WO2011037251A1 - 積層体の製造方法 - Google Patents

積層体の製造方法 Download PDF

Info

Publication number
WO2011037251A1
WO2011037251A1 PCT/JP2010/066806 JP2010066806W WO2011037251A1 WO 2011037251 A1 WO2011037251 A1 WO 2011037251A1 JP 2010066806 W JP2010066806 W JP 2010066806W WO 2011037251 A1 WO2011037251 A1 WO 2011037251A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
single crystal
crystal layer
iii nitride
growth
Prior art date
Application number
PCT/JP2010/066806
Other languages
English (en)
French (fr)
Inventor
亨 木下
和哉 高田
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to US13/498,344 priority Critical patent/US9297093B2/en
Priority to KR1020127007988A priority patent/KR101669259B1/ko
Priority to JP2011533074A priority patent/JP5743893B2/ja
Priority to EP10818921.8A priority patent/EP2484816B1/en
Priority to CN201080043215.1A priority patent/CN102549203B/zh
Publication of WO2011037251A1 publication Critical patent/WO2011037251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to a novel laminate in which a group III nitride single crystal layer is laminated on a sapphire substrate by metal organic vapor phase epitaxy, and a method for producing the same.
  • a novel laminated body which can be utilized for an ultraviolet light emitting element (light emitting diode or laser diode), an ultraviolet sensor, etc., and its manufacturing method.
  • a group III nitride semiconductor containing aluminum (Al) has a direct transition band structure in the ultraviolet region corresponding to a wavelength of 200 nm to 360 nm, a highly efficient ultraviolet light emitting device can be manufactured.
  • Group III nitride semiconductor devices are formed on a single crystal substrate by vapor phase growth methods such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or halide vapor phase epitaxy (HVPE). It is manufactured by growing a group III nitride semiconductor thin film.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE halide vapor phase epitaxy
  • a group III nitride semiconductor crystal containing Al is formed on a dissimilar material substrate such as a sapphire substrate or a silicon carbide substrate.
  • a sapphire substrate is widely used from the viewpoint of light transmittance.
  • the group III nitride semiconductor crystal containing Al has two polarities, the group III polarity (for example, Al polarity when the group III nitride is AlN) and the nitrogen polarity (N polarity), which are in a front-back relationship.
  • the group III polarity for example, Al polarity when the group III nitride is AlN
  • the nitrogen polarity N polarity
  • AlN group III polarity (Al polarity) and nitrogen polarity (N polarity) will be described in more detail.
  • the Al polarity is a crystal growth plane having a “0001” plane or a + C plane.
  • An aluminum (Al) atom is present at the center (center of gravity) of a regular tetrahedron, and nitrogen (N) atoms are present at four vertices. It is defined as an existing tetrahedral structure as a unit unit.
  • Al polarity growth means growing while forming such a unit unit.
  • the N polarity is a crystal growth plane with the “000-1” plane or the ⁇ C plane, and N atoms exist at the center (center of gravity) of the tetrahedron, and Al atoms are present at the four vertices. Is defined as a unit unit of a regular tetrahedron structure in which is present. N-polar growth means growing while forming such unit units. Moreover, comparing the characteristics of the physical properties of the crystals obtained by these growths, the surface of the “exposed surface” (Al polar surface) opposite to the surface to be bonded to the sapphire substrate is obtained in the crystals obtained by the Al polar growth. While the smoothness, chemical resistance, and heat resistance are high, in the crystal obtained by N-polar growth, these physical properties of the “exposed surface” (N-polar surface) are inferior to those of the Al-polar surface.
  • the difference in physical properties of each polar surface is basically the same for a group III nitride single crystal other than AlN, particularly a group III nitride single crystal having a high AlN content, Whether or not a group III nitride (for example, AlN) single crystal grown on a sapphire substrate has grown group III polarity can be easily determined using the difference in chemical resistance. That is, an etching for immersing a laminate (a laminate in which a group III nitride single crystal layer is formed on a sapphire substrate) in an alkaline aqueous solution such as potassium hydroxide (KOH) and observing the dissolved state of the crystal surface after immersion. This can be done simply by testing.
  • KOH potassium hydroxide
  • the surface of the group III nitride single crystal layer is a group III polar surface, it is not etched because it has high resistance to an alkaline aqueous solution.
  • the surface is an N-polar surface, it is easily etched. Therefore, by observing the surface before and after such a test, it can be determined that group III polarity has grown unless etching marks are observed, and conversely, if clear etching marks are observed, N polarity has grown. I can judge.
  • a group III atom is provided by providing a process for supplying only a group III material (for example, an Al material).
  • a method has been proposed to create an oversatiated state of
  • Non-Patent Document 3 it is necessary to increase the amount of the Group III raw material to be supplied in order to perform Group III polar growth more stably, but on the other hand, the crystal quality tends to be lowered. ing.
  • Non-Patent Document 3 Al polar growth was possible, but the grown substrate was Slightly Al metal color was exhibited, the linear transmittance in the region of 280 nm or less of the substrate was as low as 60% or less, and the linear transmittance for light of 250 nm was also 60% or less.
  • an ultraviolet light emitting device is produced on such an AlN laminated body, the extraction efficiency of light emitted to the outside through the AlN layer is remarkably lowered, and as a result, the characteristics of the ultraviolet light emitting device are also expected to be lowered.
  • the first object to be solved by the present invention is to propose a novel method capable of stably growing group III polarity when a group III nitride semiconductor crystal such as AlN is grown on a sapphire substrate by MOCVD. That is.
  • a second object is to provide a laminate in which a group III nitride single crystal layer having high light transmittance and good crystal quality is laminated on a sapphire substrate using the above method.
  • the present inventors have examined the growth conditions of the group III nitride single crystal on the sapphire substrate.
  • a growth condition in an initial stage (a single crystal layer formed in the initial stage is also referred to as an initial single crystal layer) in which a group III nitride single crystal having a high Al content such as AlN is grown on a sapphire substrate.
  • group III polar growth occurs stably when oxygen is supplied onto the sapphire substrate together with the source gas during the formation of the initial single crystal layer.
  • the oxygen concentration in the initial single crystal layer and the thickness of the initial single crystal layer were controlled to a specific range, and further, the oxygen concentration on the initial single crystal layer was controlled.
  • the group III nitride single crystal layer is also formed by stable group III polarity growth, and the crystallinity of the obtained single crystal layer is also good.
  • the present invention has been completed.
  • a method of manufacturing comprising: By supplying an oxygen source gas onto the sapphire substrate together with a group III source gas, which is a source gas for growing the group III nitride crystal, and a nitrogen source gas, oxygen is 1 ⁇ 10 20 cm ⁇ 3 or more and 5
  • An initial stage consisting of a group III nitride containing oxygen on a sapphire substrate at a concentration of 1 ⁇ 10 20 cm ⁇ 3 to 5 ⁇ 10 21 cm ⁇ 3 and a thickness of 15 nm to 40 nm.
  • a single crystal layer is laminated, and on the initial single crystal layer, a second group III nitride single crystal layer composed of a group III nitride having a lower oxygen concentration than the initial single crystal layer and satisfying the composition is provided. It is the laminated body laminated
  • the surface of the second group III nitride single crystal layer can be a group III nitride polar surface.
  • the third invention is a semiconductor device having the laminate.
  • the present invention when a group III nitride single crystal having a high Al content represented by the formula Al X Ga Y In Z N and X ⁇ 0.9 is grown on a sapphire substrate by MOCVD.
  • the group III nitride single crystal can be grown by stable group III polar growth.
  • the resulting group III nitride single crystal has a smooth surface at the atomic level and good crystallinity.
  • the laminated body obtained by the method of the present invention uses sapphire having a high light transmittance even for ultraviolet light as a substrate, by using it as a substrate for an ultraviolet light emitting device, the light emission characteristics of the device can be improved. It becomes possible to improve.
  • a source gas Group III source gas and nitrogen source gas
  • MOCVD method and equipment used In the method of the present invention, a group III nitride single crystal layer is grown by metal organic chemical vapor deposition (MOCVD).
  • MOCVD method supplies a group III source gas, for example, an organic metal gas such as triethylaluminum, and a source gas such as a nitrogen source gas, for example, ammonia gas, onto the substrate.
  • a nitride single crystal layer is grown.
  • the method of the present invention is not particularly limited as long as it is an apparatus capable of performing such MOCVD method, and a known MOCVD apparatus or a commercially available MOCVD apparatus can be used without limitation.
  • a substrate is heated.
  • Equipment that has a structure that can minimize the amount of impurities generated from the peripheral members of the substrate that become high temperature due to radiation, especially oxygen such as oxygen generated from the material that constitutes the peripheral members of the substrate. It is preferable to do.
  • a device that uses a material made of high-purity ceramics such as boron nitride or AlN at least in contact with the source gas. Is preferred.
  • Both the initial single crystal layer and the second group III nitride single crystal layer in the present invention may be basically composed of the group III nitride single crystal represented by the composition formula described above.
  • the group III nitride single crystal constituting the initial single crystal layer in the method of the present invention contains oxygen at a predetermined concentration, and the group III nitride single crystal constituting the second group III nitride single crystal layer is also Oxygen atoms can be contained at a concentration lower than that in the initial single crystal layer. However, the amount of oxygen atoms contained in these crystals is very small and can be handled as so-called impurities. In the field of group III nitride single crystals, the basic crystal composition is expressed without considering impurities. Is common. Therefore, in the present invention, the basic composition formula of the group III nitride single crystal is treated as not changing due to the presence of oxygen.
  • composition formulas (combinations of specific numerical values of X, Y and Z) of the group III nitride single crystals constituting the initial single crystal layer and the second group III nitride single crystal layer may be the same or different. Good. However, from the viewpoint of ease of production and light transmittance, it is preferable that both have the same composition, and it is particularly preferable that both be AlN.
  • a first growth step is performed. That is, in the first growth step, a group III source gas, a nitrogen source gas, and an oxygen source gas are used as source gases, and these are supplied onto a sapphire substrate, thereby having the basic composition and an oxygen concentration of An initial single crystal layer made of a group III nitride having a thickness of ⁇ 10 20 cm ⁇ 3 to 5 ⁇ 10 21 cm ⁇ 3 is grown to a thickness of 15 nm to 40 nm.
  • the second group III nitride single crystal layer can be stably grown by group III polar growth, and the surface smoothness of the layer can be improved.
  • the crystallinity can be increased while increasing.
  • other group III nitride single crystal layers necessary for forming a semiconductor device on the second group III nitride single crystal layer are formed, the crystallinity of these single crystal layers can be improved. it can.
  • the present inventors presume that it is the following mechanism. That is, in the crystal growth by MOCVD method, the part that becomes the nucleus of group III polar growth (group III polar growth nucleus) and the part that becomes the nucleus of nitrogen polar growth (nitrogen polar growth nucleus) at the very initial stage are on the sapphire substrate surface. Each of these nuclei is thought to grow competitively, with many adhering randomly. At this time, because the growth rate of group III polar growth is faster than the growth rate of nitrogen polar growth, if the abundance density of group III polar growth nuclei exceeds a certain level, it grows even if nitrogen polarity growth nuclei exist.
  • group III polarity growth prevails, and eventually complete or nearly complete group III polarity growth.
  • group III polarity growth prevails, and eventually complete or nearly complete group III polarity growth.
  • the existence density of group III polar growth nuclei becomes too high, when single crystal domains grown from the respective growth nuclei collide with each other, dislocations and the like are caused by a slight misalignment between the domains. Defects are likely to occur and the crystallinity is lowered.
  • the present invention by controlling the oxygen concentration and its thickness in the initial single crystal layer formed in the first growth step, it becomes possible to control the presence density of group III polar growth nuclei moderately high,
  • the present inventors consider that the inventors succeeded in enhancing the superiority of group III polarity growth while preventing the decrease in crystallinity.
  • oxygen has the effect of promoting the formation of group III polar growth nuclei (attachment to the substrate surface), and the nuclei at the time of nucleation It is considered that the higher the concentration of oxygen gas in the substrate, and the higher the concentration of oxygen contained in the initial single crystal layer, the higher the adhesion rate to the substrate surface and the higher the density of group III polar growth nuclei.
  • the existence density of the group III polar growth nuclei is prevented from becoming too high, and the decrease in crystallinity is prevented. ing.
  • an upper limit is set on the thickness of the initial single crystal layer to prevent such a decrease in crystallinity.
  • the surface (uppermost surface) of the initial single crystal layer formed by such control is in a state where the crystallinity and the surface smoothness are good and the group III polar growth surface occupies most. Therefore, it is considered that the group III polar growth can be stably performed even if the supply of oxygen is stopped in the second growth step.
  • the detail of a 1st process is demonstrated.
  • the sapphire substrate used in the first step is not particularly limited as long as a group III nitride single crystal layer can be grown on the surface, and a known sapphire substrate can be used.
  • a sapphire substrate a substrate having a crystal growth plane orientation of (0001) plane (C plane) or a crystal growth plane from the C plane to the M-axis direction is selected from the ease of growth of a group III nitride single crystal. It is preferable to use a substrate with an OFF angle that is more than 0.5 ° and inclined by 0.5 ° or less.
  • the thickness is not particularly limited, but is preferably 0.1 mm or more and 1.0 mm or less, and particularly preferably 0.2 mm or more and 0.5 mm or less from the viewpoint of manufacturing cost and ease of handling. .
  • Such a sapphire substrate is heated in a hydrogen atmosphere at 1200 ° C. or more, more preferably 1250 ° C. or more after being placed in a MOCVD apparatus before forming the initial single crystal layer described in detail below.
  • thermal cleaning it is preferable to clean the substrate surface (thermal cleaning).
  • the upper limit temperature of this thermal cleaning is usually 1500 ° C.
  • group III source gas group III source gas, nitrogen source gas, and oxygen source gas are used as the source gas.
  • These source gases are usually supplied into the reaction system (on the substrate in the apparatus) together with a carrier gas such as hydrogen gas or nitrogen gas (this is the same in the second growth step described later).
  • the group III source gas and nitrogen source gas include a group III source gas and nitrogen that can be used to grow a group III nitride single crystal by MOCVD according to the composition of the group III nitride single crystal to be grown.
  • Source gas can be used without any particular limitation.
  • a trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, or trimethylindium gas as the group III source gas.
  • group III source gas a trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, or trimethylindium gas.
  • ammonia gas as nitrogen source gas.
  • the oxygen source gas is a gas serving as a supply source of oxygen contained in the initial single crystal layer, and an oxygen gas and a compound gas containing oxygen in the molecule can be used.
  • the compound containing oxygen in the molecule any compound that can be gasified under the growth conditions can be used, but it is preferable to use an alcohol having 1 to 5 carbon atoms, particularly butanol, which is liquid at room temperature because of easy handling. Since the oxygen source gas is supplied in a small amount as compared with other source gases, it is preferable to use a gas previously diluted with a carrier gas as the oxygen source gas.
  • the liquid compound in the case of using a room temperature liquid “compound containing oxygen in the molecule”, the liquid compound is maintained under a predetermined temperature condition of room temperature or higher and bubbled with a carrier gas such as hydrogen. , And can be supplied as an oxygen source gas diluted with a carrier gas.
  • a carrier gas such as hydrogen
  • an oxygen gas diluted with a carrier gas such as nitrogen or hydrogen as the oxygen source gas.
  • the method for diluting oxygen is not particularly limited, and a method of diluting in advance in a gas cylinder or a method of diluting by mixing oxygen gas and a carrier gas such as nitrogen or hydrogen in the apparatus may be adopted. it can.
  • the oxygen concentration in the initial single crystal layer formed in the first growth step should be 1 ⁇ 10 20 cm ⁇ 3 or more and 5 ⁇ 10 21 cm ⁇ 3 or less.
  • the second group III nitride single crystal layer grown on the initial single crystal layer stably grows in group III polarity, The defect density in the second group III nitride single crystal layer can be reduced.
  • the oxygen concentration in the initial single crystal layer is particularly 5 ⁇ 10 20 cm ⁇ 3. It is preferably 4 ⁇ 10 21 cm ⁇ 3 or less.
  • the oxygen concentration means the number of oxygen atoms contained in 1 cm 3 of the single crystal layer.
  • the second group III nitride single crystal layer stably grows in group III polarity, but the oxygen concentration increases. Along with this, the defect density in the second group III nitride single crystal layer increases.
  • the defect density can be measured by counting the number of dislocation defects by observing a cross section or a plane of a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the second group III nitride single crystal layer can have a (102) plane half width of preferably 2500 arcsec or less, and more preferably 1500 arcsec or less.
  • the supply amount and gas concentration (oxygen concentration) of the oxygen source gas at the time of forming the initial single crystal layer may be appropriately determined according to the specifications of the apparatus so that the oxygen concentration in the initial single crystal layer falls within the aforementioned range. Good. Since the amount of oxygen incorporated into the crystal and the amount of oxygen supplied are expected to vary greatly depending on the structure of the MOCVD apparatus and the gas introduction method, the amount of oxygen source gas supplied and the concentration of oxygen incorporated into the crystal in advance It is preferable to set the gas supply amount and the concentration so that the oxygen concentration falls within the aforementioned range.
  • the molar ratio of oxygen in the oxygen source gas is in the range of 0.1 to 10 with respect to the group III atom of the group III source gas. It is preferable to adjust with.
  • the film thickness of an initial single crystal layer (initial single crystal layer having an oxygen concentration of 1 ⁇ 10 20 cm ⁇ 3 or more and 5 ⁇ 10 21 cm ⁇ 3 or less) formed by supplying an oxygen source gas.
  • an oxygen source gas Must be between 15 nm and 40 nm.
  • the film thickness of the initial single crystal layer is less than 15 nm, the ratio of the group III polar surface on the surface of the initial single crystal layer is not sufficiently high, so that the second group III nitride single crystal grown on the initial single crystal layer is not formed. In the crystal layer, N-polar growth is dominant.
  • the thickness of the initial single crystal layer exceeds 40 nm, the second group III nitride single crystal layer stably grows in group III polarity, but a new group III polarity growth also occurs on the nitrogen polarity growth surface. Nuclei are formed, the existence density of group III polar growth nuclei becomes too high, and the defect density in the group III nitride single crystal layer increases as the film thickness of the initial single crystal layer increases. Therefore, the thickness of the initial single crystal layer is more preferably 15 nm or more and 30 nm or less in order to perform group III polar growth more stably and form a group III nitride single crystal layer with good crystal quality. .
  • the film thickness of the initial single crystal layer means an average film thickness.
  • group III polarity growth and N polarity growth occur competitively in the initial single crystal layer formation stage, and the portion of group III polarity growth and the portion of N polarity growth coexist in the initial single crystal layer. become.
  • the initial single crystal layer is considered to have uneven thickness. Therefore, in the present invention, the growth is performed separately under the same conditions for a long time (the time when the film thickness is such that the influence of the thickness unevenness is reduced: specifically, the time when the film thickness is about 0.2 ⁇ m).
  • the thickness (average film thickness) obtained from the product of the time required to form the initial single crystal layer in the actual first growth step and the product of the growth rate is determined as the thickness of the initial single crystal layer. Say it.
  • the supply of the source gas at the time of forming the initial single crystal layer is not particularly limited, but the molar ratio of the nitrogen source gas to the group III source gas (nitrogen atom / group III atom ratio) is 3000 or more and 8000. The following is preferable. When the supply ratio of the source gas satisfies this range, it is preferable because the group III polar growth can be stably performed and the defect density can be further reduced.
  • the method of supplying the source gas together with the oxygen source gas is not particularly limited, and the group III source material and the nitrogen source gas are supplied at the same time. It can supply by well-known methods, such as supplying source gas intermittently. The ratio of the group III source gas may be adjusted so that the initial single crystal layer is formed of group III nitride satisfying the above composition.
  • the formation temperature of the initial single crystal layer (temperature of the sapphire substrate when forming the initial single crystal layer), it is preferably 850 ° C. or higher and 1150 ° C. or lower, and particularly preferably 900 ° C. or higher and 1100 ° C. or lower.
  • the formation temperature of the initial single crystal layer satisfies this range, the group III polar growth of the second group III nitride single crystal layer grown in the second step is more stably realized, and the group III nitride The defect density in the physical single crystal layer can be further reduced.
  • the initial single crystal layer formation temperature within the above range, it is possible to reduce the mixture of group III polarity growth and N polarity growth in the initial single crystal layer.
  • the initial single crystal layer formation temperature within the above range, an initial single crystal layer with good crystallinity (a narrow half-value width in X-ray rocking curve measurement) can be obtained.
  • the second group III nitride single crystal layer formed on the initial single crystal layer also has improved surface smoothness and crystallinity.
  • the polar state of the second group III nitride crystal layer formed on the initial single crystal layer and the crystal Quality changes. This change is affected by the polarity state of the initial single crystal layer on the sapphire substrate and the crystal quality.
  • the growth conditions of the group III polar growth on the growth surface of the initial single crystal layer under the growth conditions in which the N polar growth described above is dominant It was found that the state was an island-like state, and the island-like crystal (group III polarity growth portion) on the sapphire substrate had a coverage of approximately 30% or less.
  • the state of group III polarity growth on the growth surface of the initial single crystal layer is a network state, and the sapphire substrate It was found that the coverage with respect to was 90% or more. Such a result supports the estimation mechanism by the present inventors.
  • the AFM was used to analyze the polarity of the crystal surface when a very thin film of 40 nm or less was grown as in the initial single crystal layer, a group III polarity portion and an N polarity portion on the crystal plane. This is because such a coexistence state cannot be evaluated by the above-mentioned “etching test which is a simple discrimination method”.
  • the second group III nitride single crystal layer formed in the second step is usually 0.3 ⁇ m or more, preferably Is formed with a thickness of 0.5 ⁇ m or more.
  • the total thickness from the initial single crystal layer is such that the growth of each crystal nucleus proceeds sufficiently, so that the surface of the second group III nitride single crystal layer is almost completely separated from either the group III polar portion or the N polar portion. It has become. For this reason, the etching test can be used without any problem in determining the polarity of the surface of the second group III nitride single crystal layer.
  • the preferred growth state of the initial single crystal layer is that the group III polarity growth is grown in the form of islands or networks on the sapphire substrate (surface), and the group III polarity growth with respect to the sapphire substrate. It is considered most preferable that the covering ratio of the portion is more than 30% and less than 90%.
  • Such a growth state in the initial single crystal layer can be achieved by forming an initial single crystal layer in which the oxygen concentration and the film thickness satisfy the above ranges.
  • the growth state can be easily achieved by setting the initial single crystal layer formation temperature within the above preferred range.
  • a laminated body is manufactured by growing a second group III nitride single crystal layer on the initial single crystal layer. This second growth step will be described below.
  • the source gas is supplied without supplying the oxygen source gas onto the initial single crystal layer obtained in the first growth step, or the oxygen source gas is supplied together with the source gas more than in the first growth step.
  • a second group III nitride crystal layer having a lower oxygen concentration than that of the initial single crystal layer is grown to produce a laminate.
  • the second group III nitride single crystal layer grown in the second growth step is the surface of the initial single crystal layer (the surface in which the coverage of the portion where the group III polar growth has occurred is preferably more than 30% and less than 90%) Is the crystal growth surface, so that the proportion of the group III polar grown portion in the surface of the second group III nitride single crystal layer in the formation process of the second group III nitride single crystal layer gradually increases. Finally, it can be increased to 90% or more, particularly 100% or a ratio close thereto. In the formation process of the second group III nitride single crystal layer, the growth of the already formed group III polar growth nuclei occurs, and the formation of new group III polar growth nuclei hardly occurs. Even if crystallinity does not fall.
  • the same raw material gas and oxygen source gas as those used in the first growth step can be used.
  • the condition for growing the second group III nitride single crystal layer on the initial single crystal layer is that the supply amount of the oxygen source gas is 0 or the oxygen source gas is more than in the first growth step. Except for reducing the supply amount, the same conditions as in the first growth step can be adopted. That is, the supply of the source gas is not particularly limited, but the nitrogen atom / group III atomic ratio may be in the range of 500 to 7000. Further, the method for supplying the source gas is not particularly limited, and the group III source and the nitrogen source gas are simultaneously supplied, each of them is alternately supplied, or any source gas is intermittently supplied. It can supply by a well-known method.
  • the ratio of the group III source gas may be adjusted so that the second group III nitride single crystal layer is formed of group III nitride satisfying the above composition.
  • the formation temperature when forming the group III nitride single crystal layer is not particularly limited, and may be in the range of 1100 ° C. or more and 1500 ° C. or less.
  • the group III nitride single crystal layer needs to be grown at a temperature higher than the initial single crystal layer formation temperature after forming the initial single crystal layer, the following method is preferably performed. For example, it is preferable to heat the substrate (initial single crystal layer) to a predetermined temperature while supplying only the carrier gas or supplying only the ammonia gas and the carrier gas.
  • the second group III nitride single crystal layer can also have a multilayer structure by changing the growth conditions of the second group III nitride single crystal layer in the middle. For example, by stacking Group III nitride single crystal layers with different growth temperatures (formation temperatures), nitrogen atom / Group III atomic ratios during growth, or raw material supply methods, etc., a multi-layer Group III with reduced defect density A nitride single crystal layer can also be formed.
  • the oxygen concentration contained in the second group III nitride single crystal layer thus obtained is less than 1 ⁇ 10 20 cm ⁇ 3 , preferably 1 ⁇ 10 19 cm ⁇ 3 or less, More preferably, it is 1 ⁇ 10 18 cm ⁇ 3 or less. Since oxygen is usually an impurity, the lower the concentration of oxygen contained in the laminate, the higher the crystal quality. Therefore, in this second growth step, an embodiment in which a gas containing oxygen is not supplied is most preferable. However, as shown in the following examples, even if an apparatus having a member that does not generate oxygen is used and a gas containing oxygen is not supplied, the cause is not clear, but a very small amount of oxygen is a group III. It may be included in the nitride single crystal layer. As a result, it is difficult to make the oxygen concentration in the second group III nitride single crystal layer below the detection limit.
  • the thickness of the second group III nitride single crystal layer may be appropriately determined according to the purpose of use. When used for a normal semiconductor element, the thickness may be 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the exposed surface state of the initial single crystal layer is stabilized by forming an initial single crystal layer having a predetermined oxygen concentration and a predetermined thickness in the first growth step.
  • a state suitable for carrying out group III polarity growth that is, a surface state in which the ratio of the group III polar surface occupying the surface is appropriately high is obtained.
  • the second growth step using such a surface as the crystal growth surface, even if a group III nitride single crystal layer not containing oxygen is formed in this step, stable group III polarity growth can be performed.
  • the crystallinity and surface smoothness can be increased.
  • the laminate of the present invention which is a “laminated body in which the initial crystal layer and the second group III nitride single crystal layer are laminated in this order on a sapphire substrate” obtained by the method of the present invention is Since the exposed surface of the second group III nitride single crystal layer is an excellent group III polar growth surface, it is suitable for forming various single crystal thin film layers constituting an ultraviolet light emitting device on the surface. It can be suitably used as a light emitting device manufacturing substrate.
  • light emission is achieved by forming a multilayer structure in which a buffer layer, an n-type conductive layer, an active layer, and a p-type conductive layer are laminated in this order on the second group III nitride single crystal layer as necessary.
  • An element layer can be formed.
  • the laminate of the present invention will be described in detail.
  • the structure of the laminate of the present invention is shown in FIG.
  • a sapphire substrate 1 and an initial single crystal layer 2 having the specific composition and thickness described above are stacked on the substrate 1, and a second group III nitride single layer is formed on the initial single crystal layer 2.
  • the crystal layer 3 is laminated.
  • the layer 3 is a laminated body laminated in this order.
  • the surface of the second group III nitride single crystal layer (the surface opposite to the sapphire substrate 1 side) is a group III polar surface.
  • the second group III nitride single crystal layer 3 has high crystallinity, and the surface thereof has high atomic level smoothness and also has a group III polar surface.
  • the oxygen concentration of the initial single crystal layer 2 is particularly preferably 5 ⁇ 10 20 to 4 ⁇ 10 21 cm ⁇ 3 . Further, the thickness of the initial single crystal layer 2 is particularly preferably 15 nm or more and 30 nm or less.
  • the oxygen concentration of the second group III nitride single crystal layer 3 is lower than the oxygen concentration of the initial single crystal layer 2 and is less than 1 ⁇ 10 20 cm ⁇ 3 , preferably 1 ⁇ 10 19 cm ⁇ 3 or less. is there. Further, the layer thickness is not particularly limited, but is preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 4.0 ⁇ m or less.
  • the exposed surface of the second group III nitride single crystal layer 3 has group III polarity
  • the surface is highly smooth
  • the second III Group nitride single crystal layer 3 has high crystallinity
  • the whole laminate has excellent characteristics such as high transmittance for light, particularly deep ultraviolet light and ultraviolet light.
  • the surface state of the initial crystal layer formed in the first step is the crystal growth on which the single crystal is grown. As a surface, it is in a state suitable for stable group III polarity growth. For this reason, most of the polarity of the exposed surface of the second group III nitride single crystal layer 3 (for example, 90% or more, preferably 95 to 100%) is the group III polarity. It can be easily confirmed by the above-described etching test that the surface has group III polarity.
  • the laminate of the present invention may be immersed in an alkaline aqueous solution such as potassium hydroxide (KOH) and the dissolved state of the crystal surface after immersion may be observed.
  • KOH potassium hydroxide
  • the surface is a group III polar surface, since it is highly resistant to an alkaline aqueous solution, it is hardly etched.
  • the surface is an N-polar surface, it is easily etched.
  • the conditions of this etching test for example, the concentration of the KOH aqueous solution, the immersion time of the laminate, and the temperature are not particularly limited, but specific test conditions are exemplified by adding a 10 wt% KOH aqueous solution at room temperature. What is necessary is just to immerse a laminated body for about 1 min (1 minute).
  • the surface of the group III nitride single crystal layer 3 can be 20 nm or less in terms of arithmetic mean square roughness (RMS), and if the conditions are further adjusted, the surface can be 10 nm or less. it can.
  • RMS arithmetic mean square roughness
  • This transmittance and RMS can be measured with a known transmittance measuring device and an atomic force microscope (AFM).
  • (C) Crystallinity of the second group III nitride single crystal layer 3 The existence density of group III polar growth nuclei on the surface of the initial crystal layer that is the base crystal growth surface of the second group III nitride single crystal layer 3 Therefore, the occurrence of defects in the second step is suppressed, and the crystallinity of the second group III nitride single crystal layer 3 is increased.
  • the half width can be set to 2500 arcsec or less, more preferably 1550 arcsec or less, particularly 1500 arcsec or less.
  • the full width at half maximum can be reduced to about 200 arcsec by precisely controlling the growth conditions.
  • the laminate of the present invention uses sapphire with extremely high light transmittance as a base substrate, and uses a method for reducing the light transmittance such as prior supply of group III source gas. Group III polar growth is performed stably without using it.
  • the second group III single crystal layer has high crystallinity and high surface smoothness, the laminate of the present invention can exhibit high light transmittance even without performing treatment such as polishing. .
  • the light transmittance depends on the thickness of the group III nitride single crystal layer 3, but can be 80% or more in the linear transmittance in the range of 220 nm to 800 nm.
  • the linear transmittance with respect to light in the required wavelength region of 220 nm to 280 nm, and further the linear transmittance with respect to light with a wavelength of 250 nm can be 80% or more.
  • the surface of the N polarity surface is rough and the linear transmittance is about 70% at most.
  • polishing the surface and increasing the surface smoothness it is possible to obtain the same light transmittance as that of the laminate of the present invention, but N-polar growth has a crystal growth window. There is a problem that not only the crystal growth itself is narrow and difficult, but also the resulting crystal (surface) has low chemical resistance and heat resistance.
  • Non-Patent Document 3 which is a conventional method for performing group III polar growth
  • an ultra-thin metallic (Al-rich layer) layer that absorbs light in the ultraviolet region is formed at this time, but linear transmittance for light in the wavelength region of 220 nm to 280 nm and Both linear transmittances for light of 250 nm were as low as 60% or less.
  • the second group III nitride single crystal layer 3 has a crystallinity such that the half width of the (102) plane is preferably 200 arcsec or more and 2500 arcsec or less.
  • the RMS of the surface of the crystal layer 3 is more than 0.2 nm and 20 nm or less, 90% or more of the surface is a group III polar surface, and the linear transmittance of the laminate for light in the wavelength range of 220 nm to 800 nm is 80%.
  • the second group III nitride single crystal layer 3 has a crystallinity such that the half width of the (102) plane is preferably 250 arcsec or more and 1550 arcsec or less.
  • Linear transmittance of the layer body comprises an aspect less than 85%.
  • Example 1 (Thermal cleaning) As the sapphire substrate, a C-plane substrate inclined by 0.15 ° in the M-axis direction was used. After this was placed on the susceptor in the MOCVD apparatus, the sapphire substrate was heated to 1250 ° C. and kept for 10 minutes while flowing hydrogen at a flow rate of 10 slm. In this MOCVD apparatus, a part made of a boron nitride ceramic material was disposed on the surface of a portion where the temperature was 1000 ° C. or higher due to radiant heat when the sapphire substrate was heated.
  • the total flow rate was maintained at 10 slm, the supply of trimethylaluminum was stopped, and the temperature of the sapphire substrate was raised to 1200 ° C. while only ammonia was supplied. Thereafter, the AlN single crystal layer (second group III nitride single crystal layer) was set to 0.00 at the same temperature under the conditions of a trimethylaluminum flow rate of 26 ⁇ mol / min, an ammonia flow rate of 0.5 slm, a total flow rate of 10 slm, and a pressure of 25 Torr. 5 ⁇ m was formed to produce a laminate. In this second growth step, no oxygen source was supplied.
  • the obtained laminate was taken out of the MOCVD apparatus, and a rocking curve measurement on the (102) plane was performed with a high resolution X-ray diffractometer (Spectres Corporation's Panalical Division X'Pert) under the conditions of acceleration voltage 45 kV and acceleration current 40 mA. went. Further, a 5 ⁇ m square surface shape image was obtained by an atomic force microscope, and RMS was calculated. Thereafter, the laminate was cut into a size of about 8 mm square, and one of the cut samples was subjected to oxygen quantitative analysis by secondary ion mass spectrometry using cesium ions as primary ions.
  • the oxygen concentration in the AlN layer was quantified based on an AlN standard sample.
  • the results are shown in Table 1. Furthermore, as a result of measuring the linear transmittance of the laminate with respect to light in the wavelength region of 220 nm to 800 nm and light having a wavelength of 250 nm using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation), both were 87 to 97%. It was.
  • FIG. 2 shows a plot of the rocking curve measurement result of the (102) plane and the result of polarity discrimination plotted against the oxygen concentration obtained by the secondary ion mass spectrometry.
  • Example 2 In order to more accurately analyze the oxygen concentration in the initial single crystal layer in the laminate obtained in Example 1, the oxygen gas used in Example 1 was changed to 99.9 atm% stable isotope oxygen (mass number 18). A laminate was produced under the same conditions as in Example 1 except that the changes were made. The obtained results are shown in Table 1.
  • Example 3 A laminate was manufactured under the same conditions as in Example 1 except that the oxygen flow rate was changed to 1.0 sccm in the first growth step of Example 1. The obtained results are shown in Table 1 and FIG.
  • Example 4 A laminated body was manufactured under the same conditions as in Example 1 except that the oxygen flow rate was changed to 0.3 sccm in the first growth step of Example 1. The obtained results are shown in Table 1 and FIG.
  • Example 5 In the first growth step of Example 1, a laminate was manufactured under the same conditions as Example 1 except that the thickness of the AlN initial crystal layer was changed to 30 nm. The obtained results are shown in Table 1 and FIG.
  • Comparative Example 1 A laminated body was manufactured under the same conditions except that the oxygen flow rate was changed to 0.1 sccm in the first growth step of Example 1. The obtained results are shown in Table 1 and FIG.
  • Comparative Example 2 In the first growth step of Example 1, a laminate was manufactured under the same conditions except that no oxygen source was supplied. The obtained results are shown in Table 1 and FIG.
  • Comparative Example 3 A laminate was manufactured under the same conditions as in the first growth step of Example 1, except that the oxygen flow rate was changed to 2.0 sccm. The obtained results are shown in Table 1 and FIG.
  • Comparative Example 4 A laminate was manufactured under the same conditions as in Example 1 except that the film thickness of the initial crystal layer in the first growth step of Example 1 was changed to 50 nm. The obtained results are shown in Table 1 and FIG.
  • Comparative Example 5 A laminate was manufactured under the same conditions as in Example 1 except that the film thickness of the initial crystal layer in the first growth step of Example 1 was changed to 10 nm. The obtained results are shown in Table 1 and FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 サファイア基板上への新規なIII族極性成長方法を提供することにある。 【解決手段】 有機金属気相成長法により、サファイア基板上に、Al含有量の多いIII族窒化物からなる単結晶層が積層された積層体を製造する方法であって、該III族窒化物単結晶を成長させるための原料ガスと共に、酸素源ガスをサファイア基板上に供給することにより、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有した初期単結晶層を15nm以上40nm以下の厚みで成長させる第一成長工程、及び該初期単結晶層上に、酸素源ガスを供給せずに該原料ガスを供給するか、または該原料ガスと共に、酸素源ガスを第一成長工程よりも少ない供給量で供給することにより、初期単結晶層よりも酸素濃度が低減された第二のIII族窒化物単結晶層を成長させる第二成長工程とを含む積層体の製造方法。

Description

積層体の製造方法
 本発明は、有機金属気相成長法により、サファイア基板上にIII族窒化物単結晶層を積層した新規な積層体、およびその製造方法に関する。詳細には、紫外線発光素子(発光ダイオードやレーザーダイオード)、紫外線センサーなどに利用可能な新規な積層体、およびその製造方法に関する。
 アルミニウム(Al)を含むIII族窒化物半導体は、波長200nmから360nmに相当する紫外領域において直接遷移型のバンド構造を持つため、高効率な紫外発光デバイスの作製が可能である。
 III族窒化物半導体デバイスは、有機金属気相成長法(MOCVD法)、分子線エピタキシー法(MBE法)、もしくはハライド気相エピタキシー法(HVPE法)等の気相成長法によって、単結晶基板上にIII族窒化物半導体薄膜を結晶成長させることにより製造される。中でも、MOCVD法は、原子層レベルでの膜厚制御が可能であり、また比較的高い成長速度が得られることから、工業的には現在最も多く用いられている手法である。
 上記紫外発光デバイスを製造する場合には、Alを含むIII族窒化物半導体結晶と格子定数および熱膨張係数の整合性の良い基板の入手が困難である。そのため、一般的にサファイア基板や炭化ケイ素基板などの異種材料基板上に、Alを含むIII族窒化物半導体結晶が形成される。特に、発光波長が紫外領域の場合は、光透過性の観点からサファイア基板が広く用いられている。
 また、Alを含むIII族窒化物半導体結晶には、表裏の関係にあるIII族極性(例えば、III族窒化物がAlNの場合にはAl極性)と窒素極性(N極性)の2つの極性が存在する。良好なデバイス特性を得る為には、前記異種材料基板上に、III族極性面が最表面に露出した状態で成長が進行する(III族極性成長する)ように成長条件を制御することが好ましい。この理由は、III族極性成長の場合は、原子レベルで平滑な結晶表面が得られるのに対し、N極性成長の場合は、結晶内にIII族極性とN極性が混在した極性反転ドメインが多数発生し、III族極性成長に比べて結晶表面の表面粗さが極端に悪化するためである(例えば、非特許文献1および2参照)。特に、この傾向は、Alの含有量が高いIII族窒化物単結晶、例えば、窒化アルミニウム(AlN)単結晶を成長させる際に、顕著になる。
 AlNについて、III族極性(Al極性)および窒素極性(N極性)を更に詳しく説明する。Al極性とは、「0001」面或いは+C面を結晶成長面とするものであり、正四面体の中心(重心)にアルミニウム(Al)原子が存在し、4つの頂点に窒素(N)原子が存在する正四面体構造を単位ユニットとするものとして定義される。そして、Al極性成長とは、このような単位ユニットを形成しながら成長することを意味する。これに対し、N極性とは、「000-1」面或いは-C面を結晶成長面とするものであり、正四面体の中心(重心)にN原子が存在し、4つの頂点にAl原子が存在する正四面体構造を単位ユニットとするものとして定義される。そして、N極性成長とは、このような単位ユニットを形成しながら成長することを意味する。
 また、これら成長で得られる結晶の物性面での特徴を比べると、Al極性成長で得られる結晶では、その、サファイア基板と接合する面と反対側の「露出表面」(Al極性面)の表面平滑性、耐薬品性および耐熱性が高いのに対し、N極性成長で得られる結晶では、その「露出表面」(N極性面)のこれら物性がAl極性面よりも劣る。
 前記したように、このような各極性面の物性的な違いは、AlN以外のIII族窒化物単結晶、特にAlN含有率の高いIII族窒化物単結晶についても基本的には同様であり、サファイア基板上に成長させたIII族窒化物(たとえばAlN)単結晶がIII族極性成長したか否かは、上記耐薬品性の違いを利用して、簡単に判別することができる。すなわち、水酸化カリウム(KOH)などのアルカリ水溶液中に積層体(サファイア基板上にIII族窒化物単結晶層を形成した積層体)を浸漬し、浸漬後の結晶表面の溶解状態を観察するエッチングテストにより簡易的に行うことができる。III族窒化物単結晶層の表面がIII族極性面であれば、アルカリ水溶液に対する耐性が高いため、エッチングされることはない。一方、表面がN極性面の場合は容易にエッチングされる。したがって、このようなテスト前後の表面を観察し、エッチング痕が観察されなければIII族極性成長したと判断することができ、逆に明らかなエッチング痕が観察された場合にはN極性成長したと判断できる。
 サファイア基板上にIII族窒化物半導体結晶を成長させるに際し、III族極性成長を実現するためには、III族極性成長し易い状況、すなわちIII族原子が過飽和に近い状況を意図的に作り出す必要がある。このような状況を作り出す具体的な方法として、サファイア基板上へIII族窒化物単結晶層を形成する前に、III族原料(例えば、Al原料)のみを供給する方法(例えば非特許文献3参照)、または、III族窒化物単結晶層を成長させる初期の段階において、窒素源ガスを供給しない状態でIII族原料ガス(例えば、Al原料)を断続的に供給する方法(例えば特許文献1)等が提案されている。
特開2009-54782号公報
APPLIED PHYSICS LETTERS (アプライド フィズィクス レターズ)Vol.83(2003)2811 Japanese Journal of Applied Physics (ジャパニーズ ジャーナル オブ アプライド フィズィクス)Vol.44(2005)L150 Journal of Crystal Growth (ジャーナル オブ クリスタル グロウス) 310(2008)4932
 III族極性成長を実現するための手法として、非特許文献3、および特許文献1に記載されているように、III族原料(例えば、Al原料)のみを供給する工程を設けることによりIII族原子の過飽状態を作り出す方法が提案されている。
 しかしながら、この場合、III族窒化物単結晶を成長させる初期の段階において、III族原料の供給量、および供給方法などを精密に制御する必要があった。また、非特許文献3によると、より安定的にIII族極性成長させる為には、供給するIII族原料量を増やす必要があるが、その一方で結晶品質が低下する傾向にあることが示されている。
 さらに、本発明者らが、非特許文献3で開示された手法によってサファイア基板上へAlN単結晶を成長させる追試実験を行ったところ、Al極性成長は可能であったものの、成長後の基板は僅かにAl金属色を呈しており、上記基板の280nm以下の領域での直線透過率は60%以下と低く、250nmの光に対する直線透過率も60%以下であった。このようなAlN積層体上に紫外発光デバイスを作製した場合、AlN層を介して外部に放出される光の取り出し効率は著しく低下し、その結果、紫外発光デバイスの特性も低下すると予想される。
 したがって、本発明が解決しようとする第一の目的は、MOCVD法でサファイア基板上にAlNなどのIII族窒化物半導体結晶を成長させるに際し、安定してIII族極性成長できる新規な方法を提案することである。また、第二の目的は、上記方法を用いて、高い光透過性と良好な結晶品質を有するIII族窒化物単結晶層がサファイア基板上に積層された積層体を提供することにある。
 本発明者らは、上記課題を解決すべくサファイア基板上へのIII族窒化物単結晶の成長条件について検討を行った。特に、AlNのようなAlの含有量の高いIII族窒化物単結晶をサファイア基板上に成長させる初期段階(該初期段階で形成される単結晶層を、初期単結晶層ともいう)の成長条件について検討を行った。その結果、初期単結晶層形成時に、酸素を原料ガスと共にサファイア基板上へ供給した場合には、安定してIII族極性成長が起こるという知見を得た。そして、この知見に基づき更に検討を行った結果、初期単結晶層中の酸素濃度および該初期単結晶層の厚さを特定の範囲に制御し、さらに該初期単結晶層上に、酸素濃度の低いIII族窒化物単結晶層を形成した場合には、該III族窒化物単結晶層も安定したIII族極性成長により形成され、しかも得られる単結晶層の結晶性も良好であることを見出し、本発明を完成させるに至った。
 即ち、第一の本発明は、
 有機金属気相成長法により、サファイア基板上に、AlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を満足するIII族窒化物からなる単結晶層が積層された積層体を製造する方法であって、
 該III族窒化物結晶を成長させるための原料ガスであるIII族原料ガス、および窒素源ガスと共に、酸素源ガスをサファイア基板上に供給することにより、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有した前記組成を満足するIII族窒化物からなる初期単結晶層を該サファイア基板上に15nm以上40nm以下の厚みで成長させる第一成長工程、及び
 該初期単結晶層上に、酸素源ガスを供給せずに該原料ガスを供給するか、または該原料ガスと共に、酸素源ガスを第一成長工程よりも少ない供給量で供給することにより、初期単結晶層よりも酸素濃度が低減された前記組成を満足するIII族窒化物からなる第二のIII族窒化物単結晶層を成長させる第二成長工程
とを含むことを特徴とする積層体の製造方法である。
 第二の発明は、サファイア基板上に、AlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を満足するIII族窒化物からなる単結晶層が積層された積層体であって、
 サファイア基板上に、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有し、厚みが15nm以上40nm以下である、前記組成を満足するIII族窒化物からなる初期単結晶層が積層され、さらに、該初期単結晶層上に、初期単結晶層よりも酸素濃度が低い、前記組成を満足するIII族窒化物からなる第二のIII族窒化物単結晶層が積層された積層体である。この積層体においては、第二のIII族窒化物単結晶層の表面をIII族窒化物極性面とすることができる。
 また、第三の発明は、前記積層体を有する半導体デバイスである。
 本発明によれば、MOCVD法により、式AlGaInNで示され、X≧0.9となるような高いAl含有量のIII族窒化物単結晶をサファイア基板上に成長させる場合において、安定したIII族極性成長により該III族窒化物単結晶を成長させることができる。しかも、その結果得られるIII族窒化物単結晶は、原子レベルで平滑な表面を有し、結晶性も良好である。そして、本発明の方法により得られた積層体は、紫外光に対しても高い光透過性を有するサファイアを基板として用いているので、紫外発光デバイス用基板として用いることによって、デバイスの発光特性を向上させることが可能となる。
本発明の積層体の態様を示す概略図である。 初期単結晶層中の酸素濃度と第二のIII族窒化物単結晶層の結晶性の関係を示した図である。
 本発明は、MOCVD法によりサファイア基板上へAlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を満足するIII族窒化物からなる単結晶層が積層された積層体を製造する方法に関する。
 そして、サファイア基板上へ、該III族窒化物単結晶を成長させるための原料ガス(III族原料ガス、および窒素源ガス)と共に、酸素源ガスを供給することにより、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有した前記組成を満足するIII族窒化物からなる初期単結晶層を該サファイア基板上に15nm以上40nm以下の厚みで成長させる第一成長工程、及び
 該初期単結晶層上に、酸素源ガスを供給せずに該原料ガスを供給するか、または該原料ガスと共に、酸素源ガスを第一成長工程よりも少ない供給量で供給することにより、初期単結晶層よりも酸素濃度が低減され、かつ表面がIII族極性面である前記組成を満足するIII族窒化物からなる第二のIII族窒化物単結晶層を成長させる第二成長工程
とを含むことを特徴とする。
 以下、順を追って本発明について詳しく説明する。
 (MOCVD法、および使用する装置)
 本発明の方法では、有機金属気相成長法(MOCVD法)によりIII族窒化物単結晶層を成長させる。このMOCVD法は、III族原料ガス、例えば、トリエチルアルミニウムのような有機金属のガスと、窒素源ガス、例えば、アンモニアガスのような原料ガスを基板上に供給し、該基板上に、III族窒化物単結晶層を成長させるものである。本発明の方法では、このようなMOCVD法を行うことができる装置であれば特に限定されず、公知のMOCVD装置または市販のMOCVD装置を制限無く使用できる。
 しかしながら、III族窒化物単結晶の形成時に、意図せぬ不純物の混入をできるだけ低減でき、初期単結晶層の酸素濃度の制御が容易となるという観点から、MOCVD装置としては、例えば、基板を加熱している際に、輻射により高温になる基板周辺部材から発生する不純物、特に、基板周辺部材を構成する材質から発生する酸素などの不純物の量を最小限に抑えることができる構造の装置を使用することが好ましい。具体的には、基板からの輻射により1000℃以上に加熱される箇所において、少なくとも原料ガスなどと接する表面部分が、窒化ボロンやAlNなどの高純度セラミックスからなる材質を使用した装置を使用することが好ましい。
 (III族窒化物単結晶の基本組成)
 本発明における初期単結晶層、および第二のIII族窒化物単結晶層は、共に基本的に前記組成式で示されるIII族窒化物単結晶からなるものであればよいが、製造上の容易さ、光透過性および効果の顕著性の観点から、前記組成式におけるX、Y、およびZは、1.0≧X≧0.95、0.05≧Y≧0、0.05≧Z≧0であることが好ましく、特にX=1.0、すなわちAlNであることが特に好ましい。
 なお、本発明の方法における初期単結晶層を構成するIII族窒化物単結晶は所定濃度で酸素を含み、また、第二のIII族窒化物単結晶層を構成するIII族窒化物単結晶も初期単結晶層における濃度よりも低い濃度で酸素原子を含むことができる。しかしながら、これら結晶中に含まれる酸素原子の量は微量で、所謂不純物として扱うことが出来るレベルであり、III族窒化物単結晶の分野においては、基本結晶組成は不純物を考慮せずに表すのが一般的である。したがって、本発明においても、酸素の存在によりIII族窒化物単結晶の基本組成式は変わらないものとして扱う。
 また、初期単結晶層、および第二のIII族窒化物単結晶層を構成するIII族窒化物単結晶の組成式(X,YおよびZの具体的数値の組み合わせ)は同一でも異なっていてもよい。ただし、製造上の容易さ、光透過性の観点から、両者は、同一の組成であることが好ましく、特に、両者共にAlNとなることが好ましい。
 (第一成長工程)
 本発明においては、MOCVD法によりサファイア基板上に前記組成のIII族窒化物単結晶層を成長させるに際し、先ず、第一成長工程を行う。すなわち、第一成長工程では、原料ガスとして、III族原料ガス、窒素源ガスおよび酸素源ガスを用い、これらをサファイア基板上に供給することにより、前記基本組成を有し、且つ酸素濃度が1×1020cm-3以上5×1021cm-3以下であるIII族窒化物からなる初期単結晶層を15nm以上40nm以下の厚さで成長させる。
 このような初期単結晶層を成長させることにより、第二成長工程では、第二のIII族窒化物単結晶層を安定してIII族極性成長により成長できるようにし、該層の表面平滑性を高めると共に結晶性を高めることができる。さらには、該第二のIII族窒化物単結晶層上に半導体デバイスとするために必要なその他のIII族窒化物単結晶層を形成する場合において、これら単結晶層の結晶性を高めることができる。
 このような効果が得られる機構は必ずしも明確ではないが、本発明者らは次のような機構であると推定している。すなわち、MOCVD法による結晶成長は、その極初期にIII族極性成長の核となる部分(III族極性成長核)と窒素極性成長の核となる部分(窒素極性成長核)が、サファイア基板表面に、それぞれ多数ランダムに付着し、これらの核が競争的に成長すると考えられる。このとき、III族極性成長の成長速度の方が窒素極性成長の成長速度よりも速いため、III族極性成長核の存在密度がある程度以上の値となると、窒素極性成長核が存在しても成長が進むにつれてIII族極性成長が優勢になり、最終的に完全もしくはほぼ完全なIII族極性成長となる。このとき、III族極性成長核の存在密度が高くなりすぎると、各成長核から成長した単結晶ドメインどうしが衝突する際に、ドメイン間のごく僅かな方位のズレなどに起因して転位などの欠陥が発生し易くなり、結晶性が低下してしまう。
 本発明では、第一成長工程において形成される初期単結晶層中の酸素濃度およびその厚さを制御することにより、III族極性成長核の存在密度を適度に高く制御することが可能になり、結晶性の低下を防止しながらIII族極性成長の優位性を高めることに成功したものと、本発明者等は考えている。より詳しく説明すると、III族極性成長核の存在密度を高くすることに関しては、酸素にはIII族極性成長核の形成(基板表面への付着)を促進する作用があり、核形成時における該核中の酸素ガスの濃度、延いては初期単結晶層中に含まれる酸素濃度を高くすればするほど基板表面への付着率が高くなり、III族極性成長核の存在密度は高くなると考えられる。本発明の方法では、初期単結晶層中に含まれる酸素濃度に所定の上限値を設定することによりIII族極性成長核の存在密度が高くなりすぎることを防止し、結晶性の低下を防止している。ところが、酸素濃度に上限値を設定しても結晶成長が進むにつれて(初期単結晶層の厚さが厚くなるにつれて)、窒素極性成長面上にも新たなIII族極性成長核が形成され、III族極性成長核の存在密度が所期の範囲を越えて高くなり過ぎ、結晶性が低下する傾向があることが判明した。そこで本発明の方法では、初期単結晶層の厚さに上限を設定し、このような結晶性の低下を防止している。そして、このような制御を行って形成された初期単結晶層の表面(最上面)は、結晶性および表面平滑性が良好で、且つIII族極性成長面が大部分を占める状態となっているため、第二成長工程で酸素の供給を止めても安定してIII族極性成長ができるようになったものと考えられる。
 以下、第一工程の詳細について説明する。
 (サファイア基板)
 第一工程で使用するサファイア基板は、その表面にIII族窒化物単結晶層が成長できるものであれば、特に制限されるものではなく、公知のサファイア基板を使用できる。サファイア基板としては、III族窒化物単結晶の成長の容易さから、結晶成長面の方位が(0001)面(C面)である基板、または結晶成長面がC面からM軸方向に、0°を越え0.5°以下傾斜させたOFF角付き基板を用いることが好ましい。厚みに関しても、特に限定されるものではないが、製造コストおよび取り扱いの容易さから、0.1mm以上1.0mm以下であることが好ましく、0.2mm以上0.5mm以下であることが特に好ましい。
 また、このようなサファイア基板は、下記に詳述する初期単結晶層を形成する前に、MOCVD装置内に設置した後、水素雰囲気中、1200℃以上、さらに好ましくは1250℃以上で加熱することにより、基板表面のクリーニング(サーマルクリーニング)を行うことが好ましい。なお、このサーマルクリーニングの上限温度は、通常、1500℃である。
 (原料ガス)
 第一工程では原料ガスとして、III族原料ガス、窒素源ガスおよび、酸素源ガスを使用する。これら原料ガスは、通常、水素ガス、窒素ガスのようなキャリアガスと共に反応系内(装置内の基板上)に供給される(この点は、後述する第二成長工程においても同様である)。
 III族原料ガスおよび窒素源ガスとしては、成長させるIII族窒化物単結晶の組成に応じて、MOCVD法によりIII族窒化物単結晶を成長させるために使用することができるIII族原料ガスおよび窒素源ガスが特に制限なく使用できる。具体的には、III族原料ガスとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリメチルガリウム、トリエチルガリウム、又はトリメチルインジウムのガスを使用することが好ましい。なお、これらIII族原料は、成長させる初期単結晶層の組成に応じて、その原料の種類、使用割合を適宜決定すればよい。また、窒素源ガスとしては、アンモニアガスを使用することが好ましい。
 酸素源ガスとしては、初期単結晶層に含まれる酸素の供給源となるガスであり、酸素ガスおよび分子内に酸素を含む化合物のガスを使用することができる。分子内に酸素を含む化合物としては、成長条件においてガス化する化合物であれば使用できるが、取り扱いの容易さから室温液体の炭素数1~5のアルコール、特にブタノールを使用することが好ましい。
 酸素源ガスは他の原料ガスに比べて微量供給されるので、酸素源ガスとしては予めキャリアガスで希釈されたガスを用いることが好ましい。たとえば、室温液体の「分子内に酸素を含む化合物」のガスを使用する場合には、液体の該化合物を室温以上の所定の温度条件下に保持し、水素などのキャリアガスでバブリングすることによって、キャリアガスで希釈された酸素源ガスとして供給することができる。
 酸素の供給量を精密に制御し易いという観点から、酸素源ガスとしては、窒素または水素などのキャリアガスで希釈した酸素ガスを用いることが好ましい。酸素の希釈方法は、特に制限されるものではなく、あらかじめガスボンベ内で希釈する方法、酸素ガスと、窒素、または水素などのキャリアガスを装置内で混合することにより希釈する方法を採用することができる。
 (初期単結晶層およびその形成手順および条件)
 第一成長工程で形成される初期単結晶層中の酸素濃度は、1×1020cm-3以上5×1021cm-3以下でなければならない。初期単結晶層中の酸素濃度を上記の範囲内に制御することにより、該初期単結晶層上に成長させる第二のIII族窒化物単結晶層が安定してIII族極性成長するとともに、該第二のIII族窒化物単結晶層中の欠陥密度を低減することができる。第二のIII族窒化物単結晶層を、より安定してIII族極性成長させ、欠陥密度をより低減するためには、初期単結晶層中の酸素濃度は、特に5×1020cm-3以上4×1021cm-3以下であることが好ましい。ここで、酸素濃度は、単結晶層1cm中に含まれる酸素原子数を意味する。
 初期単結晶層中の酸素濃度が1×1020cm-3未満の場合には、初期単結晶層上に成長させる第二のIII族窒化物単結晶層はN極性成長が支配的となり、その状態は酸素濃度の減少に伴って変化する。本発明者らの検討によれは、酸素濃度が1019cm-3程度の場合は、III族極性とN極性が混在した状態であり、酸素濃度が1019cm-3未満の場合は、ほぼ全面がN極性面となることが分かった。また、いずれの領域においても、III族窒化物単結晶層の表面平滑性は、III族極性成長した場合に比べて悪化する。
 一方、初期単結晶層中の酸素濃度が5×1021cm-3を超える場合には、第二のIII族窒化物単結晶層は安定してIII族極性成長するが、酸素濃度の増加に伴って該第二のIII族窒化物単結晶層中の欠陥密度が増加する。
 なお、この欠陥密度は、透過電子顕微鏡(TEM)の断面もしくは平面観察により転位欠陥の数をカウントし測定することが出来る。また、別の方法として、X線ロッキングカーブ測定における(002)面または(102)面半値幅から欠陥密度の大小関係を見積もることも可能である。この場合、上記半値幅が小さくなるにつれて欠陥密度が低くなると見積もられる。
 本発明の方法によれば、第二のIII族窒化物単結晶層は、(102)面の半値幅を好ましくは2500arcsec以下とすることができ、さらに好ましくは1500arcsec以下とすることができる。
 初期単結晶層形成時の酸素源ガスの供給量およびガス濃度(酸素濃度)は、初期単結晶層中の酸素濃度が前述の範囲に入るように、装置の仕様等に応じて適宜決定すればよい。結晶中への酸素の取り込み量と酸素の供給量は、MOCVD装置の構造やガス導入方法などによって大きく異なることが予想されるため、予め酸素源ガスの供給量と結晶中に取り込まれる酸素濃度との関係を調査し、前述の範囲内に酸素濃度が入るようにガス供給量、および濃度を設定することが好ましい。ただし、通常の工業的な生産を考慮すると、III族原料ガスのIII族原子に対して、酸素源ガスにおける酸素のモル比(酸素原子/III族原子比)を0.1以上10以下の範囲で調整することが好ましい。
 また、本発明において、酸素源ガスを供給することにより形成された初期単結晶層(酸素濃度が1×1020cm-3以上5×1021cm-3以下の初期単結晶層)の膜厚は15nm以上40nm以下でなければならない。初期単結晶層の膜厚が15nm未満の場合には、初期単結晶層表面におけるIII族極性面の割合が十分に高くならないため、初期単結晶層上に成長させる第二のIII族窒化物単結晶層はN極性成長が支配的となる。一方、初期単結晶の膜厚が40nmを超える場合には、安定して第二のIII族窒化物単結晶層はIII族極性成長するが、窒素極性成長面上にも新たなIII族極性成長核が形成され、III族極性成長核の存在密度が高くなり過ぎ、該初期単結晶層の膜厚の増加に伴って該III族窒化物単結晶層中の欠陥密度が増加する。そのため、より安定したIII族極性成長を実施し、かつ、結晶品質のよいIII族窒化物単結晶層を形成するためには、初期単結晶層の厚みは、より好ましくは15nm以上30nm以下である。
 なお、ここで、初期単結晶層の膜厚は、平均膜厚を意味する。前記したように、初期単結晶層形成段階においてはIII族極性成長とN極性成長が競争的に起り、初期単結晶層にはIII族極性成長した部分とN極性成長した部分とが共存することになる。一般に成長速度はIII族極性成長の方が高いため、初期単結晶層には厚みむらが生じると考えられる。そこで、本発明では、同一条件で別途長時間(上記厚みむらの影響が小さくなるような膜厚になる時間:具体的には約0.2μmの膜厚となる時間)成長を行って、その条件における成長速度を求め、実際の第一成長工程で初期単結晶層を形成するのに要した時間と該成長速度の積から求められる厚さ(平均膜厚)を、初期単結晶層の厚さとした。
 本発明において、初期単結晶層形成時の原料ガスの供給は、特に制限されるものではないが、III族原料ガスに対する窒素源ガスのモル比(窒素原子/III族原子比)を3000以上8000以下とすることが好ましい。原料ガスの供給比がこの範囲を満足することにより、安定してIII族極性成長が可能になると共に、欠陥密度をより低減することが可能となるため好ましい。また、原料ガスは、酸素源ガスと共ともに供給すればその方法は、特に制限されるものではなく、III族原料及び窒素源ガスを同時に供給する、それぞれを交互に供給する、または何れかの原料ガスを断続的に供給する、など公知の方法により供給することができる。なお、III族原料ガスは、初期単結晶層が上記組成を満足するIII族窒化物から形成されるように、その比を調整すればよい。
 初期単結晶層の形成温度(初期単結晶層を形成する際のサファイア基板の温度)に関しては、850℃以上1150℃以下であることが好ましく、特に900℃以上1100℃以下であることが好ましい。初期単結晶層の形成温度がこの範囲を満足することにより、第二工程において成長させる第二のIII族窒化物単結晶層のIII族極性成長をより安定的に実現し、かつ該III族窒化物単結晶層中の欠陥密度をより低減することができる。また、初期単結晶層の形成温度を上記範囲とすることにより、初期単結晶層におけるIII族極性成長とN極性成長の混在を少なくすることができる。さらに、初期単結晶層の形成温度を上記範囲とすることにより、結晶性のよい(X線ロッキングカーブ測定における半値幅の狭い)初期単結晶層とすることができる。その結果、該初期単結晶層上に形成する第二のIII族窒化物単結晶層も、表面平滑性、および結晶性の改善されたものとなる。
 上記のように初期単結晶層に含まれる酸素濃度、および初期単結晶層の膜厚の違いによって、該初期単結晶層上に形成する第二のIII族窒化物結晶層の極性状態、および結晶品質は変化する。この変化は、サファイア基板上の初期単結晶層の極性状態、および結晶品質に影響を受ける。
 本発明者らの原子間力顕微鏡(AFM)による結晶表面の観察結果によれば、上記で説明したN極性成長が優勢となる成長条件において、初期単結晶層の成長面のIII族極性成長の状態は、島状の状態であり、そして、サファイア基板に対する島状結晶(III族極性の成長部分)は、その被覆率が概ね30%以下であることが分かった。一方、安定的にIII族極性成長するが、欠陥密度が増加してしまう成長条件において、初期単結晶層の成長面のIII族極性成長の状態は、網目状の状態であり、そして、サファイア基板に対する被覆率は90%以上であることが分かった。このような結果は、前記した本発明者等による推定機構を支持するものである。
 なお、結晶表面の極性の分析にAFMを用いたのは、初期単結晶層のように40nm以下という非常に薄い膜を成長させた場合には結晶面にIII族極性の部分とN極性の部分が混在する可能性が高く、前記した「簡便的な判別法であるエッチングテスト」では、このような共存状態を評価することができないからである。これに対し、第二工程で形成される第二のIII族窒化物単結晶層の極性を判断する場合には、該第二のIII族窒化物単結晶層は、通常0.3μm以上、好ましくは0.5μm以上の厚さで形成される。初期単結晶層から通算すると、各結晶核の成長が十分に進行する厚みであるため、第二のIII族窒化物単結晶層表面は、ほぼ完全にIII族極性部分またはN極性部分のどちらかとなっている。このため、第二のIII族窒化物単結晶層表面の極性判断には前記エッチングテストが問題なく使用できる。
 このような結果から、初期単結晶層の好ましい成長状態としては、サファイア基板上(表面)に、III族極性成長が島状もしくは網目状の状態で成長しており、サファイア基板に対するIII族極性成長した部分の被覆率が30%を超え、90%未満の状態が最も好ましいと考えられる。そして、初期単結晶層におけるこのような成長状態は、酸素濃度、および膜厚が上記範囲を満足する初期単結晶層とすることにより達成できる。特に、初期単結晶層の形成温度を上記好ましい範囲とすることにより、容易に上記成長状態とすることができる。
 次いで、本発明においては、第二成長工程において、該初期単結晶層上に、第二のIII族窒化物単結晶層を成長させることにより積層体を製造する。この第二成長工程について以下に説明する。
 (第二成長工程)
 第二成長工程では第一成長工程で得た初期単結晶層上に、酸素源ガスを供給せずに該原料ガスを供給するか、または原料ガスと共に、酸素源ガスを第一成長工程よりも少ない供給量で供給することにより、初期単結晶層よりも酸素濃度を低減した第二のIII族窒化物結晶層を成長させて積層体を製造する。このとき、高い光透過性を有し、より高い結晶性を有する第二のIII族窒化物結晶層を得るという観点からは、第二成長工程において酸素源ガスを供給しないことが好ましい。
 第二成長工程で成長させる第二のIII族窒化物単結晶層は初期単結晶層表面(III族極性成長した部分の被覆率が好ましくは30%を超え、90%未満である状態の表面)を結晶成長面とするので、該第二のIII族窒化物単結晶層の形成過程において該第二のIII族窒化物単結晶層の表面に占めるIII族極性成長した部分の割合は、次第に増大し、最終的には90%以上、特に100%若しくはそれに近い割合にまで高くすることができる。そして、第二のIII族窒化物単結晶層の形成過程では、主として既に形成されたIII族極性成長核の成長が起り、新たなIII族極性成長核の形成は起こり難いので、膜厚を厚くしても結晶性が低下することが無い。
 この第二成長工程において、原料ガス、および酸素源ガスは、前記第一成長工程と同様のものを使用することができる。
 本発明において、前記初期単結晶層上に第二のIII族窒化物単結晶層を成長させる際の条件は、酸素源ガスの供給量を0とするか、第一成長工程よりも酸素源ガスの供給量を低減する以外は、第一成長工程と同様の条件を採用することができる。
 すなわち、原料ガスの供給は、特に制限されるものではないが、窒素原子/III族原子比は500以上7000以下の範囲とすればよい。また、原料ガスの供給方法については、特に制限されるものではなく、III族原料及び窒素源ガスを同時に供給する、それぞれを交互に供給する、または何れかの原料ガスを断続的に供給する、など公知の方法により供給することができる。なお、III族原料ガスは、第二のIII族窒化物単結晶層が上記組成を満足するIII族窒化物から形成されるように、その比を調整すればよい。
 さらに、III族窒化物単結晶層を形成する際の形成温度は、特に制限されるものではなく、1100℃以上1500℃以下の範囲であればよい。
 また、初期単結晶層を形成した後、初期単結晶層形成温度よりも高い温度でIII族窒化物単結晶層を成長させる必要がある場合には、以下の方法を行うことが好ましい。例えば、キャリアガスのみを供給する、もしくはアンモニアガスとキャリアガスのみを供給している間に、基板(初期単結晶層)が所定の温度となるように加熱することが好ましい。
 なお、第二のIII族窒化物単結晶層の成長条件を途中で変えることにより、第二のIII族窒化物単結晶層を多層構造とすることもできる。例えば、成長温度(形成温度)、成長時の窒素原子/III族原子比、または原料供給方法などが異なるIII族窒化物単結晶層を積層することにより、欠陥密度を低減させた多層のIII族窒化物単結晶層を形成することもできる。
 なお、このようにして得られる第二のIII族窒化物単結晶層中に含まれる酸素濃度は、1×1020cm-3未満であり、好ましくは1×1019cm-3以下であり、さらに好ましくは1×1018cm-3以下である。通常、酸素は不純物であるため、積層体に含まれる酸素濃度は低い方が結晶の品質を高めることができる。そのため、この第二成長工程では、酸素を含むガスを供給しない態様が最も好ましい。ただし、下記の実施例に示しているが、酸素を発生しない部材を有する装置を使用し、かつ酸素を含むガスを供給しなくとも、その原因は明らかではないが、極微量の酸素がIII族窒化物単結晶層に含まれる場合がある。その結果、第二のIII族窒化物単結晶層における酸素濃度を検出限界以下とするのは困難である。
 また、第二のIII族窒化物単結晶層の厚みは、使用する目的に応じて適宜決定すればよい。通常の半導体素子用に使用する場合には0.3μm以上5.0μm以下とすればよい。
 本発明の方法では、第一成長工程で所定の酸素濃度を有し、且つ所定の厚さを有する初期単結晶層を形成することにより、該初期単結晶層の露出表面の状態を、安定してIII族極性成長を行うのに適した状態、すなわち、表面に占めるIII族極性面の割合が適度に高い表面状態にする。そして、このような面を結晶成長面として第二成長工程を行うことにより、該工程では酸素を含まないIII族窒化物単結晶層を形成しても、安定したIII族極性成長を行うことができ、その結晶性および表面平滑性を高くすることができる。
 また、このような本発明の方法により得られる「サファイア基板上に前記初期結晶層および第二のIII族窒化物単結晶層がこの順番で積層された積層体」である本発明の積層体は、第二のIII族窒化物単結晶層の露出表面が優れたIII族極性成長面であるため、その上に紫外発光デバイスを構成する各種単結晶薄膜層を形成するのに適しており、紫外発光デバイス作製用基板として好適に使用することができる。具体的には、第二のIII族窒化物単結晶層上に、必要に応じてバッファ層、n型導電層、活性層、およびp型導電層をこの順に積層した多層構造とすることで発光素子層を形成することができる。以下、本発明の積層体について、詳しく説明する。
 (本発明の積層体)
 本発明の積層体の構成を図1に示す。本発明の積層体は、サファイア基板1、該基板1上に前記した特定の組成および厚みを有する初期単結晶層2が積層され、該初期単結晶層2上に第二のIII族窒化物単結晶層3が積層されたものである。
 さらに詳しくは、この積層体は、サファイア基板上に、AlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を有し、酸素濃度が1×1020~5×1021cm-3であり、厚さが15nm以上40nm以下である初期単結晶層2と、前記組成式で示される組成を有し、初期単結晶層よりも酸素濃度の低い第二のIII族窒化物単結晶層3と、がこの順番で積層された積層体である。そして、好ましくは、この第二のIII族窒化物単結晶層の表面(サファイア基板1側とは反対の面)は、III族極性面である。
 本発明の積層体においては、第二のIII族窒化物単結晶層3の結晶性が高く、その表面が原子レベルでの平滑性が高くしかもIII族極性面であるものを、本発明の方法により容易に得ることができるという理由から、前記初期単結晶層2および該第二のIII族窒化物単結晶層3を構成するIII族窒化物は、前記組成式におけるX、Y、およびZが、1.0≧X≧0.95、0.05≧Y≧0、0.05≧Z≧0であることが好ましく、特にX=1.0、すなわちAlNであることが特に好ましい。
 また、初期単結晶層2の酸素濃度は、5×1020~4×1021cm-3であることが、特に好ましい。また、初期単結晶層2の厚みは、15nm以上30nm以下であることが特に好ましい。
 第二のIII族窒化物単結晶層3の酸素濃度は、初期単結晶層2の酸素濃度よりも低く、1×1020cm-3未満であり、好ましくは1×1019cm-3以下である。また、層厚みは、特に制限されるものではないが、0.3μm以上5.0μm以下であることが好ましく、0.5μm以上4.0μm以下であることが特に好ましい。
 本発明の積層体は、(a)第二のIII族窒化物単結晶層3の露出表面がIII族極性を有し、(b)該表面の平滑性が高く、(c)第二のIII族窒化物単結晶層3の結晶性が高く、さらに(d)積層体全体として、光、特に深紫外光や紫外光に対する透過率が高い、という優れた特徴を有する。以下、これらの特徴について説明する。
 (a)第二のIII族窒化物単結晶層3の露出表面の極性について
 前記したように、第一工程で形成される初期結晶層の表面状態は、その上に単結晶成長を行う結晶成長面として、安定してIII族極性成長を行うのに適した状態となっている。このため、第二のIII族窒化物単結晶層3の露出表面の極性は、そのほとんど(たとえば90%以上、好ましくは95~100%)がIII族極性となっている。該表面がIII族極性であることは、前記したエッチングテストにより容易に確認することができる。すなわち、本発明の積層体を水酸化カリウム(KOH)などのアルカリ水溶液中に浸漬し、浸漬後の結晶表面の溶解状態を観察すればよい。表面がIII族極性面であれば、アルカリ水溶液に対する耐性が高いため、ほぼエッチングされることはない。一方、表面がN極性面の場合は容易にエッチングされる。このエッチングテストの条件、例えば、上記KOH水溶液の濃度、積層体の浸漬時間、および温度は、特に制限されるものではないが、具体的なテスト条件を例示すれば、KOH 10wt%水溶液に室温で1min(1分間)程度積層体を浸漬すればよい。
 (b)第二のIII族窒化物単結晶層3の露出表面の平滑性について
 第二のIII族窒化物単結晶層3は安定したIII族極性成長をするため、該単結晶層は、その表面平滑性が優れる。具体的には、III族窒化物単結晶層3の表面を、算術2乗平均粗さ(RMS)で20nm以下とすることが可能であり、さらに条件を調整すれば、10nm以下とすることもできる。この透過率およびRMSは、公知の透過率測定装置および原子間力顕微鏡(AFM)で測定することができる。
 (c)第二のIII族窒化物単結晶層3の結晶性について
 第二のIII族窒化物単結晶層3の下地結晶成長面となる初期結晶層表面では、III族極性成長核の存在密度が適度に調整されているため、第二工程において欠陥の発生が抑制され、第二のIII族窒化物単結晶層3の結晶性は高くなる。具体的には、結晶性を(102)面の半値幅で評価した場合、該半値幅を2500arcsec以下とすることができ、さらに好ましくは1550arcsec以下、特に1500arcsec以下とすることもできる。特に成長条件を精密に制御することにより、該半値幅を200arcsec程度まで低減することもできる。
 (d)積層体の光透過性について
 本発明の積層体は、ベース基板として光透過性の極めて高いサファイアを使用し、III族原料ガスの先行供給などの光透過性を低下させるような方法を用いることなくIII族極性成長を安定して行う。また、第二のIII族単結晶層は結晶性が高く、その表面平滑性も高いため、本発明の積層体は、特に研磨などの処理を行わなくても高い光透過性を示すことができる。その光透過性は、III族窒化物単結晶層3の厚みにもよるが、220nm~800nmの範囲の直線透過率において、80%以上とすることができ、(深)紫外発光素子用基板に求められる220nm~280nmの波長領域の光に対する直線透過率、更には250nmの波長の光に対する直線透過率も80%以上とすることができる。
 なお、III族窒化物単結晶をN極性成長させた場合には、N極性面は表面が粗いため上記直線透過率は高々70%程度である。該直線透過率のみに関していえば、表面研磨をして表面平滑性を高くすることにより、本発明の積層体と同程度の光透過率を得ることができるが、N極性成長は結晶成長ウィンドウが狭く結晶成長自体が難しいだけでなく、得られる結晶(面)の耐薬品性や耐熱性が低いという問題がある。
 また、III族極性成長を行う従来法である非特許文献3に開示された方法では、III族極性成長を実現させる為にIII族原料ガスの先行供給を行う必要があり、本発明者等の追試結果によれば、このときに紫外領域の光を吸収する極薄いメタリック(Alリッチな層)な層が形成されるためと思われるが、220nm~280nmの波長領域の光に対する直線透過率および250nmの光に対する直線透過率はともに60%以下と低いものであった。
 このように、本発明の積層体の好ましい態様として、第二のIII族窒化物単結晶層3が(102)面の半値幅が好ましくは200arcsec以上2500arcsec以下である結晶性を有し、該単結晶層3の表面のRMSが0.2nmを越え20nm以下であり、該表面の90%以上がIII族極性面であり、波長が220nm~800nmの範囲光に対する積層体の直線透過率が80%以上である態様を含み、更に好ましい態様として、第二のIII族窒化物単結晶層3が(102)面の半値幅が好ましくは250arcsec以上1550arcsec以下である結晶性を有し、該単結晶層3の表面のRMSが0.2nmを越え10nm以下であり、該表面の90%以上がIII族極性面であり、波長が220nm~800nmの範囲光に対する積層体の直線透過率が85%以上である態様を含む。
 以下、実施例および比較例をあげて本発明について詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 実施例1
 (サーマルクリーニング)
 サファイア基板は、M軸方向に0.15°傾斜させたC面基板を用いた。これをMOCVD装置内のサセプタ上に設置した後、水素を10slmの流量で流しながら、サファイア基板を1250℃まで加熱し、10分間保持した。なお、このMOCVD装置は、サファイア基板を加熱した際の輻射熱により1000℃以上の温度になる箇所は、その表面部分に窒化ボロン製セラミックス材料で製造された部材を配置した。
 (第一成長工程)
 次いで、サファイア基板の温度を950℃まで降温し、トリメチルアルミニウム流量が6.6μmol/min、アンモニア流量が1slm、酸素流量が0.5sccm、全流量が10slm、圧力が40Torrの条件でAlN初期単結晶層を厚さ20nm形成した(初期単結晶層を形成した)。ここで、酸素源(酸素を含むガス)には、高純度酸素(純度>5N)を用いた。上記高純度酸素を装置内で水素と混合し1.0%の希釈ガスとして、酸素流量が上記量となるように、基板上に供給した。
 (第二成長工程)
 次いで、全流量を10slmに保持し、トリメチルアルミニウムの供給を停止しアンモニアのみを供給した状態でサファイア基板を1200℃まで昇温した。その後、同温度でトリメチルアルミニウム流量が26μmol/min、アンモニア流量が0.5slm、全流量が10slm、圧力が25Torrの条件でAlN単結晶層(第二のIII族窒化物単結晶層)を0.5μm形成し、積層体を製造した。なお、この第二成長工程においては、酸素源を供給しなかった。
 (積層体の評価)
 得られた積層体をMOCVD装置から取り出し、高分解能X線回折装置(スペクトリス社パナリティカル事業部製X‘Pert)により、加速電圧45kV,加速電流40mAの条件で(102)面におけるロッキングカーブ測定を行った。また、原子間力顕微鏡により5μm角の表面形状像を取得しRMSを算出した。その後、積層体を8mm角程度の大きさに切断し、任意の切断済みサンプルの一つについては、セシウムイオンを1次イオンに用いた2次イオン質量分析法により酸素の定量分析を行った。AlN層(初期単結晶層、および第二のIII族窒化物単結晶層)中の酸素濃度は、AlN標準試料に基づき定量した。その結果を表1に示した。さらに、紫外可視分光光度計(島津製作所製)を用いて波長が220nm~800nmの波長領域の光、および波長250nmの光に対する積層体の直線透過率を測定した結果、共に87~97%であった。
 上記とは別の切断済みサンプル(積層体)をKOH水溶液(10wt%)に1min間浸漬した後、微分干渉顕微鏡により表面状態を観察し、エッチングの有無からAlN層(第二のIII族窒化物単結晶層)の極性を判別した。これら評価結果を表1に示した。また、(102)面のロッキングカーブ測定結果および極性判別の結果を、2次イオン質量分析法により得られた酸素濃度に対してプロットしたものを図2に示した。
 実施例2
 実施例1で得られた積層体における初期単結晶層中の酸素濃度をより正確に分析するため、実施例1で使用した酸素ガスを99.9atm%の安定同位体酸素(質量数18)に変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1に示した。
 実施例3
 実施例1の第一成長工程において、酸素流量を1.0sccmに変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 実施例4
 実施例1の第一成長工程において、酸素流量を0.3sccmに変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 実施例5
 実施例1の第一成長工程において、AlN初期結晶層の厚さを30nmに変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 比較例1
 実施例1の第一成長工程において、酸素流量を0.1sccmに変えた以外は、同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 比較例2
 実施例1の第一成長工程において、酸素源を供給しない以外は、同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 比較例3
 実施例1の第一成長工程において、酸素流量を2.0sccmに変えた以外は、同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 比較例4
 実施例1の第一成長工程における初期結晶層の膜厚を50nmに変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
 比較例5
 実施例1の第一成長工程における初期結晶層の膜厚を10nmに変えた以外は、実施例1と同様の条件で積層体を製造した。得られた結果を表1および図2に示した。
Figure JPOXMLDOC01-appb-T000001
1  サファイア基板(光学基材)
2  初期単結晶層
3  第二のIII族窒化物単結晶層

Claims (4)

  1.  有機金属気相成長法により、サファイア基板上に、AlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を満足するIII族窒化物からなる単結晶層が積層された積層体を製造する方法であって、
     該III族窒化物単結晶を成長させるための原料ガスであるIII族原料ガス、および窒素源ガスと共に、酸素源ガスをサファイア基板上に供給することにより、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有した前記組成を満足するIII族窒化物からなる初期単結晶層を該サファイア基板上に15nm以上40nm以下の厚みで成長させる第一成長工程、及び
     該初期単結晶層上に、酸素源ガスを供給せずに該原料ガスを供給するか、または該原料ガスと共に、酸素源ガスを第一成長工程よりも少ない供給量で供給することにより、初期単結晶層よりも酸素濃度が低減された前記組成を満足するIII族窒化物からなる第二のIII族窒化物単結晶層を成長させる第二成長工程
    とを含むことを特徴とする積層体の製造方法。
  2.  サファイア基板上に、AlGaInN(但し、X、Y、およびZは、それぞれ、0.9≦X≦1.0、0.0≦Y≦0.1、0.0≦Z≦0.1を満足する有理数であり、X+Y+Z=1.0である)で示される組成を満足するIII族窒化物からなる単結晶層が積層された積層体であって、
     サファイア基板上に、酸素を1×1020cm-3以上5×1021cm-3以下の濃度で含有し、厚みが15nm以上40nm以下である前記組成を満足するIII族窒化物からなる初期単結晶層が積層され、さらに、該初期単結晶層上に、初期単結晶層よりも酸素濃度が低い前記組成を満足するIII族窒化物からなる第二のIII族窒化物単結晶層が積層された積層体。
  3.  前記第二のIII族窒化物単結晶層の表面がIII族窒化物極性面である請求項2に記載の積層体。
  4.  請求項2または3に記載の積層体を有する半導体デバイス。
PCT/JP2010/066806 2009-09-28 2010-09-28 積層体の製造方法 WO2011037251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/498,344 US9297093B2 (en) 2009-09-28 2010-09-28 Layered body having a single crystal layer
KR1020127007988A KR101669259B1 (ko) 2009-09-28 2010-09-28 적층체의 제조방법
JP2011533074A JP5743893B2 (ja) 2009-09-28 2010-09-28 積層体の製造方法
EP10818921.8A EP2484816B1 (en) 2009-09-28 2010-09-28 Method for production of laminate
CN201080043215.1A CN102549203B (zh) 2009-09-28 2010-09-28 叠层体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009223221 2009-09-28
JP2009-223221 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011037251A1 true WO2011037251A1 (ja) 2011-03-31

Family

ID=43795989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066806 WO2011037251A1 (ja) 2009-09-28 2010-09-28 積層体の製造方法

Country Status (6)

Country Link
US (1) US9297093B2 (ja)
EP (1) EP2484816B1 (ja)
JP (1) JP5743893B2 (ja)
KR (1) KR101669259B1 (ja)
CN (1) CN102549203B (ja)
WO (1) WO2011037251A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005789A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
US20140264363A1 (en) * 2013-03-14 2014-09-18 Mingwei Zhu Oxygen Controlled PVD Aluminum Nitride Buffer for Gallium Nitride-Based Optoelectronic and Electronic Devices
CN104541359A (zh) * 2012-05-16 2015-04-22 三垦电气株式会社 氮化物半导体装置的制造方法
JP2015192036A (ja) * 2014-03-28 2015-11-02 日亜化学工業株式会社 窒化物半導体素子の製造方法
US9558938B2 (en) 2014-09-29 2017-01-31 Nichia Corporation Method of manufacturing nitride semiconductor template
JP2020136683A (ja) * 2019-02-21 2020-08-31 国立大学法人山口大学 半導体装置及びその製造方法
JP2020182002A (ja) * 2020-08-03 2020-11-05 株式会社サイオクス 窒化物半導体テンプレートおよび窒化物半導体デバイス
US11056389B2 (en) 2019-05-17 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Method of manufacture of group III nitride semiconductor
US11574809B2 (en) 2016-12-06 2023-02-07 Sumitomo Chemical Company, Limited Nitride semiconductor template and nitride semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058968A1 (ja) * 2009-11-10 2011-05-19 株式会社トクヤマ 積層体の製造方法
TWI703726B (zh) * 2016-09-19 2020-09-01 新世紀光電股份有限公司 含氮半導體元件
JP7055595B2 (ja) * 2017-03-29 2022-04-18 古河機械金属株式会社 Iii族窒化物半導体基板、及び、iii族窒化物半導体基板の製造方法
CN109686820B (zh) * 2018-11-21 2020-12-22 华灿光电(浙江)有限公司 一种发光二极管外延片的制造方法
US11269374B2 (en) 2019-09-11 2022-03-08 Apple Inc. Electronic device with a cover assembly having an adhesion layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148718A (ja) * 1994-09-19 1996-06-07 Toshiba Corp 化合物半導体装置
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2001148357A (ja) * 1999-09-08 2001-05-29 Sharp Corp Iii−n系化合物半導体装置
JP2002026464A (ja) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd 窒化物系半導体素子
JP2003197540A (ja) * 2001-12-26 2003-07-11 Ngk Insulators Ltd Iii族窒化物膜の製造方法
JP2009054782A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP2009081406A (ja) * 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2010030877A (ja) * 2008-07-03 2010-02-12 Furukawa Co Ltd Iii族窒化物半導体基板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19882202B4 (de) 1998-01-21 2007-03-22 Rohm Co. Ltd., Kyoto Lichtemittierende Halbleitervorrichtung und Verfahren zu ihrer Herstellung
JP2000299496A (ja) * 1999-04-14 2000-10-24 Sharp Corp 窒化ガリウム系化合物半導体層の製造方法およびそれにより製造された半導体装置
JP4613373B2 (ja) * 1999-07-19 2011-01-19 ソニー株式会社 Iii族ナイトライド化合物半導体薄膜の形成方法および半導体素子の製造方法
US6455877B1 (en) 1999-09-08 2002-09-24 Sharp Kabushiki Kaisha III-N compound semiconductor device
US6441393B2 (en) * 1999-11-17 2002-08-27 Lumileds Lighting U.S., Llc Semiconductor devices with selectively doped III-V nitride layers
JP3994623B2 (ja) * 2000-04-21 2007-10-24 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
ATE528421T1 (de) * 2000-11-30 2011-10-15 Univ North Carolina State Verfahren zur herstellung von gruppe-iii- metallnitrid-materialien
CN1254869C (zh) * 2001-03-28 2006-05-03 日亚化学工业株式会社 氮化物半导体元件
JP2007081180A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 半導体発光素子
EP1883119B1 (de) * 2006-07-27 2015-11-04 OSRAM Opto Semiconductors GmbH Halbleiter-Schichtstruktur mit Übergitter
EP1883140B1 (de) * 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht und Dotierungsgradienten
EP1883141B1 (de) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
WO2011058968A1 (ja) * 2009-11-10 2011-05-19 株式会社トクヤマ 積層体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148718A (ja) * 1994-09-19 1996-06-07 Toshiba Corp 化合物半導体装置
JP2000044400A (ja) * 1998-05-28 2000-02-15 Sumitomo Electric Ind Ltd 窒化ガリウム単結晶基板及びその製造方法
JP2001148357A (ja) * 1999-09-08 2001-05-29 Sharp Corp Iii−n系化合物半導体装置
JP2002026464A (ja) * 2000-07-13 2002-01-25 Sanyo Electric Co Ltd 窒化物系半導体素子
JP2003197540A (ja) * 2001-12-26 2003-07-11 Ngk Insulators Ltd Iii族窒化物膜の製造方法
JP2009054782A (ja) 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
JP2009081406A (ja) * 2007-09-27 2009-04-16 Showa Denko Kk Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
JP2010030877A (ja) * 2008-07-03 2010-02-12 Furukawa Co Ltd Iii族窒化物半導体基板およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSISCS LETTERS, vol. 83, 2003, pages 2811
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 44, 2005, pages L150
JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 4932
See also references of EP2484816A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293646B2 (en) 2011-07-05 2016-03-22 Panasonic Corporation Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP2013016711A (ja) * 2011-07-05 2013-01-24 Panasonic Corp 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
KR20140021715A (ko) * 2011-07-05 2014-02-20 파나소닉 주식회사 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
EP2731151A1 (en) * 2011-07-05 2014-05-14 Panasonic Corporation Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
WO2013005789A1 (ja) * 2011-07-05 2013-01-10 パナソニック株式会社 窒化物半導体発光素子の製造方法、ウェハ、窒化物半導体発光素子
KR101646064B1 (ko) * 2011-07-05 2016-08-05 파나소닉 아이피 매니지먼트 가부시키가이샤 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자
EP2731151A4 (en) * 2011-07-05 2015-04-29 Panasonic Corp METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT, WAFER, AND NITRIDE SEMICONDUCTOR ELECTROLUMINESCENT ELEMENT
CN104541359B (zh) * 2012-05-16 2018-04-20 三垦电气株式会社 氮化物半导体装置的制造方法
CN104541359A (zh) * 2012-05-16 2015-04-22 三垦电气株式会社 氮化物半导体装置的制造方法
US20140264363A1 (en) * 2013-03-14 2014-09-18 Mingwei Zhu Oxygen Controlled PVD Aluminum Nitride Buffer for Gallium Nitride-Based Optoelectronic and Electronic Devices
US9929310B2 (en) * 2013-03-14 2018-03-27 Applied Materials, Inc. Oxygen controlled PVD aluminum nitride buffer for gallium nitride-based optoelectronic and electronic devices
US11081623B2 (en) 2013-03-14 2021-08-03 Applied Materials, Inc. Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices
US10236412B2 (en) 2013-03-14 2019-03-19 Applied Materials, Inc. Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices
US10546973B2 (en) 2013-03-14 2020-01-28 Applied Materials, Inc. Oxygen controlled PVD AlN buffer for GaN-based optoelectronic and electronic devices
US11575071B2 (en) 2013-03-14 2023-02-07 Applied Materials, Inc. Oxygen controlled PVD ALN buffer for GAN-based optoelectronic and electronic devices
JP2015192036A (ja) * 2014-03-28 2015-11-02 日亜化学工業株式会社 窒化物半導体素子の製造方法
US9558938B2 (en) 2014-09-29 2017-01-31 Nichia Corporation Method of manufacturing nitride semiconductor template
US11574809B2 (en) 2016-12-06 2023-02-07 Sumitomo Chemical Company, Limited Nitride semiconductor template and nitride semiconductor device
JP2020136683A (ja) * 2019-02-21 2020-08-31 国立大学法人山口大学 半導体装置及びその製造方法
US11056389B2 (en) 2019-05-17 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Method of manufacture of group III nitride semiconductor
JP2020182002A (ja) * 2020-08-03 2020-11-05 株式会社サイオクス 窒化物半導体テンプレートおよび窒化物半導体デバイス
JP7044309B2 (ja) 2020-08-03 2022-03-30 株式会社サイオクス 窒化物半導体テンプレートおよび窒化物半導体デバイス

Also Published As

Publication number Publication date
CN102549203A (zh) 2012-07-04
US20120183809A1 (en) 2012-07-19
JPWO2011037251A1 (ja) 2013-02-21
EP2484816B1 (en) 2015-03-11
KR20120088691A (ko) 2012-08-08
JP5743893B2 (ja) 2015-07-01
KR101669259B1 (ko) 2016-10-25
US9297093B2 (en) 2016-03-29
CN102549203B (zh) 2014-09-03
EP2484816A4 (en) 2013-07-31
EP2484816A1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5743893B2 (ja) 積層体の製造方法
JP5631889B2 (ja) 積層体の製造方法
JP6099346B2 (ja) N型iii族窒化物半導体層を有する積層体及びその製造方法
WO2015068458A1 (ja) GaNテンプレート基板およびデバイス基板
JP2007067077A (ja) 窒化物半導体素子およびその製造方法
US9896780B2 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP2009543946A (ja) ワイドバンドギャップ半導体材料
Wang et al. Influence of the TMAl source flow rate of the high temperature AlN buffer on the properties of GaN grown on Si (111) substrate
US8697551B2 (en) Crystalline aluminum carbide thin film, semiconductor substrate having the aluminum carbide thin film formed thereon and method of fabricating the same
CN106574399B (zh) n型氮化铝单晶基板
Jamil et al. MOVPE of InN films on GaN templates grown on sapphire and silicon (111) substrates
Liu et al. Structural and optical properties of quaternary AlInGaN epilayers grown by MOCVD with various TMGa flows
WO2017164036A1 (ja) Iii族窒化物積層体の製造方法
Abd Rahman et al. Diminishing the Induced Strain and Oxygen Incorporation on Aluminium Nitride Films Deposited Using Pulsed Atomic-Layer Epitaxy Techniques at Standard Pressure MOCVD
JP5225928B2 (ja) Iii族窒化物半導体の製造方法
JP5645770B2 (ja) 窒化物半導体基板の製造方法
JP2010225947A (ja) 窒化物半導体用形成用基板およびその製造方法
JP4507810B2 (ja) 窒化物半導体基板の製造方法及び窒化物半導体基板
JP2010132550A (ja) 窒化物半導体基板の製造方法及び窒化物半導体基板
Hernandez et al. Structural and optical properties of MOCVD AllnN epilayers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043215.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13498344

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127007988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011533074

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010818921

Country of ref document: EP