WO2011041947A1 - 位置侦测的方法与装置 - Google Patents

位置侦测的方法与装置 Download PDF

Info

Publication number
WO2011041947A1
WO2011041947A1 PCT/CN2010/001561 CN2010001561W WO2011041947A1 WO 2011041947 A1 WO2011041947 A1 WO 2011041947A1 CN 2010001561 W CN2010001561 W CN 2010001561W WO 2011041947 A1 WO2011041947 A1 WO 2011041947A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
dimensional
sensing information
dimensional position
signal
Prior art date
Application number
PCT/CN2010/001561
Other languages
English (en)
French (fr)
Inventor
张钦富
李政翰
唐启豪
何顺隆
Original Assignee
禾瑞亚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2010105026832A priority Critical patent/CN102043512B/zh
Priority to US12/923,808 priority patent/US8570289B2/en
Application filed by 禾瑞亚科技股份有限公司 filed Critical 禾瑞亚科技股份有限公司
Priority to TW099134311A priority patent/TWI434201B/zh
Priority to TW099134335A priority patent/TWI407359B/zh
Priority to EP10821556.7A priority patent/EP2511804A4/en
Priority to CN2010105100402A priority patent/CN102043556B/zh
Priority to TW099134312A priority patent/TWI457795B/zh
Priority to CN201010502706XA priority patent/CN102043514B/zh
Priority to CN2010105100703A priority patent/CN102043557B/zh
Priority to CN2010105099960A priority patent/CN102043524B/zh
Priority to US12/923,811 priority patent/US9689906B2/en
Priority to TW099134336A priority patent/TWI407347B/zh
Priority to PCT/CN2010/001561 priority patent/WO2011041947A1/zh
Publication of WO2011041947A1 publication Critical patent/WO2011041947A1/zh
Priority to US13/239,959 priority patent/US8564564B2/en
Priority to US13/307,408 priority patent/US8471826B2/en
Priority to US14/030,418 priority patent/US8970551B2/en
Priority to US14/033,872 priority patent/US8970552B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires

Definitions

  • the present invention relates to a method and apparatus for position detection, and more particularly to a method and apparatus for position detection using both mutual capacitance detection and self capacitance detection. Background technique
  • Touch Di splay has been widely used in many electronic devices. It is common to use a Touch Sensing Panel to define a two-dimensional touch area on the touch display. Scanning the vertical and horizontal axes of the touchpad to obtain sensing information (Sens ing Information) to determine the touch or proximity of an external object (such as a finger) on the touch screen, such as that provided by US Pat. No. 4,639,720. A capacitive touch display.
  • the sensing information can be converted into a plurality of continuous signal values by an analog-to-digital converter (Analog-to-Digital Converter, ADC), by comparing the changes of these signal values before or after the external object touches or approaches. , to determine where the external object touches or is closest to the touch screen.
  • ADC Analog-to-Digital Converter
  • the controller that controls the touch screen first obtains sensing information when no external object is touched or approached, as a base l ine.
  • each of the conductive strips corresponds to a respective reference value.
  • the controller determines whether there is an external object approaching or touching by judging the comparison between the subsequent sensing information and the reference value, and further determining the position of the external object. For example, when the external object is not approached or touched, the subsequent sensing information is zero or approaches zero with respect to the reference value, and is determined by whether the sensing information is zero or close to zero relative to the reference value. Whether there are external objects approaching or touching.
  • FIG. 1A when an external object 12 (such as a finger) touches or approaches the sensing device 120 of the touch display 10, the sensing information of the sensor 140 in an axial direction (such as the X-axis) is converted.
  • the signal value shown in FIG. 1B corresponds to the shape of the finger, and the signal value presents a waveform or a fingertip, and the position of the peak 14 on the fingertip represents the finger touch or Close location.
  • the plurality of sensors of the touch panel are not densely arranged, that is, there are gaps between the sensors, as shown in FIG. 5A (taking a single dimension as an example). Therefore, when the finger is pressed on the fourth sensor of the touch panel, the corresponding touch-related sensing information (solid line) is detected. At this time, the value of the fourth detected signal is the maximum value, which is also the peak value of the touch sensing information.
  • the finger gradually moves to the right, it is pressed to the position where no sensor is set, such as between the 4th sensor and the 5th sensor.
  • the touch-related sensing information detected at this time is as shown by the dotted line, and the peak value of the touch-sensitive sensing information cannot be directly detected by the sensor, but is calculated by the position detection.
  • the peak position of the waveform Since the sensor is non-densely placed, when the finger moves on the touch panel at a speed of a certain dimension (X direction or Y direction), the touch The control panel will present the moving lines of the finger track at a non-equal speed.
  • the main purpose of the present invention is to overcome the defects of the existing touch display and provide a new method and device for position detection.
  • the technical problem to be solved is to perform mutual capacitance based on the result of self-capacitance detection. Detection, to reduce the misjudgment caused by the proximity of the touch position, is very suitable for practical use.
  • Another object of the present invention is to provide a new method and apparatus for position detection by overcoming the defects of the existing touch display, and the technical problem to be solved is to mutually interact according to the result of mutual capacitance detection. Capacitive detection to detect more accurate locations.
  • a further object of the present invention is to provide a new method and apparatus for position detection by overcoming the defects of the existing touch display, and the technical problem to be solved is to ignore or filter out the self-capacitance detection. With a wide range of touches, you can achieve the effect of palm neglect when writing with a hand-held pen.
  • a method for position detection according to the present invention includes: providing a sensing device including a plurality of sensors, wherein the sensor includes a plurality of first sensors and a plurality of second sensors, The first sensor and the second sensor overlap the plurality of overlapping points; and the self-capacitance detection determines, according to the signal of the first sensor, at least one dimension corresponding to the at least one external object And determining, by means of mutual capacitance detection, at least one second one-dimensional position corresponding to the at least one first-dimensional position according to the signal of the second sensor.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the foregoing method for position detection further includes: providing at least one two-dimensional position according to at least one second one-dimensional position corresponding to the at least one first-dimension position.
  • the method for position detection further includes: determining, by mutual capacitance detection, at least one third-dimensional position corresponding to the at least one second-dimensional position according to the signal of the first sensor; Providing at least one two-dimensional position at the at least one third one-dimensional position of the at least one second one-dimensional position.
  • the method for position detection further includes: determining, according to the at least one first-dimensional position, at least one touch-related first sensor; and determining, according to the at least one second-dimensional position At least one touch related second sensor is present.
  • the method for position detection further includes: when the number of the second sensors related to the at least one touch is greater than the first sensor associated with the at least one touch, according to the at least one first one At least one second dimension location of the dimensional location provides at least one two dimensional location.
  • the method further includes: performing mutual capacitance detection according to the foregoing The signal of the first sensor determines at least one third one-dimensional position corresponding to the at least one second one-dimensional position; and is provided according to at least one third-dimensional position corresponding to the at least one second one-dimensional position At least one two-dimensional position.
  • the self-capacitance detection is provided to the first sensor by a driving signal, and the signal of the first sensor is provided.
  • the method for detecting a position comprises: providing a signal of the second sensor when each of the first sensors is provided with a driving signal; or When the one of the two sensors is provided with the driving signal, the method for detecting the position of the first sensor is provided, wherein the mutual capacitance detection further comprises: selecting according to the at least one first-dimension position And outputting at least one first sensor that is provided with the driving signal; and selecting at least one second sensor that is provided with the driving signal according to the at least one second one-dimensional position.
  • the method for detecting a position comprises: determining, according to a signal change of the sensor, at least a fourth one-dimensional position and at least a fifth one-dimensional position corresponding to the at least one external object; Wherein the at least one fourth one-dimensional position and the at least one fifth one-dimensional position are the plurality of the at least one first-dimensional position, and when the at least one fourth one-dimensional position and the at least one fifth one When the number of the dimensional positions is the same, the at least one fourth one dimensional position and one of the at least one fifth one dimensional position are used as the at least one first one dimensional position.
  • a device for detecting a position according to the present invention includes: a sensing device including a plurality of sensors, wherein the sensor includes a plurality of first sensors and a plurality of second sensors, a sensor and the second sensor overlap at a plurality of overlapping points; and a controller performing the following operations: determining, by the self-capacitance detection, the signal corresponding to the first sensor to correspond to at least one external At least one first-dimensional position of the object; and mutual capacitance detection to determine at least one second one-dimensional position corresponding to the at least one first-dimensional position according to the signal of the second sensor.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the aforementioned position detecting device wherein the controller further comprises the following operations:
  • the volumetric detection determines at least one third one-dimensional position corresponding to the at least one second one-dimensional position according to the signal of the first sensor; and at least one according to the position corresponding to the at least one second one-dimensional position
  • the Trinity position provides at least one two-dimensional position.
  • the device for position detection wherein the controller further comprises: performing, according to the at least one first-dimensional position, determining at least one touch-related first sensor; and according to the at least one second dimension The position determines at least one touch associated second sensor.
  • controller further comprises: performing operation as follows: when the number of the second sensors associated with the at least one touch is greater than the first sensor associated with the at least one touch, according to the corresponding Providing at least one two-dimensional position at the at least one second one-dimensional position of the at least one first one-dimensional position.
  • the controller when the number of the at least one touch-related second sensor is not greater than the at least one touch-related first sensor, the controller further comprises: performing the following operations: The capacitive detection determines at least one third one-dimensional position corresponding to the at least one second one-dimensional position according to the signal of the first sensor; and according to at least one corresponding to the at least one second one-dimensional position The third dimension location provides at least one two-dimensional position.
  • the self-capacitance detection is provided to the first sensor by a driving signal, and the signal of the first sensor is provided.
  • the device for detecting a position comprises: respectively providing a signal of the second sensor when one of the first sensors is provided with a driving signal; or each of the foregoing When the one of the two sensors is provided with the driving signal, the apparatus for detecting the position of the first sensor is provided, wherein the mutual capacitance detection further comprises: selecting according to the at least one first dimension position And outputting at least one first sensor that is provided with the driving signal; and selecting at least one second sensor that is provided with the driving signal according to the at least one second one-dimensional position.
  • the device for detecting a position wherein the self-capacitance detection comprises: determining, according to a signal change of the sensor, at least a fourth one-dimensional position and at least a fifth one-dimensional position corresponding to the at least one external object;
  • the at least one fourth one-dimensional position and the at least one fifth one-dimensional position are the at least one first one-dimensional position, and the at least one fourth one-dimensional position and the at least one fifth one
  • the at least one fourth one dimensional position and one of the at least one fifth one dimensional position are used as the at least one first one dimensional position.
  • a method for ignoring position detection of a wide range of touches includes: providing a sensing device including a plurality of sensors, wherein the sensor includes a plurality of first sensors and a plurality of a second sensor, the first sensor and the second sensor overlap a plurality of overlapping points; and self-capacitance detection obtains a first-dimensional sensing information by the signal of the first sensor Obtaining a second one-dimensional sensing information from the signal of the second sensor by self-capacitance detection; according to the first-dimensional sense And the range of each touch-related sensing information on the second-dimensional sensing information determines the detected touch-related sensing information, wherein each touch-related sensing information corresponds to at least one external object Touching or approaching; analyzing at least the dimension position according to each detected touch-related sensing information; and performing mutual capacitance sensing according to each one-dimensional position to analyze at least one two-dimensional position.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the method for ignoring the position detection of the wide range of touches, wherein the self-capacitance detection comprises: providing a driving signal to the first sensor, and detecting the first sensor and the at least one external object a change in the capacitively coupled signal to obtain the first-dimensional sensed information; and providing the drive signal to the second sensor, and detecting the second sensor and the at least one external object A change in the capacitively coupled signal to obtain the second one-dimensional sensed information.
  • the method for ignoring the position detection of the large-scale touch comprises: providing a driving signal to one of the first sensors as a first signal source, and the second sensor is Detecting a change in a signal of the first signal source, the capacitive coupling between the first-dimensional sensor and the at least one external object; or providing the driving signal to one of the second sensors as the first signal Source, and detecting, by the first sensor, a change in a signal of the first signal source, the second one-dimensional sensor and the at least one external object capacitively coupled.
  • the mutual capacitance detection further comprises: selecting, by the one of the sensors, the sensor that is provided with the driving signal according to the at least one-dimensional position;
  • a sensor selected according to the one-dimensional position is configured to generate a third one-dimensional sensing information according to the signal of the first sensor or the second sensor, respectively, according to the driving signal value;
  • the dimension sensing information analyzes at least one first-dimensional position corresponding to each one-dimensional position; and provides at least one two-dimensional position according to at least one first-dimensional position corresponding to each one-dimensional position.
  • the sensor provided with the driving signal Is the first sensor closest to the one-dimensional position
  • the sensing of the driving signal is provided
  • the device is the second sensor closest to the one dimensional position.
  • the mutual capacitance detection further comprises: selecting, by the one of the sensors, the sensor that is provided with the driving signal according to the at least one-dimensional position;
  • a sensor selected according to the one-dimensional position is configured to generate a third one-dimensional sensing information according to the signal of the first sensor or the second sensor, respectively, according to the driving signal value;
  • the dimension sensing information analyzes at least one first one-dimensional position; and the sensing of the driving signal is selected by one of the sensors according to each of the first-dimensional positions And a fourth one-dimensional sensing information is obtained by the first sensor or the second sensor respectively when each of the sensors selected according to each of the first one-dimensional positions is provided with the driving signal value; And analyzing, according to the fourth one-dimensional sensing information, at least one second one-dimensional position corresponding to each of the first-dimensional position positions; and providing at least one second one-dimensional position corresponding to each of the first one-dimensional positions A two-dimensional position.
  • the foregoing method for ignoring position detection of a wide range of touches is provided when the one-dimensional position or the first-dimensional position is analyzed by the touch-related sensing information of the first-dimensional sensing information.
  • the sensor of the driving signal is the first sensor closest to the one-dimensional position, and when the one-dimensional position or the first-dimensional position is the touch-related sensing information of the second-dimensional sensing information When analyzed, the sensor that is provided with the drive signal is the second sensor that is closest to the one-dimensional position.
  • the foregoing method for ignoring position detection of a wide range of touches wherein the first-dimensional sensing information and the second-dimensional sensing information are respectively composed of a plurality of differences, wherein each difference is based on the sensor
  • the signal of a pair of sensors is generated.
  • the foregoing method for ignoring position detection of a wide range of touches wherein the first-dimensional sensing information and the second-dimensional sensing information are respectively composed of a plurality of double differences, wherein each double difference is based on the above feeling Signals are generated by three adjacent or non-adjacent sensors of the detector.
  • An apparatus for ignoring position detection of a wide range of touches includes: a sensing device including a plurality of sensors, wherein the sensor includes a plurality of first sensors and a plurality of second a sensor, the first sensor and the second sensor overlap a plurality of overlapping points; and a controller performs the following operations: self-capacitance detection is obtained by the signal of the first sensor a first-dimensional sensing information; the second-dimensional sensing information is obtained by the self-capacitance detection by the signal of the second sensor; according to the first-dimensional sensing information and the second dimensional sense The range of each touch-related sensing information on the measurement information determines the detected touch-related sensing information, wherein each touch-related sensing information corresponds to the touch or proximity of at least one external object; The detected touch-related sensing information analyzes at least the dimensional position; and performs mutual capacitance sensing according to each one-dimensional position to analyze at
  • the device for ignoring the position detection of the large-scale touch wherein the self-capacitance detection comprises: providing the driving signal to the first sensor, and detecting the first sensor and the at least one external object a change in the capacitively coupled signal to obtain the first-dimensional sensed information; and providing the drive signal to the second sensor, and detecting the second sensor and the at least one external object a change in the capacitively coupled signal to obtain the second one-dimensional sense News.
  • the device for ignoring the position detection of the large-scale touch wherein the mutual capacitance detection comprises: providing a driving signal to one of the first sensors as a first signal source, and the second sensor is Detecting a change in a signal of the first signal source, the capacitive coupling between the first-dimensional sensor and the at least one external object; or providing the driving signal to one of the second sensors as the first signal Source, and detecting, by the first sensor, a change in a signal of the first signal source, the second one-dimensional sensor and the at least one external object capacitively coupled.
  • the device for ignoring position detection of a wide range of touches wherein the mutual capacitance detection further comprises: selecting, by the one of the sensors, the sensor provided with the driving signal according to the at least one-dimensional position; A sensor selected according to the one-dimensional position is configured to generate a third one-dimensional sensing information according to the signal of the first sensor or the second sensor, respectively, according to the driving signal value; The dimension sensing information analyzes at least one first one-dimensional position corresponding to each one-dimensional position; and provides at least one two-dimensional position according to at least one first one-dimensional position corresponding to each one-dimensional position.
  • the foregoing device for ignoring the position detection of the large-scale touch, when the one-dimensional position is analyzed by the touch-related sensing information of the first-dimensional sensing information, the sensor provided with the driving signal Is the first sensor closest to the one-dimensional position, and when the one-dimensional position is analyzed by the touch-related sensing information of the second one-dimensional sensing information, the sensing of the driving signal is provided
  • the device is the second sensor closest to the one dimensional position.
  • the device for ignoring position detection of a wide range of touches further comprises: selecting, by the one of the sensors, the sensor provided with the driving signal according to the at least one-dimensional position; A sensor selected according to the one-dimensional position is configured to generate a third one-dimensional sensing information according to the signal of the first sensor or the second sensor, respectively, according to the driving signal value;
  • the dimension sensing information analyzes at least one first-dimensional position; and each of the first-dimensional positions is respectively selected by one of the sensors to be provided with the driving signal; each of the first ones is based on each
  • the fourth-dimensional sensing information is obtained by the first-time sensor or the second sensor, respectively, when the sensor of the dimension position is provided, and the fourth-dimensional sensing information is analyzed according to the fourth-dimensional sensing information. Corresponding to at least one second one-dimensional position of each of the first-dimensional positions; and providing at least one second according to at least one second one-dimensional position corresponding to each of the first one-dimensional positions Dimension location.
  • the foregoing device for ignoring the position detection of the large-scale touch is provided when the one-dimensional position or the first-dimensional position is analyzed by the touch-related sensing information of the first-dimensional sensing information.
  • the sensor of the driving signal is the first sensor closest to the one-dimensional position, and when the one-dimensional position or the first-dimensional position is the touch-related sensing information of the second-dimensional sensing information When analyzed, the sensor that is provided with the drive signal is the second sensor that is closest to the one-dimensional position.
  • the foregoing position detecting device for ignoring a wide range of touches, wherein the first-dimensional sensing information and the second-dimensional sensing information are respectively composed of a plurality of differences, wherein each difference is based on the sensor
  • the signal of a pair of sensors is generated.
  • the foregoing device for ignoring position detection of a large range of touches, wherein the first-dimensional sensing information and the second-dimensional sensing information are respectively composed of a plurality of double differences, wherein each of the Chinese differences is based on the above feeling Signals are generated by three adjacent or non-adjacent sensors of the detector.
  • the present invention has significant advantages and advantageous effects over the prior art. From the above, in order to achieve the above object, the present invention provides a method and apparatus for position detection.
  • Self-capacitance detection is performed on the horizontal and vertical axes of the sensing device to provide self-capacitance detection.
  • the first mutual capacitance detection is performed based on the result of self-capacitance detection to determine the first-dimensional position.
  • a second mutual capacitance detection is performed based on the result of the first mutual capacitance detection to determine the second dimension position.
  • the first one-dimensional position and the second one-dimensional position may constitute a two-dimensional position.
  • the touch-related sensing information corresponding to a wide range may be filtered or ignored, Exclude the touch of the palm
  • the touch panel displays the movement of the finger track at a non-equal speed. line.
  • the present invention has at least the following advantages and benefits:
  • mutual capacitance detection based on the result of self-capacitance detection can avoid the problem that self-capacitance detection is difficult to judge the touch that is too close;
  • mutual capacitance detection is performed to detect a more accurate position, which can reduce the nonlinear movement of the touch path;
  • the present invention provides a method and apparatus for converting sensing information.
  • the first detection of the first touch-related sensing information of the first sensing information is performed, and then the at least one first touch sensing information is replaced by the corresponding second touch-related sensing information, respectively.
  • the invention has significant progress in technology and has obvious positive effects, and is a novel, progressive and practical new design.
  • FIG. 1A is a schematic diagram of a touch device of the prior art
  • Figure 1B is a schematic diagram of signal values of prior art
  • Figure 1C is a schematic illustration of the difference values in accordance with the present invention.
  • 1D and 1E are schematic views of double difference values in accordance with the present invention.
  • 1F is a schematic structural view of a sensing device according to the present invention.
  • 1G is a functional block diagram of a computing system in accordance with the present invention.
  • FIG. 2A and 2B are schematic structural diagrams of a driving/detecting unit and a sensing device according to the present invention
  • FIG. 3A is a functional block diagram of a detecting unit according to the present invention
  • 3B to 3D are circuit diagrams of a detector according to the present invention.
  • FIG. 3A to FIG. 3J are schematic diagrams showing the connection between the detection circuit and the analog to digital circuit according to the present invention.
  • FIG. 4A is a schematic diagram of the binarization difference detection position according to the present invention.
  • 4B to 4D are schematic views of detecting a centroid position according to the present invention.
  • 5A to 5G are schematic diagrams showing a nonlinear phenomenon of a touch trajectory
  • FIGS. 6A-6B are schematic diagrams showing examples of position detection according to the present invention.
  • FIGS. 6C is a schematic diagram showing an example of position detection in which a wide range of touches are ignored according to the present invention
  • FIGS. 7A to 7D are schematic flowcharts of a first embodiment according to the present invention
  • FIGS. 8A to 8C are diagrams according to the present invention.
  • Host 171 Central Processing Unit
  • the sensing information may be provided by a touch device (Touch Sensing Devi ce), indicating a state of one dimension, two dimensions or multiple dimensions on the touch device, and the sensing information may be one Or a plurality of sensors, converted to a plurality of continuous signal values via one or more analog to digital converters to represent the amount of detected charge, current, voltage, capacitance, impedance, or other electrical characteristic Or change the amount.
  • the sensing information may be performed in a rotating, sequential or parallel manner during acquisition or transmission, and may be combined into one or more signals, which can be easily inferred by those skilled in the art.
  • the sensing information according to the present invention includes, but is not limited to, a signal of a sensor, a signal of a sensor minus a reference value (such as a signal when not touched, or an initial signal).
  • a reference value such as a signal when not touched, or an initial signal.
  • the sensing information may exist in a signal state, any state recorded by the storage medium (such as a scratchpad, a memory, a magnetic disk, an optical disk) converted by an electrical signal or convertible into an electrical signal, including but not Limited to analog or digital form.
  • the sensing information can be provided by two one-dimensional sensing information in different axial directions.
  • Two one-dimensional sensing information can be used to indicate sensing information on the first axial direction (such as the longitudinal axis) and the second axial direction (such as the horizontal axis) on the touch device, which can be used for the first One axial and second axial position detection Measured to provide a one-dimensional position in the first axial direction and the second axial direction, respectively, or to further form a two-dimensional position.
  • the two one-dimensional sensing information can also be used for triangulation based on the distance between the sensors to detect the two-dimensional position on the touch device.
  • the sensing information may be provided by a two-dimensional sensing information, and the two-dimensional sensing information is composed of a plurality of one-dimensional sensing information coaxially upward.
  • a two-dimensional sensing information is provided to represent a signal distribution on a two-dimensional plane, for example, a plurality of one-dimensional sensing information in the longitudinal axis or a plurality of one-dimensional sensing information in the horizontal axis to represent a signal.
  • the array s igna l matr ix
  • the sensing area on the touch device includes a first two-dimensional detection range detected by the at least one first sensor and a second detected by the at least one second sensor.
  • the overlapping range of the two-dimensional detection range is an overlapping range of three or more two-dimensionality detection ranges.
  • the detection range of a single sensor is a two-dimensional detection range, such as a camera-based opt ica l detect ion sensor (such as a CCD or CMOS sensor). Or a surface acoustic wave detection type of piezoelectric detector, which obtains one-dimensional sensing information from the two-dimensional detection range.
  • the one-dimensional sensing information may be composed of information sensed continuously for a plurality of time points, and the different points correspond to different angles, positions or ranges.
  • the one-dimensional sensing information can be generated based on images acquired in a time interval (such as images obtained by a CCD or CMOS sensor).
  • the two-dimensional detection range is composed of detection ranges of multiple sensors, such as each of the infrared-detected light receptors, the capacitive detection or the resistive detection of the line or strip.
  • the detection range of the shaped conductive strip or the electromagnetically detected U-shaped coil is a fan-shaped or strip-shaped detection range toward an axial direction, and a plurality of senses arranged on the same axial direction on a line segment (straight line or arc)
  • the detection range of the detector can constitute a two-dimensional detection range of the axis, such as a detection range of a plane or a curved surface constituting a rectangle or a sector.
  • the sensing area on the touch device includes a two-dimensional range detected by the plurality of sensors in the first axial direction and the second axial direction.
  • a self-capacitance detection (Se l f-capaci ive detect ion) provides a driving signal to the plurality of first sensors, and senses the first two-dimensional detection range capacitance of the first sensors. A coupled signal or change to obtain a first-dimensional sensed information.
  • a driving signal is also provided to the plurality of second sensors, and signals or changes of the second two-dimensional detection range of the second sensors are capacitively coupled to obtain a second one-dimensional sensing. News.
  • the sensing area on the touch device includes a plurality of one-dimensional sensing information detected by a plurality of sensors in a two-dimensional range to form a two-dimensional sensing information.
  • the signal source sequentially applies the driving signal to a first axial upper sensor, sequentially detecting at least one sensor in the second axial direction or simultaneously detecting the second axial direction (partially Or all of the sensor signals, the two-dimensional sensing information in the axial direction can be obtained, wherein the sensor is at least one adjacent to the second axis
  • the sensor or second axis is at least one non-adjacent but adjacent to the sensor.
  • a two-dimensional sensing information can be constructed by collecting one-dimensional sensing information corresponding to each of the first axial sensors.
  • the two-dimensional sensing information can be regarded as an image.
  • the present invention is applicable to touch sensitivities, such as with or with force.
  • the sensing information is a continuous signal at different points in time, that is, a composite signal continuously detected by one or more sensors at the same time.
  • the touch device may be electromagnetically, continuously scanning the coil on the electromagnetic touch device to emit electromagnetic waves, and detecting the sensing information by one or more sensors on an electromagnetic pen, continuously compounding into one The signal is then converted to a plurality of continuous signal values by an analog to digital converter.
  • the electromagnetic pen may emit electromagnetic waves or reflect electromagnetic waves from the electromagnetic touch device, and the sensing information may be obtained by a plurality of sensors (coils) on the touch device.
  • Touch relat ted sens ing informa t ion
  • an external object such as a finger
  • the sensing information of the corresponding position that the external object touches or approaches generates corresponding electric power.
  • sexual characteristics or changes, electrical properties are stronger or vary more closely than the center of the external object (such as centroid, center of gravity or geometric center).
  • continuous sensing information can be considered to consist of a plurality of consecutive values, and the center of the external object may correspond to a value or a value.
  • a plurality of consecutive values may be continuous or temporally continuous in respective spaces.
  • the first one-dimensional sensing information provided by the present invention is represented by a plurality of consecutive signal values, which may be signal values detected by multiple sensors in a time interval, or a single sensor in a continuous time interval.
  • the detected signal value may also be a signal value detected by a single sensor corresponding to different detection positions in a single time interval.
  • the signals of the respective individual sensors, time intervals or positions may be converted into signal values in turn, or some or all of the sensing information may be obtained and then analyzed. Signal value.
  • the continuous signal value of the one-dimensional sensing information may be as shown in FIG.
  • the touch position is the peak 14 of the sensing information of the corresponding external object, wherein the peak 14 may fall between the two signal values.
  • the present invention does not limit the form in which the sensing information exists, and the signal value can be regarded as another form of the signal of the sensor.
  • an embodiment of a signal type is known in the form of a signal value type. 5 ' , , P ° ⁇
  • the second one-dimensional sensing information provided by the present invention is presented by a plurality of consecutive differences, each of which is a difference between a pair of signal values and a plurality of consecutive differences with respect to the signal value.
  • the sensed information presented can be regarded as differential information (differential sensing inf orma ion).
  • the acquisition of the differential sensing information may be directly obtained during sensing, such as acquiring multiple signals simultaneously or continuously, each difference being based on a difference corresponding to a pair of sensors, time intervals or positions.
  • the signal is generated.
  • the differential sensing information may also be generated after the original sensing information including multiple signal values is generated first, and then based on the original sensing information.
  • the present invention does not limit the form in which the sensing information exists, and the difference can be regarded as another form of the differential signal.
  • the present invention will be described in the following description in the form of a differential type, and those skilled in the art can infer the embodiment of the differential signal type according to the embodiment of the difference type.
  • the difference may be a difference between a pair of adjacent or non-adjacent signal values, such as a difference between each signal value and a previous signal value, or each signal value is followed by The difference between a signal value.
  • the difference may be a difference between two adjacent signal values.
  • the continuous difference of the one-dimensional sensing information may be as shown in FIG. 1C, and the external object position is the zero-crossing point 15 of the sensing information of the corresponding external object, wherein the zero-crossing place 15 may fall between the two signal values.
  • the corresponding position of each difference is in the middle of the corresponding position of the two signal values.
  • the third one-dimensional sensing information provided by the present invention is presented by a plurality of consecutive double differences (D ua 1 Differences), and each double difference value may be a first pair of signals with respect to the above signal value or difference value.
  • the sum or difference of the difference between the value and the difference between a second pair of signal values that is, the difference or difference between the two pairs of signal values.
  • the two pairs of signal values sequentially include a first signal value, a second signal value, a third signal value, and a fourth signal value
  • the Han difference value corresponding to the four signal values is (the second signal Value - first signal value) + (third signal value - fourth signal value), or (second signal value - first signal value) - (fourth signal value - third signal value).
  • the sensing information composed of a plurality of consecutive double differences can be regarded as a dua l-different ia l sensing informat ion.
  • the difference value is not limited to be generated after the signal value or the difference is generated, or the sum or difference of the subtraction of the two pairs of signals may be separately completed when the sensing information is provided, providing similarity or Equivalent to a double difference signal of the sum or difference of the difference of the signal values.
  • the present invention does not limit the form in which the sensing information exists, and the double difference can be regarded as another form of the double differential signal of the sensor.
  • the two pairs of signal values are composed of three signal values that are adjacent or not adjacent.
  • the two pairs of signal values sequentially include a first signal value, a second signal value, and a third signal value, and the double difference corresponding to the three signal values is (second signal value - first signal value) ) + (second signal value - third signal value).
  • the continuous double difference value of the one-dimensional sensing information may be as shown in FIG. 1D, wherein the external object position is A central peak 16 of the sensed information of the corresponding external object, wherein the central peak 16 may fall between the two signal values.
  • the continuous double difference value of the one-dimensional sensing information may be as shown in FIG. 1E, wherein the external object position
  • the central peak 17 of the sensed information for the corresponding external object may have a central peak 17 that falls between the two signal values.
  • the sensing information of the corresponding individual sensor, time interval or position may be a signal detected by the sensor, and when the signal is analog, it may be converted into a digital signal value via an analog to digital converter. Therefore, the above difference may be a value of a difference between a pair of signals, for example, a value obtained by subtracting a pair of signals by a differential amplifier. Similarly, the double difference value may be a value obtained by subtracting (or subtracting) the two pairs of signals by a differential amplifier.
  • the difference and double difference described in the present invention include, but are not limited to, generation by signal or signal value, and also include recording in hardware or software implementation (electrical recording, magnetic recording). , optical recording), the temporary state of the signal or signal value.
  • the sensing information may be a signal on the sensor or between the sensors, a differential signal (such as a pair of signal differences), a double differential signal (such as a sum or difference of two pairs of signal differences), a signal value, a difference
  • the double difference (signal, difference, double difference after analog to digital) is another form of existence. Since the signal and signal values, the differential signal and the difference, the differential signal and the double difference can be the presentation of the sensing information at different stages.
  • the touch-related sensing information generally refers to sensing information corresponding to an external object touching or approaching, such as original touch-related sensing information, differential touch-related sensing. Information, double differential touch related sensing information.
  • the zero crossing is located between at least a positive value and at least a negative value, that is, between a pair of positive and negative values (between a pa ir Of pos it ive and nega t ive va lues).
  • a pair of positive and negative values between a pa ir Of pos it ive and nega t ive va lues.
  • the difference or double difference corresponding to the proximity or touch of an external object is an alternating combination of multiple positive values and multiple negative values.
  • the zero intersection between positive and negative values may be At least a zero value or between two values.
  • the touch-related signal value is a plurality of consecutive non-zero values, or may be a non-phase Adjacent to other non-zero values of independent non-zero values.
  • an independent non-zero value that is not adjacent to other non-zero values may be due to noise and needs to be identified or excluded by a threshold or other mechanism.
  • the values falling within a zero value range are regarded as zero values, correspondingly
  • the difference between the proximity and the touch of the external object or the double difference is an alternating combination of a value of more than one positive threshold and a value less than a negative threshold, and a value greater than a positive threshold and a value less than a negative threshold
  • the zero crossing may be at least a zero value or between two values.
  • the differential touch-related sensing information and the double-difference touch-related sensing information are alternating combinations of at least one positive value and at least one negative value at the zero-crossing, wherein the zero-crossing may be at least one zero.
  • the value is either between positive and negative values.
  • the present invention compares the differential touch-related sensing information into a double differential touch-related sensing information in which a plurality of consecutive zero values between positive and negative values are also regarded as zero intersection, or one of the zero values is zero. At the office.
  • the touch-related sensing information preset is started by at least one positive value or a negative value, and the at least one positive or negative value is initially searched for at least one positive including zero intersection.
  • An alternating combination of values and at least one negative value, wherein the zero crossing may be at least a zero value or between a positive value and a negative value.
  • the touch-related differential sensing information at least one positive value and at least one negative value are alternately combined as a pair "appears, and in the touch-related double differential sensing information, at least one positive value and at least one negative
  • the alternating combination of values occurs as a misalignment.
  • the touch-related sensed information is a continuous non-zero value, such as a plurality of consecutive non-zero signal values.
  • the at least one positive value can be regarded as a positive value set, including at least one positive value
  • the above-mentioned at least one negative value can be regarded as a negative value set, including at least one negative value.
  • the alternating combination described above may be a combination of two sets comprising a positive set and a negative set or a combination of more than three sets interleaved with a set of positive values and a set of negative values.
  • the present invention uses a capacitive touch device as an example, and those skilled in the art can easily infer that other applications are applied to resistive, infrared, and surface acoustic wave types.
  • the application of optical touch devices is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, touch devices, and those skilled in the art can easily infer that other applications are applied to resistive, infrared, and surface acoustic wave types.
  • the application of optical touch devices are examples of optical touch devices.
  • the present invention provides a position detecting device 100, including a sensing device 120, and a driving/detecting unit 130.
  • the sensing device 120 has a sensing layer.
  • a first sensing layer 120A and a second sensing layer 120B may be included.
  • the first sensing layer 120A and the second sensing layer 120B respectively have a plurality of sensors 140, wherein The plurality of first sensors 140A of one sensing layer 120A overlap the plurality of second sensors 140B of the second sensing layer 120B.
  • the plurality of first sensors 140A and the second sensors 140B may be disposed in a coplanar sensing layer.
  • the driving/detecting unit 130 generates a sensing information according to the signals of the plurality of sensors 140. For example, in the self-capacitance detection, the driven sensor 140 is sensed, and in the mutual capacitance detection, the partial sensor 140 that is not directly driven by the driving/detecting unit 130 is sensed.
  • the sensing device 120 may be disposed on the display 110.
  • the sensing device 120 and the display 110 may be provided with a shielding layer (not shown) or a shielding layer.
  • the position detecting device 100 of the present invention can be applied to a computing system, as shown in FIG. 1G, including a controller 160 and a host 170.
  • the controller includes a drive/detection unit 130 for operatively coupling the sensing device 120 (not shown).
  • the controller 160 can include a processor 161 that controls the driving/detecting unit 130 to generate sensing information, which can be stored in the memory 162 for access by the processor 161.
  • the host 170 constitutes a main body of the computing system, and mainly includes a middle processing unit 171, and a storage unit 173 for access by the central processing unit 171, and a display 110 for displaying the result of the operation.
  • the controller 160 includes a transmission interface with the host 170, and the controller transmits the data to the host through the transmission interface.
  • the transmission interface includes but is not limited to U ART, USB.
  • Various wired or wireless transmission interfaces such as I 2 C, Bluetooth, WiFi, etc.
  • the transmitted material may be a location (such as a coordinate), a recognition result (such as a gesture code), a command, a sensing information, or other information that the controller 160 can provide.
  • the sensing information may be the initial sensing information generated by the processor 161, and the host 170 performs position analysis, such as position analysis and gesture determination. , command identification, and more.
  • the sensing information may be analyzed by the processor 161 first, and the determined position, gesture, command, etc., etc., may be submitted to the host 170.
  • the present invention includes, but is not limited to, the foregoing examples, and one of ordinary skill in the art will infer the interaction between other controllers 160 and the host 170.
  • the driving/detecting unit 130 may include a driving unit 130A and a detecting unit 130B.
  • the plurality of sensors 140 of the sensing device 120 are operatively coupled to the drive/detect unit 130 via a plurality of wires.
  • drive unit 130A and detection unit 130B are operatively coupled to sensor 140A via wires and operatively coupled to sensor 140B via wire W2, respectively.
  • the driving unit 130A drives or drives all of the sensors 104A in a first period of time via the wire W1, or may simultaneously drive the partial sensors 104A in stages.
  • 130B generates a first axial sensing information (one-dimensional sensing information) according to the signal of the sensor 104A via the wire W1.
  • the driving unit 1 30A drives or drives all of the sensors 104B in a second period via the wire W2, and may also drive the partial sensors 104B in stages, and the sensing unit 130B passes the wire W2.
  • Signal generation by detector 104B A second axial sensing information (one-dimensional sensing information).
  • the driving unit 130A alternately drives the sensor 104B in the first period via the wire W2, and each of the sensors 140B is driven by the detecting unit 130B.
  • the signal of the detector 104A generates one-dimensional sensing information corresponding to the first axial direction of the driven sensor, and the first-dimensional one-dimensional sensing information constitutes a first-dimensional one-dimensional sensing information (or An image).
  • the driving unit 130A drives the sensor 104A in turn during the second period via the wire W1.
  • the detecting unit 130B generates a corresponding signal according to the sensor 104B via the wire W2.
  • the second axial one-dimensional sensing information is used to form a second-dimensional one-dimensional sensing information (or an image) of the second axial direction of the driven sensor.
  • a signal may be provided between the driving unit 130A and the detecting unit 130B via the line 132 for synchronization, and the signal of the line 132 may be provided by the processor 160 described above.
  • the sensing device 120 may also generate two-dimensional sensing information only in a single axial direction.
  • the sensor 104B is driven by the wire W2 in turn, respectively, in each of the sensors 140B.
  • the detecting unit 130B When driving, the detecting unit 130B generates a one-dimensional sensing information corresponding to the driven sensor according to the signal of the sensor 104A via the wire W1, and the one-dimensional sensing information constitutes a two-dimensional sensing information (or an image) ).
  • the position detecting device 100 of the present invention may have the capability of generating two axial one-dimensional sensing information or two axial two-dimensional sensing information, or one dimension that generates two axial directions.
  • the ability to sense information and two-dimensionally sense information can also produce only uniaxial two-dimensional sensing information.
  • the present invention includes, but is not limited to, the above-described capacitive position detecting device, and those skilled in the art can easily infer other applications for resistive, infrared, surface acoustic wave, and optical touch devices.
  • the detecting unit 130B is operatively coupled to the sensing device via a wire (eg, W1), and the operative coupling may be achieved by a switching circuit 310.
  • the switching circuit may be one or more Combinations of electrical components such as tools, switches, etc., one of ordinary skill in the art can infer the application of other switching circuits.
  • the signal of the sensor 140 can be detected by a detecting circuit 320.
  • the sensing information SI can be generated through the analog digital circuit 330.
  • the sensing information SI may be an analog or digital type. In a preferred embodiment of the invention, the sensing information is a digital version.
  • the present invention includes, but is not limited to, the above examples, and one of ordinary skill in the art will appreciate that the detection circuit 320 and the analog to digital circuit 330 can be integrated into one or more circuits.
  • the detecting circuit 320 may be composed of one or more detectors, each of which receives at least one signal of the sensor 140 to generate an output, and the detector may be a detector as shown in FIG. 3B to FIG. 3D. 340, 350, 360 are shown.
  • the detection of the signal of the sensor 140 may be a product.
  • the taps are used to detect, and those skilled in the art will appreciate that other circuits such as analog to digital converters, such as voltage, current, capacitance, inductance, etc., can also be applied to the present invention.
  • the integrator can be implemented as an amplifier C int having an input (as shown by integrator 322 of FIG. 3B) or a pair of inputs (shown as integrator 324 of FIGS. 3C and 3D), and an output, output.
  • the signal may be a value that generates the sensing information SI via the analog to digital circuit 330. The generation of each value may be controlled by a reset signal, such as the reset signal of FIGS. 3B-3D.
  • the signal of the sensor 140 is an alternating current signal, which changes with a pair of half cycles, so the detection of the signal of the sensor 140 is also changed according to different half cycles, such as in the first half.
  • the signal of the period detection sensor 140 detects the reverse signal of the sensor 140 during the second half of the cycle, and vice versa. Therefore, the detection of the signal of the sensor 140 can be controlled by a synchronization signal. As shown in FIG. 3B to FIG. 3C, the synchronization signal and the signal of the sensor 140 can be synchronized or have the same period.
  • the reverse signal of 140 can be provided by an inverter Cinv.
  • the detection of the signal of the sensor 140 is detected by at least one predetermined period (or phase) of at least one period, and may be at least one period and a second period of the first half period.
  • the detection may be performed for at least one period of time, or may be detected only during the first half period or at least one period of the second half period.
  • at least one period of time during which a signal in a period is preferably scanned is used as a detection period, wherein the detection period is less interfered by noise than other periods.
  • the scanning of the detection period can be judged based on the detection of the signal of at least one of the sensors in each of the at least one period. After the detection period is judged, the detection of the signal of the sensor 140 is detected only during the detection period, and may be controlled by a signal, such as the enable signal in FIG. 3B to FIG. 3D.
  • the present invention generates a value of the sensing information SI according to the signal of the at least one sensor 140.
  • the sensing information SI is composed of a plurality of signal values.
  • an input 311 is operatively coupled to a sensor 140 to detect a signal, and a signal value of the sensing information SI is generated via the analog-to-digital circuit 330.
  • the sensing information SI is composed of a plurality of differences.
  • a pair of inputs 312, 313 are operatively coupled to a pair of sensors 140 to detect a differential signal, and a difference value of the sensing information SI is generated via the analog to digital circuit 330.
  • the sensing information SI is composed of a plurality of double differences.
  • Figure 3D shows. Three inputs 314, 315, 316 are operatively coupled to the three sensors 140 to detect a pair of differential signals, and then a pair of difference values of the sensing information SI are generated via the analog to digital circuit 330.
  • the double differential signal is generated based on the difference between a pair of differential signals, each of which is generated based on the signals of a pair of sensors.
  • the double differential signal may be generated according to signals of a first pair of sensors and a second pair of sensors, the first pair of senses
  • the detector is the first two of the three sensors
  • the second pair of sensors is the last two of the three sensors, three of which may be adjacent or Not adjacent.
  • the detection circuit 320 includes a plurality of detectors that simultaneously generate values of all or part of the sensing information SI.
  • the detecting circuit 320 may be composed of a plurality of detectors 340, 350 or 360, and the outputs of the detectors are converted by the analog-to-digital circuit 330 into the values of the sensing information SI. .
  • the analog-to-digital circuit 330 includes at least one analog-to-digital converter ADC.
  • Each of the analog-to-digital converters may generate the value of the sensing information SI according to the output of only one detector, as shown in FIG. 3E, FIG. 3G, and FIG.
  • the values of the sensing information SI may be generated by the outputs of the plurality of detectors in turn, as shown in FIG. 3F, FIG. 3H, and FIG. 3J.
  • the value of the sensing information SI may be generated in parallel or in sequence.
  • the value of the sensing information SI is sequence generated, which may be achieved by a switching circuit 370, for example, multiple The analog-to-digital converter alternately outputs the value of the sensing information SI, as shown in Table 1, FIG. 4B, FIG. 4D, or provides the output of the plurality of integrators to an analog-to-digital converter to generate the value of the sensing information SI. 3F, 3H, and 3J.
  • sensing information SI having a plurality of signal values is generated according to signals of a plurality of sensors, wherein each signal value is generated according to a signal of a sensor, as shown in FIG. 3B, FIG. 3E and FIG. 3F.
  • the sensing information SI having a plurality of differences is generated according to the signals of the plurality of sensors, wherein each difference is generated according to a signal of the pair of sensors, as shown in FIG. 3C. Figure 3G and Figure 3H.
  • the sensing information SI having a plurality of double differences is generated according to signals of the plurality of sensors, wherein each double difference is generated according to signals of the three sensors, such as 3D, 31 and 3J are shown.
  • the sensing information may be obtained by a dual differential circuit, and the double differential circuit includes: a first stage differential circuit, a second stage differential circuit and a measuring circuit, for example Figure 3D, Figure 31 or Figure 3J.
  • the first stage differential circuit includes one or more first subtractors (e.g., differential amplifiers in the switch circuit 325), and each of the first subtractors generates a first stage based on signals from a pair of the sensors Difference signal.
  • first subtractors e.g., differential amplifiers in the switch circuit 325
  • the second stage differential circuit includes one or more second subtractors (eg, integrators in the integrating circuit 324), and each of the second subtractors respectively depends on a pair of the first stages of the first level difference signals The difference signal produces a second level difference signal.
  • second subtractors eg, integrators in the integrating circuit 324.
  • the measuring circuit may be as shown in the analog-to-digital circuit of FIG. 3A, and may be composed of an integrator 324 and an analog conversion circuit ADC as shown in FIG. 3D, or a plurality of integrators 324 as shown in FIG. 31, and multiple simulations.
  • the conversion circuit ADC is composed of a switching circuit 370, and may also be composed of a plurality of integrators 324, a switching circuit 370 and an analog conversion circuit ADC as shown in FIG.
  • the measurement circuit measures the second level difference signals at one or more time points to generate the sensing information. For example, as shown in FIG. 3D or FIG. 3J, the second-order difference signals are measured at a plurality of time points, or as shown in FIG. 31. As shown, these second-order difference signals are measured at one time.
  • the signal subtraction and measurement are simultaneously performed by the differential integrator 324, wherein the signal measurement can further include generating a digital value by the analog conversion circuit ADC.
  • the foregoing related illustrations and descriptions are only one of the examples of the present invention, and are not intended to limit the present invention. Those skilled in the art may infer that signal subtraction and signal measurement may be performed by different circuits, for example, by a subtraction method. The device passes through an integrator and will not be described here.
  • each value of the sensing information is generated by one of the second level difference signals, and each of the second level difference signals is respectively determined by the pair of first level differences.
  • a first difference signal of the signal and a second difference signal are generated, wherein the first difference signal is generated according to signals of a first sensor and a second sensor of the sensors, respectively, and the second difference signal is respectively Signals are generated based on the signals of the second sensor and the third sensor of the sensors.
  • each value of the sensed information corresponds to the signal of three of the sensors, respectively.
  • the sensing information may be obtained by a differential circuit
  • the differential circuit includes: one or more subtractors and a measuring circuit, such as shown in FIG. 3C, FIG. 3G or FIG. 3H. .
  • each subtractor generates a difference signal based on the signals of a pair of sensors, respectively.
  • the measurement circuit measures the difference signals to generate a differential sensing information, wherein each value of the sensing information is a difference between a pair of values of the differential sensing information.
  • the measurement circuit measures the second level difference signals at one or more time points to generate the sensed information. For example, as shown in Fig. 3C or Fig. 3H, these second level difference signals are measured at a plurality of time points, or as shown in Fig. 3G, the second level difference signals are measured at a time point.
  • each value of the sensing information is a difference between a first difference and a second difference of the differential sensing information, wherein the first difference is a first sensor and a second according to the sensors respectively.
  • the signal of the sensor is generated, and the second difference is generated based on the signals of the second sensor and the third sensor of the sensors, respectively.
  • each value of the sensed information corresponds to the signal of three of these sensors, respectively.
  • the sensing information may be obtained by a measuring circuit as shown in Fig. 3B, Fig. 3E or Fig. 3F.
  • the measuring circuit measures the signals of the sensors at one or more time points to generate an initial sensing information, and the sensing information is generated according to the initial sensing information, wherein each value of the sensing information is respectively determined by initial sensing Three values of information are generated.
  • the measurement circuit measures the second level difference signals at one or more time points to generate the sensing information.
  • the second-order difference signals are measured at a plurality of time points, or as shown in FIG. 3E, the second-order difference signals are measured at a time point.
  • Each value of the sensing information is a difference or sum of a first difference value and a second difference value, wherein the first difference value is a difference between the first two values of the three values of the initial sensing information, and The difference is the difference between the last two values of the three values of the initial sensing information.
  • the three values of the initial sensing information are a first value, a second value, and a third value
  • each value of the sensing information is (second value - first value) - (first Three values - second value), (first value - second value) - (second value - third value), (second value - first value) + (second value - first value) or (first One value - second value) + (third value - second value).
  • Each value of the aforementioned initial sensing information is generated based on a signal of one of the sensors, in other words, each value of the sensing information corresponds to a signal of three of the sensors, respectively.
  • each touch-sensing information in the sensing information has two zero-crossing points, and the position that is approached or touched by the external object is determined based on each touch-related sensing information.
  • the touch-related sensing information is located at the foremost part or the last part of the sensing information, and the external object only partially approaches or touches the active area edge of the sensing device, instead of two At the zero-crossing office, an exception is required.
  • the aforementioned points in time may include, but are not limited to, portions that pass one or more frequencies, or one or more frequencies.
  • the acquisition and generation of the sensing information may be performed by the controller 160, and the double differential circuit, the differential circuit, and the measuring circuit may be implemented by the controller 160.
  • the senor may be composed of a plurality of conductive sheets and connecting wires, for example, a plurality of connecting wires connected in series with a series of diamond-shaped or square conductive sheets.
  • the conductive sheets of the first sensor 140A and the second sensor 140B may be arranged in different planes or may be arranged in the same plane.
  • the first and second sensing layers 120A, 120B are separated by an insulating layer or a piezoresistive layer, wherein the piezoresistive layer may be composed of an anisotropic conductive paste.
  • the conductive strips of the first sensor 140A and the second sensor 140B are substantially aligned on the same plane, and the connecting wires of the first sensor 140A straddle the connecting wires of the second sensor 140B.
  • a spacer may be disposed between the connecting wire of the first sensor 140A and the connecting wire of the second sensor 140B, and the pad may be made of an insulating material or a piezoresistive material.
  • each sensor senses a sensing range and is sensed by a plurality of sensors including a plurality of first sensors and a plurality of a second sensor, the sensing ranges between the first sensors are parallel, and the sensing ranges between the second sensors are parallel, and the parallel sensing ranges of the first and second sensors overlap to form a An array of overlapping regions.
  • the first and second sensors are two rows of infrared receivers arranged in a horizontal direction and a longitudinal direction, respectively, respectively sensing a parallel scanning range of direct and horizontal, and the straight and horizontal parallel scanning ranges are interlaced to form a cross.
  • Array of stacked areas are two rows of infrared receivers arranged in a horizontal direction and a longitudinal direction, respectively, respectively sensing a parallel scanning range of direct and horizontal, and the straight and horizontal parallel scanning ranges are interlaced to form a cross.
  • the parallel and horizontal parallel scan ranges described above are implemented by a plurality of overlapping sensors of capacitive or resistive type.
  • Conversation of Touch Sens iti ve Informa t ion The signal value, the difference value, and the double difference value of the above sensing information can be converted into each other.
  • continuous signal values are converted into continuous differences, each difference being a difference between a pair of adjacent or non-adjacent signal values.
  • continuous signal values are converted into continuous double differences, each of which is a difference sum or difference between two pairs of signal values.
  • a continuous difference value is converted into a continuous signal value, and each difference value is added to each of the preceding or following differences to generate a corresponding signal value, which constitutes a continuous Signal value.
  • the continuous difference is converted into a continuous double difference, and each double difference is a sum or difference of a pair of adjacent or non-adjacent differences.
  • the continuous double difference value is converted into a continuous difference value, and each double difference value is added to all the preceding or following double difference values to generate a corresponding difference value. Form a continuous difference.
  • continuous double difference values are converted into continuous signal values.
  • each double difference plus all previous double differences is used to generate a corresponding difference, which constitutes a continuous difference, and then subtracts all subsequent differences from each difference.
  • the total difference is subtracted from each of the double difference values to generate a corresponding difference, and a continuous difference is formed, and then each difference is added to all subsequent differences. The values are used to generate corresponding signal values that form a continuous signal value.
  • All of the preceding or following plus or double difference values may be sequentially or backwardly accumulated to produce corresponding signal values or differences.
  • the above conversion methods include, but are not limited to, conversion of one-dimensional sensing information, and those skilled in the art can deduce that the above-mentioned conversion method can also be applied to two-dimensional sensing information or sensing information of three-dimensional or more. Moreover, one of ordinary skill in the art will appreciate that the above-described conversion mode of operation may be performed by the aforementioned controller 160 or host 170.
  • the detected first form of sensing information (eg, one-dimensional, two-dimensional sensing information) is converted into sensing information for position analysis.
  • the detected first form of sensing information is converted into a second form of sensing information, and the second form of sensing information is converted into sensing for position analysis.
  • Information for example, is converted from continuous double difference values into continuous signal values.
  • One Dimensional Position Analysis (One Dimension Pos iti on Analys is)
  • the first position analysis provided by the present invention is based on analyzing a plurality of differences in the sensing information.
  • the position of the zero-cros sing is used as the corresponding position of the external object.
  • the determination in the art that is, the judgment of the position of the external object, includes but is not limited to the judgment of the proximity and touch of the object.
  • a pair of adjacent difference values including a positive value and a negative value are searched, that is, a pair of positive and negative values on both sides of the zero intersection, and then the pair of adjacent differences are determined.
  • the position of the zero crossing for example, based on the pair of adjacent differences produces a slope to determine the zero crossing. In addition, it may be based on the order of occurrence of positive and negative values to match the judgment of the zero crossing at the adjacent difference.
  • the pair of neighboring differences described above may be adjacent differences, or may include non-adjacent differences of at least one zero value in between.
  • the pair of adjacent positive and negative values may be searched in a predetermined ranking order, for example, searching for a pair of adjacent positive and negative values in which a positive value occurs first and then a negative value occurs.
  • a threshold value is used to determine a starting position at which a zero crossing is searched, and a starting point is used to search for a pair of adjacent differences including a positive value and a negative value. Then, the position of the zero-crossing is determined according to the difference of the neighbors.
  • the threshold is The search performed by the value includes, but is not limited to, the judgment of the proximity or touch of an external object. In other words, in the process of scanning the sensing information, each time the sensing information is greater than a positive threshold or less than a negative threshold, it can be determined that the sensing information has a zero crossing of the corresponding external object approaching or touching. At the office.
  • a binarization value corresponding to a positive value is generated by a threshold value, for example, a difference value smaller than a threshold P ⁇ value (such as a positive threshold value) is represented by 0 or a pseudo value (fa l se), and is greater than
  • the difference between the threshold values is represented by 1 or true (true), with the neighboring value being 10 or the true value and the false value being the starting position, and the zero crossing is searching backward. search.
  • the difference value greater than the threshold value eg, the negative threshold value
  • the difference smaller than the threshold value is represented by 1 or a true value (true).
  • the first position where the adjacent difference is 01 or the true value of the true value and the false value is the starting position, and the search direction at the zero intersection is the forward search.
  • Table 1 and FIG. 4A are examples in which the threshold value is used to determine whether an external object is approaching or touching.
  • Table 1
  • the example includes the signal values and differences of the corresponding 15 sensors, and the judgment result using a positive threshold T1 (for example, 4) and a negative threshold ⁇ 2 (for example, -4).
  • a positive threshold T1 for example, 4
  • a negative threshold ⁇ 2 for example, -4.
  • the starting position 01 is one position where the adjacent difference is 10, that is, the fifth difference and the twelfth difference, in the figure, the horizontal bar is
  • there are two external objects that are close to or touched there are two external objects that are close to or touched.
  • the number of starting positions corresponds to the number of external objects approaching or touching.
  • the present invention is not limited to the number of two external objects approaching or touching in this example, and may be one or More.
  • a first threshold value and a second threshold value are used to determine a section for searching for a zero intersection, including but not limited to determining the proximity or touch of an external object, and then by the interval. Search for the location of the zero crossing. For example, a binarization value corresponding to a positive value is generated with a first threshold value, for example, a difference smaller than a threshold value is represented by 0 (or a pseudo value (fa l se)), and is greater than a threshold value. The difference is represented by 1 (or true), starting with 1 where the difference between the two is 01.
  • a binarization value corresponding to a negative value is generated with a second threshold value, for example, a difference greater than a threshold value is represented by 0 (or a pseudo value), and a difference less than a threshold value is 1 ( Or true value), the end position is 1 with two adjacent differences of 10.
  • the starting position and the ending position are paired to determine the interval at which the zero crossing is searched. In an example of the present invention, it is determined by the slope between the starting position (such as 1 position in 01) and the ending position (such as 1 position in 10). Zero fair.
  • the above-described starting and ending positions can be interchanged as an ending position and a starting position, respectively.
  • the interval between the first search zero intersection after the pairing is between the fourth and fifth differences, and the interval of the second search zero intersection after the pairing is the 10th. Between the 12th difference.
  • the scan of the positive threshold and the scan of the negative threshold can be performed simultaneously (or parallel processing), and the pairing of the intervals can also be determined after the initial position is determined. After the end position is judged.
  • the threshold value is generated according to the sensing information.
  • the threshold value is multiplied by a ratio of the largest of the absolute values of all the differences (for example, a ratio smaller than one, for example, 0.9).
  • the positive threshold is determined by multiplying the largest of the positive differences by a ratio
  • the negative threshold is determined by multiplying the smallest of the negative differences by a ratio.
  • the threshold can be fixed or dynamic. Therefore, when the absolute value of the threshold value is large, there is a possibility that the proximity or touch of the corresponding external object is judged in the scan using the positive threshold P value, but is not in the scan using the negative threshold value. Judge it, and vice versa.
  • the larger threshold value is more conducive to filtering out noise or ghost points.
  • the smaller threshold value is more conducive to avoiding the actual touch, or to judge the proximity of external objects.
  • the starting position is scanned by using the positive threshold and the negative threshold, respectively, and the zero crossing is searched from the starting position, and the external object is determined according to the number of zero crossings found. Or the number of touches, and further determine the location of the zero crossing.
  • the starting position determined according to the positive threshold value is a backward search for the zero-crossing point.
  • the starting position judged by the negative threshold is the forward search zero crossing, and vice versa.
  • the proximity or touch corresponding to the same external object does not necessarily determine the starting position when scanning with the positive threshold and the negative threshold.
  • a second position analysis provided by the present invention analyzes the centroid position (center of gravity position or weighted average position) as a position corresponding to an external object based on a plurality of signal values or double differences in the sensing information.
  • a threshold value is used to determine a signal value or a double difference value for determining a centroid position.
  • a binarization value corresponding to a signal value or a double difference value may be generated with a threshold value, for example, a signal value smaller than a threshold value or a double difference value of 0 or a pseudo value (fa l se) represents, and the signal value or double difference greater than the threshold value is represented by 1 or true (true).
  • the signal value or double difference represented by 1 or true value is the signal value or double difference for judging the centroid position.
  • a method of determining a signal value or a double difference value of a centroid position for example, a signal value represented by 1 or a true value or a double difference plus a plurality of signal values or double differences adjacent to each other for Determine the signal value or double difference of the centroid position. For example, taking the i or j signal values or the double difference values respectively for the signal values or the erroneous values of the adjacent central signal values or the ergonomic values of the adjacent consecutive 1 or true values are used for the forward and backward respectively. Determine the signal value or difference of the centroid position.
  • a continuous signal value or a double difference value is converted into a continuous difference value to analyze a corresponding signal value or a double difference value at a zero-crossing point as a central signal value or a difference value, and then The central signal value or the double difference takes i and j signal values or double difference respectively forward and backward as the signal value or double difference for judging the centroid position.
  • the zero crossing is analyzed by the continuous difference, and the continuous difference is converted into a continuous signal value or a double difference, and then the corresponding signal value or double difference at the zero crossing is analyzed.
  • the value is taken as the central signal value or double difference, and then the i or j signal values or double differences are taken forward and backward as the signal value or double difference for determining the centroid position, respectively, with the central signal value or the han value. value.
  • centroid position is determined according to each signal value C k in the centroid calculation range and the position X k of each signal value.
  • t can be a one-dimensional coordinate (such as an X coordinate or a Y coordinate) or a two-dimensional coordinate (such as (X, ⁇ )).
  • the signal value or double difference used to determine the centroid position is subtracted After a basic value, the judgment of the centroid position is performed.
  • the base value may be the average of all signal values or double differences, the signal value used to determine the centroid position, or the average of multiple signal values or double differences on either side of the double difference, or used to determine the centroid position.
  • a plurality of signal values or an average value of double differences that are not used to determine the centroid position on either side of the signal value or the erroneous value one of ordinary skill in the art can deduce the manner in which other base values are determined.
  • the base value may be determined according to a first ratio of at least one signal value or double difference on one side and a second ratio of at least one signal value or double difference on the other side.
  • nth signal value is taken forward and backward respectively, taking the ith signal value C Comp_,. and the average value of the jth signal value /,, +, as the base value, and n
  • the signal values take i and j signal values forward and backward respectively as the centroid calculation range, and subtract the base signal value C b ⁇ J) from each signal value in the centroid calculation range as the calculated signal value.
  • can be a one-dimensional coordinate (such as the X coordinate or the ⁇ coordinate) or a two-dimensional coordinate (such as (X, ⁇ )).
  • a third position analysis provided by the present invention analyzes the centroid position (center of gravity position or weighted average position) as a corresponding position of the external object based on a plurality of differences in the sensing information.
  • centroid position (C ⁇ ) can be obtained from the difference between the signal values, wherein the difference in the centroid calculation range is appetizer makeup-(,.—,>,/) make—(,. — 2 ),..., , +1 ,...,1) register + ⁇ counter + ( +1 ).
  • the centroid position c c can be calculated as the difference in the centroid calculation range.
  • the first signal value is taken forward and backward to determine the centroid position (c, TO , . rf ), and the difference in the range can be calculated (eg, ⁇ , ⁇ , ⁇ ) , ⁇ ) Calculated, the proof is as follows.
  • i and j signal values, difference values, or double difference values are taken forward and backward respectively as the nth signal value, the difference value, or the double difference value as the centroid calculation range.
  • the method can be applied to determine the signal value, difference value, or double difference value of the heart position, and vice versa.
  • the present invention performs position detection by analyzing the sensing information, including but not limited to the initially obtained signal value, difference value or double difference value, or may include but not It is limited to a signal value, a difference value, or a double difference value converted from the initially obtained sensing information. Therefore, by analyzing the one-dimensional or two-dimensional sensing information corresponding to two different axial directions (such as the X-axis and the Y-axis) of the same external object, that is, by one or two different axial one-dimensional or two-dimensional positions Analysis, the position (or coordinates) of the external object in two different axial directions can be obtained, forming a two-dimensional position (or two-dimensional coordinates).
  • the two-dimensional sensing information may be composed of a plurality of one-dimensional sensing information, wherein each one-dimensional sensing information includes a plurality of first- - Sensing information of the dimensional position, and each one-dimensional sensing information corresponds to a second one-dimensional position, respectively. Therefore, the two-dimensional position analysis may include at least one-dimensional position analysis for the plurality of one-dimensional touch sensitive materials, that is, the two-dimensional position analysis may include at least a plurality of one-dimensional position analysis.
  • the first-dimensional centroid position of each external object in each first-dimensional sensing information is a two-dimensional position (eg, a two-dimensional coordinate (first-dimensional centroid)
  • the position, the position of the second dimension of the first dimension sensing information) can be used to calculate the two-dimensional centroid position (or geometric center) of the external object, wherein the weighting value of each one-dimensional centroid position can be an external object a signal value or a double difference value on the corresponding first dimension sensing information (eg, one of two signal values or double differences or the average value of the nearest neighboring one-dimensional centroid position on the first dimension sensing information, or an interpolated value) , or the sum of the signal values or double differences of the external objects on the corresponding first dimension sensing information.
  • the two-dimensional position analysis may be a one-dimensional position of sensing information for each first dimension.
  • the analysis divides the two-dimensional centroid position of each external object according to at least one two-dimensional position corresponding to each external object.
  • the two-dimensional position analysis may include performing one-dimensional position analysis on a plurality of one-dimensional sensing information on a first axial direction (or the first one dimension), respectively.
  • An outer object is at least one dimensional position corresponding to the first axial direction, and the first one-dimensional centroid position of each outer object in the first axial direction is analyzed.
  • another one-dimensional position analysis is performed on the plurality of one-dimensional sensing information in a second axial direction (or the second dimension), according to at least a dimension position corresponding to each external object in the second axial direction.
  • analyzing a second-dimensional centroid position of each external object in the second axial direction A two-dimensional position of each of the external objects can be analyzed by pairing the first one-dimensional centroid position of each of the outer objects in the first axial direction with the second one-dimensional centroid position in the second axial direction.
  • the two-dimensional position analysis may be performed by two-dimensional sensing information in two different axial directions (such as two-dimensional sensing information in the first axial direction and two-dimensional sensing information in the second axial direction).
  • a one-dimensional position analysis to analyze the two-dimensional position of each external object.
  • the two-dimensional position analysis may be a plurality of one-dimensional sensing information analysis in a first axial direction corresponding to a one-dimensional centroid position of each external object, and according to each dimension sense The corresponding two-dimensional position of the information is determined, and the two-dimensional position corresponding to each one-dimensional centroid position of each external object in the first axial direction is determined.
  • the two-dimensional position analysis further analyzes a one-dimensional centroid position corresponding to each external object in a plurality of one-dimensional sensing information in a second axial direction, and determines the second-dimensional position according to each dimension sensing information, and determines the first axis.
  • the two-dimensional position analysis further analyzes the two-dimensional centroid position according to the two-dimensional position of each one-dimensional centroid position corresponding to each of the external objects in the first and second axial directions.
  • the two-dimensional sensing information can determine the position of each external object via the image processing program.
  • a watershed algorithm or other image processing can be used for position analysis.
  • the location of each water diversion collar can be analyzed by a watershed algorithm, and the centroid position calculation can be performed by sensing information adjacent to the position of each water diversion collar to obtain a more accurate position.
  • the initially obtained plurality of one-dimensional sensing information is represented by a signal value or a double difference, and constitutes an image (or array) presented by a two-dimensional sensing information, which may be a watershed. Algorithm or other image processing for position analysis. Connection element
  • the (connec ted component) algorithm analyzes the connected parts of the image to determine the image of each external object, and further analyzes the position or which external object, such as the hand and the palm, in a fifth example of the present invention.
  • the initially obtained plurality of one-dimensional sensing information is represented by a difference value, and then converted into a signal value or a double difference to form a shadow represented by the two-dimensional sensing information.
  • the initially obtained plurality of one-dimensional sensing information is represented by a difference
  • the position of each zero-crossing is determined by analyzing the position of each one-dimensional sensing information, and
  • the signal value or double difference at the position of each zero-crossing to form an image (or array) presented by a two-dimensional sensing information which may be a watershed algorithm or other image processing for position analysis.
  • the difference value at the zero-crossing can be generated by two directly adjacent differences.
  • the signal value at the zero-crossing may be generated by converting the difference representing the entire one-dimensional sensing information into a signal value, or may be generated by a plurality of differences closest to the zero-crossing.
  • the nth signal value at the zero-crossing point is taken as the basis of the ith signal value C Cincinnati_,. and the average value of the j-th signal value/ admir + , respectively, with the nth signal value forward and backward. (Bas e) value
  • the signal value at the zero-crossing can be judged.
  • the initially obtained plurality of one-dimensional sensing information is represented by a signal value and a double difference value, and then converted into a difference value, and is determined by analyzing a position of each one-dimensional sensing information.
  • the position of each zero-crossing point, matching the signal value or the erroneous value at the position of each zero-crossing to form an image (or array) presented by the two-dimensional sensing information which may be a watershed algorithm or Other image processing for position analysis.
  • one-dimensional sensing information in the second axial direction is also acquired while the two-dimensional sensing information in the first axial direction is obtained.
  • a one-dimensional position or a two-dimensional position of each external object in the first axial direction can be obtained.
  • a one-dimensional position of each external object in the second axial direction can be obtained.
  • the one-dimensional position in the second axial direction may be paired with the one-dimensional position in the first axial direction to become a two-dimensional position, and may also be used to replace or correct the second axial direction in the two-dimensional position in the first axial direction. position.
  • One of ordinary skill in the art can deduce that the above-described two-dimensional position analysis work can be performed by the aforementioned controller 160 or the host 170.
  • the distance is within a threshold.
  • the weighting value of each one-dimensional centroid position corresponding to the proximity or touch of the same external object is greater than a threshold value.
  • a touch-related sensing information may be one of a touch-related sensing information or a plurality of touch-related sensing information in a sensing information, and a 40-to-one touch-related sensing information.
  • Related operations include, but are not limited to, application to particular touch-related sensing information: It is also possible to apply to all touch-related sensing information that is applicable to the present invention.
  • the position of the zero crossing may be determined by a pair of positive and negative values of the touch related sensing information.
  • the zero-crossing is located between a positive value and a negative value. From the positive and negative values and the associated value, a slope can be obtained. Based on the slope, the position of the zero-crossing can be estimated, that is, the positive value is determined according to the slope. The line between negative values is at the zero value.
  • the plurality of sensors of the touch panel are not densely arranged: that is, there is a gap between the sensors, as shown in FIG. 5 (in the case of a single dimension). Therefore, when the finger is pressed on the fourth sensor of the touch panel, the corresponding touch-related sensing information (solid line) is detected. At this time, the value of the fourth detected signal is the maximum value, which is also the peak value of the touch sensing information.
  • the finger gradually moves to the right, it is pressed to the position where no sensor is set, such as between the 4th sensor and the 5th sensor.
  • the touch-related sensing information detected at this time is as shown by the dotted line, and the peak value of the touch-sensitive sensing information cannot be directly detected by the sensor, but is calculated by the position detection.
  • the peak position of the waveform Since the sensor is non-densely arranged, when the finger moves at a speed of a certain dimension (X direction or ⁇ direction) on the touch panel, the touch panel will present the moving line of the finger trajectory at a non-equal speed.
  • the above-mentioned illustrations are signal values and signal difference values taken every unit time, and the solid line indicates that the finger moves from the fourth sensor to the fifth sensing.
  • the zero crossing of the device moves, and the dotted line is the signal value actually detected by the sensor.
  • the finger just presses on the fourth sensor, and the position calculated at the zero crossing and the finger pressing position actually detected by the sensor are located in the fourth sensor.
  • FIG. 5C to FIG. 5F when the finger gradually moves to the right, since the sensor is not densely arranged, the actual detected signal value of the sensor cannot measure the signal peak, and thus the signal difference is caused.
  • the slope of the waveform of the value waveform changes, causing the calculated zero crossing to move to the right at a non-equal speed.
  • the oblique lines drawn by the finger on the touch panel will cause the finger to move nonlinearly in the direction of the finger movement, as shown in FIG. 5G.
  • the straight line is the actual moving trajectory of the finger
  • the non-linear line segment is a nonlinear phenomenon in which the touch panel presents a finger movement trajectory.
  • the present invention also proposes a linear trajectory calculation method to solve the above problem.
  • the touch-related sensing information of the value is calculated by the centroid position or the geometric center to obtain the coordinate position of the finger pressing at each time point, and the movement trajectory formed by the coordinate calculated by the method can reduce the sensor non- The nonlinear phenomenon caused by dense setting.
  • the touch panel detects that the signals of the two fingers interfere with each other, and also causes a nonlinear phenomenon.
  • the coordinate detection for a certain dimension is not accurate enough, and the present invention proposes a method of position detection.
  • the coordinate calculation method proposed by the present invention obtains the corresponding first by mutual capacitance detection by using the second dimensional position Y1 and ⁇ 2 of the dimension having the precise coordinates (the vertical axis in this embodiment).
  • the two-dimensional position (XI, Yl), ( ⁇ 2, ⁇ 2) can be constructed, that is, the precise coordinates of the two fingers shown in Fig. 6 ⁇ .
  • the present invention proposes another method of position detection to reduce the non-linear phenomenon caused by signal interference, as shown in Fig. 6A.
  • the first dimension (X1, ⁇ 2) of the first dimension (such as the horizontal axis (X axis)) is determined by the first dimension self-capacitance detection, and the sensor corresponding to the first position of the first dimension Mutual capacitance detection to detect the second position ( ⁇ , ⁇ 2, ) of the second dimension (such as the vertical axis ( ⁇ axis)), and then the second position corresponding to the second dimension
  • the detector performs mutual capacitance detection to detect the third position of the first dimension ( ⁇ , ⁇ 2,).
  • first dimension and the second dimension sensor can analyze the first position of the first dimension and the second dimension (such as XI, ⁇ 2, Yl, ⁇ 2).
  • first position of the first dimension and the second dimension such as XI, ⁇ 2, Yl, ⁇ 2
  • mutual capacitance detection is performed on the sensors corresponding to the first position of the first dimension and the second dimension to detect the second dimension and the first dimension ( ⁇ , ⁇ 2, ⁇ , ⁇ 2,) The second coordinate.
  • FIG. 7A is a method for position detection according to the first embodiment of the present invention.
  • a sensing device including a plurality of sensors is provided, the sensors including a plurality of first sensors and a plurality of second sensors, the first sensors and the First The two sensors overlap at a plurality of overlapping points.
  • the at least one first-dimensional position corresponding to the at least one external object is determined by self-capacitance detection according to the signals of the first sensors.
  • mutual capacitance detection is used to determine at least one second one-dimensional position corresponding to at least one first one-dimensional position according to signals of the second sensors.
  • the method further includes: determining, by the mutual capacitance detection, the at least one third-dimensional position corresponding to the at least one second-dimensional position according to the signal of the first sensor. And as described in step 740, and providing at least one two-dimensional position according to at least one third-dimensional position corresponding to the at least one second one-dimensional position, as described in step 750.
  • X can be determined by self-capacitance detection according to the signals of the first sensors, and then mutual capacitance detection can be used to determine the position X according to the signals of the second sensors.
  • the position XI corresponding to the position Y1 and the position ⁇ 2 corresponding to the position ⁇ 2 are judged based on the signals of the first sensors by mutual capacitance detection. According to this, two-dimensional positions (Xl, Y1) and ( ⁇ 2, ⁇ 2) can be provided.
  • the self-capacitance detection described above may be provided to the first sensor by a driving signal, and the signals of the first sensors are provided.
  • one-dimensional sensing information may be generated based on the signals of the first sensors, such as sensing information composed of a plurality of signal values, difference values, and double differences.
  • at least one of the first-dimensional positions corresponding to the at least one external object can be analyzed when the at least one external object approaches or touches the sensing device.
  • At least one first sensor that is provided with a driving signal may be selected according to at least one first-dimension position, and one of the first sensors selected each time
  • signals of the second sensors are respectively provided to generate one-dimensional sensing information according to signals of all the overlapping points on the first sensor to which the driving signal is supplied.
  • at least one second one-dimensional position corresponding to the at least one first one-dimensional position may be separated.
  • At least one second sensor that is provided with the driving signal may be selected according to the at least one second dimension position, and each time one of the selected second sensors is provided with a driving signal, respectively
  • the signals of the first sensors are provided to generate one-dimensional sensing information according to signals of all the overlaps on the second sensor to which the driving signal is supplied.
  • at least one third one-dimensional position corresponding to the at least one second-dimensional position may be analyzed when the at least one external object approaches or touches the sensing device.
  • the first sensor described in step 72 G may be fixed, such as a sensor fixed in a first axial direction, or a sensor fixed in a second axial direction.
  • the first sensor may be selective from the first axial inductor or the second axial inductor.
  • the self-capacitance detection may provide a driving signal to the first axial sensor and the second axial sensor respectively to generate the first one-dimensional sensing information and the second one-dimensional sensing information, and further determine Exceeding at least one fourth corresponding to at least one external object One dimensional position and at least one fifth one dimensional position.
  • the at least one first one-dimensional position is at least one fourth one-dimensional position or at least one fifth one-dimensional position.
  • at least one of the fourth one-dimensional position and the at least one fifth one-dimensional position are at least one first one-dimensional position, or at least one fourth one-dimensional position and at least one fifth one-dimensional position.
  • At least one of the fourth one-dimensional position and at least one of the fifth one-dimensional position is used as at least one first-dimensional position.
  • the number of sensors closest to each of the fourth one-dimensional positions is compared with the number of sensors closest to each of the fifth one-dimensional positions, and the corresponding fourth-dimensional position is obtained.
  • the detector or the sensor of the fifth dimension position is at least one first-dimensional position, and when the two numbers are the same, at least one of the fourth one-dimensional position and the at least one fifth one-dimensional position is at least one - Dimensional location. Accordingly, it is possible to first determine a more accurate axial direction by self-capacitance detection, such as having more positions or corresponding axial directions of more sensors.
  • the more accurate axial direction can be determined in two axial directions, for example, the axial direction at which the most position is analyzed, or the axis at which the relevant sensor is touched at the most. to. Then, mutual capacitance detection is performed based on a more accurate axial direction.
  • the self-capacitance detection described above can determine a one-dimensional position of the corresponding first axial direction and a one-dimensional position of the second axial direction, and the closest one of the two or the closest of the two The largest number of devices is used as the more accurate axis.
  • a more precise axial sensor is used as the plurality of first inductors.
  • the self-capacitance detection according to step 720 determines that at least one of the at least one external object is determined according to the signals of the first sensors. Dimension location.
  • at least one two-dimensional position can be provided as described in steps 730 through 750.
  • step 720 after performing the foregoing steps 720 to 730, at least one two-dimensional position is provided according to at least one second one-dimensional position corresponding to the at least one first-dimensional position. , as shown in step 760.
  • step 720 a more accurate axial direction is determined after self-capacitance detection, and steps 730 and 760 described above are performed to provide at least one two-dimensional position.
  • the method further includes the step 731 and the step 741, determining, according to the at least one first-dimensional position, the at least one touch-related first sensor, and The at least one second one-dimensional position determines at least one touch-related second sensor. Thereafter, as described in step 770, when the number of the at least one touch-related second sensor is greater than the at least one touch-related first sensor, according to at least one corresponding to the at least one first-dimension position The two-dimensional position provides at least one two-dimensional position.
  • step 780 when the number of the at least one touch-related second sensor is not greater than the at least one touch-related first sensor, the mutual-capacitance detection is performed according to the first sensing.
  • the signal of the device determines at least a third one-dimensional position corresponding to the at least one second one-dimensional position, and provides at least one two-dimensional position according to at least one third one-dimensional position corresponding to the at least one second one-dimensional position.
  • 7A to 7D may be related operations performed by the controller 160, or the controller 160 may provide sensing information to the host 170, and the host 170 controls the controller 160 to obtain sensing information and perform related operations.
  • the sensing information is provided according to a signal change of the sensor, for example, an untouched sensing information is recorded when not touched, and each time self-capacitance detection or mutual capacitance detection is performed. During the measurement, the difference between the sensing information generated by the sensor signal and the untouched sensing information is compared to generate sensing information for performing position detection.
  • a method for ignoring location detection of a wide range of touches is provided.
  • a sensing device including a plurality of sensors is provided.
  • the sensor includes a plurality of first sensors and a plurality of second sensors, the first sensor and the foregoing
  • the second sensor overlaps a plurality of overlapping points.
  • steps 820 and 830 a first-dimensional sensing information is obtained by self-capacitance detection by the signals of the first sensors, and the second sensors are detected by self-capacitance.
  • the signal obtains a second one-dimensional sensing information.
  • step 840 determining the detected touch-related sensing information according to the range of the first-dimensional sensing information and the sensing information of each touch-related information in the second-dimensional sensing information, wherein Each touch-related sensing information corresponds to a touch or proximity of at least one external object.
  • step 850 at least the dimension position is analyzed according to each detected touch-related sensing information, and as described in step 860, mutual capacitance sensing is performed according to each one-dimensional position to analyze At least one two-dimensional position.
  • the self-capacitance detection may be provided to the first sensors by a driving signal, and detecting changes in the signals of the capacitive coupling between the first sensors and the at least one external object.
  • the driving signal can be provided to the second sensors, and the change of the capacitive coupling between the second sensor and the at least one external object can be detected to obtain the second one-dimensional sensing information.
  • the detected touch-related sensing information may be determined by a threshold value, for example, the range of the detected touch-related sensing information is less than a threshold value. Accordingly, touch-related sensing information corresponding to a wide range of touches can be ignored.
  • the range corresponding to the touch information of the wide touch H touch is between the left boundary L and the right boundary R, when the left boundary L and the right boundary R are not smaller.
  • the sensing information corresponding to the wide touch H touch is ignored.
  • the touch-related sensing information corresponding to the small-range touch F can be determined as the detected touch-related sensing information.
  • the touch-related sensing information corresponding to the small-range touch F is corresponding to the wide-range touch H and the overlap becomes a wide range of touch-related sensing information, when this overlap
  • the range of touch-related sensing information for a wide range of touches is ignored when it exceeds the threshold.
  • there is no detected touch-related sensing information in the longitudinal axis and the detected touch-related sensing information corresponding to the small range F in the horizontal axis.
  • there is a distance between the hand and the palm so in most cases, the small range touch of the pen and the wide touch of the palm will only be in one axial direction. overlap.
  • the detected touch-related sensing information of a small range of touches can be detected in a relatively accurate axial direction by negligence of two axial wide-range touches.
  • the mutual capacitance detection in step 860 can be as shown in Fig. 8B.
  • the sensor that provides the drive signal is selected by one of the sensors according to at least the dimension position, and as shown in step 862, the sensor is selected at each of the dimensions according to the one-dimensional position.
  • a third one-dimensional sensing information is generated according to the signals of the first sensors or the second sensors, respectively.
  • at least one first-dimensional position is analyzed according to the third-dimensional sensing information, and as shown in step 864, each of the first-dimensional positions is respectively selected by one of the sensors.
  • step 865 at least a second one-dimensional position corresponding to each of the first-dimensional positions is analyzed according to the fourth-dimensional sensing information, and as shown in step 866, according to each of the first- - at least one second dimension position of the dimension location provides at least one two-dimensional position.
  • the sensor that provides the driving signal is the closest one dimension.
  • a first sensor of the position and when the one-dimensional position or the first one-dimensional position is analyzed by the touch-related sensing information of the second-dimensional sensing information, the sensor that is provided with the driving signal is the closest A second sensor in one dimension position.
  • the mutual capacitance detection in step 860 can be as shown in FIG. 8C.
  • a sensor that provides a drive signal is selected by one of the sensors based on at least a dimension position, and as shown in step 862, each sensor selected according to a one-dimensional position is selected.
  • a third one-dimensional sensing information is generated according to the signals of the first sensors or the second sensors, respectively.
  • at least one first-dimensional position corresponding to each one-dimensional position is analyzed according to the third-dimensional sensing information.
  • at least one two-dimensional position is provided in accordance with at least one first one-dimensional position corresponding to each one-dimensional position.
  • the touch-related sensing information detected in the horizontal axis can determine the dimension position X, and the first sensor closest to the position X can be further selected.
  • the third dimension information can be generated according to the signals of the second sensors, and the third dimension information can be determined according to the third dimension information.
  • the closest second sensor according to the first-dimensional position ⁇ .
  • the signal of the first sensor generates the fourth dimension information, and the second dimension position X is determined according to the fourth dimension information (not shown). According to this, according to the first-dimensional position Y and the second-dimensional position X, the two-dimensional position (X, Y) of the small-range touch F can be determined.
  • FIG. 8A to FIG. 8C may be related operations performed by the controller 160, or the controller 160 may provide sensing information to the host 170, and the host 170 controls the controller 160 to obtain sensing information and perform related operations.
  • the sensing information is provided according to a signal change of the sensor, for example, an untouched sensing information is recorded when not touched, and each time self-capacitance detection or mutual capacitance detection is performed. During the measurement, the difference between the sensing information generated by the sensor signal and the untouched sensing information is compared to generate sensing information for performing position detection.

Description

位置侦测的方法与装置 技术领域
本发明涉及一种位置侦测的方法与装置, 特别是一种兼用互电容式侦 测与自电容式侦测的位置侦测的方法与装置。 背景技术
触控显示器(Touch Di splay)已广泛地应用于许多电子装置中, 一般的 做法是采用一触控面板(Touch Sens ing Panel)在触控显示器上定义出一二 维的触摸区, 借由在触摸板上纵轴与横轴的扫瞄来取得感测资讯(Sens ing Informa t ion) , 以判断外在物件(如手指)在触摸屏上的碰触或接近, 例如 美国专利号 US4639720所提供的一种电容式触摸显示器。
感测资讯可由模拟数字转换器(Ana log- to- Dig i ta l Conver ter, ADC) 转换为多多个连续信号值, 借由比较这些信号值在外部物件碰触或接近前 与后的变化量, 可判断出外部物件碰触或最接近触摸屏的位置。
一般而言, 控制触摸屏的控制器会先取得没有外部物件触碰或接近时 的感测资讯, 作为基准值(base l ine)。 例如在电容式触摸屏中, 每一条导 电条相应于各自的基准值。 控制器借由判断后续的感测资讯与基准值的比 较判断是否有外部物件接近或触碰, 以及更进一步判断外部物件的位置。 例如, 在未被外部物件接近或触碰时, 后续的感测资讯相对于基准值为零 值或趋近零值, 借由感测资讯相对于基准值是否为零值或趋近零值判断是 否有外部物件接近或触碰。
如图 1A所示, 当外部物件 12 (如手指)碰触或接近触控显示器 10的感 测装置 120时, 在一轴向(如 X轴向)上的感测器 140的感测资讯转换成如 图 1B 所示的信号值, 相应于手指的外型, 信号值呈现一波形或一指廓 (Finger prof i le) , 指廓上的峰 14 (peak)的位置即代表手指碰触或接近的 位置。
由于触控面板的多个感测器并非密集地设置, 亦即感测器之间具有间 隙, 如图 5A所示 (以单一维度为例)。 因此当手指按压于触控面板的第 4 个感测器上时, 即会侦测出对应的触碰相关感测资讯(实线)。 此时, 第 4 个所侦测的信号值即为最大值, 亦为此一触碰相关感测资讯的峰值。
随后, 当手指逐渐向右移动时, 即会按压至无感测器设置的位置, 如 第 4个感测器与第 5个感测器之间。 此时所侦测得的触碰相关感测资讯则 如虚线所示, 并且触碰相关感测资讯的峰值并无法直接借由感测器所侦测, 而需借由位置侦测以计算得波形峰值位置。 由于感测器是非密集地设置, 当手指在触控面板上以某一维度( X方向或 Y方向)方向等速度移动时, 触 控面板却会以非等速呈现手指轨迹的移动线条。
由此可见, 上述现有技术显然存在有不便与缺陷, 而极待加以进一步 改进。 为了解决上述存在的问题 , 相关厂商莫不费尽心思来谋求解决之道, 但长久以来一直未见适用的设计被发展完成, 而一般产品及方法又没有适 切的结构及方法能够解决上述问题, 此显然是相关业者急欲解决的问题。 因此如何能创设一种新的技术, 实属当前重要研发课题之一, 亦成为当前 业界极需改进的目标。 发明内容
本发明的主要目的在于, 克服现有的触控显示器存在的缺陷, 而提供 一种新的位置侦测的方法与装置, 所要解决的技术问题是依据自电容式侦 测的结果进行互电容式侦测, 以降低触碰位置过于靠近造成的误判, 非常 适于实用。
本发明的另一目的在于, 克服现有的触控显示器存在的缺陷, 而提供 一种新的位置侦测的方法与装置, 所要解决的技术问题是依据互电容式侦 测的结果再进行互电容式侦测 , 以侦测较精确的位置。
本发明的再一目的在于, 克服现有的触控显示器存在的缺陷, 而提供 一种新的位置侦测的方法与装置, 所要解决的技术问题是在自电容式侦测 时忽视或滤除相应大范围触碰 , 可以在用手持笔书写时达到手掌忽视的效 果。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种位置侦测的方法, 包括: 提供包括多个感测器的一感测 装置, 上述感测器包括多个第一感测器与多个第二感测器, 上述第一感测 器与上述第二感测器交叠于多个叠点; 以自电容式侦测依据上述第一感测 器的信号判断出相应于至少一外部物件的至少一第——维度位置; 以及以 互电容式侦测依据上述第二感测器的信号判断出相应于该至少一第——维 度位置的至少一第二一维度位置。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的位置侦测的方法, 还包括: 依据相应于该至少一第——维度位 置的至少一第二一维度位置提供至少一二维度位置。
前述的位置侦测的方法, 还包括: 以互电容式侦测依据上述第一感测 器的信号判断出相应于该至少一第二一维度位置的至少一第三一维度位 置; 以及依据相应于该至少一第二一维度位置的至少一第三一维度位置提 供至少一二维度位置。
前述的位置侦测的方法, 还包括: 依据该至少一第——维度位置判断 出至少一触碰相关的第一感测器; 以及依据该至少一第二一维度位置判断 出至少一触碰相关的第二感测器。
前述的位置侦测的方法, 还包括: 当该至少一触碰相关的第二感测器 的数量大于该至少一触碰相关的第一感测器时, 依据相应于该至少一第一 一维度位置的至少一第二一维度位置提供至少一二维度位置。
前述的位置侦测的方法, 当该至少一触碰相关的第二感测器的数量不 大于该至少一触碰相关的第一感测器时, 还包括: 以互电容式侦测依据上 述第一感测器的信号判断出相应于该至少一第二一维度位置的至少一第三 一维度位置; 以及并且依据相应于该至少一第二一维度位置的至少一第三 一维度位置提供至少一二维度位置。
前述的位置侦测的方法, 其中该自电容侦测是以一驱动信号提供给上 述第一感测器, 并且提供上述第一感测器的信号。
前述的位置侦测的方法, 其中该互电容式侦测包括: 每当上述第一感 测器之一被提供一驱动信号时, 分别提供上述第二感测器的信号; 或每当 上述第二感测器之一被提供该驱动信号时, 分别提供上述第一感测器的信 前述的位置侦测的方法, 其中该互电容侦测还包括: 依据该至少一第 ——维度位置挑选出被提供该驱动信号的至少一第一感测器; 依据该至少 一第二一维度位置挑选被提供该驱动信号的至少一第二感测器。
前述的位置侦测的方法, 其中该自电容式侦测包括: 依据上述感测器 的信号变化判断出相应于至少一外部物件的至少一第四一维度位置与至少 一第五一维度位置; 其中该至少一第四一维度位置与该至少一第五一维度 位置中数量较多者为该至少一第——维度位置, 并且当该至少一第四一维 度位置与该至少一第五一维度位置的数量相同时以该至少一第四一维度位 置与该至少一第五一维度位置之一作为该至少一第一一维度位置。
本发明的目的及解决其技术问题还采用以下技术方案来实现。 依据本 发明提出的一种位置侦测的装置, 包括: 包括多个感测器的一感测装置, 上述感测器包括多个第一感测器与多个第二感测器, 上述第一感测器与上 述第二感测器交叠于多个叠点; 以及一控制器, 执行下列作业: 以自电容 式侦测依据上述第一感测器的信号判断出相应于至少一外部物件的至少一 第——维度位置; 以及以互电容式侦测依据上述第二感测器的信号判断出 相应于该至少一第——维度位置的至少一第二一维度位置。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的位置侦测的装置, 其中该控制器还包括执行下列作业: 依据相 应于该至少一第——维度位置的至少一第二一维度位置提供至少一二维度 位置。
前述的位置侦测的装置, 其中该控制器还包括执行下列作业: 以互电 容式侦测依据上述第一感测器的信号判断出相应于该至少一第二一维度位 置的至少一第三一维度位置; 以及依据相应于该至少一第二一维度位置的 至少一第三一维度位置提供至少一二维度倬置。
前述的位置侦测的装置, 其中该控制器还包括执行下列作业: 依据该 至少一第——维度位置判断出至少一触碰相关的第一感测器; 以及依据该 至少一第二一维度位置判断出至少一触碰相关的第二感测器。
前述的位置侦测的装置, 其中该控制器还包括执行下列作业: 当该至 少一触碰相关的第二感测器的数量大于该至少一触碰相关的第一感测器 时, 依据相应于该至少一第一一维度位置的至少一第二一维度位置提供至 少一二维度位置。
前述的位置侦测的装置, 当该至少一触碰相关的第二感测器的数量不 大于该至少一触碰相关的第一感测器时, 该控制器还包括执行下列作业: 以互电容式侦测依据上述第一感测器的信号判断出相应于该至少一第二一 维度位置的至少一第三一维度位置; 以及并且依据相应于该至少一第二一 维度位置的至少一第三一维度位置提供至少一二维度位置。
前述的位置侦测的装置, 其中该自电容侦测是以一驱动信号提供给上 述第一感测器, 并且提供上述第一感测器的信号。
前述的位置侦测的装置, 其中该互电容式侦测包括: 每当上述第一感 测器之一被提供一驱动信号时, 分别提供上述第二感测器的信号; 或每当 上述第二感测器之一被提供该驱动信号时, 分别提供上述第一感测器的信 前述的位置侦测的装置, 其中该互电容侦测还包括: 依据该至少一第 一一维度位置挑选出被提供该驱动信号的至少一第一感测器; 依据该至少 一第二一维度位置挑选被提供该驱动信号的至少一第二感测器。
前述的位置侦测的装置, 其中该自电容式侦测包括: 依据上述感测器 的信号变化判断出相应于至少一外部物件的至少一第四一维度位置与至少 一第五一维度位置; 其中该至少一第四一维度位置与该至少一第五一维度 位置中数量较多者为该至少一第一一维度位置, 并且当该至少一第四一维 度位置与该至少一第五一维度位置的数量相同时以该至少一第四一维度位 置与该至少一第五一维度位置之一作为该至少一第一一维度位置。
本发明的目的及解决其技术问题还采用以下技术方案来实现。 依据本 发明提出的一种忽视大范围触碰的位置侦测的方法, 包括: 提供包括多个 感测器的一感测装置, 上述感测器包括多个第一感测器与多个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以自电容式侦测由上 述第一感测器的信号取得一第——维度感测资讯; 以自电容式侦测由上述 第二感测器的信号取得一第二一维度感测资讯; 依据该第——维度感测资 讯与该第二一维度感测资讯上每一个触碰相关感测资讯的范围决定被侦测 的触碰相关感测资讯, 其中每一个触碰相关感测資讯相应于至少一外部物 件的触碰或接近; 依据每一个被侦测的触碰相关感测资讯分析出至少—— 维度位置; 以及依据每一个一维度位置进行互电容感测以分析出至少一二 维度位置。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的忽视大范围触碰的位置侦测的方法, 其中该自电容侦测包括: 以一驱动信号提供给上述第一感测器, 并且侦测上述第一感测器与该至少 一外部物件间的电容性耦合的信号的变化, 以取得该第——维度感测资讯; 及以该驱动信号提供给上述第二感测器, 并且侦测上述第二感测器与该至 少一外部物件间的电容性耦合的信号的变化, 以取得该第二一维度感测资 讯。
前述的忽视大范围触碰的位置侦测的方法, 其中该互电容侦测包括: 提供一驱动信号给上述第一感测器之一作为一第一信号源, 并且由上述第 二感测器侦测该第一信号源、 上述第——维度感测器与该至少一外部物件 间电容性耦合的信号的变化; 或提供该驱动信号给上述第二感测器之一作 为该第一信号源, 并且由上述第一感测器侦测该第一信号源、 上述第二一 维度感测器与该至少一外部物件间电容性耦合的信号的变化。
前述的忽视大范围触碰的位置侦测的方法, 其中该互电容侦测还包括: 依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯; 依据该第三一维度感测资讯分析出相应于每一个一维度位置的至少一 第——维度位置; 及依据相应于每一个一维度位置的至少一第——维度位 置提供至少一二维度位置。
前述的忽视大范围触碰的位置侦测的方法, 当该一维度位置是由该第 ——维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信号 的感测器为最接近该一维度位置的第一感测器, 并且当该一维度位置是由 该第二一维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动 信号的感测器为最接近该一维度位置的第二感测器。
前述的忽视大范围触碰的位置侦测的方法, 其中该互电容侦测还包括: 依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯; 依据该第三一维度感测资讯分析出至少一第一一维度位置; 依据每一 个第——维度位置分别由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据每一个第一一维度位置挑选的感测器被提供该驱动信号 值时分别由上述第一感测器或上述第二感测器取得一第四一维度感测资 讯; 依据该第四一维度感测资讯分析出相应于每一个第——维度位置的至 少一第二一维度位置; 以及依据相应于每一个第一一维度位置的至少一第 二一维度位置提供至少一二维度位置。
前述的忽视大范围触碰的位置侦测的方法, 当该一维度位置或第—— 维度位置是由该第——维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的第一感测器, 并且当 该一维度位置或第——维度位置是由该第二一维度感测资讯的该触碰相关 感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置 的第二感测器。
前述的忽视大范围触碰的位置侦测的方法, 其中该被侦测的触碰相关 感测资讯的范围小于一门槛限值。
前述的忽视大范围触碰的位置侦测的方法, 其中该第——维度感测资 讯与第二一维度感测资讯分别由多个差值组成, 其中每一个差值是依据上 述感测器的一对感测器的信号产生。
前述的忽视大范围触碰的位置侦测的方法, 其中该第——维度感测资 讯与第二一维度感测资讯分别由多个双差值组成, 其中每一个双差值是依 据上述感测器的三个相邻或不相邻的感测器的信号产生。
本发明的目的及解决其技术问题最后采用以下技术方案来实现。 依据 本发明提出的一种忽视大范围触碰的位置侦测的装置, 包括: 包括多个感 测器的一感测装置, 上述感测器包括多个第一感测器与多个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以及一控制器, 执行 下列作业: 以自电容式侦测由上述第一感测器的信号取得一第——维度感 测资讯; 以自电容式侦测由上述第二感测器的信号取得一第二一维度感测 资讯; 依据该第——维度感测资讯与该第二一维度感测资讯上每一个触碰 相关感测资讯的范围决定被侦测的触碰相关感测资讯, 其中每一个触碰相 关感测资讯相应于至少一外部物件的触碰或接近; 依据每一个被侦测的触 碰相关感测资讯分析出至少——维度位置; 以及依据每一个一维度位置进 行互电容感测以分析出至少一二维度位置。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的忽视大范围触碰的位置侦测的装置, 其中该自电容侦测包括: 以一驱动信号提供给上述第一感测器, 并且侦测上述第一感测器与该至少 一外部物件间的电容性耦合的信号的变化, 以取得该第——维度感测资讯; 及以该驱动信号提供给上述第二感测器, 并且侦测上述第二感测器与该至 少一外部物件间的电容性耦合的信号的变化, 以取得该第二一维度感测资 讯。
前述的忽视大范围触碰的位置侦测的装置, 其中该互电容侦测包括: 提供一驱动信号给上述第一感测器之一作为一第一信号源, 并且由上述第 二感测器侦测该第一信号源、 上述第——维度感测器与该至少一外部物件 间电容性耦合的信号的变化; 或提供该驱动信号给上述第二感测器之一作 为该第一信号源, 并且由上述第一感测器侦测该第一信号源、 上述第二一 维度感测器与该至少一外部物件间电容性耦合的信号的变化。
前述的忽视大范围触碰的位置侦测的装置, 其中该互电容侦测还包括: 依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯; 依据该第三一维度感测资讯分析出相应于每一个一维度位置的至少一 第一一维度位置; 依据相应于每一个一维度位置的至少一第一一维度位置 提供至少一二维度位置。
前述的忽视大范围触碰的位置侦测的装置, 当该一维度位置是由该第 ——维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信号 的感测器为最接近该一维度位置的第一感测器, 并且当该一维度位置是由 该第二一维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动 信号的感测器为最接近该一维度位置的第二感测器。
前述的忽视大范围触碰的位置侦测的装置 , 其中该互电容侦测还包括: 依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯; 依据该第三一维度感测资讯分析出至少一第——维度位置; 依据每一 个第——维度位置分别由上述感测器之一挑选被提供该驱动信号的感测 器; 在每一个依据每一个第一一维度位置挑选的感测器被提供该驱动信号 值时分别由上述第一感测器或上述第二感测器取得一第四一维度感测资 讯; 依据该第四一维度感测资讯分析出相应于每一个第——维度位置的至 少一第二一维度位置; 以及依据相应于每一个第一一维度位置的至少一第 二一维度位置提供至少一二维度位置。
前述的忽视大范围触碰的位置侦测的装置, 当该一维度位置或第—— 维度位置是由该第——维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的第一感测器, 并且当 该一维度位置或第——维度位置是由该第二一维度感测资讯的该触碰相关 感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置 的第二感测器。 前述的忽视大范围触碰的位置侦测的装置, 其中该被侦测的触碰相关 感测资讯的范围小于一门槛限值。
前述的忽视大范围触碰的位置侦测妁装置, 其中该第——维度感测资 讯与第二一维度感测资讯分别由多个差值组成, 其中每一个差值是依据上 述感测器的一对感测器的信号产生。
前述的忽视大范围触碰的位置侦测的装置, 其中该第——维度感测资 讯与第二一维度感测资讯分别由多个双差值组成, 其中每一个汉差值是依 据上述感测器的三个相邻或不相邻的感测器的信号产生。
本发明与现有技术相比具有明显的优点和有益效果。 由以上可知,为达 到上述目的, 本发明提供了一种位置侦测的方法与装置。 借由在感测装置 的横轴与纵轴上进行自电容式侦测, 以提供自电容式侦测的结果。 依据自 电容式侦测的结果进行第一次互电容式侦测, 以判断出第——维度位置。 依据第一次互电容式侦测的结果进行第二次互电容式侦测, 以判断出第二 一维度位置。 第一一维度位置与第二一维度位置可构成二维度位置。 此外, 在进行自电容式侦测、 第一次互电容式侦测与第二次互电容式侦测的过程 中, 可以先滤除或忽视相应于大范围的触碰相关感测资讯, 以排除手掌的 触碰
如前述, 由于感测器是非密集地设置, 当手指在触控面板上以某一维 度(X方向或 Y方向)方向等速度移动时, 触控面板却会以非等速呈现手指 轨迹的移动线条。
借由上述技术方案, 本发明至少具有下列优点及有益效果:
一、 依据自电容式侦测的结果进行互电容式侦测, 可避免自电容式侦 测难以判断过于靠近的触碰的问题;
二、 依据互电容式侦测的结果再进行互电容式侦测, 以侦测较精确的 位置, 可降低触碰路径非线性移动的问题; 及
三、 在自电容式侦测时忽视或滤除相应大范围触碰, 可以在用手持笔 书写时达到手掌忽视的效果。
综上所述, 本发明一种转换感测资讯的方法与装置。 本发明是先侦测 出第一感测资讯的每一个第一触碰相关感测资讯, 再将至少一第一触碰感 测资讯分别以相应的第二触碰相关感测资讯取代 , 产生一第二感测资讯。 本发明在技术上有显着的进步,具有明显的积极效果,诚为一新颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的筒要说明
图 1A为先前技术的触控装置的示意图;
图 1B为先前技术的信号值的示意图;
图 1C为依据本发明的差值的示意图;
图 1D与图 1E为依据本发明的双差值的示意图;
图 1F为依据本发明的感测装置的结构示意图;
图 1G为依据本发明的运算系统的功能方块示意图;
图 2A 与图 2B 为依据本发明的驱动 /侦测单元与感测装置的架构示意 图 3A为依据本发明的侦测单元的功能方块示意图;
图 3B至图 3D为依据本发明的侦测器的电路示意图;
图 3E至图 3J为依据本发明的侦测电路与模拟转数字电路的连结示意 图 4A为依据本发明的二值化差值侦测位置的示意图;
图 4B至图 4D为依据本发明的侦测质心位置的示意图;
图 5A至图 5G为触碰轨迹的非线性现象的示意图;
图 6A至图 6B为依据本发明的位置侦测的范例示意图;
图 6C为依据本发明的忽视大范围触碰的位置侦测的范例示意图; 图 7A至图 7D为依据本发明的第一实施例的流程示意图; 以及 图 8A至图 8C为依据本发明的第二实施例的流程示意图。
1 0: 触控显示 11 : 控制器
110: 显示器 12: 夕卜 物件
120: 感测装置 120A、 120B:感测层
140、 140A、 140B: 感测器 14、 16、 17:峰
15、 91:零交会处 100:位置侦测装装置
1 30:驱动 /侦测单元 13 OA:驱动单元
1 30B:侦测单元 160:控制器
161:处理器 162:存储器
170:主机 171:中央处理单元
173:储存单元 310、 370:切换电路
311、 312、 313、 314、 315 316:输入
320:侦测电路 321、 323、 325:开关电路
322、 324:积分器 330:模拟转数字电路
340、 350、 360:侦测器 C int:放大器
C inv:反向器 Pl、 P2:接点 SI:感测资讯 Wl、 W2:导线
dl、 d2、 d3、 d4:距离
X、 XI、 X2、 Xl,、 X2,、 ΥΓ、 Υ2':位置
L:左边界 R:右边界
H:大范围触碰 F:小范围触碰 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的位置侦测的方法与装 置其具体实施方式、 方法、 步骤、 结构、 特征及其功效, 详细说明如后。
本发明的一些实施例将详细描述如下。 然而,除了以下描述外,本发明 还可以广泛地在其他实施例施行, 并且本发明的保护范围并不受实施例的 限定, 其以权利要求的保护范围为准。 再者,为提供更清楚的描述及更容易 理解本发明, 图式内各部分并没有依照其相对尺寸绘图, 某些尺寸与其他 相关尺度相比已经被夸张; 不相关的细节部分也未完全绘示出, 以求图式 的简洁。 感测资讯 在本发明中, 感测资讯可以是由触控装置(Touch Sens ing Devi ce)提 供, 表示触控装置上一维度、 二维度或多维度的状态, 并且感测资讯可以 是由一个或多个感测器(sensor)取得, 经由一个或多个模拟数字转换器转 换为多个连续信号值, 以表示侦测到的电荷、 电流、 电压、 电容、 阻抗或 其他电性特性的量或改变量。 感测资讯在取得或传送的过程中可能是以轮 替、 循序或平行的方式进行, 可复合成一个或多个信号, 本技术领域的普 通技术人员可轻易推知。
本技术领域的普通技术人员也可推知, 本发明所述的感测资讯包括但 不限于感测器的信号、 感测器的信号扣除基准值(如未触碰时的信号或初始 信号)后的结果、 前述信号或信号扣除基准值后的结果经模拟转换数字后的 值、 前述的值转换为其他表示方式的值。 换言之, 感测资讯可以是以信号 状态、 储存媒体(如暂存器、 存储器、 磁盘、 光盘)中的记录的任何由电性 信号转换或可转换成电性信号的状态来存在, 包括但不限于模拟或数字形 式。
感测资讯可以是以不同轴向的两个一维度感测资讯提供。 两个一维度 感测资讯可以被用来表示在触控装置上第一轴向(如纵轴向)与第二轴向 (如横轴向)上的感测资讯, 可分别用来做第一轴向与第二轴向上的位置侦 测,以分别提供第一轴向与第二轴向上的一维度位置, 或进一步构成二维度 位置。 此外, 两个一维度感测资讯也可以基于感测器间的距离, 被用来进 行三角定位, 侦测出在触控装置上的二维度位置。
感测资讯可以是以一个二维度感测资讯提供, 二维度感测资讯为同轴 向上多个一维度感测资讯所组成。 一个二维度的感测资讯被提供可以表示 一个二维平面上的信号分布, 例如以纵轴向上多个一维度的感测资讯或横 轴向上多个一维度的感测资讯表示一个信号阵列(s igna l matr ix) , 可依据 分水领演算法或其他影像处理的辨识方法进行位置侦测。
在本发明的一范例中, 触控装置上的感测区域包括由至少一个第一感 测器侦测的一第一二维度侦测范围与至少一个第二感测器侦测的一第二二 维度侦测范围的重叠范围。 本技术领域的普通技术人员也可推知, 感测区 域可以是三个以上的二维度侦测范围的重叠范围。
例如, 单一感测器的侦测范围为二维度侦测范围, 如基于照像机的光 学式侦测(camera - based opt ica l detect ion)的感测器(如 CCD或 CMOS感 测器)或表面声波式侦测的压电感测器, 由二维度侦测范围中取得一维度感 测资讯。 此一维度感测资讯可以是由连续多个时点感测到的资讯构成,不同 时点相应于不同的角度、 位置或范围。 此外, 此一维度感测资讯可以依据 一时间区间内取得的影像(如 CCD或 CMOS感测器所取得的影像)所产生。
又例如, 二维度侦测范围是由多个感测器的侦测范围所构成, 如每一. 个红外线式侦测的光接受器、 电容式侦测或电阻式侦测的线状或带状导电 条、 或电磁式侦测的 U形线圈的侦测范围为朝向一轴向的扇状或带状侦测 范围, 多个在一线段(直线或弧线)上朝向同一轴向排列的感测器的侦测范 围可构成该轴向的二维度侦测范围, 如构成矩形或扇形的平面或弧面的侦 测范围。
在本发明的一较佳范例中,触控装置上的感测区域包括由第一轴向与 第二轴向上的多个感测器侦测的一二维度范围。 例如自电容式侦测 (se l f-capaci t ive detect ion),提供一驱动信号给多个第一感测器,并且感 测这些第一感测器的第一二维度侦测范围电容性耦合的信号或变化,以取 得一第——维度感测资讯。 此外,也提供一驱动信号给多个第二感测器,并 且感测这些第二感测器的第二二维度侦测范围电容性耦合的信号或变化,以 取得一第二一维度感测资讯。
在本发明的另一范例中, 触控装置上的感测区域包括由多个感测器侦 测一二维度范围的多个一维度感测资讯来构成一二维度感测资讯。 例如,当 信号源将驱动信号循序加于一第一轴向上一感测器时, 循序侦测一第二轴 向上至少一感测器或同时侦测第二轴向上多个(部分或全部)感测器的信 号,可取得该轴向上的二维度感测资讯, 其中感测器为第二轴向至少一相邻 感测器或第二轴向至少一不相邻但邻近感测器。 例如在互电容式侦测
(mutua l-capaci t ive detect ion)或模拟矩阵电阻式侦测 (ana log mat r ix res i s t ive detect ion)中, 由多个感测器构成多个感测处, 分别侦测各感 测处的感测资讯。 例如以多个第一感测器(如多条第一导电条)与多个第二 感测器(如多条第二导电条)交叠构成多个交叠区, 轮流施加驱动信号于每 一个第一感测器时, 相应于被施加驱动信号的第一感测器, 循序侦测第二 轴向上至少一第二感测器或同时侦测第二轴向上多个(部分或全部)第二感 测器的信号或信号变化,以取得相应于该第一感测器的一维度感测资讯。 借 由汇集相应于各第一轴向感测器的一维度感测资讯可构成一二维度感测资 讯。 在本发明的一范例中, 二维度感测资讯可视为一影像。
本技术领域的普通技术人员可推知, 本发明可应用于触敏显示器 (touch sens i t ive di splay) , 例如具有或附力。上述电阻式侦测、 电容式侦 测、 表面声波式侦测、 或其他侦测触碰的触控装置(或称触控装置(touch sens i t ive device) )的显示器。 因此, 基于触敏显示器或触控装置所取得 的感测资讯可视为触敏资讯 (touch sens i t ive informat ion)。
在本发明的一范例中, 感测资讯是不同时点的连续信号,亦即连续由一 个或多个感测器同时侦测到的复合信号。 例如, 触控装置可以是电磁式,连 续地扫瞄电磁式触控装置上的线圏以发出电磁波, 由一电磁笔上的一个或 多个感测器侦测感测资讯, 持续地复合成一信号, 再由模拟数字转换器转 换为多个连续信号值。 此外, 也可以是电磁笔发出电磁波或反射来自电磁 式触控装置的电磁波, 由触控装置上的多个感测器(线圈)来取得感测资讯。 触碰相关感测资讯 (touch rela ted sens ing informa t ion) 外部物件(如手指)碰触或接近触控装置时,会造成外部物件碰触或接 近的相应位置的感测资讯产生相应的电性特性或变化,电性特性较强或变 化较大之处较接近外部物件中心(如质心(centroid)、 重心或几何中心)。 无 论感测资讯是模拟或数字,连续的感测资讯可视为由连续多个值所构成,上 述外部物件中心可能是相应于一值或两值之间。 在本发明中, 连续多个值 可以是相应空间上的连续或时间上的连续。
本发明提供的第一种一维度感测资讯是以多个连续的信号值呈现,可 以是在一时间区间中多个感测器侦测的信号值, 或连续的时间区间中单一 感测器侦测的信号值, 也可以是单一时间区间中单一感测器相应不同侦测 位置侦测到的信号值。 在感测资讯以信号值呈现的过程中, 可以是轮流将 相应个别感测器、 时间区间或位置的信号转换成信号值, 也可以是取得部 分或全部的感测资讯后再分析出个别的信号值。 当外部物件碰触或接近感 测装置时, 一维度感测资讯的连续信号值可以是如图 1B所示, 碰触位置为 相应外部物件的感测资讯的峰 14, 其中峰 14可能落于两信号值之间。 如前 面所述, 本发明不限定感测资讯存在的形态, 信号值可视为感测器的信号 的另一种形态。 为简化说明, 在以下叙述中是以信号值型态的实施方式来 知信号型态的实施方式。 5' 、 、 P ° ^
本发明提供的第二种一维度感测资讯是以多个连续的差值 (Difference)呈现,相对于上述信号值,每个差值为一对信号值的差值,并 且连续多个差值呈现的感测资讯可视为差动感测资讯( d i f f e r e n t i a 1 sens ing inf orma t ion)。 在本发明中, 差动感测资讯的取得可以是在感测 时直接取得, 如同时或连续地取得多个信号,每一个差值是依据相应于一对 感测器、 时间区间或位置的差动信号来产生。 差动感测资讯也可以是先产 生包括多个信号值的原始感测资讯 (or iginal sens ing inf ormat ion)后,再 依据原始感测资讯来产生。 如前面所述, 本发明不限定感测资讯存在的形 态,差值可视为差动信号的另一种形态。 为简化说明, 在下面叙述中是以差 值型态的实施方式来叙述本发明, 本技术领域的普通技术人员可依.据差值 型态的实施方式推知差动信号型态的实施方式。
在本发明的一范例中, 差值可以是相邻或不相邻的一对信号值间的差 值,例如每个信号值与前一信号值的差值, 或是每个信号值与后一信号值的 差值。 在本发明的另一范例中, 差值可以是不相邻两信号值间的差值。 当 外部物件碰触或接近触控装置时, 一维度感测资讯的连续差值可以是如图 1C所示, 外部物件位置为相应外部物件的感测资讯的零交会处 15 , 其中零 交会处 15可能落于两信号值之间。 在本发明的一范例中,在触控装置上,每 一个差值的相应位置为两信号值相应的位置的中间。
本发明提供的第三种一维度感测资讯是以多个连续的双差值( D u a 1 Differences)呈现, 相对于上述信号值或差值, 每个双差值可以是一第一 对信号值的差值与一第二对信号值的差值的和或差, 亦即两对信号值的差 值和或差。 例如, 两对信号值依序包括一第一信号值、 一第二信号值、 一 第三信号值、 一第四信号值, 该相应于该四个信号值的汉差值为(第二信号 值-第一信号值) + (第三信号值-第四信号值), 或(第二信号值-第一信号 值)-( 第四信号值-第三信号值)。 此外, 连续多个双差值组成的感测资讯 可视为双差动感测资讯 (dua l- di fferent ia l sens ing informat ion)。 在本 发明中, 汉差值并不限定是在产生信号值或差值后产生, 也可以是在感测 资讯被提供时已分别完成两对信号的相减后的和或差, 提供相似或等效于 两.对信号值的差值的和或差的双差动信号。 如前面所述, 本发明不限定感 测资讯存在的形态, 双差值可视为感测器的双差动信号的另一种形态。 为 简化说明, 在下面叙述中是以双差值型态的实施方式来叙述本发明, 本技 术领域的普通技术人员可依据双差值型态的实施方式推知双差动信号型态 的实施方式。
在本发明的一范例中, 当外部物件碰触或接近触控装置时, 两对信号 值由相邻或不相邻的三个信号值组成。 例如, 两对信号值依序包括一第一 信号值、 一第二信号值、 一第三信号值, 该相应于该三个信号值的双差值 为(第二信号值-第一信号值) + (第二信号值-第三信号值)。 当两对信号值由 相邻的三个信号值组成, 并且外部物件碰触或接近触控装置时,一维度感测 资讯的连续双差值可以是如图 1D所示,其中外部物件位置为相应外部物件 的感测资讯的中央峰 16,其中中央峰 16可能落于两信号值之间。 当两对信 号值由不相邻的三个信号值组成,并且外部物件碰触或接近触控装置时,一 维度感测资讯的连续双差值可以是如图 1E所示, 其中外部物件位置为相应 外部物件的感测资讯的中央峰 17, 其中央峰 17可能落于两信号值之间。
在本发明中, 相应个别感测器、 时间区间或位置的感测资讯可以是感 测器侦测的信号, 当信号为模拟时, 可经由模拟数字转换器转换成数字的 信号值。 因此, 上述的差值也可以是一对信号的差的值,例如是一对信号经 差动放大器进行相减后所转换的值。 同样地,双差值也可以是两对信号分别 经差动放大器进行相减后再相加(或相减)所转换的值。 本技术领域的普通 技术人员可推知本发明所述的差值与双差值包括但不限于是以信号或信号 值来产生, 也包括硬件或软件实施过程中的记录(电性记录、 磁性记录、 光 学记录)、 信号或信号值的暂时状态。
换言之, 感测资讯可以是感测器上或感测器间的信号、 差动信号(如一 对信号差)、 双差动信号(如二对信号差的和或差), 信号值、 差值、 双差值 (经模拟转数字后的信号、 差值、 双差值)为另一种存在形态。 由于信号与 信号值、 差动信号与差值、 差动信号与双差值可以是感测资讯在不同阶 段的呈现。 此外, 为简化说明, 在本发明的说明中以触碰相关感测资讯泛 指相应于外部物件触碰或接近的感测资讯, 如原始触碰相关感测资讯、 差 动触碰相关感测资讯、 双差动触碰相关感测资讯。
本技术领域的普通技术人员可推知在差值或双差值中, 零交会处位于 至少一正值与至少一负值间, 亦即位于一对正值与负值之间(between a pa i r of pos i t ive and nega t ive va lues)。 相应于夕卜部物件接近与触碰的 差值或双差值为连续的至少一正值与至少一负值的交替组合, 至少一正值 与至少一负值间为彼此相邻或间隔至少一零值。 在大部分的情况下, 相应 于外部物件接近或触碰的差值或双差值为连续的多个正值与多个负值的交 替组合, 正值与负值间的零交会处可能是至少一零值或位于两值间。
相对地, 触碰相关的信号值为多个连续的非零值, 或可能是一个不相 邻其他非零值的独立非零值。 在某些情形中, 一个不相邻其他非零值的独 立非零值可能是因杂讯所产生, 需要靠一门檻值或其他机制辨识或排除
(neg l ec t)。 , . · .
由于在杂讯较大时,有可能产生类似外部物件接近与触碰的零交会处,因 此在本发明的一范例中, 是将落于一零值范围内的值皆视为零值, 相应于 外部物件接近与触碰的差值或双差值为连续多个大于一正门檻的值与小于 一负门槛的值的交替组合, 大于一正门槛的值与小于一负门槛的值间的零 交会处可能是至少一零值或位于两值间。
综合上述, 差动触碰相关感测资讯与双差动触碰相关感测资讯为包括 零交会处的连续至少一正值与至少一负值的交替组合, 其中零交会处可能 是至少一零值或位于正值与负值间。 换言之, 本发明将差动触碰相关感测 资讯为双差动触碰相关感测资讯中正值与负值间连续多个零值也视为零交 会处, 或其中一个零值为零交会处。
在本发明的一范例中, 触碰相关感测资讯预设是由至少一正值或一负 值起始, 由起始的至少一正值或负值搜寻包括零交会处的连续至少一正值 与至少一负值的交替组合, 其中零交会处可能是至少一零值或位于正值与 负值间。 在触碰相关的差动感测资讯中, 至少一正值与至少一负值的交替 组合为对 Ι"出现, 并且在触碰相关的双差动感测资讯中, 至少一正值与至 少一负值的交替组合为不对衬出现。 在本发明的另一范例中, 触碰相关感 测资讯是连续的非零值, 如连续多个非零的信号值。
上述至少一正值可视为一正值集合, 包括至少一正值, 同样地上述至 少一负值可视为一负值集合, 包括至少一负值。 因此上述的交替组合可以 是包括一正值集合与一负值集合的两个集合的组合或三个以上的集合以正 值集合与负值集合交互穿插的组合。 在本发明的一范例中,可能在零个、 一 个、 或多个正值集合与负值集合间存在至少一零值。 系统架构 为了更清楚说明本发明的感测资讯的产生方式, 本发明采用电容式触 控装置为例,本技术领域的普通技术人员可轻易推知其他应用于电阻式、 红 外线式、 表面声波式、 光学式触控装置的应用方式。
请参阅图 1F所示, 本发明提出一种位置侦测装置 100, 包括一感测装 置 120, 与一驱动 /侦测单元 1 30。 感测装置 120具有一感测层。 在本发明 的一范例中, 可包括一第一感测层 120A与一第二感测层 120B, 第一感测层 120A与第二感测层 120B分别有多个感测器 140, 其中第一感测层 120A的 多个第一感测器 140A与第二感测层 120B的多个第二感测器 140B交叠。 在 本发明的另一范例中, 多个第一感测器 140A与第二感测器 140B可以配置 在共平面的感测层中。 驱动 /侦测单元 130依据多个感测器 140的信号产生 一感测资讯。 例如在自电容式侦测时, 是感测被驱动的感测器 140, 并且在 互电容式侦测时, 是感测没有被驱动 /侦测单元 130直接驱动的部分感测器 140。 此外, 感测装置 120可以是配置在显示器 110上, 感测装置 120与显 示器 110间可以是有配置一屏蔽层(shi elding layer) (未显于图示)或没有 配置屏蔽层。
本发明的位置侦测装置 100可以是应用于一计算系统中,如图 1G所示,包 括一控制器 160与一主机 170。 控制器包含驱动 /侦测单元 130,以操作性耦 合感测装置 120 (未显于图示)。 此外,控制器 160可包括一处理器 161,控制 驱动 /侦测单元 130产生感测资讯,感测资讯可以是储存在存储器 162中,以 供处理器 161存取。 另外, 主机 170构成计算系统的主体, 主要包括一中 夬处理单元 171, 以及供中央处理单元 171存取的储存单元 173, 以及显示 运算结果的显示器 110。
在本发明的另一范例中, 控制器 160与主机 170间包括一传输界面,控 制器通过传输界面传送资料至主机, 本技术领域的普通技术人员可推知传 输界面包括但不限于 U ART、 USB、 I2C、 Bluetooth. WiFi等各种有线或无线 的传输界面。 在本发明的一范例中, 传输的资料可以是位置(如座标)、 辨 识结果(如手势代码)、 命令、 感测资讯或其他控制器 160可提供的资讯。
在本发明的一范例中,感测资讯可以是由处理器 161控制所产生的初始 感测资讯 (ini t ia l sens ing informat ion),交由主机 170进行位置分析,例 如位置分析、 手势判断、 命令辨识等等。 在本发明的另一范例中, 感测资 讯可以是由处理器 161 先进行分析, 再将判断出来的位置、 手势、 命令等 等递交给主机 170。 本发明包括但不限于前述的范例, 本技术领域的普通技 术人员可推知其他控制器 160与主机 170之间的互动。
请参阅图 2A所示,在本发明的一范例中, 驱动 /侦测单元 130可以是包 含驱动单元 130A与侦测单元 130B。感测装置 120的多个感测器 140是经由 多条导线(wi res)操作性耦合至驱动 /侦测单元 130。在图 2A的范例中,驱动 单元 130A与侦测单元 130B是分别经由导线 操作性耦合至感测器 140A 与经由导线 W2操作性耦合至感测器 140B。
例如, 在自电容式侦测时, 驱动单元 130A是经由导线 W1在一第一时 段轮流驱动或同时驱动全部感测器 104A, 也可以是分次同时驱动部分感测 器 104A,由侦测单元 130B经导线 W1依据感测器 104A的信号产生一第一轴 向的感测资讯(一维度感测资讯)。 同理, 驱动单元 1 30A是经由导线 W2在 一第二时段轮流驱动或同时驱动全部感测器 104B, 也可以是分次同时驱动 部分感测器 104B,由侦测单元 130B经导线 W2依据感测器 104B的信号产生 一第二轴向的感测资讯 (一维度感测资讯)。
又例如, 在互电容式侦测时, 驱动单元 130A是经由导线 W2在第一时 段轮流驱动感测器 104B, 分别在每一个感测器 140B被驱动时, 由侦测单元 130B经导线 依据感测器 104A的信号产生相应于被驱动感测器的第一轴 向的一维度感测资讯, 这些第一轴向的一维度感测资讯构成第一轴向的一 二维度感测资讯(或一影像)。 同理, 驱动单元 130A是经由导线 W1在第二 时段轮流驱动感测器 104A,分别在每一个感测器 140A被驱动时, 由侦测单 元 130B经导线 W2依据感测器 104B的信号产生相应于被驱动感测器的第二 轴向的一维度感测资讯, 这些第二轴向的一维度感测资讯构成第二轴向的 一二维度感测资讯(或一影像)。 此外, 驱动单元 130A与侦测单元 130B间 可以经由线路 132提供信号来进行同步, 线路 132的信号可以是由上述处 理器 160提供。
请参阅图 2B所示, 感测装置 120也可以是只产生单一轴向的二维度感 测资讯, 在本范例中是由导线 W2轮流驱动感测器 104B, 分别在每一个感测 器 140B被驱动时, 由侦测单元 130B经导线 W1依据感测器 104A的信号产 生相应于被驱动感测器的一维度感测资讯, 这些一维度感测资讯构成一二 维度感测资讯(或一影像)。
换言之,本发明的位置侦测装置 100可以是具备产生两个轴向的一维度 感测资讯或两个轴向的二维度感测资讯的能力,或者是兼具产生两个轴向 的一维度感测资讯与二维度感测资讯的能力,也可以只产生单轴向的二维 度感测资讯。 本发明包括但不限于上述电容式位置侦测装置,本技术领域的 普通技术人员可轻易推知其他应用于电阻式、 红外线式、 表面声波式、 光 学式触控装置的应用方式。
请参阅图 3A所示, 上述侦测单元 130B是经由导线(如 W1)操作性耦合 至感测装置, 操作性耦合可以是由一切换电路 310 来达成, 切换电路可以 是由一个或多个多工器、 开关(swi tch)等电性元件组合,本技术领域的普通 技术人员可推知其他切换电路的应用。 感测器 140 的信号可以是由一侦测 电路 320来侦测, 当侦测电路 320输出的信号为模拟时,可再经由模拟转数 字电路 330来产生感测资讯 SI。 感测资讯 SI可以是模拟或数字型式,在本 发明一较佳范例中, 感测资讯为数字型式。 本发明包括但不限于上述范例, 本技术领域的普通技术人员可推知侦测电路 320与模拟转数字电路 330可 以是整合于一个或多个电路。
侦测电路 320可以是由一个或多个侦测器组成, 每一个侦测器接收至 少一感测器 140的信号来产生一输出, 侦测器可以是如图 3B至图 3D的侦 测器 340、 350、 360所示。
在本发明的一范例中, 对于感测器 140 的信号的侦测, 可以是以一积 分器来侦测, 本技术领域的普通技术人员可推知其他如模拟数字转换器等 可量测电性特性(如电压、 电流、 电容、 电感等等)的电路也可应用于本发 明。 积分器可以是以一放大器 C int来实施, 具有一输入(如图 3B的积分器 322所示)或一对输入(如图 3C及图 3D的积分器 324所示), 以及一输出, 输出的信号可以是经由模拟转数字电路 330来产生感测资讯 SI的值, 每一 个值的产生可以是通过一重置信号来控制, 如图 3B至图 3D的重置信号。
在本发明的另一范例中, 感测器 140 的信号为交流信号, 随一对半周 期而改变, 因此对于感测器 140 的信号的侦测也是依据不同的半周期而改 变,如在前半周期侦测感测器 140的信号, 在后半周期侦测感测器 140的反 向信号, 反之亦然。 因此, 感测器 140 的信号的侦测可以是通过一同步信 号来控制, 如图 3B至图 3C所示, 同步信号与感测器 140的信号可以是同 步或具有相同周期。 例如, 利用同步信号控制一个或多个开关(如开关电路 321、 323、 325)在接点 P1与 P2间切换, 在前半周期侦测感测器 140的信 号, 在后半周期侦测感测器 140的反向信号。 在图 3B中, 反向信号可以是 借由一反向器 Cinv来提供。
在本发明的再一范例中, 感测器 140 的信号的侦测是在至少一周期的 至少一预设的时段(或相位)侦测, 可以是在前半周期的至少一时段与后半 周期的至少一时段来侦测, 也可以只在前半周期或只在后半周期的至少一 时段来侦测。 在本发明的一较佳范例中, 是先扫描一周期中信号较佳的至 少一时段, 作为侦测时段, 其中侦测时段相对于其他时段受到杂讯的干扰 较小。 侦测时段的扫描可以依据至少一个感测器的信号在至少一周期中每 一个时段的侦测来判断。 在侦测时段判断出来之后, 感测器 140 的信号的 侦测只在侦测时段侦测, 可以是通过一信号来控制, 如图 3B至图 3D中的 致能信号。
本发明是依据至少一感测器 140的信号来产生感测资讯 SI的值。 在本 发明的一范例中,感测资讯 SI是由多个信号值组成。 例如图 3B所示,是由 一输入 311操作性耦合至一感测器 140,来侦测出一信号, 再经由模拟转数 字电路 330产生感测资讯 SI 的一信号值。 在本发明的另一范例中,感测资 讯 SI是由多个差值组成。 例如图 3C所示,是由一对输入 312、 313操作性 耦合至一对感测器 140,来侦测出一差动信号,再经由模拟转数字电路 330产 生感测资讯 SI 的一差值(或称单差值)。 在本发明的再一范例中,感测资讯 SI是由多个双差值组成。 例如图 3D所示。 是由三个输入 314、 315、 316操作 性耦合至三个感测器 140, 来侦测出一双差动信号, 再经由模拟转数字电路 330产生感测资讯 SI的一双差值。 双差动信号是依据一对差动信号的差来 产生, 每一个差动信号是依据一对感测器的信号来产生。 换言之,双差动信 号可以是依据一第一对感测器与一第二对感测器的信号来产生,第一对感 测器为三个感测器中的前两个感测器, 并且第二对感测器为三个感测器中 的后两个感测器, 其中三个感测器可以是相邻或不相邻。
在本发明的一较佳范例中, 侦测电路. 320 包含多个侦测器, 可同时产 生感测资讯 SI中的全部或部分的值。例如图 3E至图 3J所示,侦测电路 320 可以是由多个侦测器 340、 350或 360所组成, 这些侦测器的输出再由模拟 转数字电路 330转换成感测资讯 S I的值。
模拟转数字电路 330包括至少一模拟数字转换器 ADC,每一个模拟数字 转换器可以是只依据一侦测器的输出产生感测资讯 S I的值,如图 3E、图 3G、 图 31所示,也可以是轮流由多个侦测器的输出产生感测资讯 SI的值,如图 3F、 图 3H、 图 3J所示。 感测资讯 S I的值可以是平行产生也可以是序列产生, 在本发明的一较佳范例中, 感测资讯 SI的值是序列产生, 可以是由一切换 电路 370来达成, 例如将多个模拟数字转换器轮流输出感测资讯 S I的值, 如表 1、 图 4B、 图 4D所示, 或将多个积分器的输出轮流提供给一模拟数字 转换器来产生感测资讯 S I的值, 如图 3F、 图 3H、 图 3J所示。
据此, 在本发明的一范例中,是依据多个感测器的信号产生具有多个信 号值的感测资讯 S I,其中每一个信号值是依据一个感测器的信号来产生,如 图 3B、 图 3E与图 3F所示。在本发明的另一范例中,是依据多个感测器的信 号产生具有多个差值的感测资讯 S I, 其中每一个差值是依据一对感测器的 信号来产生, 如图 3C、 图 3G与图 3H所示。 在本发明的再一范例中, 是依 据多个感测器的信号产生具有多个双差值的感测资讯 S I, 其中每一个双差 值是依据三个感测器的信号来产生, 如图 3D、 图 31与图 3J所示。
在本发明的一第一范例中, 感测资讯可以是由一双差动电路取得, 双 差动电路包括: 一第一级差动电路、 一第二级差动电路与一量测电路, 例 如图 3D、 图 31或图 3J所示。
第一级差动电路包括一对或多个第一减法器(例如开关电路 325中的差 动放大器) , 每一个第一减法器分别依据这些传感器中的一对传感器的信号 产生一第一级差值信号。
此外, 第二级差动电路包括一个或多个第二减法器(例如积分电路 324 中的积分器), 每一个第二减法器分别依据这些第一级差值信号中的一对第 一级差值信号产生一第二级差值信号。
另外, 量测电路可以是如图 3A的模拟转数字电路所示, 可以是如图 3D 的积分器 324与模拟转换电路 ADC所组成,或是如图 31的多个积分器 324、 多个模拟转换电路 ADC与一切换电路 370所组成, 亦可以是如图 31的多个 积分器 324、 一切换电路 370与一模拟转换电路 ADC所组成。 此外, 量测电 路是在一个或多个时点量测这些第二级差值信号, 以产生该感测资讯。 例 如图 3D或图 3J所示, 是在多个时点量测这些第二级差值信号, 或如图 31 所示, 是在一个时点量测这些第二级差值信号。
在本发明图 3D、 图 31与图 3J中, 是以差动积分器 324同时进行信号 相减与量测, 其中信号量测可再包括以模拟转换电路 ADC产生一数字值。 前述相关图示与说明仅为本发明之范例之一, 并非用以限制本发明, 本技 术领域的普通技术人员可推知信号相减与信号量测可以是以不同电路施 行, 例如先经过一减法器再经过一积分器, 在此不再赘述。
在前述双差动电路中, 感测资讯的每一个值分别是由这些第二级差值 信号之一产生, 并且每一个第二级差值信号分别是由所述一对第一级差值 信号的一第一差值信号与一第二差值信号产生, 其中第一差值信号是分别 依据这些传感器的一第一传感器与一第二传感器的信号产生, 并且第二差 值信号是分别依据这些传感器的第二传感器与一第三传感器的信号产生。 换言之, 感测资讯的每一个值分别相应于这些传感器中三个传感器的信号。
在本发明的一第二范例中, 感测资讯可以是由一差动电路取得, 差动 电路包括: 一个或多个减法器与一量测电路, 例如图 3C、 图 3G或图 3H所 示。 在这些减法器中, 每一个减法器分别依据一对传感器的信号产生一差 值信号。 量测电路则量测这些差值信号, 以产生一差动感测资讯, 其中感 测资讯的每一个值分别是由差动感测资讯的一对值的差值。
此外, 量测电路是在一个或多个时点量测这些第二级差值信号, 以产 生该感测资讯。 例如图 3C或图 3H所示, 是在多个时点量测这些第二级差 值信号, 或如图 3G所示, 是在一个时点量测这些第二级差值信号。
在图 3C、 图 3G或图 3H, 减法器与量测电路的部份可以是由积分器 324 来实施。 前述相关图示与说明仅为本发明之范例之一, 并非用以限制本发 明、 本技术领域的普通技术人员可推知信号相减与信号量测可以是以不同 电路施行, 例如先经过一减法器再经过一积分器, 在此不再赘述。
此外, 感测资讯的每一个值分别是差动感测资讯的一第一差值与一第 二差值的差值, 其中第一差值是分别依据这些传感器的一第一传感器与一 第二传感器的信号产生, 并且第二差值是分别依据这些传感器的第二传感 器与一第三传感器的信号产生。 换言之, 感测资讯的每一个值分别相应于 这些传感器中三个传感器的信号。
在本发明的第三范例中,感测资讯可以是由一量测电路取得, 如图 3B、 图 3E或图 3F所示。 量测电路在一个或多个时点量测这些传感器的信号, 以产生一初始感测资讯, 感测资讯是依据初始感测资讯产生, 其中感测资 讯的每一个值分别是由初始感测资讯的三个值产生。
此外, 量测电路是在一个或多个时点量测这些第二级差值信号, 以产 生该感测资讯。 例如图 3B或图 3F所示, 是在多个时点量测这些第二级差 值信号, 或如图 3E所示, 是在一个时点量测这些第二级差值信号。 感测资讯的每一个值分別是一第一差值与一第二差值的差或和, 其中 第一差值为初始感测资讯的三个值的前两个值的差值, 并且第二差值为初 始感测资讯的三个值的后两个值的差值。,换言之 所述初始感测资讯的三 个值分别是一第一值、 一第二值与一第三值, 感测资讯的每一个值分别是 (第二值-第一值) - (第三值-第二值)、 (第一值-第二值) - (第二值-第三值)、 (第二值-第一值) + (第二值-第一值)或(第一值-第二值) + (第三值 -第二 值)。 前述初始感测资讯的每一个值是依据这些传感器之一的信号产生, 换 言之, 感测资讯的每一个值分別相应于这些传感器中三个传感器的信号。
在发明的一范例中, 感测资讯中的每一个触碰相关感测资讯具有两个 零交会处, 并且被外部对象接近或触碰的位置是依据每一个触碰相关感测 资讯判断出来。 在发明的另一范例中, 触碰相关感测资讯位于感测资讯最 前面部份或最后面部份, 外部对象仅部份接近或触碰感测装置的主动区边 缘, 而不具有两个零交会处, 需要例外处理。
此外, 前述的时点可以是包括但不限于经过一个或多个频率, 或一个 或多个频率的部份。
再者, 上述感测资讯的取得与产生可以是由前述控制器 160 来实施, 上述双差动电路、 差动电路与量测电路亦可以是由控制器 160来实施。
在本发明中, 感测器可以是由多个导电片与连接导线所构成, 例如是 由多个连接导线串连一连串的菱形或方形导电片所构成。 在结构上, 第一 感测器 140A与第二感测器 140B的导电片可以是排列在不同平面,也可以是 排列在相同平面。 例如, 第一、 第二感测层 120A、 120B间隔着一绝缘层或 一压阻(piezores i s t ive)层,其中压阻层可以是由异方性导电胶所构成。 又 例如,第一感测器 140A与第二感测器 140B 的导电片大体上排列在同一平 面,第一感测器 140A的连接导线跨过第二感测器 140B的连接导线。 此外,第 一感测器 140A的连接导线与第二感测器 140B的连接导线间可配置一垫片,垫 片可以是由绝缘材质或压阻材质所构成。
因此, 在本发明的一范例中,每一感测器感测一感测范围, 并且是由多 个感测器来感测,这些感测器包含多个第一感测器与多个第二感测器,这些 第一感测器间的感测范围平行,并且这些第二感测器间的感测范围平行,这 些第一、 第二感测器的平行感测范围交叠构成一交叠区阵列。 例如这些第 一、 第二感测器分别为横向与纵向排列的两列红外线接收器, 分别感测重 直与水平的平行扫瞄范围, 重直与水平的平行扫瞄范围交错处构成一交叠 区阵列。 又例如上述重直与水平的平行扫瞄范围是由电容式或电阻式的多 条交叠的感测器来实施。 感测资讯转换 (Con vers ion of Touch Sens i t i ve Informa t ion) 上述感测资讯的信号值、 差值、 双差值间可以相互转换。 在本发明提 供的一第一转换方式中, 是将连续的信号值转换成连续的差值, 每一个差 值为一对相邻或不相邻信号值的差值。
在本发明提供的一第二转换方式中, 是将连续的信号值转换成连续的 双差值, 每一个汉差值为两对信号值的差值和或差。
在本发明提供的一第三转换方式中, 是将连续的差值转换成连续的信 号值, 以每一个差值加上在前或在后所有差值来产生相应的信号值, 组成 连续的信号值。
在本发明提供的一第四转换方式中, 是将连续的差值转换成连续的双 差值, 每一个双差值为相邻或不相邻的一对差值的和或差。
在本发明提供的一第五转换方式中, 是将连续的双差值转换成连续的 差值, 以每一个双差值加上在前或在后所有双差值来产生相应的差值,组成 连续的差值。
在本发明提供的一第六转换方式中, 是将连续的双差值转换成连续的 信号值。 在本发明的一范例中, 是以每一个双差值加上在前所有双差值来 产生相应的差值, 组成连续的差值, 再以每一个差值减去在后所有的差值 来产生相应的信号值, 组成连续的信号值。 在本发明的另一范例中, 是以 每一个双差值减去在前所有汉差值来产生相应的差值, 组成连续的差值,再 以每一个差值加上在后所有的差值来产生相应的信号值, 组成连续的信号 值。
前述加上在前或在后的所有差值或双差值可以是以向前或向后累加方 式来依序产生相应的信号值或差值。
上述的转换方式包括但不限于一维度感测资讯的转换, 本技术领域的 普通技术人员可推知上述的转换方式也可以应用于二维度感测资讯或三维 度以上的感测资讯。 此外, 本技术领域的普通技术人员可推知上述的转换 方式的作业可以是由前述控制器 160或主机 170来执行。
据此,在本发明的一范例中,是将侦测到的第一形式的感测资讯(如一 维度、 二维度感测资讯)转换成用于位置分析的感测资讯。 在本发明的另一范 例中,是将侦测到的第一形式的感测资讯转换成一第二形式的感测资讯,再 将第二形式的感测资讯转换成用于位置分析的感测资讯, 例如由连续的双 差值转换成连续的信号值。 一维度位置分析 (One Dimens ion Pos i t i on Ana lys i s) 本发明提供的一第一种位置分析是依据感测资讯中多个差值分析出零 交会处(zero-cros s ing)的位置作为外部物件相应的位置。 本技术领域的普 断,亦即外 ^物件相^应的位 的判断包括但不限于 卜部物件接近与触碰的 判断。
在本发明的一范例中, 是搜寻包含一正值与一负值的一对邻近差值,即 零交会处两侧的一对正值与负值, 再判断出这对邻近的差值间零交会处的 位置, 例如依据这对邻近的差值产生一斜率来判断出零交会处。 此外,更可 以是依据正值与负值的出现的先后顺序配合邻近的差值间零交会处的判 断。 前述的这对邻近的差值可以是相邻的差值, 也可以中间包含至少一零 值的非相邻的差值。 此外, 可以是以一预设的排列顺序来搜寻这对邻近正 值与负值, 例如是搜寻先出现正值再出现负值的一对邻近正值与负值。
...在本发明的另一范例中, 是利用一门檻限值决定搜寻零交会处的起始 位置, 由起始位置搜寻包含一正值与一负值的一对邻近的差值, 再依据这 对邻近的差值判断出零交会处的位置。 本技术领域的普通技术人员可推知 在差值表示的感测资讯中, 相应于外部物件接近或触碰的感测资讯大于一 正门槛限值或小于一负门槛限值时, 以此门槛限值所进行的搜寻包括但不 限于对外部物件接近或触碰的判断。 换言之, 在扫描感测资讯的过程中,每 当感测资讯大于一正门槛限值或小于一负门檻限值时, 可判断出感测资讯 存在相应一外部物件接近或触碰的零交会处。
例如以一门槛限值产生相应于正值的差值的二值化值, 例如小于门槛 P艮值(如正门槛限值)的差值以 0或伪值(fa l se)代表, 并且大于门槛限值的 差值以 1或真值(true)代表, 以相邻差值为 10的 1处或真值及伪值的真值 处为起始位置, 零交会处的搜寻方向为向后搜寻。 同样地, 可以是以大于 门槛限值(如负门槛限值)的差值以 0或伪值(fa l se)代表, 并且小于门槛限 值的差值以 1或真值(true)代表, 以相邻差值为 01的 1处或真值及伪值的 真值处为起始位置, 零交会处的搜寻方向为向前搜寻。
例如表 1及图 4A为以门槛限值判断外部物件接近或触碰的范例。 表 1
Figure imgf000026_0001
范例中包括相应 15个感测器的信号值与差值, 以及利用一正门槛限值 T1 (以 4为例)及一负门槛限值 Τ2 (以- 4为例)的判断结果。 在利用正门槛限 值的判断结果中, 起始位置 01的 1处, 即第 4个差值与第 11)个差值, 在 图示中以直纹棒为例, 代表有两个外部物件接近或触碰。 同样地, 在利用 正门槛限值的判断结果中, 起始位置为相邻差值为 10的 1处, 即第 5个差 值与第 12个差值, 在图示中以横紋棒为例, 代表有两个外部物件接近或触 碰。 本技术领域的普通技术人员可推知起始位置的数量相应于外部物件接 近或触碰的数量, 本发明不限于本范例中的 2 个外部物件接近或触碰的数 量,也可以是 1个或更多个。
在本发明的另一范例中, 是利用一第一门槛限值与一第二门槛限值决 定搜寻零交会处的区间, 包括但不限于判断出一外部物件的接近或触碰,再 由区间内搜寻零交会处的位置。 例如以一第一门槛限值产生相应于正值的 差值的二值化值,例如小于门槛限值的差值以 0 (或伪值(fa l se) )代表,并且 大于门槛限值的差值以 1 (或真值(true) )代表, 以相邻两差值为 01处的 1 为起始位置。 此外, 以第二门槛限值产生相应于负值的差值的二值化值,例 如大于门槛限值的差值以 0 (或伪值)代表,并且小于门槛限值的差值以 1 (或 真值)代表, 以相邻两差值为 10处的 1为结束位置。 另外,将起始位置、 结 束位置配对决定搜寻零交会处的区间。 在本发明的一范例中, 是以起始位 置(如 01处中的 1位置)与结束位置(如 10处中的 1位置)间的斜率判断出 零交会处。 本技术领域的普通技术人员可推知上述起始位置与结束位置可 分别互换为结束位置与起始位置。
例如以前述表 1与图 4A为例, 配对后的第一个搜寻零交会处的区间为 第 4个与第 5个差值间, 配对后的第二个搜寻零交会处的区间为第 10个与 第 12个差值间。
本技术领域的普通技术人员可推知正门槛限值的扫描与负门槛限值的 扫瞄可以是同时进行(或平行处理), 区间的配对也可以是在一起始位置被 判断出后, 配对在后判断出来的结束位置。
在本发明的一范例中, 门槛限值是依感测资讯来产生, 例如门槛限值 是以所有差值的绝对值中最大者乘上一比例(如小于一的比例, 例如 0. 9) 来决定, 也可以是正门槛限值是以正差值中最大者乘上一比例来决定,或是 负门檻限值是以负差值中最小者乘上一比例来决定。 换言之, 门槛限值可 以是固定的或是动态的。 因此, 门槛限值的绝对值较大时, 有可能发生相 应的外部物件的接近或触碰在利用正门槛 P艮值的扫描中被判断出来, 但在 利用负门槛限值的扫描中未被判断出来,反之亦然。 其中较大的门檻限值较 有利于滤除杂讯或鬼点,较小的门槛限值较有利于避免漏判真实的触碰,或 有利于判断外部物件的接近。
从上述说明中可推知, 相应于同一外部物件的接近或触碰, 不论是由 正门槛限值来判断出起始位置后向后搜寻, 或是由负门槛限值来判断出起 始位置后向前搜寻, 皆会搜寻到相同的零交会处。 因此, 在本发明的一范 例中, 是分别利用正门槛限值与负门槛限值扫描起始位置, 由起始位置搜 寻零交会处, 依据搜寻到的零交会处的数量判断被外部物件接近或触碰的 数量, 并进一步判断零交会处的位置。 当相应于外部物件触碰或接近的零 交会处两侧的一对正值与负值是先正值再负值, 依据正门槛限值判断出的 起始位置是向后搜寻零交会处, 而依据负门槛限值判断出的起始位置是向 前搜寻零交会处, 反之亦然。 另外, 相应于同一外部物件的接近或触碰不 必然能在利用正门槛限值与负门槛限值扫描时都判断出起始位置。
本发明提供的一第二种位置分析是依据感测资讯中多个信号值或双差 值分析出质心(centroid)位置(重心位置或加权平均位置)作为外部物件相 应的位置。
在本发明的一范例中, 是利用一门槛限值决定用于判断质心位置的信 号值或双差值。 如图 4B至图 4C所示, 可以是以一门槛限值产生相应于信 号值或双差值的二值化值, 例如小于门槛限值的信号值或双差值以 0或伪 值(fa l se)代表, 并且大于门槛限值的信号值或双差值以 1或真值(true)代 表。 在本例中是以 1 或真值代表的信号值或双差值为用于判断质心位置的 信号值或双差值。 本技术领域的普通技术人员可推知其他以一门槛限值决 定用于判断质心位置的信号值或双差值的方式, 例如是以 1 或真值代表的 信号值或双差值再加上两侧相邻的多个信号值或双差值为用于判断质心位 置的信号值或双差值。 又例如是以相邻的连续 1 或真值代表的信号值或双 差值中相对中央的信号值或汉差值向前与向后分别取 i与 j个信号值或双 差值作为用于判断质心位置的信号值或 差值。
在本发明的另一范例中,是将连续的信号值或双差值转换为连续差 值,以分析出零交会处相应的信号值或双差值作为中央的信号值或 差 值,再以中央的信号值或双差值向前与向后分别取 i与 j个信号值或双差值 作为用于判断质心位置的信号值或双差值。
在本发明的另一范例中, 是以连续差值分析出零交会处, 并且将连续 的差值转换为连续的信号值或双差值, 再分析出零交会处相应的信号值或 双差值作为中央的信号值或双差值, 然后以中央的信号值或汉差值向前与 向后分别取 i与 j个信号值或双差值作为用于判断质心位置的信号值或双 差值。
假设以第 n个信号值向前及向后分别取 i个及 j个信号值作为质心计 算范围, 依据质心计算范围中的每个信号值 Ck及每个信号值所在位置 Xk判 断质心位置 C 。,.d, 如下。
Figure imgf000028_0001
其中, t可以是一维度座标(如 X座标或 Y座标),或是二维度座标(如 (X, Υ))。
假设第 k- 1个信号值与第 k个信号值间的差值为^, 并且一第 k个双 差值为 DA-A-!-A G— C4— (Ct+1-Ct) = 2C¾- C41 +Ci+1, 假设以第 n个 双差值 D„向前及向后分别取 i个及 j个双差值作为盾心计算范围,依据质 心计算范围中的每个双差值 判断质心位置 DZ) ,TO,.rf , 如下。
Figure imgf000028_0002
其中, 可以是一维度座标(如 X座标或 Y座标),或是二维度座标(如 (X, Υ))。 本技术领域的普通技术人员可推知当第 k 个双差值为
DDk =(CA- _2)- ( +2- )=2 - G-2+ +2时的质心位置计算, 在此不再赘 述。
在本发明的另一范例中, 用于判断质心位置的信号值或双差值是减去 一基础值后再进行质心位置的判断。 例如, 基础值可以是所有信号值或双 差值的平均值、 用于判断质心位置的信号值或双差值两侧多个信号值或双 差值的平均值、 或用于判断质心位置的信号值或汉差值两侧相邻多个非用 于判断质心位置的信号值或双差值的平均值, 本技术领域的普通技术人员 可推知其他基础值的决定方式。 例如, 可以是依据一侧至少一信号值或双 差值的一第一比例与另一侧至少一信号值或双差值的一第二比例来决定基 础值。
假设以第 n个信号值向前及向后分别取第 i个信号值 C„_,.与第 j个信号 值 /,,+,.的平均值作为基础 (Base)值 ) , 并且以第 n
Figure imgf000029_0001
个信号值向前及向后分别取 i个及 j个信号值作为质心计算范围, 依据质 心计算范围中的每个信号值 减去基底信号值 Cb→J)作为计算信号值
(Ck -Cb→ )) , 以判断质心位置 C 。w, 如下。 r cn_i + cn+j r _r 2Ck -C„—「Cn+J jCkO Ck -Cn+
^base(i ) - 2 一 2 2
C - cnetroid ™
Figure imgf000029_0002
其中, ; ^可以是一维度座标(如 X座标或 Υ座标), 或是二维度座标(如 (X, Υ))。
据此, 本发明提供的一第三种位置分析是依据感测资讯中多个差值分 析出质心(centroid)位置(重心位置或加权平均位置)作为外部物件相应的 位置。
假设第 k-1个信号值 与第 k个信号值 Ck间的差值为^。
(Ck - C„_,. ) = /)„—(,.—') + Dn_(i_2) +… +
(Ck -Cn+J) = -(Dk+] +Dk+2 +— + 2Ck—Cn C,
, -
(AH,.— ') +D„.(i_2) +... + Dk)-(Dk+] +Dk+2 +... + Dn+J)
!oa c
Figure imgf000030_0001
据此, 质心位置(C^^)可以是依据信号值间的差值来求出, 其中质心 计算范围中的差值为 />„—(,.—,>,/)„—(,.— 2),..., , +1,...,1)„+^„+( +1)。 换言之, 质心位 置 cc 可以是以质心计算范围中的差值来计算得出。
例如下列范例, 假设要以第 n个信号值向前及向后分别取 1信号值来 判断质心位置(c ,TO,.rf) , 可以质心计算范围中的差值 (如 ,,^, ^, ^)计' 算, 证明如下。
„ , = C. , -C„ ,
Dn =C„ -C„_, Dn+ =Cn+l -Cn n = c —C c. , + c.
2
—C -C Dn_t -D„ -Dn+l -Dn+2
r -C
2 2 r -C Dn.^Dn -Dn+, -Dn+1
c.—c
2 2 Dn_, +Dn +Dn+l -Dn+2
C -C
2 2 c ― ί― Cbase(2, ) + x n {Cn― Cbasei2 2) ) + Xn+l (Cn+l― Cbase(2 2) )
i ) + ― ) + (^n+l―
C = d(D„―、 - D„ -D„+l - Dn+2) + Xn(Dn_, + Dn - Z)„+1 -Dn+2) + d + D„ + Dn+l - D』/d - Dn - Dn+1 -∑>„+2) +
(^- + Dn -Dn+l -D^ + iD^ + Dn + Dn+l -Dn+2))
本技术领域的普通技术人员可推知以第 n个信号值、 差值、 或双差值 向前及向后分别取 i个及 j个信号值、 差值、 或双差值以作为质心计算范 围的方式可应用于判断^心位置的信号值、 差值、 或双差值上, 反之亦然。
由上述说明中可推知, 本发明借由对感测资讯的分析, 来进行位置侦 测,感测资讯包括但不限于初始取得的信号值、 差值或双差值, 也可以是包 括但不限于由初始取得的感测资讯所转换的信号值、 差值或双差值。 因此 借由分析相应于同一外部物件的两个不同轴向(如 X轴与 Y轴)上的一维度 或二维度感测资讯, 亦即借由两个不同轴向的一维度或二维度位置分析,可 获得外部物件在两个不同轴向上的位置(或座标), 构成一二维度位置(或二 维度座标)。
本技术领域的普通技术人员可推知上述的一维度位置分析的作业可以 是由前述控制器 160或主机 170来执行。 二维度位置分折 (One Dimens i on Pos i t ion Ana lys i s) 二维度感测资讯可以是由多个一维度感测资讯所组成 , 其中每一个一 维度感测资讯包括相应于多个第——维度位置的感测资讯, 并且每一个一 维度感测资讯分别相应于一个第二一维度的位置。 因此, 二维度位置分析 可以是至少包括对多个一维度触敏资分别进行一维度位置分析, 亦即二维 度位置分析可以是至少包括多个一维度位置分析。
此外, 在本发明的一第一范例中, 任一外部物件在各第一维度感测资 讯上的第——维度质心位置, 为一二维度位置(如二维度座标(第——维度 质心位置, 第一维度感测资讯的第二一维度的位置)), 可被用来计算外部 物件的二维度质心位置(或几何中心), 其中每一个一维度质心位置的加权 值可以是外部物件在相应第一维度感测资讯上的信号值或双差值(如第一 维度感测资讯上的最邻近一维度质心位置的两信号值或双差值之一或其平 均值、 内插值), 或是外部物件在相应第一维度感测资讯上的信号值或双差 值的总和。
因此, 二维度位置分析可以是先对各第一维度感测资讯的一维度位置 分析, 依据每一个外部物件所相应的至少一二维度位置, 分折出每一外部 物件的二维度质心位置。
此外, 在本发明的一第工范例中, 二维度位置分析可以是包括对一第 一轴向(或第一一维度)上的多个一维度感测资讯分别进行一维度位置分 析, 依据每一个外部物件在第一轴向上所相应的至少一一维度位置, 分析 出每一个外部物件在第一轴向上的第一一维度质心位置。 同样地,另外对一 第二轴向(或第二维度)上的多个一维度感测资讯进行一维度位置分析,依 据每一个外部物件在第二轴向上所相应的至少——维度位置, 分析出每一 个外部物件在第二轴向上的第二一维度质心位置。 借由配对每一个外部物 件在第一轴向上的第一一维度质心位置与在第二轴向上的第二一维度^心 位置, 可分析出每一个外部物件的一二维度位置。
. 换言之, 二维度位置分析可以是借由两个不同轴向上的二维度感测资 讯(如第一轴向上的二维度感测资讯与第二轴向上的二维度感测资讯)进行 一维度位置分析, 来分析出每一个外部物件的二维度位置。
另外, 在本发明的一第三范例中, 二维度位置分析可以是在一第一轴 向的多个一维度感测资讯分析相应于各外部物件的一维度质心位置, 并依 据各一维度感测资讯相应的二维度位置, 判断在第一轴向上相应于每一个 外部物件的每一个一维度质心位置的二维度位置。 二维度位置分析另外在 一第二轴向的多个一维度感测资讯分析相应于各外部物件的一维度质心位 置,并依据各一维度感测资讯相应的二维度位置, 判断在第一轴向上相应于 每一个外部物件的每一个一维度质心位置的二维度位置。 二维度位置分析 再依据每一个外部物件在第一、 第二轴向上相应的所有一维度质心位置的 二维度位置分析出二维度质心位置。
本技术领域的普通技术人员也可推知 , 二维度感测资讯可以经由影像 处理程序来判断出各外部物件的位置, 例如可以用分水岭演算法或其他影 像处理来进行位置分析。 又例如可以是以分水岭演算法分析出各分水领的 位置, 再以各分水领的位置邻近的感测资讯进行质心位置的计算, 以取得 较精确的位置。
在本发明的一第四范例中, 初始取得的多个一维度感测资讯是由信号 值或双差值表示, 构成一二维度感测资讯所呈现的影像(或阵列), 可以是 用分水岭演算法或其他影像处理来进行位置分析。 也可以是利用连接元件
(connec ted component)演算法, 将影像中相连的部份分析出来, 判断出每 一个外部物件的影像, 进一步分析出位置或是哪种外部物件, 如手、 手掌 在本发明的一第五范例中, 初始取得的多个一维度感测资讯是由差值 表示, 再转换成为信号值或双差值, 以构成一二维度感测资讯所呈现的影 像(或阵列), 可以是用分水岭演算法或其他影像处理来进行位置分析。 在本发明的一第六范例中, 初始取得的多个一维度感测资讯是由差值 表示, 经由对每一个一维度感测资讯的位置分析, 判断出每一个零交会处 的位置, 以及每个零交会处的位置上的信号值或双差值, 以构成一二维度 感测资讯所呈现的影像(或阵列), 可以是用分水岭演算法或其他影像处理 来进行位置分析。
零交会处的汉差值可以是直接相邻的两个差值来产生, 例如零交会处 位于第 k- 1 个差值与第 k 个差值之间, 零交会处的双差值可以是 DDk = Dk—i - Dk。 零交会处的信号值可以是将整个代表一维度感测资讯的差 值转换成信号值后再产生, 也可以是以最接近零交会处的多个差值来产生。 例如, 零交会处最近第 n个信号值, 分别以第 n个信号值向前及向后分别 取第 i 个信号值 C„_,.与第 j 个信号值 /„+ 的平均值作为基础(Bas e)值
Cb→ ) ( Cb→ ) = ^^ ), 以 C„ - Cb→J) - 2C" " C;-' " "^来作为信号值, 则
_ (Dn-g- + ^-(--2) +... + J- + Dn+2 +... + ^)
一 2
换言之, 由第 n- (i-l)个差值至第 n+j个之间的差值, 可判断出零交会 处的信号值。
在本发明的一第七范例中, 初始取得的多个一维度感测资讯是由信号 值与双差值表示, 再转换成为差值, 经由对每一个一维度感测资讯的位置 分析, 判断出每一个零交会处的位置, 配合每个零交会处的位置上的信号 值或汉差值, 以构成一二维度感测资讯所呈现的影像(或阵列), 可以是用 分水岭演算法或其他影像处理来进行位置分析。
在本发明的一第八范例中, 在取得第一轴向上的二维度感测资讯的同 时或过程中, 也取得第二轴向上的一维度感测资讯。 在进行第一轴向上的 二维度感测资讯的位置分析后, 可获得每一个外部物件在第一轴向上的一 维度位置或二维度位置。 此外, 在进行第二轴向上的一维度感测资讯的位 置分析后, 可获得每一个外部物件在第二轴向上的一维度位置。 第二轴向 上的一维度位置可与第一轴向上的一维度位置配对成为二维度位置, 也可 以用来取代或校正第一轴向上的二维度位置中的第二轴向上的位置。 本技术领域的普通技术人员可推知上述的二维度位置分析的作业可以 是由前述控制器 160或主机 170来执行。 此外, 在本发明的一范例中,相应 于同一外部物件接近或触碰的各一维度质心位置与至少一个其他相应于相 同外部物件接近或触碰的一维度质心位置的一维度距离或二维度距离在一 门槛限值内。 在本发明的另一范例中, 相应于同一外部物件接近或触碰的 各一维度质心位置的加权值大于一门檻限值。
在以下说明中, 一触碰相关感测资讯可以是一感测资讯中的一个触碰 相关感测资讯或多个触碰相关感测资讯之一, 4十对一触碰相关感测资讯的 相关操作包括但不限于应用于特定的触碰相关感测资讯: 也可能应用于可 适用于本发明的所有触碰相关感测资讯。
在本发明的一范例中, 零交会处的位置可以是以触碰相关感测资讯的 一对正值与负值来判断。 零交会处是位于一正值与一负值间, 由正值与负 值及相关^ ί立置可求出一斜率, 依据斜率可推估零交会处的位置, 即依据斜 率判断正值与负值间的连线位于零值的位置。
由于触控面板的多个感测器并非密集地设置: 亦即感测器之间具有间 隙, 如图 5Α 所示 (以单一维度为例)。 因此当手指按压于触控面板的第 4 个感测器上时, 即会侦测出对应的触碰相关感测资讯(实线)。 此时, 第 4 个所侦测的信号值即为最大值, 亦为此一触碰相关感测资讯的峰值。
随后, 当手指逐渐向右移动时, 即会按压至无感测器设置的位置, 如 第 4个感测器与第 5个感测器之间。 此时所侦测得的触碰相关感测资讯则 如虚线所示, 并且触碰相关感测资讯的峰值并无法直接借由感测器所侦测, 而需借由位置侦测以计算得波形峰值位置。 由于感测器是非密集地设置, 当手指在触控面板上以某一维度(X方向或 Υ方向)方向等速度移动时, 触 控面板却会以非等速呈现手指轨迹的移动线条。
如图 5Β至图 5F所示, 其中上述的图示皆为每隔一单位时间所撷取的 信号值与信号差值, 实线表示手指自第 4个感测器移动至第 5个感测器的 零交会处移动, 并且虚线为感测器实际侦测的信号值。 在图 5Β中, 手指刚 好按压于第 4个感测器上, 此时零交会处计算位置与感测器所实际侦测的 手指按压位置皆位于第 4个感测器。 随后, 如图 5C至图 5F所示, 当手指 逐渐向右移动时, 因为感测器非密集地设置, 故感测器所实际侦测信号值 无法量测出信号峰值, 也因此造成信号差值波形图的波形斜率产生变化, 因而造成计算所得的零交会处以非等速度向右移动。
在图 5C中, 零交会处自第 4个感测器向右移动 dl。 随后, 在图 5D中, 零交会处自图 5C的位置向右移动 d2。 接着, 在图 5E中, 零交会处自图 5D 的位置再向右移动 d 3。 最后, 在图 5F中, 零交会处自图 5E的位置向右移 动 d4至第 5个感测器。 明显地, 图中的长度 dl、 d2、 d 3、 d4皆不相同, 因此, 触控面板于单一维度上所显示的线条以非等速度方式呈现。 当 X与 Y 方向的线条皆以非等速度呈现时, 以手指在触控面板上画出的斜线, 将会 造成触控面板非线性地呈现的手指移动轨迹, 如图 5G所示, 其中直线为手 指实际的移动轨迹, 非直线的线段为触控面板呈现手指移动轨迹的非线性 现象。
因此本发明还提出一种线性轨迹运算方法, 以解决上述的问题。 首先, 将感测器所侦测的初始触碰相关感测资讯转换成差动触碰相关感测资讯 后, 再转换回多个信号值组成的触碰相关感测资讯, 并根据多个信号值组 成的触碰相关感测资讯进行质心位置或几何中心的运算, 以取得每一时间 点手指按压的座标位置, 经由此方法运算得的座标所形成的移动轨迹可降 低感测器非密集地设置所造成的非线性现象。
然而, 当二指按压触控面板的距离相当靠近时, 触控面板侦测此二指 的信号会相互干扰, 亦会造成非线性现象。 首先, 针对某一维度的座标侦 测不够精确, 本发明提出一种位置侦测的方法。 如图 6A所示, 因为二指在 横轴上的距离相当靠近, 导致横轴所侦测的零交会处仅为一第——维度位 置 X。 因此, 本发明提出的座标计算方法借由具有精确座标的维度(于本实 施例中为纵轴) 的第二一维度位置 Yl、 Υ2 , 以互电容式侦测分别取得相对 应的第——维度(于本实施例中为横轴)位置 XI、 Χ2。 据此, 可构成二维 度位置( XI, Yl )、 (Χ2, Υ2 ), 即为图 6Α所示二指的精确座标。
再者, 当二指于二维度上的距离皆相当靠近时, 如图 6Β所示, 可分别 求得横轴零交会处座标 XI、 Χ2与纵轴零交会处座标 Yl、 Υ2。 然而, 由于二 指距离太过靠近, 侦测信号将会相互干扰, 导致(Xl, Yl )、 ( Χ2, Υ2 ) 并 非为二指的精确座标。
因此, 本发明提出另一种位置侦测的方法, 以减少信号干扰导致的非 线性现象,如图 6Β所示。先以第一维度自电容式侦测判断出第一一维度(如 横轴(X轴))的第一位置 (Xl、 Χ2) ,对相应于第——维度的第一位置的感测 器来进行互电容式侦测, 以侦测出第二一维度(如纵轴(Υ 轴))的第二位置 (Υ 、 Υ2, ), 再对相应于第二一维度的第二位置的感测器来进行互电容式 侦测, 以侦测出第——维度的第三位置(ΧΓ、 Χ2,)。
亦可以是先以第——维度与第二一维度感测器进行自电容式侦测, 以 分析出第一一维度与第二一维度 (如 XI、 Χ2、 Yl、 Υ2)的第一位置, 分别对 相应于第——维度与第二一维度的第一位置的感测器来进行互电容式侦 测, 以侦测出第二一维度与第——维度(Υ 、 Υ2,、 ΧΓ、 Χ2,)的第二座标。
请参照图 7Α所示, 是依据本发明的第一实施例提供的一种位置侦测的 方法。 首先, 如步骤 710 所示, 提供包括多个感测器的一感测装置, 这些 感测器包括多个第一感测器与多个第二感测器, 这些第一感测器与这些第 二感测器交叠于多个叠点。 然后, 如步骤 720所示, 以自电容式侦测依据 这些第一感测器的信号判断出相应于至少一外部物件的至少一第——维度 位置。 之后, 如步骤 730所示., 以互电容式侦测依据这些第二感测器的信 号判断出相应于至少一第一一维度位置的至少一第二一维度位置。
在本发明的第一范例中, 请参照图 7B, 还包括以互电容式侦测依据上 述第一感测器的信号判断出相应于至少一第二一维度位置的至少一第三一 维度位置, 如步骤 740所述, 并且依据相应于至少一第二一维度位置的至 少一第三一维度位置提供至少一二维度位置, 如步骤 750所述。 例如图 6A 所示, 可以是以自电容式侦测依据这些第一感测器的信号判断出 X, 再以互 电容式侦测依据这些第二感测器的信号判断出相应于位置 X 的位置 Y1 与 Y2。 接下来, 以互电容式侦测依据这些第一感测器的信号判断出相应于位 置 Y1的位置 XI与相应于位置 Υ2的位置 Χ2。据此,可提供二维度位置(Xl, Y1) 与(Χ2,Υ2)。
上述的自电容侦测可以是以一驱动信号提供给上述第一感测器, 并且 提供这些第一感测器的信号。 如先前所述, 依据这些第一感测器的信号可 产生一维度感测资讯, 例如由多个信号值、 差值、 双差值组成的感测资讯。 依据先前所述的位置分析, 在至少一外部物件接近或触碰感测装置时, 可 分析相应于至少一外部物件的至少一第——维度位置。
此外, 在进行互电容式侦测时, 可以是依据至少一第——维度位置挑 选出被提供驱动信号的至少一第一感测器, 并且每当被挑选出的第一感测 器之一被提供一驱动信号时, 分别提供这些第二感测器的信号, 以依据被 提供驱动信号的第一感测器上所有叠点的信号产生一维度感测资讯。 依据 产生的一维度感测资讯, 在至少一外部物件接近或触碰感测装置时, 可分 析出相应于至少一第一一维度位置的至少一第二一维度位置。
同理, 可以是依据至少一第二一维度位置挑选出被提供驱动信号的至 少一第二感测器, 并且每当被挑选出的第二感测器之一被提供一驱动信号 时, 分别提供这些第一感测器的信号, 以依据被提供驱动信号的第二感测 器上所有叠点的信号产生一维度感测资讯。 依据产生的一维度感测资讯, 在至少一外部物件接近或触碰感测装置时, 可分析出相应于至少一第二一 维度位置的至少一第三一维度位置。
在本发明一范例中, 步骤 72 G 所述的第一感测器可以是固定的, 如固 定是第一轴向的感应器, 或固定是第二轴向的感应器。
在本发明的另一范例中, 第一感测器可以是选择性的, 选自第一轴向 的感应器或第二轴向的感应器。 自电容式侦测可以是分别对第一轴向的感 测器与第二轴向的感测器提供驱动信号以产生第一一维度感测资讯与第二 一维度感测资讯, 并进一步判断出出相应于至少一外部物件的至少一第四 一维度位置与至少一第五一维度位置。 前述的至少一第一一维度位置为至 少一第四一维度位置或至少一第五一维度位置。 例如, 至少一第四一维度 位置与该至少一第五一维度位置中数量较多者为至少一第一一维度位置, 或者是在至少一第四一维度位置与至少一第五一维度位置的数量相同时以 至少一第四一维度位置与至少一第五一维度位置之一作为至少一第——维 度位置。 又例如, 是以最接近每一个第四一维度位置的感测器数量与最接 近每一个第五一维度位置的感测器数量做比较, 取数量大者相应的第四一 维度位置的感测器或第五一维度位置的感测器作为至少一第——维度位 置, 并且两者数量相同时, 以至少一第四一维度位置与至少一第五一维度 位置之一作为至少一第——维度位置。 据此, 可以是先以自电容侦测判断 出较精准的轴向, 如有较多位置或相应较多感测器的轴向。
换言之, 可以是先以自电容式侦测, 在两轴向上判断出较精确的轴向, 例如是以被分析出最多位置的轴向, 或是判断出最多触碰相关感测器的轴 向。 之后, 依据较精确的轴向进行互电容式侦测。 例如, 由前述的自电容 式侦测可判断出相应第一轴向的一维度位置与第二轴向的一维度位置, 并 且以两者中位置数量最多者或两者中最接近的感测器的数量最多者作为较 精确的轴向。 较精确的轴向上的感应器被作为所述多个第一感应器。 事实 上, 在进行判断较精确轴向的过程中, 已完成步骤 720所述的以自电容式 侦测依据这些第一感测器的信号判断出相应于至少一外部物件的至少一第 ——维度位置。 接下, 可依据步骤 730至 750所述, 提供至少一二维度位 置。
请参照图 7C,在本发明的第二范例中,可以是进行上述步骤 720至 730 后, 再依据相应于该至少一第——维度位置的至少一第二一维度位置提供 至少一二维度位置, 如步骤 760所示。 例如, 在步骤 720中以自电容式侦 测后判断出较精确的轴向, 进行上述步骤 730与 760, 以提供至少一二维度 位置。
请参照图 7D, 在本发明的第三范例中, 可以是还包括步骤 731与步骤 741 所述, 依据至少一第——维度位置判断出至少一触碰相关的第一感测 器, 以及依据至少一第二一维度位置判断出至少一触碰相关的第二感测器。 之后, 如步骤 770所述, 当至少一触碰相关的第二感测器的数量大于至少 一触碰相关的第一感测器时, 依据相应于至少一第——维度位置的至少一 第二一维度位置提供至少一二维度位置。 或者是, 如步骤 780所述, 当至 少一触碰相关的第二感测器的数量不大于至少一触碰相关的第一感测器 时, 以互电容式侦测依据上述第一感测器的信号判断出相应于至少一第二 一维度位置的至少一第三一维度位置, 并且依据相应于至少一第二一维度 位置的至少一第三一维度位置提供至少一二维度位置。 前述图 7A至图 7D可以是由控制器 160来进行相关作业, 也可是控制 器 160提供感测资讯给主机 170,由主机 170控制控制器 160来取得感测资 讯, 并进行相关作业。 在本发明的一范例中, 是依据感测器的信号变化来 提供感测资讯, 例如在未触碰时记录一未被触碰感测资讯, 并且在每次自 电容侦测或互电容侦测时, 比较感测器的信号产生的感测资讯与未被触碰 感测资讯的差异, 以产生用来进行位置侦测的感测资讯。
请参照图 8A所示, 为依据本发明的第二实施例提供的一种忽视大范围 触碰的位置侦测的方法。 首先, 如步骤 810所示, 提供包括多个感测器的 一感测装置, 上述感测器包括多个第一感测器与多个第二感测器, 上述第 一感测器与上述第二感测器交叠于多个叠点。 接下来, 如步骤 820 与 830 所示, 以自电容式侦测由这些第一感测器的信号取得一第——维度感测资 讯, 以及以自电容式侦测由这些第二感测器的信号取得一第二一维度感测 资讯。 再接下来, 如步骤 840 所述, 依据第——维度感测资讯与第二一维 度感测资讯上每一个触碰相关感测资讯的范围决定被侦测的触碰相关感测 资讯, 其中每一个触碰相关感测资讯相应于至少一外部物件的触碰或接近。 然后, 再如步骤 850所述, 依据每一个被侦测的触碰相关感测资讯分析出 至少——维度位置, 并且如步骤 860所述, 依据每一个一维度位置进行互 电容感测以分析出至少一二维度位置。
在步骤 820与 830中, 自电容侦测可以是以一驱动信号提供给这些第 一感测器, 并且侦测这些第一感测器与至少一外部物件间的电容性耦合的 信号的变化, 以取得第——维度感测资讯。 同理, 可以是以驱动信号提供 给这些第二感测器, 并且侦测这些第二感测器与至少一外部物件间的电容 性耦合的信号的变化, 以取得第二一维度感测资讯。
在步骤 840 中, 可以是以一门槛限值来判断出被侦测的触碰相关感测 资讯, 例如被侦测的触碰相关感测资讯的范围小于一门檻限值。 据此, 可 将相应于大范围触碰的触碰相关感测资讯忽视。
请参照图 6C所示, 在横轴向上, 相应于大范围触碰 H触碰相关感测资 讯的范围界于左边界 L与右边界 R之间, 当左边界 L与右边界 R不小于一 门槛限值时, 相应于大范围触碰 H触碰相关感测资讯会被忽视。 换言之, 可借此侦测手或笔之类的触碰, 例如小范围触碰 F相应的触碰相关感测资 讯可被决定成为被侦测的触碰相关感测资讯。 同理, 在纵轴向上, 相应于 小范围触碰 F的触碰相关感测资讯与相应于大范围触碰 H与交叠成为一个 大范围的触碰相关感测资讯, 当这个交叠的大范围的触碰相关感测资讯的 范围在大于门槛限值时, 会被忽视。 在本范例中, 在纵轴向上没有被侦测 的触碰相关感测资讯, 在横轴向上具有相应于小范围 F 的被侦测的触碰相 关感测资讯。 在手拿笔在感测装置上书写的过程中, 手与手掌间会存在一距离, 因 此在大多数情况下, 笔的小范围触碰与手掌的大范围触碰只会在一个轴向 上交叠。 换言之, 通过两个轴向的大范围触碰忽视, 可以在较精确的轴向 上侦测出小范围触碰的被侦测的触碰相关感测资讯。 利用此特性, 可用来 进行手掌忽视, 只侦测笔的触碰, 或进一步判断出笔的书写轨迹或手势。
步 860中的互电容侦测可以是如图 8B所示。首先,如步驟 861所示, 依据至少——维度位置由这些感测器之一挑选被提供驱动信号的感测器, 并且如步骤 862 所示, 在每一个依据一维度位置挑选的感测器被提供驱动 信号值时, 分别依据这些第一感测器或这些第二感测器的信号产生一第三 一维度感测资讯。 之后, 如步骤 863 所示, 依据第三一维度感测资讯分析 出至少一第——维度位置, 并且如步骤 864所示, 依据每一个第——维度 位置分别由这些感测器之一挑选被提供驱动信号的感测器。 然后, 如步骤 865所示,依据第四一维度感测资讯分析出相应于每一个第——维度位置的 至少一第二一维度位置, 并且如步骤 866 所示, 依据相应于每一个第—— 维度位置的至少一第二一维度位置提供至少一二维度位置。
在图 8B中, 当一维度位置或第一一维度位置是由第一" -维度感测资讯 的该触碰相关感测资讯分析出来时, 被提供驱动信号的感测器为最接近一 维度位置的第一感测器, 并且当一维度位置或第一一维度位置是由第二一 维度感测资讯的触碰相关感测资讯分析出来时, 被提供驱动信号的感测器 为最接近一维度位置的第二感测器。
此外,步骤 860中的互电容侦测可以是如图 8C所示。首先,如步骤 861 所示, 依据至少——维度位置由这些感测器之一挑选被提供驱动信号的感 测器, 并且如步骤 862 所示, 在每一个依据一维度位置挑选的感测器被提 供驱动信号值时, 分别依据这些第一感测器或这些第二感测器的信号产生 一第三一维度感测资讯。 之后, 如步骤 867所示, 依据第三一维度感测资 讯分析出相应于每一个一维度位置的至少一第——维度位置。 接下来, 如 步骤 868 所示, 依据相应于每一个一维度位置的至少一第一一维度位置提 供至少一二维度位置。
例如图 6C所示, 由横轴向上被侦测的触碰相关感测资讯可判断出—— 维度位置 X, 可进一步挑选出最接近位置 X的第一感测器。借由提供驱动信 号给被挑选的第一感测器以进行互电容式侦测, 可依据这些第二感测器的 信号产生第三一维度资讯, 并且依据第三一维度资讯可判断出第" ""一维度 位置 Y。据此,依据一维度位置 X与第——维度位置 Υ可判断出小范围触碰 F的二维度位置(Χ, Υ)。
此外, 还可以是依据第——维度位置 Υ, 挑选最接近的第二感测器。 借 由提供驱动信号给被挑选的第二感测器以进行互电容式侦测, 可依据这些 第一感测器的信号产生第四一维度资讯, 并且依据第四一维度资讯可判断 出第二一维度位置 X,(未显于图示)。 据此, 依据第——维度位置 Y与第二 一维度位置 X,可判断出小范围触碰 F的二维度位置(X,, Y)。
前述图 8A至图 8C可以是由控制器 160来进行相关作业, 也可是控制 器 160提供感测资讯给主机 170,由主机 170控制控制器 160来取得感测资 讯, 并进行相关作业。 在本发明的一范例中, 是依据感测器的信号变化来 提供感测资讯, 例如在未触碰时记录一未被触碰感测资讯, 并且在每次自 电容侦测或互电容侦测时, 比较感测器的信号产生的感测资讯与未被触碰 感测资讯的差异, 以产生用来进行位置侦测的感测资讯。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims

权 利 要 求
1.一种位置侦测的方法, 其特征在于包括:
提供包括多个感测器的一感测装置, 上述感测器包括多个第一感测器 与多个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以自电容式侦测依据上述第一感测器的信号判断出相应于至少一外部 物件的至少一第一一维度位置; 以及
以互电容式侦测依据上述第二感测器的信号判断出相应于该至少一第 一一维度位置的至少一第二一维度位置。
2.根据权利要求 1所述的位置侦测的方法, 其特征在于, 还包括: 依据相应于该至少一第——维度位置的至少一第二一维度位置提供至 少一二维度位置。
3.根据权利要求 1所述的位置侦测的方法, 其特征在于, 还包括: 以互电容式侦测依据上述第一感测器的信号判断出相应于该至少一第 二一维度位置的至少一第三一维度位置; 以及
依据相应于该至少一第二一维度位置的至少一第三一维度位置提供至 少一二维度位置。
4.根据权利要求 1所述的位置侦测的方法, 其特征在于, 还包括: 依据该至少一第——维度位置判断出至少一触碰相关的第一感测器; 以及
依据该至少一第二一维度位置判断出至少一触碰相关的第二感测器。
5.根据权利要求 4所述的位置侦测的方法, 其特征在于, 还包括: 当该至少一触碰相关的第二感测器的数量大于该至少一触碰相关的第 一感测器时, 依据相应于该至少一第——维度位置的至少一第二一维度位 置提供至少一二维度位置。
6.根据权利要求 4 所述的位置侦测的方法, 当该至少一触碰相关的第 二感测器的数量不大于该至少一触碰相关的第一感测器时, 其特征在于, 还包括:
以互电容式侦测依据上述第一感测器的信号判断出相应于该至少一第 二一维度位置的至少一第三一维度位置; 以及
并且依据相应于该至少一第二一维度位置的至少一第三一维度位置提 供至少一二维度位置。
7.根据权利要求 1 所述的位置侦测的方法, 其特征在于, 其中该自电 容侦测是以一驱动信号提供给上述第一感测器, 并且提供上述第一感测器 的信号。
8.根据权利要求 1 所述的位置侦测的方法, 其特征在于, 其中该互电 容式侦测包括:
每当上述第一感测器之一被提供一驱动信号时, 分别提供上述第二感 测器的信号; 或
每当上述第二感测器之一被提供该驱动信号时, 分别提供上述第一感 测器的信号。
9.根据权利要求 8 所述的位置侦测的方法, 其特征在于, 其中该互电 容侦测还包括:
依据该至少一第一一维度位置挑选出被提供该驱动信号的至少一第一 感测器;
依据该至少一第二一维度位置挑选被提供该驱动信号的至少一第二感 测器。
10.根据权利要求 1所述的位置侦测的方法, 其特征在于, 其中该自电 容式侦测包括:
依据上述感测器的信号变化判断出相应于至少一外部物件的至少一第 四一维度位置与至少一第五一维度位置;
其中该至少一第四一维度位置与该至少一第五一维度位置中数量较多 者为该至少一第一一维度位置, 并且
当该至少一第四一维度位置与该至少一第五一维度位置的数量相同时 以该至少一第四一维度位置与该至少一第五一维度位置之一作为该至少一 第一一维度位置。
11.一种位置侦测的装置, 其特征在于, 包括:
包括多个感测器的一感测装置, 上述感测器包括多个第一感测器与多 个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以及 一控制器, 执行下列作业:
以自电容式侦测依据上述第一感测器的信号判断出相应于至少一外部 物件的至少一第一一维度位置; 以及
以互电容式侦测依据上述第二感测器的信号判断出相应于该至少一第 一一维度位置的至少一第二一维度位置。
12.根椐权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该控 制器还包括执行下列作业:
依据相应于该至少一第一一维度位置的至少一第二一维度位置提供至 少一二维度位置。
13.根据权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该控 制器还包括执行下列作业:
以互电容式侦测依据上述第一感测器的信号判断出相应于该至少一第 二一维度位置的至少一第三一维度位置; 以及 依据相应于该至少一第二一维度位置的至少一第三一维度位置提供至 少一二维度位置。
14.根据权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该控 制器还包括执行下列作业:
依据该至少一第——维度位置判断出至少一触碰相关的第一感测器; 以及
依据该至少一第二一维度位置判断出至少一触碰相关的第二感测器。
15.根据权利要求 14 所述的位置侦测的装置, 其特征在于, 其中该控 制器还包括执行下列作业:
当该至少一触碰相关的第二感测器的数量大于该至少一触碰相关的第 一感测器时, 依据相应于该至少一第——維度位置的至少一第二一维度位 置提供至少一二维度位置。
16.根据权利要求 14 所述的位置侦测的装置, 当该至少一触碰相关的 第二感测器的数量不大于该至少一触碰相关的第一感测器时, 其特征在于, 该控制器还包括执行下列作业:
以互电容式侦测依据上述第一感测器的信号判断出相应于该至少一第 , 二一维度位置的至少一第三一维度位置; 以及
并且依据相应于该至少一第二一维度位置的至少一第三一维度位置提 ,: 供至少一二维度位置。
17.根据权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该自 : 电容侦测是以一驱动信号提供给上述第一感测器, 并且提供上述第一感测 器的信号。
18.根据权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该互 电容式侦测包括:
每当上述第一感测器之一被提供一驱动信号时, 分别提供上述第二感 测器的信号; 或
每当上述第二感测器之一被提供该驱动信号时, 分别提供上述第一感 测器的信号。
19.根据权利要求 18 所述的位置侦测的装置, 其特征在于, 其中该互 电容侦测还包括:
依据该至少一第一一维度位置挑选出被提供该驱动信号的至少一第一 感测器;
依据该至少一第二一维度位置挑选被提供该驱动信号的至少一第二感 测器。
20.根据权利要求 11 所述的位置侦测的装置, 其特征在于, 其中该自 电容式侦测包括: 依据上述感测器的信号变化判断出相应于至少一外部物件的至少一第 四一维度位置与至少一第五一维度位置;
其中该至少一第四一维度位置与该至少一第五一维度位置中数量较多 者为该至少一第一一维度位置, 并且
当该至少一第四一维度位置与该至少一第五一维度位置的数量相同时 以该至少一第四一维度位置与该至少一第五一维度位置之一作为该至少一 第一一维度位置。
21.—种忽视大范围触^ ε並的位置侦测的方法, 其特征在于, 包括: 提供包括多个感测器的一感测装置, 上述感测器包括多个第一感测器 与多个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以自电容式侦测由上述第一感测器的信号取得一第——维度感测资 讯;
以自电容式侦测由上述第二感测器的信号取得一第二一维度感测资 讯;
依据该第——维度感测资讯与该第二一维度感测资讯上每一个触碰相 关感测资讯的范围决定被侦测的触碰相关感测资讯, 其中每一个触碰相关 感测资讯相应于至少一外部物件的触碰或接近;
依据每一个被侦测的触碰相关感测资讯分析出至少——维度位置; 以 及
依 ·ί居每一个一维度位置进行互电容感测以分析出至少一二维度位置。
22. 据权利要求 21 所述的忽视大范围触碰的位置侦测的方法, 其 特征在于, 其中该自电容侦测包括:
以一驱动信号提供给上述第一感测器, 并且侦测上述第一感测器与该 至少一外部物件间的电容性耦合的信号的变化, 以取得该第——维度感测 资讯; 及
以该驱动信号提供给上述第二感测器, 并且侦测上述第二感测器与该 至少一外部物件间的电容性耦合的信号的变化, 以取得该第二一维度感测 资讯。
23.根据权利要求 21 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该互电容侦测包括:
提供一驱动信号给上述第一感测器之一作为一第一信号源, 并且由上 述第二感测器侦测该第一信号源、 上述第一一维度感测器与该至少一外部 物件间电容性耦合的信号的变化; 或
提供该驱动信号给上述第二感测器之一作为该第一信号源, 并且由上 述第一感测器侦测该第一信号源、 上述第二一维度感测器与该至少一外部 物件间电容性耦合的信号的变化。
24.根据权利要求 23所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该互电容侦测还包括:
依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的 感测器;
在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯;
依据该第三一维度感测资讯分析出相应于每一个一维度位置的至少一 第一一维度位置; 及
依据相应于每一个一维度位置的至少一第一一维度位置提供至少一二 维度位置。
25.根据权利要求 24 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 当该一维度位置是由该第——维度感测资讯的该触碰相关感测资 讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的第一 感测器, 并且当该一维度位置是由该第二一维度感测资讯的该触碰相关感 测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的 第二感测器。
26.根据权利要求 23所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该互电容侦测还包括:
依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的 感测器;
在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯;
依据该第三一维度感测资讯分析出至少一第——维度位置;
依据每一个第——维度位置分别由上述感测器之一挑选被提供该驱动 信号的感测器;
在每一个依据每一个第一一维度位置挑选的感测器被提供该驱动信号 值时分别由上述第一感测器或上述第二感测器取得一第四一维度感测资 讯;
依据该第四一维度感测资讯分析出相应于每一个第——维度位置的至 少一第二一维度位置; 以及
依据相应于每一个第——维度位置的至少一第二一维度位置提供至少 一二维度位置。
27.根据权利要求 26 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 当该一维度位置或第——维度位置是由该第——维度感测资讯的 该触碰相关感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该 一维度位置的第一感测器, 并且当该一维度位置或第——维度位置是由该 第二一维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信 号的感测器为最接近该一维度位置的第二感测器。
28.根据权利要求 21 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该被侦测的触碰相关感测资讯的范围小于一门槛限值。
29.根据权利要求 21 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该第——维度感测资讯与第二一维度感测资讯分别由多个差 值组成, 其中每一个差值是依据上述感测器的一对感测器的信号产生。
30.根据权利要求 21 所述的忽视大范围触碰的位置侦测的方法, 其特 征在于, 其中该第——维度感测资讯与第二一维度感测资讯分别由多个双 差值组成, 其中每一个双差值是依据上述感测器的三个相邻或不相邻的感 测器的信号产生。
31.—种忽视大范围触碰的位置侦测的装置, 其特征在于, 包括: 包括多个感测器的一感测装置, 上述感测器包括多个第一感测器与多 个第二感测器, 上述第一感测器与上述第二感测器交叠于多个叠点; 以及 一控制器, 执行下列作业:
以自电容式侦测由上述第一感测器的信号取得一第——维度感测资::. 讯;
以自电容式侦测由上述第二感测器的信号取得一第二一维度感测资 讯;
依据该第——维度感测资讯与该第二一维度感测资讯上每一个触碰相 关感测资讯的范围决定被侦测的触碰相关感测资讯, 其中每一个触碰相关 感测资讯相应于至少一外部物件的触碰或接近;
依据每一个被侦测的触碰相关感测资讯分析出至少——维度位置; 以 及
依据每一个一维度位置进行互电容感测以分析出至少一二维度位置。
32.根据权利要求 31 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该自电容侦测包括:
以一驱动信号提供给上述第一感测器, 并且侦测上述第一感测器与该 至少一外部物件间的电容性耦合的信号的变化, 以取得该第——维度感测 资讯; 及
以该驱动信号提供给上述第二感测器, 并且侦测上述第二感测器与该 至少一外部物件间的电容性耦合的信号的变化, 以取得该第二一维度感测 资讯。
33.根据权利要求 31 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该互电容侦测包括:
提供一驱动信号给上述第一感测器之一作为一第一信号源, 并且由上 述第二感测器侦测该第一信号源、 上述第——维度感测器与该至少一外部 物件间电容性耦合的信号的变化; 或
提供该驱动信号给上述第二感测器之一作为该第一信号源, 并且由上 述第一感测器侦测该第一信号源、 上述第二一维度感测器与该至少一外部 物件间电容性耦合的信号的变化。
34.根据权利要求 33所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该互电容侦测还包括:
依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的 感测器;
在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯;
依据该第三一维度感测资讯分析出相应于每一个一维度位置的至少一 第一一维度位置;
依据相应于每一个一维度位置的至少一第——维度位置提供至少一二 维度位置。
35.根据权利要求 34 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 当该一维度位置是由该第——维度感测资讯的该触碰相关感测资 讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的第一 感测器, 并且当该一维度位置是由该第二一维度感测资讯的该触碰相关感 测资讯分析出来时, 被提供该驱动信号的感测器为最接近该一维度位置的 第二感测器。
36.根据权利要求 33所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该互电容侦测还包括:
依据该至少——维度位置由上述感测器之一挑选被提供该驱动信号的 感测器; '
在每一个依据该一维度位置挑选的感测器被提供该驱动信号值时分别 依据上述第一感测器或上述第二感测器的信号产生一第三一维度感测资 讯;
依据该第三一维度感测资讯分析出至少一第一一维度位置;
依据每一个第——维度位置分别由上述感测器之一挑选被提供该驱动 信号的感测器;
在每一个依据每一个第一一维度位置挑选的感测器被提供该驱动信号 值时分别由上述第一感测器或上述第二感测器取得一第四一维度感测资 讯;
依据该第四一维度感测资讯分析出相应于每一个第——维度位置的至 少一第二一维度位置; 以及
依据相应于每一个第一一维度位置的至少一第二一维度位置提供至少 一二维度位置。
37.根据权利要求 36 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 当该一维度位置或第一一维度位置是由该第一一维度感测资讯的 该触碰相关感测资讯分析出来时, 被提供该驱动信号的感测器为最接近该 一维度位置的第一感测器, 并且当该一维度位置或第——维度位置是由该 第二一维度感测资讯的该触碰相关感测资讯分析出来时, 被提供该驱动信 号的感测器为最接近该一维度位置的第二感测器。
.
38:根据权利要求 31 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该被侦测的触碰相关感测资讯的范围小于一门檻限值。
39.根据权利要求 31 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该第——维度感测资讯与第二一维度感测资讯分别由多个差 值组成, 其中每一个差值是依据上述感测器的一对感测器的信号产生。
40.根据权利要求 31 所述的忽视大范围触碰的位置侦测的装置, 其特 征在于, 其中该第——维度感测资讯与第二一维度感测资讯分别由多个双 差值组成, 其中每一个双差值是依据上述感测器的三个相邻或不相邻的感 测器的信号产生。
PCT/CN2010/001561 2009-10-09 2010-10-08 位置侦测的方法与装置 WO2011041947A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PCT/CN2010/001561 WO2011041947A1 (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置
CN201010502706XA CN102043514B (zh) 2009-10-09 2010-10-08 分析位置的方法与装置
TW099134311A TWI434201B (zh) 2009-10-09 2010-10-08 位置偵測的方法與裝置
TW099134335A TWI407359B (zh) 2009-10-09 2010-10-08 位置偵測的方法與裝置
EP10821556.7A EP2511804A4 (en) 2009-10-09 2010-10-08 METHOD AND DEVICE FOR DETECTING POSITION
CN2010105100402A CN102043556B (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置
TW099134312A TWI457795B (zh) 2009-10-09 2010-10-08 位置偵測的方法與裝置
CN2010105026832A CN102043512B (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置
CN2010105100703A CN102043557B (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置
US12/923,811 US9689906B2 (en) 2009-10-09 2010-10-08 Method and device for position detection
CN2010105099960A CN102043524B (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置
TW099134336A TWI407347B (zh) 2009-10-09 2010-10-08 位置偵測的方法與裝置
US12/923,808 US8570289B2 (en) 2009-10-09 2010-10-08 Method and device for position detection
US13/239,959 US8564564B2 (en) 2009-10-09 2011-09-22 Method and device for position detection
US13/307,408 US8471826B2 (en) 2009-10-09 2011-11-30 Method and device for position detection
US14/030,418 US8970551B2 (en) 2009-10-09 2013-09-18 Method and device for position detection
US14/033,872 US8970552B2 (en) 2009-10-09 2013-09-23 Method and device for position detection

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US25005109P 2009-10-09 2009-10-09
US61/250,051 2009-10-09
US29824310P 2010-01-26 2010-01-26
US29825210P 2010-01-26 2010-01-26
US61/298,243 2010-01-26
US61/298,252 2010-01-26
PCT/CN2010/001561 WO2011041947A1 (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置

Publications (1)

Publication Number Publication Date
WO2011041947A1 true WO2011041947A1 (zh) 2011-04-14

Family

ID=50483214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001561 WO2011041947A1 (zh) 2009-10-09 2010-10-08 位置侦测的方法与装置

Country Status (5)

Country Link
US (6) US8570289B2 (zh)
EP (1) EP2511804A4 (zh)
CN (5) CN102043557B (zh)
TW (4) TWI407359B (zh)
WO (1) WO2011041947A1 (zh)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160209963A1 (en) * 2008-03-19 2016-07-21 Egalax_Empia Technology Inc. Touch processor and method
SG177156A1 (en) 2009-06-16 2012-01-30 Intel Corp Camera applications in a handheld device
US9323398B2 (en) 2009-07-10 2016-04-26 Apple Inc. Touch and hover sensing
CN102043507B (zh) * 2009-10-09 2013-10-23 禾瑞亚科技股份有限公司 分析位置的方法与装置
CN104331183B (zh) * 2009-10-09 2017-12-15 禾瑞亚科技股份有限公司 二维度双差值感测资讯分析的方法与装置
US8680390B2 (en) 2009-10-16 2014-03-25 Kesumo Llc Foot-operated controller
JP5430339B2 (ja) * 2009-10-19 2014-02-26 株式会社ワコム 位置検出装置及び位置指示器
US8982060B2 (en) 2010-08-27 2015-03-17 Apple Inc. Touch and hover sensor compensation
US8405627B2 (en) * 2010-12-07 2013-03-26 Sony Mobile Communications Ab Touch input disambiguation
US8988087B2 (en) 2011-01-24 2015-03-24 Microsoft Technology Licensing, Llc Touchscreen testing
US9965094B2 (en) * 2011-01-24 2018-05-08 Microsoft Technology Licensing, Llc Contact geometry tests
US8421752B2 (en) * 2011-01-27 2013-04-16 Research In Motion Limited Portable electronic device and method therefor
KR20120089101A (ko) * 2011-02-01 2012-08-09 삼성전자주식회사 터치 패널의 멀티 터치 검출 방법 및 이를 이용한 터치 스크린 장치의 동작 방법
US8982061B2 (en) 2011-02-12 2015-03-17 Microsoft Technology Licensing, Llc Angular contact geometry
US9542092B2 (en) 2011-02-12 2017-01-10 Microsoft Technology Licensing, Llc Prediction-based touch contact tracking
US8773377B2 (en) 2011-03-04 2014-07-08 Microsoft Corporation Multi-pass touch contact tracking
US20120306802A1 (en) * 2011-06-06 2012-12-06 Mccracken David Harold Differential capacitance touch sensor
US9507427B2 (en) * 2011-06-29 2016-11-29 Intel Corporation Techniques for gesture recognition
US8913019B2 (en) 2011-07-14 2014-12-16 Microsoft Corporation Multi-finger detection and component resolution
JP5843511B2 (ja) * 2011-07-29 2016-01-13 キヤノン株式会社 入力検出装置及びその制御方法、プログラム、及び記録媒体
TW201308169A (zh) * 2011-08-02 2013-02-16 Raydium Semiconductor Corp 觸控感測裝置及觸控感測方法
CN102955595B (zh) * 2011-08-21 2016-05-25 宸鸿科技(厦门)有限公司 触控感测方法以及装置
US9378389B2 (en) 2011-09-09 2016-06-28 Microsoft Technology Licensing, Llc Shared item account selection
US9507454B1 (en) 2011-09-19 2016-11-29 Parade Technologies, Ltd. Enhanced linearity of gestures on a touch-sensitive surface
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9785281B2 (en) 2011-11-09 2017-10-10 Microsoft Technology Licensing, Llc. Acoustic touch sensitive testing
KR20130056081A (ko) * 2011-11-21 2013-05-29 삼성전기주식회사 접촉 감지 장치 및 접촉 감지 방법
KR101339490B1 (ko) * 2011-12-14 2013-12-10 삼성전기주식회사 접촉 감지 장치 및 접촉 감지 방법
TWI463366B (zh) * 2012-01-10 2014-12-01 觸控面板之混合式未共地補償方法
US8914254B2 (en) 2012-01-31 2014-12-16 Microsoft Corporation Latency measurement
TWI447632B (zh) * 2012-03-09 2014-08-01 Orise Technology Co Ltd 電容式多點觸控系統的驅動頻率挑選方法
US9076419B2 (en) 2012-03-14 2015-07-07 Bebop Sensors, Inc. Multi-touch pad controller
TWI490760B (zh) * 2012-04-03 2015-07-01 Elan Microelectronics Corp A method and an apparatus for improving noise interference of a capacitive touch device
US9086768B2 (en) 2012-04-30 2015-07-21 Apple Inc. Mitigation of parasitic capacitance
US9201547B2 (en) 2012-04-30 2015-12-01 Apple Inc. Wide dynamic range capacitive sensing
US8913021B2 (en) 2012-04-30 2014-12-16 Apple Inc. Capacitance touch near-field—far field switching
WO2013171747A2 (en) * 2012-05-14 2013-11-21 N-Trig Ltd. Method for identifying palm input to a digitizer
TWI493417B (zh) * 2012-05-18 2015-07-21 Egalax Empia Technology Inc 偵測電容式觸摸屏的偵測裝置與方法
CN103677453B (zh) * 2012-08-30 2017-10-24 禾瑞亚科技股份有限公司 电容式传感器及其侦测方法
TWI509560B (zh) * 2012-08-31 2015-11-21 Egalax Empia Technology Inc 影像分割的方法與裝置
TWI567598B (zh) * 2012-10-03 2017-01-21 鴻海精密工業股份有限公司 觸控感應裝置及方法
KR20140046557A (ko) * 2012-10-05 2014-04-21 삼성전자주식회사 다점 입력 인식 방법 및 그 단말
US9317147B2 (en) 2012-10-24 2016-04-19 Microsoft Technology Licensing, Llc. Input testing tool
TWI470502B (zh) * 2012-11-07 2015-01-21 Elan Microelectronics Corp 觸控面板的異物偵測方法
TWI461987B (zh) * 2012-12-07 2014-11-21 Elan Microelectronics Corp 一種觸控裝置之偵測方法
TWI492134B (zh) * 2013-01-24 2015-07-11 Orise Technology Co Ltd 利用自電容與互電容感應交替掃瞄之去除觸控雜訊的方法
US9658716B2 (en) * 2013-02-12 2017-05-23 Shenzhen Seefaa Scitech Co., Ltd. Method and device of deactivating portion of touch screen to prevent accidental activation
US8577644B1 (en) * 2013-03-11 2013-11-05 Cypress Semiconductor Corp. Hard press rejection
TWI493419B (zh) * 2013-03-15 2015-07-21 Novatek Microelectronics Corp 觸控裝置及其觸控偵測方法
CN103412667B (zh) * 2013-04-12 2015-04-08 深圳欧菲光科技股份有限公司 触控面板及触控显示装置
US10955973B2 (en) * 2013-04-16 2021-03-23 Atmel Corporation Differential sensing for touch sensors
TWI491859B (zh) * 2013-05-24 2015-07-11 Himax Tech Ltd 測量觸碰力量的方法及測量裝置
US9535519B1 (en) * 2013-06-14 2017-01-03 Google Inc. Smart housing for extending trackpad sensing
KR102078650B1 (ko) * 2013-09-13 2020-02-18 엘지디스플레이 주식회사 터치 ic 및 이를 이용한 터치 스크린 표시장치
CN104516555A (zh) * 2013-09-27 2015-04-15 天津富纳源创科技有限公司 防止触控板误触控的方法
US9662202B2 (en) * 2013-10-24 2017-05-30 Medtronic, Inc. Heart valve prosthesis
US9933879B2 (en) 2013-11-25 2018-04-03 Apple Inc. Reconfigurable circuit topology for both self-capacitance and mutual capacitance sensing
JP6218590B2 (ja) * 2013-12-18 2017-10-25 キヤノン株式会社 座標入力装置及びその制御方法
TWI529577B (zh) * 2013-12-27 2016-04-11 Egalax Empia Technology Inc The method of updating the touch device and its reference two - dimensional sensing information
TWI526903B (zh) * 2013-12-27 2016-03-21 Egalax Empia Technology Inc Touch device detection method
JP6284391B2 (ja) * 2014-03-03 2018-02-28 アルプス電気株式会社 静電容量型入力装置
KR102381284B1 (ko) 2014-04-08 2022-03-31 삼성디스플레이 주식회사 터치 센서를 포함하는 터치 패널
US10481707B2 (en) * 2014-05-07 2019-11-19 Egalax_Empia Technology Inc. Touch sensitive information transmission method, processor and system
CN105404436B (zh) * 2014-05-13 2019-03-22 禾瑞亚科技股份有限公司 触控处理装置及其侦测方法,与触控系统
US9753568B2 (en) 2014-05-15 2017-09-05 Bebop Sensors, Inc. Flexible sensors and applications
US9442614B2 (en) 2014-05-15 2016-09-13 Bebop Sensors, Inc. Two-dimensional sensor arrays
US9696833B2 (en) 2014-05-15 2017-07-04 Bebop Sensors, Inc. Promoting sensor isolation and performance in flexible sensor arrays
US9965076B2 (en) 2014-05-15 2018-05-08 Bebop Sensors, Inc. Piezoresistive sensors and applications
US10362989B2 (en) 2014-06-09 2019-07-30 Bebop Sensors, Inc. Sensor system integrated with a glove
US9710060B2 (en) 2014-06-09 2017-07-18 BeBop Senors, Inc. Sensor system integrated with a glove
CN107111411B (zh) 2014-09-30 2022-01-07 苹果公司 织物感测设备
TWI560617B (en) * 2015-02-13 2016-12-01 Byd Co Ltd Fingerprint detection circuit and electronic device
US9863823B2 (en) 2015-02-27 2018-01-09 Bebop Sensors, Inc. Sensor systems integrated with footwear
US10095361B2 (en) 2015-03-18 2018-10-09 Microsoft Technology Licensing, Llc Stylus detection with capacitive based digitizer sensor
AU2016233216B2 (en) * 2015-03-19 2020-08-20 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10082381B2 (en) 2015-04-30 2018-09-25 Bebop Sensors, Inc. Sensor systems integrated with vehicle tires
TWI727951B (zh) * 2015-05-21 2021-05-21 日商和冠股份有限公司 主動式觸控筆
US9827996B2 (en) 2015-06-25 2017-11-28 Bebop Sensors, Inc. Sensor systems integrated with steering wheels
KR102396711B1 (ko) * 2015-09-15 2022-05-11 엘지전자 주식회사 이동 단말기 및 그것의 제어방법
US9721553B2 (en) 2015-10-14 2017-08-01 Bebop Sensors, Inc. Sensor-based percussion device
US10423268B2 (en) 2015-12-22 2019-09-24 Microsoft Technology Licensing, Llc System and method for detecting grounding state of a touch enabled computing device
US10296146B2 (en) 2015-12-22 2019-05-21 Microsoft Technology Licensing, Llc System and method for detecting grip of a touch enabled device
TWI587192B (zh) * 2015-12-31 2017-06-11 禾瑞亞科技股份有限公司 相接於透明物質的觸控系統與其觸控方法
US9823774B2 (en) 2016-02-23 2017-11-21 Microsoft Technology Licensing, Llc Noise reduction in a digitizer system
US9864468B2 (en) * 2016-06-09 2018-01-09 Stmicroelectronics Asia Pacific Pte Ltd Multi-touch integrity sensing for capacitive touch screen
US10365764B2 (en) 2016-07-11 2019-07-30 Stmicroelectronics Asia Pacific Pte Ltd Water rejection for capacitive touch screen
KR20180090936A (ko) 2017-02-03 2018-08-14 삼성디스플레이 주식회사 터치 센서 및 이를 구비한 디스플레이 장치
KR101932650B1 (ko) 2017-05-15 2018-12-28 삼성디스플레이 주식회사 터치 센서 및 이를 구비한 디스플레이 장치
US10678348B2 (en) 2018-03-12 2020-06-09 Microsoft Technology Licensing, Llc Touch detection on an ungrounded pen enabled device
US10616349B2 (en) 2018-05-01 2020-04-07 Microsoft Technology Licensing, Llc Hybrid sensor centric recommendation engine
US10884496B2 (en) 2018-07-05 2021-01-05 Bebop Sensors, Inc. One-size-fits-all data glove
TWI678655B (zh) * 2018-11-30 2019-12-01 大陸商北京集創北方科技股份有限公司 觸控面板之抗雜訊方法、觸控面板控制電路以及觸控裝置
US11480481B2 (en) 2019-03-13 2022-10-25 Bebop Sensors, Inc. Alignment mechanisms sensor systems employing piezoresistive materials
TWI701587B (zh) * 2019-04-19 2020-08-11 瑞鼎科技股份有限公司 觸碰感測裝置及觸碰感測方法
US11061521B2 (en) * 2019-08-06 2021-07-13 Synaptics Incorporated System and method for generating corrected sensor data
TWI744731B (zh) * 2019-12-03 2021-11-01 全台晶像股份有限公司 抗液體干擾觸控面板的觸控位置判斷方法
CN115698650A (zh) 2020-06-02 2023-02-03 微芯片技术股份有限公司 利用差分值指示的电容感测
CN113970986B (zh) * 2020-07-23 2024-04-12 乐金显示有限公司 触摸显示装置、触摸电路及其触摸驱动方法
EP4047461B1 (en) * 2021-02-19 2024-02-07 Schneider Electric Industries SAS Redundant capacitive touch screen
US11599265B1 (en) 2021-12-30 2023-03-07 Motorola Solutions, Inc. Enhancement of non-touchscreen enabled mobile applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639720A (en) 1981-01-12 1987-01-27 Harris Corporation Electronic sketch pad
CN101452360A (zh) * 2007-11-30 2009-06-10 禾瑞亚科技股份有限公司 电容式触控屏幕用的感测装置
CN101470290A (zh) * 2007-12-26 2009-07-01 统宝光电股份有限公司 有源矩阵显示器与其前、后基板以及其感测方法

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113041A (en) * 1990-12-28 1992-05-12 At&T Bell Laboratories Information processing
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5543591A (en) * 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
US7911456B2 (en) * 1992-06-08 2011-03-22 Synaptics Incorporated Object position detector with edge motion feature and gesture recognition
DE69324067T2 (de) 1992-06-08 1999-07-15 Synaptics Inc Objekt-Positionsdetektor
US5914465A (en) * 1992-06-08 1999-06-22 Synaptics, Inc. Object position detector
US5880411A (en) * 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5463388A (en) 1993-01-29 1995-10-31 At&T Ipm Corp. Computer mouse or keyboard input device utilizing capacitive sensors
US5412200A (en) 1993-03-01 1995-05-02 Rhoads; Geoffrey B. Wide field distortion-compensating imaging system and methods
US5591945A (en) 1995-04-19 1997-01-07 Elo Touchsystems, Inc. Acoustic touch position sensor using higher order horizontally polarized shear wave propagation
US5644512A (en) 1996-03-04 1997-07-01 Advanced Surface Microscopy, Inc. High precision calibration and feature measurement system for a scanning probe microscope
US5825670A (en) 1996-03-04 1998-10-20 Advanced Surface Microscopy High precison calibration and feature measurement system for a scanning probe microscope
US6150809A (en) 1996-09-20 2000-11-21 Tpl, Inc. Giant magnetorestive sensors and sensor arrays for detection and imaging of anomalies in conductive materials
TW408277B (en) 1996-11-15 2000-10-11 Alps Electric Co Ltd Small current detector circuit and locator device using the same
KR100595912B1 (ko) * 1998-01-26 2006-07-07 웨인 웨스터만 수동 입력 통합 방법 및 장치
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US8089470B1 (en) 1998-10-20 2012-01-03 Synaptics Incorporated Finger/stylus touch pad
JP3910019B2 (ja) 2000-07-04 2007-04-25 アルプス電気株式会社 入力装置
EP1191430A1 (en) * 2000-09-22 2002-03-27 Hewlett-Packard Company, A Delaware Corporation Graphical user interface for devices having small tactile displays
US7167773B2 (en) 2001-03-21 2007-01-23 Signature Control Systems Process and apparatus for improving and controlling the curing of natural and synthetic moldable compounds
US7254775B2 (en) * 2001-10-03 2007-08-07 3M Innovative Properties Company Touch panel system and method for distinguishing multiple touch inputs
TW565798B (en) * 2001-10-12 2003-12-11 High Tech Comp Corp Pressing point coordinate detecting method for resistor type touch panel
CN1178158C (zh) * 2001-11-19 2004-12-01 宏达国际股份有限公司 用于电阻式触控板的触压点坐标检测方法
US7746325B2 (en) * 2002-05-06 2010-06-29 3M Innovative Properties Company Method for improving positioned accuracy for a determined touch input
US7176897B2 (en) 2002-05-17 2007-02-13 3M Innovative Properties Company Correction of memory effect errors in force-based touch panel systems
GB0228512D0 (en) 2002-12-06 2003-01-15 New Transducers Ltd Contact sensitive device
DE602004028365D1 (de) 2004-03-22 2010-09-09 Htc Corp Koordinateneingabegerät mit Verfahren zur Unterdrückung von Rauschen
US7375675B2 (en) 2004-04-05 2008-05-20 Sri International Method and system for multiple target class data recording, processing and display for over-the-horizon radar
US7072778B2 (en) 2004-06-17 2006-07-04 Stmicroelectronics, Inc. Method and system for determining a rotor position in a wound field DC motor
US7315793B2 (en) 2004-09-11 2008-01-01 Philippe Jean Apparatus, system and methods for collecting position information over a large surface using electrical field sensing devices
US7425966B2 (en) * 2004-10-07 2008-09-16 Nvidia Corporation Pixel center position displacement
WO2006043660A1 (ja) * 2004-10-22 2006-04-27 Sharp Kabushiki Kaisha タッチセンサ付き表示装置およびその駆動方法
CN1811680A (zh) 2005-01-26 2006-08-02 乐金电子(惠州)有限公司 触控屏幕的噪音过滤方法
CN100419655C (zh) 2005-04-08 2008-09-17 鸿富锦精密工业(深圳)有限公司 触摸式感应装置
US7605804B2 (en) 2005-04-29 2009-10-20 Microsoft Corporation System and method for fine cursor positioning using a low resolution imaging touch screen
TWI269214B (en) 2005-06-08 2006-12-21 Elan Microelectronics Corp Object-detecting method of capacitive touch panel
CN100419657C (zh) * 2005-06-20 2008-09-17 义隆电子股份有限公司 电容式触控板的多物件检测方法
US20080147350A1 (en) 2005-08-29 2008-06-19 Les Atelier Numeriques Inc. Apparatus, system and methods for collecting position information over a large surface using electrical field sensing devices
US8111243B2 (en) 2006-03-30 2012-02-07 Cypress Semiconductor Corporation Apparatus and method for recognizing a tap gesture on a touch sensing device
CN100495309C (zh) 2006-04-17 2009-06-03 广达电脑股份有限公司 屏幕控制系统
US7876309B2 (en) 2006-05-18 2011-01-25 Cypress Semiconductor Corporation Toothed slider
GB2439614B (en) * 2006-05-31 2008-12-24 Harald Philipp Two-dimensional position sensor
US8243027B2 (en) * 2006-06-09 2012-08-14 Apple Inc. Touch screen liquid crystal display
US8169421B2 (en) 2006-06-19 2012-05-01 Cypress Semiconductor Corporation Apparatus and method for detecting a touch-sensor pad gesture
US7728816B2 (en) 2006-07-10 2010-06-01 Cypress Semiconductor Corporation Optical navigation sensor with variable tracking resolution
JP5324440B2 (ja) * 2006-07-12 2013-10-23 エヌ−トリグ リミテッド デジタイザのためのホバリングおよびタッチ検出
US8686964B2 (en) * 2006-07-13 2014-04-01 N-Trig Ltd. User specific recognition of intended user interaction with a digitizer
KR100866485B1 (ko) 2006-08-22 2008-11-03 삼성전자주식회사 다접점 위치 변화 감지 장치, 방법, 및 이를 이용한 모바일기기
US8482530B2 (en) * 2006-11-13 2013-07-09 Apple Inc. Method of capacitively sensing finger position
JP2008146654A (ja) * 2006-12-11 2008-06-26 Elan Microelectronics Corp タッチパネル及びこれに用いる位置検出方法
US20080143681A1 (en) 2006-12-18 2008-06-19 Xiaoping Jiang Circular slider with center button
US7920129B2 (en) * 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
US7777732B2 (en) * 2007-01-03 2010-08-17 Apple Inc. Multi-event input system
US8130203B2 (en) 2007-01-03 2012-03-06 Apple Inc. Multi-touch input discrimination
US8711129B2 (en) 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
US8144129B2 (en) 2007-01-05 2012-03-27 Apple Inc. Flexible touch sensing circuits
DE202007014957U1 (de) 2007-01-05 2007-12-27 Apple Inc., Cupertino Multimediakommunikationseinrichtung mit Berührungsbildschirm, der auf Gesten zur Steuerung, Manipulierung und Editierung von Mediendateien reagiert
US8058937B2 (en) * 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
WO2008095139A2 (en) 2007-01-31 2008-08-07 Perceptive Pixel, Inc. Methods of interfacing with multi-point input devices and multi-point input systems employing interfacing techniques
US20080196945A1 (en) 2007-02-21 2008-08-21 Jason Konstas Preventing unintentional activation of a sensor element of a sensing device
KR101383709B1 (ko) 2007-03-07 2014-04-09 삼성디스플레이 주식회사 표시 장치 및 그의 구동 방법
US8525799B1 (en) * 2007-04-24 2013-09-03 Cypress Semiconductor Conductor Detecting multiple simultaneous touches on a touch-sensor device
CN100590579C (zh) 2007-05-16 2010-02-17 广东威创视讯科技股份有限公司 一种多点触摸定位方法
TWI358661B (en) * 2007-06-14 2012-02-21 Elan Microelectronics Corp Object location sensor of touch pad
US8842091B2 (en) * 2007-07-12 2014-09-23 Atmel Corporation Two-dimensional touch panel
CN100535844C (zh) * 2007-08-08 2009-09-02 友达光电股份有限公司 触控式面板
US8674950B2 (en) 2007-09-06 2014-03-18 Cypress Semiconductor Corporation Dual-sensing-mode touch-sensor device
US8587559B2 (en) 2007-09-28 2013-11-19 Samsung Electronics Co., Ltd. Multipoint nanostructure-film touch screen
TWI368867B (en) * 2007-12-11 2012-07-21 Au Optronics Corp Liquid crystal display panel
KR101427586B1 (ko) 2007-12-26 2014-08-07 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US20090174675A1 (en) 2008-01-09 2009-07-09 Dave Gillespie Locating multiple objects on a capacitive touch pad
TWI371710B (en) * 2008-01-21 2012-09-01 Egalax Empia Technology Inc Noise cancellation device and the method of capacitive touch panel
TW200937268A (en) 2008-02-26 2009-09-01 Egalax Empia Technology Inc Touch panel device capable of being used by multiple persons at the same time and its control device and method
US8358142B2 (en) * 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8319505B1 (en) * 2008-10-24 2012-11-27 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
CN101526871B (zh) 2008-03-04 2011-09-28 禾瑞亚科技股份有限公司 电容式触控面板的感测装置及其方法
EP2104023A3 (en) 2008-03-18 2012-08-22 Anders Swedin Method and apparatus at a touch sensitive device
CN101539832A (zh) * 2008-03-20 2009-09-23 达方电子股份有限公司 具滚动条功能的输入装置及其触控式面板与电子装置
TW200941008A (en) * 2008-03-28 2009-10-01 Winbond Electronics Corp Capacitive detection systems, modules and methods
US8526767B2 (en) 2008-05-01 2013-09-03 Atmel Corporation Gesture recognition
CN101271374B (zh) * 2008-05-19 2011-02-16 北京中星微电子有限公司 一种对触摸屏进行检测的方法及装置
US9335868B2 (en) * 2008-07-31 2016-05-10 Apple Inc. Capacitive sensor behind black mask
US8135171B2 (en) 2008-08-19 2012-03-13 Au Optronics Corp. Multipoint tracking method and related device
US8284170B2 (en) 2008-09-30 2012-10-09 Apple Inc. Touch screen device, method, and graphical user interface for moving on-screen objects without using a cursor
CN101369200B (zh) * 2008-10-15 2011-01-05 友达光电股份有限公司 判断触碰面板上触碰点位置与其传感器是否被触碰的方法
US8749496B2 (en) * 2008-12-05 2014-06-10 Apple Inc. Integrated touch panel for a TFT display
TWI376624B (en) 2008-12-23 2012-11-11 Integrated Digital Tech Inc Force-sensing modules for light sensitive screens
US8633904B2 (en) 2009-04-24 2014-01-21 Cypress Semiconductor Corporation Touch identification for multi-touch technology
US20100283785A1 (en) 2009-05-11 2010-11-11 Agilent Technologies, Inc. Detecting peaks in two-dimensional signals
KR101364837B1 (ko) * 2009-06-16 2014-02-19 인텔 코오퍼레이션 핸드헬드 디바이스를 위한 적응형 버츄얼 키보드
CN102023768B (zh) * 2009-09-09 2013-03-20 比亚迪股份有限公司 触摸点定位方法、系统及显示终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639720A (en) 1981-01-12 1987-01-27 Harris Corporation Electronic sketch pad
CN101452360A (zh) * 2007-11-30 2009-06-10 禾瑞亚科技股份有限公司 电容式触控屏幕用的感测装置
CN101470290A (zh) * 2007-12-26 2009-07-01 统宝光电股份有限公司 有源矩阵显示器与其前、后基板以及其感测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511804A4 *

Also Published As

Publication number Publication date
CN102043512A (zh) 2011-05-04
CN102043556B (zh) 2013-03-20
US8564564B2 (en) 2013-10-22
US20140022213A1 (en) 2014-01-23
US20120068953A1 (en) 2012-03-22
EP2511804A4 (en) 2014-06-11
US8471826B2 (en) 2013-06-25
CN102043557A (zh) 2011-05-04
US20120007831A1 (en) 2012-01-12
US9689906B2 (en) 2017-06-27
EP2511804A1 (en) 2012-10-17
CN102043514A (zh) 2011-05-04
CN102043524A (zh) 2011-05-04
TWI434201B (zh) 2014-04-11
CN102043512B (zh) 2013-04-10
TWI407347B (zh) 2013-09-01
US8570289B2 (en) 2013-10-29
TW201115427A (en) 2011-05-01
TW201207683A (en) 2012-02-16
CN102043557B (zh) 2013-04-24
US8970552B2 (en) 2015-03-03
TWI407359B (zh) 2013-09-01
US20110084929A1 (en) 2011-04-14
US8970551B2 (en) 2015-03-03
CN102043524B (zh) 2012-12-12
CN102043556A (zh) 2011-05-04
TW201117077A (en) 2011-05-16
US20110084931A1 (en) 2011-04-14
US20140015798A1 (en) 2014-01-16
TW201113795A (en) 2011-04-16
CN102043514B (zh) 2013-08-28
TWI457795B (zh) 2014-10-21

Similar Documents

Publication Publication Date Title
WO2011041947A1 (zh) 位置侦测的方法与装置
TWI464624B (zh) 分析位置的方法與裝置
TWI464634B (zh) 雙差動感測的方法與裝置
TWI585621B (zh) 分辨單觸或雙觸的方法與裝置
TWI427523B (zh) 電容式位置偵測的方法與裝置
TWI446233B (zh) 轉換感測資訊的方法與裝置
TWI446232B (zh) 二維度感測資訊分析的方法與裝置
TWI516993B (zh) 訊號量測的方法與裝置
WO2011041948A1 (zh) 分析位置的方法与装置
WO2011041940A1 (zh) 分辨单触或多触的方法与装置
WO2011041942A1 (zh) 位置侦测的方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010821556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112013000794

Country of ref document: BR