WO2010116826A1 - Process for producing cellulose nanofibers - Google Patents

Process for producing cellulose nanofibers Download PDF

Info

Publication number
WO2010116826A1
WO2010116826A1 PCT/JP2010/053570 JP2010053570W WO2010116826A1 WO 2010116826 A1 WO2010116826 A1 WO 2010116826A1 JP 2010053570 W JP2010053570 W JP 2010053570W WO 2010116826 A1 WO2010116826 A1 WO 2010116826A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
raw material
treatment
cellulosic
dispersion
Prior art date
Application number
PCT/JP2010/053570
Other languages
French (fr)
Japanese (ja)
Inventor
正一 宮脇
志穂 勝川
裕 阿部
夕子 飯嶋
明 磯貝
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009082377A external-priority patent/JP5426209B2/en
Priority claimed from JP2009082520A external-priority patent/JP5404131B2/en
Priority claimed from JP2009082651A external-priority patent/JP5329279B2/en
Priority claimed from JP2009082604A external-priority patent/JP2010235679A/en
Priority claimed from JP2009129297A external-priority patent/JP5381338B2/en
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2010116826A1 publication Critical patent/WO2010116826A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/34Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising cellulose or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Definitions

  • the present invention relates to a method for producing a cellulose nanofiber dispersion liquid having a lower energy and a higher concentration than conventional materials from a cellulose raw material oxidized with an N-oxyl compound.
  • Non-Patent Document 1 Cellulose-based raw materials in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite When treated, carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils.
  • Cellulosic raw materials into which these carboxyl groups have been introduced are highly viscous and transparent by performing a simple mechanical treatment with a mixer in water. It is known that it can be prepared into an aqueous cellulose nanofiber dispersion (Non-Patent Document 1).
  • Cellulose nanofiber is a new biodegradable water-dispersible material. Since the carboxyl group is introduced into the surface of the cellulose nanofiber by an oxidation reaction, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. In addition, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, the quality can be modified by blending with various water-soluble polymers or by combining with organic / inorganic pigments. it can. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of such characteristics of cellulose nanofibers, it is envisaged to be applied to highly functional packaging materials, transparent organic substrate members, highly functional fibers, separation membranes, regenerative medical materials, and the like. In the future, it is expected to develop new high-functional products that are essential for the formation of a recycling-type safety and security society by making the best use of the characteristics of cellulose nanofibers.
  • the cellulose nanofiber dispersion obtained by oxidizing the above-described method that is, oxidizing the cellulosic raw material with TEMPO and defibrating with a mixer is 0.3 to 0.5% (w / v).
  • the B-type viscosity 60 rpm, 20 ° C.
  • the B-type viscosity has a very high viscosity such as 800 to 4000 mPa ⁇ s, it is not easy to handle, and its application range is actually limited. It was.
  • the dispersion when a cellulose nanofiber dispersion is applied to a substrate to form a film on the substrate, the dispersion cannot be uniformly applied if the viscosity of the dispersion is too high, so the B-type viscosity of the dispersion (60 rpm, 20 ° C.) must be adjusted to about 500 to 3000 mPa ⁇ s, and for this purpose, the concentration of cellulose nanofibers in the dispersion is reduced to a low concentration of about 0.2 to 0.4% (w / v). I had to set it.
  • a low-concentration dispersion when such a low-concentration dispersion is used, there is a problem that the application and drying must be repeated many times until the desired film thickness is achieved, resulting in poor efficiency.
  • the dispersion when the cellulose nanofiber dispersion is mixed with a paint containing a pigment and a binder and applied to paper or the like, the dispersion cannot be uniformly mixed if the viscosity of the dispersion is too high. However, if such a low-concentration dispersion liquid is used, the concentration of the paint becomes dilute, making it difficult to apply the sufficient viscosity necessary for application and increasing the drying load. In addition, there is also a problem that the desired function expected for the coating film such as gloss development, surface strength, and suppression of printing unevenness does not appear because the effective coating film becomes thin by the penetration of the paint into the base paper. .
  • the viscosity of the obtained dispersion becomes very high, causing various problems.
  • the viscosity is too high, the dispersion proceeds only around the stirring blade, so that the dispersion becomes non-uniform and the dispersion becomes low in transparency.
  • the oxidized cellulosic material is defibrated using a homogenizer with higher defibration / dispersion power than the mixer, the cellulosic material will thicken significantly in the initial stage of dispersion and fluidity will deteriorate.
  • the amount of power consumption required sometimes increases significantly, the cellulose nanofiber dispersion liquid adheres to the inside of the apparatus and the dispersion is not sufficiently performed, and operations such as taking out the dispersion liquid from the apparatus are performed.
  • the yield of the dispersion is lowered due to difficulty.
  • an object of the present invention is to provide a method capable of efficiently producing a high-concentration cellulose nanofiber dispersion excellent in fluidity and transparency with low energy.
  • the present inventors have used an oxidizing agent in the presence of (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof.
  • an oxidizing agent in the presence of (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof.
  • the viscosity reduction treatment is a treatment for appropriately cutting the cellulose chain of the oxidized cellulose raw material (shortening fiber) and lowering the viscosity of the raw material, and specifically, an ultraviolet irradiation treatment.
  • hydrolytic treatment with enzymes oxidative degradation treatment with hydrogen peroxide and ozone, and hydrolysis treatment with acid.
  • the cellulose raw material is oxidized in the presence of the N-oxyl compound and bromide, iodide, or a mixture thereof, and the resulting oxidized cellulose raw material is reduced in viscosity and then defibrated. ⁇
  • cellulose nanofiber dispersions that are excellent in fluidity, easy to handle and excellent in transparency even at high concentrations can be efficiently produced with low power consumption. Can do.
  • the cellulose nanofiber dispersion obtained by the present invention is excellent in fluidity even at a high concentration.
  • a paint containing cellulose nanofibers at a high concentration of 1 to 3% (w / v) can be prepared at a low viscosity of 500 to 3000 mPa ⁇ s (B type viscosity, 60 rpm, 20 ° C.).
  • B type viscosity, 60 rpm, 20 ° C. There is an advantage that a film having a thickness of about 5 to 30 ⁇ m can be formed only by coating.
  • the concentration of cellulose nanofiber is 0.2 to 0.4% (w / v).
  • the concentration of cellulose nanofiber is very excellent.
  • a cellulose raw material oxidized by oxidizing a cellulosic raw material in water using an oxidizing agent in the presence of (1) an N-oxyl compound and (2) bromide, iodide or a mixture thereof. It is prepared and subjected to a viscosity reduction treatment before defibration and dispersion treatment.
  • a viscosity reduction treatment before defibration / dispersion treatment power consumption in the defibration / dispersion treatment can be reduced, and cellulose nanofibers can be produced efficiently with low energy. can do.
  • N-oxyl compounds As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction.
  • examples of the N-oxyl compound used in the present invention include substances represented by the following general formula (Formula 1).
  • R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-oxy radical
  • 4-hydroxy-2,2,6,6-tetramethyl-1 A -piperidine-oxy radical hereinafter referred to as 4-hydroxy TEMPO
  • N-oxyl compound represented by any one of the following formulas 2 to 4 that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity.
  • a 4-hydroxy TEMPO derivative is particularly preferable because it is inexpensive and can provide uniform oxidized cellulose.
  • R is a linear or branched carbon chain having 4 or less carbon atoms.
  • an N-oxyl compound represented by the following formula 5, that is, an azaadamantane type nitroxy radical is particularly preferable because it can produce uniform cellulose nanofibers in a short time.
  • R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose raw material into nanofibers.
  • 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol can be used with respect to 1 g of cellulosic raw material.
  • bromide or iodide As the bromide or iodide used in oxidizing the cellulosic raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. For example, 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol can be used for 1 g of cellulosic raw material.
  • the target oxidation reaction such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide
  • Any oxidizing agent can be used as long as it is an oxidizing agent.
  • sodium hypochlorite which is currently most widely used in industrial processes and has low environmental impact, is particularly suitable.
  • the amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol can be used for 1 g of cellulosic raw material.
  • the cellulose-based raw material used in the present invention is not particularly limited, and kraft pulp or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer or a mill, or chemical treatment such as acid hydrolysis.
  • plants such as kenaf, hemp, rice, bacus, and bamboo can also be used.
  • bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost.
  • it is particularly preferable to use powdered cellulose and microcrystalline cellulose powder because a cellulose nanofiber dispersion having a lower viscosity can be produced even at a high concentration.
  • Powdered cellulose is rod-like particles made of microcrystalline cellulose obtained by removing the non-crystalline part of wood pulp by acid hydrolysis and then pulverizing and sieving.
  • the degree of polymerization of cellulose in powdered cellulose is about 100 to 500
  • the degree of crystallinity of powdered cellulose by X-ray diffraction is 70 to 90%
  • the volume average particle size by a laser diffraction type particle size distribution analyzer is preferably 100 ⁇ m. Or less, more preferably 50 ⁇ m or less.
  • the volume average particle diameter is 100 ⁇ m or less, a cellulose nanofiber dispersion excellent in fluidity can be obtained.
  • the powdered cellulose used in the present invention for example, a fixed particle size in the form of a rod shaft produced by a method of purifying and drying an undegraded residue obtained after acid hydrolysis of a selected pulp, pulverizing and sieving.
  • Crystalline cellulose powder having a distribution may be used, KC Flock (registered trademark) (manufactured by Nippon Paper Chemical Co., Ltd.), Theolas (trademark) (manufactured by Asahi Kasei Chemicals), Avicel (registered trademark) (manufactured by FMC), etc.
  • Commercial products may be used.
  • the method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. In addition, since a carboxyl group produces
  • the reaction time in the oxidation reaction can be appropriately set and is not particularly limited, but is, for example, about 0.5 to 4 hours.
  • the viscosity-reducing treatment is performed on the oxidized cellulose raw material obtained by the above oxidation reaction.
  • the viscosity reduction treatment refers to a treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material. Any treatment can be used as long as the viscosity of the cellulosic raw material is lowered.
  • the treatment of irradiating the oxidized cellulosic raw material with ultraviolet rays examples include a process of oxidizing and decomposing the cellulose-based raw material with hydrogen peroxide and ozone, a process of hydrolyzing the oxidized cellulose-based raw material with an acid, and combinations thereof.
  • the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm.
  • ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferable because they can directly act on cellulose and hemicellulose to cause low molecular weight and shorten the fiber.
  • a light source for irradiating ultraviolet rays a light source having a wavelength of 100 to 400 nm can be used.
  • a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, A hydrogen lamp, a metal halide lamp, etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations.
  • a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more.
  • a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
  • the concentration of the oxidized cellulose raw material when irradiated with ultraviolet rays is preferably 0.1% by mass or more because energy efficiency is increased, and if it is 12% by mass or less, the concentration of cellulose raw materials in the ultraviolet irradiation device is preferable. It is preferable because the fluidity is good and the reaction efficiency is increased. Therefore, the range of 0.1 to 12% by mass is preferable. More preferably, it is 0.5 to 5% by mass, and still more preferably 1 to 3% by mass.
  • the temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. This is preferable because there is no fear and there is no possibility that the pressure in the reactor exceeds atmospheric pressure. Therefore, the range of 20 to 95 ° C. is preferable. Within this range, there is also an advantage that there is no need to design a device in consideration of pressure resistance. More preferably, it is 20 to 80 ° C., and further preferably 20 to 50 ° C.
  • the pH at the time of irradiation with ultraviolet rays is not particularly limited. However, in view of simplification of the process, it is preferable to perform the treatment in a neutral region, for example, pH 6.0 to 8.0.
  • the degree of irradiation received by the cellulosic raw material in the ultraviolet irradiation reaction can be arbitrarily set by adjusting the residence time of the cellulosic raw material in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. Also, for example, by adjusting the concentration of the cellulosic material in the irradiation device by diluting with water, or by adjusting the concentration of the cellulosic material by blowing an inert gas such as air or nitrogen into the cellulosic material.
  • the irradiation amount of ultraviolet rays received by the cellulosic material in the irradiation reaction apparatus can be arbitrarily controlled. These conditions such as residence time and concentration can be appropriately set in accordance with the quality (fiber length, cellulose polymerization degree, etc.) of the oxidized cellulose raw material after the target ultraviolet irradiation reaction.
  • the ultraviolet irradiation treatment in the present invention is performed in the presence of an auxiliary such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), photooxidation is performed. Since the efficiency of reaction can be improved more, it is preferable.
  • an auxiliary such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
  • ozone is generated because air is usually present in the gas phase around the light source.
  • the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulosic raw material, so that the outside of the system is removed.
  • ozone can be used as an auxiliary for the photo-oxidation reaction.
  • oxygen supplied to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can be used as an auxiliary agent for the photooxidation reaction.
  • the ultraviolet irradiation treatment can be repeated a plurality of times.
  • the number of repetitions can be appropriately set according to the relationship with the target quality of the oxidized cellulosic raw material and the post-treatment such as bleaching.
  • ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm are irradiated for 1 to 10 times, preferably about 2 to 5 times, for a length of about 0.5 to 3 hours per time. be able to.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by irradiation with ultraviolet rays is presumed as follows.
  • a carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups.
  • active oxygen species having excellent oxidizing power such as ozone are generated from oxygen dissolved in the hydrated layer on the surface of the raw material or pore water of the raw material, and the cellulose chain is efficiently formed. It is considered that the oxidative decomposition eventually promotes shortening of the fiber of the cellulosic material and lowers the viscosity of the cellulosic material.
  • cellulase that is a cellulose degrading enzyme or hemicellulase that is a degrading enzyme of hemicellulose is added to the oxidized cellulose raw material to hydrolyze the cellulose chain.
  • hemicellulase for example, xylanase or mannase
  • Cellulase or hemicellulase-producing filamentous fungi, bacteria, actinomycetes, basidiomycetes, or genetic engineering such as genetic recombination or cell fusion were used.
  • a thing can be used individually or in mixture of 2 or more types.
  • Commercial products can also be used.
  • Examples of commercially available cellulases include Novozymes 476 from Novozymes Japan, Cellulase AP3 from Amano Enzyme, Cellulase Onozuka RS from Yakult Pharmaceutical Co., Ltd., Optimase CX40L from Genencor Kyowa Co., Ltd. Cellulase XL-522 manufactured by Chemtex, Enchiron CM manufactured by Nitto Kasei Kogyo Co., Ltd., etc. can be used.
  • hemicellulases for example, Pulpzyme manufactured by Novozymes Japan, Hemicellulase Amano 90 manufactured by Amano Enzyme, and Sumiteam X manufactured by Shin Nippon Chemical Industry Co., Ltd. can be used.
  • the amount of the enzyme added is 0.001% by mass or more with respect to the absolutely dry cellulosic raw material, it is sufficient to cause the desired enzyme reaction from the viewpoint of treatment time and efficiency, and 10% by mass.
  • the following is preferable because excessive hydrolysis of cellulose can be suppressed and a decrease in the yield of cellulose nanofibers can be prevented. Therefore, the addition amount of the enzyme is preferably 0.001 to 10% by mass with respect to the absolutely dry cellulosic material. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass.
  • the “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
  • the hydrolysis treatment with an enzyme is performed at pH 4 to 10, preferably pH 5 to 9, more preferably pH 6 to 8, temperature 40 to 70 ° C., preferably 45 to 65 ° C., more preferably 50 to 60 ° C.
  • the reaction time is preferably 0.5 to 24 hours, preferably 1 to 10 hours, and more preferably 2 to 6 hours from the viewpoint of enzyme reaction efficiency.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by enzyme treatment is presumed as follows.
  • a carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups.
  • an enzyme is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, the shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
  • ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material.
  • the addition amount (mass) of ozone in the present invention is preferably 0.1 to 3 times the absolute dry mass of the cellulosic material. If the amount of ozone added is at least 0.1 times the absolute dry mass of the cellulosic material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for the defibration / dispersion treatment in the next step.
  • the amount of ozone added is more preferably 0.3 to 2.5 times, more preferably 0.5 to 1.5 times the absolute dry mass of the cellulosic material.
  • the addition amount (mass) of hydrogen peroxide is preferably 0.001 to 1.5 times the absolute dry mass of the cellulosic material.
  • hydrogen peroxide is used in an amount of 0.001 times or more of the addition amount of the cellulosic material, a synergistic effect between ozone and hydrogen peroxide is exhibited.
  • the amount of hydrogen peroxide added is more preferably 0.1 to 1.0 times the absolute dry mass of the cellulosic material.
  • the oxidative decomposition treatment with ozone and hydrogen peroxide is pH 2 to 12, preferably pH 4 to 10, more preferably pH 6 to 8, and temperature is 10 to 90 ° C., preferably 20 to 70 ° C., more preferably 30. From the viewpoint of oxidative decomposition reaction efficiency, it is preferable to carry out the reaction at -50 ° C. for 1-20 hours, preferably 2-10 hours, more preferably 3-6 hours.
  • a device for performing treatment with ozone and hydrogen peroxide a device commonly used by those skilled in the art can be used.
  • a reactor can be used.
  • ozone and hydrogen peroxide remaining in the aqueous solution can effectively work in the defibration / dispersion treatment in the next step, and can further promote the lowering of the viscosity of the cellulose nanofiber dispersion. .
  • the acid used is sulfuric acid, hydrochloric acid, nitric acid, or phosphorus. It is preferred to use a mineral acid such as an acid.
  • the conditions for the acid hydrolysis treatment can be set as appropriate as long as the acid acts on the amorphous part of the cellulose, and are not particularly limited.
  • the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulosic material.
  • the amount of acid added is 0.01% by mass or more, hydrolysis of cellulose proceeds and the fibrillation / dispersion efficiency of the cellulose-based raw material in the next step is improved, and preferably 0.5% by mass or less.
  • the pH of the reaction solution during acid hydrolysis is 2.0 to 4.0, preferably 2.0 or more and less than 3.0.
  • the acid hydrolysis treatment is preferably performed at a temperature of 70 to 120 ° C. for 1 to 10 hours from the viewpoint of acid hydrolysis efficiency.
  • an alkali such as sodium hydroxide from the viewpoint of the efficiency of the subsequent defibration / dispersion treatment.
  • the reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by the acid hydrolysis treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the electric repulsion between carboxyl groups. Then, when an acid is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
  • N-oxyl compound removal treatment In the present invention, if necessary, from an oxidized cellulose raw material between the oxidation treatment and the viscosity reduction treatment of the cellulose raw material, or between the viscosity reduction treatment and the defibration / dispersion treatment, A treatment for removing the N-oxyl compound used for the oxidation of the acid may be performed. Any method may be used for the removal treatment of the N-oxyl compound.
  • the oxidized cellulose raw material is heated to a temperature of 50 to 120 ° C. or less under the condition of pH 3 to 10, it is washed with cellulose. This is preferable because the N-oxyl compound can be efficiently removed without reducing the yield of the system raw material.
  • a cellulosic raw material in the form of an aqueous dispersion having a pulp concentration of 0.1 to 50% by mass, more preferably The pulp concentration is 1 to 30% by mass, more preferably 2 to 20% by mass.
  • the pH of the aqueous dispersion of the oxidized cellulose raw material is adjusted to pH 3 to 10, preferably pH 3 to 9, and most preferably pH 3 to 8.
  • the kind of acid or alkali used for adjusting the pH is not particularly limited, and may be an inorganic compound or an organic compound.
  • hydrochloric acid or sulfuric acid can be used as the acid, and an aqueous sodium hydroxide solution can be used as the alkali.
  • the oxidized cellulose raw material is at a temperature of 50 ° C. to 120 ° C., preferably 70 ° C. to less than 100 ° C., more preferably 70 ° C. to 90 ° C. It is preferable to heat it.
  • the heating temperature is less than 50 ° C.
  • the removal rate of the N-oxyl compound is remarkably reduced, and when heated to a temperature higher than 120 ° C., the cellulose is significantly decomposed and solubilized. Since the yield is significantly reduced, it is not preferable.
  • the temperature during heating is less than 100 ° C., it is not necessary to use a pressure-resistant container during the heat treatment, which is advantageous from the viewpoint of equipment cost.
  • the pressure at the time of heating is not particularly limited, and it may be under atmospheric pressure or under pressure.
  • the heating time can be appropriately set in the range of about 10 minutes to 10 hours, preferably about 30 minutes to 6 hours, and most preferably about 1 to 5 hours, depending on the pH and temperature.
  • the N-oxyl compound remaining in the raw material can be sufficiently removed by thoroughly washing the oxidized cellulose raw material treated at the above specific pH and temperature.
  • the cellulose nanofiber dispersion or a film prepared therefrom is used for the purpose of a cosmetic thickener or food packaging, TEMPO and its derivatives whose toxicity to the environment and human body has not yet been clarified. It is highly preferable to sufficiently remove
  • the oxidized cellulose raw material is subjected to a viscosity reduction treatment (and N-oxyl compound removal treatment as necessary), and then subjected to a fibrillation / dispersion treatment.
  • a viscosity reduction treatment and N-oxyl compound removal treatment as necessary
  • fibrillation / dispersion treatment examples include high-speed rotary type, colloid mill type, high pressure type, roll mill type, ultrasonic type, etc., but cellulose nanofiber dispersion with excellent transparency and fluidity
  • the cellulose nanofibers produced by the present invention are cellulose single microfibrils having a width of 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • “to form a nanofiber” means that a cellulosic raw material is processed into cellulose nanofiber which is a single microfibril of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 ⁇ m.
  • the cellulose nanofiber dispersion obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 1.0% by mass (w / v) of 1000 mPa ⁇ s or less, preferably 800 mPa ⁇ s or less, more preferably It is 500 mPa ⁇ s or less, and the light transmittance (660 nm) at a concentration of 0.1% by mass (w / v) is 90% or more, preferably 95% or more.
  • Cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and are also excellent in barrier properties and heat resistance, and thus can be used for various applications such as packaging materials.
  • the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
  • the light transmittance of the cellulose nanofiber dispersion can be measured with an ultraviolet / visible spectrophotometer.
  • the B-type viscosity of the dispersion in the defibration / dispersion treatment in the next step is significantly reduced by shortening the fiber of the cellulose-based raw material oxidized using the N-oxyl compound to reduce the viscosity.
  • the fluidity of the dispersion can be significantly improved.
  • distribution can be reduced significantly.
  • the cellulose nanofiber dispersion liquid excellent in transparency can be prepared by shortening a cellulose raw material.
  • the B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.) and 0.1% ( The w / v) cellulose nanofiber dispersion transparency (660 nm fluorescence transmittance) was measured using a UV-VIS spectrophotometer UV-265FS (Shimadzu Corporation), and the power consumption required for defibration / dispersion treatment was determined by (power during processing) ⁇ (processing time) / (sample amount processed). The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays having a wavelength range of 260 to 400 nm and having a main peak at 310 nm were irradiated using a 20 W low-pressure mercury lamp. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays having a wavelength range of 340 to 400 nm and having a main peak at 360 nm were irradiated using a 20 W low-pressure mercury lamp. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was changed to 30 MPa. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 5 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 6 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device was used instead of the ultrahigh pressure homogenizer.
  • the results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that 1% (w / v) of hydrogen peroxide was added to the oxidized pulp during UV irradiation. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 1 except that a 20 W low-pressure ultraviolet lamp that simultaneously irradiates ultraviolet rays of 254 nm and 185 nm was used. The results are shown in Table 1.
  • Example 1 A nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays were not irradiated (that is, the viscosity was not reduced). The results are shown in Table 1.
  • Example 2 Nanofibers as in Example 1 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device without using a low viscosity treatment was used instead of the ultra-high pressure homogenizer. A dispersion was obtained. The results are shown in Table 1.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was changed to 30 MPa. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 15 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 16 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that a high shear mixer (circumferential speed: 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device was used instead of the ultrahigh pressure homogenizer.
  • the results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 13 except that cellulase AP3 (manufactured by Amano Enzyme) was used as the cellulolytic enzyme. The results are shown in Table 2.
  • a nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 30 MPa. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 22 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 24 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 25 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 ⁇ m) was used as the cellulose-based material. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 22 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotary blade was used as a dispersing device. The results are shown in Table 3.
  • the ozone concentration is 10 g / L (corresponding to 1.0 times the absolute dry mass of the cellulosic material), and the hydrogen peroxide concentration is 3 g / L (corresponding to 0.3 times the absolute dry mass of the cellulosic material).
  • the nanofiber dispersion was obtained in the same manner as in Example 22 except that it was added so that The results are shown in Table 3.
  • Example 3 A nanofiber dispersion was obtained in the same manner as in Example 22 except that treatment with hydrogen peroxide alone was performed. The results are shown in Table 3.
  • Example 4 A nanofiber dispersion was obtained in the same manner as in Example 22 except that treatment with ozone alone was performed. The results are shown in Table 3.
  • a nanofiber dispersion was obtained in the same manner as in Example 31 except that the amount of hydrochloric acid added was 0.3% by mass with respect to the absolute dry mass of the pulp, and acid hydrolysis treatment was performed at pH 2.4. The results are shown in Table 4.
  • Comparative Example 5 The concentration of the 1% (w / v) cellulose nanofiber dispersion produced in Comparative Example 1 was adjusted to have a B-type viscosity of 600 mPa ⁇ s (60 rpm, 20 ° C.). The cellulose nanofiber concentration at this time was 0.4% (w / v).
  • This dispersion was applied to one side of a polyethylene terephthalate film (thickness 20 ⁇ m) with a bar for hand coating (bar No. 16) and dried at 50 ° C. to form a film. The film thickness was about 2.0 ⁇ m. In order to form a 5.9 ⁇ m film having the same thickness as the film obtained using the cellulose nanofiber dispersion liquid of Example 1, it was necessary to repeat coating and drying at least twice.
  • the difference between the nitrogen content of the oxidized cellulosic raw material and the nitrogen content of the bleached unbeaten sulfite pulp that is the raw pulp is considered to be based on the nitrogen content of the N-oxyl compound (TEMPO) used in the oxidation reaction
  • TEMPO N-oxyl compound
  • 0.2 g (absolutely dry) of the oxidized cellulose raw material was dispersed in 25 ml of ultrapure water, and the pH was adjusted to 3.5 with a 0.5N hydrochloric acid aqueous solution. After heating this at 85 ° C. for 2 hours, the cellulosic material was filtered off with a glass filter and washed thoroughly with water to remove residual N-oxyl compound (TEMPO) in the cellulosic material. After the obtained cellulose raw material was dried at 70 ° C., the amount of nitrogen in the cellulose raw material was measured and found to be 23 ppm.
  • TEMPO N-oxyl compound
  • the amount of nitrogen derived from TEMPO that existed before the removal treatment of the N-oxyl compound was 11 ppm. Therefore, the above treatment can remove 82% of TEMPO remaining in the oxidized cellulose raw material. I understand that.
  • the total organic carbon content in the filtrate obtained by filtering the pulp after the heating was measured using a total organic carbon meter (Shimadzu Corporation, TOC-V). .
  • Table 6 shows the results of the residual TEMPO-derived nitrogen amount (ppm), the residual TEMPO removal rate (%), and the total organic carbon amount (ppm) in the filtrate.
  • Example 6 shows the results of the residual TEMPO-derived nitrogen amount (ppm), the residual TEMPO removal rate (%), and the total organic carbon amount (ppm) in the filtrate, measured in the same manner as in Example 34.
  • Heating was performed in the same manner as in Example 34 except that the pH was adjusted to 11.9 using a 0.5N aqueous sodium hydroxide solution. The results are shown in Table 6.
  • Heating was performed in the same manner as in Example 34 except that the temperature was 50 ° C. and the time was 4 hours. The results are shown in Table 6.
  • Heating was performed in the same manner as in Example 34 except that the temperature was 120 ° C. and the time was 30 minutes. The results are shown in Table 6.
  • Heating was performed in the same manner as in Example 34 except that the temperature was 40 ° C. and the time was 6 hours. The results are shown in Table 6.
  • Heating was performed in the same manner as in Example 34 except that the temperature was 130 ° C. and the time was 10 minutes. The results are shown in Table 6.
  • Example 34 Heating was carried out in the same manner as in Example 34, except that an oxidized cellulose material obtained by ultraviolet treatment obtained by the method described in Example 1 was used.
  • the amount of nitrogen in the cellulosic material after the heat treatment (after removal of TEMPO) was 21 ppm.
  • TEMPO removal treatment TEMPO remaining in the oxidized cellulosic material could be removed 100%. The results are shown in Table 6.
  • Heating was performed in the same manner as in Example 34 except that the cellulase-treated oxidized cellulose material obtained by the method described in Example 13 was used.
  • the amount of nitrogen in the cellulosic material after the heat treatment was 23 ppm.
  • Example 44 Heating was performed in the same manner as in Example 34 except that the oxidized cellulose raw material treated with ozone and hydrogen peroxide obtained by the method described in Example 22 was used. The results obtained by the method described in Example 44 are shown in Table 6.
  • Example 44 Heating was performed in the same manner as in Example 34 except that the acid-hydrolyzed oxidized cellulose material obtained by the method described in Example 31 was used. The results obtained by the method described in Example 44 are shown in Table 6.
  • Example 43 After neutralizing the TEMPO-removed low-viscosity oxidized cellulose-based material obtained in Example 43 with alkali, it was treated 10 times at a pressure of 140 MPa using an ultra-high pressure homogenizer, and a transparent gel dispersion was used. A cellulose nanofiber dispersion was obtained. The transparency of the obtained cellulose nanofiber dispersion, the B-type viscosity, and the power consumption required for the fibrillation / dispersion treatment were determined by the method described in Example 1. The results are shown in Table 7.
  • a dispersion of cellulose nanofibers which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43, except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 44 was used. The results are shown in Table 7.
  • a dispersion of cellulose nanofibers which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43 except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 45 was used. The results are shown in Table 7.
  • a dispersion of cellulose nanofibers which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43 except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 46 was used. The results are shown in Table 7.

Abstract

A cellulosic raw material is oxidized with an oxidizing agent in water in the presence of (1) an N-oxyl compound and (2) a bromide, an iodide, or a mixture thereof to prepare an oxidized cellulosic raw material, and the oxidized material is subjected to a viscosity reduction treatment and then to a fibrillation/dispersion treatment, thereby efficiently producing, with low energy, a high-concentration cellulose nanofiber dispersion having excellent flowability and transparency. Examples of the viscosity reduction treatment include ultraviolet irradiation, hydrolysis with cellulase and/or hemicellulase, oxidative decomposition with ozone and hydrogen peroxide, hydrolysis with an acid, and combinations of these. It is preferred to remove the N-oxyl compound from the oxidized cellulosic raw material by heating the oxidized cellulosic raw material to 50-120ºC at a pH of 3-10 and washing the resultant material with water.

Description

セルロースナノファイバーの製造方法Method for producing cellulose nanofiber
 本発明は、N-オキシル化合物で酸化したセルロース系原料から、従来よりも低エネルギーで高濃度のセルロースナノファイバー分散液を製造する方法に関する。 The present invention relates to a method for producing a cellulose nanofiber dispersion liquid having a lower energy and a higher concentration than conventional materials from a cellulose raw material oxidized with an N-oxyl compound.
 セルロース系原料を触媒量の2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができ、このカルボキシル基を導入したセルロース系原料は、水中でミキサーなどの簡単な機械処理を行なうことにより、高粘度で透明なセルロースナノファイバー水分散液へと調製することができることが知られている(非特許文献1)。 Cellulose-based raw materials in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite When treated, carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils. Cellulosic raw materials into which these carboxyl groups have been introduced are highly viscous and transparent by performing a simple mechanical treatment with a mixer in water. It is known that it can be prepared into an aqueous cellulose nanofiber dispersion (Non-Patent Document 1).
 セルロースナノファイバーは、生分解性のある水分散型新規素材である。セルロースナノファイバーの表面には酸化反応によりカルボキシル基が導入されているため、セルロースナノファイバーを、カルボキシル基を基点として、自由に改質することができる。また、上記の方法により得られたセルロースナノファイバーは、分散液の形態であるため、各種水溶性ポリマーとブレンドしたり、或いは有機・無機系顔料と複合化することで品質の改変を図ることもできる。さらに、セルロースナノファイバーをシート化したり繊維化することも可能である。セルロースナノファイバーのこのような特性を活かし、高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料などに応用することが想定されている。今後、セルロースナノファイバーの特徴を最大限活用することで循環型の安全・安心社会形成に不可欠な新規高機能性商品の開発が期待されている。 Cellulose nanofiber is a new biodegradable water-dispersible material. Since the carboxyl group is introduced into the surface of the cellulose nanofiber by an oxidation reaction, the cellulose nanofiber can be freely modified with the carboxyl group as a base point. In addition, since the cellulose nanofibers obtained by the above method are in the form of a dispersion, the quality can be modified by blending with various water-soluble polymers or by combining with organic / inorganic pigments. it can. Furthermore, cellulose nanofibers can be made into sheets or fibers. Taking advantage of such characteristics of cellulose nanofibers, it is envisaged to be applied to highly functional packaging materials, transparent organic substrate members, highly functional fibers, separation membranes, regenerative medical materials, and the like. In the future, it is expected to develop new high-functional products that are essential for the formation of a recycling-type safety and security society by making the best use of the characteristics of cellulose nanofibers.
 しかしながら、上記の方法、すなわち、セルロース系原料をTEMPOを用いて酸化してミキサーで解繊することにより得られたセルロースナノファイバー分散液は、0.3~0.5%(w/v)といった程度の低い濃度でもB型粘度(60rpm、20℃)が800~4000mPa・s程度というように、非常に高い粘度を有しており、取り扱いが容易ではなく、その応用範囲は実際には限られていた。例えば、セルロースナノファイバー分散液を基材に塗布して基材上にフィルムを形成させる場合、分散液の粘度が高すぎると均質に塗布することができないため、分散液のB型粘度(60rpm、20℃)を500~3000mPa・s程度に調整しなければならず、そのためには、分散液中のセルロースナノファイバーの濃度を0.2~0.4%(w/v)程度の低い濃度に設定せざるを得なかった。しかしながら、そのような低濃度の分散液を用いる場合には、所望のフィルム厚みが達成されるまで何度も塗布と乾燥とを繰り返し実施せざるを得ず、効率が悪いという問題があった。 However, the cellulose nanofiber dispersion obtained by oxidizing the above-described method, that is, oxidizing the cellulosic raw material with TEMPO and defibrating with a mixer is 0.3 to 0.5% (w / v). Even at a low concentration, the B-type viscosity (60 rpm, 20 ° C.) has a very high viscosity such as 800 to 4000 mPa · s, it is not easy to handle, and its application range is actually limited. It was. For example, when a cellulose nanofiber dispersion is applied to a substrate to form a film on the substrate, the dispersion cannot be uniformly applied if the viscosity of the dispersion is too high, so the B-type viscosity of the dispersion (60 rpm, 20 ° C.) must be adjusted to about 500 to 3000 mPa · s, and for this purpose, the concentration of cellulose nanofibers in the dispersion is reduced to a low concentration of about 0.2 to 0.4% (w / v). I had to set it. However, when such a low-concentration dispersion is used, there is a problem that the application and drying must be repeated many times until the desired film thickness is achieved, resulting in poor efficiency.
 また、セルロースナノファイバー分散液を顔料及びバインダーを含む塗料に混ぜて紙などに塗布する場合、分散液の粘度が高すぎると塗料中に均一に混合させることができないため、分散液の濃度を低くして低粘度化させなければならないが、このような低濃度の分散液を用いると塗料の濃度が希薄となり、塗布に必要な十分な粘性が確保できないため塗布し難くなったり、乾燥負荷が増大したり、また、塗料が原紙に浸透することにより有効塗膜が薄くなって光沢発現性や表面強度、印刷むらの抑制などの塗膜に期待される所望の機能が発現しないという問題もあった。 In addition, when the cellulose nanofiber dispersion is mixed with a paint containing a pigment and a binder and applied to paper or the like, the dispersion cannot be uniformly mixed if the viscosity of the dispersion is too high. However, if such a low-concentration dispersion liquid is used, the concentration of the paint becomes dilute, making it difficult to apply the sufficient viscosity necessary for application and increasing the drying load. In addition, there is also a problem that the desired function expected for the coating film such as gloss development, surface strength, and suppression of printing unevenness does not appear because the effective coating film becomes thin by the penetration of the paint into the base paper. .
 このように、TEMPOを用いて酸化して得られたセルロース系原料をミキサーを用いて解繊処理する従来の方法では、得られる分散液の粘度が非常に高くなり、様々な問題を生じていた。また、粘度が高すぎると、攪拌羽周辺のみで分散が進行するため、分散が不均一となり、透明性の低い分散液となるという問題もあった。 Thus, in the conventional method in which the cellulose-based raw material obtained by oxidation using TEMPO is defibrated using a mixer, the viscosity of the obtained dispersion becomes very high, causing various problems. . Further, when the viscosity is too high, the dispersion proceeds only around the stirring blade, so that the dispersion becomes non-uniform and the dispersion becomes low in transparency.
 また、酸化されたセルロース系原料を、ミキサーよりも解繊・分散力の高いホモジナイザーを用いて解繊処理すると、分散初期にセルロース系原料が顕著に増粘して流動性が悪化し、分散処理時に要する消費電力量が大幅に増大するという問題があり、また、装置内部にセルロースナノファイバー分散液が付着して分散が十分に行なわれなくなったり、また、装置から分散液を取り出すなどの操作が困難になって分散液の歩留りが低下するという問題もあった。 In addition, if the oxidized cellulosic material is defibrated using a homogenizer with higher defibration / dispersion power than the mixer, the cellulosic material will thicken significantly in the initial stage of dispersion and fluidity will deteriorate. There is a problem that the amount of power consumption required sometimes increases significantly, the cellulose nanofiber dispersion liquid adheres to the inside of the apparatus and the dispersion is not sufficiently performed, and operations such as taking out the dispersion liquid from the apparatus are performed. There is also a problem that the yield of the dispersion is lowered due to difficulty.
 以上の課題に鑑み、本発明は、流動性と透明性に優れた高濃度のセルロースナノファイバー分散液を低エネルギーで効率良く製造できる方法を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a method capable of efficiently producing a high-concentration cellulose nanofiber dispersion excellent in fluidity and transparency with low energy.
 本発明者らは、かかる従来技術の問題を解決するために鋭意検討した結果、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にてセルロース系原料を酸化して酸化されたセルロース系原料を調製し、該酸化されたセルロース系原料を解繊・分散処理に付す前に、低粘度化処理に付すことにより、1~3%(w/v)くらいの高濃度であっても流動性と透明性とに優れているセルロースナノファイバー分散液を効率良く製造できることを見出し、本発明を完成するに至った。ここで、低粘度化処理とは、酸化されたセルロース系原料のセルロース鎖を適度に切断し(短繊維化)、原料の低粘度化を行なう処理であり、具体的には、紫外線の照射処理、酵素による加水分解処理、過酸化水素及びオゾンによる酸化分解処理、並びに酸による加水分解処理が挙げられる。 As a result of diligent studies to solve the problems of the prior art, the present inventors have used an oxidizing agent in the presence of (1) N-oxyl compound and (2) bromide, iodide or a mixture thereof. By oxidizing the cellulose raw material in water to prepare an oxidized cellulose raw material, and subjecting the oxidized cellulose raw material to a viscosity reduction treatment before subjecting to a defibration / dispersion treatment, 1 to 3 It has been found that a cellulose nanofiber dispersion excellent in fluidity and transparency can be efficiently produced even at a high concentration of about% (w / v), and the present invention has been completed. Here, the viscosity reduction treatment is a treatment for appropriately cutting the cellulose chain of the oxidized cellulose raw material (shortening fiber) and lowering the viscosity of the raw material, and specifically, an ultraviolet irradiation treatment. And hydrolytic treatment with enzymes, oxidative degradation treatment with hydrogen peroxide and ozone, and hydrolysis treatment with acid.
 本発明によれば、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物との存在下でセルロース系原料を酸化し、得られた酸化されたセルロース系原料を低粘度化してから、解繊・分散処理することにより、高濃度であっても流動性に優れていて取り扱いがしやすく、かつ透明性にも優れているセルロースナノファイバーの分散液を低い消費電力量で効率的に製造することができる。本発明により得られたセルロースナノファイバー分散液は、高濃度であっても流動性に優れているため、例えば、セルロースナノファイバーを基材に塗布して基材上にフィルムを形成させる際に、1~3%(w/v)といった高濃度のセルロースナノファイバーを含有する塗料を500~3000mPa・s(B型粘度、60rpm、20℃)といった低い粘度で調製することができ、塗料を1回塗布するだけで5~30μm程度の厚さを有するフィルムを形成できるといった利点がある。従来は、500~3000mPa・s(B型粘度、60rpm、20℃)程度の粘度を有する塗料を調製するためには、セルロースナノファイバーの濃度を0.2~0.4%(w/v)といった低い濃度に設定せざるを得ず、5~30μm程度の厚さを有するフィルムを作成するには、塗布と乾燥を何度も繰り返し行なう必要があった。本発明により得られるセルロースナノファイバー分散液の高濃度で流動性が高いという特徴は、非常に優れたものである。 According to the present invention, the cellulose raw material is oxidized in the presence of the N-oxyl compound and bromide, iodide, or a mixture thereof, and the resulting oxidized cellulose raw material is reduced in viscosity and then defibrated.・ By dispersing, cellulose nanofiber dispersions that are excellent in fluidity, easy to handle and excellent in transparency even at high concentrations can be efficiently produced with low power consumption. Can do. The cellulose nanofiber dispersion obtained by the present invention is excellent in fluidity even at a high concentration.For example, when a cellulose nanofiber is applied to a substrate to form a film on the substrate, A paint containing cellulose nanofibers at a high concentration of 1 to 3% (w / v) can be prepared at a low viscosity of 500 to 3000 mPa · s (B type viscosity, 60 rpm, 20 ° C.). There is an advantage that a film having a thickness of about 5 to 30 μm can be formed only by coating. Conventionally, in order to prepare a coating material having a viscosity of about 500 to 3000 mPa · s (B type viscosity, 60 rpm, 20 ° C.), the concentration of cellulose nanofiber is 0.2 to 0.4% (w / v). In order to produce a film having a thickness of about 5 to 30 μm, it was necessary to repeat coating and drying many times. The feature of the cellulose nanofiber dispersion obtained by the present invention having a high fluidity at a high concentration is very excellent.
 本発明では、(1)N-オキシル化合物、及び(2)臭化物、ヨウ化物若しくはこれらの混合物の存在下で、酸化剤を用い水中にてセルロース系原料を酸化して酸化されたセルロース系原料を調製し、これを解繊・分散処理する前に、低粘度化処理に付す。酸化されたセルロース系原料を解繊・分散処理する前に低粘度化処理に付すことにより、解繊・分散処理における消費電力量を低減させることができ、セルロースナノファイバーを低エネルギーで効率よく製造することができる。 In the present invention, a cellulose raw material oxidized by oxidizing a cellulosic raw material in water using an oxidizing agent in the presence of (1) an N-oxyl compound and (2) bromide, iodide or a mixture thereof. It is prepared and subjected to a viscosity reduction treatment before defibration and dispersion treatment. By subjecting the oxidized cellulose raw material to a viscosity reduction treatment before defibration / dispersion treatment, power consumption in the defibration / dispersion treatment can be reduced, and cellulose nanofibers can be produced efficiently with low energy. can do.
 (N-オキシル化合物)
 本発明で用いるN-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、本発明で使用されるN-オキシル化合物としては、下記一般式(式1)で示される物質が挙げられる。
(N-oxyl compounds)
As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction. For example, examples of the N-oxyl compound used in the present invention include substances represented by the following general formula (Formula 1).
Figure JPOXMLDOC01-appb-C000001
(式1中、R1~R4は同一又は異なる炭素数1~4程度のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000001
(In Formula 1, R 1 to R 4 are the same or different alkyl groups having about 1 to 4 carbon atoms.)
 式1で表される化合物のうち、2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下TEMPOと称する)及び4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-オキシラジカル(以下、4-ヒドロキシTEMPOと称する)が好ましい。また、下記式2~4のいずれかで表されるN-オキシル化合物、すなわち、4-ヒドロキシTEMPOの水酸基をアルコールでエーテル化、またはカルボン酸若しくはスルホン酸でエステル化し、適度な疎水性を付与した4-ヒドロキシTEMPO誘導体は、安価であり、かつ均一な酸化セルロースを得ることができるため、とりわけ好ましい。 Among the compounds represented by Formula 1, 2,2,6,6-tetramethyl-1-piperidine-oxy radical (hereinafter referred to as TEMPO) and 4-hydroxy-2,2,6,6-tetramethyl-1 A -piperidine-oxy radical (hereinafter referred to as 4-hydroxy TEMPO) is preferred. Further, the N-oxyl compound represented by any one of the following formulas 2 to 4, that is, the hydroxyl group of 4-hydroxy TEMPO was etherified with alcohol or esterified with carboxylic acid or sulfonic acid to impart moderate hydrophobicity. A 4-hydroxy TEMPO derivative is particularly preferable because it is inexpensive and can provide uniform oxidized cellulose.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式2~4中、Rは炭素数4以下の直鎖又は分岐状炭素鎖である。)
Figure JPOXMLDOC01-appb-C000004
(In formulas 2 to 4, R is a linear or branched carbon chain having 4 or less carbon atoms.)
 さらに、下記式5で表されるN-オキシル化合物、すなわち、アザアダマンタン型ニトロキシラジカルは、短時間で、均一なセルロースナノファイバーを製造できるため、とりわけ好ましい。 Furthermore, an N-oxyl compound represented by the following formula 5, that is, an azaadamantane type nitroxy radical, is particularly preferable because it can produce uniform cellulose nanofibers in a short time.
Figure JPOXMLDOC01-appb-C000005
(式5中、R5及びR6は、同一又は異なる水素又はC1~C6の直鎖若しくは分岐鎖アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000005
(In Formula 5, R 5 and R 6 represent the same or different hydrogen or a C 1 -C 6 linear or branched alkyl group.)
 N-オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01~10mmol、好ましくは0.01~1mmol、さらに好ましくは0.05~0.5mmol程度を用いることができる。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose raw material into nanofibers. For example, 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol can be used with respect to 1 g of cellulosic raw material.
 (臭化物またはヨウ化物)
 セルロース系原料の酸化の際に用いる臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などを使用することができる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.1~100mmol、好ましくは0.1~10mmol、さらに好ましくは0.5~5mmol程度を用いることができる。
(Bromide or iodide)
As the bromide or iodide used in oxidizing the cellulosic raw material, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. For example, 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol can be used for 1 g of cellulosic raw material.
 (酸化剤)
 セルロース系原料の酸化の際に用いる酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。中でも、ナノファイバー生産コストの観点から、現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが、特に好適である。酸化剤の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.5~500mmol、好ましくは0.5~50mmol、さらに好ましくは2.5~25mmol程度を用いることができる。
(Oxidant)
As the oxidizing agent used for oxidizing the cellulosic raw material, the target oxidation reaction such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide can be promoted. Any oxidizing agent can be used as long as it is an oxidizing agent. Among these, from the viewpoint of nanofiber production costs, sodium hypochlorite, which is currently most widely used in industrial processes and has low environmental impact, is particularly suitable. The amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, about 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol can be used for 1 g of cellulosic raw material.
 (セルロース系原料)
 本発明で用いるセルロース系原料は特に限定されるものではなく、各種木材由来のクラフトパルプ又はサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、あるいはそれらを酸加水分解などの化学処理により精製した微結晶セルロース粉末などを使用することができる他、ケナフ、麻、イネ、バカス、竹等の植物を使用することもできる。このうち、漂白済みクラフトパルプ、漂白済みサルファイトパルプ、粉末セルロース、または微結晶セルロース粉末を用いることが量産化やコストの観点から好ましい。また、粉末セルロース及び微結晶セルロース粉末を用いると、高濃度であってもより低い粘度を有するセルロースナノファイバー分散液を製造することができるから、とりわけ好ましい。
(Cellulosic material)
The cellulose-based raw material used in the present invention is not particularly limited, and kraft pulp or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer or a mill, or chemical treatment such as acid hydrolysis. In addition to the microcrystalline cellulose powder purified by the above, plants such as kenaf, hemp, rice, bacus, and bamboo can also be used. Of these, bleached kraft pulp, bleached sulfite pulp, powdered cellulose, or microcrystalline cellulose powder is preferably used from the viewpoint of mass production and cost. In addition, it is particularly preferable to use powdered cellulose and microcrystalline cellulose powder because a cellulose nanofiber dispersion having a lower viscosity can be produced even at a high concentration.
 粉末セルロースとは、木材パルプの非結晶部分を酸加水分解処理で除去した後、粉砕・篩い分けすることで得られる微結晶性セルロースからなる棒軸状粒子である。粉末セルロースにおけるセルロースの重合度は100~500程度であり、X線回折法による粉末セルロースの結晶化度は70~90%であり、レーザー回折式粒度分布測定装置による体積平均粒子径は好ましくは100μm以下であり、より好ましくは50μm以下である。体積平均粒子径が100μm以下であると、流動性に優れるセルロースナノファイバー分散液を得ることができる。本発明で用いる粉末セルロースとしては、例えば、精選パルプを酸加水分解した後に得られる未分解残渣を精製・乾燥し、粉砕・篩い分けするといった方法により製造される棒軸状である一定の粒径分布を有する結晶性セルロース粉末を用いてもよいし、KCフロック(登録商標)(日本製紙ケミカル社製)、セオラス(商標)(旭化成ケミカルズ社製)、アビセル(登録商標)(FMC社製)などの市販品を用いてもよい。 Powdered cellulose is rod-like particles made of microcrystalline cellulose obtained by removing the non-crystalline part of wood pulp by acid hydrolysis and then pulverizing and sieving. The degree of polymerization of cellulose in powdered cellulose is about 100 to 500, the degree of crystallinity of powdered cellulose by X-ray diffraction is 70 to 90%, and the volume average particle size by a laser diffraction type particle size distribution analyzer is preferably 100 μm. Or less, more preferably 50 μm or less. When the volume average particle diameter is 100 μm or less, a cellulose nanofiber dispersion excellent in fluidity can be obtained. As the powdered cellulose used in the present invention, for example, a fixed particle size in the form of a rod shaft produced by a method of purifying and drying an undegraded residue obtained after acid hydrolysis of a selected pulp, pulverizing and sieving. Crystalline cellulose powder having a distribution may be used, KC Flock (registered trademark) (manufactured by Nippon Paper Chemical Co., Ltd.), Theolas (trademark) (manufactured by Asahi Kasei Chemicals), Avicel (registered trademark) (manufactured by FMC), etc. Commercial products may be used.
 (酸化反応条件)
 本発明の方法は温和な条件であっても酸化反応を円滑に進行させることができるという特色がある。そのため、反応温度は15~30℃程度の室温であってもよい。なお、反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率良く進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加することにより、反応液のpHを9~12、好ましくは10~11程度に維持することが望ましい。酸化反応における反応時間は、適宜設定することができ、特に限定されないが、例えば、0.5~4時間程度である。
(Oxidation reaction conditions)
The method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, the reaction temperature may be a room temperature of about 15 to 30 ° C. In addition, since a carboxyl group produces | generates in a cellulose with progress of reaction, the fall of pH of a reaction liquid is recognized. In order to advance the oxidation reaction efficiently, it is desirable to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11, by adding an alkaline solution such as an aqueous sodium hydroxide solution. The reaction time in the oxidation reaction can be appropriately set and is not particularly limited, but is, for example, about 0.5 to 4 hours.
 (低粘度化処理)
 本発明では、上記の酸化反応により得られた酸化されたセルロース系原料に対して、低粘度化処理を行なう。低粘度化処理とは、酸化されたセルロース系原料のセルロース鎖を適度に切断し(セルロース鎖の短繊維化)、原料を低粘度化させる処理をいう。セルロース系原料の粘度が低下するような処理であれば、いずれでもよいが、例えば、酸化されたセルロース系原料に紫外線を照射する処理、酸化されたセルロース系原料を酵素で加水分解する処理、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解する処理、酸化されたセルロース系原料を酸で加水分解する処理、並びにこれらの組み合わせなどが挙げられる。
(Low viscosity treatment)
In the present invention, the viscosity-reducing treatment is performed on the oxidized cellulose raw material obtained by the above oxidation reaction. The viscosity reduction treatment refers to a treatment that moderately cuts the cellulose chain of the oxidized cellulose raw material (shortens the cellulose chain) and lowers the viscosity of the raw material. Any treatment can be used as long as the viscosity of the cellulosic raw material is lowered. For example, the treatment of irradiating the oxidized cellulosic raw material with ultraviolet rays, the treatment of hydrolyzing the oxidized cellulosic raw material with an enzyme, and the oxidation Examples thereof include a process of oxidizing and decomposing the cellulose-based raw material with hydrogen peroxide and ozone, a process of hydrolyzing the oxidized cellulose-based raw material with an acid, and combinations thereof.
 (紫外線照射)
 本発明の低粘度化処理において、酸化されたセルロース系原料に紫外線を照射する場合、紫外線の波長は、好ましくは100~400nmであり、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子化を引き起こし、短繊維化することができるから、特に好ましい。
(UV irradiation)
In the low viscosity treatment of the present invention, when the oxidized cellulose raw material is irradiated with ultraviolet rays, the wavelength of the ultraviolet rays is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm are particularly preferable because they can directly act on cellulose and hemicellulose to cause low molecular weight and shorten the fiber.
 紫外線を照射する光源としては、100~400nmの波長領域の光を持つものを使用することができ、具体的には、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプ等が一例として挙げられ、これらの1種あるいは2種以上を任意に組合せて使用することができる。特に波長特性の異なる複数の光源を組み合わせて使用すると、異なる波長の紫外線を同時に照射することによりセルロース鎖やヘミセルロース鎖における切断箇所が増加し、短繊維化が促進されるため好ましい。 As a light source for irradiating ultraviolet rays, a light source having a wavelength of 100 to 400 nm can be used. Specifically, a xenon short arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, A hydrogen lamp, a metal halide lamp, etc. are mentioned as an example, These 1 type (s) or 2 or more types can be used in arbitrary combinations. In particular, it is preferable to use a combination of a plurality of light sources having different wavelength characteristics, because ultraviolet rays having different wavelengths are simultaneously irradiated to increase the number of cut portions in the cellulose chain and hemicellulose chain, thereby promoting shortening of the fiber.
 紫外線照射を行う際の酸化されたセルロース系原料を収容する容器としては、例えば、300nmより長波長の紫外線を用いる場合は、硬質ガラス製のものを用いることができるが、それより短波長の紫外線を用いる場合は、紫外線をより透過させる石英ガラス製のものを用いる方がよい。なお、容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切なものを選定することができる。 As a container for storing the oxidized cellulosic raw material when performing ultraviolet irradiation, for example, when ultraviolet rays having a wavelength longer than 300 nm are used, those made of hard glass can be used, but ultraviolet rays having a shorter wavelength than that can be used. In the case of using, it is better to use a quartz glass that transmits ultraviolet rays more. In addition, about the material of the part which does not participate in the light transmission reaction of a container, a suitable thing can be selected from the materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
 紫外線を照射する際の酸化されたセルロース系原料の濃度は、0.1質量%以上であればエネルギー効率が高まるため好ましく、また12質量%以下であれば紫外線照射装置内でのセルロース系原料の流動性が良好であり反応効率が高まるため好ましい。したがって、0.1~12質量%の範囲が好ましい。より好ましくは、0.5~5質量%、さらに好ましくは、1~3質量%である。 The concentration of the oxidized cellulose raw material when irradiated with ultraviolet rays is preferably 0.1% by mass or more because energy efficiency is increased, and if it is 12% by mass or less, the concentration of cellulose raw materials in the ultraviolet irradiation device is preferable. It is preferable because the fluidity is good and the reaction efficiency is increased. Therefore, the range of 0.1 to 12% by mass is preferable. More preferably, it is 0.5 to 5% by mass, and still more preferably 1 to 3% by mass.
 また、紫外線を照射する際のセルロース系原料の温度は、20℃以上であれば光酸化反応の効率が高まるため好ましく、一方、95℃以下であればセルロース系原料の品質の悪化などの悪影響のおそれがなく、また反応装置内の圧力が大気圧を超えるおそれもなくなるため好ましい。したがって、20~95℃の範囲が好ましい。この範囲内であれば、耐圧性を考慮した装置設計を行なう必要性が特にないという利点もある。より好ましくは、20~80℃、さらに好ましくは、20~50℃である。 The temperature of the cellulosic raw material when irradiated with ultraviolet rays is preferably 20 ° C. or higher because the efficiency of the photooxidation reaction is increased. This is preferable because there is no fear and there is no possibility that the pressure in the reactor exceeds atmospheric pressure. Therefore, the range of 20 to 95 ° C. is preferable. Within this range, there is also an advantage that there is no need to design a device in consideration of pressure resistance. More preferably, it is 20 to 80 ° C., and further preferably 20 to 50 ° C.
 また、紫外線を照射する際のpHは特に限定はないが、プロセスの簡素化を考えると中性領域、例えばpH6.0~8.0程度で処理することが好ましい。 Further, the pH at the time of irradiation with ultraviolet rays is not particularly limited. However, in view of simplification of the process, it is preferable to perform the treatment in a neutral region, for example, pH 6.0 to 8.0.
 紫外線照射反応においてセルロース系原料が受ける照射の程度は、照射反応装置内でのセルロース系原料の滞留時間を調節することや、照射光源のエネルギー量を調節すること等により、任意に設定できる。また、例えば、照射装置内のセルロース系原料の濃度を水希釈によって調節することや、あるいは空気や窒素等の不活性気体をセルロース系原料中に吹き込むことによってセルロース系原料の濃度を調節することにより、照射反応装置内でセルロース系原料が受ける紫外線の照射量を、任意に制御することができる。これらの滞留時間や濃度などの条件は、目標とする紫外線照射反応後の酸化されたセルロース系原料の品質(繊維長やセルロース重合度等)にあわせて、適宜設定できる。 The degree of irradiation received by the cellulosic raw material in the ultraviolet irradiation reaction can be arbitrarily set by adjusting the residence time of the cellulosic raw material in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. Also, for example, by adjusting the concentration of the cellulosic material in the irradiation device by diluting with water, or by adjusting the concentration of the cellulosic material by blowing an inert gas such as air or nitrogen into the cellulosic material. The irradiation amount of ultraviolet rays received by the cellulosic material in the irradiation reaction apparatus can be arbitrarily controlled. These conditions such as residence time and concentration can be appropriately set in accordance with the quality (fiber length, cellulose polymerization degree, etc.) of the oxidized cellulose raw material after the target ultraviolet irradiation reaction.
 また、本発明における紫外線照射処理は、酸素、オゾン、または、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)などの助剤の存在下で行なうと、光酸化反応の効率をより高めることができるため、好ましい。 In addition, when the ultraviolet irradiation treatment in the present invention is performed in the presence of an auxiliary such as oxygen, ozone, or peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), photooxidation is performed. Since the efficiency of reaction can be improved more, it is preferable.
 本発明において、特に135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部には通常空気が存在するためオゾンが生成する。本発明においては、この光源周辺部に連続的に空気を供給する一方で、生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化されたセルロース系原料へと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することができる。また更に、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることができ、発生したオゾンを光酸化反応の助剤として使用することができる。このように、本発明では、紫外線照射反応装置で副次的に発生するオゾンを利用することができることも大きな利点である。 In the present invention, particularly when ultraviolet rays having a wavelength region of 135 to 242 nm are irradiated, ozone is generated because air is usually present in the gas phase around the light source. In the present invention, while continuously supplying air to the periphery of the light source, the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulosic raw material, so that the outside of the system is removed. Without supplying ozone, ozone can be used as an auxiliary for the photo-oxidation reaction. Furthermore, by supplying oxygen to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can be used as an auxiliary agent for the photooxidation reaction. As described above, in the present invention, it is also a great advantage that ozone generated by the ultraviolet irradiation reactor can be used.
 また、本発明において、紫外線照射処理は、複数回繰り返すことができる。繰り返しの回数は目標とする酸化されたセルロース系原料の品質や、漂白などの後処理などとの関係に応じて適宜設定できる。例えば、特に制限されないが、100~400nm、好ましくは135~260nmの紫外線を、1~10回、好ましくは2~5回程度、1回あたり0.5~3時間くらいの長さで、照射することができる。 In the present invention, the ultraviolet irradiation treatment can be repeated a plurality of times. The number of repetitions can be appropriately set according to the relationship with the target quality of the oxidized cellulosic raw material and the post-treatment such as bleaching. For example, although not particularly limited, ultraviolet rays of 100 to 400 nm, preferably 135 to 260 nm are irradiated for 1 to 10 times, preferably about 2 to 5 times, for a length of about 0.5 to 3 hours per time. be able to.
 紫外線の照射により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に紫外線を照射すると、該原料の表面の水和層または該原料の間隙水に溶存している酸素からオゾン等の酸化力に優れる活性酸素種が生成し、セルロース鎖が効率よく酸化分解され、最終的にセルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。 The reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by irradiation with ultraviolet rays is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups. When the raw material is irradiated with ultraviolet rays, active oxygen species having excellent oxidizing power such as ozone are generated from oxygen dissolved in the hydrated layer on the surface of the raw material or pore water of the raw material, and the cellulose chain is efficiently formed. It is considered that the oxidative decomposition eventually promotes shortening of the fiber of the cellulosic material and lowers the viscosity of the cellulosic material.
 (酵素による加水分解)
 本発明の低粘度化処理において、酸化されたセルロース系原料にセルロースの分解酵素であるセルラーゼや、ヘミセルロースの分解酵素であるヘミセルラーゼ(例えば、キシラナーゼやマンナーゼ)を添加してセルロース鎖の加水分解を行なう場合、使用可能なセルラーゼやヘミセルラーゼとしては特に制限はなく、セルラーゼまたはヘミセルラーゼ生産性糸状菌、細菌、放線菌、担子菌由来のものや、遺伝子組み換え、細胞融合等の遺伝子操作により製造したものを、単独若しくは2種以上混合して用いることができる。また、市販品を用いることもできる。市販のセルラーゼとしては、例えば、ノボザイムズジャパン社製Novozyme 476、天野エンザイム社製セルラーゼ AP3、ヤクルト薬品工業社製セルラーゼ オノズカRS、ジェネンコア協和社製オプチマーゼCX40L、合同酒精社製のGODO-TCL、ナガセケムテックス社製セルラーゼXL-522、洛東化成工業社製エンチロンCMなどを用いることができる。市販のヘミセルラーゼとしては、例えば、ノボザイムズジャパン社製パルプザイム、天野エンザイム社製ヘミセルラーゼアマノ90、新日本化学工業社製スミチームXを用いることができる。
(Enzymatic hydrolysis)
In the low viscosity treatment of the present invention, cellulase that is a cellulose degrading enzyme or hemicellulase that is a degrading enzyme of hemicellulose (for example, xylanase or mannase) is added to the oxidized cellulose raw material to hydrolyze the cellulose chain. When performing, there are no particular restrictions on the cellulase or hemicellulase that can be used. Cellulase or hemicellulase-producing filamentous fungi, bacteria, actinomycetes, basidiomycetes, or genetic engineering such as genetic recombination or cell fusion were used. A thing can be used individually or in mixture of 2 or more types. Commercial products can also be used. Examples of commercially available cellulases include Novozymes 476 from Novozymes Japan, Cellulase AP3 from Amano Enzyme, Cellulase Onozuka RS from Yakult Pharmaceutical Co., Ltd., Optimase CX40L from Genencor Kyowa Co., Ltd. Cellulase XL-522 manufactured by Chemtex, Enchiron CM manufactured by Nitto Kasei Kogyo Co., Ltd., etc. can be used. As commercially available hemicellulases, for example, Pulpzyme manufactured by Novozymes Japan, Hemicellulase Amano 90 manufactured by Amano Enzyme, and Sumiteam X manufactured by Shin Nippon Chemical Industry Co., Ltd. can be used.
 酵素の添加量は、絶乾したセルロース系原料に対して、0.001質量%以上であれば処理時間と効率の観点から所望の酵素反応を行なわせるのに十分であり、また、10質量%以下であればセルロースの過度の加水分解を抑制し、セルロースナノファイバーの収率の低下を防ぐことができるから好ましい。したがって、酵素の添加量は、絶乾したセルロース系原料に対して0.001~10質量%が好ましい。より好ましくは、0.01~5質量%、さらに好ましくは、0.05~2質量%である。なお、ここでいう「酵素の量」とは、酵素水溶液の乾燥固形分量のことをいう。 If the amount of the enzyme added is 0.001% by mass or more with respect to the absolutely dry cellulosic raw material, it is sufficient to cause the desired enzyme reaction from the viewpoint of treatment time and efficiency, and 10% by mass. The following is preferable because excessive hydrolysis of cellulose can be suppressed and a decrease in the yield of cellulose nanofibers can be prevented. Therefore, the addition amount of the enzyme is preferably 0.001 to 10% by mass with respect to the absolutely dry cellulosic material. More preferably, the content is 0.01 to 5% by mass, and still more preferably 0.05 to 2% by mass. The “enzyme amount” here refers to the dry solid content of the enzyme aqueous solution.
 酵素での加水分解処理は、pH4~10、好ましくは、pH5~9、さらに好ましくは、pH6~8で、温度40~70℃、好ましくは、45~65℃、さらに好ましくは、50~60℃で、0.5~24時間、好ましくは、1~10時間、さらに好ましくは、2~6時間程度行なうことが、酵素反応効率の観点から好ましい。 The hydrolysis treatment with an enzyme is performed at pH 4 to 10, preferably pH 5 to 9, more preferably pH 6 to 8, temperature 40 to 70 ° C., preferably 45 to 65 ° C., more preferably 50 to 60 ° C. The reaction time is preferably 0.5 to 24 hours, preferably 1 to 10 hours, and more preferably 2 to 6 hours from the viewpoint of enzyme reaction efficiency.
 酵素処理により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に、酵素を添加して加水分解を行なうと、セルロース分子の強固なネットワークが崩れ、該原料の比表面積が増大し、セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。 The reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by enzyme treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups. And, when an enzyme is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, the shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
 (過酸化水素及びオゾンによる酸化分解)
 本発明の低粘度化処理において、酸化されたセルロース系原料を過酸化水素及びオゾンで酸化分解処理する場合、オゾンは、空気あるいは酸素を原料としてオゾン発生装置で公知の方法で発生させることができる。本発明におけるオゾンの添加量(質量)は、セルロース系原料の絶乾質量の0.1~3倍が好ましい。オゾンの添加量がセルロース系原料の絶乾質量の0.1倍以上であればセルロースの非晶部を十分に分解することができ、次工程での解繊・分散処理に要するエネルギーを大幅に削減することができる。また、3倍以下であればセルロースの過度の分解を抑制でき、セルロース系原料の収率の低下を防ぐことができる。オゾン添加量は、セルロース系原料の絶乾質量の0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。
(Oxidative decomposition with hydrogen peroxide and ozone)
In the low viscosity treatment of the present invention, when the oxidized cellulose raw material is oxidatively decomposed with hydrogen peroxide and ozone, ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material. . The addition amount (mass) of ozone in the present invention is preferably 0.1 to 3 times the absolute dry mass of the cellulosic material. If the amount of ozone added is at least 0.1 times the absolute dry mass of the cellulosic material, the amorphous part of the cellulose can be sufficiently decomposed, greatly increasing the energy required for the defibration / dispersion treatment in the next step. Can be reduced. Moreover, if it is 3 times or less, the excessive decomposition | disassembly of a cellulose can be suppressed and the fall of the yield of a cellulose raw material can be prevented. The amount of ozone added is more preferably 0.3 to 2.5 times, more preferably 0.5 to 1.5 times the absolute dry mass of the cellulosic material.
 また、過酸化水素の添加量(質量)は、セルロース系原料の絶乾質量の0.001~1.5倍が好ましい。セルロース系原料の添加量の0.001倍以上の量で過酸化水素を使用すると、オゾンと過酸化水素との相乗作用が発揮される。また、セルロース系原料の分解には、過酸化水素を、セルロース系原料の1.5倍以下程度の量で使用すれば十分であり、それより多い添加量はコストアップにつながると考えられる。過酸化水素の添加量は、セルロース系原料の絶乾質量の0.1~1.0倍がより好ましい。 The addition amount (mass) of hydrogen peroxide is preferably 0.001 to 1.5 times the absolute dry mass of the cellulosic material. When hydrogen peroxide is used in an amount of 0.001 times or more of the addition amount of the cellulosic material, a synergistic effect between ozone and hydrogen peroxide is exhibited. In addition, it is sufficient to use hydrogen peroxide in an amount about 1.5 times or less that of the cellulosic raw material for decomposing the cellulosic raw material, and it is thought that a larger addition amount leads to an increase in cost. The amount of hydrogen peroxide added is more preferably 0.1 to 1.0 times the absolute dry mass of the cellulosic material.
 オゾン及び過酸化水素による酸化分解処理は、pH2~12、好ましくは、pH4~10、さらに好ましくは、pH6~8で、温度は10~90℃、好ましくは、20~70℃、さらに好ましくは30~50℃で、1~20時間、好ましくは、2~10時間、さらに好ましくは、3~6時間程度行なうことが、酸化分解反応効率の観点から好ましい。 The oxidative decomposition treatment with ozone and hydrogen peroxide is pH 2 to 12, preferably pH 4 to 10, more preferably pH 6 to 8, and temperature is 10 to 90 ° C., preferably 20 to 70 ° C., more preferably 30. From the viewpoint of oxidative decomposition reaction efficiency, it is preferable to carry out the reaction at -50 ° C. for 1-20 hours, preferably 2-10 hours, more preferably 3-6 hours.
 オゾン及び過酸化水素による処理を行なうための装置は、当業者に通常使用される装置を用いることができ、例えば、反応室、攪拌機、薬品注入装置、加熱器、及びpH電極を備えた通常の反応器を使用することができる。 As a device for performing treatment with ozone and hydrogen peroxide, a device commonly used by those skilled in the art can be used. For example, a normal chamber equipped with a reaction chamber, a stirrer, a chemical injection device, a heater, and a pH electrode. A reactor can be used.
 オゾン及び過酸化水素による処理後、水溶液中に残留するオゾンや過酸化水素は次工程の解繊・分散処理でも有効に作用し、セルロースナノファイバー分散液の低粘度化を一層促進することができる。 After the treatment with ozone and hydrogen peroxide, ozone and hydrogen peroxide remaining in the aqueous solution can effectively work in the defibration / dispersion treatment in the next step, and can further promote the lowering of the viscosity of the cellulose nanofiber dispersion. .
 過酸化水素及びオゾンにより、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料をオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から、酸化力に優れるヒドロキシラジカルが発生し、該原料中のセルロース鎖を効率良く酸化分解し、最終的にセルロース系原料を短繊維化し、セルロース系原料を低粘度化すると考えられる。 The reason why the viscosity of the oxidized cellulose raw material can be efficiently reduced by hydrogen peroxide and ozone is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the charge repulsive force between the carboxyl groups. Then, when the raw material is treated with ozone and hydrogen peroxide, hydroxy radicals having excellent oxidizing power are generated from ozone and hydrogen peroxide, and the cellulose chains in the raw material are efficiently oxidized and decomposed, and finally the cellulose-based raw material It is considered that the fiber is shortened to lower the viscosity of the cellulosic material.
 (酸による加水分解)
 本発明の低粘度化処理において、酸化されたセルロース系原料に酸を添加してセルロース鎖の加水分解を行なう(酸加水分解処理)場合、使用する酸としては、硫酸、塩酸、硝酸、又はリン酸のような鉱酸を使用することが好ましい。
(Hydrolysis with acid)
In the viscosity reduction treatment of the present invention, when an acid is added to the oxidized cellulose raw material to hydrolyze the cellulose chain (acid hydrolysis treatment), the acid used is sulfuric acid, hydrochloric acid, nitric acid, or phosphorus. It is preferred to use a mineral acid such as an acid.
 酸加水分解処理の条件としては、酸がセルロースの非晶部に作用するような条件であれば適宜設定することができ、特に限定されない。例えば、酸の添加量としては、セルロース系原料の絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、次工程でのセルロース系原料の解繊・分散効率が向上するから好ましく、0.5質量%以下であれば、セルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができるから好ましい。酸加水分解時の反応液のpHは、2.0~4.0、好ましくは2.0以上3.0未満である。また、酸加水分解処理は、温度70~120℃で、1~10時間行なうことが、酸加水分解効率の観点から好ましい。 The conditions for the acid hydrolysis treatment can be set as appropriate as long as the acid acts on the amorphous part of the cellulose, and are not particularly limited. For example, the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolute dry mass of the cellulosic material. When the amount of acid added is 0.01% by mass or more, hydrolysis of cellulose proceeds and the fibrillation / dispersion efficiency of the cellulose-based raw material in the next step is improved, and preferably 0.5% by mass or less. For example, excessive hydrolysis of cellulose can be prevented, and a decrease in the yield of cellulose nanofibers can be prevented. The pH of the reaction solution during acid hydrolysis is 2.0 to 4.0, preferably 2.0 or more and less than 3.0. The acid hydrolysis treatment is preferably performed at a temperature of 70 to 120 ° C. for 1 to 10 hours from the viewpoint of acid hydrolysis efficiency.
 また、酸加水分解処理後は、水酸化ナトリウム等のアルカリを添加して中和することが、その後の解繊・分散処理の効率の観点から好ましい。 Moreover, after the acid hydrolysis treatment, it is preferable to neutralize by adding an alkali such as sodium hydroxide from the viewpoint of the efficiency of the subsequent defibration / dispersion treatment.
 酸加水分解処理により、酸化されたセルロース系原料を効率よく低粘度化できる理由としては、以下のように推察される。N-オキシル化合物を用いて酸化されたセルロース系原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、該原料同士の間には、カルボキシル基同士の電化反発力の作用で、通常のパルプでは見られない微視的隙間が存在すると考えられる。そして、該原料に、酸を添加して加水分解を行なうと、セルロース分子の強固なネットワークが崩れ、該原料の比表面積が増大し、セルロース系原料の短繊維化が促進され、セルロース系原料が低粘度化すると考えられる。 The reason why the oxidized cellulose raw material can be efficiently reduced in viscosity by the acid hydrolysis treatment is presumed as follows. A carboxyl group is localized on the surface of the cellulosic raw material oxidized with the N-oxyl compound, and a hydrated layer is formed. For this reason, it is considered that there is a microscopic gap between the raw materials which is not found in ordinary pulp due to the action of the electric repulsion between carboxyl groups. Then, when an acid is added to the raw material for hydrolysis, a strong network of cellulose molecules is broken, the specific surface area of the raw material is increased, shortening of the cellulose-based raw material is promoted, and the cellulose-based raw material is It is thought that the viscosity is lowered.
 (N-オキシル化合物の除去処理)
 本発明では、必要に応じ、セルロース系原料の酸化処理と低粘度化処理との間、又は低粘度化処理と解繊・分散処理との間に、酸化されたセルロース系原料から、セルロース系原料の酸化に用いたN-オキシル化合物を除去する処理を行なってもよい。N-オキシル化合物の除去処理は、いずれの方法を用いてもよいが、酸化されたセルロース系原料を、pH3~10の条件下で、50~120℃以下の温度に加熱した後に水洗すると、セルロース系原料の収率を低下させることなく、N-オキシル化合物を効率良く除去することができるため、好ましい。
(N-oxyl compound removal treatment)
In the present invention, if necessary, from an oxidized cellulose raw material between the oxidation treatment and the viscosity reduction treatment of the cellulose raw material, or between the viscosity reduction treatment and the defibration / dispersion treatment, A treatment for removing the N-oxyl compound used for the oxidation of the acid may be performed. Any method may be used for the removal treatment of the N-oxyl compound. When the oxidized cellulose raw material is heated to a temperature of 50 to 120 ° C. or less under the condition of pH 3 to 10, it is washed with cellulose. This is preferable because the N-oxyl compound can be efficiently removed without reducing the yield of the system raw material.
 pH3~10の条件下で、50~120℃以下の温度に加熱する際には、パルプ濃度0.1~50質量%の水分散液の形態のセルロース系原料を用いることが好ましく、より好ましくはパルプ濃度が1~30質量%、更に好ましくは2~20質量%である。 When heating to a temperature of 50 to 120 ° C. under the condition of pH 3 to 10, it is preferable to use a cellulosic raw material in the form of an aqueous dispersion having a pulp concentration of 0.1 to 50% by mass, more preferably The pulp concentration is 1 to 30% by mass, more preferably 2 to 20% by mass.
 上記の加熱によるN-オキシル化合物の除去処理の際には、酸化されたセルロース系原料の水分散液のpHを、pH3~10、好ましくはpH3~9、最も好ましくはpH3~8に調整するのが好ましい。pHの調整に使用する酸またはアルカリの種類は、特に限定されず、無機化合物でも有機化合物でも良い。好適には、酸として塩酸又は硫酸を用いることができ、アルカリとして水酸化ナトリム水溶液を用いることができる。酸化されたセルロース系原料の水分散液のpHが10を超える場合は、アルカリが過剰であることからセルロースが分解してパルプ収率が著しく低下するだけではなく、N-オキシル化合物の除去率も低下するので好ましくない。 In the removal treatment of the N-oxyl compound by the heating, the pH of the aqueous dispersion of the oxidized cellulose raw material is adjusted to pH 3 to 10, preferably pH 3 to 9, and most preferably pH 3 to 8. Is preferred. The kind of acid or alkali used for adjusting the pH is not particularly limited, and may be an inorganic compound or an organic compound. Preferably, hydrochloric acid or sulfuric acid can be used as the acid, and an aqueous sodium hydroxide solution can be used as the alkali. When the pH of the aqueous dispersion of the oxidized cellulose-based raw material exceeds 10, not only does the cellulose decompose due to excess alkali, but the pulp yield significantly decreases, and the removal rate of the N-oxyl compound also increases. Since it falls, it is not preferable.
 上記の加熱によるN-オキシル化合物の除去処理の際には、酸化されたセルロース系原料を50℃以上120℃以下、好ましくは70℃以上100℃未満、さらに好ましくは70℃以上90℃以下の温度に加熱することが好ましい。加熱時の温度が50℃未満である場合には、N-オキシル化合物の除去率が顕著に低下し、また、120℃より高温に加熱すると、セルロースが顕著に分解して可溶化するため、パルプ収率が著しく低下するので、好ましくない。加熱時の温度が100℃未満である場合は、加熱処理時に耐圧性の容器を用いる必要がないので、設備コストの観点から有利である。 In the removal treatment of the N-oxyl compound by the above heating, the oxidized cellulose raw material is at a temperature of 50 ° C. to 120 ° C., preferably 70 ° C. to less than 100 ° C., more preferably 70 ° C. to 90 ° C. It is preferable to heat it. When the heating temperature is less than 50 ° C., the removal rate of the N-oxyl compound is remarkably reduced, and when heated to a temperature higher than 120 ° C., the cellulose is significantly decomposed and solubilized. Since the yield is significantly reduced, it is not preferable. When the temperature during heating is less than 100 ° C., it is not necessary to use a pressure-resistant container during the heat treatment, which is advantageous from the viewpoint of equipment cost.
 加熱の際の圧力は、特に限定されず、大気圧下、加圧下のいずれでもよい。加熱時間は、pH及び温度に応じ、10分~10時間程度、好ましくは30分~6時間程度、最も好ましくは1~5時間程度の範囲で、適宜設定することができる。 The pressure at the time of heating is not particularly limited, and it may be under atmospheric pressure or under pressure. The heating time can be appropriately set in the range of about 10 minutes to 10 hours, preferably about 30 minutes to 6 hours, and most preferably about 1 to 5 hours, depending on the pH and temperature.
 上記の特定のpH及び温度下で処理した酸化されたセルロース系原料を、十分に水洗することにより、原料中に残存するN-オキシル化合物を十分に除去することができる。 The N-oxyl compound remaining in the raw material can be sufficiently removed by thoroughly washing the oxidized cellulose raw material treated at the above specific pH and temperature.
 酸化されたセルロース系原料からN-オキシル化合物を十分に除去することにより、次工程以降の解繊・分散処理におけるセルロース系原料の分散性を向上させることができ、また、得られるセルロースナノファイバー分散液の透明性を向上させることができる。また、セルロースナノファイバー分散液またはそれから調製されたフィルムを、化粧品の増粘剤や食品用包装などの目的で使用する場合には、環境や人体に対する毒性がいまだ明確となっていないTEMPOやその誘導体を、十分に除去することは非常に好ましい。 By sufficiently removing the N-oxyl compound from the oxidized cellulose raw material, it is possible to improve the dispersibility of the cellulose raw material in the defibration / dispersion treatment after the next step, and the cellulose nanofiber dispersion obtained The transparency of the liquid can be improved. In addition, when the cellulose nanofiber dispersion or a film prepared therefrom is used for the purpose of a cosmetic thickener or food packaging, TEMPO and its derivatives whose toxicity to the environment and human body has not yet been clarified. It is highly preferable to sufficiently remove
 (解繊・分散処理)
 本発明では、酸化されたセルロース系原料を低粘度化処理(及び必要に応じてN-オキシル化合物除去処理)した後、解繊・分散処理する。解繊・分散処理に用いる装置の種類としては、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置が挙げられるが、透明性と流動性に優れるセルロースナノファイバー分散液を効率よく得るには、50MPa以上、好ましくは100MPa以上、さらに好ましくは140MPa以上の条件下で分散できる湿式の高圧または超高圧ホモジナイザーで処理することが好ましい。
(Defibration / dispersion processing)
In the present invention, the oxidized cellulose raw material is subjected to a viscosity reduction treatment (and N-oxyl compound removal treatment as necessary), and then subjected to a fibrillation / dispersion treatment. Examples of the type of equipment used for defibration / dispersion include high-speed rotary type, colloid mill type, high pressure type, roll mill type, ultrasonic type, etc., but cellulose nanofiber dispersion with excellent transparency and fluidity In order to efficiently obtain the above, it is preferable to treat with a wet high pressure or ultra high pressure homogenizer that can be dispersed under conditions of 50 MPa or more, preferably 100 MPa or more, more preferably 140 MPa or more.
 (セルロースナノファイバー)
 本発明により製造されるセルロースナノファイバーは、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルである。本発明において、「ナノファイバー化する」とは、セルロース系原料を、幅2~5nm、長さ1~5μm程度のセルロースのシングルミクロフィブリルであるセルロースナノファイバーへと加工することを意味する。
(Cellulose nanofiber)
The cellulose nanofibers produced by the present invention are cellulose single microfibrils having a width of 2 to 5 nm and a length of about 1 to 5 μm. In the present invention, “to form a nanofiber” means that a cellulosic raw material is processed into cellulose nanofiber which is a single microfibril of cellulose having a width of about 2 to 5 nm and a length of about 1 to 5 μm.
 本発明により得られたセルロースナノファイバー分散液は、1.0質量%濃度(w/v)におけるB型粘度(60rpm、20℃)が1000mPa・s以下、好ましくは800mPa・s以下、さらに好ましくは500mPa・s以下であり、かつ、0.1質量%濃度(w/v)における光透過率(660nm)が90%以上、好ましくは95%以上であることが好ましい。本発明により製造されるセルロースナノファイバーは、流動性と透明性に優れ、さらに、バリヤー性および耐熱性にも優れるので、包装材料等の様々な用途に使用することが可能である。 The cellulose nanofiber dispersion obtained by the present invention has a B-type viscosity (60 rpm, 20 ° C.) at a concentration of 1.0% by mass (w / v) of 1000 mPa · s or less, preferably 800 mPa · s or less, more preferably It is 500 mPa · s or less, and the light transmittance (660 nm) at a concentration of 0.1% by mass (w / v) is 90% or more, preferably 95% or more. Cellulose nanofibers produced according to the present invention are excellent in fluidity and transparency, and are also excellent in barrier properties and heat resistance, and thus can be used for various applications such as packaging materials.
 なお、本発明において、セルロースナノファイバー分散液のB型粘度は、当業者に慣用される通常のB型粘度計を用いて測定することができ、例えば、東機産業社のTV-10型粘度計を用いて、20℃及び60rpmの条件で測定することができる。 In the present invention, the B-type viscosity of the cellulose nanofiber dispersion can be measured using a normal B-type viscometer commonly used by those skilled in the art, for example, TV-10 type viscosity of Toki Sangyo Co., Ltd. Using a meter, it can be measured at 20 ° C. and 60 rpm.
 また、セルロースナノファイバー分散液の光透過率は、紫外・可視分光光度計によって測定することができる。 Further, the light transmittance of the cellulose nanofiber dispersion can be measured with an ultraviolet / visible spectrophotometer.
 (本発明の作用)
 本発明では、N-オキシル化合物を用いて酸化されたセルロース系原料を短繊維化して低粘度化することにより、次工程での解繊・分散処理における分散液のB型粘度を顕著に低下させ、分散液の流動性を顕著に向上させることができる。また、分散時の消費電力量を顕著に低下させることができる。さらに、セルロース系原料を短繊維化することにより、透明性に優れたセルロースナノファイバー分散液を調製することができる。
(Operation of the present invention)
In the present invention, the B-type viscosity of the dispersion in the defibration / dispersion treatment in the next step is significantly reduced by shortening the fiber of the cellulose-based raw material oxidized using the N-oxyl compound to reduce the viscosity. The fluidity of the dispersion can be significantly improved. Moreover, the power consumption at the time of dispersion | distribution can be reduced significantly. Furthermore, the cellulose nanofiber dispersion liquid excellent in transparency can be prepared by shortening a cellulose raw material.
 次に実施例に基づき、本発明をさらに詳細に説明するが、以下の実施例は、本発明の好適な例を具体的に説明したものであり、本発明はこれらの実施例によって何ら限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the following examples are specific examples of the present invention, and the present invention is not limited to these examples. It is not something.
 針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社)5g(絶乾)をTEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム755mg(7mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(有効塩素5%)18mlを添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応した後、ガラスフィルターで濾過し、十分に水洗することで、酸化されたセルロース系原料を得た。 5 g (absolutely dried) of bleached unbeaten sulfite pulp (Nippon Paper Chemical Co., Ltd.) derived from conifers was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma-Aldrich) and 755 mg (7 mmol) of sodium bromide were dissolved, Stir until the pulp is uniformly dispersed. After adding 18 ml of an aqueous sodium hypochlorite solution (effective chlorine 5%) to the reaction system, the pH was adjusted to 10.3 with an aqueous 0.5N hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, it was filtered through a glass filter and washed thoroughly with water to obtain an oxidized cellulose-based material.
 酸化されたセルロース系原料の1%(w/v)スラリー2Lを低粘度化処理した。具体的には、254nmの紫外線を照射する20W低圧水銀ランプで6時間処理した。紫外線処理した酸化されたセルロース系原料を超高圧ホモジナイザー(処理圧140MPa)で10回処理したところ、透明なゲル状分散液が得られた。 2 L of 1% (w / v) slurry of oxidized cellulose raw material was subjected to a low viscosity treatment. Specifically, it was treated for 6 hours with a 20 W low-pressure mercury lamp that irradiates ultraviolet rays of 254 nm. When the oxidized cellulose raw material treated with ultraviolet rays was treated 10 times with an ultra-high pressure homogenizer (treatment pressure 140 MPa), a transparent gel dispersion was obtained.
 得られた1%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)をTV-10型粘度計(東機産業社)を用いて測定し、0.1%(w/v)のセルロースナノファイバー分散液の透明度(660nm 光の透過率)をUV-VIS分光光度計 UV-265FS(島津製作所社)を用いて測定し、解繊・分散処理に要した消費電力を(処理時における電力)×(処理時間)/(処理したサンプル量)により求めた。結果を表1に示す。 The B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion was measured using a TV-10 viscometer (Toki Sangyo Co., Ltd.) and 0.1% ( The w / v) cellulose nanofiber dispersion transparency (660 nm fluorescence transmittance) was measured using a UV-VIS spectrophotometer UV-265FS (Shimadzu Corporation), and the power consumption required for defibration / dispersion treatment Was determined by (power during processing) × (processing time) / (sample amount processed). The results are shown in Table 1.
 260~400nmの波長域を有し310nmに主ピークを有する紫外線を20W低圧水銀ランプを用いて照射した以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays having a wavelength range of 260 to 400 nm and having a main peak at 310 nm were irradiated using a 20 W low-pressure mercury lamp. The results are shown in Table 1.
 340~400nmの波長域を有し360nmに主ピークを有する紫外線を20W低圧水銀ランプを用いて照射した以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays having a wavelength range of 340 to 400 nm and having a main peak at 360 nm were irradiated using a 20 W low-pressure mercury lamp. The results are shown in Table 1.
 超高圧ホモジナイザーの処理圧を100MPaとした以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 1.
 超高圧ホモジナイザーの処理圧を50MPaとした以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 1.
 超高圧ホモジナイザーの処理圧を30MPaとした以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that the treatment pressure of the ultrahigh pressure homogenizer was changed to 30 MPa. The results are shown in Table 1.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 1.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例5と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 5 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 1.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例6と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 6 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 1.
 分散装置として回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)を超高圧ホモジナイザーの代わりに使用した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device was used instead of the ultrahigh pressure homogenizer. The results are shown in Table 1.
 紫外線照射時に過酸化水素を酸化パルプに対して1%(w/v)添加した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that 1% (w / v) of hydrogen peroxide was added to the oxidized pulp during UV irradiation. The results are shown in Table 1.
 254nmと185nmの紫外線を同時に照射する20W低圧紫外線ランプを使用した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。 A nanofiber dispersion was obtained in the same manner as in Example 1 except that a 20 W low-pressure ultraviolet lamp that simultaneously irradiates ultraviolet rays of 254 nm and 185 nm was used. The results are shown in Table 1.
 [比較例1]
 紫外線を照射しない(すなわち、低粘度化処理しない)以外、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 1]
A nanofiber dispersion was obtained in the same manner as in Example 1 except that ultraviolet rays were not irradiated (that is, the viscosity was not reduced). The results are shown in Table 1.
 [比較例2]
 低粘度化処理せず、分散装置として回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)を超高圧ホモジナイザーの代わりに使用した以外は、実施例1と同様にしてナノファイバー分散液を得た。結果を表1に示す。
[Comparative Example 2]
Nanofibers as in Example 1 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device without using a low viscosity treatment was used instead of the ultra-high pressure homogenizer. A dispersion was obtained. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1と同様にして得た酸化されたセルロース系原料の1%(w/v)スラリー2L(pH7.3)に、低粘度化処理として、市販のセルラーゼ(ノボザイムズジャパン社製、Novozyme 476)を酸化されたセルロース系原料に対して2質量%添加し、30℃で6時間処理した。セルラーゼ処理した酸化されたセルロース系原料を煮沸してセルラーゼを失活させた後、超高圧ホモジナイザー(処理圧140MPa)で10回処理したところ、透明なゲル状分散液が得られた。 Commercially available cellulase (manufactured by Novozymes Japan, Novozymes) was applied to 2 L (pH 7.3) of 1% (w / v) slurry of oxidized cellulose raw material obtained in the same manner as in Example 1 as a treatment for reducing viscosity. 476) was added in an amount of 2% by mass with respect to the oxidized cellulosic raw material and treated at 30 ° C. for 6 hours. The cellulase-treated oxidized cellulosic material was boiled to deactivate the cellulase, and then treated 10 times with an ultrahigh pressure homogenizer (treatment pressure 140 MPa) to obtain a transparent gel dispersion.
 得られた1%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)、0.1%(w/v)のセルロースナノファイバー分散液の透明度(660nm光の透過率)、及び、解繊・分散処理に要した消費電力を、実施例1に記載の方法で測定した。結果を表2に示す。 B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion, transparency (660 nm light transmittance) of the 0.1% (w / v) cellulose nanofiber dispersion ) And power consumption required for defibration / dispersion treatment were measured by the method described in Example 1. The results are shown in Table 2.
 超高圧ホモジナイザーの処理圧を100MPaとした以外、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 2.
 超高圧ホモジナイザーの処理圧を50MPaとした以外、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 2.
 超高圧ホモジナイザーの処理圧を30MPaとした以外、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that the treatment pressure of the ultrahigh pressure homogenizer was changed to 30 MPa. The results are shown in Table 2.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 2.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例15と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 15 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 2.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例16と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 16 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 2.
 分散装置として回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)を超高圧ホモジナイザーの代わりに使用した以外は、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that a high shear mixer (circumferential speed: 37 m / s, Nippon Seiki Seisakusho) equipped with a rotating blade as a dispersing device was used instead of the ultrahigh pressure homogenizer. The results are shown in Table 2.
 セルロース分解酵素としてセルラーゼAP3(天野エンザイム社製)を使用した以外は、実施例13と同様にしてナノファイバー分散液を得た。結果を表2に示す。 A nanofiber dispersion was obtained in the same manner as in Example 13 except that cellulase AP3 (manufactured by Amano Enzyme) was used as the cellulolytic enzyme. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1と同様にして得た酸化されたセルロース系原料の1%(w/v)スラリー2Lに、低粘度化処理として、オゾン及び過酸化水素を、それぞれ、オゾン濃度6g/L(セルロース系原料の絶乾質量の0.6倍に相当する)、過酸化水素濃度3g/L(セルロース系原料の絶乾質量の0.3倍に相当する)となるように添加し、室温で6時間処理した。オゾンと過酸化水素で処理した酸化されたセルロース系原料を超高圧ホモジナイザー(処理圧140MPa)で10回処理したところ、透明なゲル状分散液が得られた。 As a viscosity-reducing treatment, 2 L of 1% (w / v) slurry of the oxidized cellulose raw material obtained in the same manner as in Example 1 was added with ozone and hydrogen peroxide, respectively, with an ozone concentration of 6 g / L (cellulose type). And the hydrogen peroxide concentration is 3 g / L (corresponding to 0.3 times the absolute dry mass of the cellulosic raw material) and is added at room temperature for 6 hours. Processed. When the oxidized cellulose raw material treated with ozone and hydrogen peroxide was treated 10 times with an ultrahigh pressure homogenizer (treatment pressure 140 MPa), a transparent gel dispersion was obtained.
 得られた1%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)、0.1%(w/v)のセルロースナノファーバー分散液の透明度(660nm光の透過率)、及び、解繊・分散処理に要した消費電力を、実施例1に記載の方法で測定した。結果を表3に示す。 B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion, transparency of the 0.1% (w / v) cellulose nanofiber dispersion (660 nm light transmittance) ) And power consumption required for defibration / dispersion treatment were measured by the method described in Example 1. The results are shown in Table 3.
 超高圧ホモジナイザーの処理圧を100MPaとした以外、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 100 MPa. The results are shown in Table 3.
 超高圧ホモジナイザーの処理圧を50MPaとした以外、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 50 MPa. The results are shown in Table 3.
 超高圧ホモジナイザーの処理圧を30MPaとした以外、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 22 except that the treatment pressure of the ultrahigh pressure homogenizer was 30 MPa. The results are shown in Table 3.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 22 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 3.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例24と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 24 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 3.
 セルロース系原料として粉末セルロース(日本製紙ケミカル社、粒径75μm)を使用した以外は、実施例25と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 25 except that powdered cellulose (Nippon Paper Chemical Co., Ltd., particle size 75 μm) was used as the cellulose-based material. The results are shown in Table 3.
 分散装置として回転刃を装備したハイシェアーミキサー(周速37m/s、日本精機製作所)を使用した以外は、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 A nanofiber dispersion was obtained in the same manner as in Example 22 except that a high shear mixer (circumferential speed 37 m / s, Nippon Seiki Seisakusho) equipped with a rotary blade was used as a dispersing device. The results are shown in Table 3.
 オゾンの濃度を10g/L(セルロース系原料の絶乾質量の1.0倍に相当する)、過酸化水素の濃度を3g/L(セルロース系原料の絶乾質量の0.3倍に相当する)となるように添加した以外は、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。 The ozone concentration is 10 g / L (corresponding to 1.0 times the absolute dry mass of the cellulosic material), and the hydrogen peroxide concentration is 3 g / L (corresponding to 0.3 times the absolute dry mass of the cellulosic material). The nanofiber dispersion was obtained in the same manner as in Example 22 except that it was added so that The results are shown in Table 3.
 [比較例3]
 過酸化水素単独で処理した以外、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。
[Comparative Example 3]
A nanofiber dispersion was obtained in the same manner as in Example 22 except that treatment with hydrogen peroxide alone was performed. The results are shown in Table 3.
 [比較例4]
 オゾン単独で処理した以外、実施例22と同様にしてナノファイバー分散液を得た。結果を表3に示す。
[Comparative Example 4]
A nanofiber dispersion was obtained in the same manner as in Example 22 except that treatment with ozone alone was performed. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1と同様にして得た酸化されたセルロース系原料に、低粘度化処理として、0.1Nの塩酸水溶液を加えて(塩酸の添加量:パルプ絶乾質量に対して0.1質量%)、pH2.8の5%(w/v)パルプスラリーを調製し、90℃で2時間酸加水分解処理した。酸加水分解処理した酸化されたセルロース系原料を水洗し、0.1N水酸化ナトリウム水溶液で中和した後、超高圧ホモジナイザー(処理圧140MPa)で10回処理したところ、透明なゲル状分散液が得られた。 To the oxidized cellulose raw material obtained in the same manner as in Example 1, a 0.1N hydrochloric acid aqueous solution was added as a treatment for reducing the viscosity (addition amount of hydrochloric acid: 0.1% by mass relative to the absolute dry mass of the pulp). ), 5% (w / v) pulp slurry having a pH of 2.8 was prepared and subjected to acid hydrolysis treatment at 90 ° C. for 2 hours. The acid-hydrolyzed oxidized cellulosic raw material was washed with water, neutralized with a 0.1N aqueous sodium hydroxide solution, and then treated 10 times with an ultra-high pressure homogenizer (treatment pressure 140 MPa). As a result, a transparent gel dispersion was obtained. Obtained.
 得られた1%(w/v)のセルロースナノファイバー分散液のB型粘度(60rpm、20℃)、0.1%(w/v)のセルロースナノファイバー分散液の透明度(660nm光の透過率)、及び、解繊・分散処理に要した消費電力を、実施例1に記載の方法で測定した。結果を表4に示す。 B-type viscosity (60 rpm, 20 ° C.) of the obtained 1% (w / v) cellulose nanofiber dispersion, transparency (660 nm light transmittance) of the 0.1% (w / v) cellulose nanofiber dispersion ) And power consumption required for defibration / dispersion treatment were measured by the method described in Example 1. The results are shown in Table 4.
 塩酸の添加量をパルプ絶乾質量に対して0.3質量%とし、pH2.4で酸加水分解処理を行なった以外、実施例31と同様にしてナノファイバー分散液を得た。結果を表4に示す。 A nanofiber dispersion was obtained in the same manner as in Example 31 except that the amount of hydrochloric acid added was 0.3% by mass with respect to the absolute dry mass of the pulp, and acid hydrolysis treatment was performed at pH 2.4. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1~4の結果より、酸化されたセルロース系原料を低粘度化処理した実施例1~32では、低粘度化処理しない比較例1~4に比べて、B型粘度が低く、透明度が高いセルロースナノファイバーを、低い消費電力で得られることがわかる。したがって、本発明のセルロースナノファイバーの製造方法によれば、流動性及び透明性が高いセルロースナノファイバー分散液を、高濃度で、かつ高い効率で得ることができる。 From the results of Tables 1 to 4, in Examples 1 to 32 in which the oxidized cellulose-based raw material was subjected to a viscosity reduction treatment, the B-type viscosity was lower and the transparency was higher than those in Comparative Examples 1 to 4 in which the viscosity reduction treatment was not performed. It can be seen that cellulose nanofibers can be obtained with low power consumption. Therefore, according to the method for producing cellulose nanofibers of the present invention, a cellulose nanofiber dispersion having high fluidity and transparency can be obtained at a high concentration and with high efficiency.
 実施例1、2、7、13、15、17、22、24、26、及び30~32により製造した1%(w/v)のセルロースナノファイバー分散液を、それぞれ、ポリエチレンテレフタレートフィルム(厚み20μm)の片面に、手塗り専用のバー(バーNo.16)で塗工し、50℃で乾燥させてフィルムを形成した。得られたフィルムの厚みを測定した。結果を表5に示す。 Each of the 1% (w / v) cellulose nanofiber dispersions prepared in Examples 1, 2, 7, 13, 15, 17, 22, 24, 26, and 30 to 32 was converted into a polyethylene terephthalate film (thickness 20 μm). ) Was coated with a hand-painted bar (bar No. 16) and dried at 50 ° C. to form a film. The thickness of the obtained film was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 [比較例5]
 比較例1により製造した1%(w/v)のセルロースナノファイバー分散液を、B型粘度600mPa・s(60rpm、20℃)となるように濃度を調整した。このときのセルロースナノファイバー濃度は、0.4%(w/v)であった。この分散液を、ポリエチレンテレフタレートフィルム(厚み20μm)の片面に、手塗り専用のバー(バーNo.16)で塗工し、50℃で乾燥させてフィルムを形成した。フィルムの厚みは約2.0μmであった。実施例1のセルロースナノファイバー分散液を用いて得たフィルムと同じ厚さである5.9μmのフィルムを形成させるためには、塗布と乾燥を少なくとも2回以上繰り返す必要があった。
[Comparative Example 5]
The concentration of the 1% (w / v) cellulose nanofiber dispersion produced in Comparative Example 1 was adjusted to have a B-type viscosity of 600 mPa · s (60 rpm, 20 ° C.). The cellulose nanofiber concentration at this time was 0.4% (w / v). This dispersion was applied to one side of a polyethylene terephthalate film (thickness 20 μm) with a bar for hand coating (bar No. 16) and dried at 50 ° C. to form a film. The film thickness was about 2.0 μm. In order to form a 5.9 μm film having the same thickness as the film obtained using the cellulose nanofiber dispersion liquid of Example 1, it was necessary to repeat coating and drying at least twice.
 [比較例6]
 比較例2により製造した1%(w/v)のセルロースナノファイバー分散液を、B型粘度700mPa・s(60rpm、20℃)となるように濃度を調整した。このときのセルロースナノファイバー濃度は、0.26%(w/v)であった。この分散液を、ポリエチレンテレフタレートフィルム(厚み20μm)の片面に、手塗り専用のバー(バーNo.16)で塗工し、50℃で乾燥させてフィルムを形成した。フィルムの厚みは約1.6μmであった。実施例1のセルロースナノファイバー分散液を用いて得たフィルムと同じ厚さである5.9μmのフィルムを形成させるためには、塗布と乾燥を少なくとも3回以上繰り返す必要があった。
[Comparative Example 6]
The concentration of the 1% (w / v) cellulose nanofiber dispersion produced in Comparative Example 2 was adjusted so as to have a B-type viscosity of 700 mPa · s (60 rpm, 20 ° C.). The cellulose nanofiber concentration at this time was 0.26% (w / v). This dispersion was applied to one side of a polyethylene terephthalate film (thickness 20 μm) with a bar for hand coating (bar No. 16) and dried at 50 ° C. to form a film. The film thickness was about 1.6 μm. In order to form a 5.9 μm film having the same thickness as the film obtained using the cellulose nanofiber dispersion liquid of Example 1, it was necessary to repeat coating and drying at least three times.
 次に、解繊・分散処理の前に、酸化されたセルロース系原料からN-オキシル化合物を除去する具体例を示す。 Next, a specific example of removing the N-oxyl compound from the oxidized cellulosic raw material before the defibration / dispersion treatment will be shown.
 微量窒素量計(三菱化学、TN-10)を用いて、針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社)の窒素量を測定したところ、21ppmであった。次に、この漂白済み未叩解サルファイトパルプを、実施例1に記載の方法により酸化して、酸化されたセルロース系原料を調製した。得られた酸化されたセルロース系原料の窒素量を測定したところ、32ppmであった。酸化されたセルロース系原料の窒素量と原料パルプである漂白済み未叩解サルファイトパルプの窒素量との差は、酸化反応に用いたN-オキシル化合物(TEMPO)の窒素量に基づくと考えられるため、酸化されたセルロース系原料中に残留したTEMPO由来の窒素量は、32ppm-21ppm=11ppmであると計算できる。 Using a trace nitrogen meter (Mitsubishi Chemical, TN-10), the nitrogen content of bleached unbeaten sulfite pulp (Nippon Paper Chemical Co., Ltd.) derived from conifers was measured and found to be 21 ppm. Next, this bleached unbeaten sulfite pulp was oxidized by the method described in Example 1 to prepare an oxidized cellulosic material. The amount of nitrogen in the obtained oxidized cellulose raw material was measured and found to be 32 ppm. The difference between the nitrogen content of the oxidized cellulosic raw material and the nitrogen content of the bleached unbeaten sulfite pulp that is the raw pulp is considered to be based on the nitrogen content of the N-oxyl compound (TEMPO) used in the oxidation reaction The amount of nitrogen derived from TEMPO remaining in the oxidized cellulosic material can be calculated to be 32 ppm-21 ppm = 11 ppm.
 次いで、酸化されたセルロース系原料0.2g(絶乾)を、25mlの超純水に分散し、0.5N塩酸水溶液でpHを3.5に調整した。これを85℃で2時間加熱した後、ガラスフィルターでセルロース系原料をろ別し、十分に水洗することにより、セルロース系原料中の残留N-オキシル化合物(TEMPO)を除去した。得られたセルロース系原料を70℃で乾燥した後、セルロース系原料中の窒素量を測定したところ、23ppmであった。 Next, 0.2 g (absolutely dry) of the oxidized cellulose raw material was dispersed in 25 ml of ultrapure water, and the pH was adjusted to 3.5 with a 0.5N hydrochloric acid aqueous solution. After heating this at 85 ° C. for 2 hours, the cellulosic material was filtered off with a glass filter and washed thoroughly with water to remove residual N-oxyl compound (TEMPO) in the cellulosic material. After the obtained cellulose raw material was dried at 70 ° C., the amount of nitrogen in the cellulose raw material was measured and found to be 23 ppm.
 上記の通り、原料パルプである漂白済み未叩解サルファイトパルプの窒素量は21ppmであったから、N-オキシル化合物除去処理後の残留TEMPO由来の窒素量は、23ppm-21ppm=2ppmであることがわかる。また、上記の通り、N-オキシル化合物の除去処理前に存在したTEMPO由来の窒素量は11ppmであったから、上記の処理により、酸化されたセルロース系原料中に残留したTEMPOの82%を除去できたことがわかる。 As described above, since the nitrogen content of the bleached unbeaten sulfite pulp that is the raw material pulp was 21 ppm, it can be seen that the residual TEMPO-derived nitrogen amount after the N-oxyl compound removal treatment is 23 ppm-21 ppm = 2 ppm. . In addition, as described above, the amount of nitrogen derived from TEMPO that existed before the removal treatment of the N-oxyl compound was 11 ppm. Therefore, the above treatment can remove 82% of TEMPO remaining in the oxidized cellulose raw material. I understand that.
 また、加熱により溶解したセルロース量の指標として、上記加熱の後にパルプをろ別して得られたろ液中の全有機炭素量を、全有機体炭素計(島津製作所、TOC-V)を用いて測定した。 Further, as an index of the amount of cellulose dissolved by heating, the total organic carbon content in the filtrate obtained by filtering the pulp after the heating was measured using a total organic carbon meter (Shimadzu Corporation, TOC-V). .
 残留TEMPO由来の窒素量(ppm)、残留TEMPOの除去率(%)、及びろ液中の全有機炭素量(ppm)の結果を表6に示す。 Table 6 shows the results of the residual TEMPO-derived nitrogen amount (ppm), the residual TEMPO removal rate (%), and the total organic carbon amount (ppm) in the filtrate.
 pHを5.5とした以外、実施例34と同様にして加熱を行った。実施例34と同様にして測定した残留TEMPO由来の窒素量(ppm)、残留TEMPOの除去率(%)、及びろ液中の全有機炭素量(ppm)の結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the pH was set to 5.5. Table 6 shows the results of the residual TEMPO-derived nitrogen amount (ppm), the residual TEMPO removal rate (%), and the total organic carbon amount (ppm) in the filtrate, measured in the same manner as in Example 34.
 pHを7.7とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34, except that the pH was 7.7. The results are shown in Table 6.
 pHを2.5とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the pH was 2.5. The results are shown in Table 6.
 0.5N水酸化ナトリウム水溶液を用いてpHを11.9とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the pH was adjusted to 11.9 using a 0.5N aqueous sodium hydroxide solution. The results are shown in Table 6.
 温度を50℃、時間を4時間とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the temperature was 50 ° C. and the time was 4 hours. The results are shown in Table 6.
 温度を120℃、時間を30分間とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the temperature was 120 ° C. and the time was 30 minutes. The results are shown in Table 6.
 温度を40℃、時間を6時間とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the temperature was 40 ° C. and the time was 6 hours. The results are shown in Table 6.
 温度を130℃、時間を10分間とした以外、実施例34と同様にして加熱を行った。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the temperature was 130 ° C. and the time was 10 minutes. The results are shown in Table 6.
 実施例1に記載の方法により得た紫外線処理した酸化されたセルロース系原料を用いた以外、実施例34と同様にして加熱を行なった。加熱処理後(TEMPO除去後)のセルロース系原料中の窒素量は、21ppmであった。実施例34に記載の通り、原料パルプである漂白済み未叩解サルファイトパルプの窒素量は21ppmであったから、TEMPO除去処理後の残留TEMPO由来の窒素量は、21ppm-21ppm=0ppmであることがわかる。TEMPO除去処理により、酸化されたセルロース系原料中に残留したTEMPOを100%除去できた。結果を表6に示す。 Heating was carried out in the same manner as in Example 34, except that an oxidized cellulose material obtained by ultraviolet treatment obtained by the method described in Example 1 was used. The amount of nitrogen in the cellulosic material after the heat treatment (after removal of TEMPO) was 21 ppm. As described in Example 34, the nitrogen content of the bleached unbeaten sulfite pulp, which is the raw material pulp, was 21 ppm. Therefore, the nitrogen content derived from the residual TEMPO after the TEMPO removal treatment was 21 ppm-21 ppm = 0 ppm. Recognize. By the TEMPO removal treatment, TEMPO remaining in the oxidized cellulosic material could be removed 100%. The results are shown in Table 6.
 実施例13に記載の方法により得たセルラーゼ処理した酸化されたセルロース系原料を用いた以外、実施例34と同様にして加熱を行なった。加熱処理後(TEMPO除去後)のセルロース系原料中の窒素量は、23ppmであった。実施例34に記載の通り、原料パルプである漂白済み未叩解サルファイトパルプの窒素量は21ppmであったから、TEMPO除去処理後の残留TEMPO由来の窒素量は、23ppm-21ppm=2ppmであることがわかる。また、実施例34に記載の通り、酸化されたセルロース系原料中に存在したTEMPO由来の窒素量は11ppmであったから、TEMPO除去処理により、酸化されたセルロース系原料中に残留したTEMPOの82%を除去できたことがわかる。結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the cellulase-treated oxidized cellulose material obtained by the method described in Example 13 was used. The amount of nitrogen in the cellulosic material after the heat treatment (after removal of TEMPO) was 23 ppm. As described in Example 34, the nitrogen content of the bleached unbeaten sulfite pulp, which is the raw material pulp, was 21 ppm. Therefore, the amount of nitrogen derived from the residual TEMPO after the TEMPO removal treatment was 23 ppm-21 ppm = 2 ppm. Recognize. In addition, as described in Example 34, since the amount of nitrogen derived from TEMPO present in the oxidized cellulose raw material was 11 ppm, 82% of TEMPO remaining in the oxidized cellulose raw material by the TEMPO removal treatment. It turns out that was able to be removed. The results are shown in Table 6.
 実施例22に記載の方法により得たオゾンと過酸化水素で処理した酸化されたセルロース系原料を用いた以外、実施例34と同様にして加熱を行なった。実施例44に記載の方法で求めた結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the oxidized cellulose raw material treated with ozone and hydrogen peroxide obtained by the method described in Example 22 was used. The results obtained by the method described in Example 44 are shown in Table 6.
 実施例31に記載の方法により得た酸加水分解処理した酸化されたセルロース系原料を用いた以外、実施例34と同様にして加熱を行なった。実施例44に記載の方法で求めた結果を表6に示す。 Heating was performed in the same manner as in Example 34 except that the acid-hydrolyzed oxidized cellulose material obtained by the method described in Example 31 was used. The results obtained by the method described in Example 44 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例43により得られたTEMPO除去した低粘度化された酸化セルロース系原料をアルカリで中和した後、超高圧ホモジナイザーを用いて140MPaの圧力で10回処理して、透明なゲル状分散液であるセルロースナノファイバーの分散液を得た。得られたセルロースナノファイバー分散液の透明度、B型粘度、及び解繊・分散処理に要した消費電力を、実施例1に記載の方法で求めた。結果を表7に示す。 After neutralizing the TEMPO-removed low-viscosity oxidized cellulose-based material obtained in Example 43 with alkali, it was treated 10 times at a pressure of 140 MPa using an ultra-high pressure homogenizer, and a transparent gel dispersion was used. A cellulose nanofiber dispersion was obtained. The transparency of the obtained cellulose nanofiber dispersion, the B-type viscosity, and the power consumption required for the fibrillation / dispersion treatment were determined by the method described in Example 1. The results are shown in Table 7.
 実施例44により得られたTEMPO除去した低粘度化された酸化セルロース系原料を用いた以外は実施例43と同様にして、透明なゲル状分散液であるセルロースナノファイバーの分散液を得た。結果を表7に示す。 A dispersion of cellulose nanofibers, which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43, except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 44 was used. The results are shown in Table 7.
 実施例45により得られたTEMPO除去した低粘度化された酸化セルロース系原料を用いた以外は実施例43と同様にして、透明なゲル状分散液であるセルロースナノファイバーの分散液を得た。結果を表7に示す。 A dispersion of cellulose nanofibers, which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43 except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 45 was used. The results are shown in Table 7.
 実施例46により得られたTEMPO除去した低粘度化された酸化セルロース系原料を用いた以外は実施例43と同様にして、透明なゲル状分散液であるセルロースナノファイバーの分散液を得た。結果を表7に示す。 A dispersion of cellulose nanofibers, which is a transparent gel-like dispersion, was obtained in the same manner as in Example 43 except that the low-viscosity oxidized cellulose-based raw material obtained by removing TEMPO obtained in Example 46 was used. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012

Claims (20)

  1.  (A)(1)N-オキシル化合物、及び、(2)臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物の存在下で、酸化剤を用いてセルロース系原料を酸化すること、
     (B)前記(A)からのセルロース系原料を低粘度化処理すること、及び、
     (C)前記(B)からのセルロース系原料を解繊・分散処理することによりナノファイバー化すること、
    を含む、セルロースナノファイバーの製造方法。
    Oxidizing the cellulosic raw material using an oxidizing agent in the presence of (A) (1) an N-oxyl compound and (2) a compound selected from the group consisting of bromide, iodide or a mixture thereof;
    (B) subjecting the cellulose-based raw material from (A) to a viscosity-reducing treatment; and
    (C) Nanofiberization by defibrating and dispersing the cellulosic material from (B),
    The manufacturing method of the cellulose nanofiber containing this.
  2.  前記低粘度化処理が、前記(A)からのセルロース系原料に紫外線を照射することである、請求項1に記載の方法。 The method according to claim 1, wherein the viscosity-reducing treatment is to irradiate the cellulosic material from (A) with ultraviolet rays.
  3.  前記低粘度化処理が、前記(A)からのセルロース系原料にセルラーゼおよび/またはヘミセルラーゼを添加して加水分解処理することである、請求項1に記載の方法。 The method according to claim 1, wherein the viscosity reduction treatment is a hydrolysis treatment by adding cellulase and / or hemicellulase to the cellulosic material from (A).
  4.  前記低粘度化処理が、前記(A)からのセルロース系原料に過酸化水素及びオゾンを添加して酸化分解処理することである、請求項1に記載の方法。 The method according to claim 1, wherein the viscosity-reducing treatment is an oxidative decomposition treatment by adding hydrogen peroxide and ozone to the cellulosic material from (A).
  5.  前記低粘度化処理が、前記(A)からのセルロース系原料に酸を添加して加水分解処理することである、請求項1に記載の方法。 The method according to claim 1, wherein the viscosity reduction treatment is a hydrolysis treatment by adding an acid to the cellulosic material from (A).
  6.  前記紫外線の波長が、100~400nmである、請求項2に記載の方法。 The method according to claim 2, wherein the wavelength of the ultraviolet ray is 100 to 400 nm.
  7.  前記紫外線の照射が、酸化剤の存在下で行われる、請求項2又は6に記載の方法。 The method according to claim 2 or 6, wherein the ultraviolet irradiation is performed in the presence of an oxidizing agent.
  8.  前記紫外線の光源が、波長特性の異なる複数の光源からなる、請求項2、6、7のいずれかに記載の方法。 8. The method according to claim 2, wherein the ultraviolet light source comprises a plurality of light sources having different wavelength characteristics.
  9.  前記セルラーゼの添加量が、前記(A)からのセルロース系原料の絶乾質量に対して、0.001~10質量%である、請求項3に記載の方法。 The method according to claim 3, wherein the addition amount of the cellulase is 0.001 to 10% by mass relative to the absolutely dry mass of the cellulosic material from (A).
  10.  前記加水分解処理が、pH4~10、温度40~70℃の条件下で、0.5~24時間行なわれる、請求項3又は9に記載の方法。 The method according to claim 3 or 9, wherein the hydrolysis treatment is carried out under conditions of pH 4 to 10 and temperature of 40 to 70 ° C for 0.5 to 24 hours.
  11.  前記オゾンの添加量が、前記(A)からのセルロース系原料の絶乾質量に対して、0.1~3倍である、請求項4に記載の方法。 The method according to claim 4, wherein the amount of ozone added is 0.1 to 3 times the absolute dry mass of the cellulosic material from (A).
  12.  前記過酸化水素の添加量が、前記(A)からのセルロース系原料の絶乾質量に対して、0.001~1.5倍である、請求項4又は11に記載の方法。 The method according to claim 4 or 11, wherein the amount of hydrogen peroxide added is 0.001 to 1.5 times the absolute dry mass of the cellulosic material from (A).
  13.  前記加水分解処理が、pH2~4、温度70~120℃の条件下で、1~10時間行なわれる、請求項5に記載の方法。 The method according to claim 5, wherein the hydrolysis treatment is performed for 1 to 10 hours under conditions of pH 2 to 4 and temperature 70 to 120 ° C.
  14.  前記酸が、硫酸、塩酸、硝酸、またはリン酸である、請求項5又は13に記載の方法。 The method according to claim 5 or 13, wherein the acid is sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid.
  15.  前記酸の添加量が、前記(A)からのセルロース系原料の絶乾質量に対して、0.01~0.5質量%である、請求項5、13、14のいずれかに記載の方法。 The method according to any one of claims 5, 13, and 14, wherein the addition amount of the acid is 0.01 to 0.5 mass% with respect to the absolute dry mass of the cellulosic material from (A). .
  16.  前記解繊・分散処理が、50MPa以上の圧力下で行われる、請求項1~15のいずれかに記載の方法。 The method according to any one of claims 1 to 15, wherein the defibrating and dispersing treatment is performed under a pressure of 50 MPa or more.
  17.  前記(A)と(B)との間に、
    (D)セルロース系原料を、pH3~10の条件下で50℃以上120℃以下に加熱し、次いで水洗することにより、セルロース系原料中のN-オキシル化合物を除去すること
    を含む、請求項1~15のいずれかに記載の方法。
    Between (A) and (B),
    (D) removing the N-oxyl compound in the cellulosic raw material by heating the cellulosic raw material to 50 ° C. or higher and 120 ° C. or lower under a pH of 3 to 10 and then washing with water. The method according to any one of to 15.
  18.  前記(B)と(C)との間に、
    (D)セルロース系原料を、pH3~10の条件下で50℃以上120℃以下に加熱し、次いで水洗することにより、セルロース系原料中のN-オキシル化合物を除去すること
    を含む、請求項1~17のいずれかに記載の方法。
    Between (B) and (C),
    (D) removing the N-oxyl compound in the cellulosic raw material by heating the cellulosic raw material to 50 ° C. or higher and 120 ° C. or lower under a pH of 3 to 10 and then washing with water. The method according to any one of 1 to 17.
  19.  N-オキシル化合物が、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(4-ヒドロキシTEMPO)、4-ヒドロキシTEMPOの水酸基をエーテル化もしくはエステル化して得られる4-ヒドロキシTEMPO誘導体、又はアザアダマンタン型ニトロキシラジカル、或いはそれらの混合物である、請求項1~18のいずれかに記載の方法。 N-oxyl compounds are 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO), 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine-N— An oxy radical (4-hydroxy TEMPO), a 4-hydroxy TEMPO derivative obtained by etherification or esterification of a hydroxyl group of 4-hydroxy TEMPO, or an azaadamantane type nitroxy radical, or a mixture thereof. The method in any one of.
  20.  請求項1~19のいずれかに記載の方法により得られるセルロースナノファイバー。 A cellulose nanofiber obtained by the method according to any one of claims 1 to 19.
PCT/JP2010/053570 2009-03-30 2010-03-04 Process for producing cellulose nanofibers WO2010116826A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-082604 2009-03-30
JP2009082377A JP5426209B2 (en) 2009-03-30 2009-03-30 Method for removing organic oxidation catalyst remaining in oxidized pulp
JP2009-082377 2009-03-30
JP2009082520A JP5404131B2 (en) 2009-03-30 2009-03-30 Method for producing cellulose nanofiber
JP2009-082651 2009-03-30
JP2009-082520 2009-03-30
JP2009082651A JP5329279B2 (en) 2009-03-30 2009-03-30 Method for producing cellulose nanofiber
JP2009082604A JP2010235679A (en) 2009-03-30 2009-03-30 Method for manufacturing cellulose nano-fiber
JP2009129297A JP5381338B2 (en) 2009-05-28 2009-05-28 Method for producing cellulose nanofiber
JP2009-129297 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010116826A1 true WO2010116826A1 (en) 2010-10-14

Family

ID=42936114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053570 WO2010116826A1 (en) 2009-03-30 2010-03-04 Process for producing cellulose nanofibers

Country Status (1)

Country Link
WO (1) WO2010116826A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
WO2011118746A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
WO2012043103A1 (en) * 2010-09-28 2012-04-05 日本製紙株式会社 Cellulose nanofiber
WO2012132903A1 (en) * 2011-03-30 2012-10-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2012207135A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2012214717A (en) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
JPWO2011040547A1 (en) * 2009-09-30 2013-02-28 日本製紙株式会社 Paper barrier material
WO2013047218A1 (en) * 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2013163773A (en) * 2012-02-13 2013-08-22 Oji Holdings Corp Method of manufacturing fine fibrous cellulose
WO2013137140A1 (en) * 2012-03-14 2013-09-19 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber dispersion liquid
WO2013188657A1 (en) * 2012-06-13 2013-12-19 University Of Maine System Board Of Trustees Energy efficient process for preparing nanocellulose fibers
WO2014029909A1 (en) * 2012-08-20 2014-02-27 Stora Enso Oyj Method and intermediate for the production of highly refined or microfibrillated cellulose
US8710213B2 (en) 2012-05-14 2014-04-29 The United States Of America As Represented By The Secretary Of Agriculture Methods for integrating the production of cellulose nanofibrils with the production of cellulose nanocrystals
CN104387478A (en) * 2014-12-17 2015-03-04 菏泽市产品质量监督检验所 Preparation method of peony stem nano-cellulose for oil
JP2016501926A (en) * 2012-11-03 2016-01-21 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for producing nanofibrillated cellulose
JP2016030809A (en) * 2014-07-30 2016-03-07 ハイモ株式会社 Method for producing cellulose nanofiber
CN106192040A (en) * 2016-08-08 2016-12-07 四川大学 A kind of preparation method of high aspect fibers element nanofiber
WO2020085479A1 (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for manufacturing same
US10968283B2 (en) 2014-07-28 2021-04-06 Anomera Inc. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced
CN112867738A (en) * 2018-10-16 2021-05-28 王子控股株式会社 Fibrous cellulose, fibrous cellulose dispersion, and method for producing fibrous cellulose
US20210301034A1 (en) * 2018-08-03 2021-09-30 Toagosei Co., Ltd. Oxidized Cellulose, Method of Producing Oxidized Cellulose and Nanocellulose, and Nanocellulose Dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026701A (en) * 2001-03-28 2003-01-29 Natl Starch & Chem Investment Holding Corp Modified fluff pulp, fluff pulp product and use thereof
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method
JP2003516939A (en) * 1999-11-08 2003-05-20 エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ How to oxidize primary alcohols
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
JP2008169497A (en) * 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd Method for producing nanofiber, and nanofiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512540A (en) * 1999-10-15 2003-04-02 ウェヤーハウザー・カンパニー Method for producing carboxylated cellulose fibers and products of the method
JP2003516939A (en) * 1999-11-08 2003-05-20 エスシーエイ・ハイジーン・プロダクツ・ゼイスト・ベー・ブイ How to oxidize primary alcohols
JP2003026701A (en) * 2001-03-28 2003-01-29 Natl Starch & Chem Investment Holding Corp Modified fluff pulp, fluff pulp product and use thereof
JP2008001728A (en) * 2006-06-20 2008-01-10 Asahi Kasei Corp Fine cellulose fiber
JP2008169497A (en) * 2007-01-10 2008-07-24 Kimura Chem Plants Co Ltd Method for producing nanofiber, and nanofiber

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287692B2 (en) * 2007-12-28 2012-10-16 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
JPWO2011040547A1 (en) * 2009-09-30 2013-02-28 日本製紙株式会社 Paper barrier material
WO2011118746A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
WO2012043103A1 (en) * 2010-09-28 2012-04-05 日本製紙株式会社 Cellulose nanofiber
US9139662B2 (en) 2011-03-30 2015-09-22 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
WO2012132903A1 (en) * 2011-03-30 2012-10-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2012207135A (en) * 2011-03-30 2012-10-25 Nippon Paper Industries Co Ltd Method for manufacturing cellulose nanofiber
JP2012214717A (en) * 2011-03-30 2012-11-08 Nippon Paper Industries Co Ltd Method for producing cellulose nanofiber
JP5285197B1 (en) * 2011-09-30 2013-09-11 日本製紙株式会社 Method for producing cellulose nanofiber
US9365973B2 (en) 2011-09-30 2016-06-14 Nippon Paper Industries Co., Ltd. Method for producing cellulose nanofibers
WO2013047218A1 (en) * 2011-09-30 2013-04-04 日本製紙株式会社 Method for producing cellulose nanofibers
JP2013163773A (en) * 2012-02-13 2013-08-22 Oji Holdings Corp Method of manufacturing fine fibrous cellulose
WO2013137140A1 (en) * 2012-03-14 2013-09-19 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber dispersion liquid
CN104169306A (en) * 2012-03-14 2014-11-26 日本制纸株式会社 Method for producing anion-modified cellulose nanofiber dispersion liquid
JPWO2013137140A1 (en) * 2012-03-14 2015-08-03 日本製紙株式会社 Method for producing anion-modified cellulose nanofiber dispersion
US8710213B2 (en) 2012-05-14 2014-04-29 The United States Of America As Represented By The Secretary Of Agriculture Methods for integrating the production of cellulose nanofibrils with the production of cellulose nanocrystals
WO2013188657A1 (en) * 2012-06-13 2013-12-19 University Of Maine System Board Of Trustees Energy efficient process for preparing nanocellulose fibers
US10563352B2 (en) 2012-06-13 2020-02-18 University Of Maine System Board Of Trustees Energy efficient process for preparing nanocellulose fibers
WO2014029909A1 (en) * 2012-08-20 2014-02-27 Stora Enso Oyj Method and intermediate for the production of highly refined or microfibrillated cellulose
US10900169B2 (en) 2012-08-20 2021-01-26 Stora Enso Oyj Method and intermediate for the production of highly refined or microfibrillated cellulose
CN104619913A (en) * 2012-08-20 2015-05-13 斯塔诺阿埃索澳吉有限公司 Method and intermediate for the production of highly refined or microfibrillated cellulose
US9797093B2 (en) 2012-11-03 2017-10-24 Upm-Kymmene Corporation Method for producing nanofibrillar cellulose
JP2016501926A (en) * 2012-11-03 2016-01-21 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for producing nanofibrillated cellulose
US10968283B2 (en) 2014-07-28 2021-04-06 Anomera Inc. Method for producing functionalized nanocrystalline cellulose and functionalized nanocrystalline cellulose thereby produced
JP2016030809A (en) * 2014-07-30 2016-03-07 ハイモ株式会社 Method for producing cellulose nanofiber
CN104387478A (en) * 2014-12-17 2015-03-04 菏泽市产品质量监督检验所 Preparation method of peony stem nano-cellulose for oil
CN106192040A (en) * 2016-08-08 2016-12-07 四川大学 A kind of preparation method of high aspect fibers element nanofiber
US20210301034A1 (en) * 2018-08-03 2021-09-30 Toagosei Co., Ltd. Oxidized Cellulose, Method of Producing Oxidized Cellulose and Nanocellulose, and Nanocellulose Dispersion
US11919974B2 (en) * 2018-08-03 2024-03-05 Toagosei Co., Ltd. Oxidized cellulose, method of producing oxidized cellulose and nanocellulose, and nanocellulose dispersion
CN112867738A (en) * 2018-10-16 2021-05-28 王子控股株式会社 Fibrous cellulose, fibrous cellulose dispersion, and method for producing fibrous cellulose
US11945884B2 (en) 2018-10-16 2024-04-02 Oji Holdings Corporation Fibrous cellulose, fibrous cellulose dispersion, and production method for fibrous cellulose
WO2020085479A1 (en) * 2018-10-26 2020-04-30 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for manufacturing same
JPWO2020085479A1 (en) * 2018-10-26 2021-10-07 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for producing the same
JP7355028B2 (en) 2018-10-26 2023-10-03 王子ホールディングス株式会社 Fine fibrous cellulose-containing composition and method for producing the same

Similar Documents

Publication Publication Date Title
WO2010116826A1 (en) Process for producing cellulose nanofibers
JP5330882B2 (en) Method for producing cellulose gel dispersion
JP5178931B2 (en) Method for producing cellulose nanofiber
WO2011118748A1 (en) Method for producing cellulose nanofibers
JP5285197B1 (en) Method for producing cellulose nanofiber
JP5329279B2 (en) Method for producing cellulose nanofiber
WO2012132903A1 (en) Method for producing cellulose nanofibers
JP5381338B2 (en) Method for producing cellulose nanofiber
WO2011118746A1 (en) Method for producing cellulose nanofibers
JP2010235679A (en) Method for manufacturing cellulose nano-fiber
JP5731253B2 (en) Method for producing cellulose nanofiber
WO2013137140A1 (en) Method for producing anion-modified cellulose nanofiber dispersion liquid
JP2009263652A (en) Method of producing cellulose nanofibers
JP5179616B2 (en) Method for producing cellulose nanofiber
JP5404131B2 (en) Method for producing cellulose nanofiber
JP2010236106A (en) Process for removing organic oxidizing catalyst remaining in oxidized pulp
JP6405751B2 (en) Method for producing fine cellulose
JP6877136B2 (en) Manufacturing method of carboxylated cellulose nanofibers
WO2012132663A1 (en) Method for producing cellulose nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761528

Country of ref document: EP

Kind code of ref document: A1