WO2011043321A1 - 移動通信方法及び無線基地局 - Google Patents

移動通信方法及び無線基地局 Download PDF

Info

Publication number
WO2011043321A1
WO2011043321A1 PCT/JP2010/067426 JP2010067426W WO2011043321A1 WO 2011043321 A1 WO2011043321 A1 WO 2011043321A1 JP 2010067426 W JP2010067426 W JP 2010067426W WO 2011043321 A1 WO2011043321 A1 WO 2011043321A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
predetermined
base station
sequence
predetermined period
Prior art date
Application number
PCT/JP2010/067426
Other languages
English (en)
French (fr)
Inventor
暁 福元
石井 啓之
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201080044956.1A priority Critical patent/CN102687571B/zh
Priority to JP2011535396A priority patent/JP5309221B2/ja
Priority to US13/500,306 priority patent/US8830948B2/en
Priority to EP10821991.6A priority patent/EP2487971B1/en
Publication of WO2011043321A1 publication Critical patent/WO2011043321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/22Allocation of codes with a zero correlation zone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to a mobile communication method and a radio base station.
  • a random access procedure is used for initial connection.
  • a channel for such a random access procedure is called a physical random access channel (PRACH: Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the random access procedure is used not only for initial connection but also for handover, resumption of data communication, and the like.
  • the LTE mobile communication system allocates one or more Zadoff-Chu sequences as “RACH root sequence” of PRACH to each cell, and secures 64 RACH preambles (RACH preamble) per cell. It is configured as follows.
  • the Zadoff-Chu sequence has a property that the amplitude is constant in the time domain and the frequency domain and the autocorrelation is 0, and the series obtained by cyclic shifting the Zadoff-Chu sequence are orthogonal to each other.
  • one or more Zadoff-Chu sequences are cyclically shifted by a predetermined cyclic shift amount (12.5 ⁇ sec in the example of FIG. 9) to obtain 64 per cell.
  • RACH preambles can be secured.
  • values of 800 ⁇ sec and 12.5 ⁇ sec are examples.
  • the number of RACH preambles that can be generated from one Zadoff-Chu sequence depends on the cell configuration (for example, cell radius, propagation delay state, high-speed movement support, etc.).
  • the radio base station eNB when the propagation delay between the radio base station eNB and the mobile station UE is larger than the above-described cyclic shift amount, the radio base station eNB is delayed due to the cyclic shift, or the actual propagation delay Can not tell if it is delayed.
  • the radio base station eNB determines that the cyclic shift amount is “Ncs in the reception window # 102.
  • RACH preamble # 1 RACH preamble # 1 from the mobile station UE located in the center of the cell
  • RACH preamble # 2 RACH from the mobile station UE located at the cell edge
  • the Zadoff-Chu sequence assigned to the cell is designed. It is necessary to increase the number.
  • the cell configuration (for example, the maximum transmission delay in the cell) may be changed after the operation of the mobile communication system is started. In this case, the above-described maximum transmission delay in the cell can be accurately estimated. It becomes difficult.
  • an object of the present invention is to provide a mobile communication method and a radio base station that can efficiently reallocate a RACH preamble.
  • a first feature of the present invention is a mobile communication method, in which each cell is assigned a predetermined sequence having constant amplitude and zero autocorrelation in the time domain and the frequency domain,
  • the gist of the present invention is to generate a plurality of preambles by cyclically shifting the predetermined sequence only for a predetermined period, and obtaining a reception timing distribution of the preamble within the predetermined period in each cell.
  • the second feature of the present invention is that a predetermined sequence having constant amplitude and zero autocorrelation is assigned to each cell in each of the time domain and the frequency domain, and the predetermined sequence is cyclically shifted by a predetermined period.
  • a radio base station used in a mobile communication system configured to generate a plurality of preambles, wherein an acquisition unit configured to acquire a reception timing distribution of preambles within the predetermined period in each cell It is a summary to comprise.
  • a third feature of the present invention is a mobile communication system including a radio base station and a control station, wherein the radio base station has a constant amplitude in each of the time domain and the frequency domain for each cell.
  • a generation unit configured to generate a plurality of preambles by cyclically shifting a predetermined sequence having a correlation of 0 for a predetermined period, and reception timing distribution of the preamble within the predetermined period in each cell.
  • the number of the predetermined sequences to be allocated to each cell or the length of the predetermined period is calculated, and the number of the predetermined sequences and the predetermined period
  • a setting unit configured to notify the control station of the length, and the control station notifies each cell of the number of the predetermined sequences notified or the length of the predetermined period.
  • an assignment unit configured to assign the predetermined sequence so that the surrounding cells different sequences.
  • FIG. 1 is an overall configuration diagram of a mobile communication system according to a first embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a radio base station according to the first embodiment of the present invention. It is a figure for demonstrating an example of the calculation method of the statistical value by the wireless base station which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating an example of the calculation method of the statistical value by the wireless base station which concerns on the 1st Embodiment of this invention. It is a figure for demonstrating an example of the calculation method of the statistical value by the wireless base station which concerns on the 1st Embodiment of this invention.
  • the mobile communication system according to the present embodiment is an LTE mobile communication system.
  • the mobile station UE in the cell # 1, transmits the cell # 1 to the radio base station eNB # 1 via the PRACH (Physical Random Access Channel).
  • RACH preamble # 1 allocated to 1 is transmitted, and in cell # 2, RACH preamble # 2 allocated to cell # 2 is transmitted to the radio base station eNB # 2 via the PRACH. It is configured.
  • RACH preamble # 1 is generated by cyclically shifting the Zadoff-Chu sequence assigned to cell # 1 by a predetermined cyclic shift amount (predetermined period) Ncs
  • RACH preamble # 2 is generated by cyclically shifting the Zadoff-Chu sequence assigned to cell # 2 by a predetermined cyclic shift amount (predetermined period) Ncs.
  • the radio base station eNB includes a RACH preamble reception unit 11, a statistical value calculation unit 12, an acquisition unit 13, a setting unit 14, and a notification unit 15.
  • the RACH preamble receiving unit 11 is configured to receive the RACH preamble transmitted via the PRACH by the mobile station UE located in the subordinate cell.
  • the RACH preamble receiving unit 11 is configured to try to receive a predetermined RACH preamble in each reception window.
  • the length (predetermined period) of each reception window corresponds to the cyclic shift amount cyclically shifted when a predetermined RACH preamble is generated.
  • the statistical value calculation unit 12 is configured to acquire the reception timing distribution of the RACH preamble within a predetermined period Ncs in each cell.
  • the reception timing of the RACH preamble may be the same as the value of Timing Advance (TA).
  • the reception timing of the RACH preamble may be a value corresponding to Timing Advance (TA).
  • the RACH preamble reception timing distribution may be configured by dividing the reception window into a predetermined number of regions and the number of preambles for each of the divided regions.
  • the predetermined number may be a value of 10 or a value of 64, for example.
  • the statistical value calculation unit 12 receives reception windows # 101, # 102, # 103,... (The length (size) of each reception window corresponds to Ncs).
  • the reception timing distribution of the RACH preamble is acquired.
  • the lengths of the reception windows # 101, # 102, # 103,. Ncs) can be determined to be appropriate for the radius of cell #A.
  • the statistical value calculation unit 12 acquires the reception timing distribution of the RACH preamble in the reception windows # 101, # 102, # 103,... (Corresponding to Ncs) in the cell #B. It is configured.
  • the statistical value calculation unit 12 acquires the reception timing distribution of the RACH preamble in the reception windows # 101, # 102, # 103, ... (corresponding to Ncs) in the cell #C. It is configured.
  • the reception timing of the RACH preamble extends to the latter half of the reception windows # 101, # 102, # 103,... And the length of the reception windows # 101, # 102, # 103,. It can be determined that (that is, the cyclic offset amount Ncs) is too short with respect to the radius of the cell #C.
  • cells #A, #B, and #C in the above-described example are examples, and the same determination may be made for cells other than those described above.
  • the acquisition unit 13 is configured to acquire information on the Zadoff-Chu sequence assigned to each cell from the surrounding radio base station eNB.
  • the setting unit 14 determines the number of Zadoff-Chu sequences to be assigned to each cell #A to #G based on the reception timing distribution of the RACH preamble within the reception window in each cell acquired by the statistical value calculation unit 12 and a predetermined number.
  • the length of the period (cyclic offset amount) Ncs is set.
  • the setting unit 14 can set the length of the cyclic offset amount Ncs to be shorter.
  • the setting unit 14 obtains a CDF (Cumulative Distribution Function) from the above reception timing distribution, and the reception timing of the 90% point of the CDF is included in the first half 50% in the reception window.
  • CDF Cumulative Distribution Function
  • the length of the cyclic offset amount Ncs is set so as to be shortened, and in other cases, the length of the cyclic offset amount Ncs is not set to be shortened, that is, the current state is maintained. May be performed.
  • the setting unit 14 determines whether to shorten the length of the cyclic shift amount Ncs based on the above-described reception timing distribution and a predetermined threshold (in the above-described example, the value of the first half of the reception window is 50%). You may make these settings.
  • the setting unit 14 determines the amount of cyclic shift when the number of preambles received in the first half of the reception window is large or when the ratio of preambles received in the first half of the reception window is large. It may be determined that the length of Ncs is shortened.
  • the setting unit 14 may be configured to reduce the number of Zadoff-Chu sequences assigned to the cell #A, as shown in FIGS.
  • the setting unit 14 determines the cells around the cell #A, that is, the cell #B, the cell #C, the cell #D, the cell #E, and the cell #.
  • the type of Zadoff-Chu sequence assigned to cell #G may be changed.
  • the setting unit 14 The cyclic offset amount Ncs can be set to be long.
  • the setting unit 14 acquires a CDF (Cumulative Distribution Function) from the above-described reception timing distribution, and the reception timing of the 90% point of the CDF is included within 20% after the reception window.
  • CDF Cumulative Distribution Function
  • the length of the cyclic offset amount Ncs is set to be increased, and in other cases, the cyclic offset amount Ncs is not set to be increased, that is, the current state is maintained. May be performed.
  • the setting unit 14 determines whether or not to increase the length of the cyclic shift amount Ncs based on the above-described reception timing distribution and a predetermined threshold (in the above-described example, the value of the latter half 20% in the reception window). You may make these settings.
  • the setting unit 14 is cyclic when the number of preambles received in the second half of the reception window is large, or when the proportion of preambles received in the second half of the reception window is large. It may be determined that the length of the shift amount Ncs is increased.
  • the setting unit 14 may be configured to increase the number of Zadoff-Chu sequences to be assigned to the cell #A, as shown in FIGS.
  • the setting unit 14 assigns, to the cell #A, a Zadoff-Chu sequence that is different from the Zadoff-Chu sequence used in the cell under the control of the surrounding radio base station eNB acquired by the acquiring unit 13. It is configured.
  • the setting unit 14 increases the number of Zadoff-Chu sequences to be assigned to the cell #A at the same time as the processing in the case where the number of Zadoff-Chu sequences is reduced, that is, the cells around the cell #A, that is, The type of Zadoff-Chu sequence assigned to cell #B, cell #C, cell #D, cell #E, cell #F, and cell #G may be changed.
  • the setting unit 14 is configured to reset the number of Zadoff-Chu sequences and the length of a predetermined period (cyclic offset amount) Ncs as described above when a predetermined condition is satisfied.
  • the setting unit 14 may be configured to perform the above-described setting autonomously as a SON (Self Organize Network) or by the Plug & Play function.
  • SON Self Organize Network
  • a node for SON or Plug & Play exists, and such a node cooperates with the setting unit 14 for each cell.
  • the above setting may be performed autonomously.
  • the setting unit 14 for each cell calculates the number of Zadoff-Chu sequences to be assigned to the cell and calculates the number of Zadoff-Chu sequences to be assigned to the cell by the above-described process. Notify the node (control station).
  • the allocation unit of the node determines whether the Zadoff-Chu sequence allocated to each cell is based on the “number of Zadoff-Chu sequences allocated to the cell” notified from the setting unit 14 for each cell.
  • the Zadoff-Chu sequence assigned to each cell may be determined so as to be different from each other.
  • the assigning unit of the node notifies the setting unit 14 for each cell of the determined Zadoff-Chu sequence assigned to each cell.
  • the setting unit 14 for each cell sets the Zadoff-Chu sequence assigned to each cell notified from the node (control station) as the Zadoff-Chu sequence of the cell.
  • such a node may be called an aggregation node or a control station.
  • the reception window size of the preamble used in the cell may be used.
  • the notification unit 15 is configured to notify the neighboring radio base station eNB of information related to the Zadoff-Chu sequence assigned to the subordinate cell.
  • the notification unit 15 notifies the mobile station UE located in the subordinate cell of the number of Zadoff-Chu sequences set by the setting unit 14 and the length of the predetermined period (cyclic offset amount) Ncs. It is configured.
  • the number of Zadoff-Chu sequences set by the setting unit 14 and the length of the predetermined period (cyclic offset amount) Ncs may be notified to the mobile station UE as part of the broadcast information.
  • the number of Zadoff-Chu sequences set by the setting unit 14 and the length of a predetermined period (cyclic offset amount) Ncs may be notified to the mobile station UE as part of the RRC message.
  • the RRC message may be, for example, a HO command.
  • the notification unit 15 sends the number of Zadoff-Chu sequences set by the setting unit 14 and a predetermined period to the mobile station UE that has transitioned to the cell due to handover via the handover-source radio base station eNB. (Cyclic offset amount) The length of Ncs may be notified.
  • step S101 the radio base station eNB acquires a reception timing distribution of a predetermined RACH preamble in each reception window in a subordinate cell.
  • step S102 the radio base station eNB redesigns the allocation of the Zadoff-Chu sequence to the subordinate cell based on the reception timing distribution of the RACH preamble and the Zadoff-Chu sequence used in the surrounding cells. Perform (see, for example, FIG. 6).
  • step S103 the radio base station eNB allocates the Zadoff-Chu sequence and the cyclic shift amount Ncs to the subordinate cell, and in step S104, assigns the allocated Zadoff-Chu sequence and the cyclic shift amount Ncs to the mobile station UE. And notify neighboring cells.
  • PRACH root sequence planning may be performed by performing the above-described steps S101 to S104 continuously or in parallel in the surrounding cells.
  • the PRACH RACH root sequence planning may be performed in a SON manner by performing the above-described steps S101 to S104 continuously or in parallel and autonomously in the surrounding cells. .
  • the radio base station eNB receives reception windows # 101, # 102, # 103 based on the reception timing distribution of predetermined RACH preambles in each reception window. ,... (That is, whether the cyclic offset amount Ncs) is appropriate for the radius of the cell #A, and based on the determination result, Zadoff-Chu assigned to the subordinate cell Since the series and the cyclic shift amount Ncs can be redesigned, the cell redesign work according to the change of the cell configuration can be performed efficiently.
  • a first feature of the present embodiment is a mobile communication method, in which one or a plurality of Zadoff-Chu sequences (amplitude is constant in time domain and frequency domain and self A predetermined sequence whose correlation is 0), and a step of generating a plurality of RACH preambles by cyclically shifting the allocated Zadoff-Chu sequence by a predetermined period Ncs in each cell #A to #G; Each cell #A to #G includes a step of acquiring a RACH preamble reception timing distribution within a predetermined period Ncs.
  • the number of Zadoff-Chu sequences to be assigned to each cell #A to #G or the predetermined period Ncs based on the acquired reception timing distribution You may further have the process of setting length.
  • the second feature of the present embodiment is that one or a plurality of Zadoff-Chu sequences are assigned to each cell #A to #G, and the assigned Zadoff-Chu sequences are cyclically shifted by a predetermined period Ncs.
  • a radio base station eNB used in a mobile communication system configured to generate a plurality of RACH preambles, and obtains reception timing distribution of RACH preambles within a predetermined period Ncs in each cell #A to #G
  • the gist of the invention is to include a statistical value calculation unit 12 (acquisition unit) configured to perform the above.
  • a predetermined to be applied to the Zadoff-Chu sequence assigned to each cell #A to #G You may further comprise the setting part 14 comprised so that the length of period Ncs might be set.
  • radio base station eNB and the mobile station UE described above may be implemented by hardware, may be implemented by a software module executed by a processor, or may be implemented by a combination of both. .
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable, Removable ROM, and Hard Disk). Alternatively, it may be provided in a storage medium of an arbitrary format such as a CD-ROM.
  • Such a storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. Further, such a storage medium may be integrated in the processor. Such a storage medium and processor may be provided in the ASIC. Such an ASIC may be provided in the radio base station eNB and the mobile station UE. Further, the storage medium and the processor may be provided in the radio base station eNB and the mobile station UE as discrete components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明に係る移動通信方法は、各セル#A乃至#Gに対して、1つ又は複数のZadoff-Chu系列を割り当てる工程と、各セル#A乃至#Gにおいて、割り当てられたZadoff-Chu系列を所定期間Ncsだけサイクリックシフトすることによって複数のRACHプリアンブルを生成する工程と、各セル#A乃至#Gにおいて、所定期間Ncs内のRACHプリアンブルの受信タイミング分布を取得する工程とを有する。

Description

移動通信方法及び無線基地局
 本発明は、移動通信方法及び無線基地局に関する。
 一般に、移動通信システムでは、初期接続のために、ランダムアクセス(Random Access)手順が用いられる。LTE(Long Term Evolution)方式の移動通信システムでは、かかるランダムアクセス手順のためのチャネルは、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)と呼ばれる。また、LTE方式では、ランダムアクセス手順は、初期接続に加えて、ハンドオーバやデータ通信再開等のためにも用いられる。
 LTE方式の移動通信システムは、各セルに対して、PRACHの「RACH root sequence」として、1つ又は複数のZadoff-Chu系列を割り当て、1セル当たり64個のRACHプリアンブル(RACH preamble)を確保するように構成されている。
 ここで、Zadoff-Chu系列は、時間領域及び周波数領域で振幅が一定であり自己相関が0であるという性質を有し、Zadoff-Chu系列をサイクリックシフトした系列同士は直交する。Zadoff-Chu系列の種類は、838種類である。
 具体的には、図9に示すように、1つ又は複数のZadoff-Chu系列を所定のサイクリックシフト量(図9の例では、12.5μsec)だけサイクリックシフトすることによって、セル当たり64個のRACHプリアンブルを確保することができる。ここで、800μsec及び12.5μsecといった値は、一例である。
 なお、1つのZadoff-Chu系列から生成可能なRACHプリアンブルの数は、セル構成(例えば、セル半径や伝搬遅延状態や高速移動対応の有無等)に依存する。
 ここで、無線基地局eNBと移動局UEとの間の伝搬遅延が、上述のサイクリックシフト量よりも大きい場合、無線基地局eNBは、サイクリックシフトにより遅延しているのか、実際の伝搬遅延により遅延しているのかを見分けることができない。
 具体的には、図10(a)に示すように、伝搬遅延が、上述のサイクリックシフト量Ncsよりも大きい場合、無線基地局eNBは、受信ウィンドウ#102において、サイクリックシフト量が「Ncs」であるRACHプリアンブル#1(セル中央に位置する移動局UEからのRACHプリアンブル#1)とサイクリックシフト量が「0」であるRACHプリアンブル#2(セル端に位置する移動局UEからのRACHプリアンブル#2)とを区別することができない。
 かかる場合、セル設計作業時に、図10(b)に示すように、サイクリックシフト量Ncsを大きくし、セルごとに64個のRACHプリアンブルを確保するために、かかるセルに割り当てるZadoff-Chu系列の数を増やす必要がある。
 上述したように、LTE方式では、各セルに割り当てるPRACHのRACH root sequenceの設計、すなわち、プランニングを行う必要がある。また、かかるRACH root sequenceの設計においては、セル構成(例えば、セル内の最大伝送遅延等)を考慮する必要がある。
 しかしながら、一般に、RACH root sequenceの設計の段階で、上述のセル内の最大伝送遅延等を正確に見積もることは困難である。また、移動通信システムの運用開始後に、セル構成(例えば、セル内の最大伝送遅延等)が変更になる場合もあり、この場合も、上述のセル内の最大伝送遅延等を正確に見積もることが困難となる。
 このような場合に、従来は、ネットワーク運用者が、フィールド測定等を行い、再度、セル設計作業(具体的には、RACHプリアンブルの割り当て作業)を行う必要があり、多大な労力を要し、効率的ではないという問題点があった。
 そこで、本発明は、上述の課題に鑑みてなされたものであり、効率的に、RACHプリアンブルの再割り当てを行うことができる移動通信方法及び無線基地局を提供することを目的とする。
 本発明の第1の特徴は、移動通信方法であって、各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を割り当てる工程と、各セルにおいて、前記所定系列を所定期間だけサイクリックシフトすることによって、複数のプリアンブルを生成する工程と、各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得する工程とを有することを要旨とする。
 本発明の第2の特徴は、各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を割り当て、該所定系列を所定期間だけサイクリックシフトすることによって複数のプリアンブルを生成するように構成されている移動通信システムにおいて用いられる無線基地局であって、各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得するように構成されている取得部を具備することを要旨とする。
 本発明の第3の特徴は、無線基地局と制御局とを具備する移動通信システムであって、前記無線基地局は、各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を所定期間だけサイクリックシフトすることによって複数のプリアンブルを生成するように構成されている生成部と、各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得するように構成されている取得部と、前記受信タイミング分布に基づいて、各セルに対して割り当てる前記所定系列の数又は前記所定期間の長さを算出し、該所定系列の数及び該所定期間の長さを前記制御局に通知するように構成されている設定部とを具備し、前記制御局は、各セルに対して、通知された前記所定系列の数又は前記所定期間の長さに基づいて、周辺のセルと異なる系列となるように前記所定系列を割り当てるように構成されている割当部を具備することを要旨とする。
本発明の第1の実施形態に係る移動通信システムの全体構成図である。 本発明の第1の実施形態に係る無線基地局の機能ブロック図である。 本発明の第1の実施形態に係る無線基地局による統計値の算出方法の一例を説明するための図である。 本発明の第1の実施形態に係る無線基地局による統計値の算出方法の一例を説明するための図である。 本発明の第1の実施形態に係る無線基地局による統計値の算出方法の一例を説明するための図である。 本発明の第1の実施形態に係る無線基地局による各セルに対するZadoff-Chu系列の割り当てについての再プラニング方法の一例を説明するための図である。 本発明の第1の実施形態に係る移動通信システムにおいてSON或いはPlug&Playが行われる場合の動作を説明するための図である。 本発明の第1の実施形態に係る無線基地局の動作を示すフローチャートである。 従来の移動通信システムで用いられるRACHプリアンブルについて説明するための図である。 従来の移動通信システムで用いられるRACHプリアンブルについて説明するための図である。
(本発明の第1の実施形態に係る移動通信システムの構成)
 図1乃至図6を参照して、本発明の第1の実施形態に係る移動通信システムの構成について説明する。
 本実施形態に係る移動通信システムは、LTE方式の移動通信システムである。図1に示すように、本実施形態に係る移動通信システムでは、移動局UEは、セル#1では、PRACH(Physical Random Access Channel)を介して、無線基地局eNB#1に対して、セル#1に割り当てられているRACHプリアンブル#1を送信し、セル#2では、PRACHを介して、無線基地局eNB#2に対して、セル#2に割り当てられているRACHプリアンブル#2を送信するように構成されている。
 ここで、RACHプリアンブル#1は、セル#1に割り当てられたZadoff-Chu系列を、所定のサイクリックシフト量(所定期間)Ncsだけサイクリックシフトすることによって生成されるものであり、RACHプリアンブル#2は、セル#2に割り当てられたZadoff-Chu系列を、所定のサイクリックシフト量(所定期間)Ncsだけサイクリックシフトすることによって生成されるものである。
 図2に示すように、無線基地局eNBは、RACHプリアンブル受信部11と、統計値算出部12と、取得部13と、設定部14と、通知部15とを具備している。
 RACHプリアンブル受信部11は、配下のセルに位置する移動局UEによってPRACHを介して送信されたRACHプリアンブルを受信するように構成されている。
 ここで、RACHプリアンブル受信部11は、各受信ウィンドウにおいて、所定のRACHプリアンブルの受信を試みるように構成されている。なお、各受信ウィンドウの長さ(所定期間)は、所定のRACHプリアンブルを生成する際にサイクリックシフトされたサイクリックシフト量に対応する。
 統計値算出部12は、各セルにおいて、所定期間Ncs内のRACHプリアンブルの受信タイミング分布を取得するように構成されている。なお、かかるRACHプリアンブルの受信タイミングは、Timing Advance (TA)の値と同一であってもよい。或いは、かかるRACHプリアンブルの受信タイミングは、Timing Advance (TA)に相当する値であってもよい。
 また、かかるRACHプリアンブルの受信タイミング分布は、受信ウィンドウを所定数の領域に分割し、分割された領域ごとのプリアンブル数により構成されてもよい。かかる所定数は、例えば、10という値であってもよいし、64という値であってもよい。
 例えば、統計値算出部12は、図3に示すように、セル#Aにおいて、受信ウィンドウ#101、#102、#103、…(各受信ウィンドウの長さ(サイズ)は、Ncsに対応)内のRACHプリアンブルの受信タイミング分布を取得するように構成されている。
 図3の例では、RACHプリアンブルの受信タイミングは、受信ウィンドウ#A内で一様に分布されているため、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)は、セル#Aの半径に対して適切であると判断することができる。
 また、統計値算出部12は、図4に示すように、セル#Bにおいて、受信ウィンドウ#101、#102、#103、…(Ncsに対応)内のRACHプリアンブルの受信タイミング分布を取得するように構成されている。
 図4の例では、RACHプリアンブルの受信タイミングは、受信ウィンドウ#101、#102、#103、…内の前半部分に分布が偏っているため、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)は、セル#Bの半径に対して長すぎると判断することができる。
 また、統計値算出部12は、図5に示すように、セル#Cにおいて、受信ウィンドウ#101、#102、#103、…(Ncsに対応)内のRACHプリアンブルの受信タイミング分布を取得するように構成されている。
 図5の例では、RACHプリアンブルの受信タイミングは、受信ウィンドウ#101、#102、#103、…内の後半部分にまで広がっており、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)は、セル#Cの半径に対して短すぎると判断することができる。
 なお、上述した例におけるセル#Aや#Bや#Cは、一例であり、上記以外のセルに関して、同様の判断が行われてもよい。
 取得部13は、周辺の無線基地局eNBから、各セルに対して割り当てているZadoff-Chu系列に関する情報を取得するように構成されている。
 設定部14は、統計値算出部12によって取得された各セルにおける受信ウィンドウ内のRACHプリアンブルの受信タイミング分布に基づいて、各セル#A乃至#Gに対して割り当てるZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さを設定するように構成されている。
 例えば、図4のケースのように、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)がセル#Aの半径に対して長すぎると判断されるケースには、設定部14は、サイクリックオフセット量Ncsの長さを短くするように設定することができる。
 より具体的には、例えば、設定部14は、上述の受信タイミング分布からCDF(Cumulative Distribution Function)を取得し、かかるCDFの90%点の受信タイミングが、受信ウィンドウ内の前半50%以内に含まれる場合に、サイクリックオフセット量Ncsの長さを短くするように設定し、それ以外の場合に、サイクリックオフセット量Ncsの長さを短くするように設定しない、すなわち、現状を維持するという処理を行ってもよい。
 なお、上述のCDFの90%点という値や受信ウィンドウ内の前半50%以内という値は一例であり、上記以外の値であってもよい。すなわち、設定部14は、上述の受信タイミング分布と所定の閾値(上述した例では、受信ウィンドウ内の前半50%という値)とに基づいて、サイクリックシフト量Ncsの長さを短くするか否かの設定を行ってもよい。
 より具体的には、設定部14は、受信ウィンドウ内の前半において受信されるプリアンブル数が多い場合、或いは、受信ウィンドウ内の前半において受信されるプリアンブルの割合が多い場合には、サイクリックシフト量Ncsの長さを短くすると判定してもよい。
 かかる場合、設定部14は、図6(a)→(c)に示すように、セル#Aに割り当てるZadoff-Chu系列の数を減らすように構成されていてもよい。ここで、設定部14は、図6(c)→(d)に示すように、セル#Aの周りのセル、すなわち、セル#B、セル#C、セル#D、セル#E、セル#F、セル#Gに割り当てるZadoff-Chu系列の種類を変更するように構成されていてもよい。
 また、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)がセル#Aの半径に対して短すぎると判断されるケースには、設定部14は、サイクリックオフセット量Ncsの長さを長くするように設定することができる。
 より具体的には、例えば、設定部14は、上述の受信タイミング分布からCDF(Cumulative Distribution Function)を取得し、かかるCDFの90%点の受信タイミングが、受信ウィンドウ内の後20%以内に含まれる場合に、サイクリックオフセット量Ncsの長さを長くするように設定し、それ以外の場合に、サイクリックオフセット量Ncsの長さを長くするように設定しない、すなわち、現状を維持するという処理を行ってもよい。
 なお、上述のCDFの90%点という値や受信ウィンドウ内の後半20%以内という値は一例であり、上記以外の値であってもよい。すなわち、設定部14は、上述の受信タイミング分布と所定の閾値(上述した例では、受信ウィンドウ内の後半20%という値)とに基づいて、サイクリックシフト量Ncsの長さを長くするか否かの設定を行ってもよい。
 より具体的には、設定部14は、受信ウィンドウ内の後半において受信されるプリアンブル数が多い場合には、あるいは、受信ウィンドウ内の後半において受信されるプリアンブルの割合が多い場合には、サイクリックシフト量Ncsの長さを長くすると判定してもよい。
 かかる場合、設定部14は、図6(a)→(b)に示すように、セル#Aに割り当てるZadoff-Chu系列の数を増やすように構成されていてもよい。
 ここで、設定部14は、セル#Aに対して、取得部13によって取得された周辺の無線基地局eNB配下のセルにて用いられているZadoff-Chu系列と異なるZadoff-Chu系列を割り当てるように構成されている。
 また、設定部14は、上述のZadoff-Chu系列の数を減らした場合の処理と同様に、セル#Aに割り当てるZadoff-Chu系列の数を増やすと同時に、セル#Aの周りのセル、すなわち、セル#B、セル#C、セル#D、セル#E、セル#F、セル#Gに割り当てるZadoff-Chu系列の種類を変更するように構成されていてもよい。
 設定部14は、所定条件が満たされた場合に、上述のようなZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さの再設定を行うように構成されている。
 また、設定部14は、SON(Self Organaize Network)として、或いは、Plug&Play機能によって、自律的に、上述の設定を行うように構成されていてもよい。
 なお、上述したSON或いはPlug&Playを行う場合、図7に示すように、SON或いはPlug&Playのためのノード(制御局)が存在し、かかるノードが、各セル用の設定部14と連携することにより、自律的に上述の設定を行ってもよい。
 より具体的には、各セル用の設定部14は、上述の処理により、当該セルに割り当てるZadoff-Chu系列の数を算出し、かつ、当該セルに割り当てるZadoff-Chu系列の数を、上述のノード(制御局)に通知する。
 次に、かかるノード(制御局)の割当部は、各セル用の設定部14から通知された「当該セルに割り当てるZadoff-Chu系列の数」に基づき、各セルに割り当てられるZadoff-Chu系列が、互いに異なる系列となるように、各セルに割り当てられるZadoff-Chu系列を決定してもよい。
 そして、かかるノード(制御局)の割当部は、決定した各セルに割り当てられるZadoff-Chu系列を、各セル用の設定部14に通知する。
 最後に、各セル用の設定部14は、かかるノード(制御局)より通知された、各セルに割り当てられるZadoff-Chu系列を、当該セルのZadoff-Chu系列として設定する。
 なお、かかるノード(制御局)は、集約ノード或いは制御局と呼ばれてもよい。また、上述の処理において、当該セルに割り当てるZadoff-Chu系列の数に加えて、当該セルにおいて使用されるプリアンブルの受信ウィンドウサイズが使用されてもよい。
 通知部15は、配下のセルに対して割り当てたZadoff-Chu系列に関する情報を、周辺の無線基地局eNBに対して通知するように構成されている。
 また、通知部15は、設定部14によって設定されたZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さについて、配下のセルに位置する移動局UEに対して通知するように構成されている。
 設定部14によって設定されたZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さは、報知情報の一部として移動局UEに通知されてもよい。
 或いは、設定部14によって設定されたZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さは、RRC messageの一部として移動局UEに通知されてもよい。
 ここで、RRC messageとは、例えば、HO commandであってもよい。この場合、通知部15は、ハンドオーバにより当該セルに遷移してくる移動局UEに対して、ハンドオーバ元の無線基地局eNB経由で、設定部14によって設定されたZadoff-Chu系列の数及び所定期間(サイクリックオフセット量)Ncsの長さを通知してもよい。
 なお、本実施形態では、「RACH root sequence」として、Zadoff-Chu系列が用いられる例について説明したが、「RACH root sequence」として、Computer searchによるバイナリ系列等のCAZAC(Constant Amplitude Zero Auto-Correlation)系列が用いられてもよい。
(本発明の第1の実施形態に係る移動通信システムの動作)
 図8を参照して、本発明の第1の実施形態に係る移動通信システムの動作について、具体的には、本発明の第1の実施形態に係る無線基地局eNBの動作について説明する。
 図8に示すように、ステップS101において、無線基地局eNBは、配下のセルにおいて、各受信ウィンドウ内で所定のRACHプリアンブルの受信タイミング分布を取得する。
 ステップS102において、無線基地局eNBは、かかるRACHプリアンブルの受信タイミング分布、及び、周辺のセルにおいて用いられているZadoff-Chu系列に基づいて、配下のセルに対するZadoff-Chu系列の割り当てについて再設計を行う(例えば、図6参照)。
 無線基地局eNBは、ステップS103において、配下のセルに対して、Zadoff-Chu系列及びサイクリックシフト量Ncsを割り当て、ステップS104において、割り当てたZadoff-Chu系列及びサイクリックシフト量Ncsを移動局UE、及び、周辺のセルに通知する。
 なお、上述のステップS101から104の処理が、周辺のセルにおいて連続的に或いは並列的に行われることにより、PRACHのRACH root sequenceのプランニングが行われてもよい。
 また、上述のステップS101から104の処理が、周辺のセルにおいて連続的に或いは並列的に、かつ、自律的に行われることにより、PRACHのRACH root sequenceのプランニングがSON的に行われてもよい。
(本発明の第1の実施形態に係る移動通信システムの作用・効果)
 本発明の第1の実施形態に係る移動通信システムによれば、無線基地局eNBが、各受信ウィンドウ内における所定のRACHプリアンブルの受信タイミング分布に基づいて、受信ウィンドウ#101、#102、#103、…の長さ(すなわち、サイクリックオフセット量Ncs)がセル#Aの半径に対して適切であるか否かについて判断し、かかる判断結果に基づいて、配下のセルに対して割り当てるZadoff-Chu系列及びサイクリックシフト量Ncsを再設計することができるため、効率的に、セル構成の変更に応じたセル再設計作業を行うことができる。
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。
 本実施形態の第1の特徴は、移動通信方法であって、各セル#A乃至#Gに対して、1つ又は複数のZadoff-Chu系列(時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列)を割り当てる工程と、各セル#A乃至#Gにおいて、割り当てられたZadoff-Chu系列を所定期間Ncsだけサイクリックシフトすることによって複数のRACHプリアンブルを生成する工程と、各セル#A乃至#Gにおいて、所定期間Ncs内のRACHプリアンブルの受信タイミング分布を取得する工程とを有することを要旨とする。
 本実施形態の第1の特徴において、各セル#A乃至#Gにおいて、取得した受信タイミング分布に基づいて、各セル#A乃至#Gに対して割り当てるZadoff-Chu系列の数又は所定期間Ncsの長さを設定する工程を更に有してもよい。
 本実施形態の第2の特徴は、各セル#A乃至#Gに対して、1つ又は複数のZadoff-Chu系列を割り当て、割り当てられたZadoff-Chu系列を所定期間Ncsだけサイクリックシフトすることによって複数のRACHプリアンブルを生成するように構成されている移動通信システムにおいて用いられる無線基地局eNBであって、各セル#A乃至#Gにおいて、所定期間Ncs内のRACHプリアンブルの受信タイミング分布を取得するように構成されている統計値算出部12(取得部)を具備することを要旨とする。
 本実施形態の第2の特徴において、各セル#A乃至#Gにおいて、取得した受信タイミング分布に基づいて、各セル#A乃至#Gに対して割り当てられたZadoff-Chu系列に適用すべき所定期間Ncsの長さを設定するように構成されている設定部14を更に具備してもよい。
 なお、上述の無線基地局eNB及び移動局UEの動作は、ハードウェアによって実施されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実施されてもよいし、両者の組み合わせによって実施されてもよい。
 ソフトウェアモジュールは、RAM(Random Access Memory)や、フラッシュメモリや、ROM(Read Only Memory)や、EPROM(Erasable Programmable ROM)や、EEPROM(Electronically Erasable and Programmable ROM)や、レジスタや、ハードディスクや、リムーバブルディスクや、CD-ROMといった任意形式の記憶媒体内に設けられていてもよい。
 かかる記憶媒体は、プロセッサが当該記憶媒体に情報を読み書きできるように、当該プロセッサに接続されている。また、かかる記憶媒体は、プロセッサに集積されていてもよい。また、かかる記憶媒体及びプロセッサは、ASIC内に設けられていてもよい。かかるASICは、無線基地局eNB及び移動局UE内に設けられていてもよい。また、かかる記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNB及び移動局UE内に設けられていてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 以上説明したように、本発明によれば、効率的に、RACHプリアンブルの再割り当てを行うことができる移動通信方法及び無線基地局を提供することができる。

Claims (7)

  1.  各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を割り当てる工程と、
     各セルにおいて、前記所定系列を所定期間だけサイクリックシフトすることによって、複数のプリアンブルを生成する工程と、
     各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得する工程とを有することを特徴とする移動通信方法。
  2.  各セルにおいて、取得した前記受信タイミング分布に基づいて、各セルに対して割り当てる所定系列の数又は所定期間の長さを設定する工程を更に有することを特徴とする請求項1に記載の移動通信方法。
  3.  前記所定系列を割り当てる工程は、周辺のセルと異なる系列となるように該所定系列を割り当てることを特徴とする請求項1に記載の移動通信方法。
  4.  各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を割り当て、該所定系列を所定期間だけサイクリックシフトすることによって複数のプリアンブルを生成するように構成されている移動通信システムにおいて用いられる無線基地局であって、
     各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得するように構成されている取得部を具備することを特徴とする無線基地局。
  5.  各セルにおいて、取得した前記受信タイミング分布に基づいて、各セルに対して割り当てられた所定系列に適用すべき所定期間の長さを設定するように構成されている設定部を更に具備することを特徴とする請求項4に記載の無線基地局。
  6.  周辺のセルと異なる系列となるように前記所定系列を割り当てることを特徴とする請求項4に記載の無線基地局。
  7.  無線基地局と制御局とを具備する移動通信システムであって、
     前記無線基地局は、
      各セルに対して、時間領域及び周波数領域で振幅が一定であり自己相関が0である所定系列を所定期間だけサイクリックシフトすることによって複数のプリアンブルを生成するように構成されている生成部と、
      各セルにおいて、前記所定期間内のプリアンブルの受信タイミング分布を取得するように構成されている取得部と、
      前記受信タイミング分布に基づいて、各セルに対して割り当てる前記所定系列の数又は前記所定期間の長さを算出し、該所定系列の数又は該所定期間の長さを前記制御局に通知するように構成されている設定部とを具備し、
     前記制御局は、
      各セルに対して、通知された前記所定系列の数又は前記所定期間の長さに基づいて、周辺のセルと異なる系列となるように前記所定系列を割り当てるように構成されている割当部を具備することを特徴とする移動通信システム。
PCT/JP2010/067426 2009-10-07 2010-10-05 移動通信方法及び無線基地局 WO2011043321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080044956.1A CN102687571B (zh) 2009-10-07 2010-10-05 移动通信方法以及无线基站
JP2011535396A JP5309221B2 (ja) 2009-10-07 2010-10-05 移動通信方法及び無線基地局
US13/500,306 US8830948B2 (en) 2009-10-07 2010-10-05 Mobile communication method, mobile communication system, and radio base station
EP10821991.6A EP2487971B1 (en) 2009-10-07 2010-10-05 Mobile communication method and radio base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233915 2009-10-07
JP2009233915 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043321A1 true WO2011043321A1 (ja) 2011-04-14

Family

ID=43856774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067426 WO2011043321A1 (ja) 2009-10-07 2010-10-05 移動通信方法及び無線基地局

Country Status (5)

Country Link
US (1) US8830948B2 (ja)
EP (1) EP2487971B1 (ja)
JP (1) JP5309221B2 (ja)
CN (1) CN102687571B (ja)
WO (1) WO2011043321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187835A (ja) * 2012-03-09 2013-09-19 Sumitomo Electric Ind Ltd ランダムアクセス制御装置、無線基地局装置、管理装置およびランダムアクセス制御プログラム
CN104982079A (zh) * 2013-02-06 2015-10-14 高通股份有限公司 Ncs参数的确定和逻辑根序列分配
JP2016010009A (ja) * 2014-06-24 2016-01-18 Kddi株式会社 基地局装置、無線信号制御方法およびコンピュータプログラム
JP2021533592A (ja) * 2018-06-06 2021-12-02 ノキア テクノロジーズ オサケユイチア タイミングアドバンスを決定するための方法、デバイス、およびコンピュータ可読媒体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532205A4 (en) * 2010-02-03 2016-07-20 Ericsson Telefon Ab L M ADAPTATION OF CYCLIC CHANGE FOR RANDOM ACCESS PREAMBLE
JP5437422B2 (ja) * 2012-03-13 2014-03-12 株式会社Nttドコモ 無線基地局及び移動局
CN103763784B (zh) * 2014-01-22 2017-07-18 东南大学 用于td‑lte/td‑lte‑a系统区分用户优先级前导码分配的上行接入方法
WO2015119568A1 (en) * 2014-02-10 2015-08-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for random access preamble shifting
CN108271161B (zh) * 2016-12-31 2020-10-16 普天信息技术有限公司 LTE系统中Prach根序列优化方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093628A1 (ja) * 2008-01-22 2009-07-30 Nec Corporation 無線アクセスシステムの送信機及び受信機、無線アクセスシステムの送信方法及び受信方法、並びにプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808886B2 (en) * 2006-01-18 2010-10-05 Freescale Semiconductor, Inc. Pilot signal in an FDMA communication system
KR101025993B1 (ko) 2006-03-27 2011-03-30 텍사스 인스트루먼츠 인코포레이티드 무선 네트워크에 액세스하는 방법, 업링크 자원들을 할당하는 방법 및 랜덤 액세스 신호를 전송하기 위한 장치
US8098745B2 (en) * 2006-03-27 2012-01-17 Texas Instruments Incorporated Random access structure for wireless networks
JP4917101B2 (ja) * 2006-10-06 2012-04-18 パナソニック株式会社 無線通信装置および無線通信方法
US9357564B2 (en) * 2007-06-19 2016-05-31 Texas Instruments Incorporated Signaling of random access preamble parameters in wireless networks
US20090073944A1 (en) * 2007-09-17 2009-03-19 Jing Jiang Restricted Cyclic Shift Configuration for Random Access Preambles in Wireless Networks
US9893859B2 (en) * 2007-10-30 2018-02-13 Texas Instruments Incorporated Transmission of sounding reference signal and scheduling request in single carrier systems
CN101336003B (zh) * 2008-08-05 2012-04-18 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位步长的方法
US8068458B2 (en) * 2008-08-19 2011-11-29 Telefonaktiebolaget L M Ericson (Publ) Random access preamble selection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093628A1 (ja) * 2008-01-22 2009-07-30 Nec Corporation 無線アクセスシステムの送信機及び受信機、無線アクセスシステムの送信方法及び受信方法、並びにプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R1-070189, - 15 January 2007 (2007-01-15), pages 1 - 4, XP050104231 *
See also references of EP2487971A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187835A (ja) * 2012-03-09 2013-09-19 Sumitomo Electric Ind Ltd ランダムアクセス制御装置、無線基地局装置、管理装置およびランダムアクセス制御プログラム
CN104982079A (zh) * 2013-02-06 2015-10-14 高通股份有限公司 Ncs参数的确定和逻辑根序列分配
JP2016512666A (ja) * 2013-02-06 2016-04-28 クアルコム,インコーポレイテッド Ncsパラメータおよび論理ルート系列の割当ての決定
US10075933B2 (en) 2013-02-06 2018-09-11 Qualcomm Incorporated Determination of Ncs parameter and logical root sequence assignments
CN104982079B (zh) * 2013-02-06 2019-05-10 高通股份有限公司 Ncs参数的确定和逻辑根序列分配
JP2016010009A (ja) * 2014-06-24 2016-01-18 Kddi株式会社 基地局装置、無線信号制御方法およびコンピュータプログラム
JP2021533592A (ja) * 2018-06-06 2021-12-02 ノキア テクノロジーズ オサケユイチア タイミングアドバンスを決定するための方法、デバイス、およびコンピュータ可読媒体
US11647536B2 (en) 2018-06-06 2023-05-09 Nokia Technologies Oy Methods, device and computer-readable medium for determining timing advance

Also Published As

Publication number Publication date
EP2487971A1 (en) 2012-08-15
CN102687571B (zh) 2016-03-30
JPWO2011043321A1 (ja) 2013-03-04
EP2487971B1 (en) 2017-04-05
US8830948B2 (en) 2014-09-09
CN102687571A (zh) 2012-09-19
JP5309221B2 (ja) 2013-10-09
EP2487971A4 (en) 2014-01-15
US20120224560A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5309221B2 (ja) 移動通信方法及び無線基地局
US10390371B2 (en) Methods and devices for transmitting/receiving data based on the allocation of random access resources to uplink subframes
RU2493658C2 (ru) Способ и устройство для осуществления связи по радиоканалу
CN110475371B (zh) 用户设备执行的方法、用户设备和基站
WO2010090156A1 (ja) 移動通信方法及び無線基地局
US20130128847A1 (en) Method and device for transmitting downlink control information, method and device for receiving downlink control information, terminal, base station and communication system
JP7445607B2 (ja) 通信装置、通信方法および集積回路
US20200145152A1 (en) System and method for transmitting a signal
KR100912821B1 (ko) 무선 센서 네트워크에서 비컨 전송을 위한 타임 슬롯의할당 장치 및 그 방법
CN108809597B (zh) 前导序列循环移位量确定方法及其集合配置方法与装置
EP3533281B1 (en) Methods and devices for random access
EP4018706B1 (en) Method for cognitive physical random access channel planning and related apparatus
JP2021511689A (ja) 制御リソース領域のリソース割り当てのための方法及びデバイス
EP3133880A1 (en) Method and apparatus for transmitting synchronization signal for direct device to device communication in wireless communication system
KR20090097478A (ko) 상향링크 구간의 간섭 완화방법 및 장치
US20110002286A1 (en) Method and apparatus for allocating data burst
WO2021007714A1 (en) Method, device and computer readable medium for prach sequence generation
EP4078877A1 (en) Methods and devices for handling private transmissions from a wireless device
KR100934091B1 (ko) 데이터 버스트 할당 방법 및 장치
KR20090072624A (ko) 데이터 버스트 할당 방법 및 장치
CN106804041B (zh) 一种无线通信方法和设备
KR20100038763A (ko) 데이터 버스트 할당 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044956.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535396

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010821991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010821991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3688/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13500306

Country of ref document: US