WO2011040547A1 - Paper barrier material - Google Patents

Paper barrier material Download PDF

Info

Publication number
WO2011040547A1
WO2011040547A1 PCT/JP2010/067118 JP2010067118W WO2011040547A1 WO 2011040547 A1 WO2011040547 A1 WO 2011040547A1 JP 2010067118 W JP2010067118 W JP 2010067118W WO 2011040547 A1 WO2011040547 A1 WO 2011040547A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
paper
water
resin
barrier material
Prior art date
Application number
PCT/JP2010/067118
Other languages
French (fr)
Japanese (ja)
Inventor
民治郎 兼行
武史 中山
瑛司 草野
正一 宮脇
志穂 勝川
裕 阿部
夕子 飯嶋
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2011534321A priority Critical patent/JPWO2011040547A1/en
Publication of WO2011040547A1 publication Critical patent/WO2011040547A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/06Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/14Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose characterised by containing special compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/20Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/22Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • D21H17/26Ethers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7166Water-soluble, water-dispersible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier

Definitions

  • the present invention relates to a barrier material made of gas barrier property paper.
  • gas barriers especially oxygen barriers
  • oxygen barriers are well known in paper, cardboard and cardboard.
  • an oxygen barrier layer is provided on paper, cardboard base paper, and cardboard to provide oxygen barrier properties.
  • a metal foil or metal vapor deposition film made of a metal such as aluminum, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinylidene chloride, polyacrylonitrile, etc.
  • a method of extruding and laminating or pasting resin films, films coated with these resins, ceramic vapor deposited films deposited with inorganic oxides such as silicon oxide and aluminum oxide, etc. onto paper substrates has been mainly used. It was.
  • Patent Document 1 proposes a method of providing polyvinyl alcohol and an inorganic layered compound on a paper substrate.
  • Patent Document 2 proposes, similarly to Patent Document 1, a laminated paper for packaging provided with a paper layer and a resin composition layer having an inorganic layer compound on the paper layer.
  • Patent Document 3 proposes a paper composite having a resin composition layer containing 0.01 to 200 parts by weight of a layered inorganic compound with respect to 100 parts by weight of a water-soluble polymer compound on at least one surface of paper. Yes.
  • Patent Document 4 discloses a saponified ethylene-vinyl ester copolymer (A) having an ethylene content of 1 to 15 mol%, a saponified ethylene-vinyl ester copolymer (B) having an ethylene content of 15 to 70 mol%, and A resin composition comprising an inorganic layered compound (C) has been proposed.
  • Patent Document 5 in a laminate comprising a coating layer 1, a barrier layer 2, and a paper base material 3, the barrier layer 2 is a paper or biaxially stretched film base material B and vinyl having an ethylene content of 0 to 15 mol%.
  • a laminate comprising a layer A of an alcohol polymer has been proposed.
  • Patent Document 6 discloses a gas barrier laminate in which a first gas barrier layer and a second gas barrier layer containing a water-soluble polymer and an inorganic layered compound are provided in this order on a paper support.
  • the mass ratio of the water-soluble polymer to the inorganic layered compound is 75/25 to 50/50, and the mass ratio of the water-soluble polymer to the inorganic layered compound in the second gas barrier layer is 95/5 to 75 /
  • a gas barrier laminate of 25 is proposed.
  • Patent Document 7 in a gas barrier laminate in which a gas barrier layer containing a water-soluble polymer, an inorganic layered compound, and a synthetic resin is provided on a paper support, the inorganic layered compound is used with respect to 100 parts by mass of the water-soluble polymer.
  • a gas barrier laminate in which 10 to 150 parts by mass and 5 to 100 parts by mass of a synthetic resin has been proposed.
  • Patent Document 8 discloses a gas barrier layer and a heat seal layer in which a first gas barrier layer containing an ethylene-modified polyvinyl alcohol resin and an inorganic layered compound and a second gas barrier layer made of ethylene-modified polyvinyl alcohol are sequentially provided on a paper support. A gas barrier laminate having good adhesion is proposed.
  • the present invention can be inspected by a metal detector by applying a water-soluble paint and providing a coating layer having a gas barrier property on a paper base material.
  • An object of the present invention is to provide a paper barrier material that can be heat sealed and produced at low cost.
  • the present inventors apply an aqueous solution containing cellulose nanofibers (hereinafter sometimes referred to as “CNF”) and a water-soluble gas barrier resin to paper to provide a gas barrier layer, thereby providing a gas barrier layer.
  • CNF cellulose nanofibers
  • the present inventors have found that a paper barrier material having a barrier property can be obtained, and have achieved the present invention.
  • the present invention provides a paper barrier material in which a gas barrier layer containing cellulose nanofibers and a water-soluble gas barrier resin is provided on at least one surface of a paper substrate, and the cellulose nanofibers in the gas barrier layer Is a paper barrier material in which the weight ratio of the water-soluble gas barrier resin to the water-soluble gas barrier resin is 0.1 to 43 parts by mass with respect to 100 parts by mass of the water-soluble gas barrier resin.
  • the water-soluble gas barrier resin is carboxymethylcellulose, methylcellulose, carboxyalkylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, chitosan, polyacrylamide, polyacrylic acid, polyethylene oxide, polyvinyl alcohol, and ethylene-vinyl alcohol. It is preferably at least one of a polymer, polymethacrylic acid, polyamine, polyvinylpyridine, salts of these compounds, and a mixture of any of these materials. Furthermore, gas barrier properties can be improved by subjecting CNF to ultraviolet (UV) treatment.
  • UV ultraviolet
  • a metal detector by applying a small amount of a coating liquid containing cellulose nanofibers and a water-soluble gas barrier resin as a water-soluble paint on a paper substrate, and providing a gas barrier layer, a metal detector is used. It is possible to obtain a paper barrier material that can be inspected, can be treated as a combustible material after use, does not emit harmful substances during combustion, can be heat-sealed, and can be produced at low cost.
  • the cellulose nanofibers are nanofibers using natural cellulose microfibrils, and are superior in strength and heat resistance compared to conventional cellulose materials.
  • the cellulose nanofiber is not limited to a single unit and is usually used in a bundle of a plurality of pieces, but a more preferable form is a single microfibril.
  • the preferred size of the cellulose nanofibers is 0.5 to 800 nm in width (the dimension in the direction perpendicular to the length direction, corresponding to the diameter in the case of a single bundle and the diameter of the bundle in the case of a bundle of plural fibers). (Including the width when plural bundles are formed), more preferably 2 to 5 nm in width and about 1 to 5 ⁇ m in length.
  • the cellulose nanofiber dispersion of the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 1.0% by mass (w / v) of 1000 mPa ⁇ s or less, preferably 800 mPa ⁇ s or less, more preferably 500 mPa ⁇ s.
  • the light transmittance (660 nm) at a concentration of 0.1% by mass (w / v) is 90% or more, preferably 95% or more.
  • the cellulose nanofibers used in the present invention are excellent in fluidity and transparency, and further excellent in gas barrier properties and heat resistance, and thus can be used in various applications such as packaging materials.
  • the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
  • the amount of carboxyl groups of the cellulose nanofiber of the present invention is preferably 0.5 mmol / g or more, more preferably 1.0 mmol / g to 3.0 mmol / g, based on the absolute dry mass of the cellulose-based raw material.
  • the amount of carboxyl groups can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the amount of N-oxyl compound, bromide, iodide, and oxidizing agent added. It can be the amount of carboxyl groups.
  • the concentration of the oxidized cellulose raw material is 0.1% by mass or more. This is preferable because the flowability of the cellulosic raw material is good and the reaction efficiency is increased. Therefore, when irradiating with ultraviolet rays, the concentration of the oxidized cellulose-based raw material is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 5% by mass. It is.
  • the temperature of the cellulosic raw material when irradiating with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased.
  • the temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and still more preferably 20 to 50 ° C.
  • the pH at the time of irradiation with ultraviolet rays is not particularly limited, but it is preferable from the viewpoint of simplification of the process to carry out the treatment in a neutral region, for example, about pH 6.0 to 8.0.
  • the wavelength of the ultraviolet light is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm are preferable from the viewpoint of reducing the viscosity.
  • ultraviolet rays contained in sunlight ultraviolet rays having a wavelength of 200 nm or less are absorbed by oxygen molecules and nitrogen molecules, and ultraviolet rays having a wavelength of 200 to 280 nm are usually prevented from being present on the ground surface because they are prevented by the ozone layer. Further, the ultraviolet irradiation treatment can be repeated a plurality of times. The number of repetitions can be appropriately set according to the target quality of the oxidized cellulosic raw material and the relationship with post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm are applied 1 to 10 times, preferably about 2 to 5 times, 0.5 to 10 hours per time, preferably 0.5 to 3 times. It can be irradiated for as long as an hour.
  • the mechanism is unclear by irradiating the cellulosic raw material oxidized with the N-oxyl compound with ultraviolet rays, followed by defibration / dispersion treatment.
  • Cellulose nanofibers that are excellent in transparency and that exhibit high gas barrier properties can be obtained.
  • cellulose nano-materials excellent in fluidity and transparency even at a high concentration are obtained by irradiating ultraviolet rays to cellulose-based raw materials oxidized using an N-oxyl compound, and then performing defibration and dispersion treatment.
  • a fiber dispersion can be obtained with low power consumption. The reason is guessed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsion between carboxyl groups.
  • the raw material When the raw material is irradiated with ultraviolet rays, active oxygen species having excellent oxidizing power such as ozone are generated from oxygen dissolved in the hydration layer on the surface of the raw material or pore water of the raw material, and this product is oxidized.
  • active oxygen species having excellent oxidizing power such as ozone are generated from oxygen dissolved in the hydration layer on the surface of the raw material or pore water of the raw material, and this product is oxidized.
  • cellulose nanofibers when cellulose nanofibers are added to other water-soluble gas barrier resins and coated on paper, further improvement in gas barrier properties can be expected. This is considered to have both the gas barrier properties of cellulose nanofibers and the prevention of penetration into paper due to the thickening action of the coating liquid.
  • the water-soluble gas barrier resin and the cellulose nanofibers can be mixed and applied rather than separately, thereby obtaining a synergistic effect as a gas barrier material. Although it is not clear about this effect
  • the ultraviolet irradiation treatment described above can be mentioned, and the gas barrier property can be improved by subjecting the cellulose nanofibers to ultraviolet treatment.
  • the gas barrier layer can be made thin. The improvement is about 50%, and the layer thickness can be halved.
  • the viscosity of the paint is increased, which may cause poor stirring and impair the coating suitability.
  • the flexibility of the barrier material is impaired, it does not have the folding processability required when used as a packaging material.
  • the preferable compounding quantity of the said cellulose nanofiber shall be 0.1 to 43 mass parts with respect to 100 mass parts of water-soluble gas barrier resin, More preferably, it is 25 mass parts or less.
  • the preferable compounding quantity of the said cellulose nanofiber shall be 0.1 to 43 mass parts with respect to 100 mass parts of water-soluble gas barrier resin, More preferably, it is 25 mass parts or less.
  • Water-soluble gas barrier resin is carboxymethylcellulose, methylcellulose, carboxyalkylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, chitosan, polyacrylamide, polyacrylic acid, polyethylene oxide, polyvinyl alcohol, ethylene-vinyl alcohol copolymer
  • the polymer, polymethacrylic acid, polyamine, polyvinyl pyridine, and salts of these compounds, and any of these materials are used.
  • a gas barrier resin having a hydroxyl group has high binding properties to cellulose nanofibers. Therefore, it is more preferable.
  • a barrier material having high gas barrier properties can be obtained by using an ethylene-vinyl alcohol copolymer or polyvinyl alcohol.
  • the ethylene-vinyl alcohol copolymer resin (EVOH) is obtained by hydrolysis of ethylene and vinyl acetate copolymer.
  • Polyvinyl alcohol has high gas barrier properties, oil resistance, and transparency, and also has properties such as moisture resistance and melt extrusion processability of ethylene components.
  • it is possible to modify the water-soluble gas barrier resin by adding a small amount of cellulose nanofibers to the above-mentioned water-soluble gas barrier resin, thereby improving the gas barrier characteristics of the paper gas barrier material. Can be improved.
  • the gas barrier property in the present invention has an oxygen transfer rate (OTR) of less than 10 cc / m 2 / day when measured at 0% relative humidity (% RH) at standard temperature and pressure (STP). More preferably, it is less than 3 cc / m 2 / day.
  • OTR oxygen transfer rate
  • a water-soluble gas barrier resin such as polyvinyl alcohol requires a large amount of material per 1 m 2 in order to achieve the above-mentioned effects. However, when cellulose nanofiber is mixed with this, the required amount can be reduced. it can.
  • the paper base is an aggregate in which pulp fibers are intertwined mainly composed of cellulose, and includes wrapping paper, paperboard, cardboard base paper, laminated paper and the like. It is also effective to provide a sealing layer between the paper substrate and the gas barrier layer in order to give the barrier material a high gas barrier property.
  • the sealing layer include a coating layer containing a pigment such as clay and a binder resin, and a coating layer made of a resin having a film property.
  • providing a moisture barrier layer that provides a barrier to liquids and water vapor between the paper substrate and the oxygen barrier layer, or the exposed surface of the oxygen barrier layer, or both suppresses the deterioration of barrier properties under high humidity. It is effective for.
  • a layer of heat sealable material may be applied to the exposed surface of the gas barrier layer.
  • the paper barrier material of the present invention can be formed and processed into food packaging materials, containers, cups and the like.
  • the gas barrier layer is provided by applying a water-based coating liquid containing cellulose nanofibers and a water-soluble gas barrier resin to the surface of the paper substrate and then drying it.
  • a coating solution containing cellulose nanofibers a two-roll size press coater, a gate roll coater, a blade metering coater, a rod metering coater, a blade coater, an air knife coater, a roll coater, a brush coater, and a kiss coater.
  • a known coating machine such as a squeeze coater, a curtain coater, a die coater, a bar coater, a gravure coater, or a dip coater can be used.
  • a well-known dryer can be used for drying.
  • chemicals such as a sizing agent, water-proofing agent, water repellent, and dye can be mixed and used in the gas barrier layer as needed without impairing the effects of the present invention.
  • the auxiliary agent is not blended.
  • Example 1 One part of cellulose nanofiber (solid content concentration 1%) was mixed with 100 parts of polyvinyl alcohol-based resin (trade name EXEVAL, Kuraray Co., Ltd., solid content concentration 20%) to prepare a coating solution. Using a Mayer bar, this coating solution is applied to the coated surface of coated paper (trade name: Aurora Coat, 157 g / m 2 , manufactured by Nippon Paper Industries Co., Ltd.) at a solid content of 1.0 g / m 2. The gas barrier layer was applied and dried at a drying temperature of 105 ° C. using a blow dryer to obtain a paper barrier material.
  • coated paper trade name: Aurora Coat, 157 g / m 2 , manufactured by Nippon Paper Industries Co., Ltd.
  • the gas barrier layer was applied and dried at a drying temperature of 105 ° C. using a blow dryer to obtain a paper barrier material.
  • Examples 2 to 9, Comparative Examples 1 to 7 As shown in Tables 1 and 2, with respect to the composition of the gas barrier layer, the same as in Example 1, except that the addition ratio of cellulose nanofiber, polyvinyl alcohol resin, mica, and the coating amount of the gas barrier layer was changed. A barrier material was obtained.
  • oxidized powdered cellulose was separated by centrifugal operation (6000 rpm, 30 minutes, 20 ° C.) and sufficiently washed with water to obtain oxidized powdered cellulose.
  • a 2% (w / v) slurry of oxidized powdered cellulose was treated with a mixer at 12,000 rpm for 15 minutes, and the powdered cellulose slurry was further treated with an ultra-high pressure homogenizer five times at a shipping pressure of 140 MPa to obtain a transparent gel A dispersion was obtained.
  • the obtained 2% (w / v) cellulose nanofiber dispersion was further diluted to obtain a cellulose nanofiber dispersion having a solid concentration of 1% (w / v).
  • the B type viscosity of the obtained cellulose nanofiber was 890 (mPa ⁇ s).
  • the maximum fiber diameter of the cellulose nanofibers was 10 nm, and the number average fiber diameter was 6 nm.
  • ⁇ Bending aptitude evaluation method> A film having a thickness of 30 ⁇ m was prepared from each oxygen barrier layer coating solution, and it was observed whether or not the film was broken when it was bent 180 degrees. Evaluation criteria ⁇ : The film does not crack. X: The film is cracked. Or the film is torn.
  • ⁇ Laminate adhesion> A polyethylene layer having a thickness of 20 ⁇ m was extruded and laminated on the oxygen barrier layer, and an adhesive tape peeling test was performed on each sample after lamination to observe the peeling state.
  • As a pressure-sensitive adhesive tape a 15 mm wide transparent tape manufactured by Nichiban Co., Ltd. was used. The pressure-sensitive adhesive tape was attached on the oxygen barrier layer and rubbed several times by hand, and then the pressure-sensitive adhesive tape was peeled off. Evaluation criteria A: Adhesion between the gas barrier layer and the polyethylene is good, and the paper substrate is destroyed on the entire surface of the adhesive tape. ⁇ : The paper base material is partially destroyed. X: Peeling has occurred between the gas barrier layer and the polyethylene.
  • the paper barrier materials obtained in the examples corresponding to the present invention were excellent in oxygen barrier properties, bendability and laminate adhesion even when the coating amount of the gas barrier layer was small.
  • the oxygen permeability was 8.1 and 4.2 at polyvinyl alcohol coating amounts of 10 g / m 2 and 15 g / m 2 , respectively. Therefore, in order to satisfy the oxygen permeability of 3.0, at least the coating amount of polyvinyl alcohol needs to be 15 g / m 2 or more.
  • Example 1 From Examples 1 to 9, it can be seen that by adding 1 to 43 parts of cellulose nanofiber to 100 parts of polyvinyl alcohol resin, the amount of oxygen permeation is reduced.
  • Example 4 having a coating amount of 5.0 g / m 2 is compared with Comparative Example 2, the oxygen permeability is 0.14: 13.2, which is about 100 times different.
  • Example 1 and Comparative Example 1 having a coating amount of 1.0 g / m 2 have an oxygen permeability of 2.8: 32, which is about 10 times.
  • the present invention exhibits an improvement of about 10 times the dependency of CNF on the layer thickness.
  • the lamination adhesiveness improved by adding a cellulose nanofiber to polyvinyl alcohol-type resin.
  • the folding characteristic is an index that affects the performance of a container or the like accompanied by a bending process. This indicator is not necessary when the influence of bending such as heat sealing can be ignored.
  • gas barrier properties could be further improved by adding a small amount of a flat pigment such as layered silicic acid represented by mica.
  • Example 10 10 parts of cellulose nanofiber (solid content concentration 1%) is mixed with 100 parts of polyvinyl alcohol resin (trade name EXEVAL, Kuraray Co., Ltd., solid content concentration 10%), and 11 parts of isopropyl alcohol is mixed with this mixed solution.
  • the coating liquid was adjusted by adding at a ratio.
  • This coating solution is applied on a laminated surface of polyethylene single-sided laminated paper (paper basis weight: 200 g / m 2 , polyethylene thickness: 20 ⁇ m) using a Meyer bar so that the solid content is 0.5 g / m 2. And dried using a blow dryer at a drying temperature of 80 ° C. to obtain a paper barrier material.
  • Example 11 After obtaining powdered cellulose oxidized in the same manner as in Examples 1 to 10, it was treated with a 20 W low-pressure mercury lamp that irradiates 254 nm ultraviolet light for 0.5 hour. Ultraviolet-treated oxidized pulp slurry was treated 10 times with an ultra-high pressure homogenizer (treatment pressure 140 MPa), and a transparent gel-like cellulose nanofiber dispersion was obtained. Type B at 1% (w / v) of the dispersion The viscosity (60 rpm, 20 ° C.) was 700 mPa ⁇ s. A paper barrier material was obtained in the same manner as in Example 10 except that this cellulose nanofiber dispersion was used.
  • Example 12 From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofiber was 10 nm, and the number average fiber diameter was 6 nm.
  • a paper barrier material was obtained in the same manner as in Example 11 except that the wavelength of the ultraviolet light was changed to 380 nm. From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofibers is 10 nm, the number average fiber diameter is 6 nm, and the B-type viscosity (60 rpm, 20 ° C.) at 1% (w / v) of the dispersion. ) was 800 mPa ⁇ s.
  • Example 13 A paper barrier material was obtained in the same manner as in Example 11 except that the ultraviolet irradiation time was changed to 6 hours. From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofibers is 10 nm, the number average fiber diameter is 6 nm, and the B-type viscosity (60 rpm, 20 ° C.) at 1% (w / v) of the dispersion. ) was 320 mPa ⁇ s.
  • AFM atomic force microscope
  • Example 8 Based on Example 10, a paper barrier material coated with PVA and CNF separately was prepared and tested.
  • the coating liquid (B) was adjusted at a ratio of 1 part of isopropyl alcohol to 10 parts of cellulose nanofiber (solid content concentration 1%). Then, the coating liquid (A) containing the polyvinyl alcohol-type resin which made solid content 0.45g / m ⁇ 2 > was prepared.
  • a coating liquid (B) containing cellulose nanofibers having a solid content of 0.05 g / m 2 was prepared. (A) It coated separately in the order of (B).
  • Example 10 and Comparative Example 8 From Example 10 and Comparative Example 8, the cellulose nanofiber and the water-soluble gas barrier resin exhibited a high gas barrier property by applying them by mixing rather than applying them separately. Further, in Examples 11 and 13 in which ultraviolet ray irradiation was added to the production process of cellulose nanofiber, the gas barrier property was further improved as the irradiation time became longer. In addition, as for the ultraviolet wavelength, the treatment at 254 nm in Example 11 was more effective than the treatment at 380 nm in Example 12. When Example 13 and Example 3 are compared, the oxygen permeability is comparable. This indicates that the UV-treated Example 11 has about half the amount of CNF compared to Example 3, so that the gas barrier property can be improved by twice or more by the UV treatment.

Abstract

A paper barrier material provided, on at least one surface of a paper base, with a gas-barrier layer comprising cellulose nanofibers and a water-soluble oxygen-barrier resin, wherein said gas-barrier layer contains, in terms of the weight ratio of the cellulose nanofibers to a water-soluble gas-barrier resin, 0.1 to 43 parts by mass inclusive of the cellulose nanofibers per 100 parts by mass of the water-soluble gas-barrier resin. The paper barrier material thus provided is applicable to search with a metal detector, can be discarded as flammable garbage after using, generates no harmful substance during combustion, can be heat-sealed and can be produced at a low cost.

Description

紙製バリア材料Paper barrier material
 本発明は、ガスバリア特性紙製バリア材料に関する。 The present invention relates to a barrier material made of gas barrier property paper.
 紙、段ボール原紙および厚紙において、ガスバリア(特に、酸素バリア)に対する必要性はよく知られている。
 酸素が製品に接触すると、製品の貯蔵寿命は低減されてしまう。このため、酸素バリア層が、紙、段ボール原紙および厚紙上に設けられ酸素バリア特性が付与される。
The need for gas barriers (especially oxygen barriers) is well known in paper, cardboard and cardboard.
When oxygen comes into contact with the product, the shelf life of the product is reduced. For this reason, an oxygen barrier layer is provided on paper, cardboard base paper, and cardboard to provide oxygen barrier properties.
 従来、紙基材へのガスバリア性の付与には、ガスバリア層として、アルミニウム等の金属からなる金属箔や金属蒸着フィルム、ポリビニルアルコールやエチレン-ビニルアルコール共重合体、ポリ塩化ビニリデン、ポリアクリロニトリル等の樹脂フィルム、あるいはこれらの樹脂をコーティングしたフィルム、さらに酸化珪素や酸化アルミニウム等の無機酸化物を蒸着したセラミック蒸着フィルム等を紙基材に押し出しラミネート、または、貼合する方法が主に用いられてきた。 Conventionally, for providing a gas barrier property to a paper substrate, as a gas barrier layer, a metal foil or metal vapor deposition film made of a metal such as aluminum, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinylidene chloride, polyacrylonitrile, etc. A method of extruding and laminating or pasting resin films, films coated with these resins, ceramic vapor deposited films deposited with inorganic oxides such as silicon oxide and aluminum oxide, etc. onto paper substrates has been mainly used. It was.
 また、近年でも紙基材表面にガスバリア層を形成する技術が多数提案されている。特許文献1にはポリビニルアルコールと無機層状化合物を紙基材上に設ける方法が提案されている。特許文献2には、特許文献1と同様に、紙状物層と、上記紙状物層上に無機層状化合物を有する樹脂組成物層とを備えている包装用積層紙が提案されている。特許文献3には、紙の少なくとも一面に、水溶性高分子化合物100重量部に対し、層状無機化合物を0.01~200重量部含有する樹脂組成物の層を有する紙複合体が提案されている。特許文献4には、エチレン含有量1~15モル%のエチレン-ビニルエステル共重合体ケン化物(A)、エチレン含有量15~70モル%のエチレン-ビニルエステル共重合体ケン化物(B)および無機層状化合物(C)からなる樹脂組成物が提案されている。 In recent years, many techniques for forming a gas barrier layer on the surface of a paper substrate have been proposed. Patent Document 1 proposes a method of providing polyvinyl alcohol and an inorganic layered compound on a paper substrate. Patent Document 2 proposes, similarly to Patent Document 1, a laminated paper for packaging provided with a paper layer and a resin composition layer having an inorganic layer compound on the paper layer. Patent Document 3 proposes a paper composite having a resin composition layer containing 0.01 to 200 parts by weight of a layered inorganic compound with respect to 100 parts by weight of a water-soluble polymer compound on at least one surface of paper. Yes. Patent Document 4 discloses a saponified ethylene-vinyl ester copolymer (A) having an ethylene content of 1 to 15 mol%, a saponified ethylene-vinyl ester copolymer (B) having an ethylene content of 15 to 70 mol%, and A resin composition comprising an inorganic layered compound (C) has been proposed.
 特許文献5には、被覆層1、バリア層2および紙基材3からなる積層体において、バリア層2が、紙または二軸延伸フィルムの基材Bおよびエチレン含有率0~15モル%のビニルアルコール系重合体の層Aからなる積層体が提案されている。特許文献6には、紙支持体上に水溶性高分子および無機層状化合物を含む第1ガスバリア層と第2ガスバリア層とを、この順で設けたガスバリア性積層体において、第1ガスバリア層中の水溶性高分子と無機層状化合物との質量比が75/25~50/50であり、かつ、第2ガスバリア層中の水溶性高分子と無機層状化合物との質量比が95/5~75/25であるガスバリア性積層体が提案されている。特許文献7には、紙支持体上に水溶性高分子と無機層状化合物と合成樹脂とを含むガスバリア層を設けたガスバリア性積層体において、水溶性高分子100質量部に対して、無機層状化合物が10~150質量部、合成樹脂が5~100質量部であるガスバリア性積層体が提案されている。特許文献8には、紙支持体上にエチレン変性ポリビニルアルコール樹脂と無機層状化合物を含む第1のガスバリア層と、エチレン変性ポリビニルアルコールからなる第2のガスバリア層を順次設けたガスバリア層とヒートシール層の接着が良好なガスバリア性積層体が提案されている。 In Patent Document 5, in a laminate comprising a coating layer 1, a barrier layer 2, and a paper base material 3, the barrier layer 2 is a paper or biaxially stretched film base material B and vinyl having an ethylene content of 0 to 15 mol%. A laminate comprising a layer A of an alcohol polymer has been proposed. Patent Document 6 discloses a gas barrier laminate in which a first gas barrier layer and a second gas barrier layer containing a water-soluble polymer and an inorganic layered compound are provided in this order on a paper support. The mass ratio of the water-soluble polymer to the inorganic layered compound is 75/25 to 50/50, and the mass ratio of the water-soluble polymer to the inorganic layered compound in the second gas barrier layer is 95/5 to 75 / A gas barrier laminate of 25 is proposed. In Patent Document 7, in a gas barrier laminate in which a gas barrier layer containing a water-soluble polymer, an inorganic layered compound, and a synthetic resin is provided on a paper support, the inorganic layered compound is used with respect to 100 parts by mass of the water-soluble polymer. A gas barrier laminate in which 10 to 150 parts by mass and 5 to 100 parts by mass of a synthetic resin has been proposed. Patent Document 8 discloses a gas barrier layer and a heat seal layer in which a first gas barrier layer containing an ethylene-modified polyvinyl alcohol resin and an inorganic layered compound and a second gas barrier layer made of ethylene-modified polyvinyl alcohol are sequentially provided on a paper support. A gas barrier laminate having good adhesion is proposed.
特開平11-129381号公報JP-A-11-129381 特開平11-309817号公報Japanese Patent Laid-Open No. 11-309817 特開平13-214396号公報Japanese Patent Laid-Open No. 13-214396 特開平14-069255号公報Japanese Patent Application Laid-Open No. 14-069255 特開平15-094574号公報Japanese Patent Laid-Open No. 15-094574 特開2007-216592号公報JP 2007-216592 A 特開2007-216593号公報JP 2007-216593 A 特開2009-184138号公報JP 2009-184138 A
 ガスバリア性を有する合成樹脂層だけでは、食品の包装材としては十分なガスバリア性が得られずに、先行文献に示したような工夫が提案され、実用されている。しかし、金属箔を使用すると、ガスバリア性に優れるが、検査の際金属探知器が使用できないこと、リサイクル時にセルロース繊維との分離が難しく再利用ができないこと等の問題がある。また、ポリアクリロニトリル等は廃棄・焼却の際に有害物質の原料となりうる可能性がある等の問題がある。また、紙にポリビニルアルコールやエチレン-ビニルアルコール共重合体を押し出しラミネートする場合でも、水溶性塗料として紙に塗工するよりコスト高となる。また、セラミック蒸着フィルム等は、蒸着層がセラミック故に可撓性に欠け加工適性に十分注意しなければならない、加工機が高価な為コストが高くなる等の問題がある。 Only a synthetic resin layer having a gas barrier property cannot provide a gas barrier property sufficient as a packaging material for food, and a device as shown in the prior art has been proposed and put into practical use. However, when a metal foil is used, the gas barrier property is excellent, but there are problems that a metal detector cannot be used for inspection and that it cannot be reused because it is difficult to separate from cellulose fibers during recycling. In addition, polyacrylonitrile and the like have a problem that they can become a raw material for harmful substances during disposal and incineration. Even when polyvinyl alcohol or ethylene-vinyl alcohol copolymer is extruded and laminated on paper, the cost is higher than when it is applied to paper as a water-soluble paint. In addition, the ceramic vapor-deposited film has a problem that since the vapor-deposited layer is ceramic, it is inflexible and sufficient attention must be paid to processing suitability, and the processing machine is expensive, resulting in high costs.
 したがって、本発明は、水溶性塗料を塗工して、ガスバリア性を有する塗工層を紙基材上に設けることにより、金属探知器による検査が可能で、リサイクル性に優れ、燃焼時に有害物質が出ず、ヒートシール可能で、かつ、低コストで生産可能な紙製バリア材料を提供することを目的とする。 Therefore, the present invention can be inspected by a metal detector by applying a water-soluble paint and providing a coating layer having a gas barrier property on a paper base material. An object of the present invention is to provide a paper barrier material that can be heat sealed and produced at low cost.
 本発明者らは、セルロースナノファイバー(以下「CNF」と称することがある)と水溶性のガスバリア性樹脂を含有する水溶液を紙に塗工してガスバリア層を設けることにより、酸素等のガスの遮断性を有する紙製バリア材料が得られることを見出し、本発明を成すに至った。したがって、本発明は、紙基材の少なくとも一方の表面に、セルロースナノファイバーと水溶性ガスバリア性樹脂とを含有するガスバリア層を設けた紙製バリア材料であって、前記ガスバリア層中のセルロースナノファイバーと水溶性ガスバリア性樹脂の含有重量比が水溶性ガスバリア性樹脂100質量部に対し、セルロースナノファイバー0.1質量部以上43質量部以下である、紙製バリア材料である。
 また、前記水溶性ガスバリア性樹脂が、カルボキシメチルセルロース、メチルセルロース、カルボキシアルキルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、キトサン、ポリアクリルアミド、ポリアクリル酸、ポリエチレンオキシド、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリメタクリル酸、ポリアミン、ポリビニルピリジン、およびこれらの化合物の塩、ならびにこれらの材料のいずれかの混合物のうち少なくとも1種であることが好ましい。
 さらに、CNFに紫外線(UV)処理を施すことにより、ガスバリア性を向上させることができる。
The present inventors apply an aqueous solution containing cellulose nanofibers (hereinafter sometimes referred to as “CNF”) and a water-soluble gas barrier resin to paper to provide a gas barrier layer, thereby providing a gas barrier layer. The present inventors have found that a paper barrier material having a barrier property can be obtained, and have achieved the present invention. Accordingly, the present invention provides a paper barrier material in which a gas barrier layer containing cellulose nanofibers and a water-soluble gas barrier resin is provided on at least one surface of a paper substrate, and the cellulose nanofibers in the gas barrier layer Is a paper barrier material in which the weight ratio of the water-soluble gas barrier resin to the water-soluble gas barrier resin is 0.1 to 43 parts by mass with respect to 100 parts by mass of the water-soluble gas barrier resin.
In addition, the water-soluble gas barrier resin is carboxymethylcellulose, methylcellulose, carboxyalkylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, chitosan, polyacrylamide, polyacrylic acid, polyethylene oxide, polyvinyl alcohol, and ethylene-vinyl alcohol. It is preferably at least one of a polymer, polymethacrylic acid, polyamine, polyvinylpyridine, salts of these compounds, and a mixture of any of these materials.
Furthermore, gas barrier properties can be improved by subjecting CNF to ultraviolet (UV) treatment.
 本発明によれば、水溶性の塗料としてセルロースナノファイバーと水溶性ガスバリア性樹脂とを含有する塗工液を紙基材上に少量塗工して、ガスバリア層を設けることにより、金属探知器による検査が可能で、使用後に可燃物として処理でき、燃焼時に有害物質が出ず、ヒートシール可能で、かつ、低コストで生産可能な紙製バリア材料を得ることが可能となる。 According to the present invention, by applying a small amount of a coating liquid containing cellulose nanofibers and a water-soluble gas barrier resin as a water-soluble paint on a paper substrate, and providing a gas barrier layer, a metal detector is used. It is possible to obtain a paper barrier material that can be inspected, can be treated as a combustible material after use, does not emit harmful substances during combustion, can be heat-sealed, and can be produced at low cost.
 本発明において、セルロースナノファイバーとは、天然セルロースのミクロフィブリルを利用したナノファイバーであり、従来のセルロース材料に比べて高強度、耐熱性に優れている。本発明において、セルロースナノファイバーは、1本単位のものに限らず通常は、複数本の束で使用されるが、より好ましい形態はシングルミクロフィブリルである。
 セルロースナノファイバーの好ましい大きさは、幅(長さ方向と直交する方向の寸法であり、1本の場合には直径、複数本束の場合には束の径に相当)は0.5~800nm(複数本束にされた場合の幅を含む)であり、より好ましくは幅2~5nmであり、長さは1~5μm程度である。

 本発明のセルロースナノファイバー分散液は、1.0質量%濃度(w/v)におけるB型粘度(60rpm、20℃)が1000mPa・s以下、好ましくは800mPa・s以下、さらに好ましくは500mPa・s以下であり、かつ、0.1質量%濃度(w/v)における光透過率(660nm)が90%以上、好ましくは95%以上であることが好ましい。本発明で使用されるセルロースナノファイバーは、流動性と透明性に優れ、さらに、ガスバリア性および耐熱性にも優れるので、包装材料等の様々な用途に使用することが可能である。
 なお、本発明において、セルロースナノファイバー分散液のB型粘度は、当業者に慣用される通常のB型粘度計を用いて測定することができ、例えば、東機産業社のTV-10型粘度計を用いて、20℃および60rpmの条件で測定することができる。
 本発明のセルロースナノファイバーのカルボキシル基量は、セルロース系原料の絶乾質量に対して、0.5mmol/g以上となることが好ましく、より好ましくは1.0mmol/g~3.0mmol/g、さらに好ましくは1.4mmol/g~3.0mmol/g、とりわけ好ましくは2.0mmol/g~2.5mmol/gである。カルボキシル基量は、酸化反応時間の調整、酸化反応温度の調整、酸化反応時のpHの調整、N-オキシル化合物や臭化物、ヨウ化物、酸化剤の添加量の調整等を行うことにより、所望のカルボキシル基量とすることができる。
 本発明において、酸化されたセルロース系原料に紫外線を照射することは、セルロースナノファイバーの分散液の粘度を低下させることができるため好ましい。酸化されたセルロース系原料に紫外線を照射する場合、酸化されたセルロース系原料の濃度を0.1質量%以上にすることはエネルギー効率の点から好ましく、12質量%以下にすることで紫外線照射時のセルロース系原料の流動性が良好となり、反応効率が高まるため好ましい。したがって、紫外線を照射する場合、酸化されたセルロース系原料の濃度を、0.1~12質量%にすることが好ましく、より好ましくは0.5~5質量%、さらに望ましくは1~5質量%である。
 また、紫外線を照射する際のセルロース系原料の温度は、20℃以上であれば光酸化反応の効率が高まるため好ましく、一方、95℃以下であればセルロース系原料の品質の悪化等の悪影響を及ぼさないため好ましい。したがって、紫外線を照射する際のセルロース系原料の温度は、20~95℃にすることが好ましく、より好ましくは、20~80℃、さらに好ましくは、20~50℃である。
 また、紫外線を照射する際のpHは特に限定はないが、中性領域、例えばpH6.0~8.0程度で処理することがプロセスの簡素化の点から好ましい。
 紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、低粘度化の点から好ましい。なお、太陽光に含まれる紫外線のうち、200nm以下の紫外線は酸素分子や窒素分子によって吸収され、200~280nmの紫外線はオゾン層により防がれるため、通常はほとんど地表に存在しない。
 また、紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は目標とする酸化されたセルロース系原料の品質や、漂白等の後処理等との関係に応じて適宜設定できる。例えば、特に制限されないが、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度、1回あたり0.5~10時間、好ましくは0.5~3時間くらいの長さで、照射することができる。
 本発明において、N-オキシル化合物を用いて酸化されたセルロース系原料に紫外線を照射し、次いで解繊・分散処理することで、そのメカニズムは不明であるが、高濃度であっても流動性と透明性に優れ、且つ高度なガスバリア性を発現するセルロースナノファイバーを得ることができる。
 本発明では、N-オキシル化合物を用いて酸化されたセルロース系原料に紫外線を照射し、次いで解繊・分散処理することで、高濃度であっても流動性と透明性に優れているセルロースナノファイバー分散液を低い消費電力量で得ることができる。その理由は、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に紫外線を照射すると、該原料の表面の水和層または該原料の間隙水に溶存している酸素からオゾン等の酸化力に優れる活性酸素種が生成し、この生成物が酸化されたセルロース系原料を改質することで、次工程での解繊・分散処理における分散液のB型粘度が顕著に低下し、分散液の流動性が向上すると考えられる。また、紫外線照射処理により、透明性に優れたセルロースナノファイバー分散液が得られるとともに、水中での分散性が高まり、塗工後に形成されるガスバリア層がより均一になり、高度なガスバリア性が発現すると考えられる。
In the present invention, the cellulose nanofibers are nanofibers using natural cellulose microfibrils, and are superior in strength and heat resistance compared to conventional cellulose materials. In the present invention, the cellulose nanofiber is not limited to a single unit and is usually used in a bundle of a plurality of pieces, but a more preferable form is a single microfibril.
The preferred size of the cellulose nanofibers is 0.5 to 800 nm in width (the dimension in the direction perpendicular to the length direction, corresponding to the diameter in the case of a single bundle and the diameter of the bundle in the case of a bundle of plural fibers). (Including the width when plural bundles are formed), more preferably 2 to 5 nm in width and about 1 to 5 μm in length.

The cellulose nanofiber dispersion of the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 1.0% by mass (w / v) of 1000 mPa · s or less, preferably 800 mPa · s or less, more preferably 500 mPa · s. The light transmittance (660 nm) at a concentration of 0.1% by mass (w / v) is 90% or more, preferably 95% or more. The cellulose nanofibers used in the present invention are excellent in fluidity and transparency, and further excellent in gas barrier properties and heat resistance, and thus can be used in various applications such as packaging materials.
In the present invention, the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
The amount of carboxyl groups of the cellulose nanofiber of the present invention is preferably 0.5 mmol / g or more, more preferably 1.0 mmol / g to 3.0 mmol / g, based on the absolute dry mass of the cellulose-based raw material. More preferably, it is 1.4 mmol / g to 3.0 mmol / g, and particularly preferably 2.0 mmol / g to 2.5 mmol / g. The amount of carboxyl groups can be adjusted by adjusting the oxidation reaction time, adjusting the oxidation reaction temperature, adjusting the pH during the oxidation reaction, adjusting the amount of N-oxyl compound, bromide, iodide, and oxidizing agent added. It can be the amount of carboxyl groups.
In the present invention, it is preferable to irradiate the oxidized cellulose raw material with ultraviolet rays because the viscosity of the dispersion of cellulose nanofibers can be reduced. When irradiating ultraviolet rays on the oxidized cellulose raw material, it is preferable from the viewpoint of energy efficiency that the concentration of the oxidized cellulose raw material is 0.1% by mass or more. This is preferable because the flowability of the cellulosic raw material is good and the reaction efficiency is increased. Therefore, when irradiating with ultraviolet rays, the concentration of the oxidized cellulose-based raw material is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 5% by mass. It is.
The temperature of the cellulosic raw material when irradiating with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. It is preferable because it does not reach. Therefore, the temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and still more preferably 20 to 50 ° C.
Further, the pH at the time of irradiation with ultraviolet rays is not particularly limited, but it is preferable from the viewpoint of simplification of the process to carry out the treatment in a neutral region, for example, about pH 6.0 to 8.0.
The wavelength of the ultraviolet light is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm are preferable from the viewpoint of reducing the viscosity. Of the ultraviolet rays contained in sunlight, ultraviolet rays having a wavelength of 200 nm or less are absorbed by oxygen molecules and nitrogen molecules, and ultraviolet rays having a wavelength of 200 to 280 nm are usually prevented from being present on the ground surface because they are prevented by the ozone layer.
Further, the ultraviolet irradiation treatment can be repeated a plurality of times. The number of repetitions can be appropriately set according to the target quality of the oxidized cellulosic raw material and the relationship with post-treatment such as bleaching. For example, although not particularly limited, ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm, are applied 1 to 10 times, preferably about 2 to 5 times, 0.5 to 10 hours per time, preferably 0.5 to 3 times. It can be irradiated for as long as an hour.
In the present invention, the mechanism is unclear by irradiating the cellulosic raw material oxidized with the N-oxyl compound with ultraviolet rays, followed by defibration / dispersion treatment. Cellulose nanofibers that are excellent in transparency and that exhibit high gas barrier properties can be obtained.
In the present invention, cellulose nano-materials excellent in fluidity and transparency even at a high concentration are obtained by irradiating ultraviolet rays to cellulose-based raw materials oxidized using an N-oxyl compound, and then performing defibration and dispersion treatment. A fiber dispersion can be obtained with low power consumption. The reason is guessed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsion between carboxyl groups. When the raw material is irradiated with ultraviolet rays, active oxygen species having excellent oxidizing power such as ozone are generated from oxygen dissolved in the hydration layer on the surface of the raw material or pore water of the raw material, and this product is oxidized. By modifying the cellulose-based material thus obtained, it is considered that the B-type viscosity of the dispersion in the defibration / dispersion treatment in the next step is significantly reduced, and the fluidity of the dispersion is improved. In addition, the UV irradiation treatment provides a cellulose nanofiber dispersion with excellent transparency, increases the dispersibility in water, makes the gas barrier layer formed after coating more uniform, and exhibits a high level of gas barrier properties. I think that.
 本発明において、セルロースナノファイバーを他の水溶性ガスバリア性樹脂に添加して紙に塗工すると、ガスバリア性のさらなる向上が期待できる。これはセルロースナノファイバーの持つガスバリア性と、塗液の増粘作用による紙への染み込み防止の双方の効果があると考えられる。また、水溶性ガスバリア性樹脂とセルロースナノファイバーは、それぞれ単独で塗工するよりも混合して塗工することで、ガスバリア材料としての相乗効果が得られる。この作用については明らかではないが、水溶性ガスバリア性樹脂の折りたたみ構造によって生じる隙間に、微細なサイズのセルロースナノファイバーが入り込み、非常に高いガスバリア性が実現するものと思われる。このため、セルロースナノファイバーのサイズが微細であるほど、この効果がより顕著になる。さらなる微細化処理の方法としては、例えば先に述べた紫外線照射処理が挙げられ、セルロースナノファイバーを紫外線処理することにより、ガスバリア性を向上させることができる。この処理をしたCNFを用いることにより、ガスバリア層を薄くすることが可能となる。その向上性は、約50%であり、層厚を半分にすることができる。
 ただし、セルロースナノファイバーを多量に添加した場合には、塗料粘度を増加させるため、撹拌不良を引き起こし、塗工適性を損なうおそれがある。また、バリア材料の柔軟性が損なわれるため、包装用材料として用いる場合に必要となる折り加工適性を有さなくなる。そのため、前記セルロースナノファイバーの好ましい配合量は、水溶性ガスバリア性樹脂100質量部に対して0.1質量部以上43質量部以下とし、さらに好ましくは、25質量部以下である。なお、ガスバリア層として、セルロースナノファイバーと水溶性ガスバリア性樹脂とを含有することにより、紙製バリア材料のガスバリア層暴露表面にヒートシール可能な材料をラミネートする際、紙製バリア材料とヒートシール可能な材料の接着性を向上させることができる。
In the present invention, when cellulose nanofibers are added to other water-soluble gas barrier resins and coated on paper, further improvement in gas barrier properties can be expected. This is considered to have both the gas barrier properties of cellulose nanofibers and the prevention of penetration into paper due to the thickening action of the coating liquid. In addition, the water-soluble gas barrier resin and the cellulose nanofibers can be mixed and applied rather than separately, thereby obtaining a synergistic effect as a gas barrier material. Although it is not clear about this effect | action, it is thought that a very high gas barrier property is implement | achieved by the fine-sized cellulose nanofiber entering into the clearance gap produced by the folding structure of water-soluble gas barrier resin. For this reason, this effect becomes more remarkable, so that the size of a cellulose nanofiber is fine. As a further refinement method, for example, the ultraviolet irradiation treatment described above can be mentioned, and the gas barrier property can be improved by subjecting the cellulose nanofibers to ultraviolet treatment. By using CNF subjected to this treatment, the gas barrier layer can be made thin. The improvement is about 50%, and the layer thickness can be halved.
However, when a large amount of cellulose nanofiber is added, the viscosity of the paint is increased, which may cause poor stirring and impair the coating suitability. Further, since the flexibility of the barrier material is impaired, it does not have the folding processability required when used as a packaging material. Therefore, the preferable compounding quantity of the said cellulose nanofiber shall be 0.1 to 43 mass parts with respect to 100 mass parts of water-soluble gas barrier resin, More preferably, it is 25 mass parts or less. In addition, by containing cellulose nanofiber and water-soluble gas barrier resin as a gas barrier layer, when laminating a heat-sealable material on the gas barrier layer exposed surface of a paper barrier material, heat sealing with the paper barrier material is possible. The adhesion of various materials can be improved.
 水溶性のガスバリア性樹脂とは、カルボキシメチルセルロース、メチルセルロース、カルボキシアルキルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、キトサン、ポリアクリルアミド、ポリアクリル酸、ポリエチレンオキシド、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリメタクリル酸、ポリアミン、ポリビニルピリジン、およびこれらの化合物の塩、ならびにこれらの材料のいずれかであることが好ましく、特に水酸基を持つガスバリア性樹脂であればセルロースナノファイバーとの結合性が高いため、より好ましい。本発明の実施においては、エチレン-ビニルアルコール共重合体またはポリビニルアルコールを用いることで、高いガスバリア性を有するバリア材料を得ることができる。 Water-soluble gas barrier resin is carboxymethylcellulose, methylcellulose, carboxyalkylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, chitosan, polyacrylamide, polyacrylic acid, polyethylene oxide, polyvinyl alcohol, ethylene-vinyl alcohol copolymer Preferably, the polymer, polymethacrylic acid, polyamine, polyvinyl pyridine, and salts of these compounds, and any of these materials are used. Especially, a gas barrier resin having a hydroxyl group has high binding properties to cellulose nanofibers. Therefore, it is more preferable. In the practice of the present invention, a barrier material having high gas barrier properties can be obtained by using an ethylene-vinyl alcohol copolymer or polyvinyl alcohol.
 なお、エチレン-ビニルアルコール共重合樹脂(EVOH)は、エチレンと酢酸ビニル共重合物の加水分解により得られる。ポリビニルアルコールのハイガスバリア性や耐油性、透明性を有するとともに、エチレン成分の耐湿性や溶融押出加工性等の特性を併せ持っている。本発明においては、上述した水溶性のガスバリア性樹脂に対して、少量のセルロースナノファイバーを添加して、水溶性のガスバリア性樹脂を改質することが可能となり、紙製ガスバリア材料のガスバリア特性を向上することができる。 The ethylene-vinyl alcohol copolymer resin (EVOH) is obtained by hydrolysis of ethylene and vinyl acetate copolymer. Polyvinyl alcohol has high gas barrier properties, oil resistance, and transparency, and also has properties such as moisture resistance and melt extrusion processability of ethylene components. In the present invention, it is possible to modify the water-soluble gas barrier resin by adding a small amount of cellulose nanofibers to the above-mentioned water-soluble gas barrier resin, thereby improving the gas barrier characteristics of the paper gas barrier material. Can be improved.
 本発明におけるガスバリア性は、標準温度および標準圧力(STP)で0%の相対湿度(%RH)にて測定したとき、酸素移動速度(OTR)が10cc/m/日未満である。より好ましくは3cc/m/日未満であることが望ましい。ポリビニルアルコール等の水溶性のガスバリア性樹脂は、上記の効果を奏するために1mあたり大量の材料を必要とするが、これに、セルロースナノファイバーを混合した場合に、必要量を低下させることができる。 The gas barrier property in the present invention has an oxygen transfer rate (OTR) of less than 10 cc / m 2 / day when measured at 0% relative humidity (% RH) at standard temperature and pressure (STP). More preferably, it is less than 3 cc / m 2 / day. A water-soluble gas barrier resin such as polyvinyl alcohol requires a large amount of material per 1 m 2 in order to achieve the above-mentioned effects. However, when cellulose nanofiber is mixed with this, the required amount can be reduced. it can.
 本発明において紙基材とは、セルロースを主たる構成成分とする、パルプ繊維が絡み合った集合体であり、包装用紙、板紙、段ボール原紙、ラミネート紙等も含まれる。また、バリア材料に高いガスバリア性を持たせるために、紙基材とガスバリア層の間に、目止め層を設けることも有効である。目止め層としてはクレー等の顔料とバインダー樹脂とを含有する塗工層や皮膜性を有する樹脂からなる塗工層を例示することができる。また、液体や水蒸気へのバリアを提供する防湿層を紙基材と酸素バリア層の間、または酸素バリア層の曝露表面、またはその両方に設けることは、高湿度下でのバリア性の低下抑制に有効である。さらに、ガスバリア層の曝露表面には、ヒートシール可能な材料の層を施用してもよい。本発明の紙製バリア材料は、食品包装材、容器、カップ等に成形、加工することができる。 In the present invention, the paper base is an aggregate in which pulp fibers are intertwined mainly composed of cellulose, and includes wrapping paper, paperboard, cardboard base paper, laminated paper and the like. It is also effective to provide a sealing layer between the paper substrate and the gas barrier layer in order to give the barrier material a high gas barrier property. Examples of the sealing layer include a coating layer containing a pigment such as clay and a binder resin, and a coating layer made of a resin having a film property. In addition, providing a moisture barrier layer that provides a barrier to liquids and water vapor between the paper substrate and the oxygen barrier layer, or the exposed surface of the oxygen barrier layer, or both, suppresses the deterioration of barrier properties under high humidity. It is effective for. Furthermore, a layer of heat sealable material may be applied to the exposed surface of the gas barrier layer. The paper barrier material of the present invention can be formed and processed into food packaging materials, containers, cups and the like.
 本発明において、ガスバリア層はセルロースナノファイバーと水溶性ガスバリア性樹脂とを含有する水性の塗工液を紙基材表面に塗工した後、乾燥して設けられる。セルロースナノファイバーを含有する塗工液を塗工する方法としては、2ロールサイズプレスコーター、ゲートロールコーター、ブレードメタリングコーター、ロッドメタリングコーター、ブレードコーター、エアナイフコーター、ロールコーター、ブラッシュコーター、キスコーター、スクイズコーター、カーテンコーター、ダイコーター、バーコーター、グラビアコーター、ディップコーター等の公知の塗工機を用いることができる。また、乾燥は公知の乾燥機を用いることができる。 In the present invention, the gas barrier layer is provided by applying a water-based coating liquid containing cellulose nanofibers and a water-soluble gas barrier resin to the surface of the paper substrate and then drying it. As a method of coating a coating solution containing cellulose nanofibers, a two-roll size press coater, a gate roll coater, a blade metering coater, a rod metering coater, a blade coater, an air knife coater, a roll coater, a brush coater, and a kiss coater. A known coating machine such as a squeeze coater, a curtain coater, a die coater, a bar coater, a gravure coater, or a dip coater can be used. Moreover, a well-known dryer can be used for drying.
 本発明においては、ガスバリア層中に必要に応じてサイズ剤、耐水化剤、撥水剤、染料等の薬品を、本発明の効果を損なわない程度に混合して使用することができるが、より高いガスバリア性を求める場合は、上記助剤は配合されないことが好ましい。 In the present invention, chemicals such as a sizing agent, water-proofing agent, water repellent, and dye can be mixed and used in the gas barrier layer as needed without impairing the effects of the present invention. When a high gas barrier property is required, it is preferable that the auxiliary agent is not blended.
 以下に本発明の実施例を挙げてより具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例および比較例において%、部とあるものはそれぞれ質量%、質量部を示す。また、塗工量を示す値は断りのない限り乾燥後の固形分質量を示す。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In Examples and Comparative Examples, “%” and “part” indicate mass% and mass part, respectively. Moreover, the value which shows a coating amount shows the solid content mass after drying, unless there is a notice.
[実施例1]
 ポリビニルアルコール系樹脂(商品名エクセバール、クラレ(株)、固形分濃度20%)100部にセルロースナノファイバー(固形分濃度1%)1部を混合し、塗工液を調製した。この塗工液を塗工紙(商品名オーロラコート、157g/m、日本製紙(株)社製)の塗工面上に固形分で1.0g/mとなるようにマイヤーバーを用いてガスバリア層を塗工し、送風乾燥機を用いて乾燥温度105℃で乾燥し、紙製バリア材料を得た。
[Example 1]
One part of cellulose nanofiber (solid content concentration 1%) was mixed with 100 parts of polyvinyl alcohol-based resin (trade name EXEVAL, Kuraray Co., Ltd., solid content concentration 20%) to prepare a coating solution. Using a Mayer bar, this coating solution is applied to the coated surface of coated paper (trade name: Aurora Coat, 157 g / m 2 , manufactured by Nippon Paper Industries Co., Ltd.) at a solid content of 1.0 g / m 2. The gas barrier layer was applied and dried at a drying temperature of 105 ° C. using a blow dryer to obtain a paper barrier material.
[実施例2~9、比較例1~7]
 表1、2に示すように、ガスバリア層の組成に関して、セルロースナノファイバー、ポリビニルアルコール系樹脂、マイカの添加比率、およびガスバリア層の塗工量を変えた以外は、実施例1と同様に紙製バリア材料を得た。
[Examples 2 to 9, Comparative Examples 1 to 7]
As shown in Tables 1 and 2, with respect to the composition of the gas barrier layer, the same as in Example 1, except that the addition ratio of cellulose nanofiber, polyvinyl alcohol resin, mica, and the coating amount of the gas barrier layer was changed. A barrier material was obtained.
<セルロースナノファイバー分散液の製造>
 粉末セルロース(日本製紙ケミカル(株)製、粒径24μm)15g(絶乾)を、TEMPO(SigmaAldrich社)78mg(0.5mmol)と臭化ナトリウム755mg(5mmol)を溶解した水溶液500mlに加え、粉末セルロースが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(有効塩素5%)50mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応した後、遠心操作(6000rpm、30分、20℃)で酸化した粉末セルロースを分離し、十分に水洗することで酸化処理した粉末セルロースを得た。酸化処理した粉末セルロースの2%(w/v)スラリーをミキサーにより12,000rpm、15分処理し、さらに粉末セルローススラリーを超高圧ホモジナイザーにより140MPaの発送圧力で5回処理したところ、透明なゲル状分散液が得られた。得られた2%(w/v)のセルロースナノファイバー分散液をさらに希釈して固形分濃度1%(w/v)のセルロースナノファイバー分散液を得た。なお、得られたセルロースナノファイバーのB型粘度は890(mPa・s)であった。また、原子間力顕微鏡(AFM)の観察より、セルロースナノファイバーの最大繊維径が10nm、数平均繊維径が6nmであった。
<Manufacture of cellulose nanofiber dispersion>
Powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 24 μm) 15 g (absolutely dry) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 755 mg (5 mmol) of sodium bromide were dissolved. Stir until the cellulose is uniformly dispersed. After adding 50 ml of a sodium hypochlorite aqueous solution (effective chlorine 5%) to the reaction system, the pH was adjusted to 10.3 with a 0.5N hydrochloric acid aqueous solution to start the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, oxidized powdered cellulose was separated by centrifugal operation (6000 rpm, 30 minutes, 20 ° C.) and sufficiently washed with water to obtain oxidized powdered cellulose. A 2% (w / v) slurry of oxidized powdered cellulose was treated with a mixer at 12,000 rpm for 15 minutes, and the powdered cellulose slurry was further treated with an ultra-high pressure homogenizer five times at a shipping pressure of 140 MPa to obtain a transparent gel A dispersion was obtained. The obtained 2% (w / v) cellulose nanofiber dispersion was further diluted to obtain a cellulose nanofiber dispersion having a solid concentration of 1% (w / v). In addition, the B type viscosity of the obtained cellulose nanofiber was 890 (mPa · s). Further, from observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofibers was 10 nm, and the number average fiber diameter was 6 nm.
 実施例、比較例でそれぞれ作成した紙製バリア材料を用いて下記の測定を行い、結果を表1、2に示した。試験方法を下記に示す。
<ガスバリア性の測定>
本試験では、ガスバリア性を酸素の透過度で測定している。これは、食品等の包装資材では、食品の酸化防止が課題になることが多いので、ガスバリア性の代表的な評価指標として酸素透過に着目することとした。
 酸素透過度測定は、MOCON社製OX-TRAN2/21を使用し、23℃-0%RH条件で測定した。
The following measurements were performed using the paper barrier materials prepared in Examples and Comparative Examples, and the results are shown in Tables 1 and 2. The test method is shown below.
<Measurement of gas barrier properties>
In this test, gas barrier properties are measured by oxygen permeability. This is because, in packaging materials such as food, oxidation prevention of food often becomes a problem, so attention was paid to oxygen permeation as a representative evaluation index of gas barrier properties.
Oxygen permeability was measured using OX-TRAN 2/21 manufactured by MOCON under the condition of 23 ° C.-0% RH.
<折り曲げ適性評価方法>
それぞれの酸素バリア層用塗工液から、厚さ30μmのフィルムを作製し、これを180度折り曲げた時に割れるか否かを観察した。
評価基準
 ○:フィルムに亀裂が入らない。
 ×:フィルムに亀裂が入る。または、フィルムが断裂する。
<Bending aptitude evaluation method>
A film having a thickness of 30 μm was prepared from each oxygen barrier layer coating solution, and it was observed whether or not the film was broken when it was bent 180 degrees.
Evaluation criteria ○: The film does not crack.
X: The film is cracked. Or the film is torn.
<ラミネート接着性>
 酸素バリア層上に20μmの厚みのポリエチレン層を押し出しラミネートし、ラミネート後のそれぞれのサンプルに対して、粘着テープ剥離試験を行い、剥離の状態を観察した。粘着テープとしてはニチバン社製、15mm幅の透明テープを用い、酸素バリア層上に粘着テープを貼り付け、手で数回擦った後、粘着テープを剥離した。
評価基準
 ◎:ガスバリア層とポリエチレンの密着が良好で、粘着テープ全面において紙基材が破壊されている。
 ○:紙基材が一部破壊されている。
 ×:ガスバリア層とポリエチレンの間で剥離が発生している。
<Laminate adhesion>
A polyethylene layer having a thickness of 20 μm was extruded and laminated on the oxygen barrier layer, and an adhesive tape peeling test was performed on each sample after lamination to observe the peeling state. As a pressure-sensitive adhesive tape, a 15 mm wide transparent tape manufactured by Nichiban Co., Ltd. was used. The pressure-sensitive adhesive tape was attached on the oxygen barrier layer and rubbed several times by hand, and then the pressure-sensitive adhesive tape was peeled off.
Evaluation criteria A: Adhesion between the gas barrier layer and the polyethylene is good, and the paper substrate is destroyed on the entire surface of the adhesive tape.
○: The paper base material is partially destroyed.
X: Peeling has occurred between the gas barrier layer and the polyethylene.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に相当する実施例で得られた紙製バリア材料については、ガスバリア層の塗工量が小さくても酸素バリア性、折り曲げ適性、ラミネート接着性ともに優れていた。
 なお、ポリビニルアルコール塗布量10g/m、15g/mでそれぞれの酸素透過度は8.1、4.2であった。したがって、酸素透過度3.0を満足するには少なくともポリビニルアルコールの塗布量は15g/m以上必要とする。 
The paper barrier materials obtained in the examples corresponding to the present invention were excellent in oxygen barrier properties, bendability and laminate adhesion even when the coating amount of the gas barrier layer was small.
The oxygen permeability was 8.1 and 4.2 at polyvinyl alcohol coating amounts of 10 g / m 2 and 15 g / m 2 , respectively. Therefore, in order to satisfy the oxygen permeability of 3.0, at least the coating amount of polyvinyl alcohol needs to be 15 g / m 2 or more.
 実施例1~9より、ポリビニルアルコール系樹脂100部に対して、1~43部のセルロースナノファイバーを添加することにより、酸素透過量が低減されることがわかる。
 5.0g/mの塗工量である実施例4と比較例2を対比すると、酸素透過度は、0.14:13.2と約100倍の差がある。また、1.0g/mの塗工量である実施例1と比較例1とは酸素透過度が2.8:32と約10倍である。このことは、本発明ではCNFの層厚依存度が10倍程度の改善性を発揮することを示している。
 また、ポリビニルアルコール系樹脂にセルロースナノファイバーを添加することによりラミネート接着性が向上した。
 ただし、比較例4,5のようにセルロースナノファイバーの添加量が多すぎると、折り曲げ適性が悪化した。折り曲げ特性は、折り曲げ加工を伴う容器等の性能に影響する指標である。ヒートシールのような折り曲げ加工の影響を無視しえるような場合は、この指標は必要ない。
 さらに、実施例9に示すようにマイカに代表される層状珪酸等の扁平な顔料を少量添加することで、よりガスバリア性を向上させることができた。
From Examples 1 to 9, it can be seen that by adding 1 to 43 parts of cellulose nanofiber to 100 parts of polyvinyl alcohol resin, the amount of oxygen permeation is reduced.
When Example 4 having a coating amount of 5.0 g / m 2 is compared with Comparative Example 2, the oxygen permeability is 0.14: 13.2, which is about 100 times different. Further, Example 1 and Comparative Example 1 having a coating amount of 1.0 g / m 2 have an oxygen permeability of 2.8: 32, which is about 10 times. This indicates that the present invention exhibits an improvement of about 10 times the dependency of CNF on the layer thickness.
Moreover, the lamination adhesiveness improved by adding a cellulose nanofiber to polyvinyl alcohol-type resin.
However, when there was too much addition amount of a cellulose nanofiber like the comparative examples 4 and 5, bendability deteriorated. The folding characteristic is an index that affects the performance of a container or the like accompanied by a bending process. This indicator is not necessary when the influence of bending such as heat sealing can be ignored.
Furthermore, as shown in Example 9, gas barrier properties could be further improved by adding a small amount of a flat pigment such as layered silicic acid represented by mica.
[実施例10]
 ポリビニルアルコール系樹脂(商品名エクセバール、クラレ(株)、固形分濃度10%)100部にセルロースナノファイバー(固形分濃度1%)10部を混合し、この混合液に対しイソプロピルアルコールを11部の割合で添加して塗工液を調整した。この塗工液をポリエチレン片面ラミネート紙(紙の坪量:200g/m、ポリエチレン厚さ:20μm)のラミネート面上に固形分で0.5g/mとなるようにマイヤーバーを用いて塗工し、送風乾燥機を用いて乾燥温度80℃で乾燥し、紙製バリア材料を得た。
[Example 10]
10 parts of cellulose nanofiber (solid content concentration 1%) is mixed with 100 parts of polyvinyl alcohol resin (trade name EXEVAL, Kuraray Co., Ltd., solid content concentration 10%), and 11 parts of isopropyl alcohol is mixed with this mixed solution. The coating liquid was adjusted by adding at a ratio. This coating solution is applied on a laminated surface of polyethylene single-sided laminated paper (paper basis weight: 200 g / m 2 , polyethylene thickness: 20 μm) using a Meyer bar so that the solid content is 0.5 g / m 2. And dried using a blow dryer at a drying temperature of 80 ° C. to obtain a paper barrier material.
[実施例11]
 実施例1~10と同様に酸化処理した粉末セルロースを得た後、254nmの紫外線を照射する20W低圧水銀ランプで0.5時間処理した。紫外線処理した酸化パルプスラリーを超高圧ホモジナイザー(処理圧140MPa)で10回処理したところ、透明なゲル状のセルロースナノファイバー分散液が得られ、分散液の1%(w/v)でのB型粘度(60rpm、20℃)は700 mPa・sであった。このセルロースナノファイバー分散液を用いた以外は実施例10と同様にして、紙製バリア材料を得た。なお、原子間力顕微鏡(AFM)の観察より、セルロースナノファイバーの最大繊維径が10nm、数平均繊維径が6nmであった。
[実施例12]
 紫外線の波長を380nmにした以外は実施例11と同様にして紙製バリア材料を得た。なお、原子間力顕微鏡(AFM)の観察より、セルロースナノファイバーの最大繊維径が10nm、数平均繊維径が6nm、分散液の1%(w/v)でのB型粘度(60rpm、20℃)は800 mPa・sであった。
[実施例13]
 紫外線の照射時間を6時間にした以外は実施例11と同様にして紙製バリア材料を得た。なお、原子間力顕微鏡(AFM)の観察より、セルロースナノファイバーの最大繊維径が10nm、数平均繊維径が6nm、分散液の1%(w/v)でのB型粘度(60rpm、20℃)は320 mPa・sであった。
[Example 11]
After obtaining powdered cellulose oxidized in the same manner as in Examples 1 to 10, it was treated with a 20 W low-pressure mercury lamp that irradiates 254 nm ultraviolet light for 0.5 hour. Ultraviolet-treated oxidized pulp slurry was treated 10 times with an ultra-high pressure homogenizer (treatment pressure 140 MPa), and a transparent gel-like cellulose nanofiber dispersion was obtained. Type B at 1% (w / v) of the dispersion The viscosity (60 rpm, 20 ° C.) was 700 mPa · s. A paper barrier material was obtained in the same manner as in Example 10 except that this cellulose nanofiber dispersion was used. From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofiber was 10 nm, and the number average fiber diameter was 6 nm.
[Example 12]
A paper barrier material was obtained in the same manner as in Example 11 except that the wavelength of the ultraviolet light was changed to 380 nm. From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofibers is 10 nm, the number average fiber diameter is 6 nm, and the B-type viscosity (60 rpm, 20 ° C.) at 1% (w / v) of the dispersion. ) Was 800 mPa · s.
[Example 13]
A paper barrier material was obtained in the same manner as in Example 11 except that the ultraviolet irradiation time was changed to 6 hours. From observation with an atomic force microscope (AFM), the maximum fiber diameter of the cellulose nanofibers is 10 nm, the number average fiber diameter is 6 nm, and the B-type viscosity (60 rpm, 20 ° C.) at 1% (w / v) of the dispersion. ) Was 320 mPa · s.
[比較例8]
 実施例10を基本とし、PVAとCNFを別々に塗工した紙製バリア材料を作成して試験した。
 ポリビニルアルコール系樹脂(PVA)(商品名エクセバール、クラレ(株)、固形分濃度10%)100部に対してイソプロピルアルコールを10部配合したPVA塗工液(A)を調整した。セルロースナノファイバー(固形分濃度1%)10部に対してイソプロピルアルコールを1部の割合でそれぞれ塗工液(B)を調整した。その後、固形分を0.45g/mとしたポリビニルアルコール系樹脂を含有した塗工液(A)を準備した。固形分を0.05g/mとしたセルロースナノファイバーを含有した塗工液(B)を準備した。(A)(B)の順で別々に塗工した。
[Comparative Example 8]
Based on Example 10, a paper barrier material coated with PVA and CNF separately was prepared and tested.
A PVA coating solution (A) in which 10 parts of isopropyl alcohol was blended with 100 parts of polyvinyl alcohol-based resin (PVA) (trade name EXVAL, Kuraray Co., Ltd., solid content concentration 10%) was prepared. The coating liquid (B) was adjusted at a ratio of 1 part of isopropyl alcohol to 10 parts of cellulose nanofiber (solid content concentration 1%). Then, the coating liquid (A) containing the polyvinyl alcohol-type resin which made solid content 0.45g / m < 2 > was prepared. A coating liquid (B) containing cellulose nanofibers having a solid content of 0.05 g / m 2 was prepared. (A) It coated separately in the order of (B).
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 実施例10と比較例8から、セルロースナノファイバーと水溶性ガスバリア性樹脂は別々に塗工するよりも、混合で塗工することで高いガスバリア性が発現した。またセルロースナノファイバーの製造工程に紫外線の照射を加えた実施例11、13では、照射時間が長くなるほどガスバリア性がさらに向上した。なお、紫外線波長は実施例11の254nmでの処理の方が、実施例12の380nmでの処理よりも効果が高かった。
 実施例13と実施例3を対比すると、酸素透過度は同程度である。これはUV処理した実施例11は、実施例3の約半分のCNF量であるので、UV処理によって2倍以上のガスバリア性を向上させることができることを示している。
 
From Example 10 and Comparative Example 8, the cellulose nanofiber and the water-soluble gas barrier resin exhibited a high gas barrier property by applying them by mixing rather than applying them separately. Further, in Examples 11 and 13 in which ultraviolet ray irradiation was added to the production process of cellulose nanofiber, the gas barrier property was further improved as the irradiation time became longer. In addition, as for the ultraviolet wavelength, the treatment at 254 nm in Example 11 was more effective than the treatment at 380 nm in Example 12.
When Example 13 and Example 3 are compared, the oxygen permeability is comparable. This indicates that the UV-treated Example 11 has about half the amount of CNF compared to Example 3, so that the gas barrier property can be improved by twice or more by the UV treatment.

Claims (6)

  1.  紙基材の少なくとも一方の表面に、セルロースナノファイバーと水溶性ガスバリア性樹脂とを含有するガスバリア層を設けた紙製バリア材料であって、前記ガスバリア層中のセルロースナノファイバーと水溶性ガスバリア性樹脂の含有重量比が水溶性ガスバリア性樹脂100質量部に対し、セルロースナノファイバー0.1質量部以上43質量部以下である、紙製バリア材料。 A paper barrier material in which a gas barrier layer containing cellulose nanofibers and a water-soluble gas barrier resin is provided on at least one surface of a paper substrate, the cellulose nanofibers in the gas barrier layer and the water-soluble gas barrier resin A paper-made barrier material in which the content weight ratio is 0.1 to 43 parts by mass of cellulose nanofibers with respect to 100 parts by mass of the water-soluble gas barrier resin.
  2.  ガスバリア性が、標準温度および標準圧力(STP)で0%の相対湿度(%RH)にて測定したとき、酸素移動速度(OTR)が10cc/m/日未満であることを特徴とする請求項1記載の紙製バリア材料。 The gas barrier property has an oxygen transfer rate (OTR) of less than 10 cc / m 2 / day when measured at 0% relative humidity (% RH) at standard temperature and pressure (STP). Item 2. A paper barrier material according to Item 1.
  3.  ガスバリア性が、3cc/m/日未満であることを特徴とする請求項2記載の紙製バリア材料。 The paper barrier material according to claim 2 , wherein the gas barrier property is less than 3 cc / m 2 / day.
  4.  前記水溶性ガスバリア性樹脂が、カルボキシメチルセルロース、メチルセルロース、カルボキシアルキルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、キトサン、ポリアクリルアミド、ポリアクリル酸、ポリエチレンオキシド、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリメタクリル酸、ポリアミン、ポリビニルピリジン、およびこれらの化合物の塩、ならびにこれらの材料のいずれかの混合物のうち少なくとも1種である、請求項1~3のいずれかに記載の紙製バリア材料。 The water-soluble gas barrier resin is carboxymethylcellulose, methylcellulose, carboxyalkylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, chitosan, polyacrylamide, polyacrylic acid, polyethylene oxide, polyvinyl alcohol, ethylene-vinyl alcohol copolymer. The paper barrier material according to any one of claims 1 to 3, which is at least one of polymethacrylic acid, polyamine, polyvinylpyridine, salts of these compounds, and a mixture of any of these materials.
  5.  ガスバリア層にマイカを添加したことを特徴とする請求項1~4のいずれかに記載の紙製バリア材料。 The paper barrier material according to any one of claims 1 to 4, wherein mica is added to the gas barrier layer.
  6.  前記セルロースナノファイバーが、紫外線照射処理を施されていることを特徴とする請求項1~5のいずれかに記載の紙製バリア材料。  The paper barrier material according to any one of claims 1 to 5, wherein the cellulose nanofiber is subjected to an ultraviolet irradiation treatment.
PCT/JP2010/067118 2009-09-30 2010-09-30 Paper barrier material WO2011040547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011534321A JPWO2011040547A1 (en) 2009-09-30 2010-09-30 Paper barrier material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-228309 2009-09-30
JP2009228309 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040547A1 true WO2011040547A1 (en) 2011-04-07

Family

ID=43826359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067118 WO2011040547A1 (en) 2009-09-30 2010-09-30 Paper barrier material

Country Status (2)

Country Link
JP (1) JPWO2011040547A1 (en)
WO (1) WO2011040547A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043103A1 (en) * 2010-09-28 2012-04-05 日本製紙株式会社 Cellulose nanofiber
JP2012149114A (en) * 2011-01-17 2012-08-09 Toppan Printing Co Ltd Film-forming composition, sheet and packaging material
JP2013163773A (en) * 2012-02-13 2013-08-22 Oji Holdings Corp Method of manufacturing fine fibrous cellulose
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
JP2014077084A (en) * 2012-10-11 2014-05-01 Toppan Printing Co Ltd Non-adsorptive coating agent and laminate having non-adsorption layer
JP2014515439A (en) * 2011-06-03 2014-06-30 オムヤ インターナショナル アーゲー Manufacturing method of coated substrate
JP2014524523A (en) * 2011-08-19 2014-09-22 ストラ エンソ オサケ ユキチュア ユルキネン Method for imparting a barrier to a surface and substrate produced by the method
US20140315009A1 (en) * 2011-12-19 2014-10-23 Sumitomo Bakelite Co., Ltd. Resin composition and method for producing same
WO2014181560A1 (en) * 2013-05-08 2014-11-13 日本製紙株式会社 Barrier paper packaging material
JP2014218580A (en) * 2013-05-08 2014-11-20 凸版印刷株式会社 Coating liquid for forming gas barrier layer and manufacturing method thereof, gas barrier laminate and packaging material
JP2014218579A (en) * 2013-05-08 2014-11-20 凸版印刷株式会社 Coating liquid for forming gas barrier layer and manufacturing method thereof, gas barrier laminate and packaging material
JP2015024539A (en) * 2013-07-25 2015-02-05 凸版印刷株式会社 Laminate, manufacturing method thereof and molding vessel
JP2015227517A (en) * 2014-05-30 2015-12-17 日本製紙株式会社 Barrier packaging material made of paper
JP2016216879A (en) * 2011-06-03 2016-12-22 オムヤ インターナショナル アーゲー Method for producing coated substrates
WO2016207783A1 (en) 2015-06-26 2016-12-29 Stora Enso Oyj Manufacturing method for a film or product comprising an amphiphilic polymer
JP2017057012A (en) * 2015-09-14 2017-03-23 日本製紙株式会社 Paper container
JP2017071783A (en) * 2016-11-15 2017-04-13 凸版印刷株式会社 Manufacturing method of coating liquid for forming gas barrier layer, gas barrier laminate and packaging material
JP2017137497A (en) * 2011-09-22 2017-08-10 凸版印刷株式会社 Film formation composition, laminate, film, sheet base material, packaging material, and manufacturing method of film formation composition
JP2017206708A (en) * 2017-07-03 2017-11-24 凸版印刷株式会社 Coating liquid for forming gas barrier layer, gas barrier laminate and packaging material
JP2017222033A (en) * 2016-06-13 2017-12-21 凸版印刷株式会社 Paper barrier laminate and mold container
US10138599B2 (en) 2014-12-18 2018-11-27 Stora Enso Oyj Process for the production of a coated substance comprising cellulosic fibres
JP2019093692A (en) * 2017-11-28 2019-06-20 凸版印刷株式会社 Gas barrier film
JP2019156864A (en) * 2018-03-07 2019-09-19 第一工業製薬株式会社 Coating agent composition and method for producing the same
JP2020059967A (en) * 2019-12-19 2020-04-16 大王製紙株式会社 Laminated sheet
US10968283B2 (en) 2014-07-28 2021-04-06 Anomera Inc. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced
JP2021137982A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Double-sided laminated paper and paper cup
WO2021261032A1 (en) * 2020-06-23 2021-12-30 日本製紙株式会社 Paper container for oil spice-containing instant food
CN114269660A (en) * 2019-09-30 2022-04-01 京洛株式会社 Packaging bag for microwave oven
EP3733406B1 (en) 2017-10-04 2022-04-06 Nippon Paper Industries Co., Ltd Barrier material
WO2023100924A1 (en) * 2021-12-03 2023-06-08 日本製紙株式会社 Method for producing layered product containing cellulose nanofibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348522A (en) * 2001-05-29 2002-12-04 Toppan Printing Co Ltd Coating agent and laminated material using the same
JP2004115054A (en) * 2002-09-26 2004-04-15 Toppan Printing Co Ltd Drawing-molded paper container and manufacturing method for the same
JP2007216593A (en) * 2006-02-20 2007-08-30 Oji Paper Co Ltd Gas barrier laminate
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
WO2009020239A1 (en) * 2007-08-07 2009-02-12 Kao Corporation Gas barrier material
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163860B2 (en) * 2007-07-30 2013-03-13 株式会社Ihi Substrate transfer device
WO2010116826A1 (en) * 2009-03-30 2010-10-14 日本製紙株式会社 Process for producing cellulose nanofibers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348522A (en) * 2001-05-29 2002-12-04 Toppan Printing Co Ltd Coating agent and laminated material using the same
JP2004115054A (en) * 2002-09-26 2004-04-15 Toppan Printing Co Ltd Drawing-molded paper container and manufacturing method for the same
JP2007216593A (en) * 2006-02-20 2007-08-30 Oji Paper Co Ltd Gas barrier laminate
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
WO2009020239A1 (en) * 2007-08-07 2009-02-12 Kao Corporation Gas barrier material
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded product

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043103A1 (en) * 2010-09-28 2012-04-05 日本製紙株式会社 Cellulose nanofiber
JP2012149114A (en) * 2011-01-17 2012-08-09 Toppan Printing Co Ltd Film-forming composition, sheet and packaging material
JP2016216879A (en) * 2011-06-03 2016-12-22 オムヤ インターナショナル アーゲー Method for producing coated substrates
JP2014515439A (en) * 2011-06-03 2014-06-30 オムヤ インターナショナル アーゲー Manufacturing method of coated substrate
JP2014524523A (en) * 2011-08-19 2014-09-22 ストラ エンソ オサケ ユキチュア ユルキネン Method for imparting a barrier to a surface and substrate produced by the method
JP2017137497A (en) * 2011-09-22 2017-08-10 凸版印刷株式会社 Film formation composition, laminate, film, sheet base material, packaging material, and manufacturing method of film formation composition
US20140315009A1 (en) * 2011-12-19 2014-10-23 Sumitomo Bakelite Co., Ltd. Resin composition and method for producing same
JP2013163773A (en) * 2012-02-13 2013-08-22 Oji Holdings Corp Method of manufacturing fine fibrous cellulose
JP2014055323A (en) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd Metal/cellulose composite fine fiber, method for producing the same, and transparent electrically-conducive film containing the metal/cellulose composite fine fiber
JP2014077084A (en) * 2012-10-11 2014-05-01 Toppan Printing Co Ltd Non-adsorptive coating agent and laminate having non-adsorption layer
JP2014218580A (en) * 2013-05-08 2014-11-20 凸版印刷株式会社 Coating liquid for forming gas barrier layer and manufacturing method thereof, gas barrier laminate and packaging material
WO2014181560A1 (en) * 2013-05-08 2014-11-13 日本製紙株式会社 Barrier paper packaging material
JP2014218579A (en) * 2013-05-08 2014-11-20 凸版印刷株式会社 Coating liquid for forming gas barrier layer and manufacturing method thereof, gas barrier laminate and packaging material
JPWO2014181560A1 (en) * 2013-05-08 2017-02-23 日本製紙株式会社 Paper barrier packaging materials
JP2015024539A (en) * 2013-07-25 2015-02-05 凸版印刷株式会社 Laminate, manufacturing method thereof and molding vessel
JP2015227517A (en) * 2014-05-30 2015-12-17 日本製紙株式会社 Barrier packaging material made of paper
US10968283B2 (en) 2014-07-28 2021-04-06 Anomera Inc. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced
US10138599B2 (en) 2014-12-18 2018-11-27 Stora Enso Oyj Process for the production of a coated substance comprising cellulosic fibres
US10358772B2 (en) 2015-06-26 2019-07-23 Stora Enso Oyj Manufacturing method for a film or product comprising an amphiphilic polymer
CN107709663B (en) * 2015-06-26 2020-05-26 斯道拉恩索公司 Film products or method for producing films comprising amphiphilic polymers
CN107709663A (en) * 2015-06-26 2018-02-16 斯道拉恩索公司 The manufacture method of film product or film including amphipathic nature polyalcohol
JP2018520273A (en) * 2015-06-26 2018-07-26 ストラ エンソ オーワイジェイ Method for producing film or film product containing amphiphilic polymer
AU2016284940B2 (en) * 2015-06-26 2020-02-27 Stora Enso Oyj Manufacturing method for a film or product comprising an amphiphilic polymer
WO2016207783A1 (en) 2015-06-26 2016-12-29 Stora Enso Oyj Manufacturing method for a film or product comprising an amphiphilic polymer
JP2017057012A (en) * 2015-09-14 2017-03-23 日本製紙株式会社 Paper container
JP2017222033A (en) * 2016-06-13 2017-12-21 凸版印刷株式会社 Paper barrier laminate and mold container
JP2017071783A (en) * 2016-11-15 2017-04-13 凸版印刷株式会社 Manufacturing method of coating liquid for forming gas barrier layer, gas barrier laminate and packaging material
JP2017206708A (en) * 2017-07-03 2017-11-24 凸版印刷株式会社 Coating liquid for forming gas barrier layer, gas barrier laminate and packaging material
EP3733406B1 (en) 2017-10-04 2022-04-06 Nippon Paper Industries Co., Ltd Barrier material
JP2019093692A (en) * 2017-11-28 2019-06-20 凸版印刷株式会社 Gas barrier film
JP7069664B2 (en) 2017-11-28 2022-05-18 凸版印刷株式会社 Gas barrier film
JP2019156864A (en) * 2018-03-07 2019-09-19 第一工業製薬株式会社 Coating agent composition and method for producing the same
CN114269660A (en) * 2019-09-30 2022-04-01 京洛株式会社 Packaging bag for microwave oven
CN114269660B (en) * 2019-09-30 2023-12-15 京洛株式会社 Packaging bag for microwave oven
JP2020059967A (en) * 2019-12-19 2020-04-16 大王製紙株式会社 Laminated sheet
JP2021137982A (en) * 2020-03-02 2021-09-16 凸版印刷株式会社 Double-sided laminated paper and paper cup
WO2021261032A1 (en) * 2020-06-23 2021-12-30 日本製紙株式会社 Paper container for oil spice-containing instant food
JP2022002978A (en) * 2020-06-23 2022-01-11 日本製紙株式会社 Paper-made container for oil spice-containing instant food
WO2023100924A1 (en) * 2021-12-03 2023-06-08 日本製紙株式会社 Method for producing layered product containing cellulose nanofibers

Also Published As

Publication number Publication date
JPWO2011040547A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2011040547A1 (en) Paper barrier material
JP5772815B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND MOLDED CONTAINER
JP6520973B2 (en) Composition for film formation, laminate, film, sheet base, packaging material, method for producing composition for film formation
US11027533B2 (en) Method for producing laminated body, laminated body and paper packaging material
EP2897810B1 (en) Coating composition of nano cellulose, its uses and a method for its manufacture
JP2012076231A (en) Paper-made gas barrier material
US20130022827A1 (en) Composition for Forming Film and Film Sheet
JP2012011651A (en) Gas barrier packaging material
KR20130040184A (en) Gas barrier laminate and packaging material
JP2010125814A (en) Laminate
WO2017179740A1 (en) Barrier paper and paper cup
JP6236859B2 (en) Method for producing coating liquid for gas barrier layer formation
JP2014218579A (en) Coating liquid for forming gas barrier layer and manufacturing method thereof, gas barrier laminate and packaging material
JP2011207042A (en) Method of manufacturing gas barrier laminate
JP7382929B2 (en) Packaging materials with barrier properties
JP2011241303A (en) Gas-barrier coating agent and gas-barrier material obtained using the same
JP2017222033A (en) Paper barrier laminate and mold container
JP4846089B2 (en) Paper composite and its production method
JP2017190541A (en) Barrier paper, manufacturing method thereof and paper cup
JP2013071404A (en) Gas barrier packaging material, and method for manufacturing the same
JP2021137983A (en) Paper barrier laminate and paper barrier container
JP6414284B2 (en) Coating liquid for forming gas barrier layer, gas barrier laminate and packaging material
JP6988068B2 (en) Paper barrier laminates and paper barrier containers
Raynaud Development of new barrier materials using microfibrillated cellulose
JP2019177586A (en) Barrier paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534321

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820662

Country of ref document: EP

Kind code of ref document: A1