WO2011036053A1 - Dispersion d'un polymère hydrosoluble dans un milieu liquide - Google Patents

Dispersion d'un polymère hydrosoluble dans un milieu liquide Download PDF

Info

Publication number
WO2011036053A1
WO2011036053A1 PCT/EP2010/063141 EP2010063141W WO2011036053A1 WO 2011036053 A1 WO2011036053 A1 WO 2011036053A1 EP 2010063141 W EP2010063141 W EP 2010063141W WO 2011036053 A1 WO2011036053 A1 WO 2011036053A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
dispersion
dispersion according
soluble polymer
parts
Prior art date
Application number
PCT/EP2010/063141
Other languages
English (en)
Inventor
Marc Balastre
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Publication of WO2011036053A1 publication Critical patent/WO2011036053A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00

Definitions

  • the present invention relates to a dispersion of a water-soluble polymer in a non-aqueous liquid medium.
  • the non-aqueous medium comprises a significant amount of surfactant.
  • Water-soluble polymers especially hydrocolloids such as optionally modified guars are additives used in various industries for various functions. They can be used in particular as rheological agents because they increase the viscosity when they are solubilized in water. In the phytosanitary field they are for example used as anti-drifting and / or anti-rebound agents. For this purpose they are most often added extemporaneously (usually by the farmer) by mixing in a tank with active agents and / or other additives to be spread on a field, usually with dilution in water. . These extemporaneous uses are called "tank mix" in English. The mixture is then spread, for example pulverized, on a field.
  • US 6146570 discloses water-soluble polymer granules comprising a nonionic surfactant. There is a need for liquid dispersions, of more practical use. There is also a need for products effectively combining several functions, including effective amounts of surfactant.
  • WO 2006/014348 discloses aqueous spray compositions comprising a water-soluble polymer and surfactants.
  • the polymer is mixed in solid form with the surfactant extemporaneously (tank-mix).
  • tank-mix the surfactant extemporaneously
  • US 6465553 discloses dispersions of water-soluble polymers in non-aqueous liquid media comprising a mixture of polyethylene glycol compounds.
  • the quantities of polymers are relatively large (more than 20% by weight).
  • dispersions which may include less polymer.
  • products effectively combining several functions, including effective amounts of surfactant.
  • US 2003/0203821 discloses suspensions in nonaqueous liquid media comprising a polyethylene glycol, a dispersing agent such as calcium stearate, and a polymeric suspending agent.
  • the amounts of polymers are relatively large (more than 20% by weight). There is a need for different dispersions, which may include less polymer.
  • US 4176107 discloses suspensions in non-aqueous liquid media comprising a polyethylene glycol and a surfactant.
  • the amounts of polymers are relatively large (more than 20% by weight). There is a need for different dispersions, which may include less polymer.
  • the invention meets at least one of the above-mentioned needs by providing a dispersion of particles of a water-soluble polymer in a non-aqueous liquid medium, comprising:
  • d1) optionally a light polyethylene glycol of average molar mass less than or equal to 1000 g / mol, alone or mixed with up to 20% by weight of glycerol
  • a nonionic surfactant preferably ethoxylated and / or propoxylated
  • the dispersion of particles of the invention may constitute a complex concentrated ingredient particularly useful especially in the field of agriculture. It can thus be used as an extemporaneous ingredient ("tank mix" in English), especially in as an anti-drifting and / or anti-rebound agent.
  • the dispersion makes it possible in particular to combine the functions of anti-drifting and / or anti-rebound agent and the functions related to the surfactant.
  • the invention also relates to a process for preparing the dispersion.
  • the invention also relates to the use of the dispersion as an extemporaneous adjuvant of a dilute phytosanitary composition intended to be applied on a field.
  • the invention also relates to a method for applying a phytosanitary composition to a field, comprising
  • the quantities indicated in parts are quantities by weight.
  • the amounts by weight are amounts by weight of dry matter (as opposed to amounts by weight of ingredients "as is").
  • water-soluble polymer means a polymer that is soluble in water at a concentration of 0.1% by weight, preferably 1%, for example at a concentration of 0.6 g / l.
  • the particle sizes are given in average diameter, typically measured by dry-sided particle size, for example determined using the Malvern® Sizer.
  • the water-soluble polymer b) is typically dispersed in the liquid medium d) in particulate form.
  • the dispersion is obtained from a powder of the polymer, mixed in the liquid medium, which optionally comprises other compounds in addition.
  • the particles of the powder may typically have a particle size of 1 to 500 ⁇ , for example 1 ⁇ at 10 ⁇ , or of more than 10 ⁇ at 40 ⁇ or of more than 40 ⁇ at 80 ⁇ , or more than 80 ⁇ .
  • the particles in the dispersion have a size (eg observed under a microscope) substantially similar to that of the powder. It is possible, however, that the particles undergo some swelling in the liquid medium.
  • the particle size in the liquid medium is generally not greater than 10 times, preferably not more than 5 times the size of the particles in powder form.
  • the particles in the dispersion may have a size of 1 to 500 ⁇ , for example 1 ⁇ at 10 ⁇ , or more than 10 ⁇ at 40 ⁇ or more than 40 ⁇ at 80 ⁇ , or more than 80 ⁇ at 100 ⁇ , or from more than 100 ⁇ to 200 ⁇ , or from more than 200 ⁇ to 300 ⁇ or from more than 300 ⁇ to 400 ⁇ , or from more than 400 ⁇ to 500 ⁇ .
  • the dispersion can be substantially free of water or comprise relatively modest amounts of water.
  • the presence of water may be experienced as an impurity or by-product of the dispersion ingredients or as a dilution medium for the dispersion ingredients.
  • the composition comprises at most 10 parts by weight of water, preferably at most 5 parts, by weight of water. b) water-soluble polymer
  • the water-soluble polymer may be a synthetic polymer or a polymer of natural origin, optionally modified.
  • the water-soluble polymer is substantially insoluble (solubility less than 10% by weight, preferably less than 1% by weight) in the liquid medium d).
  • the water-soluble polymer is substantially insoluble in d1) and d2).
  • the water-soluble polymer is a polyhydroxylated polymer or copolymer chosen from polysaccharides of animal, vegetable or bacterial origin, or also polyvinyl alcohol, polyphenol alcohols, or their derivatives.
  • the polysaccharides may be used in an ionic or nonionic form.
  • Xanthan gum, succinoglycans, gum arabic, carrageenans, alginates are representative elements of anionic polysaccharides, cationic derivatives of starch can also be mentioned.
  • nonionic polysaccharides mention may be made in particular of galactomannans, such as guar gum or its derivatives such as hydroxypropyl guar, locust bean gum, soluble starch and its nonionic derivatives, cellulose and its derivatives. carboxyalkyl, hydroxyalkyl, for which the alkyl portion has 1 to 4 carbon atoms.
  • polyhydroxylated polymers or copolymers and as indicated previously, polyvinyl alcohol, polyphenol alcohols or their derivatives are suitable.
  • polyetherified (co) polymers such as those whose ether portion is a C 1 -C 6 alkyl radical.
  • anionic radical By way of anionic radical, mention may be made without intention of being limited to sulphonate, sulphate, carboxylate, phosphate or phosphonate radicals; by way of example of a cationic radical, mention may be made of quaternary ammonium radicals such as N (R) 4 + with R, which may be identical or different, representing a hydrogen atom or a C 1 -C 6 alkyl radical; -C6; the zwitterionic and amphoteric radicals corresponding to the combination of the two types of radicals mentioned above. It is pointed out that the polyphenol-type (co) polymers are natural substances, which can, in particular, be extracted from certain plants such as coffee trees, tea plants.
  • the water-soluble polymer is chosen from copolymers obtained from alkylene oxide and from at least one saturated or unsaturated monomer, comprising one or more carboxylic groups, in an acid form, of alkali metal salts, of ester or of amide, or comprising an amino or nitrile group, or comprising a grouping
  • C3-C10 mono- or di-acids and their derivatives in the form of alkaline, alkaline-earth metal or ammonium salts (N (R) 4 + type , with R representing hydrogen or a C 1 -C 6 alkyl radical, in the form of mono- or di-esters with at least one C 1 -C 6 alcohol; 2, more particularly in C-
  • the amino acids or their salts or esters are suitable for carrying out the invention, such as aspartic acid.
  • monomers of the vinyl ester type of C2-C-10 carboxylic acid such as, for example, vinyl acetate, vinyl versatate,
  • saturated or unsaturated monomers comprising an amino, amido or nitrile group
  • saturated monomer mention may be made of acrylonitrile, methacrylonitrile, vinylpyridine, vinylpyrrolidone,
  • the water-soluble polymer is chosen from plant polymers such as alkali metal, alkaline-earth metal or ammonium lignosulfonate.
  • the water-soluble polymer is chosen from polymers obtained from at least one saturated or unsaturated monomer, comprising one or more carboxylic groups, in the form of an acid, of alkali metal salts, of ester or amide, or comprising an amino or nitrile group, or comprising a nitrogen-containing heterocyclic group, as well as copolymers obtained by reacting at least one of the aforementioned monomers with at least one second monomer hydrocarbon bearing one or more ethylenic unsaturations.
  • saturated or unsaturated monomer comprising one or more carboxylic groups
  • alkali metal, alkaline-earth metal or ammonium salts type N (R) 4 + , with R representing hydrogen or a C 1 -C 6 alkyl radical, in the form of mono- or di-esters with at least one C 1 -C 12 alcohol, more particularly C 1 -C 6 alkyl; -C8, and their N-alkylated derivatives, or in the form of amide.
  • the amino acids or their salts or esters are suitable for carrying out the invention, such as aspartic acid.
  • monomers of the vinyl ester type of C2-C10 carboxylic acid such as, for example, vinyl acetate, vinyl versatate, vinyl propionate.
  • saturated or unsaturated monomers comprising an amino, amido or nitrile group
  • mention may be made of the monomers whose hydrocarbon chain is C 3 -C 12 as a saturated monomer mention may be made of acrylonitrile and methacrylonitrile , vinylpyridine, vinylpyrrolidone, vinylimidazole, aminoalkyl (meth) acrylates, such as dimethylamino (meth) acrylate,
  • ditertiobutylaminoethyl (meth) acrylate dimethylamino (meth) acrylamide, ditertiobutylaminoethyl (meth) acrylamide.
  • Each of the abovementioned monomers can be used in the form of ionic derivatives, that is to say comprising at least one sulphonic function, for example, in acid or salified form in whole or in part.
  • the second type of monomer used in
  • C2-C12 hydrocarbon monomers whether or not comprising an aryl radical, and furthermore having at least one ethylenic unsaturation.
  • C2-C12 hydrocarbon monomers whether or not comprising an aryl radical, and furthermore having at least one ethylenic unsaturation.
  • Particularly advantageous polymers include polymers such as polyacrylate; polymethacrylate; the
  • the aqueous medium may be added for example base or acid, so as to have its pH adjusted so that the solubility of said compound meets the criteria mentioned above.
  • the water-soluble polymer may be chosen from polymers that can be used as anti-drifting and / or anti-rebound agents in the phytosanitary field.
  • agents of synthetic origin are cited polymers based on acrylamide or vinylpyrrolidone.
  • agents of natural origin mention is made of celluloses and their chemical modification products such as carboxymethylcelluloses, as well as guars and their chemical modification products such as hydroxypolylated or hydroxybutyl guars. Lecitines and their chemical modification products are also mentioned.
  • the molar mass of the water-soluble polymer can typically from 100000 g / mol to
  • molar mass is typically the average molar mass by weight, determined not GPC.
  • the water-soluble polymer may especially be a chemically modified guar, for example by hydroxyalkyl groups, preferably hydroxypropyl or hydroxbutyl. Guar can alternatively or additionally be modified by groups
  • the degree of substitution DS (representative of the amount of chemical modification) of the guar can in particular be from 0.1 to 2, for example from 0.2 to 1.5.
  • the degree of substitution is the number of hydroxyl groups of the guar substituted by modification groups, per unit of guar monosaccharide. This is a parameter for modified sites.
  • the light polyethylene glycol has an average molecular weight (in number or weight) of less than 6000 g / mol.
  • the average molar mass may for example be between 8000 g / mol and 15000 g / mol. Such compounds are commercially available.
  • heavy polyethylene glycol can help stabilize the dispersion and prevent or slow down sedimentation.
  • the heavy polyethylene glycol may in particular be in the form of often semi-crystalline particles, for example in the form of needles creating a network structuring the liquid medium. d) liquid medium
  • the liquid medium comprises d1) optionally light polyethylene glycol (optionally mixed with glycerol) and d2) a nonionic surfactant.
  • the ratio by weight between d2) and d1), if d1) is present, is from 1 ⁇ 2 to 99/1, preferably from 40/60 to 80/20. According to a particular embodiment, there is more surfactant than polyethylene glycol.
  • d1) light glycol glycol The light polyethylene glycol has an average molecular weight (number or weight) of less than 1000 g / mol. The average molar mass may for example be from 100 g / mol to 500 g / mol. Such compounds are commercially available.
  • a portion of the light polyethylene glycol is substituted with glycerol.
  • the amount of glycerol may, for example, be up to 20% by weight (relative to the mixture of light polyethylene glycol + glycerol). It can for example be 10 to 20%.
  • the light polyethylene glycol is absent. In one embodiment it is present in a small quantity such that the ratio d2) / d1) is greater than 99/1. d2) Nonionic surfactant
  • Nonionic surfactants are known to those skilled in the art. It is preferably ethoxylated and / or propoxylated nonionic surfactants, also known.
  • Liquid nonionic surfactants are preferably used at room temperature (typically 20 or 25 ° C).
  • Some surfactants have wetting or bioactivation properties.
  • Such surfactants may be preferred.
  • OE ethoxy units
  • OP propoxy
  • nonionic surfactants mention may be made, without intention of being limited thereto:
  • polyalkoxylated (ethoxylated, propoxylated, ethopropoxylated) substituted by at least one alkyl radical C 4 -C 2 o, preferably C 4 -C 2, or substituted by at least one alkylaryl radical in which the alkyl part is Ci-C 6 . More particularly, the total number of alkoxylated units is between 2 and 100.
  • ethoxylated and / or propoxylated, sulphated and / or phosphated di- or tristyrylphenols mention may be made of ethoxylated di- (1-phenylethyl) phenol, containing 10 oxyethylenated units, ethoxylated di (1-phenylethyl) phenol.
  • alcohols or C 6 -C 2 fatty acids optionally polyalkoxylated (ethoxylated, propoxylated, ethopropoxylated).
  • the number of alkoxylated units is between 1 and 60.
  • ethoxylated fatty acid includes both the products obtained by ethoxylation of a fatty acid with ethylene oxide and those obtained by esterification. of a fatty acid with a polyethylene glycol.
  • polyalkoxylated triglycerides ethoxylated, propoxylated, ethopropoxylated
  • triglycerides from lard, tallow, peanut oil, butter oil, cottonseed oil, linseed oil, olive oil, are suitable.
  • the term ethoxylated triglyceride is intended both for the products obtained by ethoxylation of a triglyceride by ethylene oxide and those obtained by ethoxylation of a triglyceride with ethylene oxide. by trans-esterification of a triglyceride with a polyethylene glycol.
  • sorbitan esters polyalkoxylated (ethoxylated, propoxylated, ethopropoxylated), particularly cyclized sorbitol esters of fatty acids of C10 to C 20, such as lauric acid, stearic acid or oleic acid, and comprising a number total of alkoxylated units of between 2 and 50.
  • Some particularly useful nonionic surfactants are:
  • surfactants of the terpene type ethoxylated and / or propoxylated are described in particular in WO 96/01245, WO 98/28249, WO 01/12765, and are marketed by Rhodia under the name Rhodoclean®.
  • said polyethoxylated and / or polypropoxylated terpene nonionic surfactant preferably polyethoxylated and polypropoxylated, the ethoxy and propoxy units being distributed in random form or in sequential form.
  • said nonionic surfactant is a polyalkoxylated terpene corresponding to the following formula (III):
  • Z represents a bicyclo [a, b, c] heptenyl or bicyclo [a, b, c] heptyl radical, with
  • radical being optionally substituted by at least one alkyl radical of C-
  • X represents -CH2-C (R 0) (R 0- or -O-CH (R ') -C (R' 0-) in which:
  • R, R, R 'and R' which are identical or different, represent hydrogen or a hydrocarbon radical, saturated or unsaturated, linear, branched or cyclic, in C-
  • R7 represents hydrogen, a hydrocarbon radical, saturated or unsaturated, linear, branched or cyclic, aromatic or not, in C-
  • n, p, q and are integers or not, greater than or equal to 0,
  • Z or ZX- corresponds to (6,6-dimethylbicyclo [3, 1, 1] hept-2-ene-2 ethanol), also referred to as "NOPOL".
  • n, p and q are chosen so that:
  • - n is an integer or not, between 2 and 10 inclusive;
  • p is an integer or not between 3 and 20 inclusive;
  • q is an integer or not between 0 and 30 inclusive.
  • Nonionic surfactants of the fatty acid or ester type such as, for example, esters, glycol esters, glycerol esters, PEG esters, sorbitol esters, ethoxylated sorbitol esters, ethoxylated acids, or ethoxy propoxylates, esters and triglycerides
  • Ethoxylated aromatic or ethoxylated propoxylated nonionic surfactants for example the RHODIA Igepal® family,
  • the dispersion may comprise other additives. It can include:
  • humectants other than glycerol or light polyethylene
  • bioactivating agents for example surfactants other than the nonionic surfactant (s), for example amphoteric, zwitterionic or anionic surfactants, e4) fertilizers,
  • thickeners for example silica or organic polymers other than polyethylene glycol and water-soluble polymer,
  • oils or oil derivatives such as methyl esters of fatty acids, e8) solvents
  • the dispersion comprises at most 200 parts, preferably at most 100 parts, preferably at most 50 parts, preferably at most 25 parts, additives other e).
  • the ratio by weight of e) and the sum of the amounts by weight of a), b), c) and d) is less than 1, preferably less than 0.5, preferably less than 0. 25.
  • the dispersion of the invention is typically intended to be diluted with water and / or other products. It is typically intended to be associated with other products, including phytosanitary assets.
  • the dispersion is typically a concentrated ingredient of a final composition or formulation for direct use. Indeed, the formulation industries use ingredients or additives to form mixtures. When an ingredient or additive is mixed with other additives to form a final product, its concentration decreases. Similarly when a ingredient or additive is mixed with water for use in appropriate concentration it sees its concentration decrease. Thus one can speak of "concentrated ingredients", before use by the formulator to form a final product or before dilution by the user for final use without intermediate formulation step.
  • the ingredients or additives may be of different shapes or different compositions to make them practical or to provide particular properties. Some concentrated ingredients are themselves mixtures ("blend" in English). We can talk about complex concentrated ingredients.
  • the dispersion of the invention constitutes such a complex concentrated ingredient.
  • the dispersion of the invention comprises a limited quantity of other products (or does not include others).
  • the dispersion can be prepared by any suitable method, by mixing the different ingredients. Mixing can be carried out using any appropriate device allowing some agitation. The mixture is generally stirred to obtain a homogeneous mixture.
  • the process preferably comprises a step where the heavy polyethylene glycol is brought to a temperature above its melting point, for example at a
  • the polyethylene glycol may be brought to this temperature alone or in admixture with one or more of the components of the liquid medium, preferably with the light polyethylene and / or the nonionic surfactant.
  • the process preferably comprises a quenching step where the heavy polyethylene passes from a temperature above its melting point to a lower temperature, in the presence of one or more of the components of the liquid medium at a temperature below the melting temperature of the Heavy PEG, preferably with light polyethylene and / or nonionic surfactant.
  • the quenching may in particular be carried out by mixing with one of the components of the liquid medium, preferably with the nonionic surfactant. It can be followed by a gradual cooling.
  • the heavy polyethylene glycol can solidify in the form of often semi-crystalline particles, for example in the form of needles creating a network structuring the liquid medium (or at least the components of the liquid medium already mixed ).
  • the cooling may be controlled to promote formation of the heavy polyethylene particles and / or to control their size and / or morphology so as to provide good stability of the final dispersion.
  • the liquid medium is prepared during a step, and the water-soluble polymer, in the form of a powder, is generally added to the liquid medium.
  • the liquid medium may already contain the heavy polyethylene glycol.
  • the particle size of the added powder is typically the same as that mentioned above (particle size).
  • water-soluble is mixed cold after the quenching step mentioned above.
  • the other additives can be introduced at any time, preferably after the introduction of the water-soluble polymer.
  • the dispersion of the invention can be used as an extemporaneous adjuvant of a dilute phytosanitary composition intended to be applied on a field.
  • the dispersion can be introduced into a container, typically a tank or a tank so as to be diluted with water and optionally with other ingredients, including a phytosanitary active product or a formulation comprising such a product.
  • the dilution may typically be 1 part dispersion for 50 to 500 parts water. It is typically operated by the farmer.
  • the dispersion is first diluted by pouring it into water and then the active product or the formulation comprising it is added.
  • the diluted composition (including the dilution water, the dispersion, and optionally the active product) is then spread over the field to be treated.
  • the application can be performed using any suitable device, including spraying devices and / or jets. Devices can for example be placed on the ground, placed on land vehicles such as tractors, or on air vehicles such as airplanes or helicopters.
  • the amount of diluted composition applied can typically be from 10 to 2000 L / Ha, for example from 50 to 200 L / Ha.
  • the amount of water-soluble polymer in the dispersion, and the application rates typically from 9 to 1800 g / ha, for example from 45 to 180 g / Ha of water-soluble polymer, can be applied.
  • the dispersion can reduce the drift and / or the rebound of the composition during this operation. As such, the dispersion can be used as an anti-drifting adjuvant and / or anti-rebound. It can help to better target treatment and reduce losses. It may thus be possible to reduce the doses of treatment applied.
  • the Jaguar® HP-120 When the temperature of the mixture has dropped below 30 ° C, the Jaguar® HP-120 is added in rain, still under strong agitation (600 rpm). The antifoam, as well as the silica when necessary, are added with stirring at the end of the preparation.
  • Nopol with 3 PO patterns and 6.5 EO patterns, available on request from Rhodia.
  • the dispersions have good stability, good flowability, and easy dispersion and hydration in water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

La présente invention a pour objet une dispersion d'un polymère hydrosoluble dans un milieu liquide non aqueux. Le milieu non aqueux comprend une quantité importante de tensioactif.

Description

Dispersion d'un polymère hydrosoluble dans un milieu liquide
La présente invention a pour objet une dispersion d'un polymère hydrosoluble dans un milieu liquide non aqueux. Le milieu non aqueux comprend une quantité importante de tensioactif.
Les polymères hydrosolubles, notamment les hydrocolloïdes comme les guars éventuellement modifiés sont des additifs utilisés dans des industries variées pour diverses fonctions. Ils peuvent être notamment utilisés comme agents rhéologiques car ils augmentent la viscosité quand ils sont solubilisés dans de l'eau. Dans le domaine phytosanitaire ils sont par exemple utilisés comme agents anti-dérive et/ou anti-rebond. A cet effet ils sont le plus souvent ajoutés de manière extemporanée (généralement par l'agriculteur) par mélange dans un réservoir avec des actifs et/ou d'autres additifs à épandre sur un champ, avec en général une dilution dans de l'eau. Ces usages extemporanés sont dénommés «tank mix» en Anglais. Le mélange est ensuite répandu, par exemple pulvérisé, sur un champ.
Il existe un besoin pour des produits destinés à être dilués et/ou formulés, notamment pour des ingrédients concentrés complexes, associant plusieurs fonctions et d'usage pratique. Il existe en particulier un besoin pour des produits associant des fonctions de polymères hydrosolubles, par exemples des fonctions d'agent anti-dérive et/ou anti-rebond et des fonctions d'agents tensioactifs (connues de l'homme du métier), tout en présentant un usage pratique et/ou économique.
Le document US 6146570 décrit des granulés de polymères hydrosolubles comprenant un tensioactif non ionique. Il existe un besoin pour des dispersions liquides, d'emploi plus pratique. Il existe aussi un besoin pour des produits associant efficacement plusieurs fonctions, avec notamment des quantités efficaces de tensioactif.
Le document WO 2006/014348 décrit des compositions aqueuses de spray comprenant un polymère hydrosoluble et des tensioactifs. Le polymère est mélangé sous forme solide au tensioactif de manière extemporanée (mélange en réservoir - « tank-mix » en anglais). Il existe un besoin pour des processus plus simples, impliquant notamment des dispersions liquides, d'emploi plus pratique. Il existe aussi un besoin pour des produits associant efficacement plusieurs fonctions, avec notamment des quantités efficaces de tensioactif.
Le document US 6465553 décrit des dispersions de polymères hydrosolubles dans des milieux liquides non aqueux comprenant en mélange de composés de type polyéthylène glycol. Les quantités de polymères sont relativement importantes (plus de 20% en poids). Il existe un besoin pour des dispersions différentes, pouvant comprendre moins de polymère. Il existe aussi un besoin pour des produits associant efficacement plusieurs fonctions, avec notamment des quantités efficaces de tensioactif.
Le document US 2003/0203821 décrit des suspensions dans des milieux liquides non aqueux comprenant un polyéthylène glycol, un agent dispersant comme le stéarate de calcium, et un agent de suspension de type polymérique. Les quantités de polymères sont relativement importantes (plus de 20% en poids). Il existe un besoin pour des dispersions différentes, pouvant comprendre moins de polymère.
Le document US 4176107 décrit des suspensions dans des milieux liquides non aqueux comprenant un polyéthylène glycol et un tensioactif. Les quantités de polymères sont relativement importantes (plus de 20% en poids). Il existe un besoin pour des dispersions différentes, pouvant comprendre moins de polymère.
L'invention répond à au moins un des besoins mentionnés ci-dessus en proposant une dispersion de particules d'un polymère hydrosoluble dans un milieu liquide non aqueux, comprenant:
a) de 0 à 10 parts d'eau
b) de 1 à 20 parts, de préférence de 5 à 15 parts d'un polymère hydrosoluble
c) de 0,5 à 5 parts, de préférence de 1 à 3 parts d'un polyéthylène glycol lourd, de masse molaire moyenne supérieure ou égale à 6000 g/mol et de préférence inférieure ou égale à 500000 g/mol,
d) de 80 à 99 parts, d'un milieu liquide comprenant:
d1 ) optionnellement un polyéthylène glycol léger de masse molaire moyenne inférieure ou égale à 1000 g/mol, seul ou en mélange avec jusqu'à 20% en poids de glycérol
d2) un tensioactif non ionique de préférence éthoxylé et/ou propoxylé
le rapport en poids entre d2) et d1 ), si d1 ) est présent; étant de 1/2 à 99/1 , de préférence de 40/60 à 80/20.
e) éventuellement d'autres additifs.
On a trouvé de manière surprenante qu'il était possible de présenter des dispersions de polymères hydrosolubles dans des milieux comprenant des quantités importantes de tensioactifs. Ceci peut permettre de simplifier les opérations de mélanges effectuées en aval par l'utilisateur et/ou de simplifier le transport et/ou le stockage.
La dispersion de particules de l'invention peut constituer un ingrédient concentré complexe particulièrement utile notamment dans le domaine de l'agriculture. Il peut ainsi être utilisé en tant qu'ingrédient extemporané (« tank mix » en Anglais), notamment à titre d'agent anti-dérive et/ou anti-rebond. La dispersion permet notamment d'associer les fonctions d'agent anti-dérive et/ou anti-rebond et les fonctions liées au tensioactif.
L'invention concerne également un procédé de préparation de la dispersion. L'invention concerne également l'utilisation de la dispersion en tant qu'adjuvant extemporané d'une composition phytosanitaire diluée destinée à être appliquée sur un champ. L'invention concerne également un procédé d'application d'une composition phytosanitaire sur un champ, comprenant
- une étape de mélange dans un réservoir de la dispersion, d'eau et d'au moins un produit phytosanitaire, le cas échéant sous forme d'une composition phytosanitaire concentrée, de manière à obtenir une composition phytosanitaire diluée,
- une étape d'application sur le champ de la composition phytosanitaire diluée.
Définitions
Dans la présente demande, les quantités indiquées en parts sont des quantités en poids. Dans la présente demande, sauf mention contraire, les quantités en poids sont des quantités en poids de matière sèche (par opposition à des quantités en poids d'ingrédients "tels quels").
Dans la présente demande, on entend par polymère hydrosoluble un polymère soluble dans l'eau à une concentration de 0,1 % en poids, de préférence de 1 %, par exemple à une concentration de 0,6 g/L.
Dans la présente demande, sauf indications contraire, les tailles de particules sont indiquées en diamètre moyen, typiquement mesuré par granulométrie voie sèche, par exemple déterminé à l'aide de l'appareil Malvern® Sizer.
Dispersion
Le polymère hydrosoluble b) est typiquement dispersé dans le milieu liquide d) sous forme de particules. En général la dispersion est obtenue à partir d'une poudre du polymère, mélangée dans le milieu liquide, qui comprend éventuellement d'autres composés en plus. Les particules de la poudre peuvent typiquement présenter une taille de particule de 1 à 500 μηι, par exemple 1 μηη à 10 μηι, ou de plus de 10 μηη à 40 μηη ou de plus de 40 μηη à 80 μηι, ou de plus de 80 μηη à 100 μηι, ou de plus de 100 μηη à 200 μηι, ou de plus de 200 μηη à 300 μηη ou de plus de 300 μηη à 400 μηι, ou de plus de 400 μηη à 500 μηι. Les particules dans la dispersion présentent une taille (par exemple observée au microscope) sensiblement similaire à celle de la poudre. Il est possible toutefois que les particules subissent un certain gonflement dans le milieu liquide. La taille des particules dans le milieu liquide n'est en générale pas supérieure à 10 fois, de préférence pas supérieure à 5 fois la taille des particules à l'état de poudre. Ainsi les particules dans la dispersion peuvent présenter une taille de 1 à 500 μηι, par exemple 1 μηη à 10 μηι, ou de plus de 10 μηη à 40 μηη ou de plus de 40 μηη à 80 μηι, ou de plus de 80 μηη à 100 μηι, ou de plus de 100 μηη à 200 μηι, ou de plus de 200 μηη à 300 μηη ou de plus de 300 μηη à 400 μηι, ou de plus de 400 μηη à 500 μηι. a) eau
La dispersion peut être substantiellement exempte d'eau ou comprendre des quantités d'eau relativement modestes. La présence d'eau peut être subie, comme impureté ou sous-produit des ingrédients de la dispersion ou comme milieu de dilution des ingrédients de la dispersion. La composition comprend au plus 10 parts en poids d'eau, de préférence au plus 5 parts, en poids d'eau. b) polymère hydrosoluble
Le polymère hydrosoluble peut être un polymère synthétique ou un polymère d'origine naturelle, éventuellement modifié.
Puisqu'il s'agit d'une dispersion, le polymère hydrosoluble est substantiellement insoluble (solubilité inférieure à 10% en poids, de préférence inférieure à 1 % en poids) dans le milieu liquide d). De préférence il est substantiellement insoluble dans d1 ) et dans d2).
Selon un mode de réalisation le polymère hydrosoluble est un polymère ou un copolymère polyhydroxylé choisi parmi les polysaccharides d'origine animale, végétale ou bactérienne, ou encore l'alcool polyvinylique, les alcools polyphénoliques, ou leurs dérivés. Les polysaccharides peuvent être mis en oeuvre sous une forme ionique ou non ionique. La gomme xanthane, les succinoglycanes, la gomme arabique, les carraghénanes, les alginates sont des éléments représentatifs des polysaccharides anioniques, on peut aussi citer les dérivés cationiques de l'amidon. Pour ce qui a trait aux polysaccharides non ioniques, on peut citer notamment les galactomannannes, comme la gomme de guar ou ses dérivés comme l'hydroxypropylguar, la gomme de caroube, l'amidon soluble et ses dérivés non ioniques, la cellulose et ses dérivés carboxyalkylés, hydroxyalkylés, pour lesquels la partie alkyle comporte 1 à 4 atomes de carbone. A titre de polymères ou copolymères polyhydroxylés, et comme indiqué auparavant, conviennent l'alcool polyvinylique, les alcools polyphénoliques, ou leurs dérivés. Parmi les dérivés possibles, notons les (co)polymères polyéthérifiés, tels que ceux dont la partie éther est un radical alkyle en C-| -C"| 8, ou aryle en C6-C-I 8, alkylaryle ou encore arylalkyle ; les parties alkyle et aryle étant définies ci-dessus. Peuvent également convenir à titre de dérivés, des (co)polymères portant au moins un radical ionique (anionique, cationique, zwittérionique, amphotères). A titre de radical anionique, on peut citer sans intention de se limiter, les radicaux du type sulfonate, sulfate, carboxylate, phosphate, phosphonate ; à titre d'exemple de radical cationique, on peut citer les radicaux du type ammonium quaternaires comme N(R)4+ avec R, identiques ou différents, représentant un atome d'hydrogène, un radical alkyle en C-| -C6 ; les radicaux zwittérioniques et amphotères correspondant à la combinaison des deux types de radicaux précités. Il est fait remarquer que les (co)polymères de type polyphénoliques sont des substances naturelles, qui peuvent, notamment, être extraites de certaines plantes comme les caféiers, les théiers.
Selon un autre mode de réalisation le polymère hydrosoluble est choisi parmi les copolymères obtenus à partir d'oxyde d'alkylène et d'au moins un monomère saturé ou insaturé, comprenant un ou plusieurs groupements carboxyliques, se trouvant sous une forme d'acide, de sels de métal alcalin, d'ester ou encore d'amide, ou comprenant un groupe amino ou nitrile, ou comprenant un groupement
hétérocyclique contenant de l'azote. A titre de monomère saturé ou insaturé
comprenant un ou plusieurs groupements carboxyliques, on peut citer les mono- ou di-acides en C3-C10, ainsi que leurs dérivés sous forme de sels de métaux alcalin, alcalino-terreux, d'ammonium (type N(R)4+, avec R représentant l'hydrogène ou un radical alkyle en C-| -C6), sous forme de mono- ou di-esters avec au moins un alcool en C"| -C"| 2, plus particulièrement en C-| -C8, et leurs dérivés N-alkylés, ou sous forme d'amide. Par exemple, on peut citer l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide maléique, l'anhydride maléique, l'acide fumarique, l'acrylamide, le méthacrylamide, le N-méthylolacrylamide, le N-méthylolméthacrylamide, ainsi que les sels d'acides ou les mono- di-esters obtenus à partir des acides et des alcools suivants : méthanol, éthanol, propanol, n-butanol, isopropanol, isobutanol, éthyl-2- hexanol, à titre d'illustration non limitative. Les acides aminés ou leurs sels ou esters conviennent à la réalisation de l'invention, comme l'acide aspartique.
Conviennent aussi les monomères du type des esters vinyliques d'acide carboxylique en C2-C-I 0, comme par exemple, l'acétate de vinyle, le versatate de vinyle, le
propionate de vinyle. En ce qui concerne les monomères saturés ou insaturés, comprenant un groupe amino, amido ou nitrile, on peut citer les monomères dont la chaîne hydrocarbonée est en C3-C-I2- A titre de monomère saturé, on peut citer l'acrylonitrile, le méthacrylonitrile, la vinylpyridine, la vinylpyrrolidone, le
vinylimidazole, les (méth)acrylates d'aminoalkyle, tel que le
diméthylamino(méth)acrylate, le ditertiobutylaminoéthyle(méth)acrylate, le
diméthylamino (méth)acrylamide, le ditertiobutylaminoéthyle (méth)acrylamide. Selon un autre mode de réalisation le polymère hydrosoluble est choisi parmi les polymères végétaux comme le lignosulfonate de métal alcalin, alcalino-terreux ou d'ammonium.
Selon un autre mode de réalisation le polymère hydrosoluble est choisi parmi les polymères obtenus à partir d'au moins un monomère saturé ou insaturé, comprenant un ou plusieurs groupements carboxyliques, se trouvant sous une forme d'acide, de sels de métal alcalin, d'ester ou encore d'amide, ou comprenant un groupe amino ou nitrile, ou comprenant un groupement hétérocyclique contenant de l'azote, ainsi que les copolymères obtenus par réaction d'au moins l'un des monomères précités avec au moins un second monomère hydrocarboné portant une ou plusieurs insaturations éthyléniques. A titre de monomère saturé ou insaturé comprenant un ou plusieurs groupements carboxyliques, on peut citer les mono- ou di-acides en C3-C10, ainsi que leurs dérivés sous forme de sels de métaux alcalin, alcalino-terreux, d'ammonium (type N(R)4+, avec R représentant l'hydrogène ou un radical alkyle en C-| -C6), sous forme de mono- ou di-esters avec au moins un alcool en C1-C12, plus particulièrement en C-| -C8, et leurs dérivés N-alkylés, ou sous forme d'amide. Par exemple, on peut citer l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide maléique, l'anhydride maléique, l'acide fumarique, l'acrylamide, le méthacrylamide, le N-méthylolacrylamide, le N-méthylolméthacrylamide, ainsi que les sels d'acides ou les mono- di-esters obtenus à partir des acides et des alcools suivants : méthanol, éthanol, propanol, n-butanol, isopropanol, isobutanol, éthyl-2-hexanol, à titre d'illustration non limitative. Les acides aminés ou leurs sels ou esters conviennent à la réalisation de l'invention, comme l'acide aspartique. Conviennent aussi les monomères du type des esters vinyliques d'acide carboxylique en C2-C10, comme par exemple, l'acétate de vinyle, le versatate de vinyle, le propionate de vinyle. En ce qui concerne les monomères saturés ou insaturés, comprenant un groupe amino, amido ou nitrile, on peut citer les monomères dont la chaîne hydrocarbonée est en C3-C-I2- titre de monomère saturé, on peut citer l'acrylonitrile, le méthacrylonitrile, la vinylpyridine, la vinylpyrrolidone, la vinylimidazole, les (méth)acrylates d'aminoalkyle, tel que le diméthylamino(méth)acrylate, le
ditertiobutylaminoéthyle(méth)acrylate, le diméthylamino (méth)acrylamide, le ditertiobutylaminoéthyle (méth)acrylamide. On peut mettre en oeuvre chacun des monomères précités sous le forme de dérivés ioniques, c'est-à-dire comprenant au moins une fonction sulfonique, par exemple, sous forme acide ou salifiée totalement ou partiellement. En ce qui concerne le second type de monomère, employé en
combinaison avec les premiers cités, on peut mentionner sans intention de s'y limiter des monomères hydrocarbonés en C2-C12, comprenant ou non un radical aryle, et présentant en outre au moins une insaturation éthylénique. Conviennent entre autres le butadiène, l'isobutylène, le diisobutylène, le styrène, le vinylstyrène, l'alphaméthylstyrène, le vinyltoluène. Parmi les polymères particulièrement avantageux, on peut citer les polymères tels que le polyacrylate ; le polyméthacrylate ; la
polyvinylpyrrolidone ; le polyacrylamide ; le polyaspartate. On peut mentionner de même des copolymères d'acide ou d'anhydride maléique avec l'isobutylène ou le diisobutylène; de pyrrolidone et d'acétate de vinyle. Notons que selon la nature du composé mis en œuvre, le milieu aqueux pourra être additionné par exemple de base ou d'acide, de manière à avoir son pH ajusté afin que la solubilité dudit composé corresponde aux critères mentionnés auparavant.
Le polymère hydrosoluble peut être choisi parmi les polymères pouvant être utilisés à titre d'agents anti dérive et/ou anti-rebond dans le domaine phytosanitaire. A titre de tels agents d'origine synthétiques on cite les polymères à base d'acrylamide ou de vinyl-pyrrolidone. A titre de tels agents d'origine naturelle, on cite les celluloses et leurs produits de modifications chimiques comme les carboxymethylcelluloses, ainsi que les guars et leurs produits de modifications chimiques comme les guars hydroxypolylés ou hydroxybutylés. On cite également les lécitines et leurs produits de modifications chimiques. La masse molaire du polymère hydrosoluble peut typiquement de 100000 g/mol à
10000000 g/mol, par de exemple de 500000 g/mol à 5000000 g/mol, par exemple de 500000 à 1000000 g/mol ou de 1000000 à 1500000 g/mol, ou de 1500000 à 2000000 g/mol ou de 2000000 à 3000000 g/mol ou de 3000000 à 4000000 g/mol ou de 4000000 à 5000000 g/mol. La masse molaire est typiquement la masse molaire moyenne en poids, déterminée pas GPC.
Le polymère hydrosoluble peut notamment être un guar modifié chimiquement, par exemple par des groupes hydroxyalkyl, de préférence hydroxypropyl ou hydroxbutyl. Le guar peut alternativement ou en supplément être modifié par des groupes
carboxyméthyl. Le degré de substitution DS (représentatif de la quantité de modification chimique) du guar peut notamment être de 0,1 à 2, par exemple de 0,2 à 1 ,5. Le degré de substitution est le nombre de groupes hydroxyl du guar substitué par des groupes de modification, par unité de monosaccharide du guar. Il s'agit d'un paramètre relatif aux sites modifiés.
Un exemple de définition du degree de substitution DS et taux de modification moléculaire (MS) est donné par la figure ci-dessous.
Figure imgf000009_0001
Pour de guar hydroxypropyl MS = 4/3 =1 ,33 et DS = 3/3 =1 .
Des produits pouvant être utilisés à titre de polymère hydrosoluble sont disponibles dans le commerce notamment sous les références Jaguar® HP, Rhodia Agrho® DR 2000 ou Agrho® DEP775, Rhodia. On cite notamment les produits de Rhodia Jaguar® HP 8, ou Jaguar® HP 120. c) polvéthylène glycol lourd
Le polyéthylène glycol léger présente une masse molaire moyenne (en nombre ou en poids) inférieure à 6000 g/mol. La masse molaire moyenne peut par exemple être de comprise entre 8000 g/mol et 15000 g/mol. De tels composés sont disponibles dans le commerce.
Sans vouloir être lié à une quelconque théorie, on pense que le polyéthylène glycol lourd peut contribuer à stabiliser la dispersion et à éviter ou à ralentir une sédimentation. Dans la dispersion le polyéthylène glycol lourd peut notamment être sous forme de particules souvent semi-cristallines, par exemple en forme d'aiguilles créant un réseau structurant le milieu liquide. d) milieu liquide
Le milieu liquide comprend d1 ) optionnellement le polyéthylène glycol léger (éventuellement en mélange avec le glycérol) et d2) un tensioactif non ionique. Le rapport en poids entre d2) et d1 ), si d1 ) est présent, est de ½ à 99/1 , de préférence de 40/60 à 80/20. Selon un mode de réalisation particulier il y a plus de tensioactif que de polyéthylène glycol. d1 ) polvéthylène glycol léger Le polyéthylène glycol léger présente une masse molaire moyenne (en nombre ou en poids) inférieure à 1000 g/mol. La masse molaire moyenne peut par exemple être de 100 g/mol à 500 g/mol. De tels composés sont disponibles dans le commerce.
Selon un mode de réalisation une partie du polyéthylène glycol léger est substituée par du glycérol. La quantité de glycérol peut par exemple aller jusqu'à 20% en poids (par rapport au mélange polyéthylène glycol léger + glycérol). Elle peut par exemple être de 10 à 20%.
Dans un mode particulier de réalisation le polyéthylène glycol léger est absent. Dans un mode de réalisation il est présent en quantité faible telle que le rapport d2) / d1 ) est supérieur à 99/1 . d2) Tensioactif non ionique
Les tensioactifs non ioniques sont connus de l'homme du métier. Il s'agit de préférence de tensioactifs non ioniques éthoxylés et/ou propoxylés, connus également.
On utilise de préférence des tensioactifs non ioniques liquides à température ambiante (typiquement 20 ou 25°C).
Certains tensioactifs possèdent des propriétés de mouillants ou de bioactivation.
De tels tensioactifs peuvent être préférés.
Les motifs éthoxy (souvent notés OE car ils peuvent être obtenus à partir d'Oxyde d'Ethylène) et/ou propoxy (souvent notés OP car ils peuvent être obtenus à partir d'Oxyde de Propylène) peuvent typiquement être en nombre moyen de 2 à 100. Dans le tensioactif non ionique comprend à la fois des motifs éthoxy et propoxy, leur répartition peut être statistique ou séquencée (à blocs), par exemple de type OE puis OP ou OP puis OE, ou OP puis OE puis OP ou OE puis OP puis OE.
A titres d'exemples de tensioactifs non ioniques, on peut citer, sans intention de s'y limiter:
- les phénols polyalcoxylés (éthoxylés, propoxylés, éthopropoxylés) substitués par au moins un radical alkyle en C4-C2o, de préférence en C4-Ci2, ou substitués par au moins un radical alkylaryle dont la partie alkyle est en CrC6. Plus particulièrement, le nombre total de motifs alcoxylés est compris entre 2 et 100. A titre d'exemple, on peut citer les mono-, di- ou tri (phényléthyl) phénols polyalcoxylés, ou les nonylphénols polyalcoxylés. Parmi les di- ou tristyrylphenols éthoxylés et/ou propoxylés, sulfatés et/ou phosphatés, on peut citer, le di-(phényl-1 éthyl)phénol éthoxylé, contenant 10 motifs oxyéthylénés, le di-(phényl-1 éthyl)phénol éthoxylé, contenant 7 motifs oxyéthylénés, le di-(phényl-1 éthyl)phénol éthoxylé sulfaté, contenant 7 motifs oxyéthylénés, le tri-(phényl-1 éthyl)phénol éthoxylé, contenant 8 motifs oxyéthylénés, le tri-(phényl-1 éthyl)phénol éthoxylé, contenant 16 motifs oxyéthylénés, le tri-(phényl-1 éthyl)phénol éthoxylé sulfaté, contenant 16 motifs oxyéthylénés, le tri-(phényl-1 éthyl)phénol éthoxylé, contenant 20 motifs oxyéthylénés, le tri-(phényl-1 éthyl)phénol éthoxylé posphaté, contenant 16 motifs oxyéthylénés.
- les alcools ou les acides gras en C6-C22, éventuellement polyalcoxylés (éthoxylés, propoxylés, éthopropoxylés). Dans le cas où ils sont présents, le nombre des motifs alcoxylés est compris entre 1 et 60. Le terme acide gras éthoxylé inclut aussi bien les produits obtenus par éthoxylation d'un acide gras par l'oxyde d'éthylène que ceux obtenus par estérification d'un acide gras par un polyéthylèneglycol.
- les triglycérides polyalcoxylés (éthoxylés, propoxylés, éthopropoxylés) d'origine végétale ou animale. Ainsi conviennent les triglycérides issus du saindoux, du suif, de l'huile d'arachide, de l'huile de beurre, de l'huile de graine de coton, de l'huile de lin, de l'huile d'olive, de l'huile de palme, de l'huile de pépins de raisin, de l'huile de poisson, de l'huile de soja, de l'huile de ricin, de l'huile de colza, de l'huile de coprah, de l'huile de noix de coco, et comprenant un nombre total de motifs alcoxylés compris entre 1 et 60. Le terme triglycéride éthoxylé vise aussi bien les produits obtenus par éthoxylation d'un triglycéride par l'oxyde d'éthylène que ceux obtenus par trans-estérification d'un triglycéride par un polyéthylèneglycol.
- les terpènes éthoxylés et/ou propoxylés
- les copolymères à blocs d'oxyde d'éthylène et d'oxyde d'alkylene en C3-C10,
- les esters de sorbitan polyalcoxylés (éthoxylés, propoxylés, éthopropoxylés), plus particulièrement les esters de sorbitol cyclisé d'acides gras de C10 à C20 comme l'acide laurique, l'acide stéarique ou l'acide oléique, et comprenant un nombre total de motifs alcoxylés compris entre 2 et 50.
Certains tensioactifs non ioniques particulirèment utiles sont les suivants:
- les alcools gras éthoxylés et/ou propoxylés,
- les acide gras éthoxylés et/ou propoxylés,
- les acides gras non alcoxylés,
- les copolymères à blocs de poly(oxyde d'éthylène) et de poly(oxyde de propylène)
- les di et/ou tri styrylphénols éthoxylés et/ou propoxylés, ou
- les terpènes éthoxylés et/ou propoxylés,
- leurs mélanges ou associations.
On mentionne que les tensioactifs de type terpène éthoxylés et/ou propoxylés sont notamment décrits dans les documents WO 96/01245, WO 98/28249, WO 01/12765, et sont commercialisés par Rhodia sous la dénomination Rhodoclean®. D'une manière avantageuse, ledit tensioactif non ionique terpène polyéthoxylé et/ou polypropoxylé, de préférence polyéthoxylé et polypropoxylé, les motifs éthoxy et propoxy étant distribués sous forme aléatoire ou sous forme séquentielle.
De préférence, ledit tensioactif non ionique est un terpène polyalcoxylé répondant à la formule (III) suivante:
Z-X-[CH(R5)-CH(R6)-0]n-[CH2CH2-0]p-[CH(R5)-CH(R6)-0]q-R7 (III) formule dans laquelle
Z représente un radical bicyclo[a,b,c]heptényle ou bicyclo[a,b,c]heptyle, avec
a+b+c = 5
a = 2, 3 ou 4,
b = 2 ou 1
c = 0 ou 1 ,
ledit radical étant éventuellement substitué par au moins un radical alkyle de C-| -C6, et comprenant un squelette Z choisi parmi ceux indiqués ci-dessous, ou aux squelettes correspondants, dépourvus de double liaison :
a)
Figure imgf000012_0001
d)
g)
Figure imgf000012_0002
X représente -CH2-C(R°)(R 0- ou -0-CH(R'°)-C(R' 0- dans lesquelles :
R , R , R' et R' , identiques ou différents, représentent l'hydrogène ou un radical hydrocarboné, saturé ou non, linéaire, ramifié ou cyclique, en C-| -C22. de préférence en C-| -C6 R5 et R6, identiques ou différents, représentent l'hydrogène ou un radical hydrocarboné, saturé ou non, linéaire, ramifié ou cyclique, en C-| -C22, à la condition qu'au moins l'un des radicaux R5 OU R6 soit différent de l'hydrogène ;
R7 représente l'hydrogène, un radical hydrocarboné, saturé ou non, linéaire, ramifié ou cyclique, aromatique ou non, en C-| -C22. éventuellement substitué (par exemple par un groupe OH);
n, p, q et sont des nombre entiers ou non, supérieurs ou égaux à 0,
n+p+q >1 , de préférence de 2 à 200, de préférence de 5 à 50. De préférence Z ou Z-X- correspond au (6,6- dimethylbicyclo[3, 1 ,1 ]hept-2-ene-2- ethanol), par la suite aussi désigné par "NOPOL".
De préférence, n, p et q sont choisis de sorte que:
- n est un nombre entier ou non, compris entre 2 et 10 inclus ;
- p est un nombre entier ou non compris entre 3 et 20 inclus;
- q est un nombre entier ou non compris entre 0 et 30 inclus.
Peuvent notamment être utilisés, seuls ou en mélanges ou associations:
- Les tensioactifs non ioniques de type acides gras ou esters tels que par exemple les esters, ester de glycol, esters de glycerol, esters de PEG, ester de sorbitol, ester de sorbitol ethoxylés, acides ethoxylés, ou ethoxy propoxylés, esters et triglycérides (famille des Alkamuls® de RHODIA, à titre d'exemples les huiles de riçin éthoxylées : Alkamuls® OR 36 (HLB=13,1 ), Alkamuls® RC (HLB 10,5), Alkamuls® R81 (HLB=9,2), Alkamuls® 696 (HLB 8,2), les esters de sorbitans éthoxylés et/ou propoxylés Alkamuls® T20 ou T80.
- Les tensioactifs non ioniques de type alcool éthoxylés, ou éthoxy propoxylés, polyalkyleneglycol, tels que la (famille des Rhodasurf® de RHODIA, à titre d'exemple le Rhodasurf® LA/30 (HLB=8), le Rhodasurf® ID5 (HLB=10,5) , le Rhodasurf® 860P (HLB=12,4)),
- Les tensioactifs non ioniques aromatiques éthoxylés ou éthoxy propoxylés, à titre d'exemple la famille des Igepal® de RHODIA,
- Les copolymères, copolymères à blocs éthoxy ou éthoxy propoxylés, par exemple la famille des Antarox® de RHODIA, comme Antarox® B848 (HLB=13,1 ), Antarox® PLG 254 (HLB=10), Antarox® PL 122 (HLB=5),
- Les composés à base de styryl phénol tels que les Distyrylphénol, Tristyrylphénol, qui peuvent-être ethoxylés ou éthoxy propoxylés, phosphatés, sulfatés, par exemple la famille des Soprophor® de RHODIA comme le Soprophor® DSS7, le Soprophor® BSU (HLB=12,6), le Soprophor 3D33 (HLB=16), le Soprophor 4D384 (HLB=16), le Soprophor® 796P (HLB=13,7),
- Les tensioactifs dérivés des terpènes par exemple la famille des Rhodoclean® de RHODIA. e) Additifs autres
La dispersion peut comprendre d'autres additifs. Il peut notamment s'agir:
e1 ) de produits anti-mousse, par exemple du type polyorganosiloxanes
e2) d'humectants, différents du glycérol ou du polyéthylène léger
e3) d'agents bioactivateurs, par exemple des tensioactifs autres que le(s) tensioactif non ioniques, par exemple des tensioactifs amphotères, zwitterioniques, ou anioniques, e4) de fertilisants,
e5) d'agents de régulation du pH
e6) d'agents épaississants, par exemple de la silice ou des polymères organiques différents des polyéthylène glycol et du polymère hydrosoluble,
e7) d'huiles ou des dérivés d'huiles comme des esters méthyliques d'acides gras, e8) de solvants
e9) du sulfate d'ammonium
Il peut s'agir de mélanges ou d'associations de tels additifs.
On mentionne que certains additifs peuvent remplir plusieurs des fonctions mentionnées ci-dessus.
Selon un mode de réalisation la dispersion comprend au plus 200 parts, de préférence au plus 100 parts, de préférence au plus 50 parts, de préférence au plus 25 parts, d'additifs autres e).
Selon un mode de réalisation particulier le rapport en poids de e) et la somme des quantités en poids de a), b), c) et d) est inférieur à 1 , de préférence inférieur à 0,5, de préférence inférieur à 0,25. Caractéristiques particulières
La dispersion de l'invention est typiquement destinée à être diluée avec de l'eau et/ou avec d'autres produits. Elle est typiquement destinée à être associée à d'autres produits, notamment des actifs phytosanitaires. La dispersion est typiquement un ingrédient concentré d'une composition ou formulation finale destinée à être utilisée directement. En effet les industries de formulation utilisent des ingrédients ou additifs pour former des mélanges. Quand un ingrédient ou additif est mélangé à d'autres additifs pour former un produit final il voit sa concentration diminuer. De même quand un ingrédient ou additif est mélangé à de l'eau pour un usage à concentration approprié il voit sa concentration diminuer. Ainsi on peut parler «d'ingrédients concentrés», avant usage par le formulateur pour former un produit final ou avant dilution par l'utilisateur pour usage final sans étape de formulation intermédiaire. Les ingrédients ou additifs peuvent être de différentes formes ou de différentes compositions pour en rendre l'usage pratique ou pour apporter des propriétés particulières. Certains ingrédients concentrés sont eux-mêmes des mélanges («blend» en anglais). On peut parler d'ingrédients concentrés complexes. La dispersion de l'invention constitue un tel ingrédient concentré complexe.
Ainsi, typiquement la dispersion de l'invention comprend une quantité limitée d'autres produits (ou n'en comprend pas d'autres).
Procédé de préparation
La dispersion peut être préparée par tout procédé approprié, par mélange des différents ingrédients. On peut opérer le mélange à l'aide de tout dispositif approprié permettant une certaine agitation. Le mélange est généralement agité de manière à obtenir un mélange homogène.
Le procédé comprend de préférence une étape où le polyéthylène glycol lourd est porté à une température supérieure à son point de fusion, par exemple à une
température supérieure ou égale à 50°C. Le polyéthylène glycol peut être porté à cette température seul ou en mélange avec des un ou plusieurs des composants du milieu liquide, de préférence avec le polyéthylène léger et/ou avec le tensioactif non ionique.
Le procédé comprend de préférence une étape de trempe où le polyéthylène lourd passe d'une température supérieure à son point de fusion à une température inférieure, en présence d'un ou plusieurs des composants du milieu liquide à température inférieure à la température de fusion du PEG lourd, de préférence avec le polyéthylène léger et/ou avec le tensioactif non ionique. La trempe peut notamment être opérée par mélange avec un des composants du milieu liquide, de préférence avec le tensioactif non ionique. Elle peut être suivie d'un refroidissement progressif.
Lors de la trempe et/ou du refroidissement le polyéthylène glycol lourd peut se solidifier sous forme de particules souvent semi-cristallines, par exemple en forme d'aiguilles créant un réseau structurant le milieu liquide (ou du moins les composants du milieu liquide déjà mélangés). La température de trempe et/ou la vitesse de
refroidissement peut être contrôlée de manière à favoriser la formation des particules de polyéthylène lourd et/ou à en contrôler la taille et/ou la morphologie, de manière à procurer une bonne stabilité de la dispersion finale. De préférence on prépare lors d'une étape le milieu liquide, et on ajoute le polymère hydrosoluble, sous forme d'une poudre généralement, dans le milieu liquide. Lors de cet ajout le milieu liquide peut déjà contenir le polyéthylène glycol lourd. La granulométrie de la poudre ajoutée est typiquement identique à celle mentionnée plus haut (taille des particules). Selon un mode de réalisation préféré le polymère
hydrosoluble est mélangé à froid après l'étape de trempe mentionnée ci-dessus.
Les additifs autres peuvent être introduits à tout moment, de préférence après l'introduction du polymère hydrosoluble. Utilisations
La dispersion de l'invention peut être utilisée en tant qu'adjuvant extemporané d'une composition phytosanitaire diluée destinée à être appliquée sur un champ. A ce titre la dispersion peut être introduite dans un récipient, typiquement un réservoir ou une citerne de manière a y être diluée avec de l'eau et avec éventuellement d'autres ingrédients, notamment un produit actif phytosanitaire ou une formulation comprenant un tel produit. La dilution peut typiquement être de 1 part de dispersion pour 50 à 500 parts d'eau. Elle est typiquement opérée par l'exploitant agricole. Selon un mode de réalisation on dilue d'abord la dispersion en la versant dans l'eau, puis on ajoute le produit actif ou la formulation le comprenant.
La composition diluée (comprenant l'eau de dilution, la dispersion, et éventuellement le produit actif) est ensuite répandue sur le champ à traiter.
Ainsi on peut mettre en œuvre un procédé d'application d'une composition phytosanitaire sur un champ, comprenant:
- une étape de mélange dans un réservoir de la dispersion selon l'une des revendications 1 à 7, d'eau et d'au moins un produit phytosanitaire, le cas échéant sous forme d'une composition phytosanitaire concentrée, de manière à obtenir une composition phytosanitaire diluée,
- une étape d'application sur le champ de la composition phytosanitaire diluée.
L'application peut être effectuée à l'aide de tout dispositif adapté, notamment des dispositifs de pulvérisations et/ou de jets. Les dispositifs peuvent par exemple être placés au sol, placés sur des véhicules terrestres comme des tracteurs, ou sur des véhicules aériens comme des avions ou des hélicoptères. La quantité de composition diluée appliquée peut typiquement être de 10 à 2000 L/Ha, par exemple de 50 à 200 L/Ha. Selon le taux de dilution, la quantité de polymère hydrosoluble dans la dispersion, et les doses d'application, on peut typiquement appliquer de 9 à 1800 g/Ha, par exemple de 45 à 180 g/Ha de polymère hydrosoluble. La dispersion peut réduire la dérive et/ou le rebond de la composition lors de cette opération. A ce titre la dispersion peut être utilisée à titre d'adjuvant anti-dérive et/ou anti-rebond. Elle peut ainsi contribuer à mieux cibler le traitement et à réduire les pertes. Il peut ainsi être possible de diminuer les doses de traitement appliqué.
D'autres détails ou avantages de l'invention pourront apparaître au vu des exemples qui suivent, sans caractère limitatif. Exemples
Dans les exemples la lettre C désigne un exemple comparatif.
Dans les exemples on met en œuvre pour la préparation des dispersions le protocole ci- dessous.
Protocole de préparation
Pour une composition de 600 ml, on pèse le PEG 10000 g/mol et le PEG 200 g/L dans un bêcher en verre d'un litre. Le mélange est placé sous agitation Rayneri à l'aide d'un pâle défloculeuse de 65 mm de diamètre à 250 tr/mn et chauffé sur plaque chauffante jusqu'à complète dissolution du PEG 10000 g/L (température du mélange de 60°C). Le chauffage est alors stoppé et le NOPOL 365 est ajouté d'un coup, sous agitation et à température ambiante au mélange précédent. L'agitation est alors augmentée à 600 tr/mn, le mélange épaississant lors de son refroidissement (solidification du PEG 10000 g/L). Lorsque la température du mélange est descendue sous les 30°C, le Jaguar® HP- 120 est ajouté en pluie, toujours sous forte agitation (600 tr/mn). L'antimousse, ainsi que la silice lorsque nécessaire, sont ajoutés sous agitation à la fin de la préparation.
Exemple 1
On réalise selon le protocole les dispersions suivantes (les quantités sont indiquées en poids de matière telle quelle) :
Figure imgf000018_0001
Tensioactif terpene ethoxylé et propoxylé dont le groupe terpène correspond au
Nopol, présentant 3 motifs PO puis 6,5 motifs EO, disponible sur demande auprès de Rhodia.
Comme détaillé dans les tests de caractérisation suivants, les dispersions présentent une bonne stabilité, une bonne coulabilité, et une dispersion et hydratation dans l'eau aisée.
Tests de caractérisation
Pour évaluer la stabilité de la formulation et sa facilité de mise en œuvre, on mesure les caractéristiques suivantes après 24 heures de repos et après deux mois de stockage à température ambiante et en étuve à 45°C (méthode CIPAC MT 46.1 .3 et méthode GIFAP n°17)
Figure imgf000019_0001
Les résultats détaillés sont les suivants
Figure imgf000019_0002
Dans tous les cas, la ré-homogénéisation de la formulation lorsqu'il y a eu synérèse est aisée (2 à 8 inversions du flacon).
Exemple 2 (comparatifs)
On réalise les dispersions comparatives suivantes selon le même protocole.
Figure imgf000020_0001

Claims

REVENDICATIONS
1. Dispersion de particules d'un polymère hydrosoluble dans un milieu liquide non aqueux, comprenant:
a) de 0 à 10 parts d'eau
b) de 1 à 20 parts, de préférence de 5 à 15 parts d'un polymère hydrosoluble
c) de 0,5 à 5 parts, de préférence de 1 à 3 parts, d'un polyéthylène glycol lourd, de masse molaire moyenne supérieure ou égale à 6000 g/mol et de préférence inférieure ou égale à 500000 g/mol,
d) de 80 à 99 parts, d'un milieu liquide comprenant:
d1 ) optionnellement un polyéthylène glycol léger de masse molaire moyenne inférieure ou égale à 1000 g/mol, seul ou en mélange avec jusqu'à 20% en poids de glycérol
d2) un tensioactif non ionique de préférence éthoxylé et/ou propoxylé
le rapport en poids entre d2) et d1 ), si d1 ) est présent, étant de 1/2 à 99/1 , de préférence de 40/60 à 80/20.
e) éventuellement d'autres additifs.
2. Dispersion selon l'une des revendications précédentes, caractérisée en ce que le polymère hydrosoluble est un polymère anti-dérive et/ou anti-rebond.
3. Dispersion selon l'une des revendications précédentes, caractérisée en ce que le polymère est un guar éventuellement modifié chimiquement.
4. Dispersion selon l'une des revendications précédentes, caractérisée en ce que le polymère est un guar modifié par des groupes hydroxyalkyl, de préférence hydroxypropyle ou hydroxybutyle.
5. Dispersion selon l'une des revendications précédentes, caractérisée en ce que le tensioactif non ionique est un terpène éthoxylé et/ou propoxylé.
6. Dispersion selon l'une des revendications précédentes, caractérisée en ce que le rapport en poids de e) et la somme des quantités en poids de a), b), c) et d) est inférieur à 1.
7. Dispersion selon l'une des revendications précédentes, caractérisée en ce que les additifs e) sont choisis parmi: e1 ) les produits anti-mousse,
e2) les humectants, différents du glycérol ou du polyéthylène léger,
e3) les agents bioactivateurs,
e4) les fertilisants,
e5) les agents de régulation du pH,
e6) les agents épaississants,
e7) les huiles ou les dérivés d'huiles,
e8) les solvants
e9) du sulfate d'ammonium.
8. Procédé de préparation de la dispersion selon l'une des revendications précédentes, caractérisé en ce que qu'il comprend une étape où le polyéthylène glycol lourd est porté à une température supérieure à son point de fusion.
9. Procédé selon la revendication précédente, caractérisé en ce qu'il comprend une étape de trempe où le polyéthylène lourd passe d'une température supérieure à son point de fusion à une température inférieure, en présence d'un ou plusieurs des composants du milieu liquide.
10. Utilisation d'une dispersion selon l'une des revendications 1 à 7 en tant qu'adjuvant extemporané d'une composition phytosanitaire diluée destinée à être appliquée sur un champ.
1 1. Utilisation selon la revendication 10, à titre d'adjuvant anti-dérive et/ou anti-rebond.
12. Procédé d'application d'une composition phytosanitaire sur un champ, comprenant
- une étape de mélange dans un réservoir de la dispersion selon l'une des revendications 1 à 7, d'eau et d'au moins un produit phytosanitaire, le cas échéant sous forme d'une composition phytosanitaire concentrée, de manière à obtenir une composition phytosanitaire diluée,
- une étape d'application sur le champ de la composition phytosanitaire diluée.
PCT/EP2010/063141 2009-09-28 2010-09-08 Dispersion d'un polymère hydrosoluble dans un milieu liquide WO2011036053A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0904612A FR2950627B1 (fr) 2009-09-28 2009-09-28 Dispersion d'un polymere hydrosoluble dans un milieu liquide
FR0904612 2009-09-28

Publications (1)

Publication Number Publication Date
WO2011036053A1 true WO2011036053A1 (fr) 2011-03-31

Family

ID=42115435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063141 WO2011036053A1 (fr) 2009-09-28 2010-09-08 Dispersion d'un polymère hydrosoluble dans un milieu liquide

Country Status (2)

Country Link
FR (1) FR2950627B1 (fr)
WO (1) WO2011036053A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784142A3 (fr) * 2011-09-21 2014-12-03 Ecolab USA Inc. Développement de la viscosité d'extension pour une atomisation réduite des applications de pulvérisateur concentré dilué
US20150250165A1 (en) * 2012-11-08 2015-09-10 Rhodia Operations Liquid polymer suspensions
US9206381B2 (en) 2011-09-21 2015-12-08 Ecolab Usa Inc. Reduced misting alkaline cleaners using elongational viscosity modifiers
US10370626B2 (en) 2016-05-23 2019-08-06 Ecolab Usa Inc. Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US10392587B2 (en) 2016-05-23 2019-08-27 Ecolab Usa Inc. Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US11540512B2 (en) 2017-03-01 2023-01-03 Ecolab Usa Inc. Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers
US11834633B2 (en) 2019-07-12 2023-12-05 Ecolab Usa Inc. Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176107A (en) 1978-01-20 1979-11-27 Buckman Laboratories, Inc. Water-soluble dispersions of high molecular water-soluble polymers containing a surfactant and a water-soluble organic carrier which is a hydroxy compound containing repeating alkylene oxide units
US4510081A (en) * 1981-08-31 1985-04-09 Sanitek Products, Inc. Drift control concentrate
US4610311A (en) * 1983-02-15 1986-09-09 Sanitek Products, Inc. Method for reducing the aerial drift of aqueous preparations
EP0322736A2 (fr) * 1987-12-24 1989-07-05 Aqualon Company Dispersion de polymère soluble dans l'eau
WO1996001245A1 (fr) 1994-07-01 1996-01-18 Rhone Poulenc Chimie Derives terpeniques polyalcoxyles et compositions en contenant
WO1998028249A1 (fr) 1996-12-20 1998-07-02 Rhodia Chimie Composes terpeniques polyalcoxyles, leur procede de preparation et leur utilisation comme agents demoussants
US5906962A (en) * 1994-12-22 1999-05-25 Rhodia Inc. Non-aqueous suspension concentrates of highly water-soluble solids
US6146570A (en) 1998-03-20 2000-11-14 Rhodia Inc. Process for producing extruded hydrocolloid granules
WO2001012765A1 (fr) 1999-08-17 2001-02-22 Rhodia Chimie Utilisation de composes terpeniques polyoxypropylenes/polyoxyetylenes comme agents de degraissage de surfaces dures
US6465553B2 (en) 2001-01-03 2002-10-15 Isp Investments Inc. Gum slurries
US20030203821A1 (en) 2002-04-25 2003-10-30 Fox Kelly B. Stable liquid suspension compositions and method of making
WO2006014348A2 (fr) 2004-07-02 2006-02-09 Rhodia, Inc. Composition de pulverisation comportant un agent de regulation du depot

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1589908A (en) * 1978-01-20 1981-05-20 Buckman Labor Inc Polymer compositions
US4176107A (en) 1978-01-20 1979-11-27 Buckman Laboratories, Inc. Water-soluble dispersions of high molecular water-soluble polymers containing a surfactant and a water-soluble organic carrier which is a hydroxy compound containing repeating alkylene oxide units
US4510081A (en) * 1981-08-31 1985-04-09 Sanitek Products, Inc. Drift control concentrate
US4610311A (en) * 1983-02-15 1986-09-09 Sanitek Products, Inc. Method for reducing the aerial drift of aqueous preparations
EP0322736A2 (fr) * 1987-12-24 1989-07-05 Aqualon Company Dispersion de polymère soluble dans l'eau
WO1996001245A1 (fr) 1994-07-01 1996-01-18 Rhone Poulenc Chimie Derives terpeniques polyalcoxyles et compositions en contenant
US5906962A (en) * 1994-12-22 1999-05-25 Rhodia Inc. Non-aqueous suspension concentrates of highly water-soluble solids
WO1998028249A1 (fr) 1996-12-20 1998-07-02 Rhodia Chimie Composes terpeniques polyalcoxyles, leur procede de preparation et leur utilisation comme agents demoussants
US6146570A (en) 1998-03-20 2000-11-14 Rhodia Inc. Process for producing extruded hydrocolloid granules
WO2001012765A1 (fr) 1999-08-17 2001-02-22 Rhodia Chimie Utilisation de composes terpeniques polyoxypropylenes/polyoxyetylenes comme agents de degraissage de surfaces dures
US6465553B2 (en) 2001-01-03 2002-10-15 Isp Investments Inc. Gum slurries
US20030203821A1 (en) 2002-04-25 2003-10-30 Fox Kelly B. Stable liquid suspension compositions and method of making
WO2006014348A2 (fr) 2004-07-02 2006-02-09 Rhodia, Inc. Composition de pulverisation comportant un agent de regulation du depot

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127241B2 (en) 2011-09-21 2015-09-08 Ecolab Usa Inc. Development of extensional viscosity for reduced atomization for diluted concentrate sprayer applications
US9206381B2 (en) 2011-09-21 2015-12-08 Ecolab Usa Inc. Reduced misting alkaline cleaners using elongational viscosity modifiers
US10253279B2 (en) 2011-09-21 2019-04-09 Ecolab Usa Inc. Development of extensional viscosity for reduced atomization for diluted concentrate sprayer applications
US11708544B2 (en) 2011-09-21 2023-07-25 Ecolab Usa Inc. Development of extensional viscosity for reduced atomization for diluted concentrate sprayer applications
EP2784142A3 (fr) * 2011-09-21 2014-12-03 Ecolab USA Inc. Développement de la viscosité d'extension pour une atomisation réduite des applications de pulvérisateur concentré dilué
US10934503B2 (en) 2011-09-21 2021-03-02 Ecolab Usa Inc. Development of extensional viscosity for reduced atomization for diluted concentrate sprayer applications
US11547113B2 (en) * 2012-11-08 2023-01-10 Rhodia Operations Liquid polymer suspensions
US20150250165A1 (en) * 2012-11-08 2015-09-10 Rhodia Operations Liquid polymer suspensions
US10392587B2 (en) 2016-05-23 2019-08-27 Ecolab Usa Inc. Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US11008538B2 (en) 2016-05-23 2021-05-18 Ecolab Usa Inc. Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US10370626B2 (en) 2016-05-23 2019-08-06 Ecolab Usa Inc. Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers
US11540512B2 (en) 2017-03-01 2023-01-03 Ecolab Usa Inc. Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers
US11834633B2 (en) 2019-07-12 2023-12-05 Ecolab Usa Inc. Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers

Also Published As

Publication number Publication date
FR2950627B1 (fr) 2011-12-09
FR2950627A1 (fr) 2011-04-01

Similar Documents

Publication Publication Date Title
WO2011036053A1 (fr) Dispersion d'un polymère hydrosoluble dans un milieu liquide
AU754976B2 (en) Free-flowing fertilizer compositions
CN103930536A (zh) 包含聚合物阳离子乳化剂的乳液、物质和方法
ES2603610T3 (es) Emulsiones de poliisobutenos, sustancia y procedimiento
EP2539372A1 (fr) Emulsion acrylique associative contenant un monomere a base d'alcool oxo, son procede de fabrication et procede d'epaississement d'une formulation aqueuse a partir de cette emulsion
EP0658596B1 (fr) Composition à base de biopolymères à hydratation rapide
WO1988010294A1 (fr) Compositions adoucissantes concentrees
WO2000008926A1 (fr) Utilisation de polymeres comme agents anti-rebond
EP1399248B1 (fr) Dispersion comprenant une emulsion dont la phase aqueuse est de force ionique elevee
US11678661B2 (en) Thickened organic liquid compositions with polymeric rheology modifiers
FR2540879A1 (fr) Suspensions concentrees de polymeres hydrosolubles
EP2566839B1 (fr) Composition de dérivés polyalcoxylés de triméthylolpropane et d'alcools gras procédé pour sa préparation et utilisation comme inverseur, dans les latex inverses auto-inversibles
EP1162882B1 (fr) Utilisation de matrices polymeres reticulees en tant qu'agents anti-lessivage
DE102006034902A1 (de) Wasch- oder Reinigungsmittel mit verbessertem Dispergievermögen
WO2003018736A1 (fr) Additif preformule pour composition de traitement des articles en fibres textiles et utilisation dudit additif comme agent de soin
CN105400620A (zh) 低温水洗用超浓缩多功能洗涤剂
EP1952687B1 (fr) Emulsion comprenant un polysaccharide et son utilisation dans des compositions liquides pulvérisables
FR3070043B1 (fr) Formulation contenant un polymere associatif
FR3075661A1 (fr) Emulsion submicronique
CN111567547B (zh) 一种玉米田除草剂及其制备方法和应用
DE102005040274B3 (de) Schaumregulatorgranulat
FR3113057A1 (fr) Agent épaississant pour composition hydro-alcoolique
EP2480325B1 (fr) Formulation aqueuse a proprietes anti-mottante et hydrophobante
FR2677655A1 (fr) Dispersions d'agents epaississants, procedes pour les preparer et leur utilisation.
JP2010248370A (ja) 水中油型香料乳化物及びその製造方法、繊維製品処理剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10751935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10751935

Country of ref document: EP

Kind code of ref document: A1