WO2011043258A1 - ガスセンサ素子及びその製造方法 - Google Patents

ガスセンサ素子及びその製造方法 Download PDF

Info

Publication number
WO2011043258A1
WO2011043258A1 PCT/JP2010/067232 JP2010067232W WO2011043258A1 WO 2011043258 A1 WO2011043258 A1 WO 2011043258A1 JP 2010067232 W JP2010067232 W JP 2010067232W WO 2011043258 A1 WO2011043258 A1 WO 2011043258A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
base
opening
fixed
extending
Prior art date
Application number
PCT/JP2010/067232
Other languages
English (en)
French (fr)
Inventor
徹治 今村
大輔 桑原
Original Assignee
北陸電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北陸電気工業株式会社 filed Critical 北陸電気工業株式会社
Priority to US13/500,236 priority Critical patent/US9176084B2/en
Priority to CN2010800446050A priority patent/CN102575999B/zh
Priority to EP10821929.6A priority patent/EP2487485A4/en
Publication of WO2011043258A1 publication Critical patent/WO2011043258A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a gas sensor element that detects a gas by providing a sensitive part including an electrode on an insulating base including a heater.
  • Japanese Patent Application Laid-Open No. 2007-132814 discloses a structure of a gas sensor element in which four bridges 3 arranged at equal intervals outside a stage 2 incorporating a heater bridge the silicon frame 1 and the stage 2. Yes. Further, in Japanese Patent Application Laid-Open No. 2009-58389, the gas sensitive part 11 including the detection electrode 12 is formed on the insulating layer 13 (supported substrate part 10) in which the heating means 14 is built, and is attached to the base material 31. A structure of a gas sensor element is disclosed in which the support substrate portion 30 and the supported substrate portion 10 on which the gas sensitive portion 11 is formed are cross-linked by a cross-linking portion 20 having a shape obtained by inverting the shape of the ridge by 180 °.
  • the bridge part (or bridge) in order to absorb the stress generated in the sensitive part, the bridge part (or bridge) is arranged as described above.
  • the bridging portion or bridge
  • the stress cannot be sufficiently absorbed. Deformation or breakage could not be reduced.
  • An object of the present invention is to provide a gas sensor element capable of reducing deformation of a sensitive part due to stress and a method for manufacturing the same.
  • Another object of the present invention is to provide a gas sensor element that can be easily downsized and a method for manufacturing the same.
  • the gas sensor element to be improved by the present invention includes a support, a base insulating layer, a heater wiring pattern, an electrode wiring pattern, and a sensitive film.
  • the support is made of, for example, a silicon single crystal substrate, has a front surface and a back surface facing each other in the thickness direction, and includes a cavity having an opening at least on the front surface.
  • the base insulating layer is formed by stacking a plurality of insulating layers such as a lower insulating layer made of silicon nitride and silicon oxide and an upper insulating layer made of silicon nitride oxide, and the back surface is fixed on the surface of the support. It has a fixed part and a non-fixed part which is provided integrally with the fixed part and is located on the opening of the support.
  • the heater wiring pattern is formed inside the base insulating layer (specifically, formed between the lower insulating layer and the upper insulating layer), and has an electric heater portion in the central portion of the non-fixed portion.
  • the electrode wiring pattern is formed on the surface of the base insulating layer (specifically, on the surface of the upper insulating layer) and has a detection electrode portion on the non-fixed portion.
  • the sensitive film is applied and formed on the central part of the non-fixed part so as to cover the detection electrode part.
  • the non-fixed portion of the base insulating layer includes a central portion and four connecting portions that connect the central portion and the fixed portion.
  • the four connecting portions are composed of a base portion that extends along the edge portion of the opening and an extending portion that extends from the base portion toward the central portion and is connected to the central portion. And it is preferable to form a connection part so that the maximum width dimension of a base part may become larger than the maximum width dimension of an extending
  • the connecting part of the non-fixed part is constituted by the base part and the extending part having such a dimensional relationship
  • the non-fixed part of the base insulating layer with the heater built-in and the detection electrode part and the sensitive film formed on the surface
  • the base part of the connecting part formed along the edge of the opening of the support is not fixed Since the stress generated in the central part of the part is absorbed, deformation and breakage of the sensitive part including the detection electrode part and the sensitive film can be reliably reduced. As a result, it is possible to provide a gas sensor element in which the sensor sensitivity is unlikely to decrease.
  • the base portion having the maximum width dimension larger than the stretched portion can absorb the stress generated in the central portion, it is possible to prevent the stress from being concentrated on the stretched portion.
  • the extension part connected to the central part of the non-fixed part is not directly connected to the fixed part, but is connected to the fixed part via a base having a larger maximum width than the extension part. Can be high.
  • the cavity of the support so that the contour of the opening has a square shape and the bases of the four connecting parts are located at the four corners of the opening.
  • the bases of the four connecting portions are formed so as to straddle the two sides forming the four corners of the opening.
  • the base portion of the connecting portion located at the four corners of the opening is formed in this way, the base portion extending over the two sides of the edge of the opening of the support can be formed in the non-fixed portion, so that the base is widened and the mechanical strength is high.
  • a base can be formed.
  • the shape of the non-fixed part is arbitrary.
  • the shape of the central portion may be a disc shape, and the extending portions of the four connecting portions may extend along two virtual diagonal lines that are virtual with respect to the four corners.
  • the virtual diagonal line means two straight lines that connect the four corners of the rectangular opening in the diagonal direction and intersect at the center point of the opening.
  • the shape of the non-fixed part may be formed of a first extending part and a second extending part as the extending part of the connecting part after the central part has a disk shape.
  • the first extending portion is configured so as to extend along one side of the edge of the rectangular opening and to have one end continuous with the base.
  • the second stretched portion is configured to be continuous with the first stretched portion and the other end of the first stretched portion so as to be orthogonal to the first stretched portion and extend toward the central portion.
  • the non-fixed portion is formed so that the contour shape of the connecting portion exhibits a substantially bowl shape (that is, (Because the extended part of each connecting part is bent at a right angle between the central part and the base part of the non-fixed part), the direction in which the stress generated in the central part is transmitted is changed from the radial direction of the central part to the circumferential direction. And the stress can be efficiently absorbed by the stretched portion and the base portion.
  • the non-fixed part so that the edge part facing the central part of the base part of the four connecting parts is along a virtual circle centering on the central point of the central part.
  • the virtual circle means a circle having a large area and a substantially similar shape with respect to a circle showing the outline shape of the central part of the disk shape with the central point of the central part as the center.
  • the stress generated in the central part is transferred to the outer side in the circumferential direction of the central part by the base part having a disk-shaped edge similar to the contour shape of the central part of the disk shape. Can be evenly and radially escaped.
  • the size of the base (the area of the base when viewed as a contour shape) can be increased.
  • the area of the central portion can be increased and the formation of the sensitive film is facilitated.
  • the surface of the central portion has a circular shape, the surface tension between the surface of the central portion and the applied sensitive film tends to be uniform. Therefore, the application amount of the sensitive film can be increased, and the film thickness of the sensitive film formed on the center surface can be made uniform.
  • the diameter of the central part When the diameter of the central part is smaller than 0.1 times the diameter of the imaginary circle, the area of the central part becomes relatively small, and the area for forming the detection electrode part base and the sensitive film is reduced. It cannot be secured. Further, when the diameter dimension of the central part is larger than the diameter dimension of the imaginary circle by 0.7 times, the area of the base part of the connecting part becomes too small to absorb a large stress.
  • the shape of the cavity of the support is arbitrary. However, if the cavity of the support is formed so as to have a truncated quadrangular pyramid or a quadrangular pyramid shape in which the cross-sectional area decreases from the opening toward the back surface of the support, the volume of the cavity can be reduced. Therefore, the gas sensor element can be downsized and the manufacturing cost can be reduced.
  • the manufacturing method of the gas sensor element of the present invention is performed as follows. First, as a support material, a silicon single crystal substrate having a front surface and a back surface facing each other in the thickness direction is prepared. A lower insulating layer is formed on the surface of the silicon single crystal substrate, and an electric heater portion is formed on the surface of the portion constituting the central portion of the non-fixed portion of the lower insulating layer on the surface of the lower insulating layer. A heater wiring pattern is formed, an upper insulating layer is formed on the surface of the lower insulating layer so as to cover the heater wiring pattern, and a base insulating layer is formed on the surface of the silicon single crystal substrate. Then, an electrode wiring pattern is formed on the surface of the base insulating layer so that the detection electrode portion is formed on the surface of the portion constituting the non-fixed portion of the upper insulating layer constituting the base insulating layer.
  • the base insulating layer is etched until the surface of the silicon single crystal substrate is exposed by reactive ion etching.
  • the connecting portion is formed so that the connecting portion includes a base portion extending along the edge of the opening and an extending portion extending from the base portion toward the central portion and connected to the central portion.
  • etching is performed from the exposed surface side of the silicon single crystal substrate by anisotropic etching to form a cavity having an opening having a rectangular outline.
  • a hollow portion having a truncated quadrangular pyramid or a quadrangular pyramid shape whose cross-sectional area decreases from the opening toward the back surface of the support is formed. Thereafter, at least the etching resist in the central portion is removed to expose the detection electrode portion, and a sensitive film is formed on the surface of the central portion so as to cover the detection electrode portion.
  • a connecting portion having a base that absorbs stress generated in the central portion of the non-fixed portion along the edge of the opening of the support body only by performing two-stage etching. can be configured. That is, it is possible to provide a gas sensor element in which the sensor sensitivity is not easily lowered by a simple method.
  • a method of manufacturing a gas sensor element that can reduce the size of the gas sensor element.
  • (A) is a figure which shows 1st Example of the gas sensor element based on this invention
  • (B) is the IB-IB sectional view taken on the line of (A).
  • (A) is a figure which expands and shows the principal part of 1st Example of the gas sensor element shown to FIG. 1 (A)
  • (B) is the scanning which expanded and image
  • (A) is a cross-sectional view taken along the line IIIA-IIIA in FIG. 2 (A)
  • (B) is a cross-sectional view taken along the line IIIB-IIIB in FIG. 2 (A)
  • (C) is a cross-sectional view taken along the line IIIC-- in FIG.
  • FIG. 6 is an SEM photograph in which a main part of a gas sensor element corresponding to a cross section taken along line VIB-VIB in FIG.
  • A is a cross-sectional view taken along the line VIIA-VIIA in FIG. 5 (A)
  • (B) is a cross-sectional view taken along the line VIIB-VIIB in FIG.
  • FIG. 5 (A), and (C) is a cross-sectional view taken along the line VIIC- in FIG. It is a VIIC line sectional view.
  • (A) is a figure which expands and shows the principal part of 3rd Example of the gas sensor element shown in FIG. 8
  • (B) is the SEM photograph which expanded and image
  • . 9A is a cross-sectional view taken along line XA-XA in FIG. 9A
  • FIG. 9B is a cross-sectional view taken along line XB-XB in FIG. 9A
  • or (H) is process drawing explaining an example of the manufacturing method of the gas sensor element of this invention.
  • FIG. 1A is a view showing a first embodiment of the gas sensor element according to the present invention
  • FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A
  • 2A is an enlarged view of the main part of the gas sensor element of FIG. 1A
  • FIG. 2B is 600 times the main part of the gas sensor element corresponding to FIG. It is the scanning electron microscope (SEM) photograph expanded by photographing.
  • 3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 2B
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. 2B
  • FIG. 3 is a sectional view taken along line IIIC-IIIC in FIG.
  • illustration of a detection electrode section 29 and a sensitive film 31 (to be described later) is omitted, and in FIGS. 3 (A) to (C).
  • the heater wiring pattern 19 and the electrode wiring pattern 27 (including the detection electrode portion 29) are not shown. 2 and these figures, the code
  • symbol 1 is 1st Example of a gas sensor element.
  • the gas sensor element 1 includes a support 3, a base insulating layer 9, a heater wiring pattern 19, an electrode wiring pattern 27, and a sensitive film 31.
  • the support 3 is made of a silicon single crystal substrate having a vertical width of 1.5 mm, a horizontal width of 1.5 mm, and a thickness of 0.26 mm, and includes a front surface 3A and a back surface 3B facing each other in the thickness direction. And the support body 3 is provided with the cavity part 7 which has the opening part 5 opened to the surface 3A.
  • the base insulating layer 9 includes a lower insulating layer 11 composed of a silicon oxide (SiO 2 ) layer having a thickness of 0.6 ⁇ m and a silicon nitride (Si 3 N 4 ) layer having a thickness of 0.4 ⁇ m, and silicon nitride oxide (SiON) having a thickness of 3 ⁇ m.
  • the upper insulating layer 13 is laminated on the surface 3A of the support 3 by plasma CVD.
  • the insulating base layer 9 includes a fixed portion 15 to which the back surface 15B is fixed on the front surface 3A of the support 3 and a non-fixed portion that is provided integrally with the fixed portion 15 and is located on the opening 5 of the support 3. 17.
  • the non-fixed portion 17 includes a central portion 21 and four connecting portions 23 that connect the central portion 21 and the fixed portion 15.
  • the heater wiring pattern 19 is composed of a noble metal thin film layer having a thickness of 4000 mm, is formed on the surface 11A of the lower insulating layer 11, and is covered with the upper insulating layer 13.
  • the heater wiring pattern 19 has an electric heater portion 25 in the central portion 21 of the non-fixed portion 17.
  • the electric heater portion 25 has a function of heating a later-described sensitive film 31 provided in the central portion 21 and volatilizing a gas (impure gas) that is not a detection target attached to the sensitive film 31.
  • the heating temperature of the electric heater unit 25 can be increased or decreased depending on the type of gas to be volatilized.
  • the electrode wiring pattern 27 is made of Pt, includes a non-fixed portion 17 with a detection electrode portion 29, and is formed on the surface 13A of the upper insulating layer 13 by sputtering.
  • the electrode wiring pattern 27 can be connected to the outside via the connection electrode portion 28.
  • the detection electrode unit 29 has a function of detecting a change in resistance value in the gas sensor element 1 when a gas to be detected adheres to a sensitive film 31 described later.
  • the sensitive film 31 is formed by pasting a metal compound semiconductor mainly composed of In 2 O 3 on the central part 21 of the non-fixed part 17 so as to cover the detection electrode part 29, and then at 650 ° C. or more. It is formed by firing.
  • the sensitive film 31 is adapted to adhere to the gas to be detected.
  • the four connecting portions 23 are composed of a base portion 33 and an extending portion 35.
  • the base 33 of the connecting portion 23 is configured to extend along the edge 5 ⁇ / b> A of the opening 5.
  • the extending portion 35 is configured to extend from the base portion 33 toward the central portion 21 and to be connected to the central portion 21.
  • the connection part 23 is comprised so that the maximum width dimension W1 of the base 33 may become larger than the maximum width dimension W2 of the extending
  • the contour shape of the opening 5 exhibits a square shape (substantially square)
  • the hollow portion 7 is formed in the support 3 so that the base portions 33 of the four connecting portions 23 are positioned at the four corners 51, 52, 53, 54 of the opening 5.
  • the base portion 33 that can absorb the stress that cannot be absorbed by the extending portion 35 alone can be reliably formed in the non-fixed portion 17.
  • the maximum width dimension W1 of the base portion 33 of the non-fixed portion 17 can be increased as much as possible.
  • the four sides 55, 56, 57, 58 constituting the edge 5 A of the opening 5 two sides forming the respective corners 51, 52, 53, or 54 of the four corners 51 to 54 of the opening 5, respectively. 55 and 58, 55 and 56, 56 and 57, or 57 and 58.
  • the base portion 33 of the connecting portion 23 located at the four corners 51 to 54 of the opening 5 is formed in this way, the base 33 straddling the edge 5A of the opening 5 of the support 3 can be formed on the non-fixed portion 17. Therefore, it is possible to form a base portion having a high mechanical strength with an expanded base.
  • the shape of the non-fixed portion 17 is such that the shape of the central portion 21 has a disk shape, and four Two virtual diagonal lines SD1 and SD2 in which the extending part 35 of the connecting part 23 is hypothesized with respect to the four corners 51 to 54 [the four corners 51 to 54 of the opening part 5 are connected in the diagonal direction, and the center point of the opening part 5 (the central part 21).
  • the shape extends along two straight lines intersecting at the center point C). That is, the extending portions 35 of the four connecting portions 23 are configured to spread radially from the central portion 21 toward the base portion 33 at substantially equal intervals (an angular interval of about 90 degrees).
  • the stress generated in the central portion 21 of the non-fixed portion 17 can be evenly released to the outside in the circumferential direction of the central portion 21 (for example, a part of the extended portions) 35 can prevent the stress from concentrating on 35). Further, by forming the extending portion 35 of the connecting portion 23 in such a structure, the central portion 21 can be reliably connected to the fixed portion 15 with a small number of connecting portions (four connecting portions 23).
  • the edge 33A facing the central portion 21 of the base portion 33 of the four connecting portions 23 has an imaginary circle SC (center of the central portion 21) centered on the center point C of the central portion 21.
  • the non-fixed portion 17 is configured so as to be along a circle having a large area and a substantially similar shape with respect to a circle indicating the contour shape of the disk-shaped central portion 21 with the point C as the center.
  • the diameter of the disk-shaped central portion 21 is about 0.45 times (within a range of 0.1 to 0.7 times) the diameter of the virtual circle.
  • the central portion 21 Since the shape of the edge portion 33A of the base portion 33 facing the disc-shaped central portion 21 has a similar disc shape centered on the same center point C as the disc shape of the central portion 21, the central portion 21 has The generated stress can be evenly and radially released outward in the circumferential direction of the central portion 21. Further, the size of the base 33 (the area of the base 33 when viewed as a contour shape) can be increased. In addition, the area of the central portion 21 can be increased, and the formation of the sensitive film 31 is facilitated. In addition, since the surface tension between the surface of the central portion 21 having a circular shape and the applied sensitive film 31 tends to be uniform, the amount of the sensitive film 31 applied can be increased, and the surface of the central portion 21 can be increased. The thickness of the sensitive film 31 to be formed can be made uniform.
  • the cross-sectional area decreases from the opening 5 toward the back surface 3B of the support 3.
  • the hollow portion 7 of the support 3 is formed so as to have a quadrangular pyramid shape.
  • a quadrangular pyramid-shaped cavity such as the cavity 7 is used, the volume of the cavity can be reduced, so that the gas sensor element can be reduced in size and the manufacturing cost can be reduced.
  • FIG. 4 is a view showing a second embodiment of the gas sensor element according to the present invention.
  • 5A is an enlarged view of the main part of the gas sensor element shown in FIG. 4
  • FIG. 5B is an enlarged view of the main part of the gas sensor element corresponding to FIG. 5A at 400 times.
  • FIG. 6 is an SEM photograph in which the main part of the gas sensor element corresponding to the section taken along the line VIB-VIB in FIG. 7A is a cross-sectional view taken along the line VIIA-VIIA in FIG. 5A
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 5A
  • FIG. 7 is a cross-sectional view taken along the line VIIC-VIIC in FIG.
  • subjected in 1st Example is attached
  • the detection electrode portion and the sensitive film 131 are also omitted in FIGS. 4, 5A, and 7C, and FIGS.
  • the heater wiring pattern 119 and the electrode wiring pattern 127 (including the detection electrode portion) are not shown.
  • the central portion 121 has a disk shape, and the extending portion 135 of the connecting portion 123 is not fixed so that the extending portion 135 includes a first extending portion 1351 and a second extending portion 1352.
  • the shape of the part 117 is defined.
  • the first extending portion 1351 is configured to extend along one side of the edge portion 105 ⁇ / b> A of the square-shaped (substantially square) opening 105, and the one end 1351 ⁇ / b> A is continuous with the base portion 133.
  • the second extended portion 1352 is configured to be continuous with the first extended portion 1351 and the other end 1351B of the first extended portion 1351 so as to be orthogonal to the first extended portion 1351 and extend toward the central portion 121.
  • the non-fixed portion 117 is formed so that the contour shape of the connecting portion 123 has a substantially bowl shape. (That is, the extending portion 135 of each connecting portion 123 is bent at a right angle at the intermediate portion between the central portion 121 and the base portion 133 of the non-fixed portion 117).
  • the extending portion 135 and the base portion 133 can efficiently absorb the stress [Fig. 5 (A) and (B), FIG. 6 and FIGS. 7 (A) to (C)].
  • FIG. 8 is a view showing a third embodiment of the gas sensor element according to the present invention.
  • FIG. 9A is an enlarged view showing the main part of the third embodiment of the gas sensor element shown in FIG. 8, and FIG. 9B shows the main part of the gas sensor element corresponding to FIG. It is the SEM photograph expanded and photographed by double.
  • 10A is a cross-sectional view taken along line XA-XA in FIG. 9A
  • FIG. 10B is a cross-sectional view taken along line XB-XB in FIG. 9A
  • FIG. FIG. 6 is a cross-sectional view taken along line XC-XC in (A).
  • subjected in 2nd Example is attached
  • the detection electrode portion and the sensitive film 231 are not shown in FIGS. 8, 9A, and 10C, and FIGS. 10A to 10C are further omitted.
  • the heater wiring pattern 219 and the electrode wiring pattern 227 (including the detection electrode portion) are not shown.
  • the central part 221 has a disc shape
  • the extending part 235 of the connecting part 223 is configured by the first extending part 2351 and the second extending part 2352, so that This is the same as the configuration of the second embodiment in that the shape of the fixing portion 217 is determined.
  • the edge portion 233A facing the center portion 221 of the base portion 233 of the four connecting portions 223 is the center point of the edge portion 205A of the opening 205 of the support 203 (the center point of the center portion 221).
  • a virtual square SS centered on (the square having a small area and a substantially similar shape to the square indicating the outline shape of the edge 205A of the square-shaped opening 205 around the center point C of the central portion 221) Is different from the configuration of the second embodiment in that a non-fixed portion 217 is configured. That is, the volume of the base portion 233 (volume when viewed in a contour shape) is smaller than that of the second embodiment.
  • the base portion 233 is present in the third embodiment, so that the non-fixed portion 217 in FIG. Compared to a configuration in which 233 is not formed at all, the base 233 can absorb stress that cannot be absorbed by the extending portion 235 (the first extending portion 2351 and the second extending portion 2352).
  • a method of manufacturing the first embodiment of the present invention as shown in FIG. 11 will be described.
  • a silicon single crystal substrate 2 having a front surface 2A and a back surface 2B facing each other in the thickness direction is prepared [FIG. 11A].
  • a lower insulating layer 11 composed of a silicon oxide (SiO 2 ) layer having a thickness of 6000 mm and a silicon nitride (Si 3 N 4 ) layer having a thickness of 400 mm is formed on the surface 2A of the silicon single crystal substrate 2 by wet oxidation and LP-CVD. [FIG. 11B].
  • a heater comprising a noble metal thin film layer having a thickness of 4000 mm on the surface 11A of the lower insulating layer 11 so that the electric heater portion 25 is formed on the surface of the portion constituting the central portion 21 of the non-fixed portion 17 of the lower insulating layer 11.
  • a wiring pattern 19 is formed [FIG. 11C].
  • an upper insulating layer 13 made of silicon nitride oxide (SiON) having a thickness of 3 ⁇ m is formed by plasma CVD so as to cover the heater wiring pattern 19, and the surface 2A of the silicon single crystal substrate 2 is formed.
  • a base insulating layer 9 is formed thereon [FIG. 11D].
  • the detection electrode portion 29 is formed on the surface of the portion constituting the non-fixed portion 17 described later (the portion where the electric heater portion 25 is formed) of the upper insulating layer 13 constituting the base insulating layer 9. Then, an electrode wiring pattern 27 made of Pt is formed on the surface 9A of the insulating base layer 9 by sputtering [FIG. 11E].
  • the base insulating layer is exposed until the surface 2A of the silicon single crystal substrate 2 is exposed by reactive ion etching. 9 is etched, a connecting portion 23 is extended along the edge 5A of the opening 5 described later, and a base portion 33 described later extends from the base portion 33 toward the central portion 21 and is connected to the central portion 21.
  • the connecting portion 23 is formed so as to consist of [Fig. 11 (F)].
  • etching is performed from the exposed surface 2A side of the silicon single crystal substrate 2 by anisotropic etching to form a cavity 7 having an opening 5 having a square shape (substantially square).
  • the support body 3 is configured by forming a hollow portion 7 having a quadrangular pyramid shape whose cross-sectional area decreases from the opening 5 toward the back surface 3B of the support body 3 [FIG. 11 (G)].
  • the base portions 33 of the four connecting portions 23 are positioned at the four corners 51 to 54 of the opening portion 5, and the base portion 33 corresponds to the four sides 55 to 58 constituting the edge portion 5 A of the opening portion 5.
  • a quadrangular pyramid-shaped cavity 7 is formed on the surface 2A of the silicon single crystal substrate 2 so as to straddle the two sides 55 and 58, 55 and 56, 56 and 57, or 57 and 58 forming the corners to be formed.
  • the support 3 is configured. Thereafter, the etching resist in the central portion 21 is removed to expose the detection electrode portion 29, and a sensitive film 31 is formed on the surface of the central portion 21 so as to cover the detection electrode portion 29.
  • the sensitive film 31 is formed by applying a paste of a metal compound semiconductor containing In 2 O 3 as a main component to the surface of the central portion 21 and baking it at 650 ° C. or higher [FIG. 11 (H)].
  • the stress generated in the central portion 21 of the non-fixed portion 17 along the edge portion 5A of the opening portion 5 of the support 3 can be absorbed only by performing two-stage etching.
  • the connecting portion 23 having the base portion 33 can be configured. That is, it is possible to provide a gas sensor element in which the sensor sensitivity is not easily lowered by a simple method.
  • the cavity 7 for forming the non-fixed portion 17 of the base insulating layer 9 is formed by etching from the front surface 3A side of the support 3 (the cavity portion is etched from the back surface 3B side of the support 3). 7), it is possible to provide a method of manufacturing a gas sensor element capable of reducing the size of the gas sensor element.
  • the connecting portion of the non-fixed portion is constituted by the base portion and the extending portion, the non-fixed portion (central portion) of the base insulating layer having a built-in heater and the detection electrode portion and the sensitive film formed on the surface. Even if large stress is generated due to heating, the base of the connecting part formed along the edge of the support opening absorbs the stress generated at the center of the non-fixed part. Deformation and breakage of the sensitive part including the electrode part and the sensitive film can be reliably reduced. Therefore, it is possible to provide a gas sensor element in which the sensor sensitivity is hardly lowered.
  • the base portion having the maximum width dimension larger than the stretched portion can absorb the stress generated in the central portion, the stress can be prevented from concentrating on the stretched portion.
  • the extension part connected to the central part of the non-fixed part is not directly connected to the fixed part, but is connected to the fixed part via a base having a larger maximum width than the extension part. Can be high.
  • the gas sensor element can be downsized.
  • the gas sensor element can be easily formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

 応力による感応部の変形を低減することができるガスセンサ素子及びその製造方法を提供する。開口部5を有する空洞部7を備えた支持体3の表面3Aに、ヒータ配線パターン19を内蔵して支持体3の表面3Aに固定される固定部15と開口部5上に位置する非固定部17を有するベース絶縁層9とを設ける。ベース絶縁層9の非固定部17の中央部21に電極配線パターン27と感応膜31を形成する。非固定部17が、中央部21及び中央部21と固定部15とを連結する複数本の連結部23を構成する。4本の連結部23を基部33と延伸部35とから構成する。連結部23の基部33は、開口部5の縁部5Aに沿って延びるように構成する。延伸部35は、基部33から中央部21に向かって延びて中央部21に連結するように構成する。連結部23は、基部33の最大幅寸法W1が、延伸部35の最大幅寸法W2よりも大きくなるように構成する。

Description

ガスセンサ素子及びその製造方法
 本発明は、ヒータを内蔵する絶縁体のベースに電極を備える感応部を設けてガスを検知するガスセンサ素子に関するものである。
 特開2007-132814号公報には、ヒータを内蔵するステージ2の外側に等間隔に配置された4本のブリッジ3が、シリコンフレーム1とステージ2とを架橋するガスセンサ素子の構造が開示されている。また、特開2009-58389号公報には、加熱手段14を内蔵する絶縁層13(被支持基板部10)の上に検出電極12を備えるガス感応部11が形成され、基材31に取り付けられた支持基板部30とガス感応部11が形成された被支持基板部10とが、卍形状を180°反転させた形状を呈する架橋部20によって架橋されたガスセンサ素子の構造が開示されている。
特開2007-132814号公報 特開2009-58389号公報
 従来のガスセンサ素子では、感応部に発生する応力を吸収するために架橋部(またはブリッジ)を上述のように配置する工夫がなされている。しかしながら、このような架橋部(またはブリッジ)の配置を工夫しただけの従来の構成では、感応部に大きな応力が発生した場合には、その応力を十分に吸収することができないため、感応部の変形または破損を低減することはできなかった。
 本発明の目的は、応力による感応部の変形を低減することができるガスセンサ素子及びその製造方法を提供することにある。
 本発明の他の目的は、小型化が容易なガスセンサ素子及びその製造方法を提供することにある。
 本発明が改良の対象とするガスセンサ素子は、支持体、ベース絶縁層、ヒータ配線パターン、電極配線パターン及び感応膜を備える。支持体は、例えばシリコン単結晶基板からなり、厚み方向に対向する表面及び裏面を備え、且つ少なくとも表面に開口する開口部を有する空洞部を備える。ベース絶縁層は、例えば窒化シリコン及び酸化シリコンからなる下部絶縁層と窒化酸化シリコンからなる上部絶縁層等の複数の絶縁層が積層されて構成され、且つ支持体の表面上に裏面が固定される固定部及び該固定部と一体に設けられて支持体の開口部上に位置する非固定部を有する。ヒータ配線パターンは、ベース絶縁層の内部に形成され(具体的には下部絶縁層と上部絶縁層との間に形成され)て、非固定部の中央部内に電気ヒータ部を有する。電極配線パターンは、ベース絶縁層の表面上(具体的には上部絶縁層の表面上)に形成され非固定部に検出用電極部を有する。感応膜は、検出用電極部を覆うように非固定部の中央部上に塗布形成されている。そして、ベース絶縁層の非固定部は、中央部及び該中央部と固定部とを連結する4本の連結部を備えている。
 本発明では、4本の連結部が開口部の縁部に沿って延びる基部とこの基部から中央部に向かって延びて中央部に連結された延伸部とから構成されている。そして、連結部は、基部の最大幅寸法が、延伸部の最大幅寸法よりも大きくなるように形成するのが好ましい。非固定部の連結部をこのような寸法の関係を有する基部と延伸部とにより構成すると、ヒータを内蔵しかつ表面に検出用電極部と感応膜が形成されたベース絶縁層の非固定部(中央部)に加熱による大きな応力(連結部の延伸部だけでは吸収しきれない応力)が発生した場合でも、支持体の開口部の縁部に沿って形成された連結部の基部が、非固定部の中央部に発生した応力を吸収するため、検出用電極部および感応膜を含む感応部の変形および破損を確実に低減することができる。その結果、センサ感度が低下し難いガスセンサ素子を提供することができる。また、延伸部よりも最大幅寸法が大きい基部が、中央部で発生した応力を吸収することができるため、応力が延伸部に集中するのを防ぐことができる。また、非固定部の中央部に連結する延伸部が、固定部に直接結合するものではなく、延伸部よりも最大幅寸法が大きい基部を介して固定部に結合するため、連結部の強度を高くすることができる。
 開口部の輪郭形状が方形状を呈し、かつ4本の連結部の基部が開口部の四隅に位置するように支持体の空洞部を形成するのが好ましい。支持体の空洞部をこのように形成すると、非固定部の基部の最大幅寸法を可能な限りにおいて大きなものとすることができる。
 開口部の縁部を構成する4つの辺のうち、開口部の四隅の各隅を形成する2つの辺に跨るように4本の連結部の基部を形成するのが好ましい。開口部の四隅に位置する連結部の基部をこのように形成すると、非固定部に支持体の開口部の縁部の二辺に跨る基部を形成できるので、裾野が広がった機械的強度の高い基部を形成することができる。
 非固定部の形状は、任意である。例えば、中央部の形状が円板形状を有し、かつ4本の連結部の延伸部が四隅に対して仮想した2本の仮想対角線に沿って延びるような形状にすることができる。ここで仮想対角線は、方形状の開口部の四隅を対角線方向に結んで開口部の中心点で交差する2つの直線を意味する。非固定部の形状をこのような形状にすると、非固定部の中央部に発生した応力を中央部の周方向の外側に均等に逃がすことができる(一部の延伸部に応力が集中するのを防ぐことができる)。また、連結部の延伸部をこのような構造にすると、少ない連結部で確実に中央部を固定部に連結することができる。
 また、非固定部の形状は、中央部を円板形状を有する形状にした上で、連結部の延伸部を、第1の延伸部分と第2の延伸部分とから構成してもよい。この場合、第1の延伸部分は、方形状の開口部の縁部の一辺に沿って延び且つ一端が基部と連続するように構成する。そして第2の延伸部分は、第1の延伸部分とこの第1の延伸部分の他端と連続し第1の延伸部分と直交し中央部に向かって延びるように構成する。連結部の延伸部を、このような第1の延伸部分と第2の延伸部分とから構成すると、連結部の輪郭形状が略卍形状を呈するように非固定部が形成されるため(すなわち、各連結部の延伸部が非固定部の中央部と基部との中間部で直角に曲がっているため)、中央部に発生した応力が伝わる方向を中央部の径方向から周方向に変化させることができ、延伸部と基部とで応力を効率よく吸収することができる。
 4本の連結部の基部の中央部と対向する縁部が、中央部の中心点を中心とする仮想円に沿うように、非固定部を形成するのが好ましい。仮想円は、中央部の中心点を中心として円板形状の中央部の輪郭形状を示す円に対して、面積が大きくかつほぼ相似形の円を意味する。この場合、円板形状の中央部の直径寸法が仮想円の直径寸法の0.1~0.7倍になるように、非固定部を形成するのが好ましい。非固定部をこのような形状に構成すると、円板形状の中央部の輪郭形状と相似形の円板形状の縁部を有する基部によって、中央部に発生した応力を中央部の周方向の外側に放射状に均等に逃がすことができる。また、基部の大きさ(輪郭形状としてみた場合は基部の面積)を大きくすることができる。しかも中央部の面積を大きくすることができて、感応膜の形成が容易になる。また中央部の表面が円形形状を有するため、中央部の表面と塗布した感応膜との間の表面張力は均一になり易い。そのため、感応膜の塗布量を多くすることができ、中央部の表面に形成する感応膜の膜厚を均一にすることができる。なお、中央部の直径寸法が仮想円の直径寸法の0.1倍よりも小さい比率では、中央部の面積が相対的に小さくなりすぎて、検出用電極部基部および感応膜を形成するエリアを確保できなくなる。また中央部の直径寸法が仮想円の直径寸法のが0.7倍よりも大きい比率では、連結部が基部の面積が相対的に小さくなりすぎて、大きな応力を吸収することができない。
 支持体の空洞部の形状は、任意である。しかしながら、開口部から支持体の裏面に向かうに従って横断面積が小さくなる切頭四角錐または四角錐形状を有するように支持体の空洞部を形成すれば、空洞部の体積を小さくすることができる。そのため、ガスセンサ素子を小型化することが可能になる上に、製造コストを少なくすることができる。
 本発明のガスセンサ素子の製造方法は、以下のように行う。まず支持体の材料として、厚み方向に対向する表面及び裏面を備えるシリコン単結晶基板を用意する。このシリコン単結晶基板の表面上に下部絶縁層を形成し、下部絶縁層の非固定部の中央部を構成する部分の表面上に電気ヒータ部が形成されるように下部絶縁層の表面上にヒータ配線パターンを形成し、ヒータ配線パターンを覆うように下部絶縁層の表面上に上部絶縁層を形成して、シリコン単結晶基板の表面上にベース絶縁層を形成する。そして、ベース絶縁層を構成する上部絶縁層の非固定部を構成する部分の表面上に、検出用電極部が形成されるように、ベース絶縁層の表面上に電極配線パターンを形成する。
 次に、ベース絶縁層の表面に固定部と非固定部の形状が残る形状にエッチングレジスト膜を形成した後、反応性イオンエッチングによりシリコン単結晶基板の表面が露出するまでベース絶縁層をエッチングし、連結部が開口部の縁部に沿って延びる基部と該基部から中央部に向かって延びて中央部に連結する延伸部とからなるように連結部を形成する。次に、異方性エッチングによりシリコン単結晶基板の露出した表面側からエッチングを施して、輪郭形状が方形状になる開口部を有する空洞部を形成する。このエッチングの制御により、開口部から支持体の裏面に向かうに従って横断面積が小さくなる切頭四角錐または四角錐形状を有する空洞部を形成する。その後、少なくとも中央部のエッチングレジストを除去して検出用電極部を露出させ、検出用電極部を覆うように中央部の表面に感応膜を形成する。
 このようなガスセンサ素子の製造方法を用いることにより、二段階のエッチングを行うだけで、支持体の開口部の縁部に沿って非固定部の中央部に発生した応力を吸収する基部を有する連結部を構成することができる。すなわち、簡単な方法でセンサ感度が低下し難いガスセンサ素子を提供することができる。また、特に、ベース絶縁層の非固定部を形成するための空洞部を支持体の表面側からエッチングを施して形成するため(支持体の裏面側からエッチングを施して空洞部を形成するものではないため)、ガスセンサ素子の小型化が可能なガスセンサ素子の製造方法を提供することができる。
(A)は本発明に係るガスセンサ素子の第1実施例を示す図であり、(B)は(A)のIB-IB線断面図である。 (A)は図1(A)に示すガスセンサ素子の第1実施例の主要部を拡大して示す図であり、(B)は(A)に対応するガスセンサ素子の主要部を拡大撮影した走査電子顕微鏡(SEM)写真である。 (A)は図2(A)のIIIA-IIIA線断面図であり、(B)は図2(A)のIIIB-IIIB線断面図であり、(C)は図2(A)のIIIC-IIIC線断面図である。 本発明に係るガスセンサ素子の第2実施例を示す図である。 (A)は図4に示すガスセンサ素子の第2実施例の主要部を拡大して示す図であり、(B)は(A)に対応するガスセンサ素子の主要部を拡大撮影したSEM写真である。 図5(A)のVIB-VIB線断面に対応するガスセンサ素子の主要部を拡大撮影したSEM写真である。 (A)は図5(A)のVIIA-VIIA線断面図であり、(B)は図5(A)のVIIB-VIIB線断面図であり、(C)は図5(A)のVIIC-VIIC線断面図である。 本発明に係るガスセンサ素子の第3実施例を示す図である。 (A)は図8に示すガスセンサ素子の第3実施例の主要部を拡大して示す図であり、(B)は(A)に対応するガスセンサ素子の主要部を拡大撮影したSEM写真である。 (A)は図9(A)のXA-XA線断面図であり、(B)は図9(A)のXB-XB線断面図であり、(C)は図9(A)のXC-XC線断面図である。 (A)乃至(H)は、本発明のガスセンサ素子の製造方法の一例を説明する工程図である。
 以下、本発明の実施の形態について説明する。図1(A)は、本発明に係るガスセンサ素子の第1実施例を示す図であり、図1(B)は図1(A)のIB-IB線断面図である。図2(A)は、図1(A)のガスセンサ素子の主要部を拡大して示す図であり、図2(B)は、図2(A)に対応するガスセンサ素子の主要部を600倍で拡大撮影した走査電子顕微鏡(SEM)写真である。図3(A)は、図2(B)のIIIA-IIIA線断面図であり、図3(B)は、図2(B)のIIIB-IIIB線断面図であり、図3(C)は、図2(B)のIIIC-IIIC線断面図である。なお、理解を容易にするため、図2(A)及び図3(C)では、後述の検出用電極部29及び感応膜31の図示を省略し、さらに図3(A)~(C)では、ヒータ配線パターン19及び電極配線パターン27(検出用電極部29を含む)の図示を省略している。図2及びこれらの図において、符号1は、ガスセンサ素子の第1実施例である。ガスセンサ素子1は、支持体3、ベース絶縁層9、ヒータ配線パターン19、電極配線パターン27及び感応膜31を備える。
 支持体3は、縦幅1.5mm、横幅1.5mm、厚み0.26mmのシリコン単結晶基板からなり、厚み方向に対向する表面3A及び裏面3Bを備える。そして、支持体3は、表面3Aに開口する開口部5を有する空洞部7を備えている。
 ベース絶縁層9は、厚み0.6μmの酸化シリコン(SiO)層及び厚み0.4μmの窒化シリコン(Si)層からなる下部絶縁層11と厚み3μmの窒化酸化シリコン(SiON)からなる上部絶縁層13とを支持体3の表面3AにプラズマCVDにより積層して構成されている。そして、ベース絶縁層9は、支持体3の表面3A上に裏面15Bが固定される固定部15及びこの固定部15と一体に設けられて支持体3の開口部5上に位置する非固定部17を有する。この非固定部17は、中央部21及び中央部21と固定部15とを連結する4本の連結部23を備えている。
 ヒータ配線パターン19は、厚み4000Åの貴金属薄膜層からなり、下部絶縁層11の表面11A上に形成され上部絶縁層13に覆われている。そして、ヒータ配線パターン19は、非固定部17の中央部21内に電気ヒータ部25を有する。電気ヒータ部25は、中央部21に設けられた後述の感応膜31を加熱して感応膜31に付着した検出の対象でないガス(不純ガス)を揮発させる機能を有する。電気ヒータ部25の加熱温度は、揮発させるガスの種類によって上下させることができるようになっている。
 電極配線パターン27は、Ptからなり、非固定部17に検出用電極部29を備えて、上部絶縁層13の表面13A上にスパッタリングにより形成されている。電極配線パターン27は、接続用電極部28を介して外部に接続できるようになっている。検出用電極部29は、後述の感応膜31に検出対象のガスが付着したときに、ガスセンサ素子1内の抵抗値変化を検出する機能を有する。
 感応膜31は、Inを主成分とする金属化合物半導体をペースト化したものを、検出用電極部29を覆うように非固定部17の中央部21上に塗布後、650℃以上で焼成して形成する。感応膜31は、検出対象のガスが付着するようになっている。
 図2(A)及び図3(A)~(C)に示すように、本発明の第1実施例では、4本の連結部23が基部33と延伸部35とから構成されている。連結部23の基部33は、開口部5の縁部5Aに沿って延びるように構成されている。また延伸部35は、基部33から中央部21に向かって延びて中央部21に連結するように構成されている。そして、連結部23は、基部33の最大幅寸法W1が、延伸部35の最大幅寸法W2よりも大きくなるように構成されている。
 言い換えると、図1(B)、図2(A)及び図3(B)に示すように、本発明の第1実施例では、開口部5の輪郭形状が方形状(ほぼ正方形)を呈し、かつ4本の連結部23の基部33が開口部5の四隅51,52,53,54に位置するように支持体3に空洞部7が形成されている。支持体3の空洞部7をこのように形成すると、非固定部17に延伸部35だけでは吸収しきれない応力を吸収できる基部33を確実に形成することができる。その上、非固定部17の基部33の最大幅寸法W1を可能な限りにおいて大きなものとすることができる。
 さらに、開口部5の縁部5Aを構成する4つの辺55,56,57,58のうち、開口部5の四隅51~54の各隅51,52,53または54をそれぞれ形成する2つの辺55及び58、55及び56、56及び57、または57及び58に跨るように形成されている。開口部5の四隅51~54に位置する連結部23の基部33をこのように形成すると、非固定部17に支持体3の開口部5の縁部5Aに跨る基部33を形成することができるので、裾野が広がった機械的強度の高い基部を形成することができる。
 本発明の第1実施例では、図2(A)及び図3(B)に示すように、非固定部17の形状が、中央部21の形状が円板形状を有し、かつ4本の連結部23の延伸部35が四隅51~54に対して仮想した2本の仮想対角線SD1,SD2[開口部5の四隅51~54を対角線方向に結んで開口部5の中心点(中央部21の中心点C)で交差する2つの直線]に沿って延びるような形状になっている。すなわち、4本の連結部23の延伸部35が、中央部21から基部33に向かってほぼ等間隔(約90度の角度間隔)に放射上に広がるように構成されている。非固定部17がこのような形状になっている結果、非固定部17の中央部21に発生した応力を中央部21の周方向の外側に均等に逃がすことができる(例えば一部の延伸部35に応力が集中するのを防ぐことができる)。また、連結部23の延伸部35をこのような構造にすることにより、少ない連結部(4本の連結部23)で確実に中央部21を固定部15に連結することができる。
 本発明の第1実施例では、4本の連結部23の基部33の中央部21と対向する縁部33Aが、中央部21の中心点Cを中心とする仮想円SC(中央部21の中心点Cを中心として円板形状の中央部21の輪郭形状を示す円に対して、面積が大きくかつほぼ相似形の円)に沿うように、非固定部17が構成されている。この場合、円板形状の中央部21の直径寸法が仮想円の直径寸法の約0.45倍(0.1~0.7倍の範囲内)になっている。円板形状の中央部21と対向する基部33の縁部33Aの形状が、中央部21の円板形状と同じ中心点Cを中心とする相似形の円板形状を有するため、中央部21に発生した応力を中央部21の周方向の外側に放射状に均等に逃がすことができる。また、基部33の大きさ(輪郭形状としてみた場合は基部33の面積)を大きくすることができる。その上、中央部21の面積を大きくすることができて、感応膜31の形成が容易になる。また、円形形状を有する中央部21の表面と塗布した感応膜31との間の表面張力は均一になり易いため、感応膜31の塗布量を多くすることができ、しかも中央部21の表面に形成する感応膜31の膜厚を均一にすることができる。
 本発明の第1実施例では、図2(A)及び(B)並びに図3(A)~(C)に示すように、開口部5から支持体3の裏面3Bに向かうに従って横断面積が小さくなる四角錐形状を有するように支持体3の空洞部7が形成されている。空洞部7のように四角錐形状の空洞にすると、空洞の体積を小さくすることができるため、ガスセンサ素子を小型化することができ、しかも製造コストを少なくすることができる。
 次に本発明の第2実施例について説明する。図4は、本発明に係るガスセンサ素子の第2実施例を示す図である。図5(A)は、図4に示すガスセンサ素子の主要部を拡大して示す図であり、図5(B)は、図5(A)に対応するガスセンサ素子の主要部を400倍で拡大撮影したSEM写真である。図6は、図5(A)のVIB-VIB線断面に対応するガスセンサ素子の主要部を500倍で拡大撮影したSEM写真である。図7(A)は、図5(A)のVIIA-VIIA線断面図であり、図7(B)は、図5(A)のVIIB-VIIB線断面図であり、図7(C)は、図5(A)のVIIC-VIIC線断面図である。なお、第2実施例において第1実施例と共通する部分については、第1実施例で付した符号の数に100の数を加えた数の符号を付して説明を省略する。また、理解を容易にするため、図4、図5(A)及び図7(C)においても、検出用電極部及び感応膜131の図示を省略し、さらに図7(A)~(C)においても、ヒータ配線パターン119及び電極配線パターン127(検出用電極部を含む)の図示を省略している。
 本発明の第2実施例では、中央部121が円板形状を有し、連結部123の延伸部135を第1の延伸部分1351と第2の延伸部分1352とから構成するように、非固定部117の形状が定められている。第1の延伸部分1351は、方形状(ほぼ正四角形)の開口部105の縁部105Aの一辺に沿って延び且つ一端1351Aが基部133と連続するように構成する。そして、第2の延伸部分1352は、第1の延伸部分1351とこの第1の延伸部分1351の他端1351Bと連続し第1の延伸部分1351と直交し中央部121に向かって延びるように構成する。連結部123の延伸部135を、このような第1の延伸部分と第2の延伸部分とから構成することにより、連結部123の輪郭形状が略卍形状を呈するように非固定部117が形成される(すなわち、各連結部123の延伸部135が非固定部117の中央部121と基部133との中間部で直角に曲がっている)。その結果、中央部121に発生した応力が伝わる方向を中央部121の径方向から周方向に変化させることができるため、延伸部135と基部133とで応力を効率よく吸収することができる[図5(A)及び(B)、図6並びに図7(A)~(C)参照]。
 次に第3実施例について説明する。図8は、本発明に係るガスセンサ素子の第3実施例を示す図である。図9(A)は図8に示すガスセンサ素子の第3実施例の主要部を拡大して示す図であり、図9(B)は図9(A)に対応するガスセンサ素子の主要部を400倍で拡大撮影したSEM写真である。図10(A)は図9(A)のXA-XA線断面図であり、図10(B)は図9(A)のXB-XB線断面図であり、図10(C)は図9(A)のXC-XC線断面図である。なお、第3実施例において第2実施例と共通する部分については、第2実施例で付した符号の数にさらに100の数を加えた数の符号を付して説明を省略する。また、理解を容易にするため、図8、図9(A)及び図10(C)においても、検出用電極部及び感応膜231の図示を省略し、さらに図10(A)~(C)においても、ヒータ配線パターン219及び電極配線パターン227(検出用電極部を含む)の図示を省略している。
 本発明の第3実施例においても、中央部221が円板形状を有し、連結部223の延伸部235を第1の延伸部分2351と第2の延伸部分2352とから構成するように、非固定部217の形状が定められている点で第2実施例の構成と共通する。一方、第3実施例では、4本の連結部223の基部233の中央部221と対向する縁部233Aが、支持体203の開口部205の縁部205Aの中心点(中央部221の中心点C)を中心とする仮想正方形SS(中央部221の中心点Cを中心として正方形状の開口部205の縁部205Aの輪郭形状を示す正方形に対して、面積が小さくかつほぼ相似形の正方形)に沿うように、非固定部217が構成されている点で、第2実施例の構成と異なる。すなわち、第2実施例に対して基部233の体積(輪郭形状で見た場合は体積)が小さくなる。しかしながら、図9(A)及び(B)並びに図10(A)~(C)に示すように、第3実施例では基部233が存在するため、図9(A)において非固定部217に基部233が全く形成されていない構成に比べて、延伸部235(第1の延伸部分2351及び第2の延伸部分2352)で吸収しきれない応力を基部233に吸収させることができる。
 以下、本発明のガスセンサ素子の製造方法の一例として、図11に示すように本発明の第1実施例を製造する方法について説明する。まず支持体3の材料として、厚み方向に対向する表面2A及び裏面2Bを有するシリコン単結晶基板2を用意する[図11(A)]。このシリコン単結晶基板2の表面2A上に厚み6000Åの酸化シリコン(SiO)層及び厚み400Åの窒化シリコン(Si)層からなる下部絶縁層11をWet酸化及びLP-CVDにより形成する[図11(B)]。下部絶縁層11の非固定部17の中央部21を構成する部分の表面上に、電気ヒータ部25が形成されるように下部絶縁層11の表面11A上に厚み4000Åの貴金属薄膜層からなるヒータ配線パターン19を形成する[図11(C)]。下部絶縁層11の表面11A上には、ヒータ配線パターン19を覆うように厚み3μmの窒化酸化シリコン(SiON)からなる上部絶縁層13をプラズマCVDにより形成して、シリコン単結晶基板2の表面2A上にベース絶縁層9を形成する[図11(D)]。そして、ベース絶縁層9を構成する上部絶縁層13の後述する非固定部17を構成する部分(電気ヒータ部25が形成された部分)の表面上に、検出用電極部29が形成されるように、ベース絶縁層9の表面9A上にPtからなる電極配線パターン27をスパッタリングにより形成する[図11(E)]。
 次に、ベース絶縁層9の表面に固定部と非固定部の形状が残る形状にエッチングレジスト膜を形成した後、反応性イオンエッチングによりシリコン単結晶基板2の表面2Aが露出するまでベース絶縁層9をエッチングして、連結部23が後述の開口部5の縁部5Aに沿って延びる後述の基部33と該基部33から中央部21に向かって延びて中央部21に連結する延伸部35とからなるように連結部を23を形成する[図11(F)]。
 次に、異方性エッチングによりシリコン単結晶基板2の露出した表面2A側からエッチングを施して、輪郭形状が方形状(ほぼ正方形)になる開口部5を有する空洞部7を形成する。このエッチングの制御により、開口部5から支持体3の裏面3Bに向かうに従って横断面積が小さくなる四角錐形状を有する空洞部7を形成して支持体3を構成する[図11(G)]。具体的には、4本の連結部23の基部33が、開口部5の四隅51~54に位置し、基部33は開口部5の縁部5Aを構成する4つの辺55~58のうち対応する隅を形成する2つの辺55及び58、55及び56,56及び57、または57及び58に跨るように、シリコン単結晶基板2の表面2A上に四角錐形状の空洞部7を形成して支持体3を構成する。その後、中央部21のエッチングレジストを除去して検出用電極部29を露出させ、検出用電極部29を覆うように中央部21の表面に感応膜31を形成する。感応膜31は、Inを主成分とする金属化合物半導体をペースト化したものを中央部21の表面に塗布し、650℃以上で焼成することにより形成する[図11(H)]。
 このようなガスセンサ素子の製造方法を用いることにより、二段階のエッチングを行うだけで、支持体3の開口部5の縁部5Aに沿って非固定部17の中央部21に発生した応力を吸収する基部33を有する連結部23を構成することができる。すなわち、簡単な方法でセンサ感度が低下し難いガスセンサ素子を提供することができる。また、ベース絶縁層9の非固定部17を形成するための空洞部7を支持体3の表面3A側からエッチングを施して形成するため(支持体3の裏面3B側からエッチングを施して空洞部7を形成するものではないため)、ガスセンサ素子の小型化が可能なガスセンサ素子の製造方法を提供することができる。
 なお、本発明は、これらの実施の形態に限定されるものではなく、本発明の技術的思想の範囲内において変更が可能であることは勿論である。
 本発明によれば、非固定部の連結部を基部と延伸部とにより構成するため、ヒータを内蔵しかつ表面に検出用電極部と感応膜が形成されたベース絶縁層の非固定部(中央部)に加熱による大きな応力が発生した場合でも、支持体の開口部の縁部に沿って形成された連結部の基部が、非固定部の中央部に発生した応力を吸収するため、検出用電極部および感応膜を含む感応部の変形および破損を確実に低減することができる。したがって、センサ感度が低下し難いガスセンサ素子を提供することができる。
 また、延伸部よりも最大幅寸法が大きい基部が、中央部で発生した応力を吸収することができるため、応力が延伸部に集中するのを防ぐことができる。また、非固定部の中央部に連結する延伸部が、固定部に直接結合するものではなく、延伸部よりも最大幅寸法が大きい基部を介して固定部に結合するため、連結部の強度を高くすることができる。
 さらに、ベース絶縁層の非固定部を形成するための空洞部(開口部)が支持体の表面側に形成するため(支持体の裏面側に形成するものではないため)、ガスセンサ素子の小型化が可能でしかもガスセンサ素子を簡単に形成することができる。
 1,101,201 ガスセンサ素子
 2 シリコン単結晶基板
 3,103,203 支持体
 3A 表面
 3B,103B,203B 裏面
 5,105,205 開口部
 5A,105A,205A 縁部
 7,107,207 空洞部
 9 ベース絶縁層
 11 下部絶縁層
 11A 表面
 13 上部絶縁層
 13A 表面
 15 固定部
 17,117,217 非固定部
 19,119 ヒータ配線パターン
 21,121,221 中央部
 C 中心点
 23,123,223 連結部
 25 電気ヒータ部
 27,127 電極配線パターン
 29,129 検出用電極部
 31,131 感応膜
 33,133,233 基部
 33A,133A,233A 縁部
 SC 仮想円
 35,135,235 延伸部
 1351,2351 第1の延伸部分
 1351A,2351A 一端
 1351B,2351B 他端
 1352,2352 第2の延伸部分
 51,52,53,54 四隅
 55,56,57,58 4つの辺
 SD1,SD2 仮想対角線

Claims (11)

  1.  厚み方向に対向する表面及び裏面を備え、且つ少なくとも前記表面に開口する開口部を有する空洞部を備えたシリコン単結晶基板からなる支持体と、
     窒化シリコン及び酸化シリコンからなる下部絶縁層と窒化酸化シリコンからなる上部絶縁層とが積層されて構成され且つ前記支持体の前記表面上に裏面が固定される固定部及び前記固定部と一体に設けられて前記支持体の前記開口部上に位置する非固定部を有するベース絶縁層と、
     前記下部絶縁層と前記上部絶縁層との間に形成されて、前記非固定部の中央部内に電気ヒータ部を有するヒータ配線パターンと、
     前記上部絶縁層の表面上に形成され前記非固定部に検出用電極部を有する電極配線パターンと、
     前記検出用電極部を覆うように前記非固定部の前記中央部上に塗布形成された感応膜とを備え、
     前記ベース絶縁層の前記非固定部が、前記中央部及び前記中央部と前記固定部とを連結する4本の連結部を備えたガスセンサ素子であって、
     前記連結部は前記開口部の縁部に沿って延びる基部と該基部から前記中央部に向かって延びて前記中央部に連結された延伸部とからなり、
     前記開口部の輪郭形状は方形状を呈しており、
     4本の前記連結部の基部が、前記開口部の四隅に位置し、前記基部は前記開口部の前記縁部を構成する4つの辺のうち対応する前記隅を形成する2つの前記辺に跨るように形成されているガスセンサ素子。
  2.  前記中央部は円板形状を有しており、
     前記4本の連結部の前記延伸部は、前記四隅に対して仮想した2本の仮想対角線に沿って延びている請求項1に記載のガスセンサ素子。
  3.  前記中央部は円板形状を有しており、
     前記連結部の前記延伸部は、方形状の前記開口部の縁部の一辺に沿って延び且つ一端が前記基部と連続する第1の延伸部分と該第1の延伸部分の他端と連続し前記第1の延伸部分と直交し前記中央部に向かって延びる第2の延伸部分とからなる請求項1に記載のガスセンサ素子。
  4.  厚み方向に対向する表面及び裏面を備え、且つ少なくとも前記表面に開口する開口部を有する空洞部を備えた支持体と、
     複数の絶縁層が積層されて構成され且つ前記支持体の前記表面上に裏面が固定される固定部及び前記固定部と一体に設けられて前記支持体の前記開口部上に位置する非固定部を有するベース絶縁層と、
     前記ベース絶縁層の内部に形成されて、前記非固定部の中央部内に電気ヒータ部を有するヒータ配線パターンと、
     前記ベース絶縁層の表面上に形成され前記非固定部に検出用電極部を有する電極配線パターンと、
     前記検出用電極部を覆うように前記非固定部の前記中央部上に形成された感応膜とを備え、
     前記ベース絶縁層の前記非固定部が、前記中央部及び前記中央部と前記固定部とを連結する複数本の連結部を備えたガスセンサ素子であって、
     前記連結部は前記開口部の縁部に沿って延びる基部と該基部から前記中央部に向かって延びて前記中央部に連結された延伸部とからなり、
     前記基部の最大幅寸法は前記延伸部の最大幅寸法よりも大きいことを特徴とするガスセンサ素子。
  5.  前記開口部の輪郭形状は方形状を呈しており、
     4本の前記連結部の基部が、前記開口部の四隅に位置していることを特徴とする請求項4に記載のガスセンサ素子。
  6.  前記基部は、前記開口部の前記縁部を構成する4つの辺のうち対応する前記隅を形成する2つの前記辺に跨るように形成されている請求項5に記載のガスセンサ素子。
  7.  前記中央部は円板形状を有しており、
     前記4本の連結部の前記延伸部は、前記四隅に対して仮想した2本の仮想対角線に沿って延びている請求項5に記載のガスセンサ素子。
  8.  前記中央部は円板形状を有しており、
     前記連結部の前記延伸部は、方形状の前記開口部の縁部の一辺に沿って延び且つ一端が前記基部と連続する第1の延伸部分と該第1の延伸部分の他端と連続し前記第1の延伸部分と直交し前記中央部に向かって延びる第2の延伸部分とからなる請求項5に記載のガスセンサ素子。
  9.  前記4本の連結部の前記基部の前記中央部と対向する縁部は、前記中央部の中心点を中心とする仮想円に沿っており、
     前記円板形状の前記中央部の直径寸法は前記仮想円の直径寸法の0.1~0.7倍である請求項2,3,7または8に記載のガスセンサ素子。
  10.  前記空洞部は、前記開口部から前記支持体の前記裏面に向かうに従って横断面積が小さくなる切頭四角錐または四角錐形状を有している請求項1乃至8のいずれか1項に記載のガスセンサ素子。
  11.  厚み方向に対向する表面及び裏面を備え、且つ少なくとも前記表面に開口する開口部を有する空洞部を備えたシリコン単結晶基板からなる支持体と、窒化シリコン及び酸化シリコンからなる下部絶縁層と窒化酸化シリコンからなる上部絶縁層とが積層されて構成され且つ前記支持体の前記表面上に裏面が固定される固定部及び前記固定部と一体に設けられて前記支持体の前記開口部上に位置する非固定部を有するベース絶縁層と、前記ベース絶縁層の内部に形成されて、前記非固定部の中央部内に電気ヒータ部を有するヒータ配線パターンと、前記上部絶縁層の表面上に形成され前記非固定部に検出用電極部を有する電極配線パターンと、前記検出用電極部を覆うように前記非固定部の前記中央部上に塗布形成された感応膜とを備え、前記ベース絶縁層の前記非固定部が前記中央部及び前記中央部と前記固定部とを連結する4本の連結部を備えたガスセンサ素子の製造方法であって、
     前記支持体の材料として、厚み方向に対向する表面及び裏面を備えるシリコン単結晶基板を用意し、
     前記シリコン単結晶基板の前記表面上に前記下部絶縁層を形成し、前記下部絶縁層の前記非固定部の中央部を構成する部分の表面上に前記電気ヒータ部が形成されるように前記下部絶縁層の表面上に前記ヒータ配線パターンを形成し、前記ヒータ配線パターンを覆うように前記下部絶縁層の表面上に前記上部絶縁層を形成して、前記シリコン単結晶基板の前記表面上に前記ベース絶縁層を形成し、
     前記ベース絶縁層を構成する前記上部絶縁層の前記非固定部を構成する部分の表面上に前記検出用電極部が形成されるように、前記ベース絶縁層の表面上に前記電極配線パターンを形成し、
     前記ベース絶縁層の表面に前記固定部と前記非固定部の形状が残る形状にエッチングレジスト膜を形成した後、反応性イオンエッチングにより前記シリコン単結晶基板の前記表面が露出するまで前記ベース絶縁層をエッチングして、前記連結部が前記開口部の縁部に沿って延びる基部と該基部から前記中央部に向かって延びて前記中央部に連結する延伸部とからなるように前記連結部を形成し、
     異方性エッチングにより前記シリコン単結晶基板の前記露出した表面側からエッチングを施して、輪郭形状が方形状になる前記開口部を有し、かつ前記開口部から前記支持体の裏面に向かうに従って横断面積が小さくなる切頭四角錐または四角錐形状を有する空洞部を形成し、
     少なくとも中央部の前記エッチングレジスト膜を除去して前記検出用電極部を露出させて、前記検出用電極部を覆うように前記中央部の表面に前記感応膜を形成するガスセンサ素子の製造方法。
PCT/JP2010/067232 2009-10-05 2010-10-01 ガスセンサ素子及びその製造方法 WO2011043258A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/500,236 US9176084B2 (en) 2009-10-05 2010-10-01 Gas sensor element and manufacturing method of the same
CN2010800446050A CN102575999B (zh) 2009-10-05 2010-10-01 气体传感器元件及其制造方法
EP10821929.6A EP2487485A4 (en) 2009-10-05 2010-10-01 Gas sensor element and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232006A JP5100733B2 (ja) 2009-10-05 2009-10-05 ガスセンサ素子及びその製造方法
JP2009-232006 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043258A1 true WO2011043258A1 (ja) 2011-04-14

Family

ID=43856716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067232 WO2011043258A1 (ja) 2009-10-05 2010-10-01 ガスセンサ素子及びその製造方法

Country Status (5)

Country Link
US (1) US9176084B2 (ja)
EP (1) EP2487485A4 (ja)
JP (1) JP5100733B2 (ja)
CN (1) CN102575999B (ja)
WO (1) WO2011043258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081367A (ja) * 2012-09-25 2014-05-08 Hokuriku Electric Ind Co Ltd ガスセンサ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178998A1 (en) * 2014-05-23 2015-11-26 General Electric Company Fuse for detecting failure of gas trap
RU2597657C1 (ru) * 2015-04-14 2016-09-20 Общество с ограниченной ответственностью "Планар-МИФИ" Способ изготовления чувствительных элементов датчиков концентрации газа
US10273149B2 (en) 2015-07-28 2019-04-30 Carrier Corporation Gas detector with a thermally uniform MEMS die
RU2650793C1 (ru) * 2017-01-31 2018-04-17 Общество с ограниченной ответственностью "Сенсор Микрон" Способ изготовления чувствительных элементов газовых датчиков
JP6896679B2 (ja) * 2018-07-03 2021-06-30 株式会社東芝 ガスセンサ
JP6877397B2 (ja) * 2018-10-15 2021-05-26 Nissha株式会社 Memsガスセンサ及びmemsガスセンサの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688802A (ja) * 1992-01-08 1994-03-29 Ricoh Seiki Co Ltd 雰囲気センサ
JPH06258268A (ja) * 1991-12-27 1994-09-16 Ricoh Seiki Co Ltd センサ
JPH08264844A (ja) * 1995-03-24 1996-10-11 Nippondenso Co Ltd フローティングメンブレン
JPH11160267A (ja) * 1997-11-27 1999-06-18 Hochiki Corp 感応膜アレイ型ガス検出器
JP2000258376A (ja) * 1999-03-10 2000-09-22 Kubota Corp マイクロヒータ及びマイクロヒータの作製方法
JP2007132814A (ja) 2005-11-10 2007-05-31 Nippon Ceramic Co Ltd ガスセンサ用mems構造体
JP2009020053A (ja) * 2007-07-13 2009-01-29 Nippon Ceramic Co Ltd ガスセンサ
JP2009058389A (ja) 2007-08-31 2009-03-19 New Cosmos Electric Corp ガス検知素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582343B2 (ja) * 1993-12-04 1997-02-19 エルジー電子株式会社 低消費電力型薄膜ガスセンサ及びその製造方法
KR100453976B1 (ko) * 2002-11-27 2004-10-20 전자부품연구원 마이크로 소자용 다이아프램의 제조방법
US7566971B2 (en) * 2005-05-27 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
GB0517869D0 (en) * 2005-09-02 2005-10-12 Univ Warwick Gas-sensing semiconductor devices
JP2007132762A (ja) * 2005-11-09 2007-05-31 Nippon Ceramic Co Ltd ガスセンサの構造
CN100476418C (zh) * 2007-03-28 2009-04-08 哈尔滨理工大学 平板夹心结构的半导体式气体传感器的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258268A (ja) * 1991-12-27 1994-09-16 Ricoh Seiki Co Ltd センサ
JPH0688802A (ja) * 1992-01-08 1994-03-29 Ricoh Seiki Co Ltd 雰囲気センサ
JPH08264844A (ja) * 1995-03-24 1996-10-11 Nippondenso Co Ltd フローティングメンブレン
JPH11160267A (ja) * 1997-11-27 1999-06-18 Hochiki Corp 感応膜アレイ型ガス検出器
JP2000258376A (ja) * 1999-03-10 2000-09-22 Kubota Corp マイクロヒータ及びマイクロヒータの作製方法
JP2007132814A (ja) 2005-11-10 2007-05-31 Nippon Ceramic Co Ltd ガスセンサ用mems構造体
JP2009020053A (ja) * 2007-07-13 2009-01-29 Nippon Ceramic Co Ltd ガスセンサ
JP2009058389A (ja) 2007-08-31 2009-03-19 New Cosmos Electric Corp ガス検知素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2487485A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081367A (ja) * 2012-09-25 2014-05-08 Hokuriku Electric Ind Co Ltd ガスセンサ

Also Published As

Publication number Publication date
EP2487485A1 (en) 2012-08-15
JP5100733B2 (ja) 2012-12-19
EP2487485A4 (en) 2017-01-04
CN102575999A (zh) 2012-07-11
US9176084B2 (en) 2015-11-03
US20120193730A1 (en) 2012-08-02
CN102575999B (zh) 2013-11-06
JP2011080809A (ja) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2011043258A1 (ja) ガスセンサ素子及びその製造方法
JP4158830B2 (ja) 熱型赤外線検出装置の製造方法
JP4978501B2 (ja) 熱型赤外線検出器及びその製造方法
US10241094B2 (en) Micro heater, micro sensor and micro sensor manufacturing method
JP4944590B2 (ja) 熱型赤外線検出装置の製造方法
JP4590764B2 (ja) ガスセンサ及びその製造方法
EP0596456A1 (fr) Procédé de fabrication de transducteurs capacitifs intégrés
JP2012194080A (ja) ボロメータ型THz波検出器
TW201114678A (en) Radio frequency identification based thermal bubble type accelerometer
CN112312294B (zh) 微机电系统麦克风
CN107799392B (zh) 黑硅、制备工艺及基于黑硅的mems器件制备方法
US10315917B2 (en) Method for manufacturing a micromechanical sensor device and corresponding micromechanical sensor device
US6352874B1 (en) Method of manufacturing a sensor
US20090152466A1 (en) Microbolometer with improved mechanical stability and method of manufacturing the same
JP2016215366A (ja) 熱的に絶縁される微小電気機械システム(mems)デバイスのモノリシック製作
JP2009265091A (ja) 高度に分離された熱検出器
WO2010084916A1 (ja) ガスセンサ用基体及びその製造方法
JP2011082483A (ja) ダイアフラム素子及びダイアフラム素子の製造方法
JP2008209161A (ja) 赤外線センサおよびその製造方法
WO2015141496A1 (ja) 赤外線センサ及びその製造方法
JP2020063914A (ja) Memsガスセンサ及びmemsガスセンサの製造方法
JP2011226895A (ja) 赤外線検出センサ
JP2017181435A (ja) 応力センサ
CN102963860A (zh) 微桥结构红外探测器的制造方法
JP6694747B2 (ja) 応力センサ及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044605.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13500236

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010821929

Country of ref document: EP