WO2011036361A1 - Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt - Google Patents

Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt Download PDF

Info

Publication number
WO2011036361A1
WO2011036361A1 PCT/FR2010/051734 FR2010051734W WO2011036361A1 WO 2011036361 A1 WO2011036361 A1 WO 2011036361A1 FR 2010051734 W FR2010051734 W FR 2010051734W WO 2011036361 A1 WO2011036361 A1 WO 2011036361A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
angular position
tooth
range
determined
Prior art date
Application number
PCT/FR2010/051734
Other languages
English (en)
French (fr)
Inventor
Julien Tisseau
Christophe Blind
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to BR112012005586-0A priority Critical patent/BR112012005586B1/pt
Priority to EP10763213.5A priority patent/EP2480776B1/fr
Priority to CN201080042553.3A priority patent/CN102510941B/zh
Publication of WO2011036361A1 publication Critical patent/WO2011036361A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2006Control related aspects of engine starting characterised by the control method using prediction of future conditions

Definitions

  • the present invention relates to the field of internal combustion engines, and more particularly to the anticipated determination of the rotational speed in the stopping phase of the engine.
  • the electronic computers mainly have information provided by two sensors, which respectively characterize the rotation of the crankshaft of the engine (it is called a speed sensor), and potentially the rotation of at least one camshaft (this is called a position sensor AAC or camshaft).
  • the crankshaft performs 2 turns, a rotation of 720 °.
  • a cycle starts at 0 ° crankshaft angle at the beginning of a compression phase of a given cylinder and ends at 720 ° at the end of the intake phase of this same cylinder.
  • the flywheel secured to the crankshaft of the engine, is provided on its periphery with a set of teeth, called target, opposite which is positioned the speed sensor. It delivers an alternating voltage in crenels, presenting rising electric fronts and descending electric fronts, and whose frequency varies with the engine speed.
  • the flywheel may have, for example, 58 teeth and two gaps (that is to say, a toothing of 60 teeth including 2 missing). The sensor will detect these gaps thus providing information on the position of the crankshaft and the speed of rotation or engine speed.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to a method for predicting the rotational speed of an internal combustion engine crankshaft in an end-of-rotation phase, characterized in that:
  • the actual rotational speed of the crankshaft is determined and recorded at angular positions of said crankshaft for a range of angular positions of the crankshaft delimited by a first angular position and a second angular position corresponding to angular periodic oscillations of decreasing the speed of the crankshaft. rotation of the crankshaft.
  • a constant is determined as a function of the difference of squares of the real regimes determined for the first and second angular positions
  • a predicted crankshaft rotation speed is determined for a third angular position of the crankshaft, not included in the range of angular positions of the crankshaft, as a function of the constant and the actual speed determined at a fourth angular position included in said range and such that the difference between the third and fourth angular positions is equal to or is a multiple of said range.
  • the invention may include one or more of the following features:
  • the second angular position corresponds to the position at the present moment of the crankshaft which is the last angular position for which one can determine a real regime.
  • the range of angular positions of the crankshaft is advantageously 180 °, 360 ° or 720 ° which corresponds to respectively to a motor phase, a motor revolution, a motor cycle.
  • the range is representative of the periodicity of the loss couples of the phases of admission, compression, expansion and exhaust of the engine and the phase shift of the cylinders.
  • the range of angular positions of the crankshaft is 360 ° to have a better precision of the prediction of the regime.
  • the range is 240 ° or 720 °, because of the phase shift of the cylinders - In a variant where the engine comprises six cylinders, the range is 120 °, 240 ° or 720 °, because of the phase shift of the cylinders.
  • crankshaft being rotatably connected to a toothed wheel comprising teeth for determining the angular position of said crankshaft, the angular width between each tooth being 6 °, the predicted crankshaft rotation speed for the third angular position of the crankshaft is determined according to the actual regime by applying the following relation:
  • a and B are variables such as:
  • n is the index of the tooth locating the second angular position of the crankshaft
  • n + d is the index of the tooth identifying the third angular position of the crankshaft
  • n - + B is the index of the tooth identifying the fourth angular position of the crankshaft
  • the method further comprises the following steps:
  • the predicted diet is determined for the tooth of index n + 1,
  • a predicted regime is determined for the fixed time, by interpolation between the predicted regimes for the last two indices.
  • the invention also relates to an application of the method of the invention to the prediction of the stopping cylinder of an internal combustion engine, characterized in that the third angular position of the crankshaft corresponds to a top dead center. combustion.
  • the estimation of the speed for angular positions of the crankshaft corresponding to a top dead center, also called PMH combustion, makes it possible to determine the last PMH for which the estimated speed will be non-zero and to deduce the cylinder in corresponding compression that is designated as the stop cylinder.
  • FIG. 1 is a schematic representation of an internal combustion engine 1.
  • FIG. 2 is a diagram showing the end of rotation phase of the crankshaft.
  • FIG. 3 illustrates the procedure of predicting the engine speed on a fixed angle.
  • FIG. 4 illustrates the procedure of predicting the engine speed over a fixed time.
  • FIG. 5 illustrates the procedure for predicting the stop cylinder.
  • FIG. 1 schematically shows an internal combustion engine 1 comprising a crankshaft 2.
  • the internal combustion engine is equipped with a device 3 for determining the rotational position of the crankshaft 2.
  • This device comprises a toothed wheel 4, a sensor 5 of regime connected to an electronic control unit 6 also called ECU.
  • the toothed wheel 4 is integrally connected in rotation to the crankshaft 2 so that when the internal combustion engine 1 operates, the toothed wheel 4 rotates relative to the to the engine 1.
  • the periphery of the toothed wheel 4 comprises teeth 7 corresponding to an angular width of 3 ° and two teeth are separated by a recess 8 with an angular width of 3 °. In one part of the periphery, two adjacent teeth 7 have been removed to have an enlarged tooth gap called spacing 9. At each passage between a tooth 7 and a recess 8 or at the spacing 9, there is a tooth flank 10
  • the ECU 6 comprises the calculation and storage means necessary for determining the actual engine speed and the predicted engine speed according to the
  • t id the time separating two successive identical fronts.
  • the fronts can be 12 or downs 13.
  • a so-called instantaneous or real N regime expressed in degree / second can then be estimated by the following relation:
  • the sensor 5 is a Hall effect sensor mounted in a fixed manner with respect to the internal combustion engine 1.
  • the sensor 5 captures the succession of teeth 7 and tooth gaps 8 or the spacing 9 which passes in front of it and generates a crenelelectric signal January 1, having rising electrical fronts 12 and descending electric fronts 13, whose Frequency varies with the N rotation speed of the motor.
  • the engine speed can be predicted using information based on the difference between a current instantaneous squared regime and the engine speeds. snapshot prior to squared.
  • end of rotation phase is understood to mean the period following a stopping of the operation of the internal combustion engine 1 due to a cut by the ECU 6 of the injection and ignition.
  • FIG. 2 shows the end-of-rotation phase of the crankshaft 2 of the internal combustion engine 1 in the form of a diagram giving the variation of the speed N as a function of the angle ⁇ of the crankshaft 2.
  • FIG. the end phase rotation speed N of the crankshaft 2 decreases. Indeed, the internal combustion engine 1 does not provide energy and loss of torque due to the friction forces, but not only, oppose the rotation of the crankshaft 2 of the engine 1 and slow the speed of rotation N Crankshaft 2.
  • Figure 2 further shows that the decrease in the speed of rotation N of the crankshaft is not monotonous but presents oscillations periodically angularly, in other words on a range T of angular positions. Indeed, these oscillations are due to the fact that certain loss pairs such as those generated by the efforts of admission, compression, expansion and exhaust which are periodic phase shift between the engine cycles of each cylinder of the engine.
  • the range T of angular positions of the crankshaft 2 is 180 °, 360 ° or 720 °.
  • the range T is 360 °, to have a better precision of the prediction of the regime.
  • the procedure for predicting an engine speed at a given angle of the crankshaft 2, in other words for a given number of teeth d of the toothed wheel 4 is as follows: the actual rotational speed of the crankshaft is determined and recorded at angular positions said crankshaft for a range T of angular positions of the crankshaft 2 delimited by a first angular position and a second angular position.
  • a recording of the inter-tooth durations, t id for the period T considered, the number of records is in our example, the last thirty inter-tooth durations, t id, or a record on a range of 180 °.
  • the second angular position corresponds to the position at the present moment of the crankshaft 2.
  • FIG. 3 shows in full line the recorded angular period T and indicates in dashed line the variation of the rotational speed to come.
  • the real rotational speed is determined by the relation (1).
  • the actual speed values are stored in the ECU 6 for their future use in the rest of the procedure.
  • the constant C 0 is determined as a function of the difference of squares of the real regimes determined for the first and second angular positions, in other words by the difference between the instantaneous squared regime of the first recording and the instantaneous squared regime of the last recording. .
  • a predicted N rotation of the crankshaft 2 is determined for a third angular position of the crankshaft 2, not included in the range T of angular positions of the crankshaft 2, as a function of the constant C 0 and the real speed N determined at a fourth angular position in said range T and such that the difference between the third and fourth angular positions is a multiple greater than or equal to said range (T).
  • the predicted diet N is determined on the basis of a general formula whose expression is now demonstrated: For the purposes of the demonstration and as illustrated in FIG. 3, the last record is assigned the index n. The first record therefore has the index (nT / 6).
  • N 2 , - N 2 + 20 C 0 (13) n + 20
  • the value of a time counter S is initialized to 0 for the tooth of index n.
  • an inter-tooth time, t id corresponding from the relation (1), referenced t n + i, is calculated in FIG. 4, - it is incremented the time counter S of the inter-tooth time calculated.
  • a predicted regime is determined for the fixed time tp, by interpolation between the predicted speeds for the last two indices, referenced respectively N N + 2 - N N + 3 in the figure
  • Stop cylinder means the cylinder which is in the compression phase of the engine cycle.
  • N PM H the actual top dead center (or TDC) combustion regime
  • the invention is not limited to a particular type of combustion engine.
  • the range T of angular positions of the crankshaft 2 is preferably 240 ° or 720 °, due to the phase shift of the engine cycles of the various cylinders.
  • the range T of angular positions of the crankshaft 2 is preferably 120 °, 240 ° or 720 °, due to the phase shift of the engine cycles of the various cylinders.
  • the invention has the advantage of being simple to set up as a computer routine programmed in the ECU and does not require any particular calibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
PCT/FR2010/051734 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt WO2011036361A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112012005586-0A BR112012005586B1 (pt) 2009-09-23 2010-08-19 método para predição do regime de rotação de um virabraquim de motor em fase final de rotação e uso do referido método para predição do regime de rotação de um virabrequim de motor em fase final de rotação
EP10763213.5A EP2480776B1 (fr) 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt
CN201080042553.3A CN102510941B (zh) 2009-09-23 2010-08-19 用于预测在旋转的最后阶段发动机曲轴的旋转速度的方法以及该方法对预测制动汽缸的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956536A FR2950388B1 (fr) 2009-09-23 2009-09-23 Procede de prediction du regime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procede a la prediction du cylindre d'arret
FR0956536 2009-09-23

Publications (1)

Publication Number Publication Date
WO2011036361A1 true WO2011036361A1 (fr) 2011-03-31

Family

ID=42122883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051734 WO2011036361A1 (fr) 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt

Country Status (5)

Country Link
EP (1) EP2480776B1 (pt)
CN (1) CN102510941B (pt)
BR (1) BR112012005586B1 (pt)
FR (1) FR2950388B1 (pt)
WO (1) WO2011036361A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102733967A (zh) * 2011-04-09 2012-10-17 通用汽车环球科技运作有限责任公司 用于运行内燃机的方法和控制单元

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221634A1 (de) * 2015-11-04 2017-05-04 Robert Bosch Gmbh Verfahren zur Prädiktion einer Zeitdauer zwischen zwei Signalflanken eines Drehzahlsensorsignals
FR3129182A1 (fr) 2021-11-18 2023-05-19 Psa Automobiles Sa Procede de redemarrage d’un moteur thermique en phase d’arret comprenant une gestion de modes de redemarrage

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956536A (pt) 1950-02-02
JP2000088866A (ja) * 1998-09-17 2000-03-31 Nissan Motor Co Ltd エンジンの回転速度検出装置
US6499342B1 (en) * 2000-09-05 2002-12-31 Ford Global Technologies, Inc. Method of determining the stopping position of an internal combustion engine
US20040153235A1 (en) * 2003-01-28 2004-08-05 Toyota Jidosha Kabushiki Kaisha Stop position estimating apparatus of internal combustion engine
US20040149251A1 (en) * 2003-01-30 2004-08-05 Denso Corporation Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
US20050228575A1 (en) * 2004-04-08 2005-10-13 Denso Corporation Engine starting and stopping control device
US20060016413A1 (en) * 2004-07-20 2006-01-26 Denso Corporation Engine controller for starting and stopping engine
WO2007028584A1 (fr) * 2005-09-09 2007-03-15 Siemens Vdo Automotive Procédé de détermination de l'inversion du sens de rotation d'un moteur
EP1881188A1 (en) * 2005-05-13 2008-01-23 Toyota Jidosha Kabushiki Kaisha Start controller of internal combustion engine
DE102008000471A1 (de) * 2007-03-05 2008-09-11 Denso Corp., Kariya Verbrennungsmotorstoppsteuervorrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU608253B2 (en) * 1986-12-01 1991-03-28 Woodward Governor Company Method and apparatus for iterated determinations of sensed speed and speed governing
FR2827911B1 (fr) * 2001-07-27 2004-01-30 Peugeot Citroen Automobiles Sa Procede de reglage de l'arret et procede de redemarrage d'un moteur a combustion interne
FR2834337B1 (fr) * 2002-01-03 2004-03-19 Johnson Contr Automotive Elect Procede et dispositif de detection de la position electrique du rotor d'une machine electrique accouple a un moteur a combustion interne
US6681173B2 (en) * 2002-03-15 2004-01-20 Delphi Technologies, Inc. Method and system for determining angular crankshaft position prior to a cranking event
JP2004232539A (ja) * 2003-01-30 2004-08-19 Denso Corp エンジン回転停止制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956536A (pt) 1950-02-02
JP2000088866A (ja) * 1998-09-17 2000-03-31 Nissan Motor Co Ltd エンジンの回転速度検出装置
US6499342B1 (en) * 2000-09-05 2002-12-31 Ford Global Technologies, Inc. Method of determining the stopping position of an internal combustion engine
US20040153235A1 (en) * 2003-01-28 2004-08-05 Toyota Jidosha Kabushiki Kaisha Stop position estimating apparatus of internal combustion engine
US20040149251A1 (en) * 2003-01-30 2004-08-05 Denso Corporation Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
US20050228575A1 (en) * 2004-04-08 2005-10-13 Denso Corporation Engine starting and stopping control device
US20060016413A1 (en) * 2004-07-20 2006-01-26 Denso Corporation Engine controller for starting and stopping engine
EP1881188A1 (en) * 2005-05-13 2008-01-23 Toyota Jidosha Kabushiki Kaisha Start controller of internal combustion engine
WO2007028584A1 (fr) * 2005-09-09 2007-03-15 Siemens Vdo Automotive Procédé de détermination de l'inversion du sens de rotation d'un moteur
DE102008000471A1 (de) * 2007-03-05 2008-09-11 Denso Corp., Kariya Verbrennungsmotorstoppsteuervorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102733967A (zh) * 2011-04-09 2012-10-17 通用汽车环球科技运作有限责任公司 用于运行内燃机的方法和控制单元
CN102733967B (zh) * 2011-04-09 2016-11-23 通用汽车环球科技运作有限责任公司 用于运行内燃机的方法和控制单元

Also Published As

Publication number Publication date
BR112012005586A2 (pt) 2016-06-14
EP2480776B1 (fr) 2017-02-22
FR2950388A1 (fr) 2011-03-25
FR2950388B1 (fr) 2012-04-20
EP2480776A1 (fr) 2012-08-01
BR112012005586B1 (pt) 2019-11-05
CN102510941A (zh) 2012-06-20
CN102510941B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
EP0576334B1 (fr) Procédé de repérage cylindres pour le pilotage d'un système d'injection électronique d'un moteur à combustion interne
WO2007028584A1 (fr) Procédé de détermination de l'inversion du sens de rotation d'un moteur
FR2877996A1 (fr) Procede de gestion d'un moteur a combustion interne
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
FR3004218A1 (fr) Procede d'estimation de la position angulaire d'un vilebrequin pour accelerer le demarrage d'un moteur a combustion interne
WO2020016342A1 (fr) Détermination de la position angulaire d'une cible dentée solidaire en rotation d'un arbre d'un moteur à combustion interne
FR2915773A1 (fr) Procede et dispositif de surveillance d'un turbocompresseur de gaz d'echappement equipant un moteur a combustion interne
FR2991720A1 (fr) Methode d'identification des fronts sur une cible d'arbre a came
FR2875541A1 (fr) Procede et dispositif pour la synchronisation moteur de moteurs a combustion interne
FR2902141A1 (fr) Procede et appareil de commande pour determiner une grandeur caracteristique d'un moteur a combustion interne a partir de la vitesse de rotation de son vilebrequin.
WO2007147484A1 (fr) Procede de detection de rate d'allumage et dispositif correspondant
EP2480776B1 (fr) Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt
EP2232035B1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
FR2978542A1 (fr) Procede de determination d'une information representative de la position d'une dent reelle d'une cible dentee solidaire en rotation d'un arbre d'un moteur a combustion interne et dispositif associe
FR2887300A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR2878574A1 (fr) Procede de gestion d'un moteur a combustion interne a plusieurs cylindres
WO2020245080A1 (fr) Validation d'un signal issu d'un capteur de vilebrequin
FR3072124B1 (fr) Procede et systeme de detection du sens de rotation d'un moteur de vehicule
WO2004074662A1 (fr) Procede de detection de rates de combustion par filtrage
EP0755482B1 (fr) Procede de detection des irregularites de combustion d'un moteur a combustion interne
EP1540296B1 (fr) Procede de detection des defauts de combustion d un moteur a combustion interne
FR2947005A1 (fr) Dispositif de detection d'anomalie pour detecteur de rotation
FR2964707A1 (fr) Procede d'autorisation d'engagement d'un demarreur avec un moteur et vehicule comprenant un calculateur pour la mise en œuvre de ce procede
FR2523214A1 (fr) Dispositif et procede de determination de la position du piston dans le cylindre d'un moteur a mouvement alternatif
WO2021191147A1 (fr) Procede et dispositif de controle moteur avec signal vilebrequin reconstitue

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042553.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763213

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010763213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010763213

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005586

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005586

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120313