ag Method for operating a motor vehicle internal combustion engine with an exhaust particle filter
JP6202049B2 (ja) * 2014-07-08 2017-09-27 トヨタ自動車株式会社 内燃機関のフィルタ故障診断装置
CN106050372A (zh) * 2016-07-15 2016-10-26 上汽通用汽车有限公司 一种车用集成颗粒物捕集的三元催化器
DE102016217359A1 (de) 2016-09-12 2018-03-15 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines zur Ausfilterung von im Abgas eines Ottomotors enthaltenen Partikeln vorgesehenen Ottopartikelfilters
DE102017205390A1 (de) * 2017-03-30 2018-07-12 Audi Ag Verfahren zum Betreiben eines Partikelfilters
DE102017117453B4 (de) * 2017-08-02 2022-01-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Erzeugen einer Initialbeladung eines Partikelfilters
US10794309B2 (en) 2017-10-18 2020-10-06 Ford Global Technologies, Llc Methods and systems for a particulate filter
DE102017218574A1 (de) * 2017-10-18 2019-04-18 Ford Global Technologies, Llc Verfahren zur Vorbehandlung eines Partikelfilters mit einer Zusammensetzung, Partikelfilter und Motoranordnung
DE102017218572A1 (de) * 2017-10-18 2019-04-18 Ford Global Technologies, Llc Verfahren zur Vorbehandlung eines Partikelfilters
DE102017218573A1 (de) * 2017-10-18 2019-04-18 Ford Global Technologies, Llc Verfahren zur Vorbehandlung eines Partikelfilters, Partikelfilter und Motoranordnung
DE102017219940A1 (de) * 2017-11-09 2019-05-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Partikelfilters
US20200378293A1 (en) * 2018-02-19 2020-12-03 Cummins Emission Solutions Inc. Improved diesel particulate filter linearity with thin ash layer
DE102018114337A1 (de) 2018-06-15 2019-12-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Abgasanlage eines Verbrennungsmotors
AT521454B1 (de) * 2018-06-28 2022-04-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung I
DE102018212255A1 (de) * 2018-07-24 2020-01-30 Robert Bosch Gmbh Verfahren zur Behandlung eines Partikelfilters und Partikelfilter für eine Otto-Brennkraftmaschine
EP3680460A1 (de) * 2019-01-14 2020-07-15 AVL Tippelmann GmbH Verfahren und eine vorrichtung zum vorbeladen eines partikelfilters einer brennkraftmaschine sowie partikelfilter
CN113423925B (zh) * 2019-02-15 2024-04-05 康明斯排放处理公司 提高柴油和汽油颗粒过滤器的分级效率的方法和装置
EP3808948A1 (de) * 2019-10-16 2021-04-21 Volvo Car Corporation Verbessertes vorkonditionierungsverfahren für partikelfilter
DE102020128752A1 (de) 2020-11-02 2022-05-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Partikelfilteranlage für ein Kraftfahrzeug, sowie ein Messverfahren zum Bestimmen einer Beladung eines Partikelfilters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131593A1 (en) * 2002-01-16 2003-07-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device-equipped internal combustion engine and exhaust gas control method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680424B2 (ja) 1989-06-06 1997-11-19 新日本製鐵株式会社 低耐力オーステナイト系ステンレス鋼板の製造方法
JPH0310017U (de) * 1989-06-19 1991-01-30
JP2001254617A (ja) * 2000-03-13 2001-09-21 Ibiden Co Ltd 排気ガス浄化用フィルタの再生方法、車輌および再生ステーション
JP2003065035A (ja) * 2001-08-28 2003-03-05 Toyota Motor Corp 排気ガス浄化方法及びパティキュレートフィルタの製造方法
JP2004150330A (ja) * 2002-10-30 2004-05-27 Nissan Motor Co Ltd 内燃機関の排気微粒子フィルタ
JP2004245167A (ja) * 2003-02-17 2004-09-02 Nissan Diesel Motor Co Ltd 排気浄化装置
US7500358B2 (en) * 2006-08-11 2009-03-10 Fleetguard, Inc Apparatus, system, and method for enhancing soot filter protection
JP2009007982A (ja) * 2007-06-27 2009-01-15 Toyota Motor Corp 内燃機関の排気浄化装置
CN102149904B (zh) * 2008-09-10 2014-01-29 马克卡车公司 估算柴油机微粒过滤器中的煤烟荷载的方法以及引擎和后处理系统
US8069658B2 (en) * 2008-11-26 2011-12-06 Corning Incorporated Methods for estimating particulate load in a particulate filter, and related systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030131593A1 (en) * 2002-01-16 2003-07-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas control device-equipped internal combustion engine and exhaust gas control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602462B1 (de) * 2011-12-09 2017-01-04 Peugeot Citroën Automobiles Sa Reduzierung der Emissionen des Verbrennungsmotors
WO2014071961A1 (en) * 2012-11-09 2014-05-15 Volvo Truck Corporation A method of conditioning a particle filter
US9599051B2 (en) 2012-11-09 2017-03-21 Volvo Truck Corporation Method of conditioning a particle filter
WO2019092187A1 (de) * 2017-11-09 2019-05-16 Bayerische Motoren Werke Aktiengesellschaft Abgasanlage für ein kraftfahrzeug, kraftfahrzeug mit einer solchen sowie verfahren zum konditionieren einer abgasanlage
WO2019092186A1 (de) * 2017-11-09 2019-05-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur einbringung von aschepartikeln in eine abgasanlage eines kraftfahrzeugs
DE102018207831A1 (de) * 2018-05-18 2019-11-21 Bayerische Motoren Werke Aktiengesellschaft Abgasreinigungsanlage für eine Brennkraftmaschine
AT521448A1 (de) * 2018-06-28 2020-01-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung II
AT521448B1 (de) * 2018-06-28 2022-04-15 Avl List Gmbh Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung II

Also Published As

Publication number Publication date
US20130074476A1 (en) 2013-03-28
JP2013507564A (ja) 2013-03-04
EP2488734B1 (de) 2015-10-14
US8713913B2 (en) 2014-05-06
EP2488734A1 (de) 2012-08-22
CN102575541A (zh) 2012-07-11
DE102009049624A1 (de) 2011-04-21
CN102575541B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
EP2488734B1 (de) Verfahren zum betreiben eines partikelfilters
DE102013013063B4 (de) Verfahren zum Betreiben einer Kraftfahrzeugbrennkraftmaschine mit einem Abgaspartikelfilter
AT521448B1 (de) Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung II
DE102012006448B4 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
DE102012218728A1 (de) Verfahren zur Überwachung eines Speicherkatalysators einer Brennkraftmaschine
DE102007046460A1 (de) Verfahren zur Verminderung der Emission von Stickstoffdioxid bei einem Kraftfahrzeug mit einer mager betriebenen Brennkraftmaschine
WO2019011545A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine eines kraftwagens und anordnung eines partikelfilters in einer abgasanlage eines kraftwagens
DE102011004557A1 (de) Verfahren zum Betreiben einer Abgasanlage einer Brennkraftmaschine
AT521454B1 (de) Verfahren und Ottomotoranordnung mit verbesserter Partikelfilterung I
EP3510262B1 (de) Verfahren zum betreiben eines zur ausfilterung von im abgas eines ottomotors enthaltenen partikeln vorgesehenen ottopartikelfilters
DE102008014509B4 (de) Verfahren und Vorrichtung zum Ermitteln einer Masse an Ruß in einem Partikelfilter
AT521759B1 (de) Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Regenerationsstrategie
DE112018007113T5 (de) Verbesserte Dieselpartikelfilterlinearität mit dünner Ascheschicht
DE102012012016A1 (de) Verfahren zum Betreiben einer Abgasanlage eines Kraftwagens sowie Abgasanlage für eine Verbrennungskraftmaschine eines Kraftwagens
DE102008019814A1 (de) Abgasreinigungskörper und Brennkraftmaschine mit Abgasreinigungskörper
DE102019116776A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungseinrichtung, Steuereinheit für eine Brennkraftmaschine und Brennkraftmaschine
AT521310B1 (de) Verfahren zur regelung eines abgasnachbehandlungssystems
EP3686407B1 (de) Anordnung von mindestens zwei motornahen abgasanlagenkomponenten für eine brennkraftmaschine eines kraftfahrzeugs sowie kraftfahrzeug
DE102019212174B3 (de) Verfahren und Vorrichtung zur Steuerung des Betriebs eines Partikelfilters eines Kraftfahrzeugs
DE102006061693A1 (de) Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine
DE102009005733A1 (de) Vorrichtung und Verfahren zur Regeneration eines im Abgastrakt einer Brennkraftmaschine angeordneten Partikelfilters
DE10044893A1 (de) Partikelfilter für eine Dieselbrennkraftmaschine
DE102022118004A1 (de) Verfahren zum Ermitteln eines Feuchtigkeitsgehalts einer Abgastrakt-Komponente sowie Kraftfahrzeug
DE102019008958A1 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
DE102014209952A1 (de) Abgasnachbehandlungsvorrichtung, sowie Verfahren zur Abgasnachbehandlung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046488.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010771317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012533491

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13501778

Country of ref document: US