WO2011043240A1 - 発光ダイオード用金属基板、発光ダイオード及びその製造方法 - Google Patents

発光ダイオード用金属基板、発光ダイオード及びその製造方法 Download PDF

Info

Publication number
WO2011043240A1
WO2011043240A1 PCT/JP2010/067069 JP2010067069W WO2011043240A1 WO 2011043240 A1 WO2011043240 A1 WO 2011043240A1 JP 2010067069 W JP2010067069 W JP 2010067069W WO 2011043240 A1 WO2011043240 A1 WO 2011043240A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
metal
emitting diode
substrate
metal substrate
Prior art date
Application number
PCT/JP2010/067069
Other languages
English (en)
French (fr)
Inventor
篤 松村
良一 竹内
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020127010166A priority Critical patent/KR20120057656A/ko
Priority to CN2010800447034A priority patent/CN102576781A/zh
Priority to US13/500,479 priority patent/US20120199873A1/en
Publication of WO2011043240A1 publication Critical patent/WO2011043240A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a metal substrate for a light emitting diode, a light emitting diode, and a method for manufacturing the same.
  • a high-intensity light-emitting diode (an abbreviation: LED) that emits red, orange, yellow, or yellow-green visible light
  • aluminum phosphide gallium, indium (composition formula (Al X Ga 1-X ) Y In 1-1 Y P; 0 ⁇ X ⁇ 1,0 ⁇ compound semiconductor LED having a light emitting layer containing Y ⁇ 1) are also known.
  • Such an LED is generally formed on a substrate material such as gallium arsenide (GaAs) which is optically opaque to light emitted from the light emitting layer and which is not mechanically strong.
  • GaAs gallium arsenide
  • the development of the substrate bonding technology has increased the degree of freedom of the substrate that can be applied as the support layer, and therefore, a number of metal substrates having great advantages in terms of cost, mechanical strength, heat dissipation, etc. have been proposed. .
  • metal substrates compared with semiconductor substrates, ceramic substrates, etc., metal substrates have a problem of quality degradation due to corrosion in response to chemicals used in the manufacturing process. Specifically, there has been a problem that dissolution, discoloration, and corrosion occur due to alkali or acid treatment, resulting in poor characteristics and a decrease in yield.
  • a process of immersing in an alkali or acid for a long time and dissolving the entire gallium arsenide substrate is common.
  • the metal substrate cannot withstand this long chemical treatment.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metal substrate for a light emitting diode having a new structure excellent in chemical resistance that can withstand chemical treatment in a substrate removal process. Another object of the present invention is to provide a light emitting diode having stable characteristics by using this metal substrate. Furthermore, it aims at providing the manufacturing method of the light emitting diode which can manufacture the light emitting diode which has the stable characteristic with a high yield.
  • a metal substrate for a light-emitting diode used for manufacturing a light-emitting diode comprising a metal substrate and a compound semiconductor layer including a light-emitting portion bonded onto the metal substrate via a bonding layer
  • the metal substrate for light emitting diodes comprises a metal plate and a metal protective film that covers at least the upper and lower surfaces of the metal plate.
  • the metal plate has a thermal conductivity of 130 W / m ⁇ K or more and a thermal expansion coefficient within ⁇ 1.5 ppm / K of the thermal expansion coefficient of the light emitting part.
  • the metal protective film includes at least one selected from the group consisting of nickel, chromium, platinum, and gold.
  • Metal substrate for diode (7) The metal substrate for light-emitting diodes according to any one of (1) to (6), and a compound semiconductor layer including a light-emitting portion bonded onto the metal substrate through a bonding layer.
  • the above-mentioned first step includes a step of producing a metal plate by thermocompression bonding a plurality of thin metal plates, and a step of forming a metal protective film by plating on the entire surface of the metal plate.
  • a metal substrate for a light-emitting diode having a new structure excellent in heat dissipation and excellent in chemical resistance capable of withstanding chemical treatment in the substrate removal process In addition, a light emitting diode having stable characteristics can be provided. Furthermore, it is possible to provide a method for manufacturing a light emitting diode capable of manufacturing a light emitting diode having stable characteristics with high yield.
  • FIG. 1 is a plan view showing an embodiment of a metal substrate for light-emitting diode bonding and a light-emitting diode bonded thereto according to the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a metal substrate for light-emitting diode bonding of the present invention and a light-emitting diode bonded thereto. It is a cross-sectional schematic diagram which shows one Embodiment of the light emitting diode of this invention. It is a cross-sectional schematic diagram which shows one Embodiment of 1 process in the manufacturing method of the light emitting diode of this invention.
  • FIG. 2 is a plan view showing a conventional metal substrate for light emitting diodes and a light emitting diode bonded thereto.
  • FIG. 1 is a schematic cross-sectional view showing a conventional metal substrate for light emitting diodes and a light emitting diode bonded thereto.
  • FIG. 1 shows a state after the fourth step of the method for producing a light emitting diode according to the present invention.
  • the manufacturing method of the light emitting diode of this invention is demonstrated in detail below.
  • FIG. 1 shows a state in which a metal substrate 6 for a light emitting diode according to the present invention and a compound semiconductor layer 2 including a light emitting portion formed on a growth substrate (semiconductor substrate) 20 are bonded via a bonding layer 3.
  • the metal substrate 6 in this embodiment includes a metal plate 4 and a metal protective film 5 that covers the entire surface of the metal plate 4, that is, the upper surface, the lower surface, and the side surfaces of the metal plate 4. .
  • the metal protective film 5 covers only the upper and lower surfaces of the metal plate 4 and does not cover the side surfaces.
  • the thermal conductivity of the metal plate 4 is preferably 130 W / m ⁇ K or more, and the thermal expansion coefficient is preferably within ⁇ 1.5 ppm / K of the thermal expansion coefficient of the light emitting portion 7.
  • the metal plate 4 contains at least one selected from the group consisting of copper, molybdenum, and tungsten.
  • the metal plate 4 is preferably one in which three thin plates of copper 4B / molybdenum 4A / copper 4B are laminated and thermocompression bonded.
  • the thermal expansion coefficient of the metal plate 6 can be made substantially equal to the thermal expansion coefficient of the light emitting unit 7.
  • a known material such as nickel, chromium, platinum, or gold can be applied to the metal protective film 5 that covers at least the upper and lower surfaces of the metal plate 4.
  • the metal protective film 5 is preferably a layer in which nickel having good adhesion and gold having excellent chemical resistance are combined.
  • the base is preferably formed of nickel and the surface is preferably formed of gold or platinum which is stable to chemicals.
  • the entire surface of the metal plate 4 can be formed by plating nickel / gold.
  • the thickness of the metal protective film 5 is not particularly limited, but in the range of durability and cost, 0.2 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m is an appropriate range.
  • the thickness of expensive gold is desirably 1 ⁇ m or less. If the metal substrate 6 having the above configuration is thin, the metal substrate 6 is deformed due to insufficient strength, and if the metal substrate 6 is thick, the technical difficulty in the step of cutting into chips is increased. Therefore, although depending on the material, the thickness of the metal substrate 6 is preferably 50 to 200 ⁇ m, more preferably 80 to 150 ⁇ m.
  • the light-emitting diode (LED) 1 of the present embodiment includes a compound semiconductor layer including the light-emitting portion 7 bonded to the metal substrate 6 via the bonding layer 3 and the metal substrate 6 of the present invention. 2.
  • the compound semiconductor layer 2 is not particularly limited as long as it includes the pn junction type light emitting portion 7.
  • the bonding layer 3 is disposed between the compound semiconductor layer 2 and the metal substrate 6, and firmly bonds (bonds) the compound semiconductor layer 2 and the metal substrate 6.
  • a single layer or a plurality of layers may be used.
  • the bonding layer 3 includes the first metal film 3A provided on the compound semiconductor layer 2 side and the second metal film 3B provided on the metal substrate 6 side, and the second metal film 3A is provided.
  • the film 3B is made of the same material as the metal protective film 5.
  • the bonding layer 3 has a reflective structure with a high reflectivity for high brightness, and reflects light incident from the compound semiconductor layer 2 side and the metal substrate 6 side.
  • the metal substrate 6 for light emitting diodes is manufactured as follows. First, the metal plate 4 constituting the light emitting diode metal substrate 6 is prepared. The metal plate 4 of the present embodiment shown in FIG. 2 is formed by laminating three thin plates of copper 4B, molybdenum 4A, and copper 4B so that the thermal expansion coefficient is substantially equal to the thermal expansion coefficient of the light emitting unit 7. It is manufactured by thermocompression bonding.
  • the metal protective film 5 that covers the entire surface of the metal plate is formed.
  • the metal protective film 5 can be formed using a known film forming method, but the plating method is most preferable because the film can be formed on the entire surface including the side surfaces.
  • known techniques and chemicals can be used.
  • an electroless plating method that does not require an electrode is simple and desirable.
  • the plating material and known materials such as copper, silver, nickel, chromium, platinum, and gold can be used.
  • a layer that combines nickel with good adhesion and gold with excellent chemical resistance is optimal. .
  • the metal protective film 5 including the nickel film and the gold film can be obtained by nickel-plating the upper surface, side surface, and lower surface of the metal plate 6 and then gold-plating.
  • the thickness of the plating is not particularly limited, but as described above, an appropriate range is 0.2 to 5 ⁇ m, preferably 0.5 to 3 ⁇ m, from the balance between durability and cost.
  • the thickness of expensive gold is desirably 1 ⁇ m or less.
  • the metal protective film 5 only needs to cover the entire surface of the metal plate 4 when performing a semiconductor substrate removal step with a later etching solution. In the process after the semiconductor substrate removal process, a part of the metal protective film 5 is removed, and in the finally manufactured light emitting diode, the metal protective film 5 may not cover the entire surface of the metal plate 4.
  • a compound semiconductor layer 2 is formed by growing a plurality of epitaxial layers on one surface 20 a of the semiconductor substrate 20.
  • the semiconductor substrate 20 is a substrate for forming the compound semiconductor layer 2, and is, for example, a Si-doped n-type GaAs single crystal substrate.
  • a buffer layer 12 a made of n-type GaAs doped with Si is formed on one surface 20 a of the semiconductor substrate 20.
  • a contact layer 12b made of Si-doped n-type AlGaInP is formed on the buffer layer 12a.
  • a cladding layer 11 made of n-type AlGaInP doped with Si is formed on the contact layer 12b.
  • the light emitting layer 10 having a laminated structure of 10 pairs of undoped AlGaInP / AlGaInP is formed on the cladding layer 11.
  • a cladding layer 9 made of p-type AlGaInP doped with Mg is formed on the light emitting layer 10.
  • an Mg-doped p-type GaP layer 13 is formed on the cladding layer 9.
  • a second electrode (ohmic electrode) 8b is formed on the surface 13a opposite to the semiconductor substrate 20 of the p-type GaP layer 13.
  • the semiconductor substrate 20 on which the bonding layer 3 and the compound semiconductor layer 2 are formed and the metal substrate 6 formed in the metal substrate manufacturing process are carried into a decompression device, and the bonding surface of the bonding layer 3 and the metal substrate 6 are loaded. It arrange
  • the semiconductor substrate 20 on which the bonding layer 3 and the compound semiconductor layer 2 are formed and the metal substrate 6 are pressurized in a heated state to form the bonding structure 15.
  • ⁇ Semiconductor substrate removal step (fifth step)>
  • the semiconductor substrate 20 and the buffer layer 12a are selectively dissolved and removed from the bonding structure 15 with an etching solution containing ammonia and hydrogen peroxide. Copper dissolves in this etching solution, but the entire upper surface, side surface, and lower surface of the metal plate are covered with the metal protective film 5 that is a nickel / gold film, so the metal plate 4 formed of copper does not dissolve. .
  • the compound semiconductor layer 2 having the light emitting portion 7 is formed.
  • the first electrode 8 a is formed on the surface 2 a located on the opposite side of the compound semiconductor layer 2 from the metal substrate 6.
  • the structure including the metal substrate 6 formed in the above steps is cut with a laser, for example, at intervals of 350 ⁇ m, and the light emitting diode 1 is manufactured.
  • the metal substrate 6 is provided with the metal protective film 5 only on the upper surface and the lower surface, but not on the side surface.
  • ⁇ Light emitting diode side surface protective film formation process Furthermore, under the same conditions as the formation conditions of the metal protective film 5, the side and bottom surfaces of the cut metal substrate 6 are subjected to nickel / Au plating treatment, the resin protective film is removed, and a light emitting diode is manufactured. You can also. The light-emitting diode thus obtained is preferable because it is resistant to chemicals.
  • a Mo foil having a thickness of 25 ⁇ m was sandwiched between two copper foils having a thickness of 30 ⁇ m and thermocompression bonded to produce a metal plate 4 having a thickness of 85 ⁇ m.
  • the shape of the metal plate 4 is a circle having a diameter of 76 mm.
  • the upper and lower surfaces of the metal plate 4 were polished to make the upper surface a glossy surface, and then washed with an organic solvent to remove the dirt.
  • the thermal expansion coefficient of the metal plate 4 was 6.1 ppm / K, and the thermal conductivity was 250 W / m ⁇ K.
  • Ni was first plated on the metal plate 4 so as to have a thickness of about 2 ⁇ m, and then Au was plated so that the thickness became 0.5 ⁇ m.
  • the metal protective film 5 which is a uniform two-layer plating film was formed on the upper surface, the side surface, and the lower surface of the metal plate 4.
  • a GaAs single crystal substrate 20 having a diameter of 76 mm and a thickness of 450 ⁇ m and a main surface of (100) 15 ° off was prepared. After cleaning the surface, it was set in an MOCVD apparatus.
  • the cladding layer 11 is made of Si-doped n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P, has a carrier concentration of 8 ⁇ 10 17 cm ⁇ 3 , and a layer thickness of 1 ⁇ m. Formed. Furthermore, the undoped (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P / (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P with a layer thickness of 0.8 ⁇ m. Thus, the light emitting layer 10 was obtained.
  • a cladding made of Mg-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P, having a carrier concentration of 2 ⁇ 10 17 cm ⁇ 3 and a layer thickness of 1 ⁇ m A layer was formed.
  • a GaP layer 13 which was a p-type GaP layer doped with Mg, a carrier concentration of 3 ⁇ 10 18 cm ⁇ 3 , and a layer thickness of 3 ⁇ m was laminated.
  • an ohmic electrode 8 b was formed on the surface of the obtained p-type GaP layer 13.
  • an AuGe eutectic metal having a thickness of 1.5 ⁇ m was formed as the bonding layer 3 by vapor deposition.
  • a metal substrate 6 was superimposed on the bonding layer 3 and bonded by heating and pressurizing at 380 ° C. in a bonding apparatus to produce a bonded structure 18.
  • the junction yield was measured. As a result, 97% of the theoretical area was normal.
  • the area of a junction part can be calculated
  • the difference from the embodiment is that the metal substrate 6 does not include the metal protective film 5. That is, in this comparative example, the metal substrate 6 is not plated (the metal protective film 5 is not formed), the surface opposite to the bonding layer 3 of the metal plate 4 is protected by the photoresist 21, and the GaAs substrate Was removed.
  • the photoresist was spin-coated at 2000 rpm, applied to a thickness of 2 ⁇ m, and then heat-treated at 140 ° C. and cured to form a protective film.
  • the metal substrate for light emitting diodes of the present invention is particularly excellent in chemical resistance.
  • the light-emitting diode of the present invention comprising a metal substrate with excellent chemical resistance is excellent in heat dissipation and can emit light with high brightness, so it can be used for various display lamps, lighting fixtures, etc. there is a possibility.
  • the method for producing a light emitting diode of the present invention can produce a light emitting diode that has excellent heat dissipation and can emit light with high brightness, it can be used for various display lamps, lighting fixtures, etc. there is a possibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

 本発明の目的は、優れた耐薬品特性を具備する発光ダイオード接合用金属基板、発光ダイオード及びその製造方法を提供することにあり、金属基板と、接合層を介して前記金属基板上に接合された、発光部を含む化合物半導体層とを備えた発光ダイオードを製造するのに用いられる発光ダイオード用金属基板であって、金属板と、該金属板の少なくとも上面及び下面を覆う金属保護膜とを具備することを特徴とする発光ダイオード用金属基板を提供する。

Description

発光ダイオード用金属基板、発光ダイオード及びその製造方法
 本発明は、発光ダイオード用金属基板、発光ダイオード及びその製造方法に関するものである。
 本願は、2009年10月7日に、日本に出願された特願2009-233748号に基づき優先権を主張し、その内容をここに援用する。
 従来から、赤色または赤外の光を発する高出力発光ダイオード(英略称:LED)として、砒化アルミニウム・ガリウム(組成式AlGa1-XAs;0≦X≦1)を含有する発光層を備えた化合物半導体LEDが知られている。
 一方、赤色、橙色、黄色、または黄緑色の可視光を発する高輝度発光ダイオード(英略称:LED)として、燐化アルミニウム・ガリウム・インジウム(組成式(AlGa1-XIn1-YP;0≦X≦1,0<Y≦1)を含有する発光層を備えた化合物半導体LEDも知られている。
 このようなLEDは、一般に発光層から出射される発光に対し光学的に不透明であり、また機械的にもそれ程強度のない砒化ガリウム(GaAs)等の基板材料上に形成されている。
 このため、最近では、より高輝度のLEDを得るために、また、更なる素子の機械的強度および放熱性の向上を目的として、発光光に対して不透明な基板材料を除去した後、発光光を透過または反射するとともに、機械強度および放熱性に優れる材料で形成された支持体層(基板)を改めて接合させて、接合型LEDを構成する技術が開示されている(例えば、特許文献1~7参照)。
特開2001-339100号公報 特開平6-302857号公報 特開2002-246640号公報 特許第2588849号公報 特開2001-57441号公報 特開2007-81010号公報 特開2006-32952号公報
 上述したように、基板接合技術の開発により、支持体層として適用できる基板の自由度が増えたため、コスト面、機械強度、または放熱性などに大きなメリットを有する数々の金属基板が提案されている。
 しかしながら、金属基板は、半導体基板、セラミックス基板等と比較して、製造プロセスで使用する化学薬品に反応して腐食して品質劣化する問題があった。具体的には、アルカリまたは酸の処理に対して、溶解、変色、腐食が発生し、特性不良や収率の低下を招くという問題があった。
 特に、半導体層を成長させるために用いられる砒化ガリウム基板を除去するには、アルカリや酸に長時間浸漬し、砒化ガリウム基板を全て溶解する工程が一般的である。しかしながら、金属基板はこの長時間の薬品処理に耐えられない。
 本発明は、上記事情を鑑みてなされたものであり、基板除去工程の薬品処理に耐えうる耐薬品に優れた新しい構造を有する発光ダイオード用金属基板を提供することを目的とする。
 また、この金属基板を用いることで、特性が安定した発光ダイオードを提供することを目的とする。
 さらには、安定した特性を有する発光ダイオードを高い収率で製造できる発光ダイオードの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は以下の(1)から(9)を提供する。
(1)金属基板と、接合層を介して前記金属基板上に接合された、発光部を含む化合物半導体層とを備えた発光ダイオードを製造するのに用いられる発光ダイオード用金属基板であって、発光ダイオード用金属基板が、金属板と、該金属板の少なくとも上面及び下面を覆う金属保護膜とを具備することを特徴とする発光ダイオード用金属基板。
(2)前記金属保護膜は、さらに前記金属板の側面を覆うことを特徴とする前項(1)に記載の発光ダイオード用金属基板。
(3)前記金属板は、熱伝導率が130W/m・K以上であり、かつ、熱膨張係数が前記発光部の熱膨張係数の±1.5ppm/K以内であることを特徴とする前項(1)又は(2)のいずれかに記載の発光ダイオード用金属基板。
(4)前記金属板は、銅、モリブデン、およびタングステンからなる群から選ばれる少なくとも一つを含むことを特徴とする前項(1)から(3)のいずれか一項に記載の発光ダイオード用金属基板。
(5)前記金属板は、銅とモリブデンとの重ね合わせ構造からなることを特徴とする前項(4)に記載の発光ダイオード用金属基板。
(6)前記金属保護膜は、ニッケル、クロム、白金、および金からなる群から選ばれる少なくとも一つを含むことを特徴とする前項(1)から(5)のいずれか一項に記載の発光ダイオード用金属基板。
(7)前項(1)から(6)のいずれか一項に記載の発光ダイオード用金属基板と、接合層を介して前記金属基板上に接合された、発光部を含む化合物半導体層とを備えた発光ダイオードであって、前記発光部は、AlGaInP層又はAlGaAs層を具備することを特徴とする発光ダイオード。
(8)金属板の全面に金属保護膜を形成して発光ダイオード用金属基板を作製する第1工程と、半導体基板上に、発光部を具備する化合物半導体層を形成する第2工程と、前記化合物半導体層上に接合層を形成する第3工程と、前記接合層を介して、前記化合物半導体層が形成された前記半導体基板と前記金属基板とを接合する第4工程と、前記半導体基板をエッチング液を用いて除去する第5工程とを有することを特徴とする発光ダイオードの製造方法。
(9)前記第1工程は、複数の金属薄板を熱圧着して金属板を作製する工程と、前記金属板の全面にメッキにより金属保護膜を形成する工程とを有することを特徴とする前項(8)に記載の発光ダイオードの製造方法。
 本発明によれば、放熱性に優れ、かつ基板除去工程の薬品処理に耐えうる耐薬品に優れた新しい構造を有する発光ダイオード用金属基板を提供することができる。また、特性が安定した発光ダイオードを提供することができる。さらには、安定した特性を有する発光ダイオードを高い収率で製造できる発光ダイオードの製造方法を提供することができる。
本発明の発光ダイオード接合用金属基板及びそれに接合された発光ダイオードの一実施形態を示すものであって、平面図である。 本発明の発光ダイオード接合用金属基板及びそれに接合された発光ダイオードの一実施形態を示すものであって、断面模式図である。 本発明の発光ダイオードの一実施形態を示す断面模式図である。 本発明の発光ダイオードの製造方法における一工程の一実施形態を示す断面模式図である。 従来の発光ダイオード用金属基板及びそれに接合された発光ダイオードを示すものであって、平面図である。 従来の発光ダイオード用金属基板及びそれに接合された発光ダイオードを示すものであって、断面模式図である。
 以下、本発明の発光ダイオード用金属基板、発光ダイオード、及びその製造方法について図面を用いて詳細に説明する。
 なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。同様の構成要素については同じ符号を付して詳細な説明を省略する。
 図1は、本発明の発光ダイオードの製造方法の第4工程後の状態を示すものである。なお、本発明の発光ダイオードの製造方法については、以下に詳しく説明する。
 図1は、本発明の発光ダイオード用金属基板6と、成長基板(半導体基板)20上に形成した発光部を含む化合物半導体層2とが、接合層3を介して接合した状態を示す。
<発光ダイオード用金属基板>
 図1に示すように、本実施形態における金属基板6は、金属板4と、金属板4の全面、つまり金属板4の上面、下面、および側面を覆う金属保護膜5とから構成されている。
 なお、金属保護膜5が金属板4の上面と下面とだけを覆い、側面は覆わない場合もある。
 上記金属板4の熱伝導率は、130W/m・K以上であり、かつ、熱膨張係数は発光部7の熱膨張係数の±1.5ppm/K以内であるのが好ましい。
 具体的には、熱伝導率の良好な金属、例えば、銅、銀、金などや、熱膨張係数が発光部7と略等しい金属、例えば、モリブデン、タングステンなどから構成することができる。また、複数の金属薄板で形成されていてもよい。なかでも、金属板4は、銅、モリブデン、およびタングステンからなる群から選択される少なくとも一つを含むことが好ましい。特に、金属板4としては、図1に示すように、銅4B/モリブデン4A/銅4Bの3枚の薄板を積層して熱圧着したものが好ましい。このような構成を採用することにより、金属板6の熱膨張係数を、発光部7の熱膨張係数とほぼ等しくすることができる。
 金属板4の少なくとも上面及び下面を覆う金属保護膜5は、ニッケル、クロム、白金、金など公知の材料が適用できる。
 なかでも金属保護膜5は、密着性がよいニッケルと耐薬品に優れる金とを組み合わせた層であることが好ましい。下地はニッケルで形成し、表面は薬品に安定な金または白金で形成するのが好ましい。金属板4の全面をニッケル/金をメッキすることにより形成することができる。
 金属保護膜5の厚さは、特に制限はないが、耐久性とコストとのバランスから、0.2~5μm、好ましくは、0.5~3μmが適正な範囲である。高価な金の厚さは、1μm以下が望ましい。
 上記構成を具備する金属基板6は、薄いと強度不足による変形がおき、厚いとチップに切断する工程での技術的難易度が高くなるという不都合がある。このため、材料により異なるが、金属基板6の厚さは、好ましくは50~200μm、より好ましくは、80~150μmである。
<発光ダイオード>
 次に、発光ダイオードの構成について説明する。
 図2に示すように、本実施形態の発光ダイオード(LED)1は、本発明の金属基板6と、接合層3を介して金属基板6上に接合された、発光部7を含む化合物半導体層2とを備えたものである。
 上記化合物半導体層2は、pn接合型の発光部7を含むものであれば特に限定されるものではない。
 上記発光部7は半導体基板、例えば、GaAs基板に成長できる材料で構成されている。一般的には、下部クラッド層9、発光層10、および上部クラッド層11が順次積層された化合物半導体の積層体である。
 この発光部7としては、例えば、赤色、黄色、および/または黄緑色などの光源である(AlGa1-XIn1-YP(0≦X≦1,0<Y≦1)を具備する発光層10を含む化合物半導体層を用いることができる。赤および赤外の光を発光するAlGa(1-x)As(0≦X≦1)を具備する発光層10を含む化合物半導体層を用いることもできるし、他の公知の構造を適用することもできる。
 接合層3は、化合物半導体層2と金属基板6との間に配置され、化合物半導体層2と金属基板6とを強固に接合(貼り合わせ)する。単層でも複数の層からなるものでもよい。しかしながら、金属保護膜5の材質との組み合わせを考慮して、金属基板6との接続表面と同じ材料、つまり金属保護膜5と同じ材料系で形成するのが好ましい。例えば、金属保護膜5が金で形成されている場合は、金属保護膜5との接続面をなす接合層は金で形成されているのが最も望ましい。
 本実施形態では、接合層3は、化合物半導体層2側に設けられた第1の金属膜3Aと、金属基板6側に設けられた第2の金属膜3Bとを具備し、第2の金属膜3Bは金属保護膜5と同じ材料で形成されている。
 また、本実施形態では、接合層3は、高輝度化のために反射率の高い反射構造を有しており、化合物半導体層2側及び金属基板6側から入射された光を反射させる。
[発光ダイオードの製造方法]
 次に、発光ダイオードの製造方法について、以下の通り、第1工程から第5工程に分けて説明する。
<金属基板の作製工程(第1工程)>
 発光ダイオード用金属基板6を以下の通り製造する。
 まず、発光ダイオード用金属基板6を構成する金属板4を準備する。
 図2に示す本実施形態の金属板4は、その熱膨張係数が発光部7の熱膨張係数とほぼ等しくなるように、銅4B、モリブデン4A、及び銅4Bの3枚の薄板を積層し、熱圧着して作製する。
 次に、金属板の全面を覆う金属保護膜5を形成する。
 金属保護膜5は公知の膜形成方法を用いて形成することができるが、側面を含めた全面に膜形成ができるので、メッキ法が最も好ましい。
 メッキ法では、公知の技術および薬品が使用できる。メッキ法の中でも、電極が不要な無電解メッキ法が、簡便で望ましい。
 メッキ材質は、特に制限はなく、銅、銀、ニッケル、クロム、白金、および金など公知の材質が適用できるが、密着性がよいニッケルと耐薬品に優れる金とを組み合わせた層が最適である。
 例えば、無電解メッキ法を採用した場合、金属板6の上面、側面、および下面をニッケルメッキし、その後金メッキすることにより、ニッケル膜及び金膜を具備する金属保護膜5を得ることができる。
 メッキの厚さは特に制限はないが、上記の通り、耐久性とコストのバランスから、0.2~5μm、好ましくは、0.5~3μmが適正な範囲である。高価な金の厚さは、1μm以下が望ましい。
 なお、金属保護膜5は、後のエッチング液による半導体基板除去工程を行う際に、金属板4の全面を覆っていればよい。半導体基板除去工程後の工程において金属保護膜5の一部が除去され、最終的に製造された発光ダイオードにおいて、金属保護膜5が金属板4の全面を覆っていなくとも構わない。
<化合物半導体層形成工程(第2工程)>
 図3に示すように、半導体基板20の一面20a上に、複数のエピタキシャル層を成長させて化合物半導体層2を形成する。
 半導体基板20は化合物半導体層2の形成用基板であり、例えば、Siドープしたn型のGaAs単結晶基板である。
 半導体基板20の一面20a上に、Siをドープしたn型のGaAsからなる緩衝層12aを成膜する。次に、緩衝層12a上に、Siドープしたn型のAlGaInPからなるコンタクト層12bを成膜する。次に、コンタクト層12b上に、Siをドープしたn型のAlGaInPからなるクラッド層11を成膜する。次に、クラッド層11上に、アンドープのAlGaInP/AlGaInPの10対の積層構造からなる発光層10を成膜する。次に、発光層10上に、Mgをドープしたp型のAlGaInPからなるクラッド層9を成膜する。次に、クラッド層9上に、Mgドープしたp型のGaP層13を成膜する。
 次に、p型のGaP層13の半導体基板20と反対側の面13a上に第2の電極(オーミック電極)8bを形成する。
<接合層形成工程(第3工程)>
 次に、p型のGaP層13の半導体基板20と反対側に位置する面13aと第2の電極8bとを覆うように、接合層3(3A)を形成する。
 接合層の形成は公知の技術を利用できる。例えば、共晶金属、および半田などの金属材料、有機系接着剤、または直接接合技術などを利用できる。
<金属基板の接合工程(第4工程)>
 次に、接合層3及び化合物半導体層2を形成した半導体基板20と、金属基板の製造工程で形成した金属基板6とを減圧装置内に搬入して、接合層3の接合面と金属基板6の接合面とが対向して重ねあわされるように配置する。
 次に、減圧装置内を排気した後、接合層3及び化合物半導体層2を形成した半導体基板20と金属基板6とを加熱した状態で加圧して、接合構造体15を形成する。
<半導体基板除去工程(第5工程)>
 次に、アンモニアと過酸化水素とを含有するエッチング液により、接合構造体15から、半導体基板20及び緩衝層12aを選択的に溶解除去する。銅はこのエッチング液に溶解するが、金属板の上面、側面、および下面の全面がニッケル・金膜である金属保護膜5で覆われているため、銅で形成された金属板4は溶解しない。
 この工程により、発光部7を有する化合物半導体層2が形成される。
<第1の電極形成工程>
 次に、化合物半導体層2の金属基板6と反対側に位置する面2aに第1の電極8aを形成する。
<分離工程>
 切断する領域の半導体層を除去した後に、以上の工程で形成された金属基板6を具備する構造体をレーザで例えば、350μm間隔で切断し、発光ダイオード1を作製する。
 得られた発光ダイオード1では、金属基板6は上面及び下面にだけ金属保護膜5を備え、側面には備えていない。
<発光ダイオード側面保護膜形成工程>
 さらに、金属保護膜5の形成条件と同様の条件下で、切断された金属基板6の側面と下面とに、ニッケル・Auメッキ処理を行い、樹脂保護膜を除去し、発光ダイオードを作製することもできる。このようにして得られた発光ダイオードは、薬品に強く、好ましい。
 以下、本発明および本発明の効果を、実施例を用いて具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
 <金属基板の作製>
 厚さ25μmのMo箔を、厚さ30μmの2枚の銅箔で挟み、加熱圧着して、厚さ85μmの金属板4を作製した。金属板4の形状は、直径76mmの円形である。
 金属板4の上面と下面とを研磨し、上面を光沢面とした後に、有機溶剤で洗浄し、汚れを除去した。
 金属板4の熱膨張係数は6.1ppm/Kであり、熱伝導率は250W/m・Kであった。
 無電解メッキ法で、最初に厚さが約2μmとなるように金属板4にNiをメッキし、次に、厚さが0.5μmとなるようにAuをメッキした。こうして、金属板4の上面、側面、および下面に、均一な2層のメッキ膜である金属保護膜5を形成した。
 <発光部の形成>
 直径76mm、厚さ450μmで、主面が(100)15°オフのGaAs単結晶基板20を準備した。表面を洗浄後、MOCVD装置にセットした。
 GaAs緩衝層12aを0.2μm成長させた。その後、Siドープn型の(Al0.5Ga0.50.5In0.5Pからなり、キャリア濃度が2×1018cm-3であり、層厚が1.5μmであるコンタクト層12bを形成した。
 ついで、Siドープn型の(Al0.7Ga0.30.5In0.5Pからなり、キャリア濃度が8×1017cm-3であり、層厚が1μmであるクラッド層11を形成した。
 さらに、層厚が0.8μmである、アンドープの(Al0.2Ga0.80.5In0.5P/(Al0.7Ga0.30.5In0.5Pの10対の積層構造を発光層10として得た。
 ついで、Mgをドープしたp型の(Al0.7Ga0.30.5In0.5Pからなり、キャリア濃度が2×1017cm-3であり、層厚が1μmであるクラッド層を形成した。
 その後、Mgをドープしたp型GaP層であり、キャリア濃度が3×1018cm-3であり、層厚が3μmであるGaP層13を積層した。 
 さらに、得られたp型GaP層13の表面にオーミック電極8bを形成した。さらに、接合層3として、蒸着法にて、厚さが1.5μmであるAuGeの共晶金属を形成した。
 ついで、その接合層3に金属基板6を重ね合わせ、貼り付け装置内で、380℃に加熱、加圧して接合して接合構造体18を作製した。
<半導体基板の除去>
 接合した接合構造体18を、アンモニア・過酸化水素の混合液に、GaAs基板20及びGaAs緩衝層12aが全て溶解するまで、浸漬した。
<収率>
 GaAs基板及びGaAs緩衝層12aを溶解除去した後、接合収率を測定した。その結果、理論面積に対して、97%が正常であった。
 ここで、理論面積(S)とは、接合前の実効的な面積であり、円形全体の面積空からオリフラ部分と周辺とのべべリング領域の面積を差し引いた面積である。76mmφウエハの場合S=43cmとなる。
 また、接合収率は、接合後に測定した接合部分の面積(X)の理論面積Sに対する割合を意味し、接合収率=(X/S)×100(%)で算出する。
 なお、接合部の面積は、たとえば接合部分を除去した後に面積計で測定するなどして求めることができる。
(比較例)
 図4に示すように、実施例との相違点は、金属基板6が金属保護膜5を具備しない点にある。つまり、本比較例においては、金属基板6にメッキを施さず(金属保護膜5を形成せず)、金属板4の接合層3と反対側の面をフォトレジスト21により保護して、GaAs基板を除去した。フォトレジストは、2000rpmでスピンコートし、2μm厚さに塗布後、140℃で熱処理し硬化させ保護膜を形成した。
<収率>
 GaAs基板を溶解した後、接合収率を測定した。その結果、理論面積に対して、79%が正常であった。この収率低下は、周辺の金属基板が一部溶けたことにより、接合できない部分があったためである。
 本発明の発光ダイオード用金属基板は、特に耐薬品性に優れる。
 耐薬品性に優れる金属基板を具備する本発明の発光ダイオードは、放熱性に優れ、高輝度で発光できるので、各種の表示ランプ、照明器具等に利用でき、これらを製造・利用する産業において利用可能性がある。
 また、本発明の発光ダイオードの製造方法は、放熱性に優れ、高輝度で発光できる発光ダイオードを製造できるので、各種の表示ランプ、照明器具等に利用でき、これらを製造・利用する産業において利用可能性がある。
1 発光ダイオード                     2 化合物半導体層
3 接合層                         3A 第1の金属膜
3B 第2の金属膜                 4 金属板
5 金属保護膜                     6 発光ダイオード用金属基板
7 発光部                         8a 第1の電極
8b 第2の電極                   9 クラッド層
10 発光層                       11 クラッド層
12a 緩衝層                     12b コンタクト層
13 GaP層                     15 接合構造体
20 半導体基板

Claims (9)

  1.  金属基板と、接合層を介して前記金属基板上に接合された、発光部を含む化合物半導体層とを備えた発光ダイオードを製造するのに用いられる発光ダイオード用金属基板であって、
     上記発光ダイオード用金属基板は、金属板と、該金属板の少なくとも上面及び下面を覆う金属保護膜とを具備することを特徴とする発光ダイオード用金属基板。
  2.  前記金属保護膜は、さらに前記金属板の側面を覆うことを特徴とする請求項1に記載の発光ダイオード用金属基板。
  3.  前記金属板は、熱伝導率が130W/m・K以上であり、かつ、熱膨張係数が前記発光部の熱膨張係数の±1.5ppm/K以内であることを特徴とする請求項1又は2のいずれかに記載の発光ダイオード用金属基板。
  4.  前記金属板は、銅、モリブデン、およびタングステンからなる群から選択される少なくとも一つを含むことを特徴とする請求項1から3のいずれか一項に記載の発光ダイオード用金属基板。
  5.  前記金属板は、銅とモリブデンとの重ね合わせ構造を具備することを特徴とする請求項4に記載の発光ダイオード用金属基板。
  6.  前記金属保護膜は、ニッケル、クロム、白金、および金からなる群から選択される少なくとも一つを含むことを特徴とする請求項1から5のいずれか一項に記載の発光ダイオード用金属基板。
  7.  請求項1から6のいずれか一項に記載の発光ダイオード用金属基板と、接合層を介して前記金属基板上に接合された、発光部を含む化合物半導体層とを備えた発光ダイオードであって、
     前記発光部は、AlGaInP層又はAlGaAs層を具備することを特徴とする発光ダイオード。
  8.  金属板の全面に金属保護膜を形成して発光ダイオード用金属基板を作製する第1工程と、
     半導体基板上に、発光部を含む化合物半導体層を形成する第2工程と、
     前記化合物半導体層上に接合層を形成する第3工程と、
     前記接合層を介して、前記化合物半導体層が形成された前記半導体基板と前記金属基板とを接合する第4工程と、
     エッチング液を用いて前記半導体基板を除去する第5工程とを有することを特徴とする発光ダイオードの製造方法。
  9.  前記第1工程は、複数の金属薄板を熱圧着して金属板を作製する工程と、
     前記金属板の全面にメッキにより金属保護膜を形成する工程とを有する特徴とする請求項8に記載の発光ダイオードの製造方法。
PCT/JP2010/067069 2009-10-07 2010-09-30 発光ダイオード用金属基板、発光ダイオード及びその製造方法 WO2011043240A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127010166A KR20120057656A (ko) 2009-10-07 2010-09-30 발광 다이오드용 금속 기판, 발광 다이오드 및 그 제조 방법
CN2010800447034A CN102576781A (zh) 2009-10-07 2010-09-30 发光二极管用金属基板、发光二极管及其制造方法
US13/500,479 US20120199873A1 (en) 2009-10-07 2010-09-30 Metal substrate for light-emitting diode, light-emitting diode, and method for manufacturing light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-233748 2009-10-07
JP2009233748A JP2011082362A (ja) 2009-10-07 2009-10-07 発光ダイオード用金属基板、発光ダイオード及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011043240A1 true WO2011043240A1 (ja) 2011-04-14

Family

ID=43856698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067069 WO2011043240A1 (ja) 2009-10-07 2010-09-30 発光ダイオード用金属基板、発光ダイオード及びその製造方法

Country Status (6)

Country Link
US (1) US20120199873A1 (ja)
JP (1) JP2011082362A (ja)
KR (1) KR20120057656A (ja)
CN (1) CN102576781A (ja)
TW (1) TW201130154A (ja)
WO (1) WO2011043240A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005184A1 (ja) * 2010-07-09 2012-01-12 昭和電工株式会社 発光ダイオードの製造方法、切断方法及び発光ダイオード
WO2012005185A1 (ja) * 2010-07-09 2012-01-12 昭和電工株式会社 発光ダイオードの製造方法、切断方法及び発光ダイオード
JP2013239638A (ja) * 2012-05-16 2013-11-28 Dowa Electronics Materials Co Ltd 半導体素子集合体、半導体素子およびこれらの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269870B2 (en) * 2011-03-17 2016-02-23 Epistar Corporation Light-emitting device with intermediate layer
JP2012243925A (ja) * 2011-05-19 2012-12-10 Eiki Tsushima 発光ダイオード及びその製造方法
JP2013098481A (ja) 2011-11-04 2013-05-20 Sumitomo Electric Device Innovations Inc 半導体装置
KR102188500B1 (ko) 2014-07-28 2020-12-09 삼성전자주식회사 발광다이오드 패키지 및 이를 이용한 조명장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139264A (ja) * 1994-09-16 1996-05-31 Tokuyama Corp 半導体素子搭載用パッケージ
JP2000323632A (ja) * 1999-05-10 2000-11-24 Tokyo Tungsten Co Ltd 放熱基板およびその製造方法
JP2004228540A (ja) * 2002-11-28 2004-08-12 Shin Etsu Handotai Co Ltd 発光素子
JP2006521984A (ja) * 2003-03-18 2006-09-28 クリスタル フォトニクス,インコーポレイテッド Iii族の窒化物装置を製作する方法およびそのように製作された装置
JP2009088318A (ja) * 2007-10-01 2009-04-23 Showa Denko Kk 半導体発光素子および半導体発光素子の製造方法
JP2009212500A (ja) * 2008-02-07 2009-09-17 Showa Denko Kk 化合物半導体発光ダイオード

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860037B2 (ja) * 1993-03-15 1999-02-24 東京タングステン株式会社 半導体装置用放熱基板の製造方法
CN1781195A (zh) * 2003-03-18 2006-05-31 克利斯托光子学公司 Ⅲ族氮化物器件的制作方法以及由其制作的器件
US7932111B2 (en) * 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US7795054B2 (en) * 2006-12-08 2010-09-14 Samsung Led Co., Ltd. Vertical structure LED device and method of manufacturing the same
US8188496B2 (en) * 2008-11-06 2012-05-29 Samsung Led Co., Ltd. Semiconductor light emitting device including substrate having protection layers and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139264A (ja) * 1994-09-16 1996-05-31 Tokuyama Corp 半導体素子搭載用パッケージ
JP2000323632A (ja) * 1999-05-10 2000-11-24 Tokyo Tungsten Co Ltd 放熱基板およびその製造方法
JP2004228540A (ja) * 2002-11-28 2004-08-12 Shin Etsu Handotai Co Ltd 発光素子
JP2006521984A (ja) * 2003-03-18 2006-09-28 クリスタル フォトニクス,インコーポレイテッド Iii族の窒化物装置を製作する方法およびそのように製作された装置
JP2009088318A (ja) * 2007-10-01 2009-04-23 Showa Denko Kk 半導体発光素子および半導体発光素子の製造方法
JP2009212500A (ja) * 2008-02-07 2009-09-17 Showa Denko Kk 化合物半導体発光ダイオード

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005184A1 (ja) * 2010-07-09 2012-01-12 昭和電工株式会社 発光ダイオードの製造方法、切断方法及び発光ダイオード
WO2012005185A1 (ja) * 2010-07-09 2012-01-12 昭和電工株式会社 発光ダイオードの製造方法、切断方法及び発光ダイオード
JP2013239638A (ja) * 2012-05-16 2013-11-28 Dowa Electronics Materials Co Ltd 半導体素子集合体、半導体素子およびこれらの製造方法

Also Published As

Publication number Publication date
KR20120057656A (ko) 2012-06-05
JP2011082362A (ja) 2011-04-21
TW201130154A (en) 2011-09-01
CN102576781A (zh) 2012-07-11
US20120199873A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
TWI500184B (zh) 發光二極體及其製造方法
WO2011043240A1 (ja) 発光ダイオード用金属基板、発光ダイオード及びその製造方法
TWI497758B (zh) 發光二極體、發光二極體之製造方法、發光二極體燈及照明裝置
TWI600182B (zh) 發光二極體及其製造方法
JP3643225B2 (ja) 光半導体チップ
WO2010095361A1 (ja) 発光ダイオード、発光ダイオードランプ及び発光ダイオードの製造方法
KR101290836B1 (ko) 발광 다이오드 및 그의 제조 방법, 및 발광 다이오드 램프
TWI478389B (zh) 發光二極體及其製造方法
JP2013070111A (ja) 半導体発光素子
WO2006082687A1 (ja) GaN系発光ダイオードおよび発光装置
TW201338206A (zh) 發光二極體及其製造方法
WO2012137769A1 (ja) 発光ダイオード、発光ダイオードランプ及び照明装置
JP5605033B2 (ja) 発光ダイオードの製造方法、切断方法及び発光ダイオード
JP4451683B2 (ja) 半導体発光素子、その製造方法および発光ダイオード
TWI414076B (zh) Manufacturing method of light-emitting element and light-emitting element
JP2012222033A (ja) 発光ダイオードの製造方法、切断方法及び発光ダイオード
JP2005123530A (ja) 発光素子の製造方法
JP5605032B2 (ja) 発光ダイオードの製造方法、切断方法及び発光ダイオード
KR101526566B1 (ko) 수직구조 그룹 3족 질화물계 반도체 발광다이오드 소자 및제조방법
JP2012129249A (ja) 発光ダイオード、発光ダイオードランプ及び発光ダイオードの製造方法
JP2004235506A (ja) 発光素子及び発光素子の製造方法
JP2010123861A (ja) 貼り合わせ基板の製造方法、発光ダイオードの製造方法及び発光ダイオード

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044703.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13500479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127010166

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10821911

Country of ref document: EP

Kind code of ref document: A1