WO2011036891A1 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
WO2011036891A1
WO2011036891A1 PCT/JP2010/005775 JP2010005775W WO2011036891A1 WO 2011036891 A1 WO2011036891 A1 WO 2011036891A1 JP 2010005775 W JP2010005775 W JP 2010005775W WO 2011036891 A1 WO2011036891 A1 WO 2011036891A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
flow velocity
persistence
unit
velocity data
Prior art date
Application number
PCT/JP2010/005775
Other languages
English (en)
French (fr)
Inventor
学 右田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011517545A priority Critical patent/JP5652395B2/ja
Priority to US13/380,601 priority patent/US20120101384A1/en
Priority to CN201080005148.4A priority patent/CN102292028B/zh
Publication of WO2011036891A1 publication Critical patent/WO2011036891A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and more particularly to an afterimage processing method during color flow mapping.
  • the ultrasonic diagnostic apparatus creates an image in the subject by transmitting ultrasonic waves to the subject and analyzing information contained in the reflected echo. It is also possible to image blood flow in a subject by a technique called color flow mapping (hereinafter sometimes abbreviated as CFM), and display the blood flow state in the medical field in general. Ultrasonic diagnostic apparatuses that can be used are widely used.
  • CFM color flow mapping
  • Color flow mapping is also called color Doppler imaging (CDI) and uses the Doppler effect.
  • CDI color Doppler imaging
  • a Doppler shift corresponding to the blood flow velocity occurs in the reflected echo due to the Doppler effect.
  • Information on the blood flow velocity is obtained by detecting information of the Doppler shift by orthogonal detection and performing high-pass filter processing, autocorrelation processing, and noise cut processing called an MTI (Moving Target Indicator) filter.
  • MTI Microving Target Indicator
  • the received signal intensity by the reflected echo obtained from the bloodstream is considerably smaller than the received signal intensity by the reflected echo obtained from the tissue scatterer and tissue boundary used for generating the B-mode tomographic image. For this reason, the blood flow velocity and blood flow power (moving blood flow volume) obtained by signal processing in color flow mapping tend to become unstable.
  • the blood flow velocity of the part you want to observe is slow, or if the part you want to observe is a peripheral blood vessel, the blood flow power becomes small, so in the noise cut process that should originally cut only system noise and acoustic noise, Information on blood flow velocity or blood flow power is likely to be removed.
  • a phenomenon occurs in which a portion originally displayed as a blood flow in the blood flow image is blackened. For example, when the blood flow in the subject is imaged at a rate of several frames to several tens of frames per second, the blood flow portion is shown in black in some of the frames. For this reason, the blood flow portion in the tomographic image suddenly disappears, and the image becomes unsmooth or uncomfortable.
  • the ultrasonic transmission / reception unit 402 drives the probe 401 to transmit ultrasonic waves to the subject.
  • the probe 401 receives a reflected echo generated in the subject and generates a reception signal.
  • the ultrasonic transmission / reception unit 402 performs transmission / reception suitable for generating the B-mode tomographic image, and outputs the obtained reception signal to the tomographic image signal processing unit 409.
  • transmission / reception suitable for generating a color flow mapping tomographic image is performed, and the obtained reception signal is output to a color flow mapping processing unit 403 (hereinafter abbreviated as a CFM signal processing unit).
  • a CFM signal processing unit hereinafter abbreviated as a CFM signal processing unit
  • the ultrasonic transmission / reception unit 402 when generating a color flow mapping tomographic image, the ultrasonic transmission / reception unit 402 performs transmission / reception of ultrasonic waves a plurality of times on the same acoustic line in order to obtain a stable color flow mapping tomographic image.
  • the CFM signal processing unit 403 performs orthogonal detection processing, MTI filter processing, and autocorrelation processing on the received signal, calculates blood flow velocity and blood flow power, and then performs noise cut processing to eliminate system or acoustic noise.
  • the blood flow velocity and blood flow power are output to the frame memory unit 404.
  • the frame memory unit 404 includes a ring buffer, and stores the blood flow velocity and blood flow power from the current scanning frame to N frames before (N is an integer of 1 or more) in units of frames.
  • the frame indicates blood flow velocity data and blood flow power data group constituting a CFM tomographic image of one screen.
  • the frame memory selection unit 405 selects a plurality of preset CFM frame data from the frame memory unit 404, and outputs a command to the frame memory unit 404 to output to the persistence calculation unit 407.
  • the persistence calculation unit 407 performs a persistence calculation based on the CFM frame data read from the frame memory unit 404 and the persistence coefficient output from the persistence coefficient setting unit 406, and provides a CFM DSC (Digital Scan Converter). Output to the unit 408.
  • the persistence calculation is a simple weighting calculation, and the persistence coefficient output from the persistence coefficient setting unit 406 is a fixed coefficient set in advance by the system.
  • the CFM DSC unit 408 converts the coordinates of the CFM frame data output from the persistence calculation unit 407 and outputs the converted data to the image composition unit 411.
  • the tomographic image signal processing unit 409 cuts unnecessary noise by applying dynamic filter processing to the received signal, and then performs envelope detection processing and dynamic range compression processing to provide tomographic image frame data to the tomographic image DSC unit 410. Is output.
  • the tomographic image DSC unit 410 converts the coordinates of the tomographic image frame data from the tomographic image signal processing unit 409 and outputs it to the image composition unit 411.
  • the image composition unit 411 synthesizes each frame data output from the CFM DSC unit 410 and the tomographic image DSC unit 410 for each pixel to generate composite image frame data. Specifically, when the blood flow velocity is zero, the tomographic image frame data is displayed. Otherwise, the two data are displayed for each pixel or the corresponding measurement point so as to display the CFM frame data. Synthesize for each data. Further, the data is converted into color information according to the blood flow velocity and the direction of blood flow, and is output to the display unit 412. The display unit 412 displays the data received from the image composition unit 411.
  • the output result of the CFM signal processing unit 403 is unstable because the blood flow velocity is slow or the blood flow power is small and they are unstable. This prevents black spots from occurring in the displayed blood flow. Specifically, by using a persistence coefficient that places weights on past frame data rather than frame data that is currently being scanned, an afterimage effect is generated, and occurrence of blackout in an image is suppressed.
  • such a feature may not be suitable for the diagnosis of arteries in which the blood flow velocity changes drastically.
  • the blood flow changes drastically in response to diastole contraction of the heart.
  • the difference between the maximum value and the minimum value of the blood flow velocity is larger than that of other diagnostic sites.
  • the blood flow velocity of the carotid artery in the diastole is constant at a small value for a relatively long time with respect to the cardiac cycle, and the output of the CFM signal processing unit 403 falls into a unstable state.
  • the persistence coefficient In order to suppress blackout from occurring in the blood flow image to be displayed, it is preferable to set the persistence coefficient so that the afterimage effect is enhanced by the persistence processing. Thereby, even when the blood flow velocity is low, smooth moving image display without blackout is possible. However, in this case, it is impossible to display a high blood flow velocity in the systole.
  • peripheral blood vessels derived from mainstream blood vessels exist in organs such as the thyroid gland, liver, and kidney. In the diagnosis of these organs, it is very important to understand the peripheral vascular structure.
  • the temporal blood flow change in the peripheral blood vessels is relatively stable, the blood flow power tends to be extremely small compared to the case of the carotid artery or heart because the blood vessels are physically thin. Accordingly, since the blood flow power is small, the detection of the Doppler shift becomes unstable, and as a result, the output of the CFM signal processing unit 403 falls into a unstable state.
  • the peripheral blood vessels in the tomographic image are displayed blinking in time and are difficult to see as a moving image.
  • the persistence process is performed, the blood flow of the peripheral blood vessel in the tomographic image is smoothed in the temporal direction, and thus the peripheral blood vessel may disappear due to the persistence process. In this case, the peripheral blood vessel detection rate is significantly reduced.
  • the present invention solves such a problem of the prior art, and can clearly recognize a change in blood flow at a diagnostic site such as a carotid artery in which the blood flow velocity changes drastically, and blackout even at a low blood flow velocity.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus capable of displaying a smooth blood flow moving image that does not generate a blood flow. It is another object of the present invention to provide an ultrasonic diagnostic apparatus capable of displaying a moving image that is easy to view even in a blood vessel portion having a small blood flow power such as a peripheral blood vessel.
  • the probe is repeatedly driven, and the reflected echo obtained by reflecting the ultrasonic wave transmitted by driving the probe on the subject is reflected by the probe.
  • a transmission / reception unit that sequentially generates a plurality of reception signals; a color flow mapping signal processing unit that sequentially generates blood flow velocity data of a blood flow portion in the subject in each frame based on the plurality of reception signals;
  • An afterimage processing unit that performs afterimage processing on blood flow velocity data in each frame; a tomographic image signal processing unit that generates B-mode tomographic image frame data based on the received signal; and the afterimage-processed blood flow
  • An image composition unit that synthesizes the velocity data and the B-mode tomographic image frame data, and the afterimage processing unit
  • the folding determination is performed based on the blood flow velocity data obtained by the afterimage processing of the previous frame, and the persistence coefficient is dynamically changed based on the result of the folding determination and the blood flow velocity data of the latest and previous frames.
  • a probe is repeatedly driven, and a reflected echo obtained by reflecting an ultrasonic wave transmitted by driving the probe on a subject is detected by the probe.
  • a transmission / reception unit that receives a child and sequentially generates a plurality of reception signals, and color flow mapping signal processing that sequentially generates blood flow velocity data of a blood flow portion in the subject in each frame based on the plurality of reception signals
  • An afterimage processing unit that performs afterimage processing on blood flow velocity data in each frame, a tomographic image signal processing unit that generates B-mode tomographic image frame data based on the received signal, and the afterimage processing
  • An after-image processing unit that synthesizes the blood flow velocity data and the B-mode tomographic image frame data.
  • Each of blood flow velocity data is read out from each other, and a folding determination unit for performing a folding determination, and a persistence coefficient for determining a persistence coefficient according to the result of the folding determination and the blood flow velocity data stored in the first memory unit
  • a persistence calculation is performed on the blood flow velocity data stored in the first memory unit, and the calculation result is the blood flow after the afterimage processing.
  • a persistence calculation unit that outputs as speed data.
  • the folding determination unit compares the blood flow velocity data stored in the first memory unit and the blood flow velocity data stored in the second memory unit with a plurality of threshold values. To determine whether folding has occurred and whether the latest blood flow velocity data in the frame is in the folding region.
  • the afterimage processing unit includes a third memory unit that stores a reference table including persistence coefficients of two or more different values associated with each other according to the value of the blood flow velocity.
  • a third memory unit that stores a reference table including persistence coefficients of two or more different values associated with each other according to the value of the blood flow velocity.
  • the reference table is associated with a constant value of a persistence coefficient for a blood flow velocity of a predetermined value or more.
  • a probe is repeatedly driven, and a reflected echo obtained by reflecting an ultrasonic wave transmitted by driving the probe on a subject is detected by the probe.
  • a transmission / reception unit that receives a child and sequentially generates a plurality of reception signals, and color flow mapping signal processing that sequentially generates blood flow velocity data of a blood flow portion in the subject in each frame based on the plurality of reception signals
  • An afterimage processing unit that performs afterimage processing on blood flow velocity data in each frame, a tomographic image signal processing unit that generates B-mode tomographic image frame data based on the received signal, and the afterimage processing
  • An after-image processing unit that synthesizes the blood flow velocity data and the B-mode tomographic image frame data,
  • a first memory unit that stores data
  • a second memory unit that stores blood flow velocity data that has been subjected to afterimage processing of a frame immediately before the latest, the first memory unit, and the second memory
  • the blood flow velocity data is read from each unit, and a folding determination
  • the folding determination unit compares the blood flow velocity data stored in the first memory unit and the blood flow velocity data stored in the second memory unit with a plurality of threshold values. To determine whether folding has occurred and whether the latest blood flow velocity data in the frame is in the folding region.
  • the afterimage processing unit stores a first reference table including first persistence coefficients of two or more different values associated with each other according to the blood flow velocity value.
  • a fourth memory unit storing a second reference table including a third memory unit and a second persistence coefficient having two or more different values associated with each other according to the value of the blood flow velocity And further including.
  • the first persistence coefficient and the second persistence coefficient that are associated according to the same blood flow velocity value are mutually It is a different value.
  • a constant value of a persistence coefficient is associated with a blood flow velocity equal to or higher than a predetermined value.
  • the afterimage-processed blood flow velocity data of the frame before the latest is the afterimage-processed blood flow velocity data of the previous frame.
  • the present invention based on the blood flow velocity data of the latest frame and the blood flow velocity data of the frame before the latest, determination of folding is performed, based on the result of the folding determination and blood flow velocity data of the latest frame, Dynamically change the persistence factor. Therefore, an ultrasonic diagnostic apparatus that can clearly recognize blood flow changes and can display a smooth blood flow moving image that does not cause blackout even at a low blood flow velocity is realized.
  • the blood flow velocity afterimage-processed using the persistence coefficient determined based on the blood flow velocity data of the latest frame, and the blood flow velocity data of the frame before the latest frame are determined.
  • the blood flow velocity subjected to afterimage processing is obtained using the persistence coefficient, and the larger absolute value is selected and used for blood flow image display. For this reason, it is possible to display a blood flow movie that does not cause peripheral blood flow disappearance due to smoothing without blinking the blood flow display of the peripheral blood vessels in which the blood flow power becomes unstable. .
  • FIG. 1 is a block diagram showing a first embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • (A) And (b) is a schematic diagram explaining the folding calculation considered when performing the persistence calculation of the blood flow velocity data using the persistence coefficient in the first embodiment.
  • (A) is a schematic diagram for demonstrating the return
  • (b) is a graph which shows the relationship which the data of a reference table satisfy
  • (A) And (b) is a schematic diagram explaining the folding calculation considered when performing the persistence calculation of the blood flow velocity data using the persistence coefficient in the second embodiment.
  • (A) is a schematic diagram for demonstrating return
  • (b) and (c) are graphs which show the relationship which the data of the 1st and 2nd reference table satisfy
  • FIG. 1 is a block diagram showing a first embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • An ultrasonic diagnostic apparatus 11 shown in FIG. 1 includes a probe 101, an ultrasonic transmission / reception unit 102, a CFM signal processing unit 103, an afterimage processing unit 115, a tomographic image signal processing unit 111, and a CFM DSC unit 110.
  • a tomographic image DSC unit 112, an image composition unit 113, and a display unit 114 can be used for the probe 101 and the display unit 114, and the ultrasonic diagnostic apparatus 11 does not include the probe 101 and the display unit 114. May be.
  • the ultrasonic transmission / reception unit 102 generates a drive signal for driving the probe 101 and outputs it to the probe 101, thereby transmitting ultrasonic waves from the probe 101 to the subject. Further, the probe 101 receives a reflected echo obtained by reflecting the transmitted ultrasonic wave at the subject, and generates a reception signal. More specifically, the probe 101 includes a plurality of piezoelectric elements, and an ultrasonic wave transmitted from each piezoelectric element constitutes an ultrasonic beam, and an ultrasonic wave is scanned by a plurality of ultrasonic beams. The sound wave transmitting / receiving unit 102 drives the probe 101 while performing delay control of each piezoelectric element.
  • the reflected echo is received by each piezoelectric element, and the ultrasonic transmission / reception unit 102 performs delay control of each piezoelectric element, thereby generating a reception signal corresponding to the transmitted ultrasonic beam.
  • One frame of data is obtained by scanning the subject once with the ultrasonic beam. By repeatedly transmitting and receiving ultrasonic waves several times to several tens of times per second, received signals of several frames to several tens of frames per second are sequentially generated.
  • the ultrasonic diagnostic apparatus 11 generates a B-mode tomographic image and a color flow mapping image, synthesizes these, and displays them on the display unit 114. For this reason, the ultrasonic transmission / reception of the ultrasonic transmission / reception unit 102 is performed for each of the generation of the B-mode tomographic image and the generation of the color flow mapping image.
  • the number of frames per second of the B-mode tomographic image and the number of frames per second of the color flow mapping image may be the same or different. When the number of frames is the same, ultrasonic transmission / reception for generating a B-mode tomographic image and ultrasonic transmission / reception for generating a color flow mapping image may be alternately repeated.
  • the ultrasonic transmission / reception unit 102 When generating the B-mode tomographic image, the ultrasonic transmission / reception unit 102 performs transmission / reception suitable for generating the B-mode tomographic image, and outputs the obtained reception signal to the tomographic image signal processing unit 111.
  • transmission / reception suitable for generating a color flow mapping tomographic image is performed, and the obtained reception signal is output to the CFM signal processing unit 103.
  • the ultrasonic transmission / reception unit 102 transmits and receives ultrasonic waves a plurality of times on the same acoustic line in order to obtain a stable color flow mapping tomographic image.
  • the CFM signal processing unit 103 performs orthogonal detection processing, MTI filter processing, and autocorrelation processing on the received signal, calculates blood flow velocity and blood flow power, and then performs noise cut processing to eliminate system or acoustic noise.
  • the CFM frame data includes at least blood flow velocity data.
  • blood flow power data and blood flow velocity dispersion data may be included.
  • the CFM signal processing unit 103 sequentially repeats this process for each received signal constituting each frame.
  • the CFM frame data generated by the CFM signal processing unit 103 is output to the afterimage processing unit 115 for each frame.
  • the afterimage processing unit 115 performs afterimage processing on the CFM frame data for each frame using the persistence coefficient.
  • the ultrasonic diagnostic apparatus 11 of this embodiment determines the persistence coefficient according to the blood flow velocity of the latest frame. That is, the persistence coefficient is not constant and is a dynamic value based on the blood flow velocity of the latest frame. Thereby, the persistence coefficient can be changed according to the blood flow velocity, and the afterimage effect can be adjusted.
  • the blood flow velocity that can be measured is limited by the pulse repetition frequency (PRF). As a result, the blood flow velocity is turned back, making it difficult to accurately evaluate the blood flow velocity.
  • PRF pulse repetition frequency
  • the ultrasonic diagnostic apparatus 11 uses blood flow velocity data of the latest frame and blood flow velocity data of the previous frame in order to determine whether aliasing has occurred.
  • the afterimage processing unit 115 includes a frame memory unit (first memory unit) 104, an aliasing determination unit 105, a persistence coefficient determination unit 106, and a persistence coefficient reference memory unit (third memory unit). 107, a persistence calculation unit 108, and a persistence memory unit (second memory unit) 109.
  • the frame memory unit 104 stores CFM frame data of the latest frame (currently being scanned).
  • the persistence memory unit 109 stores CFM frame data that is an output result of the persistence calculation unit 108 of the previous frame.
  • the CFM frame data in the persistence memory unit 109 is subjected to afterimage processing.
  • blood flow velocity data is referred to as Vcurrent and blood flow velocity data Vout-1.
  • the folding determination unit 105 reads the blood flow velocity data Vcurrent in the CFM frame data from the frame memory unit 104 and the blood flow velocity data Vout-1 in the CFM frame data from the persistence memory unit 109, and performs a folding determination. More specifically, by comparing the blood flow velocity data Vcurrent and the blood flow velocity data Vout-1 with a plurality of threshold values, whether or not folding has occurred and the blood flow velocity data Vcurrent is in the folding region. And outputs the result to the persistence coefficient determination unit 106 and the persistence calculation unit 108.
  • the persistence coefficient determination unit 106 creates a reference index to the persistence coefficient reference memory unit 107 based on the two determination results from the folding determination unit 105 and the blood flow velocity data Vcurrent read from the frame memory unit 104. In addition, the persistence coefficient reference memory unit 107 is accessed, the persistence coefficient associated with the reference index is read, and set in the persistence calculation unit 108. In the persistence coefficient reference memory unit 107, a reference table of persistence coefficients previously associated with blood flow velocity values is stored. This reference table includes persistence coefficients of two or more different values associated with each other according to the blood flow velocity value.
  • the persistence calculation unit 108 Based on the persistence coefficient set by the persistence coefficient determination unit 106 and the determination result of the aliasing occurrence from the aliasing determination unit 105, the persistence calculation unit 108 converts the blood flow velocity data into the blood flow velocity data by the following equation (1). Persistence operation is performed on the result.
  • the afterimage processed blood flow velocity data obtained by the persistence calculation is Vout and the persistence coefficient is Cpersistence (0 ⁇ Cpersistence ⁇ 1)
  • the afterimage processed blood velocity data is obtained by the following equation (1). It is done.
  • Vout (1 ⁇ Cpersistence) ⁇ Vcurrent + Cpersistence ⁇ Vout ⁇ 1 (1)
  • the persistence calculation is similarly performed using the latest frame data, the data of the previous frame, and the obtained persistence coefficient Cpersistence. To obtain afterimage processed data.
  • the blood flow velocity that can be directly measured by the Doppler shift is limited by the repetition frequency (PRF) of the pulse wave. Specifically, the blood flow velocity corresponding to the frequency change exceeding ⁇ PRF / 2 is folded back to be observed as the blood flow in the opposite direction.
  • PRF repetition frequency
  • FIGS. 2A and 2B show blood flow velocity data Vout that has been subjected to afterimage processing, blood flow velocity data Vcurrent of the latest frame, and blood that is an output result of the persistence calculation unit 108 of the previous frame.
  • size of the flow velocity data Vout-1 is shown.
  • the first quadrant on the horizontal axis means that the velocity V is zero
  • the second quadrant on the horizontal axis means + V or ⁇ V.
  • the speed V is positive, it is located in the first or second quadrant, and when the speed V is negative, it is located in the third or fourth quadrant.
  • Vout-1 when it is determined that Vcurrent is in the second quadrant, Vout-1 is in the third quadrant, and aliasing has occurred, Vout-1 is actually Since the value is larger than the blood flow velocity corresponding to + PRF / 2, the calculation does not pass through zero, that is, does not involve a sign change. Therefore, the sign (plus or minus) of Vcurrent and Vout-1 is taken, and these values are substituted into equation (1) for calculation.
  • the CFM DSC unit 110 converts the coordinates of blood flow velocity data output from the persistence calculation unit 108 and outputs the converted data to the image composition unit 113.
  • the tomographic image signal processing unit 409 cuts unnecessary noise by applying dynamic filter processing to the received signal, and then performs envelope detection processing and dynamic range compression processing to provide tomographic image frame data to the tomographic image DSC unit 410. Is output.
  • the tomographic image DSC unit 410 converts the coordinates of the tomographic image frame data from the tomographic image signal processing unit 409 and outputs it to the image composition unit 411.
  • the image composition unit 411 synthesizes each frame data output from the CFM DSC unit 410 and the tomographic image DSC unit 410 for each pixel or each corresponding measurement point data to generate composite image frame data. Specifically, when the blood flow velocity is zero, the tomographic image frame data is displayed. Otherwise, the two data are displayed for each pixel or corresponding measurement points so as to display the CFM frame data. Combining for each data. Further, the data is converted into color information according to the blood flow velocity and the direction of blood flow, and is output to the display unit 412. The display unit 412 displays the data received from the image composition unit 411.
  • the folding determination unit 105 determines whether or not the blood flow velocity is folded.
  • the aliasing determination unit 105 includes blood flow velocity data Vcurrent included in the latest CFM frame data from the frame memory unit 104 and CFM frame data that is an output result of the persistence calculation unit 108 one frame before from the persistence memory unit 109.
  • the blood flow velocity Vout-1 is read, and the following two determinations are made from the values of Vcurrent and Vout-1. 1. Whether wrapping has occurred. 2. Whether Vcurrent is in the folded area.
  • the determination of these two states is performed by comparing a predetermined threshold with Vcurrent and Vout-1. Specifically, the threshold value Vth and the zero blood flow velocity Vzero are compared with Vcurrent and Vout-1.
  • FIG. 3A shows the relationship between the threshold Vth, the blood flow zero velocity Vzero, Vcurrent, and Vout-1.
  • the first quadrant on the horizontal axis means the zero blood flow velocity Vzero
  • the second quadrant on the horizontal axis means Vmax or -Vmax.
  • the maximum value of the assumed change in blood flow velocity is set in the time interval between adjacent frames.
  • Table 1 shows conditions and determination results determined by the aliasing determination unit 105.
  • Condition (1) is when the sign of condition (0) is reversed.
  • condition (2) when Vout-1 is smaller than -Vth, the fact that Vcurrent is a positive value is a change that exceeds the assumed maximum change in blood flow velocity, and therefore aliasing occurs. is doing. Further, since Vcurrent is in a range of ⁇ Vth across Vzero, Vcurrent is not a folded area.
  • Condition (3) is when the sign of condition (2) is reversed.
  • the persistence coefficient determination unit 106 refers to the persistence coefficient reference memory unit 107 based on the two determination results output from the folding determination unit 105 and the absolute value of the blood flow velocity data Vcurrent read from the frame memory unit 104. Create an index. Table 2 shows the reference index created.
  • persistence coefficient reference memory unit 107 a reference table composed of persistence coefficients associated with the reference index is stored.
  • the persistence coefficient determination unit 106 accesses the persistence coefficient reference memory unit 107, reads the persistence coefficient associated with the created reference index, and outputs it to the persistence calculation unit 108.
  • FIG. 3B is a graph showing an example of the correspondence between the reference index and the persistence coefficient.
  • the horizontal axis indicates the reference index
  • the vertical axis indicates the persistence coefficient.
  • the reference index is the absolute value Abs (Vcurrent) of Vmax or Vcurrent.
  • Abs (Vcurrent) of Vmax or Vcurrent When the absolute value of Vcurrent is less than or equal to the threshold value Vth, a persistence coefficient Cpersistence that decreases monotonously with an increase in Vcurrent is associated. That is, when the absolute value of Vcurrent is equal to or less than the threshold value Vth, different persistence coefficients Cpersistence are associated with the blood flow velocity Vcurrent of the latest frame. As a result, when the blood flow velocity Vcurrent of the latest frame is small, the persistence coefficient Cpersistence increases.
  • the weight of the blood flow velocity Vout-1 of the previous frame is increased.
  • the blood flow velocity Vout that largely reflects the blood flow velocity Vout-1 of the previous frame is determined and displayed on the display unit 114. For this reason, the change in the color flow mapping image becomes smooth, and blackout hardly occurs.
  • the persistence coefficient Cpersistence monotonously decreases as Vcurrent increases. Therefore, when the blood flow velocity increases with time, the persistence coefficient Cpersistence decreases, the afterimage effect decreases, and color flow mapping is performed. The image changes abruptly. When the blood flow velocity decreases with time, the persistence coefficient Cpersistence increases, the afterimage effect increases, and the color flow mapping image changes more slowly.
  • the persistence coefficient Cpersistence having the same value is associated with the reference index when the absolute value of Vcurrent is equal to or greater than the threshold value Vth.
  • the ultrasonic diagnostic apparatus of the present embodiment by performing the persistence calculation after dynamically determining the persistence coefficient based on the blood flow velocity and the folded state with respect to the CFM frame data, A blood flow change can be clearly recognized even in a diagnosis site such as a carotid artery where the blood flow change is severe, and a smooth blood flow movie in which blackout does not occur even at a low blood flow velocity can be displayed.
  • the persistence coefficient is dynamically determined based on the blood flow velocity of the CFM frame data and the persistence calculation is performed on the blood flow velocity.
  • Persistence calculation may be performed on data, for example, blood flow power data, or may be performed on B-mode tomographic image data.
  • the persistence processing is performed using the blood flow velocity data of the latest frame and the previous frame, but the blood flow velocity data of the second previous frame or three or more previous frames is also used.
  • Persistence processing may be performed by using.
  • the persistence processing may be performed using another arithmetic expression without being limited to the expression (1).
  • FIG. 4 is a block diagram showing an embodiment of the ultrasonic diagnostic apparatus according to the present invention.
  • 4 includes a probe 101, an ultrasonic transmission / reception unit 102, a CFM signal processing unit 103, an afterimage processing unit 115 ′, a tomographic image signal processing unit 111, and a CFM DSC unit 110.
  • a tomographic image DSC unit 112, an image composition unit 113, and a display unit 114 can be used for the probe 101 and the display unit 114, and the ultrasonic diagnostic apparatus 12 does not include the probe 101 and the display unit 114. May be.
  • the ultrasonic transmission / reception unit 102 generates a drive signal for driving the probe 101 and outputs the drive signal to the probe 101, thereby directing the probe 101 toward the subject.
  • Send ultrasonic waves Further, the probe 101 receives a reflected echo obtained by reflecting the transmitted ultrasonic wave at the subject, and generates a reception signal.
  • the probe 101 includes a plurality of piezoelectric elements, and an ultrasonic wave transmitted from each piezoelectric element constitutes an ultrasonic beam, and an ultrasonic wave is scanned by a plurality of ultrasonic beams.
  • the sound wave transmitting / receiving unit 102 drives the probe 101 while performing delay control of each piezoelectric element.
  • the reflected echo is received by each piezoelectric element, and the ultrasonic transmission / reception unit 102 performs delay control of each piezoelectric element, thereby generating a reception signal corresponding to the transmitted ultrasonic beam.
  • One frame of data is obtained by scanning the subject once with the ultrasonic beam. By repeatedly transmitting and receiving ultrasonic waves several times to several tens of times per second, received signals of several frames to several tens of frames per second are sequentially generated.
  • the ultrasonic diagnostic apparatus 12 generates a B-mode tomographic image and a color flow mapping image, synthesizes these, and displays them on the display unit 114. For this reason, the ultrasonic transmission / reception of the ultrasonic transmission / reception unit 102 is performed for each of the generation of the B-mode tomographic image and the generation of the color flow mapping image.
  • the number of frames per second of the B-mode tomographic image and the number of frames per second of the color flow mapping image may be the same or different. When the number of frames is the same, ultrasonic transmission / reception for generating a B-mode tomographic image and ultrasonic transmission / reception for generating a color flow mapping image may be alternately repeated.
  • the ultrasonic transmission / reception unit 102 When generating the B-mode tomographic image, the ultrasonic transmission / reception unit 102 performs transmission / reception suitable for generating the B-mode tomographic image, and outputs the obtained reception signal to the tomographic image signal processing unit 111.
  • transmission / reception suitable for generating a color flow mapping tomographic image is performed, and the obtained reception signal is output to the CFM signal processing unit 103.
  • the ultrasonic transmission / reception unit 102 transmits and receives ultrasonic waves a plurality of times on the same acoustic line in order to obtain a stable color flow mapping tomographic image.
  • the CFM signal processing unit 103 performs orthogonal detection processing, MTI filter processing, and autocorrelation processing on the received signal, calculates blood flow velocity and blood flow power, and then performs noise cut processing to eliminate system or acoustic noise.
  • the CFM frame data includes at least blood flow velocity data.
  • blood flow power data and blood flow velocity dispersion data may be included.
  • the CFM signal processing unit 103 sequentially repeats this process for each received signal constituting each frame.
  • the CFM frame data generated by the CFM signal processing unit 103 is output to the afterimage processing unit 115 ′ for each frame.
  • the afterimage processing unit 115 ′ performs afterimage processing on the CFM frame data for each frame using the persistence coefficient.
  • the ultrasonic diagnostic apparatus 12 determines the persistence coefficient according to the blood flow velocity. That is, the persistence coefficient is not constant but a dynamic value corresponding to the blood flow velocity. Thereby, the persistence coefficient can be changed according to the blood flow velocity, and the afterimage effect can be adjusted.
  • the blood flow velocity that can be measured is limited by the pulse repetition frequency (PRF). As a result, the blood flow velocity is turned back, making it difficult to accurately evaluate the blood flow velocity.
  • PRF pulse repetition frequency
  • the ultrasonic diagnostic apparatus 12 of the present embodiment uses the latest frame blood flow velocity data and the previous frame blood flow velocity data in order to determine whether or not the aliasing has occurred.
  • the afterimage processing unit 115 ′ includes two persistence calculation units, and provides the first persistence calculation for quickly changing the blood flow velocity without giving much afterimage effect and the afterimage effect to give a strong change in blood flow velocity.
  • the second persistence operation that is maintained as much as possible is performed simultaneously.
  • a blood flow image is constructed by using one of the two blood flow velocity data having different afterimage effects generated in this way and having the larger absolute value.
  • the afterimage processing unit 115 ′ includes a frame memory unit (first memory unit) 104, an aliasing determination unit 105, a first persistence coefficient determination unit 106A, and a first persistence coefficient reference memory unit.
  • first memory unit first memory unit
  • second persistence coefficient determining unit 106B second persistence coefficient reference memory unit
  • fourth memory unit fourth memory unit
  • second persistence coefficient reference memory unit fourth memory unit
  • second memory unit second memory unit
  • the frame memory unit 104 stores CFM frame data of the latest frame (currently being scanned).
  • the persistence memory unit 109 stores CFM frame data, which is an output result of the maximum value selection unit immediately before the latest.
  • the CFM frame data in the persistence memory unit 109 is subjected to afterimage processing.
  • blood flow velocity data among the CFM frame data stored in the frame memory unit 104 and the persistence memory unit 109 are referred to as Vcurrent and blood flow velocity data Vout-1.
  • the folding determination unit 105 reads the blood flow velocity data Vcurrent in the CFM frame data from the frame memory unit 104 and the blood flow velocity data Vout-1 in the CFM frame data from the persistence memory unit 109, and performs a folding determination. More specifically, by comparing the blood flow velocity data Vcurrent and the blood flow velocity data Vout-1 with a plurality of threshold values, whether or not folding has occurred and the blood flow velocity data Vcurrent is in the folding region. And the result is output to the first persistence coefficient determination unit 106A, the second persistence coefficient determination unit 106B, the first persistence calculation unit 108A, and the second persistence calculation unit 108B.
  • the first persistence coefficient determination unit 106A sends the first persistence coefficient reference memory unit 107A to the first persistence coefficient reference memory unit 107A. Create a reference index.
  • the first persistence coefficient reference memory unit 107A is accessed, the first persistence coefficient associated with the reference index is read, and set in the first persistence calculation unit 108A.
  • the first persistence coefficient reference memory unit 107A stores a first reference table including a first persistence coefficient associated with a blood flow velocity value in advance.
  • the first reference table includes two or more different persistence coefficients associated with the blood flow velocity value.
  • the second persistence coefficient determination unit 106B performs the second persistence based on the two determination results from the folding determination unit 105 and the blood flow velocity data Vout-1 read from the persistence memory unit 109.
  • a reference index to the coefficient reference memory unit 107B is created.
  • the second persistence coefficient reference memory unit 107B is accessed, the second persistence coefficient associated with the reference index is read, and set in the second persistence calculation unit 108B.
  • the second persistence coefficient reference memory unit 107B stores a second reference table including a second persistence coefficient associated with a blood flow velocity value in advance.
  • the second lookup table also includes two or more different persistence coefficients associated with the blood flow velocity values, but for the same blood flow velocity value as will be described in detail below.
  • the first persistence coefficient value and the second persistence coefficient value associated with each other have different values.
  • the first persistence calculation unit 108A uses the following equation (1).
  • the persistence calculation is performed on the blood flow velocity data.
  • the afterimage processed blood flow velocity data obtained by the persistence calculation is Vout and the persistence coefficient is Cpersistence (0 ⁇ Cpersistence ⁇ 1)
  • the afterimage processed blood velocity data is obtained by the following equation (1). It is done.
  • Vout (1 ⁇ Cpersistence) ⁇ Vcurrent + Cpersistence ⁇ Vout ⁇ 1 (1)
  • the second persistence calculation unit 108B also uses Equation (1) based on the persistence coefficient set by the second persistence coefficient determination unit 106B and the determination result of the return occurrence from the return determination unit 105. Persistence calculation is performed on blood flow velocity data.
  • the calculation in the first persistence calculation unit 108A and the second persistence calculation unit 108B is the same except that the determined persistence coefficients are different from each other.
  • the first persistence is obtained using the latest frame data and the previous frame data and the obtained persistence coefficient Cpersistence.
  • the calculation unit 108A and the second persistence calculation unit 108B perform the persistence calculation to obtain afterimage processed data.
  • the blood flow velocity that can be directly measured by the Doppler shift is limited by the repetition frequency (PRF) of the pulse wave. Specifically, the blood flow velocity corresponding to the frequency change exceeding ⁇ PRF / 2 is folded back to be observed as the blood flow in the opposite direction.
  • PRF repetition frequency
  • FIGS. 5A and 5B show blood flow velocity data Vout subjected to afterimage processing, blood flow velocity data Vcurrent of the latest frame, and blood that is an output result of the persistence calculation unit 108 of the previous frame.
  • size of the flow velocity data Vout-1 is shown.
  • the first quadrant on the horizontal axis means that the velocity V is zero
  • the second quadrant on the horizontal axis means + V or ⁇ V.
  • the speed V is positive, it is located in the first or second quadrant, and when the speed V is negative, it is located in the third or fourth quadrant.
  • Vout-1 when it is determined that Vcurrent is in the second quadrant, Vout-1 is in the third quadrant, and aliasing has occurred, Vout-1 is actually Since the value is larger than the blood flow velocity corresponding to + PRF / 2, zero is not taken, that is, the calculation is not accompanied by a sign change. Therefore, the sign (plus or minus) of Vcurrent and Vout-1 is taken, and these values are substituted into equation (1) for calculation.
  • the maximum value selection unit 116 receives calculation results from the first persistence calculation unit 108A and the second persistence calculation unit 108B, that is, blood flow velocity data subjected to afterimage processing, for each pixel or correspondingly.
  • the absolute value of the blood flow velocity is compared for each measurement point data, the larger blood flow velocity is selected, and the blood flow velocity data subjected to the afterimage processing of the latest frame is constructed.
  • the data is output to the persistence memory unit 109.
  • the CFM DSC unit 110 converts the coordinates of the selected blood flow velocity data and outputs them to the image composition unit 113.
  • the tomographic image signal processing unit 409 cuts unnecessary noise by applying dynamic filter processing to the received signal, and then performs envelope detection processing and dynamic range compression processing to provide tomographic image frame data to the tomographic image DSC unit 410. Is output.
  • the tomographic image DSC unit 410 converts the coordinates of the tomographic image frame data from the tomographic image signal processing unit 409 and outputs it to the image composition unit 411.
  • the image composition unit 411 synthesizes each frame data output from the CFM DSC unit 410 and the tomographic image DSC unit 410 for each pixel or each corresponding measurement point data to generate composite image frame data. Specifically, when the blood flow velocity is zero, the tomographic image frame data is displayed. Otherwise, the two data are displayed for each pixel or corresponding measurement points so as to display the CFM frame data. Combining for each data. Further, the data is converted into color information according to the blood flow velocity and the direction of blood flow, and is output to the display unit 412. The display unit 412 displays the data received from the image composition unit 411.
  • the folding determination unit 105 determines whether or not folding has occurred in the blood flow velocity.
  • the aliasing determination unit 105 includes blood flow velocity data Vcurrent included in the latest CFM frame data from the frame memory unit 104 and CFM frame data that is an output result of the persistence calculation unit 108 one frame before from the persistence memory unit 109.
  • the blood flow velocity Vout-1 is read, and the following two determinations are made from the values of Vcurrent and Vout-1. 1. Whether wrapping has occurred. 2. Whether Vcurrent is in the folded area.
  • the determination of these two states is performed by comparing a predetermined threshold with Vcurrent and Vout-1. Specifically, the threshold value Vth and the zero blood flow velocity Vzero are compared with Vcurrent and Vout-1.
  • FIG. 6A shows the relationship between the threshold Vth, the blood flow zero velocity Vzero, Vcurrent, and Vout-1.
  • the first quadrant on the horizontal axis means the zero blood flow velocity Vzero
  • the second quadrant on the horizontal axis means Vmax or -Vmax.
  • the maximum value of the assumed change in blood flow velocity is set in the time interval between adjacent frames.
  • Table 3 shows conditions and determination results determined by the aliasing determination unit 105.
  • Condition (1) is when the sign of condition (0) is reversed.
  • condition (2) when Vout-1 is smaller than -Vth, the fact that Vcurrent is a positive value is a change that exceeds the assumed maximum change in blood flow velocity, and therefore aliasing occurs. is doing. Further, since Vcurrent is in a range of ⁇ Vth across Vzero, Vcurrent is not a folded area.
  • Condition (3) is when the sign of condition (2) is reversed.
  • the first persistence coefficient determination unit 106A refers to the first persistence coefficient based on the two determination results output from the folding determination unit 105 and the absolute value of the blood flow velocity data Vcurrent read from the frame memory unit 104.
  • a reference index to the memory unit 107 is created. Table 4 shows the reference index created.
  • first persistence coefficient reference memory unit 107A a first reference table configured by the first persistence coefficient associated with the reference index is stored.
  • the first persistence coefficient determination unit 106A accesses the first persistence coefficient reference memory unit 107A, reads the first persistence coefficient associated with the created reference index, and performs the first persistence calculation. Output to the unit 108A.
  • FIG. 6B is a graph showing an example of the correspondence between the reference index and the first persistence coefficient.
  • the horizontal axis indicates the reference index
  • the vertical axis indicates the persistence coefficient.
  • the reference index is the absolute value Abs (Vcurrent) of Vmax or Vcurrent.
  • the second persistence coefficient determination unit 106B is based on the two determination results output from the folding determination unit 105 and the absolute value of the blood flow velocity data Vout-1 read from the persistence memory unit 109.
  • a reference index to the first persistence coefficient reference memory unit 107 is created. Table 5 shows the reference index created.
  • the second persistence coefficient determination unit 106B generates the absolute value of the blood flow velocity data Vout-1 read from the persistence memory unit 109 as a reference index when the conditions (2) to (4) are satisfied. 1 different from the persistence coefficient determination unit 106A.
  • the second persistence coefficient reference memory unit 107B a second reference table configured by the second persistence coefficient associated with the reference index is stored.
  • the second persistence coefficient determination unit 106B accesses the second persistence coefficient reference memory unit 107B, reads the second persistence coefficient associated with the created reference index, and performs the second persistence calculation. Output to the unit 108B.
  • FIG. 6C is a graph showing an example of the correspondence between the reference index and the second persistence coefficient.
  • the horizontal axis indicates the reference index
  • the vertical axis indicates the persistence coefficient.
  • the reference index is the absolute value Abs (Vout-1) of Vmax or Vout-1.
  • Abs (Vout-1) of Vmax or Vout-1 When the absolute value of Vout-1 is less than or equal to the threshold value Vth, a second persistence coefficient Cpersistence that increases monotonously with an increase in Vout-1 is associated. That is, when the absolute value of Vout-1 is equal to or less than the threshold value Vth, a different second persistence coefficient Cpersistence is associated with the previous blood flow velocity Vout-1.
  • the second persistence coefficient is larger than the first persistence coefficient regardless of the value of the reference index. That is, the first perspective coefficient is associated with the blood flow velocity of the latest frame and is a small value. If the first persistence coefficient is increased, the calculation is performed in consideration of the blood flow velocity of the previous frame. Therefore, the first persistence calculation unit 108A suppresses the afterimage effect and promptly increases the blood flow velocity. Perform an operation that changes. On the other hand, since the second persistence coefficient is associated with the blood flow velocity of the previous frame and is a large value, the second persistence calculation unit 108B enhances the afterimage effect, Performs computation to suppress changes in flow velocity.
  • the first persistence calculation unit 108A suppresses the afterimage effect and performs a calculation to quickly change the blood flow velocity. Therefore, although the blood flow velocity is high, the blood flow power is small, so If the flow cannot be detected correctly, the blood flow velocity may suddenly become zero. In this case, as the blood flow velocity increases, if the blood flow image is colored in tone or tone, the blood flow image is suddenly colored in dark tone and the image is displayed so as to blink. Therefore, the first persistence coefficient can be monotonously increased as the reference index increases, the afterimage effect can be enhanced as the blood flow velocity increases, and the blinking of the blood flow image can be suppressed.
  • the second persistence calculation unit 108B performs image display with enhanced afterimage effect, if the blood flow image is colored or tone-colored as the blood flow velocity increases, the blood flow velocity is increased. When it is low, a dark display is displayed as an afterimage for a time longer than necessary. For example, when the probe is moved, the blood flow display gives an impression of tailing. For this reason, the second persistence coefficient can be monotonously increased as the reference index increases, and the afterimage effect can be suppressed as the blood flow velocity decreases. Therefore, a high-quality blood flow display can be realized by setting an appropriate monotonically increasing relationship between the reference index based on the absolute value of the blood flow velocity and the first and second persistence coefficients. .
  • the persistence coefficient Cpersistence having the same value is associated with the reference index when the absolute value of Vcurrent is equal to or greater than the threshold value Vth.
  • the first and second persistence calculation units 108A and 108B each have the latest blood flow velocity data subjected to the persistence processing. Is generated.
  • the maximum value selection unit 116 selects the larger absolute value of the two blood flow velocity data, and outputs the selected blood flow velocity data as blood flow velocity data subjected to afterimage processing.
  • the results of the two persistence processes are selected, so that the blood flow power that exists in the thyroid, liver, kidney, etc. becomes unstable. It is possible to display a blood flow moving image that does not cause the blood flow disappearance of peripheral blood vessels due to smoothing without blinking the blood flow display.
  • the persistence coefficient is dynamically determined based on the blood flow velocity of the CFM frame data and the persistence calculation is performed on the blood flow velocity.
  • Persistence calculation may be performed on data, for example, blood flow power data, or may be performed on B-mode tomographic image data.
  • the persistence processing is performed using the blood flow velocity data of the latest frame and the previous frame. Persistence processing may be performed by using. Further, the persistence processing may be performed using another arithmetic expression without being limited to the expression (1).
  • the present invention can be suitably used for an ultrasonic diagnostic apparatus capable of displaying a blood flow state of a subject.

Abstract

 本発明の超音波診断装置は、探触子を繰り返し駆動し、前記探触子を駆動することにより送信された超音波が被検体において反射することにより得られた反射エコーを前記探触子によって受信し、複数の受信信号を逐次生成する送受信部と、前記複数の受信信号に基づき、各フレームにおける前記被検体中の血流部分の血流速度データを逐次生成するカラーフローマッピング信号処理部と、前記各フレームにおける血流速度データに対して残像処理を行う残像処理部と、前記受信信号に基づき、Bモード断層画像フレームデータを生成する断層画像信号処理部と、前記残像処理された血流速度データおよび前記Bモード断層画像フレームデータを合成する画像合成部とを備え、前記残像処理部は、最新のフレームの血流速度データと最新より以前のフレームの残像処理された血流速度データに基づいて折り返し判定を行い、前記折り返し判定の結果と最新および最新より以前のフレームの血流速度データに基づいて動的にパーシスタンス係数を変更する。

Description

超音波診断装置
 本発明は、超音波診断装置に関し、特にカラーフローマッピング時の残像処理方法に関する。
 超音波診断装置は、超音波を被検体に送信し、その反射エコーに含まれる情報を解析することにより、被検体内の画像を作成する。カラーフローマッピング(Color Flow Mapping、以下CFMと略す場合がある)と呼ばれる手法によって、被検体内の血流を画像化することも可能であり、医療分野全般において、血流状態を表示することのできる超音波診断装置が広く利用されている。
 カラーフローマッピングはカラードップライメージング(Color Doppler Imaging、CDI)とも呼ばれ、ドップラ効果を利用する。超音波が血流を照射すると、ドプラ効果により反射エコーに血流速度に応じたドップラ偏移が生じる。このドップラ偏移の情報を直交検波によって検出し、MTI(Moving Target Indicator)フィルタと呼ばれるハイパスフィルタ処理、自己相関処理およびノイズカット処理を施すことによって、血流速度に関する情報が得られる。得られた血流速度の情報を色情報に変換し、二次元的にBモード断層画像に重畳して表示することによって、被検体内の血流状態をユーザに認識させることができる。
 血流から得られる反射エコーによる受信信号強度は、Bモード断層画像生成に用いる組織散乱体および組織境界から得られる反射エコーによる受信信号強度に比べ、かなり小さい。このため、カラーフローマッピングにおける信号処理によって得られる血流速度および血流パワー(移動する血流量)は不安定になりやすい。
 特に、観察したい部分の血流速度が遅い場合、あるいは、観察したい部分が末梢血管である場合、血流パワーが小さくなるため、本来、システムノイズおよび音響ノイズのみをカットするべきノイズカット処理において、血流速度あるいは血流パワーに関する情報が除去されてしまい易い。その結果、血流画像において本来血流として表示される部分が黒く抜けてしまう現象が発生する。例えば、1秒間に数フレームから数十フレームの割合で、被検体内の血流を画像化する場合、そのうちのいくつかのフレームにおいて、血流部分が黒く示されてしまう。このため、断層画像中の血流部分が突然消滅し、画像が滑らかでなくなったり、違和感のあるものとなったりする。
 この問題を解決するために、従来のカラーフローマッピングを行う超音波診断装置では、信号処理後段においてパーシスタンス処理(残像処理)と呼ばれる時間方向補間を行うのが通例である。以下、特許文献1に示される従来のカラーフローマッピングにおけるパーシスタンス処理を説明する。
 図7に示す従来の超音波診断装置において、超音波送受信部402は、探触子401を駆動し、超音波を被検体へ送信する。また、探触子401によって被検体で生じる反射エコーを受信し、受信信号を生成する。Bモード断層画像を生成する場合、超音波送受信部402は、Bモード断層画像の生成に適した送受信を行い、得られた受信信号を断層画像信号処理部409へ出力する。カラーフローマッピング断層画像を生成する場合は、カラーフローマッピング断層画像の生成に適した送受信を行い、得られた受信信号をカラーフローマッピング処理部403(以下、CFM信号処理部と略す)へ出力する。一般的に、カラーフローマッピング断層画像を生成する場合、安定したカラーフローマッピング断層画像を得るために、超音波送受信部402は、同じ音響線上において超音波の送受信を複数回行う。
 CFM信号処理部403は、受信信号に対して直交検波処理、MTIフィルタ処理および自己相関処理を行い、血流速度および血流パワーを算出したのち、システムあるいは音響ノイズを排除するノイズカット処理を行い、フレームメモリ部404に血流速度および血流パワーを出力する。
 フレームメモリ部404は、リングバッファで構成されており、現在の走査フレームからNフレーム前(Nは、1以上の整数)までの血流速度および血流パワーをフレーム単位で保存している。ここで、フレームとは、1画面のCFM断層画像を構成する血流速度データおよび血流パワーデータ群を示す。
 フレームメモリ選択部405は、フレームメモリ部404から、あらかじめ設定された複数のCFMフレームデータを選択し、パーシスタンス演算部407へ出力するようフレームメモリ部404に指令を出力する。パーシスタンス演算部407は、フレームメモリ部404から読み出されたCFMフレームデータとパーシスタンス係数設定部406から出力されるパーシスタンス係数に基づいてパーシスタンス演算を実施し、CFM DSC(Digital Scan Converter)部408に出力する。パーシスタンス演算は、単純な重み付け演算であり、パーシスタンス係数設定部406から出力されるパーシスタンス係数は、あらかじめシステムから設定された固定係数である。
 CFM DSC部408は、パーシスタンス演算部407から出力されるCFMフレームデータの座標を変換し、画像合成部411へ出力する。
 断層画像信号処理部409は受信信号に対してダイナミックフィルタ処理を施すことにより、不要なノイズをカットしたのち、包絡線検波処理およびダイナミックレンジ圧縮処理を施して断層画像DSC部410に断層画像フレームデータを出力する。断層画像DSC部410は、断層画像信号処理部409からの断層画像フレームデータの座標を変換し、画像合成部411へ出力する。
 画像合成部411は、CFM DSC部410および断層画像DSC部410から出力される各フレームデータを画素ごとに合成し、合成画像フレームデータを生成する。具体的には、血流速度がゼロである場合は、断層画像フレームデータを表示し、そうでない場合は、CFMフレームデータを表示するように2つのデータを画素ごと、あるいは、対応する測定点のデータごとに合成する。また、血流速度や血流の方向に応じてデータを色情報に変換し、表示部412に出力する。表示部412は、画像合成部411から受け取ったデータを表示する。
特開平2-286140号公報
 従来の超音波診断装置におけるパーシスタンス処理は、血流速度が遅く、あるいは、血流パワーが小さく、これらが不安定な状態にあることに起因してCFM信号処理部403の出力結果が不安定になり、表示血流に黒抜けが発生することを防止する。具体的には、現在走査中のフレームデータよりも過去のフレームデータに重みを置いたパースタンス係数を用いることによって、残像効果を生じさせ、画像に黒抜けが発生するのを抑制する。
 しかし、このような特徴は、血流速度が激しく変化する動脈の診断には適していない場合がある。例えば、頚動脈では、心臓の拡張収縮に応じて血流が激しく変化し、収縮期には、心周期に対してごく短い時間において血流が速くなり、拡張期では、血流が遅くなる。また、血流速度の最大値と最小値との差も他の診断部位に比べて大きい。その結果、拡張期における頚動脈の血流速度は、心周期に対して比較的長い時間、小さな値で一定となり、CFM信号処理部403の出力が安定しない状態に陥る。
 表示する血流の画像に黒抜けが生じるのを抑制するためには、パーシスタンス処理によって、残像効果が高くなるようにパーシスタンス係数を設定することが好ましい。これにより、血流速度が低速となる場合でも、黒抜けが発生しない滑らかな動画表示が可能となるからである。しかし、この場合、収縮期における高速な血流速度の表示ができなくなる。
 また、従来の超音波診断装置におけるパーシスタンス処理は、末梢血管の診断には適していない場合がある。例えば、甲状腺、肝臓、腎臓などの臓器には、主流血管から派生する末梢血管が存在する。これらの臓器の診断にあたり、末梢血管構造を把握することは非常に重要である。
 末梢血管における時間的な血流変化は、比較的安定しているのであるが、血管が物理的に細いために、血流パワーが頚動脈や心臓の場合と比べ、極端に小さくなる傾向にある。従って、血流パワーが小さいことにより、ドップラ偏移の検出が不安定となり、CFM信号処理部403の出力が結果として安定しない状態に陥る。
 このため、パーシスタンス処理を行わない場合、断層画像中の末梢血管は、時間的に点滅して表示されることになり、動画として見づらくなる。逆にパーシスタンス処理を行う場合、時間的方向に対して断層画像中の末梢血管の血流が平滑化されるため、パーシスタンス処理により末梢血管が消滅する可能性がある。この場合、末梢血管の検出率が著しく低下することになる。
 本発明は、このような従来技術の課題を解決し、血流速度が激しく変化する頚動脈などのような診断部位において、血流変化が明確に認識でき、かつ、低速な血流速度でも黒抜けが発生しない滑らかな血流動画を表示することができる超音波診断装置を提供することを目的とする。また、末梢血管など血流パワーが小さい血管部分でも見やすい動画表示を行うことのできる超音波診断装置を提供することを目的とする。
 本発明の超音波診断装置は、探触子を繰り返し駆動し、前記探触子を駆動することにより送信された超音波が被検体において反射することにより得られた反射エコーを前記探触子によって受信し、複数の受信信号を逐次生成する送受信部と、前記複数の受信信号に基づき、各フレームにおける前記被検体中の血流部分の血流速度データを逐次生成するカラーフローマッピング信号処理部と、前記各フレームにおける血流速度データに対して残像処理を行う残像処理部と、前記受信信号に基づき、Bモード断層画像フレームデータを生成する断層画像信号処理部と、前記残像処理された血流速度データおよび前記Bモード断層画像フレームデータを合成する画像合成部とを備え、前記残像処理部は、最新のフレームの血流速度データと最新より以前のフレームの残像処理された血流速度データに基づいて折り返し判定を行い、前記折り返し判定の結果と最新および最新より以前のフレームの血流速度データに基づいて動的にパーシスタンス係数を変更する。
 ある好ましい実施形態の超音波診断装置は、探触子を繰り返し駆動し、前記探触子を駆動することにより送信された超音波が被検体において反射することにより得られた反射エコーを前記探触子によって受信し、複数の受信信号を逐次生成する送受信部と、前記複数の受信信号に基づき、各フレームにおける前記被検体中の血流部分の血流速度データを逐次生成するカラーフローマッピング信号処理部と、前記各フレームにおける血流速度データに対して残像処理を行う残像処理部と、前記受信信号に基づき、Bモード断層画像フレームデータを生成する断層画像信号処理部と、前記残像処理された血流速度データおよび前記Bモード断層画像フレームデータを合成する画像合成部とを備え前記残像処理部は、最新のフレームの血流速度データを記憶する第1のメモリ部と、最新より1つ前のフレームの残像処理された血流速度データを記憶する第2のメモリ部と、前記第1のメモリ部および前記第2のメモリ部から血流速度データをそれぞれ読み出し、折り返し判定を行う折り返し判定部と、前記折り返し判定の結果および前記第1のメモリ部に記憶された血流速度データに応じてパーシスタンス係数を決定するパーシスタンス係数決定部と、前記パーシスタンス係数および前記折り返し判定の結果に基づいて、前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行い、演算結果を前記残像処理された血流速度データとして出力するパーシスタンス演算部とを含む。
 ある好ましい実施形態において、前記折り返し判定部は、前記第1のメモリ部に記憶された血流速度データおよび前記第2のメモリ部に記憶された血流速度データと複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、前記最新のフレームの血流速度データが折り返し領域にあるかどうかを判定する。
 ある好ましい実施形態において、前記残像処理部は、前記血流速度の値に応じて対応付けられた異なる2つ以上の値のパーシスタンス係数を含む参照テーブルを記憶している第3のメモリ部をさらに含む。
 ある好ましい実施形態において、前記参照テーブルは、所定の値以上の血流速度に対して一定の値のパーシスタンス係数が対応付けられている。
 ある好ましい実施形態の超音波診断装置は、探触子を繰り返し駆動し、前記探触子を駆動することにより送信された超音波が被検体において反射することにより得られた反射エコーを前記探触子によって受信し、複数の受信信号を逐次生成する送受信部と、前記複数の受信信号に基づき、各フレームにおける前記被検体中の血流部分の血流速度データを逐次生成するカラーフローマッピング信号処理部と、前記各フレームにおける血流速度データに対して残像処理を行う残像処理部と、前記受信信号に基づき、Bモード断層画像フレームデータを生成する断層画像信号処理部と、前記残像処理された血流速度データおよび前記Bモード断層画像フレームデータを合成する画像合成部とを備え、前記残像処理部は、最新のフレームの血流速度データを記憶する第1のメモリ部と、最新より1つ前のフレームの残像処理された血流速度データを記憶する第2のメモリ部と、前記第1のメモリ部および前記第2のメモリ部から血流速度データをそれぞれ読み出し、折り返し判定を行う折り返し判定部と、前記折り返し判定の結果および前記第1のメモリ部に記憶された血流速度データに応じて第1のパーシスタンス係数を決定する第1のパーシスタンス係数決定部と、前記第1のパーシスタンス係数および前記折り返し判定の結果に基づいて前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行う第1のパーシスタンス演算部と、前記折り返し判定の結果および前記第2のメモリ部に記憶された血流速度データに応じて第2のパーシスタンス係数を決定する第2のパーシスタンス係数決定部と、前記第2のパーシスタンス係数および前記折り返し判定の結果に基づいて前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行う第2のパーシスタンス演算部と、前記第1のパーシスタンス演算部から出力される演算結果の絶対値および前記第2パーシスタンス演算部から出力される演算結果の絶対値を比較し、大きい方の演算結果を前記残像処理された血流速度データとして出力する最大値選択部とを含む。
 ある好ましい実施形態において、前記折り返し判定部は、前記第1のメモリ部に記憶された血流速度データおよび前記第2のメモリ部に記憶された血流速度データと複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、前記最新のフレームの血流速度データが折り返し領域にあるかどうかを判定する。
 ある好ましい実施形態において、前記残像処理部は、前記血流速度の値に応じて対応付けられた異なる2つ以上の値の第1のパーシスタンス係数を含む第1の参照テーブルを記憶している第3のメモリ部と、前記血流速度の値に応じて対応付けられた異なる2つ以上の値の第2のパーシスタンス係数を含む第2の参照テーブルを記憶している第4のメモリ部とをさらに含む。
 ある好ましい実施形態において、前記第1の参照テーブルと前記第2の参照テーブルにおいて、同じ血流速度の値に応じて対応付けられた第1のパーシスタンス係数と第2のパーシスタンス係数とは互いに異なる値である。
 ある好ましい実施形態において、前記第1の参照テーブルは、所定の値以上の血流速度に対して一定の値のパーシスタンス係数が対応付けられている。
 ある好ましい実施形態において、前記最新より以前のフレームの残像処理された血流速度データは、前記最新より1つ前のフレームの残像処理された血流速度データである。
 本発明によれば、最新のフレームの血流速度データおよび最新より前のフレームの血流速度データに基づき、折り返しの判定を行い、折り返し判定の結果および最新のフレームの血流速度データに基づき、パーシスタンス係数を動的に変更する。このため、血流変化が明確に認識でき、かつ、低速な血流速度でも黒抜けが発生しない滑らかな血流動画を表示することが可能な超音波診断装置が実現する。
 また、本発明によれば、最新のフレームの血流速度データに基づき決定されたパーシスタンス係数を用いて残像処理された血流速度、および、最新より前のフレームの血流速度データに基づき決定されたパーシスタンス係数を用いて残像処理された血流速度を求め、絶対値の大きいほうを選択して血流画像表示に用いる。このため、血流パワーが不安定となる末梢血管の血流表示を点滅させずに、かつ、平滑化に起因する末梢血管の血流消滅を起こさない血流動画を表示することが可能となる。
本発明による超音波診断装置の第1の実施形態を示すブロック図である。 (a)および(b)は、第1の実施形態において、パーシスタンス係数を用いて血流速度データのパーシスタンス演算を行う場合に考慮する折り返し演算を説明する模式図である。 (a)は、第1の実施形態における折り返し判定を説明するための模式図であり、(b)は、参照テーブルのデータが満たす関係を示すグラフである。 本発明による超音波診断装置の第2の実施形態を示すブロック図である。 (a)および(b)は、第2の実施形態において、パーシスタンス係数を用いて血流速度データのパーシスタンス演算を行う場合に考慮する折り返し演算を説明する模式図である。 (a)は、第2の実施形態における折り返し判定を説明するための模式図であり、(b)および(c)は、第1および第2の参照テーブルのデータが満たす関係を示すグラフである。 従来の超音波診断装置を示すブロック図である。
(第1の実施形態)
 以下、図面を参照しながら本発明による超音波診断装置の第1の実施形態を説明する。図1は、本発明による超音波診断装置の第1の実施形態を示すブロック図である。図1に示す超音波診断装置11は、探触子101と、超音波送受信部102と、CFM信号処理部103と、残像処理部115と、断層画像信号処理部111と、CFM DSC部110と、断層画像DSC部112と、画像合成部113と、表示部114とを備える。これらの構成のうち、探触子101および表示部114には汎用の探触子および表示装置を用いることが可能であり、探触子101および表示部114を超音波診断装置11が備えていなくてもよい。
 超音波送受信部102は、探触子101を駆動する駆動信号を生成し、探触子101へ出力することによって、探触子101から被検体に向けて超音波を送信する。また、送信された超音波が被検体において反射することによって得られた反射エコーを探触子101によって受信し、受信信号を生成する。より具体的には、探触子101は複数の圧電素子を含み、各圧電素子から送信される超音波が超音波ビームを構成し、被検体を複数の超音波ビームによって走査するように、超音波送受信部102が各圧電素子の遅延制御を行いながら探触子101を駆動する。反射エコーは各圧電素子によって受信され、超音波送受信部102が、各圧電素子の遅延制御を行うことにより、送信された超音波ビームに対応する受信信号が生成する。被検体を超音波ビームが1回走査することによって1フレーム分のデータが得られる。1秒間に数回~数十回繰り返して超音波の送受信を行うことにより、毎秒数フレームから数十フレームの受信信号が逐次生成する。
 本実施形態の超音波診断装置11は、Bモード断層画像とカラーフローマッピング画像と生成し、これらを合成して表示部114に表示する。このため、超音波送受信部102の上述した超音波の送受信は、Bモード断層画像の生成およびカラーフローマッピング画像の生成のそれぞれについて行われる。Bモード断層画像の1秒当たりのフレーム数およびカラーフローマッピング画像の1秒当たりのフレーム数は同じであってもよいし、異なっていてもよい。フレーム数が同じである場合には、Bモード断層画像生成のための超音波の送受信およびカラーフローマッピング画像生成のための超音波の送受信を交互に繰り返し行ってもよい。
 Bモード断層画像を生成する場合、超音波送受信部102は、Bモード断層画像の生成に適した送受信を行い、得られた受信信号を断層画像信号処理部111へ出力する。カラーフローマッピング断層画像を生成する場合は、カラーフローマッピング断層画像の生成に適した送受信を行い、得られた受信信号をCFM信号処理部103へ出力する。一般的に、カラーフローマッピング断層画像を生成する場合、安定したカラーフローマッピング断層画像を得るために、超音波送受信部102は、同じ音響線上において超音波の送受信を複数回行う。
 CFM信号処理部103は、受信信号に対して直交検波処理、MTIフィルタ処理および自己相関処理を行い、血流速度および血流パワーを算出したのち、システムあるいは音響ノイズを排除するノイズカット処理を行う。CFMフレームデータは少なくとも血流速度データを含む。この他、血流パワーデータや血流速度の分散データを含んでいてもよい。CFM信号処理部103はこの処理を、各フレームを構成する受信信号ごとに逐次繰り返して行う。CFM信号処理部103で生成したCFMフレームデータはフレームごとに残像処理部115へ出力される。
 残像処理部115は、パーシスタンス係数を用いて、フレームごとにCFMフレームデータに対して残像処理を行う。本実施形態の超音波診断装置11は、パーシスタンス係数を最新のフレームの血流速度に応じて決定する。つまり、パーシスタンス係数は一定ではなく、最新のフレームの血流速度に基づく動的な値である。これにより、血流速度に応じてパーシスタンス係数を変化させ、残像効果を調整することができる。ただし、血流を動画で表示するためには、パルスドプラ法を用いて超音波の送受信を行う必要があり、このため、計測できる血流速度はパルス繰り返し周波数(PRF)による制限を受ける。その結果、血流速度に折り返しが生じ、血流速度を正確に評価することが困難となる。
 本実施形態の超音波診断装置11は折り返しが生じているかどうかを判定するため、最新のフレームの血流速度データと1つ前のフレームの血流速度データを用いる。このために、残像処理部115は、フレームメモリ部(第1のメモリ部)104と、折り返し判定部105と、パーシスタンス係数決定部106と、パーシスタンス係数参照メモリ部(第3のメモリ部)107とパーシスタンス演算部108とパーシスタンスメモリ部(第2のメモリ部)109とを含む。
 フレームメモリ部104は、最新のフレームの(現在走査中の)CFMフレームデータを記憶する。パーシスタンスメモリ部109は、最新より1つ前のフレームのパーシスタンス演算部108の出力結果であるCFMフレームデータを記憶する。パーシスタンスメモリ部109のCFMフレームデータは残像処理が施されている。以下、フレームメモリ部104およびパーシスタンスメモリ部109にそれぞれ記憶されたCFMフレームデータのうち、血流速度データをVcurrentおよび血流速度データVout-1と呼ぶ。
 折り返し判定部105は、フレームメモリ部104からCFMフレームデータのうちの血流速度データVcurrentとパーシスタンスメモリ部109からCFMフレームデータのうちの血流速度データVout-1を読み出し、折り返し判定を行う。より具体的には、血流速度データVcurrentおよび血流速度データVout-1と複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、血流速度データVcurrentが折り返し領域にあるかどうかを判定し、結果をパーシスタンス係数決定部106およびパーシスタンス演算部108に出力する。
 パーシスタンス係数決定部106は、折り返し判定部105からの2つの判定結果とフレームメモリ部104から読み出した血流速度データVcurrentに基づいて、パーシスタンス係数参照メモリ部107への参照インデックスを作成する。また、パーシスタンス係数参照メモリ部107にアクセスし、参照インデックスに対応付けられたパーシスタンス係数を読み出し、パーシスタンス演算部108に設定する。パーシスタンス係数参照メモリ部107には、あらかじめ血流速度の値に対応付けられたパーシスタンス係数の参照テーブルが記憶されている。この参照テーブルは、血流速度の値に応じて対応付けられた異なる2つ以上の値のパーシスタンス係数を含む。
 パーシスタンス演算部108は、パーシスタンス係数決定部106から設定されたパーシスタンス係数と折り返し判定部105からの折り返し発生の判定結果とに基づいて、以下に示す式(1)で血流速度データに対してパーシスタンス演算を行う。パーシスタンス演算によって求められる残像処理された血流速度データをVoutとし、パーシスタンス係数をCpersistence(0<Cpersistence<1)とすると、残像処理された血流速度データは以下の式(1)で求められる。
Vout=(1-Cpersistence)×Vcurrent+Cpersistence×Vout-1 ・・(1)
 CFMフレームデータが、血流速度データ以外のデータを含む場合には、同様に最新のフレームのデータおよび最新より1つ前のフレームのデータと求めたパーシスタンス係数Cpersistenceを用いてパーシスタンス演算を行い、残像処理されたデータを得る。
 折り返し判定部105からの折り返し発生の判定結果が真であった場合は、式(1)の演算式を符号なし演算で扱い、偽であった場合は、符号付演算で扱う。
 上述したように測定にパルス波を用いるため、ドップラ偏移によって直接測定できる血流速度はパルス波の繰り返し周波数(PRF)の制限を受ける。具体的には、±PRF/2を超える周波数変化に対応する血流速度は反対向きの血流として観測される折り返しが発生する。
 図2(a)および(b)は、残像処理された血流速度データVout、最新のフレームの血流速度データVcurrentおよび最新より1つ前のフレームのパーシスタンス演算部108の出力結果である血流速度データVout-1の大きさの関係を示している。図2(a)および(b)において、横軸の第1象限部分は速度Vがゼロを意味し、横軸の第2象限部分は、+Vまたは-Vを意味する。速度Vが正である場合、第1または第2象限に位置し、速度Vが負である場合には、第3または第4象限に位置する。
 例えば、図2(a)に示すように、Vcurrentが第2象限にあり、Vout-1が第3象限にあり、折り返しが発生していると判定された場合、Vout-1は実際には、+PRF/2に対応する血流速度よりも大きな値であったことなるから、ゼロを通らない、つまり、符号変化をともなわない演算である。したがって、VcurrentおよびVout-1の符号(プラスまたはマイナス)をとって、式(1)にこれらの値を代入し演算を行う。
 一方、例えば、図2(b)に示すように、Vcurrentが第1象限にあり、Vout-1が第4象限にあり、折り返しが発生していないと判定された場合、式(1)の演算は、ゼロを通り、符号変化が生じる演算となる。したがって、符号をつけたVcurrentおよびVout-1を式(1)に代入し演算を行う。この演算は、1フレーム分の血流速度データの各画素または測定点ごとに行われる。また、演算結果であるVoutは、折り返しが発生している場合、符号なしの値となる。この場合、血流速度データVoutの最上位ビットを符号として扱うことで符号あり値としてCFM DSC部110およびパーシスタンスメモリ部109に出力される。
 CFM DSC部110は、パーシスタンス演算部108から出力される血流速度データの座標を変換し、画像合成部113へ出力する。
 断層画像信号処理部409は受信信号に対してダイナミックフィルタ処理を施すことにより、不要なノイズをカットしたのち、包絡線検波処理およびダイナミックレンジ圧縮処理を施して断層画像DSC部410に断層画像フレームデータを出力する。断層画像DSC部410は、断層画像信号処理部409からの断層画像フレームデータの座標を変換し、画像合成部411へ出力する。
 画像合成部411は、CFM DSC部410および断層画像DSC部410から出力される各フレームデータを画素ごとに、あるいは、対応する測定点のデータごとに合成し、合成画像フレームデータを生成する。具体的には、血流速度がゼロである場合は、断層画像フレームデータを表示し、そうでない場合は、CFMフレームデータを表示するように2つのデータを画素ごとに、あるいは、対応する測定点のデータごとに合成する。また、血流速度や血流の方向に応じてデータを色情報に変換し、表示部412に出力する。表示部412は、画像合成部411から受け取ったデータを表示する。
 次に、パーシスタンス係数の決定についてより詳細に説明する。パーシスタンス係数を決定するために、まず、血流速度に折り返しが発生しているかどうかを折り返し判定部105において判定する。
 折り返し判定部105は、フレームメモリ部104から最新のCFMフレームデータに含まれる血流速度データVcurrentとパーシスタンスメモリ部109から1フレーム前のパーシスタンス演算部108の出力結果であるCFMフレームデータに含まれる血流速度Vout-1とを読み出し、VcurrentおよびVout-1の値から以下の2つの判定を行う。
1.折り返しが発生しているかどうか。
2.Vcurrentが折り返し領域にあるかどうか。
 この2つの状態の判定には、あらかじめ定められた閾値とVcurrentおよびVout-1とを比較することにより行う。具体的には、閾値Vthおよび血流ゼロ速度VzeroとVcurrentおよびVout-1とを比較する。
Figure JPOXMLDOC01-appb-T000001
 図3(a)は、閾値Vth、血流ゼロ速度Vzero、VcurrentおよびVout-1の大きさの関係を示している。図3(a)において、横軸の第1象限部分は血流ゼロ速度Vzeroを意味し、横軸の第2象限部分は、Vmaxまたは-Vmaxを意味する。速度Vが正である場合、第1または第2象限に位置し、速度Vが負である場合には、第3または第4象限に位置する。
 ここで、Vthおよび-Vthには、例えば、隣接するフレームの時間間隔において、想定される血流速度の変化の最大値を設定する。
 表1は、折り返し判定部105において判定される条件と判定結果とを示している。
 条件(0)に示すように、Vout-1が正である場合、想定される血流速度の変化の最大値はVthまたは-Vthであるから、Vcurrentが-Vthよりも小さくなることはない。したがって、Vcurrent<-Vthを満たしていれば、Vcurrentは、実際には、+PRF/2に対応する最大血流速度Vmaxよりも大きな値となっており、折り返しが発生しているとともに、Vcurrentが折り返し領域にあると判定される。条件(1)は、条件(0)の符号が逆転した場合である。
 条件(2)に示すように、Vout-1が-Vthより小さい場合、Vcurrentが正の値となることは、想定される血流速度の変化の最大値を超える変化であるから、折り返しが発生している。また、VcurrentがVzeroを挟む±Vthの範囲にあるため、Vcurrentは折り返し領域ではない。条件(3)は、条件(2)の符号が逆転した場合である。
 条件(0)から(3)のいずれも満たさない場合には、折り返しが発生しておらず、また、Vcurrentが折り返し領域にないと判定する。
 パーシスタンス係数決定部106は、折り返し判定部105から出力される2つの判定結果とフレームメモリ部104から読み出した血流速度データVcurrentの絶対値に基づいて、パーシスタンス係数参照メモリ部107への参照インデックスを作成する。表2に作成される参照インデックスを示す。
Figure JPOXMLDOC01-appb-T000002
 折り返しが発生しており、かつ、Vcurrentが折り返し領域にある場合、血流速度Vcurrentは、実際には、Vmaxをまたは-Vmaxを超える大きな値と考えられる。このため、参照インデックスはVmaxとなる。その他の場合には、Vcurrentの絶対値Abs(Vcurrent)となる。
 パーシスタンス係数参照メモリ部107には、参照インデックスに対応付けられたパーシスタンス係数によって構成される参照テーブルが記憶されている。パーシスタンス係数決定部106は、パーシスタンス係数参照メモリ部107にアクセスし、作成された参照インデックスに対応付けられたパーシスタンス係数を読み出し、パーシスタンス演算部108へ出力する。
 図3(b)は、参照インデックスとパーシスタンス係数との対応関係の一例を示すグラフである。図3(b)において、横軸は参照インデックスを示し、縦軸は、パーシスタンス係数を示している。表2に示したように、参照インデックスは、VmaxまたはVcurrentの絶対値Abs(Vcurrent)である。Vcurrentの絶対値が閾値Vth以下である場合には、Vcurrentの増大にともなって単調に減少するパーシスタンス係数Cpersistenceが対応付けられている。つまり、Vcurrentの絶対値が閾値Vth以下である場合には、最新のフレームの血流速度Vcurrentに応じて異なるパーシスタンス係数Cpersistenceが対応付けられる。これにより、最新のフレームの血流速度Vcurrentが小さい場合には、パーシスタンス係数Cpersistenceが大きくなる。つまり、1つ前のフレームの血流速度Vout-1の重みが大きくなる。その結果、最新のフレームの血流速度Vcurrentが小さい場合には、1つ前のフレームの血流速度Vout-1を大きく反映させた血流速度Voutが決定され表示部114に表示される。このため、カラーフローマッピング画像の変化が滑らかとなり、黒抜けが生じにくくなる。
 また、最新のフレームの血流速度Vcurrentが大きい場合には、パーシスタンス係数Cpersistenceが小さくなる。つまり、1つ前のフレームの血流速度Vout-1の重みが小さくなる。その結果、最新のフレームの血流速度Vcurrentが大きい場合には、1つ前のフレームの血流速度Vout-1の影響が小さくなり、急激な血流速度の増大をリアルタイムで反映させたカラーフローマッピング画像を実現できる。
 また、Vcurrentの増大にともなってパーシスタンス係数Cpersistenceが単調に減少するため、時間の経過とともに血流速度が増大する場合には、パーシスタンス係数Cpersistenceが減少し、残像効果が小さくなり、カラーフローマッピング画像の変化が急激になる。時間の経過とともに血流速度が減少する場合には、パーシスタンス係数Cpersistenceが増大し、残像効果が大きくなり、カラーフローマッピング画像の変化が緩やかになる
 なお、表1および表2から分かるように、Vcurrent<-Vthでも、Vout-1>0であれば、参照インデックスはVmaxとなる(条件(0))一方、Vout-1<0であれば、参照インデックスはVcurrentの絶対値Abs(Vcurrent)となる(条件(4))。このため、Vcurrent<-Vthを満たしていても、Vout-1が正か負であるかによって、参照インデックスが異なり、パーシスタンス係数Cpersistenceも異なる。その結果、Vcurrent<-Vthを満たす隣接する領域であっても、Vout-1が正か負であるかによってカラーマッピングフロー画像として表示される色が異なり、画像に不連続な色調部分が生じてしまう。
 このような不自然な表示を抑制するため、Vcurrentの絶対値が閾値Vth以上である場合には、参照インデックスに同じ値のパーシスタンス係数Cpersistenceが対応付けられていることが好ましい。これにより、折り返しが発生する血流領域、あるいはその境界近傍において、自然な表示を行うことができる。
 このように本実施形態の超音波診断装置によれば、CFMフレームデータに対して血流速度および折り返し状態に基づいてパーシスタンス係数を動的に決定したのちにパーシスタンス演算を実施することにより、頚動脈のような血流変化が激しい診断部位においても血流変化が明確に認識でき、かつ、低速な血流速度でも黒抜けが発生しない滑らかな血流動画を表示することが可能となる。
 なお、上記実施形態では、CFMフレームデータの血流速度に基づいてパーシスタンス係数を動的に決定し、血流速度にパーシスタンス演算を行っているが、上述したようにCFMフレームデータの他のデータ、例えば、血流パワーデータに対してパーシスタンス演算を行ってもよいし、Bモード断層画像データに対してパーシスタンス演算を行ってもよい。
 また、上記実施形態では、最新のフレームおよび1つ前のフレームの血流速度データを用いてパーシスタンス処理を行っていたが、2つ前、あるいは3つ以上前のフレームの血流速度データも用いてパーシスタンス処理を行ってもよい。また、式(1)に限られず、他の演算式を用いてパーシスタンス処理を行ってもよい。
 (第2の実施形態)
 以下、図面を参照しながら本発明による超音波診断装置の第2の実施形態を説明する。図4は、本発明による超音波診断装置の一実施形態を示すブロック図である。図4に示す超音波診断装置12は、探触子101と、超音波送受信部102と、CFM信号処理部103と、残像処理部115’と、断層画像信号処理部111と、CFM DSC部110と、断層画像DSC部112と、画像合成部113と、表示部114とを備える。これらの構成のうち、探触子101および表示部114には汎用の探触子および表示装置を用いることが可能であり、探触子101および表示部114を超音波診断装置12が備えていなくてもよい。
 第1の実施形態で説明したように、超音波送受信部102は、探触子101を駆動する駆動信号を生成し、探触子101へ出力することによって、探触子101から被検体に向けて超音波を送信する。また、送信された超音波が被検体において反射することによって得られた反射エコーを探触子101によって受信し、受信信号を生成する。より具体的には、探触子101は複数の圧電素子を含み、各圧電素子から送信される超音波が超音波ビームを構成し、被検体を複数の超音波ビームによって走査するように、超音波送受信部102が各圧電素子の遅延制御を行いながら探触子101を駆動する。反射エコーは各圧電素子によって受信され、超音波送受信部102が、各圧電素子の遅延制御を行うことにより、送信された超音波ビームに対応する受信信号が生成する。被検体を超音波ビームが1回走査することによって1フレーム分のデータが得られる。1秒間に数回~数十回繰り返して超音波の送受信を行うことにより、毎秒数フレームから数十フレームの受信信号が逐次生成する。
 本実施形態の超音波診断装置12は、Bモード断層画像とカラーフローマッピング画像と生成し、これらを合成して表示部114に表示する。このため、超音波送受信部102の上述した超音波の送受信は、Bモード断層画像の生成およびカラーフローマッピング画像の生成のそれぞれについて行われる。Bモード断層画像の1秒当たりのフレーム数およびカラーフローマッピング画像の1秒当たりのフレーム数は同じであってもよいし、異なっていてもよい。フレーム数が同じである場合には、Bモード断層画像生成のための超音波の送受信およびカラーフローマッピング画像生成のための超音波の送受信を交互に繰り返し行ってもよい。
 Bモード断層画像を生成する場合、超音波送受信部102は、Bモード断層画像の生成に適した送受信を行い、得られた受信信号を断層画像信号処理部111へ出力する。カラーフローマッピング断層画像を生成する場合は、カラーフローマッピング断層画像の生成に適した送受信を行い、得られた受信信号をCFM信号処理部103へ出力する。一般的に、カラーフローマッピング断層画像を生成する場合、安定したカラーフローマッピング断層画像を得るために、超音波送受信部102は、同じ音響線上において超音波の送受信を複数回行う。
 CFM信号処理部103は、受信信号に対して直交検波処理、MTIフィルタ処理および自己相関処理を行い、血流速度および血流パワーを算出したのち、システムあるいは音響ノイズを排除するノイズカット処理を行う。CFMフレームデータは少なくとも血流速度データを含む。この他、血流パワーデータや血流速度の分散データを含んでいてもよい。CFM信号処理部103はこの処理を、各フレームを構成する受信信号ごとに逐次繰り返して行う。CFM信号処理部103で生成したCFMフレームデータはフレームごとに残像処理部115’へ出力される。
 残像処理部115’は、パーシスタンス係数を用いてフレームごとにCFMフレームデータに対して残像処理を行う。本実施形態の超音波診断装置12は、パーシスタンス係数を血流速度に応じてパーシスタンス係数を決定する。つまり、パーシスタンス係数は一定ではなく、血流速度に応じた動的な値である。これにより、血流速度に応じてパーシスタンス係数を変化させ、残像効果を調整することができる。ただし、血流を動画で表示するためには、パルスドプラ法を用いて超音波の送受信を行う必要があり、このため、計測できる血流速度はパルス繰り返し周波数(PRF)による制限を受ける。その結果、血流速度に折り返しが生じ、血流速度を正確に評価することが困難となる。
 本実施形態の超音波診断装置12は折り返しが生じているかどうかを判定するため、最新のフレームの血流速度データと1つまえのフレームの血流速度データを用いる。また、残像処理部115’は2つパーシスタンス演算部を備え、残像効果をあまり与えずに速やかに血流速度を変化させる第1のパーシスタンス演算と残像効果を強力に与え血流速度変化をなるべく維持する第2のパーシスタンス演算を同時に行う。このようにして生成した残像効果の異なる2つの血流速度データのうち絶対値の大きい方を用いて血流画像を構成する。これにより、血流パワーが小さい末梢血管でも、血流表示を点滅させずに、かつ、平滑化に起因する末梢血管の血流消滅を起こさない動画を表示することが可能となる。
 このために、残像処理部115’は、フレームメモリ部(第1のメモリ部)104と、折り返し判定部105と、第1のパーシスタンス係数決定部106Aと、第1のパーシスタンス係数参照メモリ部(第3のメモリ部)107Aと第1のパーシスタンス演算部108Aと、第2のパーシスタンス係数決定部106Bと、第2のパーシスタンス係数参照メモリ部(第4のメモリ部)107Bと第2のパーシスタンス演算部108Bと、最大値選択部116と、パーシスタンスメモリ部(第2のメモリ部)109とを含む。
 フレームメモリ部104は、最新のフレームの(現在走査中の)CFMフレームデータを記憶する。パーシスタンスメモリ部109は、最新より1つ前の最大値選択部の出力結果であるCFMフレームデータを記憶する。パーシスタンスメモリ部109のCFMフレームデータは残像処理が施されている。第1の実施形態と同様、フレームメモリ部104およびパーシスタンスメモリ部109にそれぞれ記憶されたCFMフレームデータのうち、血流速度データをVcurrentおよび血流速度データVout-1と呼ぶ。
 折り返し判定部105は、フレームメモリ部104からCFMフレームデータのうちの血流速度データVcurrentとパーシスタンスメモリ部109からCFMフレームデータのうちの血流速度データVout-1を読み出し、折り返し判定を行う。より具体的には、血流速度データVcurrentおよび血流速度データVout-1と複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、血流速度データVcurrentが折り返し領域にあるかどうかを判定し、結果を第1のパーシスタンス係数決定部106A、第2のパーシスタンス係数決定部106B、第1のパーシスタンス演算部108Aおよび第2のパーシスタンス演算部108Bに出力する。
 第1のパーシスタンス係数決定部106Aは、折り返し判定部105からの2つの判定結果とフレームメモリ部104から読み出した血流速度データVcurrentに基づいて、第1のパーシスタンス係数参照メモリ部107Aへの参照インデックスを作成する。また、第1のパーシスタンス係数参照メモリ部107Aにアクセスし、参照インデックスに対応付けられた第1のパーシスタンス係数を読み出し、第1のパーシスタンス演算部108Aに設定する。第1のパーシスタンス係数参照メモリ部107Aには、あらかじめ血流速度の値に対応付けられた第1のパーシスタンス係数を含む第1の参照テーブルが記憶されている。この第1の参照テーブルは、血流速度の値に応じて対応付けられた異なる2つ以上の値のパーシスタンス係数を含む。
 これに対し、第2のパーシスタンス係数決定部106Bは、折り返し判定部105からの2つの判定結果とパーシスタンスメモリ部109から読み出した血流速度データVout-1に基づいて、第2のパーシスタンス係数参照メモリ部107Bへの参照インデックスを作成する。また、第2のパーシスタンス係数参照メモリ部107Bにアクセスし、参照インデックスに対応付けられた第2のパーシスタンス係数を読み出し、第2のパーシスタンス演算部108Bに設定する。第2のパーシスタンス係数参照メモリ部107Bには、あらかじめ血流速度の値に対応付けられた第2のパーシスタンス係数を含む第2の参照テーブルが記憶されている。第2の参照テーブルも、血流速度の値に応じて対応付けられた異なる2つ以上の値のパーシスタンス係数を含むが、以下において詳細に説明するように、同じ血流速度値に対して対応付けられる第1のパーシスタンス係数値と第2のパーシスタンス係数値とは値が異なっている。
 第1のパーシスタンス演算部108Aは、第1のパーシスタンス係数決定部106Aから設定されたパーシスタンス係数と折り返し判定部105からの折り返し発生の判定結果とに基づいて、以下に示す式(1)で血流速度データに対してパーシスタンス演算を行う。
 パーシスタンス演算によって求められる残像処理された血流速度データをVoutとし、パーシスタンス係数をCpersistence(0<Cpersistence<1)とすると、残像処理された血流速度データは以下の式(1)で求められる。
Vout=(1-Cpersistence)×Vcurrent+Cpersistence×Vout-1 ・・(1)
 同様に第2のパーシスタンス演算部108Bも、第2のパーシスタンス係数決定部106Bから設定されたパーシスタンス係数と折り返し判定部105からの折り返し発生の判定結果とに基づいて、式(1)で血流速度データに対してパーシスタンス演算を行う。
 第1のパーシスタンス演算部108Aおよび第2のパーシスタンス演算部108Bにおける演算は、決定したパーシスタンス係数が互い異なる点を除いて同じである。CFMフレームデータが、血流速度データ以外のデータを含む場合には、同様に最新のフレームのデータおよび最新より1つ前のフレームのデータと求めたパーシスタンス係数Cpersistenceを用いて第1のパーシスタンス演算部108Aおよび第2のパーシスタンス演算部108Bでパーシスタンス演算を行い、残像処理されたデータをそれぞれ得る。
 折り返し判定部105からの折り返し発生の判定結果が真であった場合は、式(1)の演算式を符号なし演算で扱い、偽であった場合は、符号付演算で扱う。
 上述したように測定にパルス波を用いるため、ドップラ偏移によって直接測定できる血流速度はパルス波の繰り返し周波数(PRF)の制限を受ける。具体的には、±PRF/2を超える周波数変化に対応する血流速度は反対向きの血流として観測される折り返しが発生する。
 図5(a)および(b)は、残像処理された血流速度データVout、最新のフレームの血流速度データVcurrentおよび最新より1つ前のフレームのパーシスタンス演算部108の出力結果である血流速度データVout-1の大きさの関係を示している。図5(a)および(b)において、横軸の第1象限部分は速度Vがゼロを意味し、横軸の第2象限部分は、+Vまたは-Vを意味する。速度Vが正である場合、第1または第2象限に位置し、速度Vが負である場合には、第3または第4象限に位置する。
 例えば、図5(a)に示すように、Vcurrentが第2象限にあり、Vout-1が第3象限にあり、折り返しが発生していると判定された場合、Vout-1は実際には、+PRF/2に対応する血流速度よりも大きな値であったことなるから、ゼロをとらない、つまり、符号変化を伴わない演算である。したがって、VcurrentおよびVout-1の符号(プラスまたはマイナス)をとって、式(1)にこれらの値を代入し演算を行う。
 一方、例えば、図5(b)に示すように、Vcurrentが第1象限にあり、Vout-1が第4象限にあり、折り返しが発生していないと判定された場合、式(1)の演算は、ゼロを通り、符号変化が生じる演算となる。したがって、符号をつけたVcurrentおよびVout-1を式(1)に代入し演算を行う。この演算は、1フレーム分の血流速度データの各画素または測定点ごとに行われる。また、演算結果であるVoutは、折り返しが発生している場合、符号なしの値となる。この場合、血流速度データVoutの最上位ビットを符号として扱うことで符号あり値として最大値選択部116にそれぞれ出力される。
 最大値選択部116は、第1のパーシスタンス演算部108Aおよび第2のパーシスタンス演算部108Bからそれぞれ演算結果、つまり、残像処理された血流速度データを受け取り、画素ごとに、あるいは、対応する測定点のデータごとに血流速度の絶対値を比較し、大きい方の血流速度を選択して、最新のフレームの残像処理された血流速度データを構成し、これをCFM DSC部110およびパーシスタンスメモリ部109に出力する。CFM DSC部110は、選択した血流速度データの座標を変換し、画像合成部113へ出力する。
 断層画像信号処理部409は受信信号に対してダイナミックフィルタ処理を施すことにより、不要なノイズをカットしたのち、包絡線検波処理およびダイナミックレンジ圧縮処理を施して断層画像DSC部410に断層画像フレームデータを出力する。断層画像DSC部410は、断層画像信号処理部409からの断層画像フレームデータの座標を変換し、画像合成部411へ出力する。
 画像合成部411は、CFM DSC部410および断層画像DSC部410から出力される各フレームデータを画素ごとに、あるいは、対応する測定点のデータごとに合成し、合成画像フレームデータを生成する。具体的には、血流速度がゼロである場合は、断層画像フレームデータを表示し、そうでない場合は、CFMフレームデータを表示するように2つのデータを画素ごとに、あるいは、対応する測定点のデータごとに合成する。また、血流速度や血流の方向に応じてデータを色情報に変換し、表示部412に出力する。表示部412は、画像合成部411から受け取ったデータを表示する。
 次に、第1および第2のパーシスタンス係数の決定についてより詳細に説明する。第1および第2のパーシスタンス係数を決定するために、まず、血流速度に折り返しが発生しているかどうかを折り返し判定部105において判定する。
 折り返し判定部105は、フレームメモリ部104から最新のCFMフレームデータに含まれる血流速度データVcurrentとパーシスタンスメモリ部109から1フレーム前のパーシスタンス演算部108の出力結果であるCFMフレームデータに含まれる血流速度Vout-1とを読み出し、VcurrentおよびVout-1の値から以下の2つの判定を行う。
1.折り返しが発生しているかどうか。
2.Vcurrentが折り返し領域にあるかどうか。
 この2つの状態の判定には、あらかじめ定められた閾値とVcurrentおよびVout-1とを比較することにより行う。具体的には、閾値Vthおよび血流ゼロ速度VzeroとVcurrentおよびVout-1とを比較する。
Figure JPOXMLDOC01-appb-T000003
 図6(a)は、閾値Vth、血流ゼロ速度Vzero、VcurrentおよびVout-1の大きさの関係を示している。図6(a)において、横軸の第1象限部分は血流ゼロ速度Vzeroを意味し、横軸の第2象限部分は、Vmaxまたは-Vmaxを意味する。速度Vが正である場合、第1または第2象限に位置し、速度Vが負である場合には、第3または第4象限に位置する。
 ここで、Vthおよび-Vthには、例えば、隣接するフレームの時間間隔において、想定される血流速度の変化の最大値を設定する。
 表3は、折り返し判定部105において判定される条件と判定結果とを示している。
 条件(0)に示すように、Vout-1が正である場合、想定される血流速度の変化の最大値はVthまたは-Vthであるから、Vcurrentが-Vthよりも小さくなることはない。したがって、Vcurrent<-Vthを満たしていれば、Vcurrentは、実際には、+PRF/2に対応する最大血流速度Vmaxよりも大きな値となっており、折り返しが発生しているとともに、Vcurrentが折り返し領域にあると判定される。条件(1)は、条件(0)の符号が逆転した場合である。
 条件(2)に示すように、Vout-1が-Vthより小さい場合、Vcurrentが正の値となることは、想定される血流速度の変化の最大値を超える変化であるから、折り返しが発生している。また、VcurrentがVzeroを挟む±Vthの範囲にあるため、Vcurrentは折り返し領域ではない。条件(3)は、条件(2)の符号が逆転した場合である。
 条件(0)から(3)のいずれも満たさない場合には、折り返しが発生しておらず、また、Vcurrentが折り返し領域にないと判定する。
 第1のパーシスタンス係数決定部106Aは、折り返し判定部105から出力される2つの判定結果とフレームメモリ部104から読み出した血流速度データVcurrentの絶対値に基づいて、第1のパーシスタンス係数参照メモリ部107への参照インデックスを作成する。表4に作成される参照インデックスを示す。
Figure JPOXMLDOC01-appb-T000004
 折り返しが発生しており、かつ、Vcurrentが折り返し領域にある場合、血流速度Vcurrentは、実際には、Vmaxをまたは-Vmaxを超える大きな値と考えられる。このため、参照インデックスはVmaxとなる。その他の場合には、Vcurrentの絶対値Abs(Vcurrent)となる。
 第1のパーシスタンス係数参照メモリ部107Aには、参照インデックスに対応付けられた第1のパーシスタンス係数によって構成される第1の参照テーブルが記憶されている。第1のパーシスタンス係数決定部106Aは、第1のパーシスタンス係数参照メモリ部107Aにアクセスし、作成された参照インデックスに対応付けられた第1のパーシスタンス係数を読み出し、第1のパーシスタンス演算部108Aへ出力する。
 図6(b)は、参照インデックスと第1のパーシスタンス係数との対応関係の一例を示すグラフである。図6(b)において、横軸は参照インデックスを示し、縦軸は、パーシスタンス係数を示している。表4に示したように、参照インデックスは、VmaxまたはVcurrentの絶対値Abs(Vcurrent)である。Vcurrentの絶対値が閾値Vth以下である場合には、Vcurrentの増大にともなって単調に増加する第1のパーシスタンス係数Cpersistenceが対応付けられている。つまり、Vcurrentの絶対値が閾値Vth以下である場合には、最新のフレームの血流速度Vcurrentに応じて異なるパーシスタンス係数Cpersistenceが対応付けられる。
 これに対し、第2のパーシスタンス係数決定部106Bは、折り返し判定部105から出力される2つの判定結果とパーシスタンスメモリ部109から読み出した血流速度データVout-1の絶対値に基づいて、第1のパーシスタンス係数参照メモリ部107への参照インデックスを作成する。表5に作成される参照インデックスを示す。
Figure JPOXMLDOC01-appb-T000005
 第2のパーシスタンス係数決定部106Bは、条件(2)から(4)の場合に、パーシスタンスメモリ部109から読み出した血流速度データVout-1の絶対値を参照インデックスとして生成する点で第1のパーシスタンス係数決定部106Aと異なっている。
 第2のパーシスタンス係数参照メモリ部107Bには、参照インデックスに対応付けられた第2のパーシスタンス係数によって構成される第2の参照テーブルが記憶されている。第2のパーシスタンス係数決定部106Bは、第2のパーシスタンス係数参照メモリ部107Bにアクセスし、作成された参照インデックスに対応付けられた第2のパーシスタンス係数を読み出し、第2のパースタンス演算部108Bへ出力する。
 図6(c)は、参照インデックスと第2のパーシスタンス係数との対応関係の一例を示すグラフである。図6(c)において、横軸は参照インデックスを示し、縦軸は、パーシスタンス係数を示している。表5に示したように、参照インデックスは、VmaxまたはVout-1の絶対値Abs(Vout-1)である。Vout-1の絶対値が閾値Vth以下である場合には、Vout-1の増大にともなって単調に増加する第2のパーシスタンス係数Cpersistenceが対応付けられている。つまり、Vout-1の絶対値が閾値Vth以下である場合には、1つ前の血流速度Vout-1に応じて異なる第2のパーシスタンス係数Cpersistenceが対応付けられる。
 図6(b)および図6(c)に示すように、参照インデックスがいずれの値をとっても第2のパーシスタンス係数のほうが第1のパーシスタンス係数より大きい。つまり、第1のパーススタンス係数は、最新のフレームの血流速度に対応づけられ、かつ、小さな値である。第1のパーススタンス係数が大きくなれば、1つ前のフレームの血流速度をより考慮した演算となるため、第1のパーシスタンス演算部108Aは、残像効果を抑制し、すみやかに血流速度を変化させる演算を行う。これに対し、第2のパーススタンス係数は、1つ前のフレームの血流速度に対応付けられ、かつ、大きな値であるため、第2のパーシスタンス演算部108Bは、残像効果を高め、血流速度の変化を抑制する演算を行う。
 また、上述したように第1のパーシスタンス演算部108Aは、残像効果を抑制し、速やかに血流速度を変化させる演算を行うため、血流速度は高いものの、血流パワーが小さいために血流を正しく検出できない場合、突然血流速度がゼロとなる可能性がある。この場合、血流速度が高くなるにつれて、血流画像に色調あるいは諧調の色付けを行っていると、血流画像が突然暗い諧調で色づけされ、画像が点滅するように表示される。このため、参照インデックスが増加するにつれて第1のパーシスタンス係数を単調に増加させ、血流速度が高くなるにつれて残像効果を高め、血流画像の点滅を抑制することができる。
 また、第2のパーシスタンス演算部108Bは、残像効果を高めた画像表示を行うため、血流速度が高くなるにつれて、血流画像に色調あるいは諧調の色付けを行っていると、血流速度が低い場合には、暗めの表示が必要以上に長い時間残像として表示されてしまう。例えば、探触子を動かした場合に、血流表示が尾引く印象を与えてしまう。このため、参照インデックスが増加するにつれて第2のパーシスタンス係数を単調に増加させ、血流速度が低くなるにつれて残像効果を抑制することができる。従って、血流速度の絶対値に基づく参照インデックスと第1および第2のパーシスタンス係数との間に適切な単調増加する関係を設定することにより、高品位な血流表示を実現することができる。
 なお、表3、表4および表5から分かるように、Vcurrent<-Vthでも、Vout-1>0であれば、参照インデックスはVmaxとなる(条件(0))一方、Vout-1<0であれば、参照インデックスはVcurrentの絶対値Abs(Vcurrent)となる(条件(4))。このため、Vcurrent<-Vthを満たしていても、Vout-1が正か負であるかによって、参照インデックスが異なり、パーシスタンス係数Cpersistenceも異なる。その結果、Vcurrent<-Vthを満たす隣接する領域であっても、Vout-1が正か負であるかによってカラーマッピングフロー画像として表示される色が異なり、画像に不連続な色調部分が生じてしまう。
 このような不自然な表示を抑制するため、Vcurrentの絶対値が閾値Vth以上である場合には、参照インデックスに同じ値のパーシスタンス係数Cpersistenceが対応付けられていることが好ましい。これにより、折り返しが発生する血流領域、あるいはその境界近傍において、自然な表示を行うことができる。
 このようにして決定した第1および第2のパーシスタンス係数を用いて第1のパーシスタンス演算部108Aおよび第2のパーシスタンス演算部108Bがそれぞれパーシスタンス処理の施された最新の血流速度データを生成する。
 最大値選択部116は、2つの血流速度データの絶対値の大きいほうを選択し、選択した血流速度データを残像処理された血流速度データとして出力する。つまり、絶対値の大きな血流速度データが得られるように、2つのパーシスタンス処理の結果を選択するため、甲状腺、肝臓、腎臓などに存在するような血流パワーが不安定となる末梢血管の血流表示を点滅させずに、かつ、平滑化に起因する末梢血管の血流消滅を起こさない血流動画を表示することが可能となる。
 なお、上記実施形態では、CFMフレームデータの血流速度に基づいてパーシスタンス係数を動的に決定し、血流速度にパーシスタンス演算を行っているが、上述したようにCFMフレームデータの他のデータ、例えば、血流パワーデータに対してパーシスタンス演算を行ってもよいし、Bモード断層画像データに対してパーシスタンス演算を行ってもよい。
 また、上記実施形態では、最新のフレームおよび1つ前のフレームの血流速度データを用いてパーシスタンス処理を行っていたが、2つ前、あるいは3つ以上前のフレームの血流速度データも用いてパーシスタンス処理を行ってもよい。また、式(1)に限られず、他の演算式を用いてパーシスタンス処理を行ってもよい。
 本発明は、被検体の血流状態を表示することのできる超音波診断装置に好適に用いることができる。
101、401 探触子
102、402 超音波送受部
103、403 CFM信号処理部
104、404 フレームメモリ部
105 折り返し判定部
106 パーシスタンス係数決定部
106A 第1のパーシスタンス係数決定部
106B 第2のパーシスタンス係数決定部
107 パーシスタンス係数参照メモリ部
107A 第1のパーシスタンス係数参照メモリ部
107B 第2のパーシスタンス係数参照メモリ部
108、407 パーシスタンス演算部
108A 第1のパーシスタンス演算部
108B 第2のパーシスタンス演算部
109 パーシスタンスメモリ部
110、408 CFM DSC部
111、409 断層画像信号処理部
112、410 断層画像 DSC部
113、411 画像合成部
114、412 表示部
115、115’ 残像処理部
116 最大値選択部
405 フレームメモリ選択部
406 パーシスタンス係数設定部

Claims (11)

  1.  探触子を繰り返し駆動し、前記探触子を駆動することにより送信された超音波が被検体において反射することにより得られた反射エコーを前記探触子によって受信し、複数の受信信号を逐次生成する送受信部と、
     前記複数の受信信号に基づき、各フレームにおける前記被検体中の血流部分の血流速度データを逐次生成するカラーフローマッピング信号処理部と、
     前記各フレームにおける血流速度データに対して残像処理を行う残像処理部と、
     前記受信信号に基づき、Bモード断層画像フレームデータを生成する断層画像信号処理部と、
     前記残像処理された血流速度データおよび前記Bモード断層画像フレームデータを合成する画像合成部と
    を備え、
     前記残像処理部は、
     最新のフレームの血流速度データと最新より以前のフレームの残像処理された血流速度データに基づいて折り返し判定を行い、前記折り返し判定の結果と最新および最新より以前のフレームの血流速度データに基づいて動的にパーシスタンス係数を変更する超音波診断装置。
  2.  前記残像処理部は、
     前記最新のフレームの血流速度データを記憶する第1のメモリ部と、
     前記最新より以前のフレームの残像処理された血流速度データを記憶する第2のメモリ部と、
     前記第1のメモリ部および前記第2のメモリ部から血流速度データをそれぞれ読み出し、前記折り返し判定を行う折り返し判定部と、
     前記折り返し判定の結果および前記第1のメモリ部に記憶された血流速度データに応じてパーシスタンス係数を決定するパーシスタンス係数決定部と、
     前記パーシスタンス係数および前記折り返し判定の結果に基づいて、前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行い、演算結果を前記残像処理された血流速度データとして出力するパーシスタンス演算部とを含む請求項1に記載の超音波診断装置。
  3.  前記折り返し判定部は、前記第1のメモリ部に記憶された血流速度データおよび前記第2のメモリ部に記憶された血流速度データと複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、前記最新のフレームの血流速度データが折り返し領域にあるかどうかを判定する請求項2に記載の超音波診断装置。
  4.  前記残像処理部は、前記血流速度の値に応じて対応付けられた異なる2つ以上の値のパーシスタンス係数を含む参照テーブルを記憶している第3のメモリ部をさらに含む、請求項2または3に記載の超音波診断装置。
  5.  前記参照テーブルは、所定の値以上の血流速度に対して一定の値のパーシスタンス係数が対応付けられている請求項4に記載の超音波診断装置。
  6.  前記残像処理部は、
     前記最新のフレームの血流速度データを記憶する第1のメモリ部と、
     前記最新より以前のフレームの残像処理された血流速度データを記憶する第2のメモリ部と、
     前記第1のメモリ部および前記第2のメモリ部から血流速度データをそれぞれ読み出し、前記折り返し判定を行う折り返し判定部と、
     前記折り返し判定の結果および前記第1のメモリ部に記憶された血流速度データに応じて第1のパーシスタンス係数を決定する第1のパーシスタンス係数決定部と、
     前記第1のパーシスタンス係数および前記折り返し判定の結果に基づいて前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行う第1のパーシスタンス演算部と、
     前記折り返し判定の結果および前記第2のメモリ部に記憶された血流速度データに応じて第2のパーシスタンス係数を決定する第2のパーシスタンス係数決定部と、
     前記第2のパーシスタンス係数および前記折り返し判定の結果に基づいて前記第1のメモリ部に記憶された血流速度データに対しパーシスタンス演算を行う第2のパーシスタンス演算部と、
     前記第1のパーシスタンス演算部から出力される演算結果の絶対値および前記第2パーシスタンス演算部から出力される演算結果の絶対値を比較し、大きい方の演算結果を前記残像処理された血流速度データとして出力する最大値選択部と、
    を含む請求項1に記載の超音波診断装置。
  7.  前記折り返し判定部は、前記第1のメモリ部に記憶された血流速度データおよび前記第2のメモリ部に記憶された血流速度データと複数の閾値とを比較することによって、折り返しが発生しているかどうか、および、前記最新のフレームの血流速度データが折り返し領域にあるかどうかを判定する請求項6に記載の超音波診断装置。
  8.  前記残像処理部は、
     前記血流速度の値に応じて対応付けられた異なる2つ以上の値の第1のパーシスタンス係数を含む第1の参照テーブルを記憶している第3のメモリ部と、
     前記血流速度の値に応じて対応付けられた異なる2つ以上の値の第2のパーシスタンス係数を含む第2の参照テーブルを記憶している第4のメモリ部と、
    をさらに含む、請求項6または7に記載の超音波診断装置。
  9.  前記第1の参照テーブルと前記第2の参照テーブルにおいて、同じ血流速度の値に応じて対応付けられた第1のパーシスタンス係数と第2のパーシスタンス係数とは互いに異なる値である請求項8に記載の超音波診断装置。
  10.  前記第1の参照テーブルは、所定の値以上の血流速度に対して一定の値のパーシスタンス係数が対応付けられている請求項8に記載の超音波診断装置。
  11.  前記最新より以前のフレームの残像処理された血流速度データは、前記最新より1つ前のフレームの残像処理された血流速度データである請求項1から10のいずれかに記載の超音波診断装置。
PCT/JP2010/005775 2009-09-28 2010-09-24 超音波診断装置 WO2011036891A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011517545A JP5652395B2 (ja) 2009-09-28 2010-09-24 超音波診断装置
US13/380,601 US20120101384A1 (en) 2009-09-28 2010-09-24 Ultrasonic diagnostic device
CN201080005148.4A CN102292028B (zh) 2009-09-28 2010-09-24 超声波诊断装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-223205 2009-09-28
JP2009223204 2009-09-28
JP2009223205 2009-09-28
JP2009-223204 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011036891A1 true WO2011036891A1 (ja) 2011-03-31

Family

ID=43795658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005775 WO2011036891A1 (ja) 2009-09-28 2010-09-24 超音波診断装置

Country Status (4)

Country Link
US (1) US20120101384A1 (ja)
JP (1) JP5652395B2 (ja)
CN (1) CN102292028B (ja)
WO (1) WO2011036891A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239778A (ja) * 2013-06-11 2014-12-25 株式会社東芝 超音波診断装置
JP2018050926A (ja) * 2016-09-28 2018-04-05 コニカミノルタ株式会社 超音波診断装置
JP7343342B2 (ja) 2019-09-25 2023-09-12 キヤノンメディカルシステムズ株式会社 超音波診断装置、及び画像処理装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113900B (zh) 2010-01-05 2015-07-15 深圳迈瑞生物医疗电子股份有限公司 彩色血流动态帧相关方法和装置
CN105249992A (zh) * 2014-02-20 2016-01-20 飞依诺科技(苏州)有限公司 基于rf数据超声成像处理方法及系统
CN105708495B (zh) * 2016-01-26 2018-08-17 飞依诺科技(苏州)有限公司 超声彩色血流成像边界处理方法及系统
JP6720806B2 (ja) 2016-09-28 2020-07-08 コニカミノルタ株式会社 超音波診断装置
JP6990819B2 (ja) * 2018-03-07 2022-01-12 富士フイルムヘルスケア株式会社 超音波撮像装置及び方法
CN110074818B (zh) * 2019-05-23 2022-04-01 深圳开立生物医疗科技股份有限公司 一种超声血流计算和显示方法及系统
JP7472691B2 (ja) * 2020-07-09 2024-04-23 コニカミノルタ株式会社 超音波診断装置、および、超音波信号処理方法
JP2023553093A (ja) * 2020-12-15 2023-12-20 シンダイアグ エス.アール.エール. 超音波検査のドップラ映像におけるアーチファクトを除去する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544107U (ja) * 1991-11-25 1993-06-15 横河メデイカルシステム株式会社 Cfm機能付超音波診断装置
JPH11276481A (ja) * 1998-03-26 1999-10-12 Fujitsu Ltd 超音波診断装置
JP2002113001A (ja) * 2000-10-10 2002-04-16 Toshiba Corp 超音波診断装置および超音波信号処理方法
JP2006116329A (ja) * 1994-12-30 2006-05-11 Acuson Corp 体液の流れ又は組織の運動の画像を増強するための適応式時間フィルタリング
JP2007000359A (ja) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc Cfm画像処理方法、および超音波画像処理装置
JP2007504862A (ja) * 2003-09-09 2007-03-08 ゼネラル・エレクトリック・カンパニイ 超音波ドップラー・カラーフロー・イメージングのための運動適応型フレーム平均化

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012A (en) * 1843-03-21 Machine fob
US5897502A (en) * 1996-11-26 1999-04-27 Siemens Medical Systems, Inc. Persistence for ultrasonic flow imaging
US6134559A (en) * 1998-04-27 2000-10-17 Oracle Corporation Uniform object model having methods and additional features for integrating objects defined by different foreign object type systems into a single type system
US6322505B1 (en) * 1999-06-08 2001-11-27 Acuson Corporation Medical diagnostic ultrasound system and method for post processing
JP2003061958A (ja) * 2001-06-15 2003-03-04 Toshiba Medical System Co Ltd 超音波診断装置
US7044913B2 (en) * 2001-06-15 2006-05-16 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus
EP1498746B1 (en) * 2003-07-09 2013-12-11 Panasonic Corporation Ultrasonic diagnostic apparatus and tomographic image processing apparatus
JP2005218845A (ja) * 2004-01-09 2005-08-18 Olympus Corp 超音波診断装置
JP4190530B2 (ja) * 2005-09-26 2008-12-03 オリンパスメディカルシステムズ株式会社 超音波診断装置
ES2402741T3 (es) * 2005-11-02 2013-05-08 Visualsonics, Inc. Conformador de haces de transmisión digital para un sistema transductor de ultrasonidos con distribución
JP4971080B2 (ja) * 2007-08-31 2012-07-11 オリンパスメディカルシステムズ株式会社 超音波診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544107U (ja) * 1991-11-25 1993-06-15 横河メデイカルシステム株式会社 Cfm機能付超音波診断装置
JP2006116329A (ja) * 1994-12-30 2006-05-11 Acuson Corp 体液の流れ又は組織の運動の画像を増強するための適応式時間フィルタリング
JPH11276481A (ja) * 1998-03-26 1999-10-12 Fujitsu Ltd 超音波診断装置
JP2002113001A (ja) * 2000-10-10 2002-04-16 Toshiba Corp 超音波診断装置および超音波信号処理方法
JP2007504862A (ja) * 2003-09-09 2007-03-08 ゼネラル・エレクトリック・カンパニイ 超音波ドップラー・カラーフロー・イメージングのための運動適応型フレーム平均化
JP2007000359A (ja) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc Cfm画像処理方法、および超音波画像処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239778A (ja) * 2013-06-11 2014-12-25 株式会社東芝 超音波診断装置
JP2018050926A (ja) * 2016-09-28 2018-04-05 コニカミノルタ株式会社 超音波診断装置
JP7343342B2 (ja) 2019-09-25 2023-09-12 キヤノンメディカルシステムズ株式会社 超音波診断装置、及び画像処理装置
US11786209B2 (en) 2019-09-25 2023-10-17 Canon Medical Systems Corporation Ultrasonic diagnostic apparatus and image processing apparatus

Also Published As

Publication number Publication date
CN102292028B (zh) 2014-04-09
US20120101384A1 (en) 2012-04-26
CN102292028A (zh) 2011-12-21
JP5652395B2 (ja) 2015-01-14
JPWO2011036891A1 (ja) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5652395B2 (ja) 超音波診断装置
JP4722283B2 (ja) 連続データ獲得を用いた超音波フロー・イメージングにおける運動の可視化のための方法および装置
JP6218400B2 (ja) 超音波診断装置及び超音波診断装置の制御プログラム
JP4627366B2 (ja) パケット・データ獲得を用いた超音波フロー撮像における運動の可視化のための方法および装置
US6814703B2 (en) Apparatus and method for ultrasonic diagnostic imaging using a contrast medium
JP2012254373A (ja) 超音波診断装置
JP6309340B2 (ja) 超音波診断装置及び超音波イメージングプログラム
JP2023126415A (ja) 超音波診断装置
JP3355140B2 (ja) 超音波撮像装置
JP4117383B2 (ja) 超音波撮影装置
JP4808373B2 (ja) Bモード画像のバンディング抑制に関連する応用のための方法及び装置
JP2000149015A (ja) 画像のエッジ強調方法及びイメ―ジング装置
JP4426472B2 (ja) 超音波診断装置
JP5455567B2 (ja) 超音波診断装置
JP2009268734A (ja) 超音波観測装置
JP6720806B2 (ja) 超音波診断装置
US20170296146A1 (en) Ultrasonic diagnostic device and method of generating discrimination information
JP7343342B2 (ja) 超音波診断装置、及び画像処理装置
WO2020149191A1 (ja) 画像解析装置
JP2714329B2 (ja) 超音波診断装置
JP2018050926A (ja) 超音波診断装置
JP6677042B2 (ja) 画像処理装置、超音波診断装置及び画像処理プログラム
US20190298314A1 (en) Ultrasonic diagnostic device, medical image processing device, and medical image processing method
JP2597584B2 (ja) 超音波診断装置
JP3353512B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005148.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011517545

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13380601

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818568

Country of ref document: EP

Kind code of ref document: A1