EP2480776B1 - Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt - Google Patents

Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt Download PDF

Info

Publication number
EP2480776B1
EP2480776B1 EP10763213.5A EP10763213A EP2480776B1 EP 2480776 B1 EP2480776 B1 EP 2480776B1 EP 10763213 A EP10763213 A EP 10763213A EP 2480776 B1 EP2480776 B1 EP 2480776B1
Authority
EP
European Patent Office
Prior art keywords
crankshaft
tooth
angular position
angular
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10763213.5A
Other languages
German (de)
English (en)
Other versions
EP2480776A1 (fr
Inventor
Julien Tisseau
Christophe Blind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2480776A1 publication Critical patent/EP2480776A1/fr
Application granted granted Critical
Publication of EP2480776B1 publication Critical patent/EP2480776B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • F02N11/0855Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear during engine shutdown or after engine stop before start command, e.g. pre-engagement of pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2006Control related aspects of engine starting characterised by the control method using prediction of future conditions

Definitions

  • the present invention relates to the field of internal combustion engines, and more particularly to the anticipated determination of the rotational speed in the stopping phase of the engine.
  • the electronic computers mainly have information provided by two sensors, which respectively characterize the rotation of the crankshaft of the engine (this is called a speed sensor), and potentially the rotation of at least one camshaft (this is called a position sensor AAC or camshaft).
  • the flywheel secured to the crankshaft of the engine, is provided on its periphery with a set of teeth, called target, opposite which is positioned the speed sensor. It delivers an alternating voltage in crenels, presenting rising electric fronts and descending electric fronts, and whose frequency varies with the engine speed.
  • the flywheel may have, for example, 58 teeth and two gaps (that is to say, a toothing of 60 teeth including 2 missing). The sensor will detect these gaps thus providing information on the position of the crankshaft and the speed of rotation or engine speed.
  • control or control in question can obviously not be implemented without knowledge of the engine speed, which can be troublesome to respond to problems of motor vehicles equipped with an automatic on / off using a starter.
  • the actual speed measurement measured over a given range of angular position is thus used to predict at a future angular position of the crankshaft.
  • the invention also relates to an application of the method of the invention to the prediction of the stopping cylinder of an internal combustion engine, characterized in that the third angular position of the crankshaft corresponds to a top dead center. combustion.
  • the estimation of the speed for angular positions of the crankshaft corresponding to a top dead center, also called PMH combustion, makes it possible to determine the last PMH for which the estimated speed will be non-zero and to deduce the cylinder in corresponding compression that is designated as the stop cylinder.
  • the figure 1 shows schematically an internal combustion engine 1 comprising a crankshaft 2.
  • the internal combustion engine is equipped with a device 3 for determining the rotational position of the crankshaft 2.
  • This device comprises a toothed wheel 4, a speed sensor 5 connected to an electronic control unit 6 also called ECU.
  • the toothed wheel 4 is integrally connected in rotation to the crankshaft 2 so that when the internal combustion engine 1 operates, the toothed wheel 4 rotates relative to the 1.
  • the periphery of the toothed wheel 4 has teeth 7 corresponding to an angular width of 3 ° and two teeth are separated by a recess 8 with an angular width of 3 °. In one part of the periphery, two adjacent teeth 7 have been removed to have an enlarged tooth gap called spacing 9. At each passage between a tooth 7 and a recess 8 or at the spacing 9, there is a tooth flank 10
  • the ECU 6 comprises the calculation and storage means necessary for determining the actual engine speed and the predicted engine speed according to the invention.
  • t id the time separating two successive identical fronts.
  • the fronts can be 12 or downs 13.
  • the sensor 5 is a Hall effect sensor mounted in a fixed manner with respect to the internal combustion engine 1.
  • the sensor 5 captures the succession of teeth 7 and tooth gaps 8 or the spacing 9 which passes in front of it and generates a crenelated electrical signal 11, having rising electric edges 12 and descending electrical fronts 13, the frequency of which varies with the engine rotation speed N.
  • the engine speed can be predicted using information based on the difference between a current instantaneous squared regime and the engine speeds. snapshot prior to squared.
  • end of rotation phase is understood to mean the period following a stopping of the operation of the internal combustion engine 1 due to a cut by the ECU 6 of the injection and ignition.
  • the figure 2 shows the phase of end of rotation of the crankshaft 2 of the internal combustion engine 1 in the form of a diagram giving the variation of the speed N as a function of the angle ⁇ of the crankshaft 2.
  • the figure 2 shows that during the final rotation phase the rotation speed N of the crankshaft 2 decreases. Indeed, the internal combustion engine 1 does not provide energy and loss of torque due to the friction forces, but not only, oppose the rotation of the crankshaft 2 of the engine 1 and slow the speed of rotation N crankshaft 2.
  • the figure 2 further shows that the decrease in the rotation speed N of the crankshaft is not monotonous but presents oscillations periodically angularly, in other words on a range T of angular positions. Indeed, these oscillations are due to the fact that certain loss pairs such as those generated by the efforts of admission, compression, expansion and exhaust which are periodic phase shift between the engine cycles of each cylinder of the engine.
  • the range T of angular positions of the crankshaft 2 is 180 °, 360 ° or 720 °.
  • the range T is 360 °, to have a better precision of the prediction of the regime.
  • N the first and ⁇ seconds.
  • Stop cylinder means the cylinder which is in the compression phase of the engine cycle.
  • Is k INT NOT TDC 2 VS 0
  • the invention is not limited to a particular type of combustion engine.
  • the range T of angular positions of the crankshaft 2 is preferably 240 ° or 720 °, due to the phase shift of the engine cycles of the various cylinders.
  • the range T of angular positions of the crankshaft 2 is preferably 120 °, 240 ° or 720 °, due to the phase shift of the engine cycles of the various cylinders.
  • the invention has the advantage of being simple to set up as a computer routine programmed in the ECU and does not require any particular calibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

    Domaine technique de l'invention
  • La présente invention revendique la priorité de la demande française 0956536 déposée le 23 Septembre 2009 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
  • La présente invention se rapporte au domaine des moteurs à combustion interne, et plus particulièrement à la détermination anticipée du régime de rotation en phase d'arrêt du moteur.
  • Arrière-plan technologique
  • Afin de connaitre et de suivre la position de chacun des cylindres dans un cycle, les calculateurs électroniques disposent principalement d'informations fournies par deux capteurs, qui caractérisent respectivement la rotation du vilebrequin du moteur (on parle alors de capteur de régime), et potentiellement la rotation d'au moins un arbre à cames (on parle alors de capteur de position AAC ou arbre à cames).
  • Au cours d'un cycle d'un moteur à 4 temps, le vilebrequin effectue 2 tours, soit une rotation de 720°. Pour des raisons de clarté, conformément à l'usage, nous posons qu'un cycle commence à 0° d'angle vilebrequin au début d'une phase de compression d'un cylindre donné et se termine à 720° à la fin de la phase d'admission de ce même cylindre.
  • Le volant moteur, solidaire du vilebrequin du moteur, est pourvu sur sa périphérie d'un ensemble de dents, appelé cible, en regard de laquelle est positionné le capteur de régime. Il délivre une tension alternative en créneaux, présentant des fronts électriques montants et des fronts électriques descendants, et dont la fréquence varie avec le régime du moteur. Typiquement, le volant moteur peut présenter, par exemple, 58 dents et deux lacunes (c'est-à-dire une denture de 60 dents dont 2 manquantes). Le capteur va détecter ces lacunes apportant ainsi une information sur la position du vilebrequin et la vitesse de rotation ou régime du moteur.
  • Il est connu de déterminer le régime moteur instantané à partir de la mesure d'une durée inter-dent, autrement dit, le temps séparant deux fronts montants ou deux fronts descendants. La connaissance du régime moteur peut s'utiliser avantageusement dans divers contrôles ou commandes moteur tel que l'amélioration du redémarrage du moteur à combustion interne par exemple pour contrôler le cylindre d'arrêt, en particulier dans les véhicules automobiles équipés d'un automatisme marche/arrêt.
  • Cependant, la commande ou le contrôle en question ne peut évidemment pas être mis en oeuvre sans avoir connaissance du régime moteur, ce qui peut être gênant pour répondre à des problématiques de véhicules automobiles équipés d'un automatisme marche/arrêt utilisant un démarreur.
  • L'invention vise à résoudre un ou plusieurs de ces inconvénients. L'invention porte ainsi sur un procédé de prédiction du régime de rotation d'un vilebrequin de moteur à combustion interne en phase de fin de rotation, caractérisé en ce que :
    • On détermine et on enregistre le régime de rotation réel du vilebrequin à des positions angulaires dudit vilebrequin pour une plage de positions angulaires du vilebrequin délimitée par une première position angulaire et une seconde position angulaire correspondant à des oscillations périodiques angulairement de diminution de la vitesse de rotation du vilebrequin.
    • On détermine une constante en fonction de l'écart des carrés des régimes réels déterminé pour les première et seconde positions angulaires,
    • On détermine un régime prédit de rotation du vilebrequin pour une troisième position angulaire du vilebrequin, non comprise dans la plage de positions angulaires du vilebrequin, en fonction de la constante et du régime réel déterminé à une quatrième position angulaire comprise dans ladite plage et telle que l'écart entre les troisième et quatrième positions angulaires est égal à ladite plage ou est un multiple de celle-ci.
  • On utilise ainsi la mesure de régime réel mesuré sur une plage donné de position angulaire pour prédire à une position angulaire à venir du vilebrequin.
  • Par ailleurs, l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :
    • De préférence, la seconde position angulaire correspond à la position à l'instant présent du vilebrequin qui est la dernière position angulaire pour laquelle on puisse déterminer un régime réel.
    • Dans une variante où le moteur comprend quatre cylindres, la plage de positions angulaires du vilebrequin est avantageusement de 180°, 360° ou 720° ce qui correspond respectivement à une phase moteur, un tour moteur, un cycle moteur. La plage est représentative de la périodicité des couples de perte des phases d'admission, compression, détente et échappement du moteur et du déphasage des cylindres. De préférence la plage de positions angulaires du vilebrequin est de 360° pour avoir une meilleure précision de prédiction du régime.
    • Dans une variante où le moteur comprend trois cylindres, la plage est de 240° ou de 720 °, en raison du déphasage des cylindres
    • Dans une variante où le moteur comprend six cylindres, la plage est de 120°, 240° ou de 720 °, en raison du déphasage des cylindres.
    • le vilebrequin étant solidaire en rotation d'une roue dentée comprenant des dents servant à déterminer la position angulaire dudit vilebrequin, la largeur angulaire entre chaque dent étant de 6°, le régime prédit de rotation du vilebrequin pour la troisième position angulaire du vilebrequin est déterminé en fonction du régime réel en appliquant la relation suivante : N ˜ n + d = N n T 6 + B 2 A + 1 C 0
      Figure imgb0001
      dans laquelle :
      • A et B sont des variables telles que : A = INT 6 d T et B = d T 6 A
        Figure imgb0002
      • n est l'indice de la dent repérant la seconde position angulaire du vilebrequin,
      • n+d est l'indice de la dent repérant la troisième position angulaire du vilebrequin,
      • n T 6 + B
        Figure imgb0003
        est l'indice de la dent repérant la quatrième position angulaire du vilebrequin,
      • et INT est la fonction fraction entière.
  • On a ainsi une formulation générale dans le cas d'une roue dentée classique de 58 dents et deux lacunes, c'est-à-dire une denture de 60 dents dont 2 manquantes, soit une dent pour repérer 6°de rotation du vilebrequin.
    • Le procédé comprend en outre les étapes suivantes :
      • on détermine le régime prédit à la dent d'indice n+1,
      • on calcule, à partir du régime prédit à la dent d'indice n+1, un temps inter-dents,
      • on incrémente un compteur de temps du temps inter-dents calculé,
      • on réitère les précédentes étapes sur les dents d'indices suivants tant que la valeur du compteur de temps est inférieure à un temps fixé,
      • on détermine un régime prédit pour le temps fixé, par interpolation entre les régimes prédits pour les deux derniers indices.
  • Ce qui permet de connaitre à l'avance le régime à venir après un temps déterminé et peut permettre d'anticiper des actions de contrôle moteur.
  • Par ailleurs, l'invention a aussi pour objet une application du procédé de l'invention à la prédiction du cylindre d'arrêt d'un moteur à combustion interne, caractérisé en ce que la troisième position angulaire du vilebrequin correspond à un point mort haut combustion. L'estimation du régime pour des positions angulaire du vilebrequin correspondant un point mort haut combustion, encore nommé PMH combustion, permet en effet de déterminer le dernier PMH pour lequel le régime estimé sera non nul et d'en déduire le cylindre en compression correspondant que l'on désigne comme le cylindre d'arrêt.
  • Brève description des dessins
  • D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles :
    • La figure 1 est une représentation schématique un moteur à combustion interne 1.
    • La figure 2 est un diagramme montrant la phase de fin de rotation du vilebrequin.
    • La figure 3 illustre la procédure de prédiction du régime moteur sur un angle fixé.
    • La figure 4 illustre la procédure de prédiction du régime moteur sur un temps fixé.
    • La figure 5 illustre la procédure de prédiction du cylindre d'arrêt.
    Description détaillée
  • La figure 1 montre schématiquement un moteur à combustion interne 1 comportant un vilebrequin 2. Le moteur à combustion interne est équipé d'un dispositif 3 pour déterminer la position de rotation du vilebrequin 2. Ce dispositif comprend une roue dentée 4, un capteur 5 de régime relié à une unité de commande électronique 6 encore dénommée ECU. La roue dentée 4 en est reliée solidairement en rotation au vilebrequin 2 pour que lorsque le moteur à combustion interne 1 fonctionne, la roue dentée 4 tourne par rapport au moteur 1. La périphérie de la roue dentée 4 comporte des dents 7 correspondant à une largeur angulaire de 3° et deux dents sont séparées par un creux 8 d'une largeur angulaire de 3°. Dans une partie de la périphérie, on a supprimé deux dents voisines 7 pour avoir un intervalle de dents agrandi appelé espacement 9. A chaque passage entre une dent 7 et un creux 8 ou à l'espacement 9, on a un flanc de dent 10. L'ECU 6 comprend les moyens de calculs et de mémorisation nécessaires à la détermination du régime moteur réel et du régime moteur prédit selon l'invention.
  • On définit comme la durée inter-dent, tid, le temps séparant deux fronts identiques successifs. Les fronts peuvent être montants 12 ou descendants 13. Un régime dit instantané ou réel N exprimé en degré/seconde peut alors être estimé par la relation suivante : N = 6 t id
    Figure imgb0004
  • Le capteur 5 est un capteur à effet Hall monté de manière fixe par rapport au moteur à combustion interne 1. Le capteur 5 saisit la succession de dents 7 et d'intervalles de dents 8 ou de l'espacement 9 qui passe devant lui et génère un signal électrique créneau 11, présentant des fronts électriques montants 12 et des fronts électriques descendants 13, dont la fréquence varie avec le régime N de rotation du moteur.
  • Selon l'invention, nous pouvons prédire, au cours d'une phase de fin de rotation du vilebrequin d'un moteur à combustion interne, le régime moteur en utilisant une information basée sur la différence entre un régime instantané actuel au carré et les régimes instantané antérieurs au carré. On entend par l'expression « phase de fin de rotation » la période qui suit un arrêt du fonctionnement du moteur à combustion interne 1 dû à une coupure par l'ECU 6 de l'injection et de l'allumage.
  • La figure 2 montre la phase de fin de rotation du vilebrequin 2 du moteur à combustion interne 1 sous la forme d'un diagramme donnant la variation du régime N en fonction de l'angle θ du vilebrequin 2. La figure 2 montre que lors de la phase de fin rotation la vitesse de rotation N du vilebrequin 2 diminue. En effet, le moteur à combustion interne 1 ne fournit pas d'énergie et des couples de pertes, dus aux forces de frottement, mais pas seulement, s'opposent à la rotation du vilebrequin 2 du moteur 1 et ralentissent la vitesse de rotation N du vilebrequin 2. La figure 2 montre de plus que la diminution de la vitesse de rotation N du vilebrequin n'est pas monotone mais présente des oscillations périodiques angulairement, autrement dit sur une plage T de positions angulaires. En effet, ces oscillations sont dues au fait que certains couples de perte tels que ceux générés par des efforts d'admission, de compression, de détente et d'échappement qui sont périodiques du déphasage entre les cycles moteur de chaque cylindre du moteur.
  • L'invention sera mieux comprise suite à la démonstration suivante :
    • Le principe fondamental de la dynamique appliquée aux rotations nous donne : J d 2 θ t dt 2 = C θ t
      Figure imgb0005
  • Avec :
    • J : le moment d'inertie des éléments du moteur reliés à la roue dentée 4,
    • θ(t) l'angle du vilebrequin 2 en fonction du temps,
    • ∑C(θ(t)) : en phase de fin de rotation moteur, la somme des couples de perte responsables de l'arrêt en rotation du moteur.
  • En multipliant chaque terme de la relation (2) par le régime N aussi déterminé par la relation suivante : N = t dt
    Figure imgb0006
    , il vient : J t dt d 2 θ t dt 2 = t dt C θ t
    Figure imgb0007
  • En procédant à une intégration de la relation (4) entre un premier instant t1 et un second instant t2, avec θ1 l'angle vilebrequin relevé à l'instant t1, tel que : θ t 1 = θ 1
    Figure imgb0008
  • Et θ2, l'angle vilebrequin relevé à un second instant t2, tel que : θ t 2 = θ 2
    Figure imgb0009
  • Il vient alors : J 2 t dt 2 t 1 t 2 = C θ t t 1 t 2
    Figure imgb0010
  • Ou encore : J 2 dt 2 θ 1 θ 2 = C θ θ 1 θ 2
    Figure imgb0011
  • Soit, à l'aide de la relation (3) : N θ 2 2 N θ 1 2 = 2 J C θ 2 C θ 1
    Figure imgb0012
  • On remarque alors judicieusement que la relation (9) est particulièrement avantageuse lorsque l'écart entre θ1 et θ2 correspond à une plage T de positions angulaires.
  • Ainsi, de préférence, pour un moteur comprenant quatre cylindres, la plage T de positions angulaires du vilebrequin 2 est de 180°, 360° ou 720°.
  • De préférence encore, la plage T est de 360°, pour avoir une meilleure précision de prédiction du régime.
  • Ainsi, en raison de la périodicité angulaire des couples de pertes, le second terme de la relation (9) est avantageusement une constante C0 et peut donc s'écrire: N θ 1 + T 2 N θ 1 2 = N θ 2 T 2 N θ 2 2 = C 0
    Figure imgb0013
  • Si on considère que la largeur angulaire entre chaque dent 7 de la roue 4 dentée est de 6°, on peut donc indicer la relation (10) en fonction d'un nombre j de dents : N j T 6 2 N j 2 = C 0
    Figure imgb0014
    où j est l'indice d'une dent quelconque. On a alors la possibilité de prédire selon une première manière le régime moteur à un angle déterminé du vilebrequin 2 ou selon une seconde manière à un temps fixé.
  • La procédure pour prédire un régime moteur à un angle déterminé du vilebrequin 2, autrement dit pour un nombre de dent d déterminé de la roue dentée 4 est la suivante :
    • On détermine et on enregistre le régime de rotation réel du vilebrequin à des positions angulaires dudit vilebrequin pour une plage T de positions angulaires du vilebrequin 2 délimitée par une première position angulaire et une seconde position angulaire. Pour ce faire, on effectue un enregistrement des durées inter-dent, tid, pour la période T considérée, le nombre d'enregistrement est donc dans notre exemple, des trente dernières durées inter-dent, tid, soit un enregistrement sur une plage de 180°. De préférence, ici la seconde position angulaire correspond donc à la position à l'instant présent du vilebrequin 2.
  • La figure 3 présente en trait plein la période angulaire T enregistrée et indique en trait discontinu la variation du régime de rotation à venir. On détermine pour chaque durée inter-dent, tid, le régime de rotation réel par la relation (1). Les valeurs des régimes réels sont mémorisées dans l'ECU 6 pour leur usage à venir dans la suite de la procédure.
    • On détermine la constante C0 en fonction de l'écart des carrés des régimes réels déterminé pour les première et seconde positions angulaires, autrement dit par la différence entre le régime instantané au carré du premier enregistrement et le régime instantané au carré du dernier enregistrement.
    • On détermine un régime prédit Ñ de rotation du vilebrequin 2 pour une troisième position angulaire du vilebrequin 2, non comprise dans la plage T de positions angulaires du vilebrequin 2, en fonction de la constante C0 et du régime réel N déterminé à une quatrième position angulaire comprise dans ladite plage T et telle que l'écart entre les troisième et quatrième positions angulaires est un multiple supérieur ou égal à ladite plage (T). En effet, le régime prédit Ñ est déterminé sur la base d'une formule générale dont l'expression est maintenant démontrée :
      • Pour les besoins de la démonstration et comme illustré sur la figure 3 on attribue au dernier enregistrement l'indice n. Le premier enregistrement a donc l'indice (n-T/6).
  • Cherchant à prédire le régime d dent après le dernier enregistrement, on peut écrire : N n T 6 + d 2 N n + d 2 = C 0
    Figure imgb0015
  • Dans la suite de la démonstration, afin de distinguer les valeurs de régime déterminées à partir des temps inter-dents de celle non connues et donc à prédire, on notera N les premières et Ñ les secondes.
  • Ainsi pour 0 < d ≤ T/6, par exemple pour d =20 (voir en figure 3), la relation (12) devient : N n T 6 + 20 2 N ˜ n + 20 2 = C 0
    Figure imgb0016
  • Soit : N ˜ n + 20 2 = N n T 6 + 20 2 C 0
    Figure imgb0017
  • Pour T/6 < d ≤ 2T/6, on a par exemple pour d =50 (voir en figure 3), la relation (12) devient : N ˜ n + 50 2 = N ˜ n T 6 + 50 2 C 0 = N ˜ n + 20 2 C 0 = N n T 6 + 20 2 C 0 C 0 = N n T 6 + 20 2 2 C 0
    Figure imgb0018
  • Pour 2T/6 < d ≤ 3T/6, on a par exemple pour d =80 (voir en figure 3), la relation (12) devient : N ˜ n + 80 2 = N ˜ n T 6 + 80 2 C 0 = N ˜ n + 50 2 C 0 = N n T 6 + 20 2 2 C 0 C 0 = N n T 6 + 20 2 3 C 0
    Figure imgb0019
  • A partir de ces trois exemples, on constate que l'on peut donc obtenir une expression générale du régime prédit Ñn+d, d dents après les n acquisitions. En effet, en posant : A = INT 6 d T
    Figure imgb0020
  • Et B = d T 6 A
    Figure imgb0021
  • Il vient, pour un moteur à combustion interne comprenant quatre cylindres, équipé d'une roue dentée de 58 dents (c'est-à-dire une denture de 60 dents dont 2 manquantes), la formule générale suivante : N ˜ n + d = N n T 6 + B 2 A + 1 C 0
    Figure imgb0022
  • Nous décrivons maintenant la procédure complémentaire pour prédire un régime moteur à un temps fixé tp, lors de la phase de fin de rotation.
  • On reprend les étapes décrites précédemment, c'est-à-dire :
    • l'étape d'enregistrement des durées inter-dent, tid, pour la période T considérée,
    • l'étape de détermination des régimes instantanés, à partir des durées inter-dent, tid enregistrées.
    • l'étape de détermination de la constante C0.
  • On procède ensuite de proche en proche, comme illustré sur la figure 4 :
    • Les régimes étant connus jusqu'à la dent d'indice n, on initialise la valeur d'un compteur de temps S à 0 pour la dent d'indice n.
      • on détermine le régime prédit à la dent suivante, d'indice n+1, référencé Ñn+1 sur la figure 4, à l'aide de la relation générale (19),
      • on calcule à partir du régime prédit à la dent d'indice n+1, un temps inter-dents, tid, correspondant à partir de la relation (1), référencé tn+1, sur la figure 4,
      • on incrémente le compteur de temps S du temps inter-dents calculé.
      • on réitère les précédentes étapes sur les dents d'indices suivants tant que la valeur du compteur de temps S est inférieure au temps fixé tp. Ainsi, comme le montre la figure 4, à l'indice n+2, le cumul des temps inter-dents cumulés à partir de l'indice n est inférieur au temps fixé tp tandis qu'à l'itération suivant, à l'indice n+3, le cumul des temps inter-dents, tid, est supérieur au temps fixé tp. On poursuit alors la procédure ainsi :
      • on détermine un régime prédit pour le temps fixé tp, par interpolation entre les régimes prédits pour les deux derniers indices, référencés respectivement Ñn+2. Ñn+3 sur la figure 4. On obtient ainsi un régime prédit Ñp au temps fixé tp.
  • Avantageusement, cette procédure peut permettre de déterminer le cylindre d'arrêt. On entend par cylindre d'arrêt le cylindre qui est dans la phase de compression du cycle moteur.
  • Pour ce faire, on procède ainsi :
    • On reprend les étapes décrites précédemment, c'est-à-dire :
      • l'étape d'enregistrement des durées inter-dent, tid, pour la période T considérée,
      • l'étape de détermination des régimes réels, à partir des durées inter-dent, tid enregistrées, à l'aide de la relation (1).
      • l'étape de détermination de la constante C0.
      • on calcule le régime réel au point mort haut (ou PMH) combustion, nommé NPMH à partir de l'enregistrement du temps inter-dents correspondant.
  • On procède ensuite, comme suit, avec une plage T de position angulaire :
    • On prédit de proche en proche le régime pour des positions angulaires correspondant aux prochains PMH combustion, comme l'illustre la figure 5 l'estimation du régime dans k PMH combustion étant donnée par la relation suivante : N ˜ PMH_k 2 = N PMH 2 kC 0
      Figure imgb0023
  • Cela jusqu'au moment où l'on ne pourra plus franchir le PMH combustion, ce qui correspond à la valeur minimum de k tel que : N PMH 2 kC 0 < 0
    Figure imgb0024
  • Soit k = INT N PMH 2 C 0
    Figure imgb0025
  • Avec INT(x) la fonction partie entière.
  • Dans ce cas on en conclut que le moteur passera k PMH combustion avant l'arrêt, ce qui permet de déduire le cylindre d'arrêt.
  • L'invention ne se limite pas à un type particulier de moteur à combustion. Dans le cas d'un moteur à combustion interne comprenant trois cylindres, la plage T de positions angulaires du vilebrequin 2 est de préférence de 240° ou de 720°, en raison du déphasage des cycles moteur des différents cylindres.
  • Dans le cas d'un moteur à combustion interne comprenant six cylindres, la plage T de positions angulaires du vilebrequin 2 est de préférence de 120°, 240° ou de 720°, en raison du déphasage des cycles moteur des différents cylindres.
  • L'invention a pour avantage d'être simple à mettre en place sous forme d'une routine informatique programmée dans l'ECU et ne nécessite aucune calibration particulière.

Claims (9)

  1. Procédé de prédiction du régime de rotation d'un vilebrequin (2) de moteur (1) à combustion interne en phase de fin de rotation, caractérisé en ce que :
    - On détermine et on enregistre le régime de rotation réel (N) du vilebrequin (2) à des positions angulaires dudit vilebrequin pour une plage (T) de positions angulaires du vilebrequin (2) délimitée par une première position angulaire et une seconde position angulaire correspondant à des oscillations périodiques angulairement de diminution de la vitesse de rotation (N) du vilebrequin (2).
    - On détermine une constante (C0) en fonction de l'écart des carrés des régimes réels déterminé pour les premières et secondes positions angulaires,
    - On détermine un régime prédit (N) de rotation du vilebrequin (2) pour une troisième position angulaire du vilebrequin (2), non comprise dans la plage (T) de positions angulaires du vilebrequin (2), en fonction de la constante (C0) et du régime réel (N) déterminé à une quatrième position angulaire comprise dans ladite plage (T) et telle que l'écart entre les troisième et quatrième positions angulaires est égal à ladite plage (T) ou est un multiple de celle-ci.
  2. Procédé selon la revendication 1, caractérisé en ce que la seconde position angulaire correspond à la position à l'instant présent du vilebrequin (2) qui est la dernière position angulaire pour laquelle on puisse déterminer un régime réel.
  3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que, le moteur comprenant quatre cylindres, la plage (T) de positions angulaires du vilebrequin (2) est de 180°, 360° ou 720°.
  4. Procédé selon la revendication 3, caractérisé en ce que la plage (T) est de 360°.
  5. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que, le moteur comprenant trois cylindres, la plage (T) est de 240° ou de 720°.
  6. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que, moteur comprenant six cylindres, la plage (T) est de 120°, 240° ou de 720°.
  7. Procédé selon l'une quelconque des revendications précédentes, le vilebrequin (2) étant solidaire en rotation d'une roue dentée (4) comprenant des dents (7) servant à déterminer la position angulaire dudit vilebrequin (2), la largeur angulaire entre chaque dent (7) étant de 6°, caractérisé en ce que, , le régime prédit (N) de rotation du vilebrequin (2) pour la troisième position angulaire du vilebrequin (2) est déterminé en fonction du régime réel (N) en appliquant la relation suivante : N ˜ n + d = N n T 6 + B 2 A + 1 C 0
    Figure imgb0026
    dans laquelle :
    A et B sont des variables telles que : A = INT 6 d T et B = d T 6 A
    Figure imgb0027
    n est l'indice de la dent (7) repérant la seconde position angulaire du vilebrequin (2),
    n+d est l'indice de la dent (7) repérant la troisième position angulaire du vilebrequin (2),
    n T 6 + B
    Figure imgb0028
    est l'indice de la dent (7) repérant la quatrième position angulaire du vilebrequin (2),
    et INT est la fonction fraction entière.
  8. Procédé selon la revendication 7, caractérisé en ce qu'il comprend en outre les étapes suivantes :
    - on détermine le régime prédit (N) à la dent (7) d'indice n+1,
    - on calcule, à partir du régime prédit (N) à la dent d'indice n+1, un temps inter-dents (tid),
    - on incrémente un compteur de temps (S) du temps inter-dents (tid) calculé,
    - on réitère les précédentes étapes sur les dents (7) d'indices suivants tant que la valeur du compteur de temps (S) est inférieure à un temps fixé (tp),
    - on détermine un régime prédit pour le temps fixé (tp), par interpolation entre les régimes prédits pour les deux derniers indices.
  9. Application du procédé selon l'une quelconque des revendications 1 à 7 à la prédiction du cylindre d'arrêt d'un moteur à combustion interne, caractérisé en ce que la troisième position angulaire du vilebrequin (2) correspond à un point mort haut combustion.
EP10763213.5A 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt Active EP2480776B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956536A FR2950388B1 (fr) 2009-09-23 2009-09-23 Procede de prediction du regime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procede a la prediction du cylindre d'arret
PCT/FR2010/051734 WO2011036361A1 (fr) 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt

Publications (2)

Publication Number Publication Date
EP2480776A1 EP2480776A1 (fr) 2012-08-01
EP2480776B1 true EP2480776B1 (fr) 2017-02-22

Family

ID=42122883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10763213.5A Active EP2480776B1 (fr) 2009-09-23 2010-08-19 Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt

Country Status (5)

Country Link
EP (1) EP2480776B1 (fr)
CN (1) CN102510941B (fr)
BR (1) BR112012005586B1 (fr)
FR (1) FR2950388B1 (fr)
WO (1) WO2011036361A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016638A1 (de) * 2011-04-09 2012-10-11 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinheit, Computerprogrammprodukt, Computerprogramm sowie Signalfolge
DE102015221634A1 (de) * 2015-11-04 2017-05-04 Robert Bosch Gmbh Verfahren zur Prädiktion einer Zeitdauer zwischen zwei Signalflanken eines Drehzahlsensorsignals
FR3129182A1 (fr) 2021-11-18 2023-05-19 Psa Automobiles Sa Procede de redemarrage d’un moteur thermique en phase d’arret comprenant une gestion de modes de redemarrage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956536A (fr) 1950-02-02
AU608253B2 (en) * 1986-12-01 1991-03-28 Woodward Governor Company Method and apparatus for iterated determinations of sensed speed and speed governing
JP3596303B2 (ja) * 1998-09-17 2004-12-02 日産自動車株式会社 エンジンの回転速度検出装置
US6499342B1 (en) * 2000-09-05 2002-12-31 Ford Global Technologies, Inc. Method of determining the stopping position of an internal combustion engine
FR2827911B1 (fr) * 2001-07-27 2004-01-30 Peugeot Citroen Automobiles Sa Procede de reglage de l'arret et procede de redemarrage d'un moteur a combustion interne
FR2834337B1 (fr) * 2002-01-03 2004-03-19 Johnson Contr Automotive Elect Procede et dispositif de detection de la position electrique du rotor d'une machine electrique accouple a un moteur a combustion interne
US6681173B2 (en) * 2002-03-15 2004-01-20 Delphi Technologies, Inc. Method and system for determining angular crankshaft position prior to a cranking event
JP3770235B2 (ja) * 2003-01-28 2006-04-26 トヨタ自動車株式会社 内燃機関の停止位置推定装置
JP2004232539A (ja) * 2003-01-30 2004-08-19 Denso Corp エンジン回転停止制御装置
US7027911B2 (en) * 2003-01-30 2006-04-11 Denso Corporation Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
JP4419655B2 (ja) * 2004-04-08 2010-02-24 株式会社デンソー エンジンの停止始動制御装置
JP2006029247A (ja) * 2004-07-20 2006-02-02 Denso Corp エンジンの停止始動制御装置
US7562650B2 (en) * 2005-05-13 2009-07-21 Toyota Jidosha Kabushiki Kaisha Start-up control apparatus for an internal combustion engine
FR2890690B1 (fr) * 2005-09-09 2007-11-09 Siemens Vdo Automotive Sas Procede de determination de l'inversion du sens de rotation d'un moteur
JP4666286B2 (ja) * 2007-03-05 2011-04-06 株式会社デンソー エンジン回転停止制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011036361A1 (fr) 2011-03-31
BR112012005586A2 (pt) 2016-06-14
FR2950388A1 (fr) 2011-03-25
EP2480776A1 (fr) 2012-08-01
FR2950388B1 (fr) 2012-04-20
CN102510941A (zh) 2012-06-20
BR112012005586B1 (pt) 2019-11-05
CN102510941B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2007028584A1 (fr) Procédé de détermination de l&#39;inversion du sens de rotation d&#39;un moteur
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d&#39;un moteur a combustion interne
FR2875541A1 (fr) Procede et dispositif pour la synchronisation moteur de moteurs a combustion interne
FR2915773A1 (fr) Procede et dispositif de surveillance d&#39;un turbocompresseur de gaz d&#39;echappement equipant un moteur a combustion interne
WO2020016342A1 (fr) Détermination de la position angulaire d&#39;une cible dentée solidaire en rotation d&#39;un arbre d&#39;un moteur à combustion interne
EP2480776B1 (fr) Procédé de prédiction du régime de rotation d&#39;un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d&#39;arrêt
EP2232035B1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d&#39;un moteur a combustion interne
FR2887300A1 (fr) Procede et dispositif de gestion d&#39;un moteur a combustion interne
FR2978542A1 (fr) Procede de determination d&#39;une information representative de la position d&#39;une dent reelle d&#39;une cible dentee solidaire en rotation d&#39;un arbre d&#39;un moteur a combustion interne et dispositif associe
FR2878574A1 (fr) Procede de gestion d&#39;un moteur a combustion interne a plusieurs cylindres
FR3014139A1 (fr) Procede de determination de la position angulaire instantanee d&#39;une cible vilebrequin
EP1731788B1 (fr) Procédé et dispositif de surveillance du glissement d&#39;un embrayage dans une chaîne de transmission comportant une source de couple acyclique
WO2019073153A1 (fr) Detection du sens de rotation d&#39;un moteur de vehicule
WO2004074662A1 (fr) Procede de detection de rates de combustion par filtrage
EP1540296B1 (fr) Procede de detection des defauts de combustion d un moteur a combustion interne
EP0755482B1 (fr) Procede de detection des irregularites de combustion d&#39;un moteur a combustion interne
FR2523214A1 (fr) Dispositif et procede de determination de la position du piston dans le cylindre d&#39;un moteur a mouvement alternatif
FR2903448A1 (fr) Procede de commande d&#39;un moteur de vehicule en fonction d&#39;une mesure d&#39;une position angulaire d&#39;un vilebrequin
WO2016102054A1 (fr) Procede de determination du couple moteur delivre par un moteur multicylindre
FR2964707A1 (fr) Procede d&#39;autorisation d&#39;engagement d&#39;un demarreur avec un moteur et vehicule comprenant un calculateur pour la mise en œuvre de ce procede
WO2004074806A1 (fr) Procede de detection de rates de combustion dans un moteur a combustion interne par combinaison d’indices d’irregularite de combustion
WO2021191147A1 (fr) Procede et dispositif de controle moteur avec signal vilebrequin reconstitue
EP1936169A2 (fr) Méthode d&#39;estimation des durées des dents d&#39;une cible moteur
WO2024149648A1 (fr) Procédé de détermination de la vitesse de rotation d&#39;un moteur à combustion interne
FR3143686A1 (fr) Perfectionnement d’un procédé de synchronisation de la position angulaire d’un arbre à cames de moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 869469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010040215

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: DE

Ref legal event code: R084

Ref document number: 602010040215

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170222

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 869469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170222

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170522

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170522

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010040215

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170819

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180312

Ref country code: FR

Ref legal event code: CD

Owner name: PEUGEOT CITROEN AUTOMOBILES SA, FR

Effective date: 20180312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170222

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210720

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 14

Ref country code: DE

Payment date: 20230720

Year of fee payment: 14