WO2011043244A1 - Film-forming device, film-forming head, and film-forming method - Google Patents

Film-forming device, film-forming head, and film-forming method Download PDF

Info

Publication number
WO2011043244A1
WO2011043244A1 PCT/JP2010/067136 JP2010067136W WO2011043244A1 WO 2011043244 A1 WO2011043244 A1 WO 2011043244A1 JP 2010067136 W JP2010067136 W JP 2010067136W WO 2011043244 A1 WO2011043244 A1 WO 2011043244A1
Authority
WO
WIPO (PCT)
Prior art keywords
film forming
forming material
vapor
organic film
inorganic film
Prior art date
Application number
PCT/JP2010/067136
Other languages
French (fr)
Japanese (ja)
Inventor
裕司 小野
輝幸 林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN201080044833.8A priority Critical patent/CN102575347B/en
Priority to JP2011535361A priority patent/JP5484478B2/en
Publication of WO2011043244A1 publication Critical patent/WO2011043244A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Definitions

  • the present invention relates to a film forming apparatus that performs co-evaporation by supplying a mixed vapor of an organic film forming material and an inorganic film forming material to a substrate to be processed, a film forming head that forms the film forming apparatus, and a film forming method.
  • Organic EL elements using electroluminescence (EL) have been developed.
  • Organic EL elements have lower power consumption than cathode ray tubes, etc., and are self-luminous, so they have advantages such as better viewing angle than liquid crystal displays (LCDs), and future development is expected. Yes.
  • the most basic structure of the organic EL element is a sandwich structure in which an anode (anode) layer, a light emitting layer and a cathode (cathode) layer are formed on a glass substrate.
  • anode anode
  • a light emitting layer a light emitting layer
  • a cathode cathode
  • ITO Indium Tin Oxide
  • an electron transport layer and an electron injection layer are sequentially formed on the light emitting layer in order to bridge the movement of electrons from the cathode layer to the light emitting layer.
  • It is a membrane.
  • An alkali metal having a low work function such as cesium Cs or lithium Li is used for the electron injection layer, and an electron transporting organic material such as Alq3q is used for the electron transport layer.
  • the electron transport layer and the electron injection layer are each formed by vapor deposition.
  • Patent Documents 1 and 2 disclose a film forming apparatus for manufacturing the organic EL element described above.
  • the film forming apparatus includes a processing chamber that accommodates a glass substrate that is a substrate to be processed, and a vapor generating unit that generates vapor of a film forming material is disposed outside the processing chamber. Inside the processing chamber, a vapor deposition head is provided which is connected to a vapor generation unit through a pipe and ejects vapor of a film forming material generated in the vapor generation unit toward a glass substrate.
  • the electron injection layer and the electron transport layer are formed by vapor deposition on the cathode side of the organic EL element, respectively, but after the formation of the electron transport layer made of an organic film forming material, Since the electron injection layer is made of an inorganic film forming material, the energy barrier at the interface between the electron transport layer and the electron injection layer is increased, and sufficient light emission intensity cannot be obtained unless the drive voltage is increased. There was a problem.
  • the internal pressure of the vapor deposition head particularly the vapor pressure of the organic film forming material is 10 Pa
  • the internal pressure of the processing chamber is 1 ⁇ 10 ⁇ 2 Pa
  • the temperature of the film forming material is 450 ° C. Since the vapor pressure at 450 ° C. of lithium Li and cesium Cs used for the electron injection layer is higher than 10 ⁇ 2 Pa, the vapor pressure of sodium Na is about 10 2 Pa, and the vapor pressure of calcium is higher than 10 4 Pa, in principle, Each inorganic film forming material can be ejected from the vapor deposition head into the processing chamber.
  • the vapor pressure of lithium Li which is particularly desired to be used, is extremely small and co-evaporation with the same concentration as the organic film-forming material cannot be performed, so that the energy barrier at the interface cannot be lowered.
  • the temperature of the film forming material it is necessary to set the temperature of the film forming material to 700 ° C. or higher. It is difficult to perform vapor deposition.
  • the present invention has been made in view of such circumstances, and enables co-evaporation of an organic film-forming material and an inorganic film-forming material under the required conditions without the above-described restrictions. Therefore, it is possible to improve the electron injection efficiency by reducing the energy barrier at the interface between the electron transport layer and the electron injection layer, and to manufacture an organic EL device with improved light emission intensity.
  • a film forming apparatus is provided in a processing chamber that accommodates a substrate to be processed, a vapor generating unit that generates vapor of an organic film forming material, and is generated in the vapor generating unit. And an organic film forming material supply unit that jets the vapor of the organic film forming material directed toward the substrate to be processed, in an inorganic film forming apparatus that jets the vapor of the inorganic film forming material toward the substrate to be processed.
  • a film material supply unit, and the organic film formation material supply unit and the inorganic film formation material supply unit are arranged such that the portions to be ejected of the organic film formation material and the inorganic film formation material overlap on the substrate to be processed. It is characterized by.
  • the film-forming head according to the present invention is a film-forming head that supplies vapor of a film-forming material toward a substrate to be processed, and an organic film-forming material supply unit that ejects vapor of the organic film-forming material toward the substrate to be processed And an inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed, and the organic film forming material supply unit and the inorganic film forming material supply unit include the organic film forming material and The inorganic film-forming material is ejected at a location where it overlaps on the substrate to be processed.
  • the film-forming head according to the present invention is a film-forming head that supplies vapor of a film-forming material toward a substrate to be processed, and an organic film-forming material supply unit that ejects vapor of the organic film-forming material toward the substrate to be processed
  • An inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed; an organic film forming material vapor that is injected from the organic film forming material supply unit; and the inorganic film forming material
  • a mixing chamber for mixing the vapor of the inorganic film forming material ejected from the supply unit, and the mixing chamber passes the mixed vapor of the organic film forming material and the inorganic film forming material and supplies the mixed vapor to the substrate to be processed. It has an opening.
  • the film forming method according to the present invention is a film forming method for forming a film by storing a substrate to be processed in a processing chamber and supplying vapor of a film forming material toward the stored substrate to be processed.
  • the organic film forming material supply unit and the inorganic film forming material supply unit apply the organic film forming material and the inorganic film forming method to the substrate to be processed so that the portions to be ejected overlap on the substrate to be processed. Blow out material vapor. Since the vapor of the organic film forming material and the vapor of the inorganic film forming material are ejected separately, for example, it is possible to mix the organic film forming material vapor at 450 ° C. and the inorganic film forming material vapor at 700 ° C. Become.
  • the pressures of the organic film-forming material and the inorganic film-forming material ejected into the processing chamber are reduced, and each constituent molecule and atom do not collide, so that the organic film-forming material is not burned out. Accordingly, the vapor of the organic film forming material and the vapor of the inorganic film forming material are mixed and formed on the substrate to be processed. Therefore, according to the film forming apparatus, the film forming head, and the film forming method of the present invention, the energy barrier at the interface in the electron transport layer or the electron injection layer of the organic EL element can be lowered, and the electron injection efficiency can be improved. It becomes possible.
  • the vapor of the organic film forming material ejected from the organic film forming material supply unit and the vapor of the inorganic film forming material ejected from the inorganic film forming material supply unit are mixed in the mixing chamber, The mixed vapor is supplied to the substrate to be processed through the opening. Accordingly, it is possible to form a substrate to be processed by uniformly mixing the organic film-forming material and the inorganic film-forming material as compared with the case where the mixing chamber having the opening is not provided.
  • the present invention it becomes possible to co-evaporate the organic film-forming material and the inorganic film-forming material under the required conditions, and the co-evaporation enables the energy of the interface in the electron transport layer and the electron injection layer of the organic EL element. It is possible to improve the electron injection efficiency by reducing the barrier, and it is possible to manufacture an organic EL element with improved emission intensity.
  • FIG. 6 is a sectional view taken along line IV-IV in FIG. 5. It is sectional drawing which shows typically the structure of an inorganic film-forming material supply part. It is sectional drawing which showed typically the organic EL element formed into a film using the film-forming system which concerns on this Embodiment.
  • FIG. 6 is a side sectional view schematically showing a configuration of a film forming head according to Modification 1.
  • FIG. 6 is a side sectional view of a film forming head according to Modification 2.
  • FIG. It is explanatory drawing which showed notionally arrangement
  • It is a side view of a heating apparatus. It is a front view of a heating apparatus.
  • FIG. 13 is a sectional view taken along line XV-XV in FIG. 12.
  • FIG. 10 is a side sectional view of a film forming head according to Modification 3.
  • FIG. 10 is a side sectional view of a film forming head according to Modification 3.
  • FIG. 1 is an explanatory diagram conceptually illustrating the configuration of a film forming system according to the present embodiment.
  • the film forming system according to the present embodiment includes a loader 90, a transfer chamber 91, a film forming apparatus 1, a transfer chamber 92, an etching apparatus 93, which are arranged in series in the transport direction of the substrate G to be processed (see FIG. 3).
  • a transfer chamber 94, a sputtering apparatus 95, a transfer chamber 96, a CVD apparatus 97, a transfer chamber 98, and an unloader 99 are configured.
  • the loader 90 is an apparatus for carrying the substrate to be processed G, for example, the substrate to be processed G on which the ITO layer 31 is previously formed, into the film forming system.
  • the transfer chambers 91, 92, 94, 96, and 98 are apparatuses for delivering the substrate to be processed G between the processing apparatuses.
  • the film forming apparatus 1 forms a hole injection layer, a hole transport layer, a blue light emitting layer, a red light emitting layer, a green light emitting layer, and an electron transport layer or an electron injection layer on the substrate G to be processed by vacuum deposition. It is a device. Details will be described later.
  • the etching apparatus 93 is an apparatus for adjusting the shape of the organic layer to a predetermined shape.
  • the sputtering apparatus 95 is an apparatus that forms a cathode layer on an electron transport layer by sputtering, for example, silver Ag, magnesium Mg / silver Ag alloy using a pattern mask.
  • the CVD apparatus 97 is an apparatus for forming a sealing layer made of a nitride film or the like by CVD or the like and sealing various films formed on the substrate G to be processed.
  • the unloader 99 is an apparatus for carrying the substrate to be processed G out of the film forming system.
  • FIG. 2 is a perspective view schematically showing the configuration of the film forming apparatus 1
  • FIG. 3 is a side sectional view schematically showing the configuration of the film forming apparatus 1.
  • the film forming apparatus 1 includes a processing chamber 11 for accommodating a substrate to be processed G and performing a film forming process on the substrate to be processed G inside.
  • the processing chamber 11 has a hollow, substantially rectangular parallelepiped shape whose longitudinal direction is the transport direction, and is made of aluminum, stainless steel, or the like.
  • a surface of one end in the longitudinal direction of the processing chamber 11 (a surface on the back side in FIG. 2) is formed with a carry-in port 11a for carrying the substrate G to be processed into the processing chamber 11, and a surface on the other end in the longitudinal direction.
  • a carry-out port 11b for carrying out the substrate G to be processed out of the processing chamber 11 is formed on the front surface in FIG.
  • the carry-in port 11a and the carry-out port 11b have a slit shape having a longitudinal direction orthogonal to the carry-in direction, and the longitudinal directions of the carry-in port 11a and the carry-out port 11b are substantially the same.
  • the longitudinal direction of the carry-in port 11a and the carry-out port 11b is referred to as a horizontal direction
  • the direction perpendicular to the horizontal direction and the conveyance direction is referred to as a vertical direction.
  • an exhaust hole 11 c is formed at an appropriate location of the storage chamber, and a vacuum pump 15 disposed outside the processing chamber 11 is connected to the exhaust hole 11 c through an exhaust pipe 14.
  • a vacuum pump 15 disposed outside the processing chamber 11 is connected to the exhaust hole 11 c through an exhaust pipe 14.
  • the inside of the processing chamber 11 is depressurized to a predetermined pressure, for example, 10-2 Pa.
  • the transfer device 12 includes a guide rail 12a provided at the bottom of the processing chamber 11 along the longitudinal direction, and a moving member 12b that is guided by the guide rail 12a and is movable in the transfer direction, that is, the longitudinal direction. And a support base 12c that is provided at the upper end of the moving member 12b and supports the substrate G to be processed so as to be substantially parallel to the bottom.
  • An electrostatic chuck that holds the substrate to be processed G, a substrate heater to be processed to keep the temperature of the substrate to be processed G constant, a refrigerant pipe, and the like are provided inside the support base 12c.
  • the support base 12c is configured to move by a linear motor.
  • a plurality of vapor deposition heads 13 for forming a film on the substrate G to be processed by a vacuum vapor deposition method are provided in the upper part of the processing chamber 11 and in the substantially central part in the transport direction.
  • the vapor deposition head 13 includes a first head 13a for vapor-depositing a hole injection layer, a second head 13b for vapor-depositing a hole transport layer, a third head 13c for vapor-depositing a blue light-emitting layer, a fourth head 13d for vapor-depositing a red light-emitting layer, and green.
  • the fifth head 13e for depositing the light emitting layer and the film forming head 2 according to the present invention are arranged in order along the transport direction.
  • the film formation head 2 is an apparatus for co-evaporating an organic film formation material, for example, Alq3, which is a material for electron transport, and an inorganic film formation material, for example, Li, for a material for electron injection.
  • a vapor generating unit 17 disposed outside the processing chamber 11 is connected to the membrane head 2 via a pipe 16.
  • the steam generation unit 17 includes a container 17a and a heating mechanism 17b disposed inside the container 17a.
  • the heating mechanism 17b has a container-shaped portion that can store the vapor of the organic film forming material that is the material of the electron transport layer, and is configured to heat the organic film forming material with electric power supplied from the power source 17c. . For example, it is configured to heat with an electric resistor. In this manner, the organic film forming material stored in the heating mechanism 17b is heated to generate vapor of the organic film forming material.
  • the container 17a is connected to a transport gas supply pipe 17d for supplying a transport gas made of an inert gas, for example, a rare gas such as Ar, to the substrate G to be processed.
  • the container 17a is connected to the container 17a from the transport gas supply pipe.
  • the vapor of the organic film forming material is supplied from the vapor generating unit 17 to the film forming head 2 via the pipe 16 together with the transport gas supplied to the film forming head 2.
  • the first to fifth heads 13a, 13b, 13c, 13d, and 13e are configured such that a vapor of a predetermined organic film forming material is supplied from a vapor generation unit (not shown).
  • FIG. 4 is a partially broken perspective view schematically showing the film forming head 2 according to the present embodiment
  • FIG. 5 is a side sectional view of the film forming head 2
  • FIG. 6 is a line IV-IV in FIG. It is sectional drawing.
  • the film forming head 2 includes a housing 21, an organic film forming material supply unit 22, an inorganic film forming material supply unit 24, a mixing chamber 23 for mixing the organic film forming material and the vapor of the inorganic film forming material,
  • the power supply members 25a and 25b and the heat retaining heaters 27a, 27b and 27c are provided.
  • the housing 21 is made of, for example, aluminum or stainless steel, has a horizontally long, substantially rectangular parallelepiped shape with a small width in the transport direction, and includes a bottom plate portion 21a, a side wall 21b, and a top plate portion 21c.
  • the inside of the housing 21 is vacuum.
  • the organic film forming material supply unit 22 includes an inflow chamber 22a into which the organic film forming material flows.
  • the inflow chamber 22 a is smaller in size than the casing 21, has a hollow substantially rectangular parallelepiped shape with one side notched on the side of the outlet 11 b side (lower right in FIG. 5), and is accommodated inside the casing 21.
  • the inflow chamber 22a is made of stainless steel, for example, and either the outer or inner surface of the inflow chamber 22a, or the outer and inner surfaces are plated with copper. Since copper plating improves thermal conductivity, radiant heat radiated from heat retaining heaters 27a and 27b, which will be described later, can be evenly transmitted to the inflow chamber 22a.
  • An organic film forming material supply pipe 22b through which the vapor of the organic film forming material generated in the vapor generating unit 17 flows into the inflow chamber 22a is connected to a substantially central portion of the upper part of the inflow chamber 22a.
  • a plurality of organic film-forming material ejection holes 22c are uniformly formed across the both ends in the lateral direction in the inclined portion corresponding to the cutout portion of the inflow chamber 22a.
  • the arrangement method of the organic film forming material ejection holes 22c is not particularly limited as long as the vapor of the organic film forming material can be uniformly ejected in the lateral direction.
  • the plurality of organic film forming material ejection holes 22c may be arranged side by side in the horizontal direction, arranged in a staggered manner along the horizontal direction, or may be a slit.
  • the mixing chamber 23 has a pentagonal, horizontally long mixing chamber lower portion 23a and an upper side of the mixing chamber lower portion 23a in a side view with one side of the upper portion on the carry-in port 11a (the upper left portion in FIG. 5) as an inclined portion. It is comprised with the mixing chamber upper part 23b of a hollow rectangular parallelepiped shape. Further, the outer and inner surfaces of the mixing chamber 23 are plated with copper. The mixing chamber upper portion 23b and the mixing chamber lower portion 23a communicate with each other.
  • An inclined portion of the organic film forming material supply unit 22 is joined to the inclined portion of the mixing chamber lower portion 23a so as to be separated from the mixing chamber upper portion 23b.
  • the film forming material is configured to be ejected.
  • the inclined part of the organic film forming material supply unit 22 constitutes a part of the inclined part of the mixing chamber lower part 23a.
  • the bottom of the mixing chamber lower part 23 a is configured to share the bottom plate part 21 a of the housing 21.
  • a slit is an example of the shape of the opening part 23c, and you may comprise the opening part 23c in the some hole arrange
  • the plurality of holes need not be arranged in a straight line, and may be staggered.
  • the mixing chamber upper portion 23b has a shorter width than the mixing chamber lower portion 23a, and power supply members 25a and 25b for supplying power to the inorganic film forming material supply unit 24 are connected to both side surfaces in the horizontal direction.
  • Conductive support members 26 a and 26 b that support the inorganic film forming material supply unit 24 are provided inside the mixing chamber 23.
  • the support members 26a and 26b are substantially rectangular parallelepiped plates, and are connected to the mixing chamber upper portion 23b from the lateral direction.
  • the plate pieces of the support members 26 a and 26 b protruding into the mixing chamber upper portion 23 b are electrically connected to the inorganic film forming material supply unit 24.
  • Bolt holes are formed in the plate pieces of the support members 26a and 26b protruding to the outside of the mixing chamber upper portion 23b, and one ends of the power supply members 25a and 25b are fixed with bolts.
  • the power supply members 25 a and 25 b are arranged in such a posture that the longitudinal direction is the vertical direction, and the other end side protrudes upward from the top plate portion 21 c of the housing 21.
  • the power feeding members 25a and 25b have a conductive portion, and supply power from the outside of the housing 21 to the inorganic film forming material supply portion 24 via the support members 26a and 26b inside the housing 21. is there.
  • FIG. 7 is a cross-sectional view schematically showing the configuration of the inorganic film forming material supply unit 24.
  • the inorganic film forming material supply unit 24 is a so-called alkaline dispenser and includes a hollow inorganic film forming material casing 24a.
  • a plurality of inorganic film-forming material ejection holes 24b are formed uniformly along the longitudinal ends of the lower surface of the inorganic film-forming material casing 24a.
  • an inorganic film forming material that is an electron injection layer material, for example, a non-metallic square dish-shaped material charging portion 24c into which an alkali metal is charged is disposed inside the inorganic film forming material casing 24a.
  • the material charging unit 24c is supported by the heating device 24d and fixed by the fixing member 24i with the mounting surface facing upward.
  • the heating device 24d has a metal base 24e having a groove on the upper surface into which the material charging part 24c is fitted, and heaters 24f, 24g, and 24h are embedded in the base 24e.
  • the heaters 24f, 24g, and 24h are connected to the power supply members 25a and 25b through the support members 26a and 26b, and indirectly heat the material charging unit 24c through the base material 24e of the heating device 24d.
  • the inorganic film forming material supply unit 24 includes heaters 24j, 24k, 24l, and 24m embedded in the inorganic film forming material casing 24a.
  • the heating device 24d and the material input unit 24c generate heat by the power supply, and the inorganic film forming material input to the material input unit 24c is heated and evaporated.
  • steam of the evaporated inorganic film-forming material is ejected below from the inorganic film-forming material ejection hole 24b formed in the inorganic film-forming material casing 24a.
  • the base material 24e and the material charging unit 24c can be heated by the heaters 24f, 24g, and 24h without energizing the material charging unit 24c, and the alkali metal can be heated. More preferable from the viewpoint. It is also possible to configure such that the metal material charging portion 24c is directly energized. Needless to say, the configuration of the inorganic film forming material supply unit 24 is not limited to the above configuration. For example, an accommodation cylinder for accommodating the inorganic film forming material may be provided, an inorganic film forming material ejection hole may be formed in the lower peripheral surface portion, and the entire accommodation cylinder may be configured by an electric resistor that is heated by a voltage supplied from the outside. .
  • the heat retaining heater 27a is an electrical resistance heat type heater, and is routed so as to oppose the surface and the lower portion of the inflow chamber 22a on the carry-in port 11a side, and the temperature of the inflow chamber 22a is maintained at a predetermined temperature or more by radiant heat. It is configured as follows. The predetermined temperature may be set so that the organic film forming material does not condense. Similarly, the heat retaining heater 27b is routed between the inflow chamber 22a and the mixing chamber 23, and the heat retaining heater 27c is routed so as to face the surface of the mixing chamber 23 on the carry-out port 11b side. The heat retaining heater 27b heats the inflow chamber 22a and the mixing chamber 23, and the heat retaining heater 27c heats the mixing chamber 23.
  • temperature sensors are disposed at appropriate locations in the inflow chamber 22a and the mixing chamber 23, and power supply to the heat retaining heaters 27a, 27b, and 27c is controlled based on the detection results of the temperature sensors.
  • an electric resistance type heater has been described as an example, if the inflow chamber 22a and the mixing chamber 23 can be heated, an induction heating method or a heat medium may be used.
  • FIG. 8 is a cross-sectional view schematically showing the organic EL element 3 formed using the film forming system according to the present embodiment.
  • the substrate to be processed G carried into the storage chamber of the film forming apparatus 1 is electrostatically adsorbed on the support 12c shown in FIG. 3 with the surface of the substrate, that is, the ITO layer 31 facing upward, and kept at a constant temperature. Is done. Note that, before the substrate G to be processed is loaded, the inside of the processing chamber 11 is previously depressurized to a predetermined pressure, for example, 10 ⁇ 2 Pa or less by driving the vacuum pump 15. Then, the support base 12c moves in the transport direction along the guide rail 12a, and the substrate G to be processed passes below the vapor deposition head 13. In the process of passing under the vapor deposition head 13, as shown in FIG.
  • the substrate G to be processed has a hole injection layer 33a, a hole transport layer 33b, a blue light emitting layer 33c, a red light emitting layer 33d, and a green light emitting layer 33e. Films are sequentially formed.
  • the vapor deposition head 2 at the final stage is supplied with a mixed vapor obtained by mixing the vapors of the organic film-forming material and the inorganic film-forming material
  • the substrate G to be processed has the organic film-forming material and the inorganic film-forming material.
  • Co-evaporation is performed. That is, an electron transport layer 33f in which an organic film forming material and an inorganic film forming material are mixed is formed on the substrate G to be processed.
  • the electron transport layer 33f does not form an interface, that is, an energy barrier formed when an organic film forming material and an inorganic film forming material are sequentially deposited. Therefore, the electron injection efficiency can be improved and the emission intensity is improved.
  • the operation of the film forming head 2 is as follows. First, the vapor of the organic film forming material flows into the inflow chamber 22a through the pipe 16 and the organic film forming material supply pipe 22b from the vapor generating unit 17 outside the storage chamber. Note that the vapor pressure of the organic film forming material is, for example, 10 Pa. Since the internal pressure of the mixing chamber 23 is about 10 ⁇ 2 Pa, the vapor of the organic film forming material that has flowed into the inflow chamber 22 a is ejected from the organic film forming material ejection hole 22 c into the mixing chamber 23.
  • the accommodation cylinder 24a of the inorganic film forming material supply unit 24 is supplied from a power source (not shown) to the accommodation cylinder 24a of the inorganic film forming material supply unit 24 through the power supply members 25a and 25b and the support members 26a and 26b.
  • the storage cylinder 24a generates heat by the power supply, and the inorganic film forming material stored in the storage cylinder 24a is heated and evaporated.
  • the vapor pressure of the inorganic film forming material is controlled by adjusting the power supply amount.
  • steam of the evaporated inorganic film-forming material spouts downward from the inorganic film-forming material ejection hole 24b formed in the storage cylinder 24a.
  • the ejected vapors of the organic film forming material and the inorganic film forming material are mixed in the mixing chamber 23, and the mixed vapor obtained by mixing is supplied toward the substrate G to be processed in the processing chamber 11 through the opening 23c. Is done. Note that the pressure or temperature of the organic film-forming material and inorganic film-forming material ejected into the mixing chamber 23 decreases, and the constituent molecules and atoms do not collide with each other frequently, so that the organic film-forming material is not burned out. .
  • the substrate G to be processed after the film formation process is carried into the etching apparatus 93 by the transfer chamber 92.
  • the etching apparatus 93 the shape and the like of various films are adjusted.
  • it is carried into the sputtering apparatus 95 by the transfer chamber 94.
  • the sputtering apparatus 95 the cathode layer 32 is formed.
  • the substrate G to be processed is carried into the CVD apparatus 97 by the transfer chamber 96.
  • each layer formed on the substrate G to be processed is sealed with a sealing layer 34 such as a nitride film.
  • the target substrate G subjected to the sealing process is carried out of the film forming system from the unloader 99 via the transfer chamber 98.
  • an organic film forming material Alq3 having a vapor pressure of 10 Pa at 450 ° C. is supplied to the inflow chamber 22a and ejected, and an inorganic film forming material Li having a vapor pressure of 10 Pa is ejected and mixed at 700 ° C.
  • an organic film forming material Alq3 having a vapor pressure of 10 Pa at 450 ° C. is supplied to the inflow chamber 22a and ejected, and an inorganic film forming material Li having a vapor pressure of 10 Pa is ejected and mixed at 700 ° C.
  • the energy barrier at the interface between the electron transport layer and the electron injection layer of the organic EL element 3 can be reduced, the electron injection efficiency can be improved, and the organic EL element 3 with improved emission intensity can be manufactured. .
  • the mixing chamber 23 in which the opening 23c is formed is provided, it is possible to form the substrate G to be processed by more uniformly mixing the organic film forming material and the inorganic film forming material.
  • the electron injection efficiency can be improved, and the organic EL element 3 with improved emission intensity can be manufactured.
  • the vapor of the mixed organic film forming material and inorganic film forming material is supplied to the substrate G to be processed from the slit-shaped opening 23c. Therefore, it is possible to form a film with the mixed vapor on the linear region of the substrate G to be processed.
  • the opening 23c includes a plurality of holes arranged in one direction.
  • the inorganic film forming material ejection holes 24b and the organic film forming material ejection holes 22c are arranged in parallel in the longitudinal direction of the opening 23c. Therefore, it becomes possible to form the substrate G to be processed by more uniformly mixing the organic film forming material and the inorganic film forming material.
  • the inorganic film forming material ejection holes 24b and the organic film forming material ejection holes 22c are arranged in substantially the same direction as the one direction of the opening. Similar effects can be obtained by arranging them in parallel.
  • the organic film forming material ejection holes 22c and the inorganic film forming material ejection holes 24b are arranged side by side in substantially the same direction as the longitudinal direction of the opening 23c, a co-deposition layer of the organic film forming material and the inorganic film forming material is formed.
  • the film uniformity can be further improved.
  • the arrangement width of the inorganic film forming material ejection holes 24b is narrower than the arrangement width of the organic film formation material ejection holes 22c, the lateral dimension of the film formation head 2 can be reduced.
  • the mixing chamber 23 is provided. However, if the vapors of the organic film forming material and the inorganic film forming material can be ejected to substantially the same place, the mixing chamber 23 is eliminated. Also good. Moreover, you may comprise only the partition plate which has an opening part.
  • the organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 may be juxtaposed.
  • the organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 may each be configured in a cylindrical shape and arranged coaxially.
  • the mounting posture of the organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 is not particularly limited as long as the mixed vapor of the organic film forming material and the inorganic film forming material can be supplied from the opening.
  • FIG. 9 is a side sectional view schematically showing the configuration of the film forming head 102 according to the first modification.
  • the film forming apparatus 1 according to Modification 1 includes a housing 121, an organic film forming material supply unit 122, a mixing chamber 123, an inorganic film forming material supply unit 24, power supply members 25a and 25b, and heat insulation. Heaters 27a, 27b, 27c, and 27d are provided.
  • the film forming apparatus 1 according to the modification 1 further includes a heat medium flow path 28a through which a heat medium for cooling the inflow chamber 122a is passed.
  • the heat medium flow path 28a is, for example, a water-cooled flow path through which water flows. Further, the heat medium passage 28a is covered with a water-cooled heat shield plate 28b.
  • the bottom plate portion 121a, the side wall 121b and the top plate portion 121c of the storage chamber, and the mixing chamber lower portion 123a are provided with two heat retaining heaters 27b and 27d and a heat medium passage 28a between the inflow chamber 122a and the mixing chamber 123 in the transport direction.
  • the dimensions are such that they can be placed side by side.
  • One heat retaining heater 27b is in close proximity to the inflow chamber 122a, and the other heat retaining heaters 27d and 27c are in close proximity to the mixing chamber 123.
  • the heat medium passage 28a is routed so as to be positioned between the inflow chamber 122a and the mixing chamber 123, more specifically, between the heat retaining heaters 27b and 27d.
  • the operation of the refrigerant cycle for causing the heat medium to flow through the heat medium flow path 28a is controlled by a control unit (not shown).
  • the temperature of the inflow chamber 122a is controlled to be equal to or lower than the temperature at which the organic film forming material is not burned by passing the heat medium, particularly the refrigerant, through the heat medium flow passage 28a. Can do. Condensation and burning of the organic film forming material can be prevented by the heat retaining heaters 27b and 27d and the heat medium passage 28a.
  • FIG. 10 is a side sectional view of the film forming head 202 according to the second modification.
  • the film forming head 202 according to the second modification includes an organic film forming material supply unit 4 that ejects vapor of an organic film forming material toward the substrate G to be processed, and a vapor of inorganic film forming material toward the substrate G to be processed.
  • the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5 are provided on the substrate G to be ejected with the organic film forming material and the inorganic film forming material supply unit 5. It is arranged so that it overlaps.
  • FIG. 11 is an explanatory view conceptually showing the arrangement of the ejection holes of the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5.
  • the organic film forming material supply unit 4 is disposed outside the region where the inorganic film forming material supply unit 5 ejects the inorganic film forming material.
  • the region is below the plane including the inorganic film forming material ejection holes 51a for ejecting the inorganic film forming material from the inorganic film forming material supply unit 5, that is, on the substrate G to be processed.
  • a region below the straight line indicated by a two-dot chain line indicates a region where the inorganic film forming material is injected from the inorganic film forming material supply unit 5.
  • the organic film-forming material supply unit 4 is disposed above the straight line indicated by the two-dot chain line.
  • the organic film forming material supply unit 4 has an organic film forming material ejection hole 41a through which the vapor of the organic film forming material is jetted, and an organic film forming material casing 41 into which the vapor of the organic film forming material flows from the outside, Organic film forming material heaters 42a, 42b, 42c, 42d for heating the organic film forming material casing 41, and heat medium passages 43, 43 for allowing a heat medium such as air to flow therethrough are provided.
  • the film material heaters 42a, 42b, 42c, 42d and the heat medium passages 43, 43 are embedded in the organic film forming material casing 41 by heater fixing members 41b, 41c, 41d, 41e.
  • the housing 41 for organic film-forming material has a substantially rectangular frame member whose longitudinal direction is substantially perpendicular to the paper surface, and a hollow plate member extends from the substantially lower center of the frame member to the inorganic film-forming material supply unit 5 side. It protrudes.
  • An organic film forming material ejection hole 41a for ejecting the organic film forming material flowing through the inside of the frame member and the hollow plate member is formed at the tip of the hollow plate member.
  • a plurality of concave portions for embedding the organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b are formed on the outer surface of the hollow plate member.
  • the concave portion has, for example, a substantially arc shape in a side view.
  • the organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b are cylindrical in shape, and a good heat conductive film such as a carbon graphite film is wound around the outer peripheral surface thereof. It is inserted into a plurality of recesses.
  • the organic film forming material heaters 42a, 42b,... And the heat medium passages 43a, 43b fitted in the recesses are fixed by heater fixing members 41d, 41e.
  • the heater fixing members 41d and 41e are plate-like members corresponding to the outer surface of the hollow plate member, and have recesses that fit into the organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b. Yes.
  • the shape of the recess is substantially semicircular when viewed from the side, like the recess formed in the hollow plate member.
  • the heater fixing members 41d and 41e are fixed to the organic film forming material casing 41.
  • organic film forming material heaters 42c and 42d are fitted on the upper surface of the frame member, and are fixed to the frame member by heater fixing members 41b and 41c.
  • An organic film forming material supply pipe 40 through which the vapor of the organic film forming material generated by the vapor generating unit 17 flows into the organic film forming material casing 41 is connected to a substantially central part of the upper part of the frame member.
  • the organic film forming material supply pipe 40 is made of, for example, stainless steel, and either the outer or inner surface of the organic film forming material supply pipe 40 or the outer and inner surfaces are plated with copper in order to improve thermal conductivity. ing.
  • the film forming apparatus also includes supply pipe heaters 61 and 62 that heat the organic film forming material supply pipe 40.
  • the inorganic film forming material supply section 5 includes a hollow inorganic film forming material casing 51.
  • the inorganic film-forming material casing has a substantially hollow cylindrical shape whose longitudinal direction is substantially perpendicular to the paper surface, and the lower part projects toward the organic film-forming material supply unit 4 side.
  • a plurality of inorganic film-forming material ejection holes 51a are formed uniformly along the both ends in the longitudinal direction on the lower surface of the protruding portion.
  • a container in which an inorganic film forming material as an electron injection layer material, for example, an alkali metal is charged is supported by the heating device 54.
  • the container has a non-metallic square dish shape having an opening 57a on the upper surface for sending vapor of the inorganic film forming material into the inorganic film forming material casing 51.
  • FIG. 12 is a side view of the heating device 54
  • FIG. 13 is a front view of the heating device 54
  • FIG. 14 is a sectional view taken along the line XIV-XIV in FIG. 13
  • FIG. 15 is a sectional view taken along the line XV-XV in FIG. is there.
  • the heating device 54 has a first half 54a constituting the lower side of the heating device 54 and a second half 54b constituting the upper side of the heating device 54. On the upper surface of the second half 54b, A groove portion into which the container is fitted is formed.
  • the first and second halves 54a and 54b are made of metal.
  • a plurality of recesses for embedding the first heaters 55a and 55b and the first heat medium flow path 56 are formed on the upper surface of the first half 54a.
  • the concave portion has, for example, a substantially arc shape in a side view.
  • the outer shapes of the first heaters 55a and 55b and the first heat medium flow passage 56 are cylindrical, and good heat conductive films 55c, 55d, and 56a, for example, carbon graphite films are wound around the outer peripheral surfaces thereof. Are fitted into the plurality of recesses.
  • the first heaters 55a and 55b and the first heat medium flow path 56 fitted in the recess are fixed so as to be sandwiched by the second half 54b.
  • the second half 54 b is a plate-like member corresponding to the first half 54 a and has a recess that fits into the first heaters 55 a and 55 b and the first heat medium flow path 56.
  • the shape of the recess is substantially semicircular when viewed from the side, like the recess formed in the hollow plate member.
  • the first and second halves 54a and 54b are welded all around. Both ends of the first heat medium flow channel 56 are connected to an air cooling device (not shown), and the air cooling device allows air to flow through the first heat medium flow channels 56b and 56c.
  • the second heaters 52a, 52b, 52c, 52d, 52e, and 52f and the second heat medium flow channels 53a, 53b, and 53c are fitted into the outer peripheral surface of the inorganic film forming material casing 51.
  • a plurality of recesses are formed, and the second heaters 52a, 52b, 52c, 52d, 52e, 52f and the second heat medium passages 53a, 53b, 53c are fitted into the recesses.
  • the second heaters 52a, 52b, 52c, 52d, 52e, 52f and the second heat medium passages 53a, 53b, 53c are connected to the inorganic film forming material casing 51 by the heater fixing members 51b, 51c, 51d. Fixed to be embedded.
  • Both ends of the second heat medium passages 53a, 53b, 53c are connected to an air cooling device (not shown), and the air cooling device allows air to flow through the second heat medium passages 53a, 53b, 53c. ing.
  • the said air cooling apparatus is comprised so that the direction which lets air flow through may be switched periodically. By periodically switching the air, it is possible to prevent a temperature difference from occurring between one end and the other end of the inorganic film forming material casing 51 and improve the thermal uniformity in the longitudinal direction of the container 57. It becomes possible to make it.
  • FIG. 16 is a schematic view showing an arrangement example of the inorganic film forming material ejection holes 51a.
  • the inorganic film forming material ejection holes 51a are arranged in a staggered manner as shown in FIG. 16, for example. Needless to say, the arrangement of the inorganic film forming material ejection holes 51a is only an example.
  • the film forming head 202 includes an organic film forming material supply unit 4 and an inorganic film forming material supply unit 5, a heat shield plate 71 for an organic material supply unit that blocks heat radiated from the substrate G, and an inorganic film forming material.
  • a heat shield plate 72 for the supply unit 5 is provided.
  • the film formation head 202 is radiated between the organic film formation material supply unit 4 and the inorganic film formation material supply unit 5 with the organic film formation material supply unit 4 and the inorganic film formation material supply unit 5 separated from each other. It has a heat shield plate 8 that shields heat.
  • the heat shield 8 has a heat medium passage 8a for air cooling inside.
  • FIG. 17 is a block diagram showing a configuration example of the control device 59 that controls the operation of the film forming head 202.
  • the control device 59 has a control unit 59a such as a CPU (Central Processing Unit).
  • the controller 59a stores at least a computer program for controlling the operations of the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f of the film forming head 202 via the bus.
  • the first temperature detection unit 59f detects the temperature around the first heaters 55a and 55b, for example, the temperature of the first half 54a of the heating device 54, and gives the detected temperature to the control unit 59a.
  • the second temperature detector 59g detects the temperature around the second heaters 52a, 52b, 52c, 52d, 52e, and 52f, for example, the temperature of the inorganic film forming material casing 51, and the detected temperature is controlled by the controller 59a. To give.
  • the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f are connected to the bus via a power supply circuit connected to the I / O port. I / O ports and power supply circuits are not shown.
  • the controller 59a controls the first and second heaters 55a and 55g so that the temperature of the inorganic film forming material supplier 5 reaches a specific target temperature.
  • the power supply to 55b, 52a, 52b, 52c, 52d, 52e, and 52f is controlled.
  • the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f are each represented by one block.
  • FIG. 18 is a flowchart showing a processing procedure of control related to power supply to the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f.
  • FIG. 19 shows the first and second heaters 55a, 55a, 55 is a timing chart showing power supply to 55b, 52a, 52b, 52c, 52d, 52e, and 52f and a temperature change of the container 57.
  • the control unit 59a turns on the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f (step S11).
  • control unit 59a starts power feeding to the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f by giving a control signal to the power supply circuit. Then, the control unit 59a uses the first and second temperature detection units 59f and 59g to change the ambient temperature T1 of the first heaters 55a and 55b to the vicinity of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f. It is determined whether or not the temperature is equal to or lower than T2 (step S12).
  • step S12 NO
  • the control unit 59a The output of 1 heater 55a, 55b is reduced, or the output of 2nd heater 52a, 52b, 52c, 52d, 52e, 52f is increased (step S13).
  • the processing in steps S12 and S13 is processing for preventing the vapor of the inorganic film forming material from condensing and adhering on the inner wall of the inorganic film forming material casing 51.
  • Step S12 the ambient temperature T1 of the first heaters 55a and 55b is equal to or lower than the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f (step S12: YES), or the process of step S13 is performed.
  • the control unit 59a determines whether or not the ambient temperature T1 of the first heaters 55a and 55b is equal to or higher than the first temperature using the first temperature detection unit 59f (step S14).
  • the first temperature is a temperature lower than a specific target temperature. For example, when the target temperature is 500 degrees, the first temperature is set to 400 degrees to 450 degrees.
  • the first temperature may be a predetermined temperature specified by an experiment, or may be a temperature calculated based on an input target temperature.
  • the control part 59a performs the process of step S14 again.
  • the control unit 59a turns off the first heaters 55a and 55b as shown in FIG. (Step S15). Specifically, the control unit 59a stops power supply to the first heaters 55a and 55b by giving a control signal to the power supply circuit. Next, the control unit 59a determines whether or not the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is equal to or higher than the second temperature using the second temperature detection unit 59g ( Step S16).
  • the second temperature is higher than a specific target temperature, and when the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, 52f reaches the second temperature, the second heaters 52a, 52b, 52c. , 52d, 52e, and 52f, the temperature of the container 57 and the inorganic film-forming material is just set to the target by the heat radiated from the periphery of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f. It is a temperature that reaches the temperature.
  • the second temperature may be a predetermined temperature determined by experiment or the like, or may be a temperature calculated based on the input target temperature.
  • step S16 when the target temperature is 500 degrees, 520 degrees is set as the second temperature.
  • the control unit 59a performs the process of step S16 again. To do.
  • the control unit 59a when it is determined that the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, 52f is equal to or higher than the second temperature (step S16: YES), the control unit 59a, as shown in FIG.
  • the control unit 59a monitors the temperatures detected by the first and second temperature detection units 59f and 59g, and gives a control signal to the power supply circuit so that each temperature matches the target temperature.
  • the power supply to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is controlled. More specifically, the control unit 59a temporarily stops heating by the second heaters 52a, 52b, 52c, 52d, 52e, and 52f or lowers the output, and the second temperature is lower than the target temperature.
  • the ambient temperature T2 is maintained at the target temperature by repeating the above-described processing. Even when the heating of the inorganic film forming material is stopped, the condition that the ambient temperature T1 of the first heaters 55a and 55b is equal to or lower than the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is maintained. The temperature of the container 57 and the inorganic film-forming material may be lowered while remaining. This is to prevent the vapor of the inorganic film forming material from condensing and adhering on the inner wall of the inorganic film forming material casing 51. Therefore, it is not necessary to maintain the above condition when the temperature is lower than a predetermined temperature at which the vapor of the inorganic film forming material is not generated.
  • the container 57 having the longitudinal direction can be uniformly heated to the target temperature. That is, the temperature uniformity in the longitudinal direction of the container 57 can be improved.
  • the process for maintaining the temperature of the container 57 at the target temperature is not particularly limited.
  • power may be intermittently supplied to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f, or the temperature detected by the second temperature detection unit 59g is determined by the target temperature or the target temperature.
  • the power may be supplied to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f for a certain period of time.
  • you may control the temperature of the container 57 by changing the electric power feeding amount to 2nd heater 52a, 52b, 52c, 52d, 52e, 52f.
  • the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5 supply the substrate G to be processed. It is possible to prevent the film formation conditions from being deteriorated by the radiant heat radiated to the surface. For example, it is possible to prevent the film pattern from being displaced due to thermal expansion of the pattern mask. Further, it is possible to suppress heat damage to the organic film to be formed.
  • the organic film forming material supply unit is heated by the heat radiated from the inorganic film forming material supply unit 5. Can be prevented from being abnormally heated and the organic film forming material burned out.
  • the organic film forming material supply unit 4 is at a lower temperature than the inorganic film forming material supply unit 5, and the organic film forming material supply unit 4 ejects the inorganic film forming material from the inorganic film forming material supply unit 5. Therefore, the inorganic film forming material sprayed from the inorganic film forming material supply unit 5 can be prevented from condensing and adhering to the organic film forming material supply unit 4. Since the inorganic film forming material supply unit 5 is at a high temperature, the organic film forming material injected from the organic film forming material supply unit 4 does not adhere to the inorganic film forming material supply unit 5.
  • the inorganic film forming material adheres to the organic film forming material supply unit 4 and may cause a contamination problem. According to the present embodiment, it is possible to prevent the organic film forming material and the inorganic film forming material from adhering to both the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5.
  • the responsiveness of the temperature control is improved.
  • the temperature of the container 57 can be controlled with higher accuracy.
  • the temperature of the heating device 54 is heated to a first temperature lower than the target temperature, and then the inorganic film forming material casing 51 is heated to a second temperature higher than the target temperature, thereby uniformly surrounding the container 57.
  • the radiant heat can uniformly heat the container 57 to the target temperature and make the heat distribution in the longitudinal direction of the container 57 uniform.
  • the inorganic film forming material casing 51 and the heating The device 54 can be cooled uniformly. That is, temperature uniformity in the longitudinal direction of the inorganic film forming material casing 51, the heating device 54, and the container 57 can be improved.
  • FIG. 20 is a sectional side view of the film forming head 302 according to the third modification.
  • the heat shield plates 371 and 372 according to the modification 3 respectively have heat shield plate heat medium passages 371a and 372a for air cooling.
  • the heat shield plate heat medium passages 371a and 372a have the heat shield plates 371 and 372 formed therein, so that the organic film forming material is supplied. It is possible to more effectively prevent the film forming conditions from being deteriorated by the radiant heat radiated from the unit 4 and the inorganic film forming material supply unit 5 to the substrate G to be processed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a film-forming device that enables the codeposition of an organic film-forming material and an inorganic film-forming material under the required conditions. The film-forming device is provided with a treatment chamber that accommodates a substrate (G) to be treated; a vapor-generating unit that is provided to the outside of the treatment chamber and that generates the vapor of the organic film-forming material; an organic film-forming material supply unit (22) that is provided to the inside of the treatment chamber and that emits the organic film-forming material vapor generated by the vapor-generating unit; an inorganic film-forming material supply unit (24) that is provided to the inside of the treatment chamber and that emits inorganic film-forming material vapor; and a mixing chamber (23) that mixes the organic film-forming material vapor emitted from the organic film-forming material supply unit (22) and the inorganic film-forming material vapor emitted from the inorganic film-forming material supply unit (24). The mixing chamber (23) provides to the film-forming device an outlet (23c) through which the mixed vapor of the organic film-forming material and the inorganic film-forming material pass, supplying the mixed vapor to the substrate (G) to be treated.

Description

成膜装置、成膜ヘッド及び成膜方法Film forming apparatus, film forming head, and film forming method
 本発明は、有機成膜材料及び無機成膜材料の混合蒸気を被処理基板へ供給することによって、共蒸着を行う成膜装置、該成膜装置を構成する成膜ヘッド、成膜方法に関する。 The present invention relates to a film forming apparatus that performs co-evaporation by supplying a mixed vapor of an organic film forming material and an inorganic film forming material to a substrate to be processed, a film forming head that forms the film forming apparatus, and a film forming method.
 近年、エレクトロルミネッセンス(EL:electroluminescence)を利用した有機EL素子が開発されている。有機EL素子は、ブラウン管などに比べて消費電力が小さく、また、自発光であるため、液晶ディスプレイ(LCD)に比べて視野角に優れている等の利点があり、今後の発展が期待されている。 In recent years, organic EL elements using electroluminescence (EL) have been developed. Organic EL elements have lower power consumption than cathode ray tubes, etc., and are self-luminous, so they have advantages such as better viewing angle than liquid crystal displays (LCDs), and future development is expected. Yes.
 有機EL素子のもっとも基本的な構造は、ガラス基板上にアノード(陽極)層、発光層および陰極(カソード)層を重ねて形成したサンドイッチ構造である。発光層の光を外に取り出すために、ガラス基板上のアノード層には、ITO(Indium Tin Oxide)からなる透明電極が用いられる。 The most basic structure of the organic EL element is a sandwich structure in which an anode (anode) layer, a light emitting layer and a cathode (cathode) layer are formed on a glass substrate. In order to extract light from the light emitting layer to the outside, a transparent electrode made of ITO (Indium Tin Oxide) is used for the anode layer on the glass substrate.
 また、有機EL素子の陰極側には、陰極層から発光層への電子の移動の橋渡しを行わせるために、発光層の上に電子輸送層及び電子注入層(仕事関数調整層)が順に成膜されている。電子注入層としては仕事関数が小さいアルカリ金属、例えばセシウムCs、リチウムLiなどが用いられ、電子輸送層には、電子輸送性の有機材料例えばAlq3 が用いられている。電子輸送層及び電子注入層は、それぞれ、蒸着によって成膜されている。 In addition, on the cathode side of the organic EL element, an electron transport layer and an electron injection layer (work function adjustment layer) are sequentially formed on the light emitting layer in order to bridge the movement of electrons from the cathode layer to the light emitting layer. It is a membrane. An alkali metal having a low work function such as cesium Cs or lithium Li is used for the electron injection layer, and an electron transporting organic material such as Alq3q is used for the electron transport layer. The electron transport layer and the electron injection layer are each formed by vapor deposition.
 一方、特許文献1,2には、上述の有機EL素子を製造する成膜装置が開示されている。該成膜装置は、被処理基板であるガラス基板を収容する処理室を備えており、成膜材料の蒸気を発生させる蒸気発生部が処理室の外部に配置されている。処理室の内部には、配管を通じて蒸気発生部に接続され、蒸気発生部で発生した成膜材料の蒸気をガラス基板へ向けて噴出する蒸着ヘッドが設けられている。 On the other hand, Patent Documents 1 and 2 disclose a film forming apparatus for manufacturing the organic EL element described above. The film forming apparatus includes a processing chamber that accommodates a glass substrate that is a substrate to be processed, and a vapor generating unit that generates vapor of a film forming material is disposed outside the processing chamber. Inside the processing chamber, a vapor deposition head is provided which is connected to a vapor generation unit through a pipe and ejects vapor of a film forming material generated in the vapor generation unit toward a glass substrate.
特開2008-38225号公報JP 2008-38225 A 国際公開第2008/066103号パンフレットInternational Publication No. 2008/066103 Pamphlet
 ところで、従来の有機EL素子においては、有機EL素子の陰極側に電子注入層及び電子輸送層が蒸着によってそれぞれ成膜されているが、有機成膜材料からなる電子輸送層の成膜の後に、無機成膜材料の電子注入層を成膜する構成であるため、電子輸送層及び電子注入層の界面のエネルギー障壁が大きくなり、駆動電圧を高くしなければ、十分な発光強度を得ることができないという問題があった。 By the way, in the conventional organic EL element, the electron injection layer and the electron transport layer are formed by vapor deposition on the cathode side of the organic EL element, respectively, but after the formation of the electron transport layer made of an organic film forming material, Since the electron injection layer is made of an inorganic film forming material, the energy barrier at the interface between the electron transport layer and the electron injection layer is increased, and sufficient light emission intensity cannot be obtained unless the drive voltage is increased. There was a problem.
 一方、界面のエネルギー障壁を低くする方法として、有機成膜材料と、無機成膜材料とを共蒸着させる方法が考えられるが、特許文献1,2に開示された成膜装置においては、種々の制約があり、所要の電子注入層ないし電子輸送層を形成することができないという問題があった。 On the other hand, as a method of lowering the energy barrier at the interface, a method of co-evaporating an organic film forming material and an inorganic film forming material is conceivable, but in the film forming apparatuses disclosed in Patent Documents 1 and 2, there are various methods. There is a problem that a required electron injection layer or electron transport layer cannot be formed due to restrictions.
 例えば、蒸着ヘッドの内圧、特に有機成膜材料の蒸気圧が10Pa、処理室の内圧が1×10-2Pa、成膜材料の温度が450℃である場合を考える。
 電子注入層に用いられるリチウムLi及びセシウムCsの450℃における蒸気圧は10-2Paより高く、ナトリウムNaの蒸気圧は約102 Pa、カルシウムの蒸気圧は104 Paより高いため、原理的には、各無機成膜材料を蒸着ヘッドから処理室内に噴出させることができる。しかしながら、特に利用が望まれているリチウムLiの蒸気圧は極めて小さく、有機成膜材料と同等濃度の共蒸着を行うことができないため、界面のエネルギー障壁を低くすることはできない。
 一方、リチウムLiの蒸気圧を10Pa以上にするためには、成膜材料の温度を700℃以上にする必要があるが、この場合、蒸着ヘッド内の有機成膜材料が焼失してしまい、共蒸着を行うことは困難である。
For example, consider the case where the internal pressure of the vapor deposition head, particularly the vapor pressure of the organic film forming material is 10 Pa, the internal pressure of the processing chamber is 1 × 10 −2 Pa, and the temperature of the film forming material is 450 ° C.
Since the vapor pressure at 450 ° C. of lithium Li and cesium Cs used for the electron injection layer is higher than 10 −2 Pa, the vapor pressure of sodium Na is about 10 2 Pa, and the vapor pressure of calcium is higher than 10 4 Pa, in principle, Each inorganic film forming material can be ejected from the vapor deposition head into the processing chamber. However, the vapor pressure of lithium Li, which is particularly desired to be used, is extremely small and co-evaporation with the same concentration as the organic film-forming material cannot be performed, so that the energy barrier at the interface cannot be lowered.
On the other hand, in order to increase the vapor pressure of lithium Li to 10 Pa or higher, it is necessary to set the temperature of the film forming material to 700 ° C. or higher. It is difficult to perform vapor deposition.
 本発明は斯かる事情に鑑みてなされたものであり、上述の制約が無い所要条件下における有機成膜材料及び無機成膜材料の共蒸着を可能にし、また、該共蒸着によって、有機EL素子の電子輸送層及び電子注入層における界面のエネルギー障壁を低減させて電子注入効率を向上させることができ、発光強度が向上した有機EL素子の製造を可能にするものである。 The present invention has been made in view of such circumstances, and enables co-evaporation of an organic film-forming material and an inorganic film-forming material under the required conditions without the above-described restrictions. Therefore, it is possible to improve the electron injection efficiency by reducing the energy barrier at the interface between the electron transport layer and the electron injection layer, and to manufacture an organic EL device with improved light emission intensity.
 本発明に係る成膜装置は、被処理基板を収容する処理室と、該処理室の外部に設けられており、有機成膜材料の蒸気を発生させる蒸気発生部と、該蒸気発生部で発生させた有機成膜材料の蒸気を該被処理基板へ向けて噴出する有機成膜材料供給部とを備える成膜装置において、無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部を備え、前記有機成膜材料供給部及び無機成膜材料供給部は、前記有機成膜材料及び無機成膜材料の被噴出箇所が前記被処理基板上で重複するように配されていることを特徴とする。 A film forming apparatus according to the present invention is provided in a processing chamber that accommodates a substrate to be processed, a vapor generating unit that generates vapor of an organic film forming material, and is generated in the vapor generating unit. And an organic film forming material supply unit that jets the vapor of the organic film forming material directed toward the substrate to be processed, in an inorganic film forming apparatus that jets the vapor of the inorganic film forming material toward the substrate to be processed. A film material supply unit, and the organic film formation material supply unit and the inorganic film formation material supply unit are arranged such that the portions to be ejected of the organic film formation material and the inorganic film formation material overlap on the substrate to be processed. It is characterized by.
 本発明に係る成膜ヘッドは、被処理基板へ向けて成膜材料の蒸気を供給する成膜ヘッドにおいて、有機成膜材料の蒸気を前記被処理基板へ向けて噴出する有機成膜材料供給部と、無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部とを備え、前記有機成膜材料供給部及び無機成膜材料供給部は、前記有機成膜材料及び無機成膜材料の被噴出箇所が前記被処理基板上で重複するように配されていることを特徴とする。 The film-forming head according to the present invention is a film-forming head that supplies vapor of a film-forming material toward a substrate to be processed, and an organic film-forming material supply unit that ejects vapor of the organic film-forming material toward the substrate to be processed And an inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed, and the organic film forming material supply unit and the inorganic film forming material supply unit include the organic film forming material and The inorganic film-forming material is ejected at a location where it overlaps on the substrate to be processed.
 本発明に係る成膜ヘッドは、被処理基板へ向けて成膜材料の蒸気を供給する成膜ヘッドにおいて、有機成膜材料の蒸気を前記被処理基板へ向けて噴出する有機成膜材料供給部と、無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部と、前記有機成膜材料供給部から噴出された有機成膜材料の蒸気と、前記無機成膜材料供給部から噴出された無機成膜材料の蒸気とを混合させる混合室とを備え、前記混合室は、有機成膜材料及び無機成膜材料の混合蒸気を通過させて前記被処理基板へ供給する開口部を有することを特徴とする。 The film-forming head according to the present invention is a film-forming head that supplies vapor of a film-forming material toward a substrate to be processed, and an organic film-forming material supply unit that ejects vapor of the organic film-forming material toward the substrate to be processed An inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed; an organic film forming material vapor that is injected from the organic film forming material supply unit; and the inorganic film forming material A mixing chamber for mixing the vapor of the inorganic film forming material ejected from the supply unit, and the mixing chamber passes the mixed vapor of the organic film forming material and the inorganic film forming material and supplies the mixed vapor to the substrate to be processed. It has an opening.
 本発明に係る成膜方法は、被処理基板を処理室内に収容し、収容された該被処理基板へ向けて成膜材料の蒸気を供給することによって成膜を行う成膜方法において、前記処理室の外部で有機成膜材料の蒸気を発生させる工程と、前記処理室の外部で発生させた有機成膜材料の蒸気を、前記処理室内に噴出する工程と、無機成膜材料の蒸気を、前記有機成膜材料の蒸気及び該無機成膜材料の蒸気が混合され、前記被処理基板へ向けて供給されるよう、前記処理室内に噴出する工程とを有することを特徴とする。 The film forming method according to the present invention is a film forming method for forming a film by storing a substrate to be processed in a processing chamber and supplying vapor of a film forming material toward the stored substrate to be processed. A step of generating a vapor of an organic film forming material outside the chamber, a step of jetting a vapor of the organic film forming material generated outside the processing chamber into the processing chamber, and a vapor of the inorganic film forming material, A step of mixing the vapor of the organic film forming material and the vapor of the inorganic film forming material and jetting the vapor into the processing chamber so as to be supplied toward the substrate to be processed.
 本発明にあっては、有機成膜材料供給部及び無機成膜材料供給部は、被噴出箇所が前記被処理基板上で重複するように、被処理基板へ、有機成膜材料及び無機成膜材料の蒸気を噴出する。有機成膜材料の蒸気及び無機成膜材料の蒸気は、各別に噴出されるため、例えば、450℃の有機成膜材料蒸気と、700℃の無機成膜材料蒸気とを混合することが可能になる。なお、処理室内に噴出された有機成膜材料及び無機成膜材料の圧力は低下し、各構成分子及び原子は衝突しないため、有機成膜材料が焼失するおそれはない。
 従って、有機成膜材料の蒸気と、無機成膜材料の蒸気とが混ざり合い、被処理基板に成膜される。よって、本発明に係る成膜装置、成膜ヘッド、及び成膜方法によれば、有機EL素子の電子輸送層ないし電子注入層における界面のエネルギー障壁を低くし、電子注入効率を向上させることが可能になる。
In the present invention, the organic film forming material supply unit and the inorganic film forming material supply unit apply the organic film forming material and the inorganic film forming method to the substrate to be processed so that the portions to be ejected overlap on the substrate to be processed. Blow out material vapor. Since the vapor of the organic film forming material and the vapor of the inorganic film forming material are ejected separately, for example, it is possible to mix the organic film forming material vapor at 450 ° C. and the inorganic film forming material vapor at 700 ° C. Become. Note that the pressures of the organic film-forming material and the inorganic film-forming material ejected into the processing chamber are reduced, and each constituent molecule and atom do not collide, so that the organic film-forming material is not burned out.
Accordingly, the vapor of the organic film forming material and the vapor of the inorganic film forming material are mixed and formed on the substrate to be processed. Therefore, according to the film forming apparatus, the film forming head, and the film forming method of the present invention, the energy barrier at the interface in the electron transport layer or the electron injection layer of the organic EL element can be lowered, and the electron injection efficiency can be improved. It becomes possible.
 本発明にあっては、有機成膜材料供給部から噴出された有機成膜材料の蒸気と、無機成膜材料供給部から噴出された無機成膜材料の蒸気とは、混合室で混合され、混合蒸気は、開口部を通じて被処理基板へ供給される。
 従って、開口部を有する混合室を備えない場合に比べて、有機成膜材料及び無機成膜材料を均等に混合させて、被処理基板を成膜することが可能になる。
In the present invention, the vapor of the organic film forming material ejected from the organic film forming material supply unit and the vapor of the inorganic film forming material ejected from the inorganic film forming material supply unit are mixed in the mixing chamber, The mixed vapor is supplied to the substrate to be processed through the opening.
Accordingly, it is possible to form a substrate to be processed by uniformly mixing the organic film-forming material and the inorganic film-forming material as compared with the case where the mixing chamber having the opening is not provided.
 本発明にあっては、所要条件下における有機成膜材料及び無機成膜材料の共蒸着が可能になり、また、該共蒸着によって、有機EL素子の電子輸送層及び電子注入層における界面のエネルギー障壁を低減させて電子注入効率を向上させることができ、発光強度が向上した有機EL素子の製造が可能になる。 In the present invention, it becomes possible to co-evaporate the organic film-forming material and the inorganic film-forming material under the required conditions, and the co-evaporation enables the energy of the interface in the electron transport layer and the electron injection layer of the organic EL element. It is possible to improve the electron injection efficiency by reducing the barrier, and it is possible to manufacture an organic EL element with improved emission intensity.
本実施の形態に係る成膜システムの構成を概念的に説明する説明図である。It is explanatory drawing which illustrates notionally the structure of the film-forming system which concerns on this Embodiment. 製膜装置の構成を模式的に示す斜視図である。It is a perspective view which shows the structure of a film forming apparatus typically. 成膜装置の構成を模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the film-forming apparatus. 本実施の形態に係る成膜ヘッドを模式的に示した一部破断斜視図である。It is the partially broken perspective view which showed typically the film-forming head concerning this Embodiment. 成膜ヘッドの側断面図である。It is a sectional side view of a film-forming head. 図5のIV-IV線断面図である。FIG. 6 is a sectional view taken along line IV-IV in FIG. 5. 無機成膜材料供給部の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of an inorganic film-forming material supply part. 本実施の形態に係る成膜システムを用いて成膜された有機EL素子を模式的に示した断面図である。It is sectional drawing which showed typically the organic EL element formed into a film using the film-forming system which concerns on this Embodiment. 変形例1に係る成膜ヘッドの構成を模式的に示した側断面図である。6 is a side sectional view schematically showing a configuration of a film forming head according to Modification 1. FIG. 変形例2に係る成膜ヘッドの側断面図である。6 is a side sectional view of a film forming head according to Modification 2. FIG. 有機成膜材料供給部及び無機成膜材料供給部の噴出孔の配置を概念的に示した説明図である。It is explanatory drawing which showed notionally arrangement | positioning of the ejection hole of an organic film-forming material supply part and an inorganic film-forming material supply part. 加熱装置の側面図である。It is a side view of a heating apparatus. 加熱装置の正面図である。It is a front view of a heating apparatus. 図13のXIV-XIV線断面図である。It is the XIV-XIV sectional view taken on the line of FIG. 図12のXV-XV線断面図である。FIG. 13 is a sectional view taken along line XV-XV in FIG. 12. 無機成膜材料噴出孔の配設例を示した模式図である。It is the schematic diagram which showed the example of arrangement | positioning of the inorganic film-forming material ejection hole. 成膜ヘッドの動作を制御する制御装置の一構成例を示したブロック図である。It is the block diagram which showed one structural example of the control apparatus which controls operation | movement of the film-forming head. 第1及び第2ヒータへの給電に係る制御の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the control which concerns on the electric power feeding to a 1st and 2nd heater. 第1及び第2ヒータへの給電と、容器の温度変化を示したタイミングチャートである。It is the timing chart which showed the electric power feeding to a 1st and 2nd heater, and the temperature change of a container. 変形例3に係る成膜ヘッドの側断面図である。10 is a side sectional view of a film forming head according to Modification 3. FIG.
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
 図1は、本実施の形態に係る成膜システムの構成を概念的に説明する説明図である。本実施の形態に係る成膜システムは、被処理基板G(図3参照)の搬送方向に沿って直列順に並べたローダ90、トランスファーチャンバ91、成膜装置1、トランスファーチャンバ92、エッチング装置93、トランスファーチャンバ94、スパッタリング装置95、トランスファーチャンバ96、CVD装置97、トランスファーチャンバ98、及びアンローダ99にて構成される。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof.
FIG. 1 is an explanatory diagram conceptually illustrating the configuration of a film forming system according to the present embodiment. The film forming system according to the present embodiment includes a loader 90, a transfer chamber 91, a film forming apparatus 1, a transfer chamber 92, an etching apparatus 93, which are arranged in series in the transport direction of the substrate G to be processed (see FIG. 3). A transfer chamber 94, a sputtering apparatus 95, a transfer chamber 96, a CVD apparatus 97, a transfer chamber 98, and an unloader 99 are configured.
 ローダ90は、被処理基板G、例えば予め表面にITO層31が形成された被処理基板Gを成膜システム内に搬入するための装置である。トランスファーチャンバ91,92,94,96,98は、各処理装置間で被処理基板Gを受け渡しするための装置である。
 成膜装置1は、真空蒸着法にて、被処理基板G上にホール注入層、ホール輸送層、青発光層、赤発光層、緑発光層、並びに電子輸送層ないし電子注入層を形成するための装置である。詳細は後述する。
 エッチング装置93は、有機層の形状を所定形状に調整するための装置である。
 スパッタリング装置95は、パターンマスクを用いて、例えば銀Ag、マグネシウムMg/銀Ag合金等をスパッタリングすることによって、電子輸送層上に陰極層を形成する装置である。
 CVD装置97は、窒化膜等からなる封止層をCVD等によって成膜し、被処理基板G上に形成された各種膜を封止するための装置である。
 アンローダ99は、被処理基板Gを成膜システム外へ搬出するための装置である。
The loader 90 is an apparatus for carrying the substrate to be processed G, for example, the substrate to be processed G on which the ITO layer 31 is previously formed, into the film forming system. The transfer chambers 91, 92, 94, 96, and 98 are apparatuses for delivering the substrate to be processed G between the processing apparatuses.
The film forming apparatus 1 forms a hole injection layer, a hole transport layer, a blue light emitting layer, a red light emitting layer, a green light emitting layer, and an electron transport layer or an electron injection layer on the substrate G to be processed by vacuum deposition. It is a device. Details will be described later.
The etching apparatus 93 is an apparatus for adjusting the shape of the organic layer to a predetermined shape.
The sputtering apparatus 95 is an apparatus that forms a cathode layer on an electron transport layer by sputtering, for example, silver Ag, magnesium Mg / silver Ag alloy using a pattern mask.
The CVD apparatus 97 is an apparatus for forming a sealing layer made of a nitride film or the like by CVD or the like and sealing various films formed on the substrate G to be processed.
The unloader 99 is an apparatus for carrying the substrate to be processed G out of the film forming system.
 図2は、成膜装置1の構成を模式的に示す斜視図、図3は、成膜装置1の構成を模式的に示す側断面図である。成膜装置1は、被処理基板Gを収容し、内部で被処理基板Gに対して成膜処理を行うための処理室11を備える。処理室11は、搬送方向を長手方向とする中空略直方体形状をなし、アルミニウム、ステンレス等で構成されている。処理室11の長手方向一端側の面(図2中背面側の面)には、被処理基板Gを処理室11内に搬入するための搬入口11aが形成され、長手方向他端側の面(図2中手前側の面)には、被処理基板Gを処理室11外へ搬出するための搬出口11bが形成されている。搬入口11a及び搬出口11bは、搬入方向に対して直交した長手方向を有するスリット状であり、搬入口11a及び搬出口11bの長手方向は略同一である。以下、搬入口11a及び搬出口11bの長手方向を横方向、該横方向及び搬送方向に直交する方向を上下方向という。また、収容室の適宜箇所には、排気孔11cが形成されており、排気孔11cには、処理室11の外部に配された真空ポンプ15が排気管14を介して接続されている。真空ポンプ15が駆動することにより、処理室11の内部は所定の圧力、例えば10-2Paに減圧される。 FIG. 2 is a perspective view schematically showing the configuration of the film forming apparatus 1, and FIG. 3 is a side sectional view schematically showing the configuration of the film forming apparatus 1. The film forming apparatus 1 includes a processing chamber 11 for accommodating a substrate to be processed G and performing a film forming process on the substrate to be processed G inside. The processing chamber 11 has a hollow, substantially rectangular parallelepiped shape whose longitudinal direction is the transport direction, and is made of aluminum, stainless steel, or the like. A surface of one end in the longitudinal direction of the processing chamber 11 (a surface on the back side in FIG. 2) is formed with a carry-in port 11a for carrying the substrate G to be processed into the processing chamber 11, and a surface on the other end in the longitudinal direction. A carry-out port 11b for carrying out the substrate G to be processed out of the processing chamber 11 is formed on the front surface in FIG. The carry-in port 11a and the carry-out port 11b have a slit shape having a longitudinal direction orthogonal to the carry-in direction, and the longitudinal directions of the carry-in port 11a and the carry-out port 11b are substantially the same. Hereinafter, the longitudinal direction of the carry-in port 11a and the carry-out port 11b is referred to as a horizontal direction, and the direction perpendicular to the horizontal direction and the conveyance direction is referred to as a vertical direction. Further, an exhaust hole 11 c is formed at an appropriate location of the storage chamber, and a vacuum pump 15 disposed outside the processing chamber 11 is connected to the exhaust hole 11 c through an exhaust pipe 14. By driving the vacuum pump 15, the inside of the processing chamber 11 is depressurized to a predetermined pressure, for example, 10-2 Pa.
 処理室11内部の底部には、被処理基板Gを搬入口11aから搬出口11bへ搬送する搬送装置12が設置されている。搬送装置12は、処理室11の底部に長手方向に沿って設けられた案内レール12aと、該案内レール12aに案内されて搬送方向、即ち前記長手方向へ移動可能に設けられた移動部材12bと、移動部材12bの上端部に設けられており、被処理基板Gを底部に対して略平行になるように支持する支持台12cとを備える。支持台12cの内部には、被処理基板Gを保持する静電チャック、被処理基板Gの温度を一定に保つための被処理基板加熱ヒータ、冷媒管等が設けられている。なお、支持台12cは、リニアモータによって移動するように構成されている。 At the bottom of the inside of the processing chamber 11, a transfer device 12 for transferring the substrate G to be processed from the carry-in port 11a to the carry-out port 11b is installed. The transfer device 12 includes a guide rail 12a provided at the bottom of the processing chamber 11 along the longitudinal direction, and a moving member 12b that is guided by the guide rail 12a and is movable in the transfer direction, that is, the longitudinal direction. And a support base 12c that is provided at the upper end of the moving member 12b and supports the substrate G to be processed so as to be substantially parallel to the bottom. An electrostatic chuck that holds the substrate to be processed G, a substrate heater to be processed to keep the temperature of the substrate to be processed G constant, a refrigerant pipe, and the like are provided inside the support base 12c. The support base 12c is configured to move by a linear motor.
 また、処理室11の上部、搬送方向略中央部には、被処理基板Gに対して真空蒸着法にて成膜を行う複数の蒸着ヘッド13が設けられている。蒸着ヘッド13は、ホール注入層を蒸着させる第1ヘッド13a、ホール輸送層を蒸着させる第2ヘッド13b、青発光層を蒸着させる第3ヘッド13c、赤発光層を蒸着させる第4ヘッド13d、緑発光層を蒸着させる第5ヘッド13e、及び本発明に係る成膜ヘッド2を、搬送方向に沿って順に配置して構成されている。成膜ヘッド2は、電子輸送のための材料である有機成膜材料、例えばAlq3と、電子注入のための材料である無機成膜材料、例えばLiとを共蒸着させるための装置であり、成膜ヘッド2には、処理室11の外部に配された蒸気発生部17が配管16を介して接続されている。 Further, a plurality of vapor deposition heads 13 for forming a film on the substrate G to be processed by a vacuum vapor deposition method are provided in the upper part of the processing chamber 11 and in the substantially central part in the transport direction. The vapor deposition head 13 includes a first head 13a for vapor-depositing a hole injection layer, a second head 13b for vapor-depositing a hole transport layer, a third head 13c for vapor-depositing a blue light-emitting layer, a fourth head 13d for vapor-depositing a red light-emitting layer, and green. The fifth head 13e for depositing the light emitting layer and the film forming head 2 according to the present invention are arranged in order along the transport direction. The film formation head 2 is an apparatus for co-evaporating an organic film formation material, for example, Alq3, which is a material for electron transport, and an inorganic film formation material, for example, Li, for a material for electron injection. A vapor generating unit 17 disposed outside the processing chamber 11 is connected to the membrane head 2 via a pipe 16.
 蒸気発生部17は、容器17aと、容器17aの内部に配された加熱機構17bとを備える。加熱機構17bは、電子輸送層の材料である有機成膜材料の蒸気を収容可能な容器形状部分を有し、電源17cから供給された電力によって有機成膜材料を加熱するように構成されている。例えば、電気抵抗体にて加熱するように構成されている。こうして、加熱機構17b内に収納した有機成膜材料を加熱して、有機成膜材料の蒸気を発生させる。また、容器17aには、被処理基板Gに対して不活性ガス、例えばArなどの希ガス等からなる輸送ガスを供給する輸送ガス供給管17dが接続されており、輸送ガス供給管から容器17aに供給された輸送ガスと共に、有機成膜材料の蒸気を蒸気発生部17から配管16を介して成膜ヘッド2へ供給するように構成されている。
 また、第1乃至第5ヘッド13a,13b,13c,13d,13eに対しても同様に、図示しない蒸気発生部から所定の有機成膜材料の蒸気が供給されるように構成されている。
The steam generation unit 17 includes a container 17a and a heating mechanism 17b disposed inside the container 17a. The heating mechanism 17b has a container-shaped portion that can store the vapor of the organic film forming material that is the material of the electron transport layer, and is configured to heat the organic film forming material with electric power supplied from the power source 17c. . For example, it is configured to heat with an electric resistor. In this manner, the organic film forming material stored in the heating mechanism 17b is heated to generate vapor of the organic film forming material. The container 17a is connected to a transport gas supply pipe 17d for supplying a transport gas made of an inert gas, for example, a rare gas such as Ar, to the substrate G to be processed. The container 17a is connected to the container 17a from the transport gas supply pipe. The vapor of the organic film forming material is supplied from the vapor generating unit 17 to the film forming head 2 via the pipe 16 together with the transport gas supplied to the film forming head 2.
Similarly, the first to fifth heads 13a, 13b, 13c, 13d, and 13e are configured such that a vapor of a predetermined organic film forming material is supplied from a vapor generation unit (not shown).
 図4は、本実施の形態に係る成膜ヘッド2を模式的に示した一部破断斜視図、図5は、成膜ヘッド2の側断面図、図6は、図5のIV-IV線断面図である。成膜ヘッド2は、筐体21と、有機成膜材料供給部22と、無機成膜材料供給部24と、有機成膜材料及び無機成膜材料の蒸気を混合させるための混合室23と、給電部材25a,25bと、保温ヒータ27a,27b,27cとを備える。 4 is a partially broken perspective view schematically showing the film forming head 2 according to the present embodiment, FIG. 5 is a side sectional view of the film forming head 2, and FIG. 6 is a line IV-IV in FIG. It is sectional drawing. The film forming head 2 includes a housing 21, an organic film forming material supply unit 22, an inorganic film forming material supply unit 24, a mixing chamber 23 for mixing the organic film forming material and the vapor of the inorganic film forming material, The power supply members 25a and 25b and the heat retaining heaters 27a, 27b and 27c are provided.
 筐体21は、例えば、アルミニウム又はステンレス製であり、搬送方向の幅が薄い横長の中空略直方体形状をなし、底板部21a、側壁21b、及び天板部21cにて構成されている。筐体21内部は真空である。 The housing 21 is made of, for example, aluminum or stainless steel, has a horizontally long, substantially rectangular parallelepiped shape with a small width in the transport direction, and includes a bottom plate portion 21a, a side wall 21b, and a top plate portion 21c. The inside of the housing 21 is vacuum.
 有機成膜材料供給部22は、有機成膜材料が流入する流入室22aを備える。流入室22aは、筐体21よりも小寸法で、搬出口11b側下部(図5中、右下部)の一辺を切り欠いた中空略直方体形状をなし、筐体21内部に収容されている。流入室22aは、例えばステンレス製であり、流入室22aの外側若しくは内側表面のいずれか、又は外側及び内側表面は、銅メッキされている。銅メッキは、熱伝導率を向上させるため、後述する保温ヒータ27a,27bから放射された輻射熱を流入室22aに均等に伝達させることができる。なお、流入室22aを均等に加熱することができる程度に熱伝導率が高い物質であれば、銅メッキに代えて他の物質で被覆するようにしても良い。
 流入室22aの上部の略中央部には、蒸気発生部17にて発生した有機成膜材料の蒸気を流入室22aへ流入させる有機成膜材料供給管22bが接続されている。流入室22aの切り欠き部分に相当する傾斜部には、横方向両端部に亘って一様に複数の有機成膜材料噴出孔22cが形成されている。なお、横方向において有機成膜材料の蒸気を均一に噴出することができれば、有機成膜材料噴出孔22cの配置方法は特に限定されない。例えば、複数の有機成膜材料噴出孔22cを横方向一直線上に並設しても良いし、横方向に沿って千鳥配置するように構成しても良いし、スリットであっても良い。
The organic film forming material supply unit 22 includes an inflow chamber 22a into which the organic film forming material flows. The inflow chamber 22 a is smaller in size than the casing 21, has a hollow substantially rectangular parallelepiped shape with one side notched on the side of the outlet 11 b side (lower right in FIG. 5), and is accommodated inside the casing 21. The inflow chamber 22a is made of stainless steel, for example, and either the outer or inner surface of the inflow chamber 22a, or the outer and inner surfaces are plated with copper. Since copper plating improves thermal conductivity, radiant heat radiated from heat retaining heaters 27a and 27b, which will be described later, can be evenly transmitted to the inflow chamber 22a. In addition, as long as it is a substance with high heat conductivity to the extent that the inflow chamber 22a can be heated uniformly, it may be covered with another substance instead of copper plating.
An organic film forming material supply pipe 22b through which the vapor of the organic film forming material generated in the vapor generating unit 17 flows into the inflow chamber 22a is connected to a substantially central portion of the upper part of the inflow chamber 22a. A plurality of organic film-forming material ejection holes 22c are uniformly formed across the both ends in the lateral direction in the inclined portion corresponding to the cutout portion of the inflow chamber 22a. Note that the arrangement method of the organic film forming material ejection holes 22c is not particularly limited as long as the vapor of the organic film forming material can be uniformly ejected in the lateral direction. For example, the plurality of organic film forming material ejection holes 22c may be arranged side by side in the horizontal direction, arranged in a staggered manner along the horizontal direction, or may be a slit.
 混合室23は、搬入口11a側上部(図5中、左上部)の一辺を傾斜部とした側面視が5角形、横長の混合室下部23aと、混合室下部23aの上側に形成された略中空直方体形状の混合室上部23bとで構成されている。また、混合室23の外側及び内側表面は、銅メッキされている。混合室上部23b及び混合室下部23aは連通している。 The mixing chamber 23 has a pentagonal, horizontally long mixing chamber lower portion 23a and an upper side of the mixing chamber lower portion 23a in a side view with one side of the upper portion on the carry-in port 11a (the upper left portion in FIG. 5) as an inclined portion. It is comprised with the mixing chamber upper part 23b of a hollow rectangular parallelepiped shape. Further, the outer and inner surfaces of the mixing chamber 23 are plated with copper. The mixing chamber upper portion 23b and the mixing chamber lower portion 23a communicate with each other.
 混合室下部23aの傾斜部には、有機成膜材料供給部22の傾斜部が、混合室上部23bと離隔するように接合しており、有機成膜材料供給部22から混合室23内部へ有機成膜材料が噴出されるように構成されている。なお、有機成膜材料供給部22の傾斜部が、混合室下部23aの傾斜部の一部を構成するようにしてある。
 また、混合室下部23aの底部は、筐体21の底板部21aを共用して構成されている。混合室下部23aの搬出口11b寄り部分には、有機成膜材料及び無機成膜材料の混合蒸気を処理室11内の被処理基板Gへ向けて供給する横方向のスリットからなる開口部23cが設けられている。なお、スリットは、開口部23cの形状の一例であり、有機成膜材料噴出孔22cと同様、一方向に配設した複数の孔部にて開口部23cを構成しても良い。また、複数の孔部は、一直線上に配列している必要は無く、千鳥配置させても良い。
An inclined portion of the organic film forming material supply unit 22 is joined to the inclined portion of the mixing chamber lower portion 23a so as to be separated from the mixing chamber upper portion 23b. The film forming material is configured to be ejected. The inclined part of the organic film forming material supply unit 22 constitutes a part of the inclined part of the mixing chamber lower part 23a.
The bottom of the mixing chamber lower part 23 a is configured to share the bottom plate part 21 a of the housing 21. Near the carry-out port 11b of the lower part 23a of the mixing chamber, there is an opening 23c formed of a lateral slit for supplying the mixed vapor of the organic film forming material and the inorganic film forming material toward the substrate G to be processed in the processing chamber 11. Is provided. In addition, a slit is an example of the shape of the opening part 23c, and you may comprise the opening part 23c in the some hole arrange | positioned to one direction similarly to the organic film-forming material ejection hole 22c. The plurality of holes need not be arranged in a straight line, and may be staggered.
 混合室上部23bは、横幅が混合室下部23aに比べて短く形成されており、横方向両側面には、無機成膜材料供給部24へ給電するための給電部材25a,25bが接続されると共に、混合室23内部に無機成膜材料供給部24を支持する導電性の支持部材26a,26bが設けられている。支持部材26a,26bは、略直方体板状であり、混合室上部23bに横方向から接続している。
 混合室上部23bの内部へ突出した支持部材26a,26bの板片は、無機成膜材料供給部24に対して電気的に接続している。混合室上部23bの外側へ突出した支持部材26a,26bの板片には、ボルト孔が形成されており、給電部材25a,25bの一端部がボルトで固定されている。
The mixing chamber upper portion 23b has a shorter width than the mixing chamber lower portion 23a, and power supply members 25a and 25b for supplying power to the inorganic film forming material supply unit 24 are connected to both side surfaces in the horizontal direction. Conductive support members 26 a and 26 b that support the inorganic film forming material supply unit 24 are provided inside the mixing chamber 23. The support members 26a and 26b are substantially rectangular parallelepiped plates, and are connected to the mixing chamber upper portion 23b from the lateral direction.
The plate pieces of the support members 26 a and 26 b protruding into the mixing chamber upper portion 23 b are electrically connected to the inorganic film forming material supply unit 24. Bolt holes are formed in the plate pieces of the support members 26a and 26b protruding to the outside of the mixing chamber upper portion 23b, and one ends of the power supply members 25a and 25b are fixed with bolts.
 給電部材25a,25bは、長手方向が上下方向になるような姿勢で配されており、他端側は、筐体21の天板部21cから上方へ突出している。給電部材25a,25bは、導電部を有しており、筐体21の外部から、筐体21内部の支持部材26a,26bを介して、無機成膜材料供給部24へ電力を供給する構成である。 The power supply members 25 a and 25 b are arranged in such a posture that the longitudinal direction is the vertical direction, and the other end side protrudes upward from the top plate portion 21 c of the housing 21. The power feeding members 25a and 25b have a conductive portion, and supply power from the outside of the housing 21 to the inorganic film forming material supply portion 24 via the support members 26a and 26b inside the housing 21. is there.
 図7は、無機成膜材料供給部24の構成を模式的に示す断面図である。無機成膜材料供給部24は、いわゆるアルカリディスペンサであり、中空状の無機成膜材料用筐体24aを備える。無機成膜材料用筐体24aの下面部には、長手方向両端部に沿って一様に複数の無機成膜材料噴出孔24bが形成されている。また、無機成膜材料用筐体24aの内部には、電子注入層の材料である無機成膜材料、例えばアルカリ金属が投入される例えば非金属製角皿状の材料投入部24cが配されており、材料投入部24cは、載置面を上方に向けた姿勢で、加熱装置24dによって支持され、固定部材24iによって固定されている。加熱装置24dは、材料投入部24cが嵌り込む溝部を上面に有する金属製の基材24eを有し、該基材24eの内部にヒータ24f,24g,24hが埋設されている。ヒータ24f,24g,24hは、支持部材26a,26bを通じて給電部材25a,25bに接続しており、加熱装置24dの基材24eを介して材料投入部24cを間接的に加熱する。また、無機成膜材料供給部24は、無機成膜材料用筐体24aに埋設されたヒータ24j,24k,24l,24mを備える。
 以上の構成によれば、図示しない電源から給電部材25a,25b及び支持部材26a,26bを通じて、ヒータ24f,24g,24hに給電される。加熱装置24d及び材料投入部24cは、該給電によって発熱し、材料投入部24cに投入された無機成膜材料が加熱され、蒸発する。蒸発した無機成膜材料の蒸気は、無機成膜材料用筐体24aに形成された無機成膜材料噴出孔24bから下方へ噴出する。
 また、以上の構成によれば、材料投入部24cに通電することなく、ヒータ24f,24g,24hで基材24e及び材料投入部24cを加熱し、アルカリ金属を加熱することができ、温度制御の観点からより好ましい。金属製の材料投入部24cに直接通電するように構成することも可能である。
 なお、言うまでも無く、無機成膜材料供給部24の構成は、上記構成に限定されるものでは無い。例えば、無機成膜材料を収容する収容筒を備え、下部周面部に無機成膜材料噴出孔を形成し、収容筒全体が外部から供給された電圧によって加熱する電気抵抗体で構成しても良い。
FIG. 7 is a cross-sectional view schematically showing the configuration of the inorganic film forming material supply unit 24. The inorganic film forming material supply unit 24 is a so-called alkaline dispenser and includes a hollow inorganic film forming material casing 24a. A plurality of inorganic film-forming material ejection holes 24b are formed uniformly along the longitudinal ends of the lower surface of the inorganic film-forming material casing 24a. In addition, an inorganic film forming material that is an electron injection layer material, for example, a non-metallic square dish-shaped material charging portion 24c into which an alkali metal is charged is disposed inside the inorganic film forming material casing 24a. The material charging unit 24c is supported by the heating device 24d and fixed by the fixing member 24i with the mounting surface facing upward. The heating device 24d has a metal base 24e having a groove on the upper surface into which the material charging part 24c is fitted, and heaters 24f, 24g, and 24h are embedded in the base 24e. The heaters 24f, 24g, and 24h are connected to the power supply members 25a and 25b through the support members 26a and 26b, and indirectly heat the material charging unit 24c through the base material 24e of the heating device 24d. The inorganic film forming material supply unit 24 includes heaters 24j, 24k, 24l, and 24m embedded in the inorganic film forming material casing 24a.
According to the above configuration, power is supplied to the heaters 24f, 24g, and 24h from the power source (not shown) through the power supply members 25a and 25b and the support members 26a and 26b. The heating device 24d and the material input unit 24c generate heat by the power supply, and the inorganic film forming material input to the material input unit 24c is heated and evaporated. The vapor | steam of the evaporated inorganic film-forming material is ejected below from the inorganic film-forming material ejection hole 24b formed in the inorganic film-forming material casing 24a.
Further, according to the above configuration, the base material 24e and the material charging unit 24c can be heated by the heaters 24f, 24g, and 24h without energizing the material charging unit 24c, and the alkali metal can be heated. More preferable from the viewpoint. It is also possible to configure such that the metal material charging portion 24c is directly energized.
Needless to say, the configuration of the inorganic film forming material supply unit 24 is not limited to the above configuration. For example, an accommodation cylinder for accommodating the inorganic film forming material may be provided, an inorganic film forming material ejection hole may be formed in the lower peripheral surface portion, and the entire accommodation cylinder may be configured by an electric resistor that is heated by a voltage supplied from the outside. .
 保温ヒータ27aは、電気抵抗熱方式のヒータであり、流入室22aの搬入口11a側の面及び下部に対向するように引き回され、輻射熱によって、流入室22aの温度は所定温度以上に保持するように構成されている。所定温度は、有機成膜材料が凝縮しないように設定すれば良い。同様に、保温ヒータ27bは、流入室22aと、混合室23との間に引き回され、保温ヒータ27cは、混合室23の搬出口11b側の面に対向するように引き回されている。保温ヒータ27bは、流入室22a及び混合室23を加熱し、保温ヒータ27cは、混合室23を加熱する。なお、流入室22a及び混合室23の適宜箇所には、温度センサが配されており、該温度センサの検出結果に基づいて、保温ヒータ27a,27b,27cへの給電が制御されている。また、電気抵抗方式のヒータを一例として挙げたが、流入室22a及び混合室23を加熱することができるのであれば、誘導加熱方式、又は熱媒体を通流させるように構成しても良い。 The heat retaining heater 27a is an electrical resistance heat type heater, and is routed so as to oppose the surface and the lower portion of the inflow chamber 22a on the carry-in port 11a side, and the temperature of the inflow chamber 22a is maintained at a predetermined temperature or more by radiant heat. It is configured as follows. The predetermined temperature may be set so that the organic film forming material does not condense. Similarly, the heat retaining heater 27b is routed between the inflow chamber 22a and the mixing chamber 23, and the heat retaining heater 27c is routed so as to face the surface of the mixing chamber 23 on the carry-out port 11b side. The heat retaining heater 27b heats the inflow chamber 22a and the mixing chamber 23, and the heat retaining heater 27c heats the mixing chamber 23. In addition, temperature sensors are disposed at appropriate locations in the inflow chamber 22a and the mixing chamber 23, and power supply to the heat retaining heaters 27a, 27b, and 27c is controlled based on the detection results of the temperature sensors. In addition, although an electric resistance type heater has been described as an example, if the inflow chamber 22a and the mixing chamber 23 can be heated, an induction heating method or a heat medium may be used.
 以下、成膜処理システム、成膜装置1及び成膜ヘッド2の動作について説明する。
 図8は、本実施の形態に係る成膜システムを用いて成膜された有機EL素子3を模式的に示した断面図である。
 まず、予め表面にITO層31が形成された被処理基板Gがローダ90を介して成膜システム内に搬入され、トランスファーチャンバ91によって、更に奥の成膜装置1へ搬入される。
Hereinafter, operations of the film forming system, the film forming apparatus 1 and the film forming head 2 will be described.
FIG. 8 is a cross-sectional view schematically showing the organic EL element 3 formed using the film forming system according to the present embodiment.
First, the substrate G to be processed, on which the ITO layer 31 is formed in advance, is carried into the film forming system via the loader 90, and is further carried into the film forming apparatus 1 in the back by the transfer chamber 91.
 成膜装置1の収容室に搬入された被処理基板Gは、基板の表面、即ちITO層31を上に向けた姿勢で図3に示した支持台12cに静電吸着され、一定温度に保持される。なお、被処理基板Gが搬入される前に、処理室11の内部は真空ポンプ15の駆動によって、予め所定圧力、例えば10-2Pa以下に減圧されている。そして、支持台12cが案内レール12aに沿って搬送方向へ移動し、被処理基板Gが蒸着ヘッド13の下方を通過していく。蒸着ヘッド13の下方を通過する過程で、図8に示すように、被処理基板Gには、ホール注入層33a、ホール輸送層33b、青発光層33c、赤発光層33d、緑発光層33eが順次成膜される。特に最終段の成膜ヘッド2では、有機成膜材料及び無機成膜材料の蒸気が混合した混合蒸気が供給されているため、被処理基板Gには、有機成膜材料及び無機成膜材料の共蒸着が行われる。つまり、被処理基板Gには、有機成膜材料と、無機成膜材料とが混合した電子輸送層33fが形成される。該電子輸送層33fは、有機成膜材料と、無機成膜材料とを順番に蒸着させた場合に形成される界面、即ちエネルギー障壁が形成されない。従って、電子注入効率を向上させることができ、発光強度が向上する。 The substrate to be processed G carried into the storage chamber of the film forming apparatus 1 is electrostatically adsorbed on the support 12c shown in FIG. 3 with the surface of the substrate, that is, the ITO layer 31 facing upward, and kept at a constant temperature. Is done. Note that, before the substrate G to be processed is loaded, the inside of the processing chamber 11 is previously depressurized to a predetermined pressure, for example, 10 −2 Pa or less by driving the vacuum pump 15. Then, the support base 12c moves in the transport direction along the guide rail 12a, and the substrate G to be processed passes below the vapor deposition head 13. In the process of passing under the vapor deposition head 13, as shown in FIG. 8, the substrate G to be processed has a hole injection layer 33a, a hole transport layer 33b, a blue light emitting layer 33c, a red light emitting layer 33d, and a green light emitting layer 33e. Films are sequentially formed. In particular, since the vapor deposition head 2 at the final stage is supplied with a mixed vapor obtained by mixing the vapors of the organic film-forming material and the inorganic film-forming material, the substrate G to be processed has the organic film-forming material and the inorganic film-forming material. Co-evaporation is performed. That is, an electron transport layer 33f in which an organic film forming material and an inorganic film forming material are mixed is formed on the substrate G to be processed. The electron transport layer 33f does not form an interface, that is, an energy barrier formed when an organic film forming material and an inorganic film forming material are sequentially deposited. Therefore, the electron injection efficiency can be improved and the emission intensity is improved.
 成膜ヘッド2における動作は以下の通りである。
 まず、収容室外部の蒸気発生部17から配管16及び有機成膜材料供給管22bを通じて、流入室22aに有機成膜材料の蒸気が流入する。なお、有機成膜材料の蒸気圧は例えば10Paである。混合室23の内圧は約10-2Paであるため、流入室22aに流入した有機成膜材料の蒸気は、有機成膜材料噴出孔22cから混合室23内部へ噴出される。
 一方、図示しない電源から給電部材25a,25b及び支持部材26a,26bを通じて、無機成膜材料供給部24の収容筒24aに給電される。収容筒24aは、該給電によって発熱し、収容筒24aに収容された無機成膜材料が加熱され、蒸発する。なお、給電量を調整することによって、無機成膜材料の蒸気圧が制御される。蒸発した無機成膜材料の蒸気は、収容筒24aに形成された無機成膜材料噴出孔24bから下方へ噴出する。
 噴出された有機成膜材料及び無機成膜材料の蒸気は混合室23内で混合し、混合して得られた混合蒸気は、開口部23cを通じて処理室11内の被処理基板Gへ向けて供給される。なお、混合室23内に噴出された有機成膜材料及び無機成膜材料の圧力ないし温度は低下し、各構成分子及び原子が高頻度で衝突しないため、有機成膜材料が焼失するおそれはない。
The operation of the film forming head 2 is as follows.
First, the vapor of the organic film forming material flows into the inflow chamber 22a through the pipe 16 and the organic film forming material supply pipe 22b from the vapor generating unit 17 outside the storage chamber. Note that the vapor pressure of the organic film forming material is, for example, 10 Pa. Since the internal pressure of the mixing chamber 23 is about 10 −2 Pa, the vapor of the organic film forming material that has flowed into the inflow chamber 22 a is ejected from the organic film forming material ejection hole 22 c into the mixing chamber 23.
On the other hand, power is supplied from a power source (not shown) to the accommodation cylinder 24a of the inorganic film forming material supply unit 24 through the power supply members 25a and 25b and the support members 26a and 26b. The storage cylinder 24a generates heat by the power supply, and the inorganic film forming material stored in the storage cylinder 24a is heated and evaporated. Note that the vapor pressure of the inorganic film forming material is controlled by adjusting the power supply amount. The vapor | steam of the evaporated inorganic film-forming material spouts downward from the inorganic film-forming material ejection hole 24b formed in the storage cylinder 24a.
The ejected vapors of the organic film forming material and the inorganic film forming material are mixed in the mixing chamber 23, and the mixed vapor obtained by mixing is supplied toward the substrate G to be processed in the processing chamber 11 through the opening 23c. Is done. Note that the pressure or temperature of the organic film-forming material and inorganic film-forming material ejected into the mixing chamber 23 decreases, and the constituent molecules and atoms do not collide with each other frequently, so that the organic film-forming material is not burned out. .
 次に、成膜処理を終えた被処理基板Gは、トランスファーチャンバ92によって、エッチング装置93に搬入される。エッチング装置93では、各種膜の形状等が調整される。次に、トランスファーチャンバ94によって、スパッタリング装置95に搬入される。スパッタリング装置95では、陰極層32が形成される。次に、トランスファーチャンバ96によって、被処理基板Gは、CVD装置97に搬入される。CVD装置97では、被処理基板Gに成膜された各層を窒化膜等の封止層34によって封止する。そして、封止処理された被処理基板Gは、トランスファーチャンバ98を介してアンローダ99から成膜処理システム外へ搬出される。 Next, the substrate G to be processed after the film formation process is carried into the etching apparatus 93 by the transfer chamber 92. In the etching apparatus 93, the shape and the like of various films are adjusted. Next, it is carried into the sputtering apparatus 95 by the transfer chamber 94. In the sputtering apparatus 95, the cathode layer 32 is formed. Next, the substrate G to be processed is carried into the CVD apparatus 97 by the transfer chamber 96. In the CVD apparatus 97, each layer formed on the substrate G to be processed is sealed with a sealing layer 34 such as a nitride film. Then, the target substrate G subjected to the sealing process is carried out of the film forming system from the unloader 99 via the transfer chamber 98.
 本実施の形態によれば、所要条件下における有機成膜材料及び無機成膜材料の共蒸着が可能になる。例えば、450℃で、蒸気圧が10Paの有機成膜材料Alq3 を流入室22aに供給して噴出させると共に、700℃で、蒸気圧が10Paの無機成膜材料Liを噴出させ、混合させた上、共蒸着させることができる。つまり、有機成膜材料Alq3 及び無機成膜材料Liを同程度の濃度で混合させた電子輸送層を成膜することができる。
 共蒸着によって、有機EL素子3の電子輸送層及び電子注入層における界面のエネルギー障壁を低減させて電子注入効率を向上させることができ、発光強度が向上した有機EL素子3を製造することができる。
According to this embodiment, it is possible to co-evaporate an organic film forming material and an inorganic film forming material under required conditions. For example, an organic film forming material Alq3 having a vapor pressure of 10 Pa at 450 ° C. is supplied to the inflow chamber 22a and ejected, and an inorganic film forming material Li having a vapor pressure of 10 Pa is ejected and mixed at 700 ° C. Can be co-evaporated. That is, it is possible to form an electron transport layer in which the organic film forming material Alq3 and the inorganic film forming material Li are mixed at the same concentration.
By co-evaporation, the energy barrier at the interface between the electron transport layer and the electron injection layer of the organic EL element 3 can be reduced, the electron injection efficiency can be improved, and the organic EL element 3 with improved emission intensity can be manufactured. .
 また、開口部23cが形成された混合室23を備えているため、有機成膜材料及び無機成膜材料をより均等に混合させて、被処理基板Gを成膜することが可能になる。電子輸送層の膜均一性を向上させることによって、電子注入効率を向上させることができ、発光強度が向上した有機EL素子3を製造することができる。 Further, since the mixing chamber 23 in which the opening 23c is formed is provided, it is possible to form the substrate G to be processed by more uniformly mixing the organic film forming material and the inorganic film forming material. By improving the film uniformity of the electron transport layer, the electron injection efficiency can be improved, and the organic EL element 3 with improved emission intensity can be manufactured.
 更に、混合した有機成膜材料及び無機成膜材料の蒸気をスリット状の開口部23cから被処理基板Gへ供給する。従って、被処理基板Gの線状領域に対して、混合した蒸気による成膜が可能になる。なお、開口部23cを、一方向に列設された複数の孔部で構成しても同様である。また、無機成膜材料噴出孔24b及び有機成膜材料噴出孔22cは、開口部23cの長手方向に並設されている。従って、有機成膜材料及び無機成膜材料をより均等に混合させて、被処理基板Gを成膜することが可能になる。なお、開口部23cを、一方向に列設された複数の孔部で構成する場合、無機成膜材料噴出孔24b及び有機成膜材料噴出孔22cを、開口部の前記一方向と略同一方向に並設することによって、同様の作用効果を得ることができる。 Furthermore, the vapor of the mixed organic film forming material and inorganic film forming material is supplied to the substrate G to be processed from the slit-shaped opening 23c. Therefore, it is possible to form a film with the mixed vapor on the linear region of the substrate G to be processed. The same applies to the case where the opening 23c includes a plurality of holes arranged in one direction. In addition, the inorganic film forming material ejection holes 24b and the organic film forming material ejection holes 22c are arranged in parallel in the longitudinal direction of the opening 23c. Therefore, it becomes possible to form the substrate G to be processed by more uniformly mixing the organic film forming material and the inorganic film forming material. When the opening 23c is composed of a plurality of holes arranged in one direction, the inorganic film forming material ejection holes 24b and the organic film forming material ejection holes 22c are arranged in substantially the same direction as the one direction of the opening. Similar effects can be obtained by arranging them in parallel.
 更に、有機成膜材料噴出孔22c及び無機成膜材料噴出孔24bは、開口部23cの長手方向と略同一方向に並設されているため、有機成膜材料及び無機成膜材料の共蒸着層の膜均一性をより向上させることができる。 Further, since the organic film forming material ejection holes 22c and the inorganic film forming material ejection holes 24b are arranged side by side in substantially the same direction as the longitudinal direction of the opening 23c, a co-deposition layer of the organic film forming material and the inorganic film forming material is formed. The film uniformity can be further improved.
 更にまた、保温ヒータ27a,27b,27cによって、有機成膜材料が流入層内部で凝縮することを防止することができる。 Furthermore, it is possible to prevent the organic film forming material from condensing inside the inflow layer by the heat retaining heaters 27a, 27b, 27c.
 更にまた、無機成膜材料噴出孔24bの配列幅を、有機成膜材料噴出孔22cの配列幅よりも幅狭に構成してあるため、成膜ヘッド2の横寸法を小さくすることができる。 Furthermore, since the arrangement width of the inorganic film forming material ejection holes 24b is narrower than the arrangement width of the organic film formation material ejection holes 22c, the lateral dimension of the film formation head 2 can be reduced.
 なお、実施の形態では、混合室23を設けてあるが、有機成膜材料及び無機成膜材料の蒸気を、略同一箇所に噴出することができるように構成すれば、混合室23を廃しても良い。また、開口部を有する仕切板のみを設けるように構成しても良い。 In the embodiment, the mixing chamber 23 is provided. However, if the vapors of the organic film forming material and the inorganic film forming material can be ejected to substantially the same place, the mixing chamber 23 is eliminated. Also good. Moreover, you may comprise only the partition plate which has an opening part.
 また、有機成膜材料供給部22及び無機成膜材料供給部24を、並置させても良い。有機成膜材料供給部22及び無機成膜材料供給部24を、夫々を筒状に構成し、同軸配置するように構成しても良い。更に、開口部から有機成膜材料及び無機成膜材料の混合蒸気を供給できるのであれば、有機成膜材料供給部22及び無機成膜材料供給部24の取付姿勢は特に限定されない。 Further, the organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 may be juxtaposed. The organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 may each be configured in a cylindrical shape and arranged coaxially. Furthermore, the mounting posture of the organic film forming material supply unit 22 and the inorganic film forming material supply unit 24 is not particularly limited as long as the mixed vapor of the organic film forming material and the inorganic film forming material can be supplied from the opening.
(変形例1)
 図9は、変形例1に係る成膜ヘッド102の構成を模式的に示した側断面図である。変形例1に係る成膜装置1は、上述の実施の形態と同様、筐体121、有機成膜材料供給部122、混合室123、無機成膜材料供給部24、給電部材25a,25b、保温ヒータ27a,27b,27c,27dを備える。また、変形例1に係る成膜装置1は、更に、流入室122aを冷却するための熱媒体を通流される熱媒体通流路28aを備える。熱媒体通流路28aは、例えば、水が通流する水冷流路である。また、熱媒体通流路28aは、水冷遮熱板28bに覆われている。
(Modification 1)
FIG. 9 is a side sectional view schematically showing the configuration of the film forming head 102 according to the first modification. Similar to the above-described embodiment, the film forming apparatus 1 according to Modification 1 includes a housing 121, an organic film forming material supply unit 122, a mixing chamber 123, an inorganic film forming material supply unit 24, power supply members 25a and 25b, and heat insulation. Heaters 27a, 27b, 27c, and 27d are provided. In addition, the film forming apparatus 1 according to the modification 1 further includes a heat medium flow path 28a through which a heat medium for cooling the inflow chamber 122a is passed. The heat medium flow path 28a is, for example, a water-cooled flow path through which water flows. Further, the heat medium passage 28a is covered with a water-cooled heat shield plate 28b.
 収容室の底板部121a、側壁121b及び天板部121c、並びに混合室下部123aは、流入室122a及び混合室123間に2本の保温ヒータ27b,27d及び熱媒体通流路28aが搬送方向に並べて配置できるような寸法を有している。一本の保温ヒータ27bは、流入室122aに近接対向し、他の保温ヒータ27d,27cは、混合室123に近接対向している。熱媒体通流路28aは、流入室122aと、混合室123との間、より詳細には保温ヒータ27b,27dの間に位置するように引き回されている。熱媒体通流路28aへ熱媒体を通流させる冷媒サイクルの動作は、図示しない制御部によって制御されている。 The bottom plate portion 121a, the side wall 121b and the top plate portion 121c of the storage chamber, and the mixing chamber lower portion 123a are provided with two heat retaining heaters 27b and 27d and a heat medium passage 28a between the inflow chamber 122a and the mixing chamber 123 in the transport direction. The dimensions are such that they can be placed side by side. One heat retaining heater 27b is in close proximity to the inflow chamber 122a, and the other heat retaining heaters 27d and 27c are in close proximity to the mixing chamber 123. The heat medium passage 28a is routed so as to be positioned between the inflow chamber 122a and the mixing chamber 123, more specifically, between the heat retaining heaters 27b and 27d. The operation of the refrigerant cycle for causing the heat medium to flow through the heat medium flow path 28a is controlled by a control unit (not shown).
 変形例1にあっては、熱媒体通流路28aに熱媒体、特に冷媒を通流させることによって、流入室122aの温度を、有機成膜材料が焼失しない温度以下になるように制御することができる。保温ヒータ27b,27d及び熱媒体通流路28aによって、有機成膜材料の凝縮及び焼失を防止することができる。 In the first modification, the temperature of the inflow chamber 122a is controlled to be equal to or lower than the temperature at which the organic film forming material is not burned by passing the heat medium, particularly the refrigerant, through the heat medium flow passage 28a. Can do. Condensation and burning of the organic film forming material can be prevented by the heat retaining heaters 27b and 27d and the heat medium passage 28a.
(変形例2)
 変形例2に係る成膜装置は、成膜ヘッド202の構成のみが実施の形態と異なるため、以下では主に、成膜ヘッド202について説明する。
 図10は、変形例2に係る成膜ヘッド202の側断面図である。変形例2に係る成膜ヘッド202は、有機成膜材料の蒸気を被処理基板Gへ向けて噴出する有機成膜材料供給部4と、無機成膜材料の蒸気を被処理基板Gへ向けて噴出する無機成膜材料供給部5とを有し、有機成膜材料供給部4及び無機成膜材料供給部5は、有機成膜材料及び無機成膜材料の被噴出箇所が被処理基板G上で重複するように配されている。
(Modification 2)
Since the film forming apparatus according to Modification 2 is different from the embodiment only in the configuration of the film forming head 202, the film forming head 202 will be mainly described below.
FIG. 10 is a side sectional view of the film forming head 202 according to the second modification. The film forming head 202 according to the second modification includes an organic film forming material supply unit 4 that ejects vapor of an organic film forming material toward the substrate G to be processed, and a vapor of inorganic film forming material toward the substrate G to be processed. The organic film forming material supply unit 4 and the inorganic film forming material supply unit 5 are provided on the substrate G to be ejected with the organic film forming material and the inorganic film forming material supply unit 5. It is arranged so that it overlaps.
 図11は、有機成膜材料供給部4及び無機成膜材料供給部5の噴出孔の配置を概念的に示した説明図である。有機成膜材料供給部4は、無機成膜材料供給部5から無機成膜材料が噴射される領域の外側に配されている。該領域は、無機成膜材料供給部5から無機成膜材料を噴出するための無機成膜材料噴出孔51aを含む平面の下方、即ち、被処理基板G側である。図11中、二点鎖線で示した直線よりも下側の領域は、無機成膜材料供給部5から無機成膜材料が噴射される領域を示している。有機成膜材料供給部4は、前記二点鎖線で示した直線よりも上側に配されている。 FIG. 11 is an explanatory view conceptually showing the arrangement of the ejection holes of the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5. The organic film forming material supply unit 4 is disposed outside the region where the inorganic film forming material supply unit 5 ejects the inorganic film forming material. The region is below the plane including the inorganic film forming material ejection holes 51a for ejecting the inorganic film forming material from the inorganic film forming material supply unit 5, that is, on the substrate G to be processed. In FIG. 11, a region below the straight line indicated by a two-dot chain line indicates a region where the inorganic film forming material is injected from the inorganic film forming material supply unit 5. The organic film-forming material supply unit 4 is disposed above the straight line indicated by the two-dot chain line.
 有機成膜材料供給部4は、有機成膜材料の蒸気を噴出する有機成膜材料噴出孔41aを有し、外部から有機成膜材料の蒸気が流入する有機成膜材料用筐体41と、前記有機成膜材料用筐体41を加熱する有機成膜材料加熱ヒータ42a,42b,42c,42dと、空気等の熱媒体を通流させる熱媒体通流路43,43とを備え、有機成膜材料加熱ヒータ42a,42b,42c,42d及び熱媒体通流路43,43は、ヒータ固定部材41b,41c,41d,41eによって有機成膜材料用筐体41の内部に埋め込まれている。 The organic film forming material supply unit 4 has an organic film forming material ejection hole 41a through which the vapor of the organic film forming material is jetted, and an organic film forming material casing 41 into which the vapor of the organic film forming material flows from the outside, Organic film forming material heaters 42a, 42b, 42c, 42d for heating the organic film forming material casing 41, and heat medium passages 43, 43 for allowing a heat medium such as air to flow therethrough are provided. The film material heaters 42a, 42b, 42c, 42d and the heat medium passages 43, 43 are embedded in the organic film forming material casing 41 by heater fixing members 41b, 41c, 41d, 41e.
 有機成膜材料用筐体41は、長手方向が紙面に略垂直な略長方形の枠部材を有し、該枠部材の下面略中央部から無機成膜材料供給部5側へ、中空板部材が突出している。中空板部材の先端部には、枠部材及び中空板部材の内部を通流した有機成膜材料を噴出する有機成膜材料噴出孔41aが形成されている。 The housing 41 for organic film-forming material has a substantially rectangular frame member whose longitudinal direction is substantially perpendicular to the paper surface, and a hollow plate member extends from the substantially lower center of the frame member to the inorganic film-forming material supply unit 5 side. It protrudes. An organic film forming material ejection hole 41a for ejecting the organic film forming material flowing through the inside of the frame member and the hollow plate member is formed at the tip of the hollow plate member.
 中空板部材の外面には、有機成膜材料加熱ヒータ42a,42bと、熱媒体通流路43a,43bとを埋め込むための複数の凹部が形成されている。凹部は、例えば、側面視が略円弧状をなしている。有機成膜材料加熱ヒータ42a,42b及び熱媒体通流路43a,43bは、外形がそれぞれ円柱状であり、その外周面には良好な熱伝導性の膜、例えばカーボングラファイト膜が巻かれ、前記複数の凹部に嵌め込まれている。前記凹部に嵌め込まれた有機成膜材料加熱ヒータ42a,42b,…及び熱媒体通流路43a,43bは、ヒータ固定部材41d,41eによって固定されている。ヒータ固定部材41d,41eは、中空板部材の前記外面に対応する板状の部材であり、有機成膜材料加熱ヒータ42a,42b及び熱媒体通流路43a,43bに嵌り込む凹部を有している。該凹部の形状は、中空板部材に形成された凹部と同様、側面視が略半円形である。なお、ヒータ固定部材41d,41eは、有機成膜材料用筐体41に固定されている。 A plurality of concave portions for embedding the organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b are formed on the outer surface of the hollow plate member. The concave portion has, for example, a substantially arc shape in a side view. The organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b are cylindrical in shape, and a good heat conductive film such as a carbon graphite film is wound around the outer peripheral surface thereof. It is inserted into a plurality of recesses. The organic film forming material heaters 42a, 42b,... And the heat medium passages 43a, 43b fitted in the recesses are fixed by heater fixing members 41d, 41e. The heater fixing members 41d and 41e are plate-like members corresponding to the outer surface of the hollow plate member, and have recesses that fit into the organic film forming material heaters 42a and 42b and the heat medium passages 43a and 43b. Yes. The shape of the recess is substantially semicircular when viewed from the side, like the recess formed in the hollow plate member. The heater fixing members 41d and 41e are fixed to the organic film forming material casing 41.
 同様に、枠部材の上面には、他の有機成膜材料加熱ヒータ42c,42dが嵌め込まれており、ヒータ固定部材41b,41cによって、枠部材に固定されている。枠部材の上部の略中央部には、蒸気発生部17にて発生した有機成膜材料の蒸気を有機成膜材料用筐体41へ流入させる有機成膜材料供給管40が接続されている。有機成膜材料供給管40は、例えば、ステンレス製であり、有機成膜材料供給管40の外側若しくは内側表面のいずれか、又は外側及び内側表面は、熱伝導率を向上させるため、銅メッキされている。また、成膜装置は、有機成膜材料供給管40を加熱する供給管加熱ヒータ61,62を備える。 Similarly, other organic film forming material heaters 42c and 42d are fitted on the upper surface of the frame member, and are fixed to the frame member by heater fixing members 41b and 41c. An organic film forming material supply pipe 40 through which the vapor of the organic film forming material generated by the vapor generating unit 17 flows into the organic film forming material casing 41 is connected to a substantially central part of the upper part of the frame member. The organic film forming material supply pipe 40 is made of, for example, stainless steel, and either the outer or inner surface of the organic film forming material supply pipe 40 or the outer and inner surfaces are plated with copper in order to improve thermal conductivity. ing. The film forming apparatus also includes supply pipe heaters 61 and 62 that heat the organic film forming material supply pipe 40.
 無機成膜材料供給部5は、中空の無機成膜材料用筐体51を備える。無機成膜材料筐体は、長手方向が紙面に対して略垂直な中空略筒状をなし、下部が有機成膜材料供給部4側へ突出している。突出している部分の下面部には、長手方向両端部に沿って一様に複数の無機成膜材料噴出孔51aが形成されている。また、無機成膜材料用筐体51の内部には、電子注入層の材料である無機成膜材料、例えばアルカリ金属が装入される容器が加熱装置54によって支持されている。容器は、無機成膜材料の蒸気を無機成膜材料用筐体51の内部へ送出するための開口57aを上面に有する非金属製角皿状をなしている。 The inorganic film forming material supply section 5 includes a hollow inorganic film forming material casing 51. The inorganic film-forming material casing has a substantially hollow cylindrical shape whose longitudinal direction is substantially perpendicular to the paper surface, and the lower part projects toward the organic film-forming material supply unit 4 side. A plurality of inorganic film-forming material ejection holes 51a are formed uniformly along the both ends in the longitudinal direction on the lower surface of the protruding portion. Further, inside the inorganic film forming material casing 51, a container in which an inorganic film forming material as an electron injection layer material, for example, an alkali metal is charged, is supported by the heating device 54. The container has a non-metallic square dish shape having an opening 57a on the upper surface for sending vapor of the inorganic film forming material into the inorganic film forming material casing 51.
 図12は、加熱装置54の側面図、図13は、加熱装置54の正面図、図14は、図13のXIV-XIV線断面図、図15は、図12のXV-XV線断面図である。加熱装置54は、該加熱装置54の下側を構成する第1半体54aと、加熱装置54の上側を構成する第2半体54bとを有し、第2半体54bの上面には、容器が嵌り込む溝部が形成されている。第1及び第2半体54a,54bは金属製である。 12 is a side view of the heating device 54, FIG. 13 is a front view of the heating device 54, FIG. 14 is a sectional view taken along the line XIV-XIV in FIG. 13, and FIG. 15 is a sectional view taken along the line XV-XV in FIG. is there. The heating device 54 has a first half 54a constituting the lower side of the heating device 54 and a second half 54b constituting the upper side of the heating device 54. On the upper surface of the second half 54b, A groove portion into which the container is fitted is formed. The first and second halves 54a and 54b are made of metal.
 第1半体54aの上面には、第1ヒータ55a,55bと、第1熱媒体通流路56とを埋め込むための複数の凹部が形成されている。凹部は、例えば、側面視が略円弧状をなしている。第1ヒータ55a,55b及び第1熱媒体通流路56は、外形がそれぞれ円柱状であり、その外周面には良好な熱伝導性の膜55c,55d,56a、例えばカーボングラファイト膜が巻かれ、前記複数の凹部に嵌め込まれている。前記凹部に嵌め込まれた第1ヒータ55a,55b及び第1熱媒体通流路56は、第2半体54bによって挟み込まれるようにして固定されている。第2半体54bは、第1半体54aに対応する板状の部材であり、第1ヒータ55a,55b及び第1熱媒体通流路56に嵌り込む凹部を有している。該凹部の形状は、中空板部材に形成された凹部と同様、側面視が略半円形である。なお、第1及び第2半体54a,54bは全周溶接されている。第1熱媒体通流路56の両端部は、図示しない空冷装置に接続されており、該空冷装置は、第1熱媒体通流路56b,56cに空気を通流させている。 A plurality of recesses for embedding the first heaters 55a and 55b and the first heat medium flow path 56 are formed on the upper surface of the first half 54a. The concave portion has, for example, a substantially arc shape in a side view. The outer shapes of the first heaters 55a and 55b and the first heat medium flow passage 56 are cylindrical, and good heat conductive films 55c, 55d, and 56a, for example, carbon graphite films are wound around the outer peripheral surfaces thereof. Are fitted into the plurality of recesses. The first heaters 55a and 55b and the first heat medium flow path 56 fitted in the recess are fixed so as to be sandwiched by the second half 54b. The second half 54 b is a plate-like member corresponding to the first half 54 a and has a recess that fits into the first heaters 55 a and 55 b and the first heat medium flow path 56. The shape of the recess is substantially semicircular when viewed from the side, like the recess formed in the hollow plate member. The first and second halves 54a and 54b are welded all around. Both ends of the first heat medium flow channel 56 are connected to an air cooling device (not shown), and the air cooling device allows air to flow through the first heat medium flow channels 56b and 56c.
 また、無機成膜材料用筐体51の外周面には、第2ヒータ52a,52b,52c,52d,52e,52fと、第2熱媒体通流路53a,53b,53cとを嵌め込むための複数の凹部が形成され、該凹部に第2ヒータ52a,52b,52c,52d,52e,52f及び第2熱媒体通流路53a,53b,53cが嵌め込まれている。そして、第2ヒータ52a,52b,52c,52d,52e,52f及び第2熱媒体通流路53a,53b,53cは、ヒータ固定部材51b,51c,51dによって、無機成膜材料用筐体51に埋め込まれるように固定される。第2熱媒体通流路53a,53b,53cの両端部は、図示しない空冷装置に接続されており、該空冷装置は、第2熱媒体通流路53a,53b,53cに空気を通流させている。なお、前記空冷装置は、例えば、空気を通流させる方向を周期的に切り換えるように構成されている。空気を周期的に切り換えることによって、無機成膜材料用筐体51の一端部と、他端部との間で温度差が発生することを防止し、容器57の長手方向における熱均一性を向上させることが可能になる。 Further, the second heaters 52a, 52b, 52c, 52d, 52e, and 52f and the second heat medium flow channels 53a, 53b, and 53c are fitted into the outer peripheral surface of the inorganic film forming material casing 51. A plurality of recesses are formed, and the second heaters 52a, 52b, 52c, 52d, 52e, 52f and the second heat medium passages 53a, 53b, 53c are fitted into the recesses. The second heaters 52a, 52b, 52c, 52d, 52e, 52f and the second heat medium passages 53a, 53b, 53c are connected to the inorganic film forming material casing 51 by the heater fixing members 51b, 51c, 51d. Fixed to be embedded. Both ends of the second heat medium passages 53a, 53b, 53c are connected to an air cooling device (not shown), and the air cooling device allows air to flow through the second heat medium passages 53a, 53b, 53c. ing. In addition, the said air cooling apparatus is comprised so that the direction which lets air flow through may be switched periodically. By periodically switching the air, it is possible to prevent a temperature difference from occurring between one end and the other end of the inorganic film forming material casing 51 and improve the thermal uniformity in the longitudinal direction of the container 57. It becomes possible to make it.
 図16は、無機成膜材料噴出孔51aの配設例を示した模式図である。無機成膜材料噴出孔51aは、例えば、図16に示すように千鳥配置されている。なお、言うまでもなく、無機成膜材料噴出孔51aの配置は、一例である。 FIG. 16 is a schematic view showing an arrangement example of the inorganic film forming material ejection holes 51a. The inorganic film forming material ejection holes 51a are arranged in a staggered manner as shown in FIG. 16, for example. Needless to say, the arrangement of the inorganic film forming material ejection holes 51a is only an example.
 成膜ヘッド202は、有機成膜材料供給部4及び無機成膜材料供給部5から被処理基板Gへ放射される熱を遮断する有機材料供給部用の遮熱板71と、無機成膜材料供給部5用の遮熱板72を有する。また、成膜ヘッド202は、有機成膜材料供給部4と、無機成膜材料供給部5とを隔て、有機成膜材料供給部4と、無機成膜材料供給部5との間で放射される熱を遮断する遮熱板8を有する。遮熱板8は、空冷用の熱媒体通流路8aを内部に有する。 The film forming head 202 includes an organic film forming material supply unit 4 and an inorganic film forming material supply unit 5, a heat shield plate 71 for an organic material supply unit that blocks heat radiated from the substrate G, and an inorganic film forming material. A heat shield plate 72 for the supply unit 5 is provided. The film formation head 202 is radiated between the organic film formation material supply unit 4 and the inorganic film formation material supply unit 5 with the organic film formation material supply unit 4 and the inorganic film formation material supply unit 5 separated from each other. It has a heat shield plate 8 that shields heat. The heat shield 8 has a heat medium passage 8a for air cooling inside.
 図17は、成膜ヘッド202の動作を制御する制御装置59の一構成例を示したブロック図である。制御装置59は、CPU(Central Processing Unit)等の制御部59aを有する。制御部59aには、バスを介して、少なくとも、成膜ヘッド202の第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fの動作を制御するためのコンピュータプログラムを記憶したROM59bと、一時記憶用のRAM59cと、キーボード、マウス等の入力装置59dと、表示装置等の出力装置59eと、第1ヒータ55a,55bと、第2ヒータ52a,52b,52c,52d,52e,52fと、第1温度検出部59fと、第2温度検出部59gとが接続されている。第1温度検出部59fは、第1ヒータ55a,55bの周辺の温度、例えば加熱装置54の第1半体54aの温度を検出し、検出した温度を制御部59aに与える。第2温度検出部59gは、第2ヒータ52a,52b,52c,52d,52e,52fの周辺の温度、例えば、無機成膜材料用筐体51の温度を検出し、検出した温度を制御部59aに与える。なお、厳密には、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fは、I/Oポートに接続された電源回路を介してバスに接続されているが、I/Oポート及び電源回路は図示されていない。制御部59aは、無機成膜材料供給部5の温度を特定の目標温度に到達するよう、第1及び第2温度検出部59f,59gの検出結果に基づいて、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fへの給電を制御する。なお、図17では、作図の便宜上、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fをそれぞれ1つのブロックで表している。 FIG. 17 is a block diagram showing a configuration example of the control device 59 that controls the operation of the film forming head 202. The control device 59 has a control unit 59a such as a CPU (Central Processing Unit). The controller 59a stores at least a computer program for controlling the operations of the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f of the film forming head 202 via the bus. ROM 59b, RAM 59c for temporary storage, input device 59d such as a keyboard and mouse, output device 59e such as a display device, first heaters 55a and 55b, and second heaters 52a, 52b, 52c, 52d and 52e. , 52f, the first temperature detection unit 59f, and the second temperature detection unit 59g are connected. The first temperature detection unit 59f detects the temperature around the first heaters 55a and 55b, for example, the temperature of the first half 54a of the heating device 54, and gives the detected temperature to the control unit 59a. The second temperature detector 59g detects the temperature around the second heaters 52a, 52b, 52c, 52d, 52e, and 52f, for example, the temperature of the inorganic film forming material casing 51, and the detected temperature is controlled by the controller 59a. To give. Strictly speaking, the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f are connected to the bus via a power supply circuit connected to the I / O port. I / O ports and power supply circuits are not shown. Based on the detection results of the first and second temperature detectors 59f and 59g, the controller 59a controls the first and second heaters 55a and 55g so that the temperature of the inorganic film forming material supplier 5 reaches a specific target temperature. The power supply to 55b, 52a, 52b, 52c, 52d, 52e, and 52f is controlled. In FIG. 17, for convenience of drawing, the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f are each represented by one block.
 図18は、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fへの給電に係る制御の処理手順を示すフローチャート、図19は、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fへの給電と、容器57の温度変化を示したタイミングチャートである。まず、制御部59aは、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fをオン状態にする(ステップS11)。具体的には、制御部59aは、電源回路へ制御信号を与えることによって、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fへの給電を開始させる。そして、制御部59aは、第1及び第2温度検出部59f,59gを用いて、第1ヒータ55a,55bの周辺温度T1が、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2以下であるか否かを判定する(ステップS12)。第1ヒータ55a,55bの周辺温度T1が、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2以下で無いと判定した場合(ステップS12:NO)、制御部59aは、第1ヒータ55a,55bの出力を低下させ、又は第2ヒータ52a,52b,52c,52d,52e,52fの出力を増大させる(ステップS13)。ステップS12,13の処理は、無機成膜材料の蒸気が無機成膜材料用筐体51の内壁で凝縮し、付着することを防止するための処理である。従ってまた、無機成膜材料の蒸気が発生しない所定温度未満の段階では、ステップS12,13の処理を必ずしも実行する必要は無く、無機成膜材料の温度が所定温度に到達するまでに、上述の温度関係になるようになっていれば良い。第1ヒータ55a,55bの周辺温度T1が、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2以下であると判定した場合(ステップS12:YES)、またはステップS13の処理を終えた場合、制御部59aは、第1温度検出部59fを用いて、第1ヒータ55a,55bの周辺温度T1が、第1温度以上であるか否かを判定する(ステップS14)。第1温度は、特定の目標温度よりも低い温度である。例えば、目標温度が500度である場合、第1温度を400度~450度に設定する。なお、第1温度は、実験によって特定した所定の温度であっても良いし、入力された目標温度に基づいて算出される温度であっても良い。第1ヒータ55a,55bの周辺温度T1が、第1温度未満であると判定した場合(ステップS14:NO)、制御部59aは、再び、ステップS14の処理を実行する。 FIG. 18 is a flowchart showing a processing procedure of control related to power supply to the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f. FIG. 19 shows the first and second heaters 55a, 55a, 55 is a timing chart showing power supply to 55b, 52a, 52b, 52c, 52d, 52e, and 52f and a temperature change of the container 57. First, the control unit 59a turns on the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f (step S11). Specifically, the control unit 59a starts power feeding to the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f by giving a control signal to the power supply circuit. Then, the control unit 59a uses the first and second temperature detection units 59f and 59g to change the ambient temperature T1 of the first heaters 55a and 55b to the vicinity of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f. It is determined whether or not the temperature is equal to or lower than T2 (step S12). When it is determined that the ambient temperature T1 of the first heaters 55a and 55b is not lower than the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f (step S12: NO), the control unit 59a The output of 1 heater 55a, 55b is reduced, or the output of 2nd heater 52a, 52b, 52c, 52d, 52e, 52f is increased (step S13). The processing in steps S12 and S13 is processing for preventing the vapor of the inorganic film forming material from condensing and adhering on the inner wall of the inorganic film forming material casing 51. Therefore, at the stage below the predetermined temperature at which the vapor of the inorganic film forming material is not generated, it is not always necessary to execute the processes of Steps S12 and S13, and until the temperature of the inorganic film forming material reaches the predetermined temperature, It only needs to be temperature related. When it is determined that the ambient temperature T1 of the first heaters 55a and 55b is equal to or lower than the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f (step S12: YES), or the process of step S13 is performed. When finished, the control unit 59a determines whether or not the ambient temperature T1 of the first heaters 55a and 55b is equal to or higher than the first temperature using the first temperature detection unit 59f (step S14). The first temperature is a temperature lower than a specific target temperature. For example, when the target temperature is 500 degrees, the first temperature is set to 400 degrees to 450 degrees. The first temperature may be a predetermined temperature specified by an experiment, or may be a temperature calculated based on an input target temperature. When it determines with ambient temperature T1 of 1st heater 55a, 55b being less than 1st temperature (step S14: NO), the control part 59a performs the process of step S14 again.
 第1ヒータ55a,55bの周辺温度T1が、第1温度以上であると判定した場合(ステップS14:YES)、制御部59aは、図18に示すように、第1ヒータ55a,55bをオフ状態にする(ステップS15)。具体的には、制御部59aは、電源回路へ制御信号を与えることによって、第1ヒータ55a,55bへの給電を停止させる。次いで、制御部59aは、第2温度検出部59gを用いて、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2が、第2温度以上であるか否かを判定する(ステップS16)。第2温度は、特定の目標温度よりも高い温度であり、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2が第2温度に達した時に第2ヒータ52a,52b,52c,52d,52e,52fへの給電を停止させた場合、第2ヒータ52a,52b,52c,52d,52e,52fの周辺から放射された熱によって、容器57及び無機成膜材料の温度が丁度目標温度に到達するような温度である。第2温度は、実験などで決定される所定の温度であっても良いし、入力された目標温度に基づいて算出される温度であっても良い。例えば、目標温度が500度である場合、第2温度として520度を設定する。第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2が、第2温度未満であると判定した場合(ステップS16:NO)、制御部59aは、再び、ステップS16の処理を実行する。第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2が第2温度以上であると判定した場合(ステップS16:YES)、制御部59aは、図18に示すように、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2をPID制御し(ステップS17)、成膜処理を終えた場合、処理を終える。具体的には、制御部59aは、第1及び第2温度検出部59f,59gで検出される温度を監視し、各温度が目標温度に一致するように、電源回路へ制御信号を与えることによって、第2ヒータ52a,52b,52c,52d,52e,52fへの給電を制御する。より具体的には、制御部59aは、第2ヒータ52a,52b,52c,52d,52e,52fによる加熱を一時停止又は出力を低下させ、周辺温度T2が目標温度未満になった場合、第2ヒータ52a,52b,52c,52d,52e,52fによる加熱を再開又は増大させる。以下、上述の処理を繰り返すことによって、周辺温度T2を目標温度に保っている。なお、無機成膜材料の加熱を停止させる場合も、第1ヒータ55a,55bの周辺温度T1が、第2ヒータ52a,52b,52c,52d,52e,52fの周辺温度T2以下になる条件を保ったまま、容器57及び無機成膜材料の温度を低下させると良い。無機成膜材料の蒸気が無機成膜材料用筐体51の内壁で凝縮し、付着することを防止するためである。従ってまた、無機成膜材料の蒸気が発生しなくなる所定温度未満になった場合、前記条件を維持する必要は無い。 When it is determined that the ambient temperature T1 of the first heaters 55a and 55b is equal to or higher than the first temperature (step S14: YES), the control unit 59a turns off the first heaters 55a and 55b as shown in FIG. (Step S15). Specifically, the control unit 59a stops power supply to the first heaters 55a and 55b by giving a control signal to the power supply circuit. Next, the control unit 59a determines whether or not the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is equal to or higher than the second temperature using the second temperature detection unit 59g ( Step S16). The second temperature is higher than a specific target temperature, and when the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, 52f reaches the second temperature, the second heaters 52a, 52b, 52c. , 52d, 52e, and 52f, the temperature of the container 57 and the inorganic film-forming material is just set to the target by the heat radiated from the periphery of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f. It is a temperature that reaches the temperature. The second temperature may be a predetermined temperature determined by experiment or the like, or may be a temperature calculated based on the input target temperature. For example, when the target temperature is 500 degrees, 520 degrees is set as the second temperature. When it is determined that the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is lower than the second temperature (step S16: NO), the control unit 59a performs the process of step S16 again. To do. When it is determined that the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, 52f is equal to or higher than the second temperature (step S16: YES), the control unit 59a, as shown in FIG. When the ambient temperature T2 of the heaters 52a, 52b, 52c, 52d, 52e, and 52f is PID controlled (step S17) and the film formation process is completed, the process ends. Specifically, the control unit 59a monitors the temperatures detected by the first and second temperature detection units 59f and 59g, and gives a control signal to the power supply circuit so that each temperature matches the target temperature. The power supply to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is controlled. More specifically, the control unit 59a temporarily stops heating by the second heaters 52a, 52b, 52c, 52d, 52e, and 52f or lowers the output, and the second temperature is lower than the target temperature. Heating by the heaters 52a, 52b, 52c, 52d, 52e, 52f is resumed or increased. Hereinafter, the ambient temperature T2 is maintained at the target temperature by repeating the above-described processing. Even when the heating of the inorganic film forming material is stopped, the condition that the ambient temperature T1 of the first heaters 55a and 55b is equal to or lower than the ambient temperature T2 of the second heaters 52a, 52b, 52c, 52d, 52e, and 52f is maintained. The temperature of the container 57 and the inorganic film-forming material may be lowered while remaining. This is to prevent the vapor of the inorganic film forming material from condensing and adhering on the inner wall of the inorganic film forming material casing 51. Therefore, it is not necessary to maintain the above condition when the temperature is lower than a predetermined temperature at which the vapor of the inorganic film forming material is not generated.
 上述の処理によって、長手方向を有する容器57を均一に目標温度まで加熱することが可能になる。つまり、容器57の長手方向における温度均一性を向上させることができる。
 なお、容器57の温度を目標温度に保持するための処理は特に限定されない。例えば、第2ヒータ52a,52b,52c,52d,52e,52fへ間欠的に給電しても良いし、第2温度検出部59gにて検出した温度が目標温度、又は目標温度によって決定される所定の温度未満になった場合、一定時間、第2ヒータ52a,52b,52c,52d,52e,52fへ給電するようにしても良い。また、第2ヒータ52a,52b,52c,52d,52e,52fへの給電量を変更させることによって、容器57の温度を制御しても良い。
By the above-described processing, the container 57 having the longitudinal direction can be uniformly heated to the target temperature. That is, the temperature uniformity in the longitudinal direction of the container 57 can be improved.
In addition, the process for maintaining the temperature of the container 57 at the target temperature is not particularly limited. For example, power may be intermittently supplied to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f, or the temperature detected by the second temperature detection unit 59g is determined by the target temperature or the target temperature. When the temperature is lower than the temperature, the power may be supplied to the second heaters 52a, 52b, 52c, 52d, 52e, and 52f for a certain period of time. Moreover, you may control the temperature of the container 57 by changing the electric power feeding amount to 2nd heater 52a, 52b, 52c, 52d, 52e, 52f.
 変形例2に係る成膜装置及び成膜ヘッド202によれば、遮熱板71,72を有しているため、有機成膜材料供給部4及び無機成膜材料供給部5から被処理基板Gへ放射される放射熱によって成膜条件が悪化することを防止することができる。例えば、パターンマスクが熱膨張することによって、成膜パターンの位置ずれが発生することを防止することが可能である。また、成膜される有機膜に熱ダメージを与えることも抑制される。 According to the film forming apparatus and the film forming head 202 according to the modified example 2, since the heat shielding plates 71 and 72 are provided, the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5 supply the substrate G to be processed. It is possible to prevent the film formation conditions from being deteriorated by the radiant heat radiated to the surface. For example, it is possible to prevent the film pattern from being displaced due to thermal expansion of the pattern mask. Further, it is possible to suppress heat damage to the organic film to be formed.
 また、有機成膜材料供給部4と、無機成膜材料供給部5とを隔てる遮熱板8を備えることによって、無機成膜材料供給部5から放射される熱によって、有機成膜材料供給部が異常に加熱され、有機成膜材料が焼失することを防止することができる。 In addition, by providing a heat shield 8 that separates the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5, the organic film forming material supply unit is heated by the heat radiated from the inorganic film forming material supply unit 5. Can be prevented from being abnormally heated and the organic film forming material burned out.
 更に、有機成膜材料供給部4は、無機成膜材料供給部5に比べて低温であるところ、有機成膜材料供給部4は、無機成膜材料供給部5から無機成膜材料が噴射される領域の外側に配されているため、無機成膜材料供給部5から噴射された無機成膜材料が有機成膜材料供給部4に凝縮し、付着することを防止することができる。なお、無機成膜材料供給部5は高温であるため、有機成膜材料供給部4から噴射された有機成膜材料が無機成膜材料供給部5に付着することは無い。単に有機成膜材料供給部4及び無機成膜材料供給部5を並設した場合、有機成膜材料供給部4に無機成膜材料が付着し、コンタミネーションの問題が発生するおそれがあるが、本実施の形態によれば、有機成膜材料供給部4及び無機成膜材料供給部5のいずれにも有機成膜材料及び無機成膜材料が付着することを防止することができる。 Further, the organic film forming material supply unit 4 is at a lower temperature than the inorganic film forming material supply unit 5, and the organic film forming material supply unit 4 ejects the inorganic film forming material from the inorganic film forming material supply unit 5. Therefore, the inorganic film forming material sprayed from the inorganic film forming material supply unit 5 can be prevented from condensing and adhering to the organic film forming material supply unit 4. Since the inorganic film forming material supply unit 5 is at a high temperature, the organic film forming material injected from the organic film forming material supply unit 4 does not adhere to the inorganic film forming material supply unit 5. When the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5 are simply arranged in parallel, the inorganic film forming material adheres to the organic film forming material supply unit 4 and may cause a contamination problem. According to the present embodiment, it is possible to prevent the organic film forming material and the inorganic film forming material from adhering to both the organic film forming material supply unit 4 and the inorganic film forming material supply unit 5.
 更に、第1及び第2ヒータ55a,55b,52a,52b,52c,52d,52e,52fを無機成膜材料用筐体51及び加熱装置54に埋め込むことによって、温度制御の応答性を向上させ、容器57の温度をより精度良く制御することができる。 Furthermore, by embedding the first and second heaters 55a, 55b, 52a, 52b, 52c, 52d, 52e, and 52f in the inorganic film forming material casing 51 and the heating device 54, the responsiveness of the temperature control is improved. The temperature of the container 57 can be controlled with higher accuracy.
 更にまた、加熱装置54の温度を、目標温度より低い第1温度まで加熱し、次いで、無機成膜材料用筐体51を目標温度より高い第2温度まで加熱することによって、容器57を囲む均一な放射熱により、容器57を均一に目標温度まで加熱し、容器57の長手方向における熱分布を均一にすることができる。 Furthermore, the temperature of the heating device 54 is heated to a first temperature lower than the target temperature, and then the inorganic film forming material casing 51 is heated to a second temperature higher than the target temperature, thereby uniformly surrounding the container 57. The radiant heat can uniformly heat the container 57 to the target temperature and make the heat distribution in the longitudinal direction of the container 57 uniform.
 更にまた、第1熱媒体通流路56及び第2熱媒体通流路53a,53b,53cに熱媒体を通流させる方向を周期的に切り替えることによって、無機成膜材料用筐体51及び加熱装置54を均一に冷却することができる。つまり、無機成膜材料用筐体51及び加熱装置54、並びに容器57の長手方向における温度均一性を向上させることができる。 Furthermore, by periodically switching the direction in which the heat medium flows through the first heat medium flow path 56 and the second heat medium flow paths 53a, 53b, 53c, the inorganic film forming material casing 51 and the heating The device 54 can be cooled uniformly. That is, temperature uniformity in the longitudinal direction of the inorganic film forming material casing 51, the heating device 54, and the container 57 can be improved.
(変形例3)
  変形例3に係る成膜装置は、遮熱板371,372の構成のみが変形例2と異なるため、以下では主に、成膜ヘッド302について説明する。図20は、変形例3に係る成膜ヘッド302の側断面図である。変形例3に係る遮熱板371,372は、それぞれ、空冷用の遮熱板用熱媒体通流路371a,372aを内部に有する。
(Modification 3)
Since the film forming apparatus according to Modification 3 is different from Modification 2 only in the configuration of the heat shield plates 371 and 372, the film forming head 302 will be mainly described below. FIG. 20 is a sectional side view of the film forming head 302 according to the third modification. The heat shield plates 371 and 372 according to the modification 3 respectively have heat shield plate heat medium passages 371a and 372a for air cooling.
 変形例3に係る成膜装置及び成膜ヘッド302によれば、遮熱板用熱媒体通流路371a,372aが内部に形成された遮熱板371,372を有するため、有機成膜材料供給部4及び無機成膜材料供給部5から被処理基板Gへ放射される放射熱によって成膜条件が悪化することをより効果的に防止することができる。 According to the film forming apparatus and the film forming head 302 according to the modified example 3, the heat shield plate heat medium passages 371a and 372a have the heat shield plates 371 and 372 formed therein, so that the organic film forming material is supplied. It is possible to more effectively prevent the film forming conditions from being deteriorated by the radiant heat radiated from the unit 4 and the inorganic film forming material supply unit 5 to the substrate G to be processed.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 成膜装置
 2 成膜ヘッド
 3 有機EL素子
 11 処理室
 12 搬送装置
 13 蒸着ヘッド
 14 排気管
 15 真空ポンプ
 16 配管
 17 蒸気発生部
 21 筐体
 22 有機成膜材料供給部
 22b 有機成膜材料供給管
 22a 流入室
 22c 有機成膜材料噴出孔
 23 混合室
 23c 開口部
 24 無機成膜材料供給部
 24b 無機成膜材料噴出孔
 25a,25b 給電部材
 27a,27b,27c,27d ヒータ
 28a 熱媒体通流路
 G 被処理基板
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2 Film-forming head 3 Organic EL element 11 Processing chamber 12 Transfer apparatus 13 Evaporation head 14 Exhaust pipe 15 Vacuum pump 16 Pipe 17 Steam generation part 21 Case 22 Organic film-forming material supply part 22b Organic film-forming material supply pipe 22a Inflow chamber 22c Organic film forming material ejection hole 23 Mixing chamber 23c Opening 24 Inorganic film forming material supply section 24b Inorganic film forming material ejection hole 25a, 25b Power supply member 27a, 27b, 27c, 27d Heater 28a Heat medium flow path G Substrate to be processed

Claims (26)

  1.  被処理基板を収容する処理室と、該処理室の外部に設けられており、有機成膜材料の蒸気を発生させる蒸気発生部と、該蒸気発生部で発生させた有機成膜材料の蒸気を該被処理基板へ向けて噴出する有機成膜材料供給部とを備える成膜装置において、
     無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部を備え、
     前記有機成膜材料供給部及び無機成膜材料供給部は、
     前記有機成膜材料及び無機成膜材料の被噴出箇所が前記被処理基板上で重複するように配されていることを特徴とする成膜装置。
    A processing chamber that accommodates a substrate to be processed, a vapor generating unit that generates vapor of the organic film forming material, and a vapor of the organic film forming material generated in the vapor generating unit are provided outside the processing chamber. In a film forming apparatus including an organic film forming material supply unit that ejects toward the substrate to be processed,
    An inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed;
    The organic film forming material supply unit and the inorganic film forming material supply unit are:
    A film forming apparatus, wherein the portions to be ejected of the organic film forming material and the inorganic film forming material are arranged so as to overlap each other on the substrate to be processed.
  2.  前記有機成膜材料供給部から噴出された有機成膜材料の蒸気と、前記無機成膜材料供給部から噴出された無機成膜材料の蒸気とを混合させる混合室を備え、
     前記混合室は、
     有機成膜材料及び無機成膜材料の混合蒸気を通過させて前記被処理基板へ供給する開口部を有することを特徴とする請求項1に記載の成膜装置。
    A mixing chamber for mixing the vapor of the organic film forming material ejected from the organic film forming material supply unit and the vapor of the inorganic film forming material ejected from the inorganic film forming material supply unit;
    The mixing chamber is
    The film forming apparatus according to claim 1, further comprising an opening through which a mixed vapor of an organic film forming material and an inorganic film forming material is passed and supplied to the substrate to be processed.
  3.  前記開口部は、
     スリット又は一方向に列設された複数の孔部を有する
     ことを特徴とする請求項2に記載の成膜装置。
    The opening is
    The film forming apparatus according to claim 2, further comprising a slit or a plurality of holes arranged in one direction.
  4.  前記有機成膜材料供給部は、
     外部から有機成膜材料の蒸気が流入する流入室と、
     該流入室に流入した蒸気を噴出する複数の有機成膜材料噴出孔と
     を備え、
     前記無機成膜材料供給部は、
     無機成膜材料の蒸気を噴出する複数の無機成膜材料噴出孔を備え、
     前記有機成膜材料噴出孔及び無機成膜材料噴出孔は、前記スリットの長手方向又は前記一方向と略同一方向に並設されている
     ことを特徴とする請求項3に記載の成膜装置。
    The organic film forming material supply unit
    An inflow chamber into which the vapor of the organic film forming material flows from the outside;
    A plurality of organic film-forming material ejection holes for ejecting the vapor flowing into the inflow chamber,
    The inorganic film forming material supply unit
    Provided with a plurality of inorganic film forming material ejection holes for ejecting vapor of inorganic film forming material,
    The film-forming apparatus according to claim 3, wherein the organic film-forming material ejection holes and the inorganic film-forming material ejection holes are juxtaposed in the longitudinal direction of the slit or in substantially the same direction as the one direction.
  5.  前記有機成膜材料供給部の温度を保持する保持手段を備える
     ことを特徴とする請求項1乃至請求項4のいずれか一つに記載の成膜装置。
    The film forming apparatus according to claim 1, further comprising a holding unit configured to hold a temperature of the organic film forming material supply unit.
  6.  前記保持手段は、
     熱媒体を通流させる熱媒体通流路及び/又はヒータを備える
     ことを特徴とする請求項5に記載の成膜装置。
    The holding means is
    The film forming apparatus according to claim 5, further comprising a heat medium flow path and / or a heater through which the heat medium flows.
  7.  前記無機成膜材料供給部は、
     無機成膜材料が装入される容器と、
     該容器を加熱する第1ヒータと、
     前記容器を収容しており、前記無機成膜材料の蒸気を噴出する無機成膜材料噴出孔を有する無機成膜材料用筐体と、
     該無機成膜材料用筐体を加熱する第2ヒータと
     を備えることを特徴とする請求項1に記載の成膜装置。
    The inorganic film forming material supply unit
    A container in which an inorganic film forming material is charged;
    A first heater for heating the container;
    A housing for an inorganic film forming material containing the container and having an inorganic film forming material ejection hole for ejecting vapor of the inorganic film forming material;
    The film forming apparatus according to claim 1, further comprising: a second heater that heats the housing for the inorganic film forming material.
  8.  前記容器の温度を検出する第1温度検出部と、
     前記無機成膜材料用筐体の温度を検出する第2温度検出部と、
     前記第1及び第2ヒータに給電する給電部と、
     前記第1温度検出部にて検出した温度が第1温度以上である場合、前記第1ヒータへの給電を停止させ、前記第2温度検出部にて検出した温度が第2温度以上である場合、前記第2ヒータへの給電を一時停止させ又は給電量を低下させるように、前記給電部による給電を制御する制御部と
     を備えることを特徴とする請求項7に記載の成膜装置。
    A first temperature detector for detecting the temperature of the container;
    A second temperature detector for detecting the temperature of the inorganic film-forming material casing;
    A power feeding section for feeding power to the first and second heaters;
    When the temperature detected by the first temperature detection unit is equal to or higher than the first temperature, power supply to the first heater is stopped, and the temperature detected by the second temperature detection unit is equal to or higher than the second temperature. The film forming apparatus according to claim 7, further comprising: a control unit that controls power feeding by the power feeding unit so as to temporarily stop power feeding to the second heater or reduce a power feeding amount.
  9.  前記第2ヒータは、
     前記無機成膜材料用筐体に埋め込まれている
     ことを特徴とする請求項7又は請求項8に記載の成膜装置。
    The second heater is
    The film forming apparatus according to claim 7, wherein the film forming apparatus is embedded in the inorganic film forming material casing.
  10.  前記無機成膜材料用筐体は、
     熱媒体を通流させる熱媒体通流路を内部に備える
     ことを特徴とする請求項7乃至請求項9のいずれか一つに記載の成膜装置。
    The case for the inorganic film forming material is:
    The film forming apparatus according to any one of claims 7 to 9, further comprising a heat medium flow path through which the heat medium flows.
  11.  前記有機成膜材料供給部は、
     有機成膜材料の蒸気を噴出する有機成膜材料噴出孔を有し、外部から有機成膜材料の蒸気が流入する有機成膜材料用筐体と、
     前記有機成膜材料用筐体を加熱する有機成膜材料加熱ヒータと
     を備え、
     前記有機成膜材料加熱ヒータは、
     前記有機成膜材料用筐体に埋め込まれている
     ことを特徴とする請求項7乃至請求項10のいずれか一つに記載の成膜装置。
    The organic film forming material supply unit
    An organic film forming material ejection hole for ejecting organic film forming material vapor, and a housing for organic film forming material into which the organic film forming material vapor flows from the outside,
    An organic film forming material heater for heating the organic film forming material casing,
    The organic film forming material heater is
    The film forming apparatus according to claim 7, wherein the film forming apparatus is embedded in the organic film forming material casing.
  12.  前記有機成膜材料用筐体は、
     熱媒体を通流させる熱媒体通流路を内部に備える
     ことを特徴とする請求項11に記載の成膜装置。
    The organic film-forming material casing is
    The film forming apparatus according to claim 11, further comprising a heat medium flow path through which the heat medium flows.
  13.  前記有機成膜材料供給部は、
     前記無機成膜材料供給部から前記無機成膜材料が噴射される領域の外側に配されている
     ことを特徴とする請求項1乃至請求項12のいずれか一つに記載の成膜装置。
    The organic film forming material supply unit
    The film forming apparatus according to any one of claims 1 to 12, wherein the film forming apparatus is disposed outside a region where the inorganic film forming material is injected from the inorganic film forming material supply unit.
  14.  前記有機成膜材料供給部及び無機成膜材料供給部から前記被処理基板へ放射される熱を遮断する遮熱板を備える
     ことを特徴とする請求項1乃至請求項13のいずれか一つに記載の成膜装置。
    14. A heat shield plate for blocking heat radiated from the organic film forming material supply unit and the inorganic film forming material supply unit to the substrate to be processed is provided. The film-forming apparatus of description.
  15.  被処理基板へ向けて成膜材料の蒸気を供給する成膜ヘッドにおいて、
     有機成膜材料の蒸気を前記被処理基板へ向けて噴出する有機成膜材料供給部と、
     無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部と
     を備え、
     前記有機成膜材料供給部及び無機成膜材料供給部は、
     前記有機成膜材料及び無機成膜材料の被噴出箇所が前記被処理基板上で重複するように配されていることを特徴とする成膜ヘッド。
    In the film formation head that supplies vapor of the film formation material toward the substrate to be processed,
    An organic film forming material supply unit for ejecting vapor of the organic film forming material toward the substrate to be processed;
    An inorganic film forming material supply unit that ejects vapor of the inorganic film forming material toward the substrate to be processed;
    The organic film forming material supply unit and the inorganic film forming material supply unit are:
    A film forming head, wherein the portions to be ejected of the organic film forming material and the inorganic film forming material are arranged so as to overlap each other on the substrate to be processed.
  16.  被処理基板へ向けて成膜材料の蒸気を供給する成膜ヘッドにおいて、
     有機成膜材料の蒸気を前記被処理基板へ向けて噴出する有機成膜材料供給部と、
     無機成膜材料の蒸気を前記被処理基板へ向けて噴出する無機成膜材料供給部と、
     前記有機成膜材料供給部から噴出された有機成膜材料の蒸気と、前記無機成膜材料供給部から噴出された無機成膜材料の蒸気とを混合させる混合室と
     を備え、
     前記混合室は、
     有機成膜材料及び無機成膜材料の混合蒸気を通過させて前記被処理基板へ供給する開口部を有する
     ことを特徴とする成膜ヘッド。
    In the film formation head that supplies vapor of the film formation material toward the substrate to be processed,
    An organic film forming material supply unit for ejecting vapor of the organic film forming material toward the substrate to be processed;
    An inorganic film forming material supply unit for ejecting vapor of the inorganic film forming material toward the substrate to be processed;
    A mixing chamber for mixing the vapor of the organic film forming material ejected from the organic film forming material supply unit and the vapor of the inorganic film forming material ejected from the inorganic film forming material supply unit,
    The mixing chamber is
    A film-forming head comprising: an opening through which a mixed vapor of an organic film-forming material and an inorganic film-forming material is passed and supplied to the substrate to be processed.
  17.  前記開口部は、
     スリット又は一方向に列設された複数の孔部を有する
     ことを特徴とする請求項16に記載の成膜ヘッド。
    The opening is
    The film forming head according to claim 16, comprising a slit or a plurality of holes arranged in one direction.
  18.  前記無機成膜材料供給部は、
     無機成膜材料が装入される容器と、
     該容器を加熱する第1ヒータと、
     前記容器を収容しており、前記無機成膜材料の蒸気を噴出する無機成膜材料噴出孔を有する無機成膜材料用筐体と、
     該無機成膜材料用筐体を加熱する第2ヒータと
     を備えることを特徴とする請求項15に記載の成膜ヘッド。
    The inorganic film forming material supply unit
    A container in which an inorganic film forming material is charged;
    A first heater for heating the container;
    A housing for an inorganic film forming material containing the container and having an inorganic film forming material ejection hole for ejecting vapor of the inorganic film forming material;
    The film forming head according to claim 15, further comprising: a second heater that heats the inorganic film forming material casing.
  19.  前記容器の温度を検出する第1温度検出部と、
     前記無機成膜材料用筐体の温度を検出する第2温度検出部と、
     前記第1及び第2ヒータに給電する給電部と、
     前記第1温度検出部にて検出した温度が第1温度以上である場合、前記第1ヒータへの給電を停止させ、前記第2温度検出部にて検出した温度が第2温度以上である場合、前記第2ヒータへの給電を一時停止又は給電量を低下させるように、前記給電部による給電を制御する制御部と
     を備えることを特徴とする請求項18記載の成膜ヘッド。
    A first temperature detector for detecting the temperature of the container;
    A second temperature detector for detecting the temperature of the inorganic film-forming material casing;
    A power feeding section for feeding power to the first and second heaters;
    When the temperature detected by the first temperature detection unit is equal to or higher than the first temperature, power supply to the first heater is stopped, and the temperature detected by the second temperature detection unit is equal to or higher than the second temperature. The film forming head according to claim 18, further comprising: a control unit that controls power supply by the power supply unit so as to temporarily stop power supply to the second heater or reduce a power supply amount.
  20.  前記第2ヒータは、
     前記無機成膜材料用筐体に埋め込まれている
     ことを特徴とする請求項18又は請求項19に記載の成膜ヘッド。
    The second heater is
    The film formation head according to claim 18 or 19, wherein the film formation head is embedded in the inorganic film formation material casing.
  21.  前記無機成膜材料用筐体は、
     熱媒体を通流させる熱媒体通流路を内部に備える
     ことを特徴とする請求項18乃至請求項20のいずれか一つに記載の成膜ヘッド。
    The case for the inorganic film forming material is:
    The film formation head according to any one of claims 18 to 20, further comprising a heat medium flow path through which the heat medium flows.
  22.  前記有機成膜材料供給部は、
     有機成膜材料の蒸気を噴出する有機成膜材料噴出孔を有し、外部から有機成膜材料の蒸気が流入する有機成膜材料用筐体と、
     前記有機成膜材料用筐体を加熱する有機成膜材料加熱ヒータと
     を備え、
     前記有機成膜材料加熱ヒータは、
     前記有機成膜材料用筐体に埋め込まれている
     ことを特徴とする請求項18乃至請求項21のいずれか一つに記載の成膜ヘッド。
    The organic film forming material supply unit
    An organic film forming material ejection hole for ejecting organic film forming material vapor, and a housing for organic film forming material into which the organic film forming material vapor flows from the outside,
    An organic film forming material heater for heating the organic film forming material casing,
    The organic film forming material heater is
    The film forming head according to claim 18, wherein the film forming head is embedded in the organic film forming material casing.
  23.  前記有機成膜材料用筐体は、
     熱媒体を通流させる熱媒体通流路を内部に備える
     ことを特徴とする請求項22に記載の成膜ヘッド。
    The organic film-forming material casing is
    The film formation head according to claim 22, further comprising a heat medium flow path through which the heat medium flows.
  24.  前記有機成膜材料供給部は、
     前記無機成膜材料供給部から前記無機成膜材料が噴射される領域の外側に配されている
     ことを特徴とする請求項15乃至請求項23のいずれか一つに記載の成膜ヘッド。
    The organic film forming material supply unit
    The film formation head according to any one of claims 15 to 23, wherein the film formation head is disposed outside a region where the inorganic film formation material is ejected from the inorganic film formation material supply unit.
  25.  前記有機成膜材料供給部及び無機成膜材料供給部から前記被処理基板へ放射される熱を遮断する遮熱板を備える
     ことを特徴とする請求項15乃至請求項24のいずれか一つに記載の成膜ヘッド。
    The heat shielding board which interrupts | blocks the heat | fever radiated | emitted to the said to-be-processed substrate from the said organic film-forming material supply part and an inorganic film-forming material supply part is provided. The film-forming head of description.
  26.  被処理基板を処理室内に収容し、収容された該被処理基板へ向けて成膜材料の蒸気を供給することによって成膜を行う成膜方法において、
     前記処理室の外部で有機成膜材料の蒸気を発生させる工程と、
     前記処理室の外部で発生させた有機成膜材料の蒸気を、前記処理室内に噴出する工程と、
     無機成膜材料の蒸気を、前記有機成膜材料の蒸気及び該無機成膜材料の蒸気が混合され、前記被処理基板へ向けて供給されるよう、前記処理室内に噴出する工程と
     を有することを特徴とする成膜方法。
    In a film forming method for forming a film by storing a substrate to be processed in a processing chamber and supplying vapor of a film forming material toward the stored substrate to be processed.
    Generating a vapor of the organic film forming material outside the processing chamber;
    Ejecting the vapor of the organic film forming material generated outside the processing chamber into the processing chamber;
    Injecting the vapor of the inorganic film forming material into the processing chamber so that the vapor of the organic film forming material and the vapor of the inorganic film forming material are mixed and supplied toward the substrate to be processed. A film forming method characterized by the above.
PCT/JP2010/067136 2009-10-05 2010-09-30 Film-forming device, film-forming head, and film-forming method WO2011043244A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080044833.8A CN102575347B (en) 2009-10-05 2010-09-30 Film-forming device, film-forming head, and film-forming method
JP2011535361A JP5484478B2 (en) 2009-10-05 2010-09-30 Film forming apparatus and film forming head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-231835 2009-10-05
JP2009231835 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043244A1 true WO2011043244A1 (en) 2011-04-14

Family

ID=43856702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067136 WO2011043244A1 (en) 2009-10-05 2010-09-30 Film-forming device, film-forming head, and film-forming method

Country Status (5)

Country Link
JP (1) JP5484478B2 (en)
KR (1) KR20120073272A (en)
CN (1) CN102575347B (en)
TW (1) TW201130182A (en)
WO (1) WO2011043244A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003059922A (en) * 2001-08-08 2003-02-28 National Institute Of Advanced Industrial & Technology Method and apparatus for forming insulation film
JP2006278616A (en) * 2005-03-29 2006-10-12 Furukawa Electric Co Ltd:The Thin film manufacturing apparatus, method of manufacturing the same and thin film laminate
JP2008038225A (en) * 2006-08-09 2008-02-21 Tokyo Electron Ltd Film deposition apparatus, film deposition system, and film deposition method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003217530A1 (en) * 2002-04-01 2003-10-13 Ans Inc Apparatus and method for depositing organic matter of vapor phase
JP3809391B2 (en) * 2002-04-19 2006-08-16 株式会社アルバック Thin film forming equipment
JP2008184666A (en) * 2007-01-30 2008-08-14 Phyzchemix Corp Film deposition system
JP4845782B2 (en) * 2007-03-16 2011-12-28 東京エレクトロン株式会社 Film forming raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003059922A (en) * 2001-08-08 2003-02-28 National Institute Of Advanced Industrial & Technology Method and apparatus for forming insulation film
JP2006278616A (en) * 2005-03-29 2006-10-12 Furukawa Electric Co Ltd:The Thin film manufacturing apparatus, method of manufacturing the same and thin film laminate
JP2008038225A (en) * 2006-08-09 2008-02-21 Tokyo Electron Ltd Film deposition apparatus, film deposition system, and film deposition method

Also Published As

Publication number Publication date
CN102575347B (en) 2014-02-26
JP5484478B2 (en) 2014-05-07
CN102575347A (en) 2012-07-11
TW201130182A (en) 2011-09-01
JPWO2011043244A1 (en) 2013-03-04
KR20120073272A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5417552B2 (en) Vapor deposition particle injection apparatus and vapor deposition apparatus
JP2007332458A (en) Vapor deposition apparatus, and vapor deposition source, and display device manufacturing method
US20140315342A1 (en) Deposition apparatus, deposition method, organic el display, and lighting device
JP2008274322A (en) Vapor deposition apparatus
JP5306993B2 (en) Vapor deposition source unit, vapor deposition apparatus, and temperature control apparatus for vapor deposition source unit
US9845530B2 (en) Mask for vapor deposition apparatus, vapor deposition apparatus, vapor deposition method, and method for producing organic electroluminescence element
KR20160135353A (en) Evaporation source for organic material
JP2008088489A (en) Vapor deposition apparatus
KR20120124889A (en) Thin layers deposition apparatus and linear type evaporator using thereof
KR101113128B1 (en) Method for controlling film forming apparatus, film forming method, film forming apparatus, organic el electronic device and storage medium having program for controlling film forming apparatus stored therein
JP4602054B2 (en) Vapor deposition equipment
US20140014036A1 (en) Deposition particle emitting device, deposition particle emission method, and deposition device
JP2006348337A (en) Vapor deposition film-forming apparatus and vapor deposition source
JP5484478B2 (en) Film forming apparatus and film forming head
WO2012127982A1 (en) Film forming apparatus, film forming method, method for manufacturing organic light emitting element, and organic light emitting element
WO2013122059A1 (en) Film forming apparatus
JP2004220852A (en) Film forming device and manufacturing device of organic el element
JP2003253433A (en) Thin film deposition apparatus
US20100028534A1 (en) Evaporation unit, evaporation method, controller for evaporation unit and the film forming apparatus
KR102222875B1 (en) Evaporation source and Deposition apparatus including the same
US20100000469A1 (en) Deposition apparatus for organic el and evaporating apparatus
JP2004022400A (en) Apparatus and method for forming organic film
JP5511767B2 (en) Vapor deposition equipment
KR20090044049A (en) Gas injection appartus and apparatus for depositing the organic thin film using the same and organic thin filmdeposition method
JP2007005002A (en) Manufacturing method of organic el element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044833.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535361

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127008818

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10821915

Country of ref document: EP

Kind code of ref document: A1