WO2011035527A1 - 位置侦测的装置及方法 - Google Patents

位置侦测的装置及方法 Download PDF

Info

Publication number
WO2011035527A1
WO2011035527A1 PCT/CN2010/000514 CN2010000514W WO2011035527A1 WO 2011035527 A1 WO2011035527 A1 WO 2011035527A1 CN 2010000514 W CN2010000514 W CN 2010000514W WO 2011035527 A1 WO2011035527 A1 WO 2011035527A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
contact
conductive strip
conductive
conductive strips
Prior art date
Application number
PCT/CN2010/000514
Other languages
English (en)
French (fr)
Inventor
叶尚泰
陈家铭
何顺隆
Original Assignee
禾瑞亚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 禾瑞亚科技股份有限公司 filed Critical 禾瑞亚科技股份有限公司
Priority to EP10818221.3A priority Critical patent/EP2500806A4/en
Publication of WO2011035527A1 publication Critical patent/WO2011035527A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention relates to a device and method for position detection, and more particularly to a device and method for position detection of a pressure contact type. Background technique
  • US Patent Publication No. US2007/0198926 Jouget et al. discloses a pressure contact position detecting device comprising an upper electrode layer and a lower electrode layer, the upper and lower electrode layers respectively comprising a plurality of parallels in different directions.
  • the wires are arranged, and insulating spacers are distributed between the upper and lower layers to separate the upper and lower electrode layers. Therefore, when the upper electrode layer is pressed down, the wires of the portion of the upper electrode layer are in contact with the wires of the lower electrode, and all of the wires of the lower electrode layer are grounded.
  • the wires of the upper electrode layer are sequentially driven, and when any of the upper electrode layer wires are driven, all the lower electrode layer wires are sequentially detected once, thereby detecting the intersection of all the upper and lower electrode layer wires. point. Therefore, when the driven upper electrode layer wire and the detected lower electrode layer wire are in contact with each other, the current flows from the driven electrode layer wire to the detected lower electrode layer wire, thereby detecting the lower electrode layer.
  • the signal of the wire can detect which intersections are pressed.
  • a first object of the present invention is to provide a device and method for detecting a position.
  • the device for detecting a position includes: an inductor comprising a plurality of intersecting regions formed by overlapping a plurality of conductive strips, wherein the plurality of intersecting regions are overlapped A pair of pressed conductive strips in the intersecting region form a contact point due to electrical contact a depressed region; a driver respectively providing a high potential and a low potential; a detector for detecting at least one of the conductive strips; a selector for operatively coupling the conductive strips to the driver and the detector And a controller, comprising at least the following controls on the driver, the detector and the selector: directly or through an extension resistor, respectively providing a first end and a second of the same conductive strip at a high potential and a low power The first end of the at least one first conductive strip and the first end of the at least one second conductive strip are respectively provided indirectly or through an extension resistor; and detecting one of the conductive strips and
  • the aforementioned overlapping conductive strips are separated by a plurality of insulating particles, are electrically insulated from each other when not pressed, and constitute a depressed intersecting region when pressed.
  • the position detecting method detects the pressed intersecting regions, and detects the contact points located on the pressed intersecting regions according to the pressed intersecting regions.
  • the detection of the depressed intersecting region may first detect the pressed conductive strip, determine the possible intersecting regions according to the pressed conductive strip, and then detect the possible intersecting regions. 3 ⁇ 4 ⁇ Touch the intersecting area.
  • the apparatus and method for position detection of the present invention can quickly detect all the contact points, and the positions of the contact points can be represented by two-dimensional coordinates.
  • the present invention employs a wider conductive strip, the conductive strip covers a larger detection range than conventional techniques, thereby achieving a resolution superior to the prior art.
  • the present invention can simultaneously detect a plurality of contact points of different pressure contact pressure contacts, and can be used to track subsequent pressure touches and determine different gestures.
  • a second object of the present invention is to provide a device and method for determining the total pressure of a pressure contact.
  • the method further includes: determining each of the pressure touches on the intersecting regions The pressure contact, and a total contact impedance of each of the pressure contacts, wherein the total contact impedance of the pressure contact across the intersecting regions is a parallel impedance of a contact impedance of the plurality of intersecting regions.
  • the controller further includes tracking a subsequent pressure contact of each pressure contact according to the total contact impedance of each pressure contact, wherein a difference between the total contact impedance of each pressure contact and each subsequent pressure contact is within a preset range. And the pressed intersecting regions corresponding to the same pressure contact are adjacent intersecting regions.
  • the pressure of the pen, finger or palm can be judged.
  • a third object of the present invention is to provide a device and method for determining a contact impedance at a position
  • the contact resistance is judged based on the position of one of the pair of conductive strips in the depressed intersecting region and the other potential at the contact point and the position of the contact point or the intersecting region.
  • the contact impedance of the present invention can be judged according to the position of the contact point or the position of the intersecting region.
  • the former can obtain a more accurate contact impedance, and the latter can determine the approximate contact impedance before the contact point is known, and the detection will be omitted. Neglected contact point locations can greatly improve performance.
  • the contact point or the position of the intersecting region is known, it is only necessary to judge the potential of one of the pressed conductive strips and the other contact point, that is, the contact impedance can be judged, and other signal detection can be omitted. Measurement.
  • the controller determining the contact impedance includes: determining a first dimension position and a second dimension position of the contact point and/or the overlap region, and Determining a first dimension impedance and a second dimension impedance according to the first dimension position and the second dimension position; detecting contact points or overlapping when one of the pair of conductive strips is respectively provided with a high potential and a low potential a first contact potential and a second contact potential of one of the pair of conductive strips and the other; and determining a contact impedance, wherein the contact impedance is
  • R1+R2 ( (VH-VL) / (P1-P2) ) -1) , where Rl, R2, VH, VL, Pl, P2 are the first dimensional impedance, the second dimensional impedance, and the high potential , low potential, first contact potential and second contact potential.
  • a fourth object of the present invention is to provide a device and method for position detection that is neglected by a palm.
  • the controller further includes determining a pressure contact that is excluded from the pressure touches, wherein The total contact resistance of the excluded pressure contact is less than a threshold value.
  • the pressure contact can be divided into the pressure contact of the pen, the finger or the palm according to the total contact resistance, so that the pressure of the palm can be neglected accordingly, the palm does not need to be suspended during the writing process, and the palm can be placed on the sensor. write.
  • a fifth object of the present invention is to provide an apparatus and method for correcting a position error.
  • the detection is performed.
  • the position of the contact point to which it is directed will be biased toward the pressure contact across the same layer of conductive strips, causing errors.
  • the contact point error correction of the present invention corrects the error and corrects the position of the correct pressure contact.
  • the controller's determination of the contact point of the depressed intersecting region includes: alternately selecting one of the conductive strips and the other as a driven conductive strip and a detected conductive a strip; detecting a potential of the detected strip as a position potential when a high potential and a low level are provided at both ends of the driven strip; electrically coupling an extension resistor and the driven strip to form an extended strip Providing a high potential and a low power when the extended conductive strip is not pressed, the extended conductive strip is located to detect the potential between the extended resistance and the driven conductive strip as an unpressurized potential; and provides high when the extended conductive strip is pressed Potential and low power are located on the extended conductive strip to detect the delay
  • the potential between the extension resistor and the driven strip is used as a depressed potential; and the position of the contact point at the driven strip is determined according to the position potential, the unpressed potential
  • the correct detection potential C “ P " l P “' (Va - VL) (VH - Vd) that is, the potential difference between the high potential and the low potential is
  • the error of the detection potential Vp can be corrected based on the unpressed potential Vu, the depressed potential Vd, and the detection potential Vp, and the correct detection potential Vc is detected.
  • the position error ratio on the conductive strip having the contact resistance across the intersecting regions is judged based on the change in potential on a position on the conductive strip (e.g., the first end or the second end).
  • a sixth object of the present invention is to provide an apparatus and method for detecting a positional misjudgment.
  • the detection of the depressed intersecting area is caused by three pressure touches in a rectangular shape.
  • the position of the three vertices of the region, the fourth vertex position is misjudged is also the depressed intersecting region, that is, the wrong depressed intersecting region.
  • the present invention neglects or eliminates the erroneous depressed intersecting regions by aligning the position of the contact point with the position of the depressed intersecting region, and can further neglect or eliminate the contact point of the erroneous depressed intersecting region.
  • the controller determines the pressure contact that is excluded from the pressure touches, and the position where at least one contact point exists in all the contact points corresponding to the excluded pressure touch falls in the corresponding intersecting region. Outside of a margin of error.
  • the controller further includes: determining a pressure contact that is excluded from the pressure touches, wherein any of the excluded pressure touches meet at least one of the following conditions: the total contact impedance is less than a threshold value; and the contact corresponding to the same pressure contact a position in the point where the at least one contact point falls outside an error range of the corresponding intersecting area; and a position of each of the pressed touches that is not excluded, wherein the position of each pressed contact is It is judged based on the position of the contact point of the pressed intersecting region corresponding to the same pressure contact.
  • the foregoing determination that the position of the contact point corresponding to the same pressure contact exists outside an error range of the corresponding overlap region may be judged prior to the correction of the contact point error.
  • a seventh object of the present invention is to provide an apparatus and method for ignoring a palm using a multi-position detection method.
  • the first touch or pressure contact is detected by the first touch or pressure touch detection method.
  • the detection mode defines a neglected range, wherein the neglected range may include a plurality of independent neglected areas.
  • the first detection method is used to define the range of the palm or large area of pressure touch or touch, that is, the neglected range, so the pressure touch or touch in the neglected range can be ignored in the second position detection.
  • the first detection method can be a coarser multi-touch or multi-touch detection method, and the second detection method can accurately detect the pressure touch or touch outside the neglected range, and at the same time, the performance is fast. With the advantage of high precision.
  • the first type of touch or pressure contact detection may be achieved by using the same sensor in the second touch or pressure contact.
  • the first conductive strip and the second conductive strip are a piezoresistive.
  • the layers are separated to detect the charge coupling between the first conductive strip and the second conductive strip as the first detection mode, and the second detection is performed by detecting the pressed intersecting area and the contact point. the way.
  • the contact resistance of each pressure contact can be judged, and can be used to determine the contact area size or ratio of each pressure contact, and can also be used to track the subsequent continuous pressure. Touch, providing additional information not available in the prior art.
  • a device for position detection according to the present invention includes: an inductor comprising a plurality of intersecting regions formed by a plurality of conductive strips being stacked, wherein a pair of contacts that are overlapped in any of the intersecting regions are pressed and conductive The strip forms a depressed intersecting region when the electrical contact forms a contact point; a driver provides a high potential and a low potential respectively; a detector detects one of the at least one conductive strip; a selector Operatively coupling the conductive strips to the driver and the detector; and a controller for performing at least the following operations by controlling the driver, the detector, and the selector: determining pressure contact in the intersecting regions Each of the pressure contacts; and a total contact impedance of each of the pressure contacts, wherein the total contact impedance of the pressure contact across the intersecting regions is a contact impedance of all of the intersecting regions of the pressure contact across the intersecting regions Parallel impedance.
  • the controller further includes tracking a subsequent pressure contact of each pressure contact according to the total contact impedance of each pressure contact, wherein a difference between the total contact impedance of each pressure contact and each subsequent pressure contact is within a preset range, And the pressed intersecting regions corresponding to the same pressure contact are adjacent intersecting regions.
  • the controller further includes determining the contact impedance of each of the depressed intersecting regions, the contact impedance being based on the potential of one of the pair of conductive strips of the depressed intersecting region and another potential at the contact point The position of the point to judge.
  • the determining, by the controller, the contact impedance includes: determining a first dimension position and a second dimension position of the contact point, and determining a first dimension impedance and a first dimension position and the second dimension position according to the first dimension position and the second dimension position a second dimension impedance; detecting one of the pair of conductive strips on the pair of conductive strips when one of the pair of conductive strands and the other of the pair of conductors are respectively supplied with the high potential and the low potential a first contact potential and a second contact potential; and determining the contact impedance, wherein the contact impedance is (R1+R2) / (((VH-VL) / (P1-P2)) - 1), wherein R1, R2, VH, VL, P1, P2 are the first dimensional impedance, the second dimensional impedance, the high potential, the low potential, the first contact potential and the second contact potential, respectively.
  • the controller further includes determining the contact impedance of each of the depressed intersecting regions, the contact impedance being based on one of the pair of conductive strips of the depressed intersecting region and another potential at the contact point Judging by the position of the pressure touching area.
  • the determining, by the controller, the contact impedance comprises: determining a first dimension impedance and a second dimension impedance according to the position of the pressed intersecting region; and providing the high in one of the pair of conductive strips and the other And at the low potential, detecting a first contact potential and a second contact potential of the contact point on the pair of conductive strips with the other; and determining the contact impedance, wherein the contact impedance is (R1+ R2) ⁇ ((VH-VL) / (P1 - P2)) - 1), wherein Rl, R2, VH, VL, Pl, P2 are the first dimensional impedance, the second dimensional impedance, the high potential, The low potential, the first contact potential, and the second contact potential.
  • the controller further includes: determining a pressure contact that is excluded from the pressure touches, wherein any of the excluded pressure touches meet at least one of the following conditions: the total contact impedance is less than a threshold value; and corresponding to the same pressure contact The position of the contact point in which at least one contact point falls outside an error range of the corresponding intersecting area; and determining the position of each of the pressed touches that are not excluded, wherein each of the pressed contacts The position is judged based on the position of the contact point of the depressed intersecting region corresponding to the same pressure contact.
  • the determining, by the controller, the contact point of the depressed intersecting region comprises: selecting one of the pair of conductive strips and the other as a driven conductive strip and a detected conductive strip in turn; providing a high potential Detecting a potential of the detected conductive strip as a position potential when a fourth electric current is located at both ends of the driven conductive strip; electrically coupling an extended resistor and the driven conductive strip to form an extended conductive strip; Providing the high potential and the low current at the potential when the extended conductive strip is not pressed; the high voltage and the low electricity are supplied to the extended conductive strip to detect the extended resistance
  • the potential between the driven conductive strips is used as a pressed potential; and the position of the contact point at the driven conductive strip is determined according to the position potential, the unactuated potential of the driven conductive element, and the pressed potential.
  • the control of the driver, the detector, and the selector includes: directly or through an extension resistor indirectly providing the first end and the second end of the same conductive strip at the high potential and the low power; Directly or indirectly respectively providing the high potential and the low current at the first end of the at least one first conductive strip and the first end of the at least one second conductive strip; detecting between the one of the conductive strips and the extension resistor The signal detecting the first end or the second end of the pair of pressed conductive strips when one of the pair of pressed conductive strips is supplied with the high potential and the low potential a potential of one or both; and detecting a potential of one of the first conductive strips and a second end of the one of the second conductive strips, respectively.
  • the controller further includes: controlling, by the extension resistor, the high potential and the low power to be located at a first end and a second end of the same conductive strip And detecting the signal between the conductive strip and the extension resistor.
  • a method for position detection according to the present invention includes: providing a plurality of intersecting regions formed by a plurality of conductive strips being stacked, wherein a pair of conductive strips stacked in any of the intersecting regions form an electrical contact Forming a depressed intersecting region at the contact point; determining each of the pressure contacts in the intersecting regions; determining a contact impedance of each of the intersecting regions of each of the intersecting regions; and determining each A total contact impedance of the pressure contact across the intersecting regions, the total contact impedance being the parallel impedance of the contact impedance of all of the intersecting regions of the corresponding same voltage contact.
  • the method for position detection further includes tracking a subsequent pressure contact of each pressure contact according to the total contact impedance of each pressure contact, wherein a difference between the total contact impedance of each pressure contact and each subsequent pressure contact is at a preset
  • the depressed intersecting regions within the range and corresponding to the same pressure contact are adjacent intersecting regions.
  • the aforementioned contact resistance is judged based on the potential difference between one of the pair of conductive strips and the other contact point and the position of the contact point.
  • the determining of the contact impedance includes: determining a first dimension position and a second dimension position of the contact point, and determining a first dimension impedance and a second dimension impedance according to the first dimension position and the second dimension position. Detecting a first contact potential and a second contact potential of one of the pair of conductive strips on the pair of conductive strips when one of the pair of conductive strips is provided with a high potential and a low potential And determining the contact impedance, wherein the contact impedance is
  • R1+R2 ( (VH-VL) / (P1-P2) ) -1) , where Rl, R2, VH, VL, Pl, P2 are the first dimensional impedance, the second dimensional impedance, The high potential, the potential, the first contact potential, and the second contact potential.
  • the aforementioned contact resistance is judged based on the potential difference between one of the pair of conductive strips and the other at the contact point and the position of the depressed contact region.
  • the determining of the contact impedance includes: determining a first dimensional impedance and a second dimensional impedance according to the position of the depressed intersecting region; providing a high potential and a low respectively for one of the pair of conductive strips and the other And detecting, at a potential, a first contact potential and a second contact potential of the contact point on one of the pair of conductive strips; and determining the contact impedance, wherein the contact impedance is (R1+R2) / ( ((VH-VL) / (P1-P2) ) -1) , where Rl, R2, VH, VL, Pl, P2 are the first dimensional impedance, the second dimensional impedance, the high potential, the low potential , first contact potential, second contact potential.
  • the method for position detection further includes: determining the excluded pressure contact in the pressure touches, wherein any of the excluded pressure touches meet at least one of the following conditions: the total contact impedance is less than a threshold a value corresponding to the contact point of the same pressure contact at least one contact point falling outside an error range of the corresponding overlap region; and determining each of the pressure touches that are not excluded The position, wherein the position of each of the pressure contacts is determined based on the position of the contact point of the depressed contact region corresponding to the same pressure contact.
  • the determining of the contact point of the pressed intersecting region includes: selecting one of the pair of conductive strips and the other as a driven conductive strip and a detected conductive strip in turn; providing a high potential and a potential; Electrically coupling an extension resistor and the driven conductive strip to form an extended conductive strip; providing the high potential and the low current when the extended conductive strip is not pressed to locate the extended conductive strip to detect the extended resistance
  • the potential between the driven conductive strips acts as an unpressurized potential; the high potential and the low electricity are provided when the extended conductive strip is pressed to locate the extended conductive strip to detect the extension resistance and the driven conductive strip
  • the potential is a depressed potential; and the position of the contact point at the driven conductive strip is determined according to the position potential, the unpressed potential of the driven conductive strip, and the pressed potential.
  • the method for detecting the position further includes: providing a high potential and a low power directly at a first end and a second end of the same conductive strip directly or through an extension resistor; directly or indirectly providing the high potential and the The low voltage is located at the first end of the at least one first conductive strip and the first end of the at least one second conductive strip; detecting the signal between one of the conductive strips and the extension resistor; Detecting the potential of one or both of the first end or the second end of the pair of pressed conductive strips when one of the conductive strips is supplied with the high potential and the potential of the 4 ⁇ ; a potential of one of the first conductive strips and a second end of one of the second conductive strips.
  • the method for detecting the position further includes: when indirectly providing an upper end and a second end of the same conductive strip by the extension resistor, detecting between the conductive strip and the extension resistor The signal.
  • the position error ratio on the conductive strip having the contact resistance across the intersecting regions is determined according to the change of the potential on a position on the conductive strip (such as the first end or the second end). .
  • the position error can be corrected according to the position error ratio.
  • An apparatus for correcting a position error includes: an inductor comprising a plurality of intersecting regions formed by a plurality of conductive strips being stacked, wherein a pair of pressed contacts electrically connected to any of the intersecting regions The strip forms a contacted area when the contact is formed by the electrical contact; a driver provides a high potential and a low potential respectively; a detector detects one of the at least one conductive strip; a selector Operatively coupling the conductive strips to the driver and the detector; and a controller for performing at least the following operations by controlling the driver, the detector, and the selector: detecting one end of each of the conductive strips An unpressed potential; detecting a depressed potential of each of the pressed conductive strips at the end; and determining each of the pressed conductive strips according to the unpressed potential and the pressed potential An error ratio of the contact point on the top.
  • the detecting of the unpressed potential and the pressed potential includes: selecting one of the conductive strips to become a driven conductive strip in turn; electrically coupling an extended resistor and the driven conductive strip to form an extended conductive strip; Providing the high potential and the low current at the potential when the extended conductive strip is not pressed; and providing the high potential and the low electricity when the extended conductive strip is pressed to locate the extended conductive strip to detect the extended resistance
  • the potential between the driven strip and the driven strip is taken as the depressed potential merit (VH-V1,). (VM-Vd;
  • Vu_V (VH Vd) The aforementioned error ratio is (Vu_V (VH Vd) , wherein VH, VL, Vd, and Vu are the high potential, respectively, the [ thir potential, the depressed potential, and the unpressed potential.
  • the controller further includes at least the following operations by controlling the driver, the detector, and the selector: detecting a position of each contact point, when the contacted conductive strip has a contact across the same layer of conductive strips In the case of impedance, the uncorrected position has an error due to the contact resistance of the cross-layer conductive strip; and the error is corrected according to the uncorrected position and the deviation ratio.
  • the detecting of the contact point position includes: selecting one of the pair of pressed conductive strips and the other as a driven conductive strip and a detected conductive strip in turn; providing a high potential and a low potential; The detected potentials of the pair of pressed conductive strips determine the position.
  • the detecting of the position of the contact point includes: electrically coupling an extension resistor and the driven conductive strip to form an extended conductive strip; providing the high potential and the low power as the unvoltageed electric shock when the extended conductive strip is not pressed a bit; and providing the high potential and the low depressed potential when the extended conductive strip is depressed.
  • the controller further includes at least the following operations by controlling the driver, the detector, and the selector: determining the pair of pressed conductive strips according to whether the conductive strips intersecting the intersecting regions are paths, wherein the The detection of the unpressed potential precedes the determination of the pair of depressed conductive strips.
  • the controller further includes at least the following operations by controlling the driver, the detector, and the selector: detecting the contacted conductive according to whether each of the conductive strips and any of the overlapping conductive strips are paths
  • the conductive strips are respectively disposed on the first conductive strip layer and the second conductive strip layer, and a plurality of insulating particles are interspersed between the first conductive strip layer and the second conductive strip layer.
  • a method for correcting a position error includes: providing a plurality of intersecting regions formed by a plurality of conductive strips being stacked, wherein a pair of pressed conductive strips overlapping any of the intersecting regions are electrically Forming a contact point to form a depressed intersecting region; detecting an unpressed potential of one end of each conductive strip; detecting a depressed potential of each pressed conductive strip at the end; The unpressed potential, the depressed potential determines an error ratio of the contact point on each of the pressed conductive strips.
  • the detecting of the unpressed potential and the pressed potential includes: selecting one of the conductive strips to become a driven conductive strip in turn; electrically coupling an extended resistor and the driven conductive strip to form an extended conductive strip; Providing a high potential and a low power on the extended conductive strip when the extended conductive strip is not pressed to detect a potential between the extended resistance and the driven conductive strip as the uncompressed potential; and in the extended conductive strip When the voltage is touched, the high potential and the low electricity are located on the extended conductive strip to detect the potential between the extended resistance and the driven conductive strip as the pressed potential.
  • VvL Vu-Vd
  • the aforementioned error ratio is ⁇ " ⁇ 0 ⁇ , wherein VH, VL, Vd, and Vu are the high potential, the low potential, the depressed potential, and the unpressed potential, respectively.
  • the method for correcting the position error further includes: detecting a position of each contact point, when the contacted conductive strip has a contact impedance across the same layer of the conductive strip, the uncorrected position exists due to the cross-layer conductive strip An error caused by the contact impedance; and correcting the error based on the uncorrected position and the deviation ratio.
  • the detecting of the contact point position includes: selecting one of the pair of pressed conductive strips and the other as a driven conductive strip and a detected conductive strip in turn; providing a high potential and a low power at the The potential of the detected conductive strip is detected as a detecting potential when the two ends of the conductive strip are driven; and the position is determined according to the detecting potentials of the pair of pressed conductive strips.
  • the detecting of the position of the contact point includes: electrically coupling an extension resistor and the driven conductive strip to form an extended conductive strip; and providing the high potential and the low power when the extended conductive strip is not pressed ⁇ 1A3 ⁇ 4 I' ug ⁇ 7 3 ⁇ 4 ⁇ I ⁇ j ⁇ as the uncompressed potential; and the high potential and the low depressed potential when the extended conductive strip is depressed.
  • VP, VH, VL, Vd, and Vu are the detection potential, the high potential, the potential, the depressed potential, and the unpressed potential, respectively.
  • the method for correcting the position error further includes: determining, according to whether the conductive strips intersecting the intersecting regions are paths, determining the pair of pressed conductive strips, wherein the detecting of the unpressed potential is preceded by the pair being pressed The judgment of the conductive strip.
  • the method for correcting the position error further includes: detecting, according to whether each of the conductive strips and any of the intersecting conductive strips is a path, detecting the pressed conductive strips, wherein the conductive strips are respectively located at the first one of the overlapped The conductive strip layer and a second conductive strip layer, and a plurality of insulating particles are interspersed between the first conductive strip layer and the second conductive strip layer.
  • the object of the present invention and solving the technical problems thereof can also be achieved by the following technical solutions.
  • the method for correcting handwritten position error according to the present invention includes: providing a plurality of intersecting regions formed by a plurality of conductive strips being overlapped; determining a pressure contact between the touch and a cross-conductive strip of one hand in the intersecting regions Determining the position of the pressure touch, wherein the pen is pressed against the conductive strip at the same time, the pressure contact position of the pen is caused by an error of the hand across the conductive strip; and the pen is located at the hand pressure Correct the error when touching the conductive strip.
  • the pair of pressed conductive strips stacked in any of the intersecting regions form a depressed intersecting region when the electrical contacts form a contact point, and the pressing position of the pen is determined according to the at least one contact point.
  • the position is judged, wherein the determination of the position of the contact point comprises: alternately selecting one of the pair of pressed conductive strips and the other as a driven conductive strip and a detected conductive strip respectively; providing a high potential Detecting a potential of the detected conductive strip as a detecting potential when a low voltage is located at both ends of the driven conductive strip; and determining a position of the contact point according to the detecting potentials of the pair of pressed conductive strips .
  • the correction of the error includes: detecting an unpressurized potential of one end of the conductive strip of the hand pressure before the conductive strip touched by the hand is not pressed; before the conductive strip of the hand pressure is pressed Measuring a depressed potential of one end of the conductive strip touched by the hand; and correcting the error according to the unpressed potential detected on the conductive strip touched by the hand, the pressed potential and the position of the contact point .
  • the correction of the error is based on an error ratio
  • the determination of the error ratio includes: detecting an unpressed potential of one end of each of the conductive strips; detecting a depressed potential of each of the pressed conductive strips at the end; And determining the error ratio of each of the pressed conductive strips according to the unpressed potential and the pressed potential.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the apparatus and method for position detection of the present invention can quickly detect all contact points, and the position of each contact point can be represented by two-dimensional coordinates.
  • All contact points can be quickly detected.
  • the position of each contact point can be represented by a two-dimensional coordinate.
  • the present invention employs a wider conductive strip, the conductive strip covers a larger detection range than the prior art, and thus a resolution superior to the prior art is obtained.
  • the invention can simultaneously detect contact points of a plurality of different pressure contact pressure touches, which can be used to track subsequent pressure touches and determine different gestures.
  • the contact impedance of the present invention can be judged according to the position of the contact point or the position of the region, and the former can obtain a more accurate contact impedance, and the latter can determine the approximate contact impedance before knowing the contact point, eliminating the need for detection. Measuring the position of the contact point that will be ignored can greatly improve the performance.
  • FIG. 1 is a schematic view of a conventional pressure touch position detecting device
  • FIG. 2A is a schematic structural view of a position detecting device of the present invention.
  • FIG. 2 is a schematic flow chart of a method for position detection according to the present invention.
  • FIG. 3 is a schematic flow chart of driving and detecting the depressed intersecting region of the present invention.
  • FIG. 4A, FIG. 4A and FIG. 4C are schematic diagrams showing the structure of the position detecting device of the present invention for detecting the depressed intersecting regions;
  • FIG. 6A, FIG. 6A and FIG. 6C show the structure of the position detecting device of the present invention for detecting a contact point.
  • FIG. 7 is a schematic flow chart of the detection of the pressed conductive strip of the present invention.
  • FIGS. 8A, 8B and 8C are schematic diagrams showing the structure of the position detecting device of the present invention for detecting a contacted conductive strip
  • Figure 9 is a schematic view of the image of the intersecting region of the tip pressing
  • FIG. 10A and FIG. 10B are schematic diagrams showing an image of a region in which a single finger and a double finger are pressed;
  • FIG. 11A and FIG. 11B are schematic diagrams showing the structure of a device for detecting contact impedance according to the present invention;
  • FIG. 11C is another embodiment of the present invention;
  • FIG. 12A and FIG. 12B are schematic diagrams of writing with a pen or a finger according to the present invention;
  • Figure 12C is a schematic view of a finger press
  • FIG. 13 is a schematic structural diagram of another position detecting device according to the present invention.
  • Figure 14 is a schematic view of the depressed intersecting region in which the error is mistakenly judged
  • Figure 15A is a schematic diagram of detecting the pressure contact position of the pen
  • Figure 15B is a schematic diagram showing positional errors caused by contact resistance across the intersecting regions
  • FIG. 17A, FIG. 17B, FIG. 17C and FIG. 17D are structural diagrams showing the correction of the position error caused by the contact resistance across the intersecting regions according to the present invention.
  • 16B is a flow chart showing the correction of the position error caused by the contact impedance across the intersecting regions according to the present invention.
  • Nib press point 124 Palm press point 12: Finger press point
  • first insulating layer 132 first conductive strip layer 133: piezoresistive layer
  • second conductive strip layer 135 second insulating layer 20: device for detecting position
  • sensor 212 conductive strip 214: intersecting area
  • Controller 26 Host
  • A, B, C, D intersecting area XI, X2, •, X8: first conductive strip
  • Yl, Y2,..., Y8 second conductive strip
  • D1 D3, D4 D5 drive unit VI, V2, V3, V4, V5, V6, V7, V8: detection unit
  • Rpa lm contact resistance across the same layer of strips
  • R1 first dimension impedance
  • R2 second dimension impedance
  • Rc second dimension impedance
  • Re ' impedance
  • VH1, VH2, VH3, VH4, VH5 high potential
  • VL1, VL2, VL3, VL4, VL5 low potential
  • Vc correct detection potential
  • Vd pressed potential
  • Vp Detection potential
  • Vu Unpressed potential
  • the present invention provides a device 20 for position detection, which includes a sensor 21, a selecting device 22, a driving device 23, and a detector 24 (Sensing). , Controller (Control 1 ing Device) 25, Host (Host) 26.
  • the present invention provides a method for multi-point position detection.
  • the detector 21 includes a plurality of conductive strips 212.
  • the conductive strips include a plurality of first and second conductive strips, and the first and second conductive strips are overlapped with a plurality of intersecting regions 214. When at least one pressure object is pressed and touched, part of the first and second conductive strips are in contact to form at least one contact point corresponding to the pressure contact of each pressure contact, wherein the overlapped area is overlapped.
  • the conductive strips are a pair of pressed conductive strips.
  • the first and second conductive strips are kept out of contact when not pressed.
  • the first and second conductive strips may be interspersed with a plurality of spacers therebetween, thereby separating the first First, the second conductive strip.
  • the present invention does not limit the position between the first and second conductive strips above and below, and may be the first conductive strip or the second conductive strip.
  • the first and second conductive strips are arranged in different axial directions to form an intersecting ing matrix arranged by a plurality of intersecting regions.
  • the first conductive strips are arranged in a horizontal direction
  • the second conductive strips are arranged in a vertical direction, and vice versa.
  • the first and second conductive strips are respectively located in different layers.
  • the first and second conductive strips may each have a predetermined width, such that the first and second conductive strips overlap to form an intersecting region. It will be appreciated by those skilled in the art that the width of the conductive strips need not be uniform, and that the conductive strips may be of different widths, and thus the area of the intersecting regions may be different, and the present invention includes but is not limited thereto.
  • the number and area of the intersecting regions of the first and second conductive strips may be different depending on the pressure contact.
  • the contact points on each of the intersecting regions are single, that is, the area of the contact on the intersecting region is regarded as a single contact point regardless of the area of the contact on the intersecting region. .
  • the intersecting area is large, there may be more than two contact points. In this case, According to the sequence of pressure contact, two different contact points are distinguished.
  • the number of contact points in the single overlap region of the present invention includes but is not limited to more than one.
  • the controller 25 is electrically coupled to the selector 22, the driver 23, and the detector 24 for controlling the selector 22, the driver 23, and the detector 24.
  • the selector 22 operatively couples the driver 23 and the detector 24 to the detector 21 in response to a controller 25 command.
  • driver 23 and detector 24 are operatively coupled to detector 21 via selector 22 in accordance with commands from controller 22.
  • the selector 24 selects one or both ends of the at least one conductive strip according to the command of the controller 22, and provides one end or both ends of the selected conductive strip as a coupling end to be electrically coupled to the driver 23 and the detector 24 One or both.
  • the coupling end is directly electrically coupled to the driver 23 or the detector 24 by the selector 22.
  • the coupling end is indirectly electrically coupled to the driver 23 or the detector 24 by the selector 22 in conjunction with an extension resistor.
  • the extension conductive resistor is electrically coupled to the selected conductive strip to form an extended conductive strip, and is electrically coupled to the driver 23 or the detector 24 by the extension resistor, that is, the coupling end is electrically coupled to the driver 23 through the extension resistor or Detector 24.
  • the driver 23 provides a high potential and a low power at the two coupling ends, and the high potential and/or the low potential may be respectively provided to the two coupling ends indirectly or directly through an extension resistor.
  • the coupling ends can be on the same or different conductive strips. For example, it is located at a first end of a first conductive strip and a second end of a second conductive strip.
  • the detector 24 detects the signal at the coupled end, and the detected signal may be a potential, a current, a capacitor, a charge transfer ing or other electrical signal.
  • the coupling end of the operative coupling of the detector 24 can be the first end described above or a second end on the conductive strip relative to the first end.
  • the first end is such that the conductive strip is coupled to the coupling end of the extension resistor.
  • control of the controller 25 for the selector 22, the driver 23, and the detector 24 includes, but is not limited to: providing the first end and the second end of the same conductive strip with high potential and low power, respectively, directly or indirectly through an extension resistor.
  • the first end of the at least one first conductive strip and the first end of the at least one second conductive strip are directly or indirectly connected through an extension resistor; detecting a signal between the conductive strip and the extension resistor; Detecting a potential of one end or both ends of the pair of pressed conductive strips when one of the pair of pressed conductive strips is supplied with a high potential and a low potential; and detecting one of the first conductive strips respectively And a potential of the second end of one of the second conductive strips.
  • controller 25 may be integrated as part of host 26, including but not limited to a host processor, coprocessor, digital signal processor (DSP), or other programmable circuitry. In another example of the invention, controller 25 is not part of host 26.
  • the controller 25 determines the pressure touches according to the signals detected by the detector 24, and one of the objects may cause one or more pressure contacts, for example, the palm press may cause a whole piece of pressure contact, May cause multiple independent pressure contacts.
  • the controller 25 can ignore (exclude or filter) part of the pressure touch according to the signal detected by the detector 24, for example, neglecting the pressure of the palm when handwriting, or ignoring the non-existent pressure touch caused by the misjudgment. .
  • the controller 25 also provides a position for the pressure contact to the host 26.
  • the invention further includes tracking the subsequent pressure touches of the respective pressure touches, and determining at least one gesture according to each of the pressure touches and the subsequent pressure touches, and the gesture correspondence becomes a command, wherein the gestures can be judged by the controller 25 or the host computer 26.
  • the controller 25 is not integrated into a part of the host 26, the position of the pressure contact may be provided by the controller 25, and the above-mentioned pressure touch neglect and gesture judgment may be performed by the host 26, or may be ignored by the controller 25. The position of the pressure contact is then provided, and then the host 26 makes a gesture judgment. Alternatively, one or both of the position or gesture of the host 26 being pressed are provided by the controller 25 after the pressure touch neglect and the gesture determination.
  • the controller 25 is integrated in the host 26, the pressure touch neglect and gestures may be handled by the controller 25, and may also be treated as the host 26.
  • step 310 a high potential and a low power are respectively provided in the first and second conductive strips overlapping each of the intersecting regions, and as shown in step 320, by judging the overlapping of the intersecting regions A gap between the first conductive strip and the second conductive strip is determined as a path.
  • the position detecting device detects the depressed intersecting region as shown in FIG. 4A, and includes a detecting unit VI and a driving unit D1, and the driving unit provides a high The potential VH1 and a low potential VL1, wherein the high potential VH1 is supplied to one of the first conductive strips (XI, X2, ..., X8), and the low potential VL1 is supplied to the second conductive strips (Y1, Y2, Y8)
  • the detecting unit VI detects the conductive strip that is supplied with the high potential VH1.
  • the number of the first conductive strips (XI, X2, ..., X8) and the second conductive strips (Y1, Y2, . . . , ⁇ 8) is for convenience of illustration, and the present invention includes but is not limited to the number.
  • the detection of the first conductive strip provided with the high potential VH1 may include, but is not limited to, detecting potential, current or logic level, and may be at one or both ends of the first conductive strip to which the high potential VH1 is supplied. Detection.
  • the high potential VH1 may be supplied to one of the first conductive strips 1/2, . . . 8) through an extension resistor Re, by detecting the extension resistance Re - The potential, current, or logic level on the side (such as between the extension resistor Re and the conductive strip) to detect the intersecting regions of each depressed contact.
  • the detecting unit VI can detect whether the intersecting regions where the conductive strips XI and Y1 are overlapped are pressed. For example, when it is detected that the intersecting regions of the conductive strips XI and Y1 are detected, the driving unit D1 respectively supplies the high potential VH1 and the low potential VL1 to the conductive strips XI, Y1, as shown in FIG.
  • the driving unit D1 supplies the high potential VH1 and the low potential VL1 to the conductive strips X8, Y7, respectively.
  • the driving unit may also provide a low potential VL1 and a high potential VH1 to one of the first conductive strips (X1, X2, ..., X8) and the second conductive strip (Yl, Y2, . One of .., Y8), as shown in Figure 4C.
  • the driving unit D1 and the detecting unit VI are included in the driver 23 and the detector 24, respectively, and the detection of the detecting unit VI of the driving unit D1 includes but is not limited to the foregoing controller. 25 controls.
  • the controller 25 controls the selector 22, the driver 23, and the detector 24, including but not limited to: indirectly providing high potential and low power respectively at the first end of the at least one first conductive strip and the at least one second conductive strip One end; and detecting a signal between the conductive strip and the extension resistor.
  • FIG. 5 is a schematic flow chart of detecting at least one contact point according to each depressed intersecting region.
  • the conductive strips are respectively driven across the depressed intersecting regions, and the two ends of the driven conductive strips are respectively supplied with a high potential and a low potential.
  • the undriven conductive strips of the pair of conductive strips are detected to detect each Contact point location. For the detection of the undriven conductive strip, one or both ends of the undriven conductive strip can be simultaneously detected.
  • one of the pair of conductive strips that are overlapped in the intersecting region is alternately driven, and another conductive strip that is not driven in the pair of conductive strips is detected
  • To detect the two-dimensional coordinates of the contact point For example, first driving the first conductive strips of the pair of conductive strips and detecting the second conductive strips to detect the position of the contact points in the axial direction of the first conductive strips as a first one in the two-dimensional coordinates The dimensional coordinates are ⁇ .
  • driving the second conductive strips of the pair of conductive strips and detecting the first conductive strips to detect the position of the contact points in the axial direction of the second conductive strips as a second one in the two-dimensional coordinates
  • Dimension coordinates Py Py.
  • the order of driving the first and second conductive strips is not limited. After the first and second conductive strips are detected, the position of the contact points in the axial direction of the first and second conductive strips can be obtained. It is represented by two-dimensional coordinates (Px, Py).
  • the position detecting device 20 detects the contact point as shown in FIG. 6A.
  • the position detecting device includes a plurality of strips, a detecting unit V2 and a driving unit D2.
  • the plurality of conductive strips are the first conductive strips (X1, X2, ..., X8) and the second conductive strips (Y1, Y2, ..., Y8).
  • the driving unit provides a high potential VH2 and a low potential VL2 to drive one of the plurality of conductive strips, and the detecting unit V2 detects one of the conductive strips that overlap the driven conductive strip. Therefore, when the driven conductive strip and the detected conductive strip are overlapped in a depressed contact region, the detecting unit V2 can detect the position of the contact point P in the axial direction of the driven conductive strip.
  • the driving unit first provides a high potential VH2 and a low potential VL2 at both ends of the conductive strip X8, and detects the conductive Strip Y7, to detect the position of the contact point ⁇ in the axial direction of the conductive strip 8 (the axial direction of the first conductive strip).
  • VH2 high potential
  • VL2 low potential
  • the driving unit further supplies a high potential VH2 and a low potential VL2 to both ends of the conductive strip Y7, and detects the conductive strip X8 to detect that the contact point P is located in the axial direction of the conductive strip Y7 (second conductive The position of the strip is axially Px.
  • the driving unit D2 and the detecting unit V2 are included in the foregoing driver 23 and the detector 24, respectively, and the detecting of the detecting unit V2 of the driving unit D2 includes but is not limited to the foregoing controller. 25 controls.
  • the controller 25 controls the selector 22, the driver 23, and the detector 24, including but not limited to: providing the first end and the second end of the same conductive strip with high potential and low power, respectively, directly or indirectly through an extension resistor; When one of the pair of depressed conductive strips is supplied with a high potential and a low potential, the potential of the other end or both ends of the pair of pressed conductive strips is detected.
  • the driving unit D1 and the detecting unit VI respectively detect the overlapping regions to detect all the depressed intersecting regions
  • the driving unit D2 and the detecting unit V2 are sequentially respectively Detecting each of the intersecting regions to detect an axial two-dimensional image of a first conductive strip and a second conductive strip in each of the intersecting regions, and then according to each of the pressed intersecting regions 1.
  • the position of the contact is determined in the axial two-dimensional image of the second conductive strip.
  • the performance of this example is poor compared to the above-mentioned first picking out the depressed intersecting regions and detecting the position of each contact point only for the depressed intersecting regions.
  • the detection of the detection unit VI may include but is not limited to detecting potential, current or logic level, and the detecting unit V2 detects the actual value of the signal, such as the voltage value and the current value. And each of the intersecting regions must be detected in two dimensions, so the detection of the pressed intersecting regions is much faster than the detection of the contact points.
  • the number of the first conductive strips (XI, X2, ..., X8) and the second conductive strips (Y1, Y2, ..., Y8) is for example only, and is not intended to limit the invention, the first conductive strip and the second The number of conductive strips can vary depending on the design requirements. Therefore, when the first and second conductive strips respectively have m, n, there will be m*n intersecting regions to be detected, and the more the first and second conductive strips are, the time for detecting all the intersecting regions will be The longer it is. Therefore, accelerating the detection of all intersecting regions can improve the overall performance.
  • step 710 a plurality of strips on the device for detecting position detection are pressed against the conductive strips.
  • step 720 it is determined that the pressed conductive strips are overlapped by the pressed conductive strips and may be pressed against the intersecting regions.
  • step 730 at least one depressed intersecting region is detected on the device that is capable of detecting position detection by the depressed intersecting region.
  • step 740 at least one contact point is detected based on each of the depressed intersecting regions.
  • the first and second conductive strips that are pressed may determine that the intersecting regions may be pressed.
  • the depressed intersecting regions are detected for all the intersecting regions, and this example only needs to detect the pressed overlaps for the possible pressed intersecting regions. Area.
  • the position detecting device detects the depressed conductive strip as shown in Fig. 8A.
  • the position detecting device includes a plurality of conductive strips, a detecting unit V3 and a driving unit D3.
  • the plurality of conductive strips are the first conductive strips (XI, X2, X8) and the second conductive strips (Yl, Y2, ..., Y8).
  • the driving unit D3 respectively supplies a high potential VH3 to one of the conductive strips, and provides all the conductive strips which are overlapped with the high potential VH3 conductive strips with a low potential VL3 to respectively detect the pressed conductive strips. .
  • the driving unit D3 sequentially supplies the high potential VH3 to one of the first conductive strips (XI, X2, ..., X8), and provides a low potential VL3 to be supplied with a high potential VH3.
  • All of the second conductive strips 1, ⁇ 2, ..., ⁇ 8) of the first conductive strips are overlapped, and the detecting unit V3 detects the first detected nanometer that is supplied with the high potential VH3.
  • the first conductive strips 1 ⁇ 2, . . . , or 7 are not pressed, so current is not flown by the detected first conductive strips X1, X2, . . . , or X7 to any of the second conductive strips.
  • the detecting unit V3 does not detect that the first conductive strip XI, X2, . . . , or X7 is pressed.
  • the first conductive strip X8 is supplied with the high potential VH3
  • the current flows from the first conductive strip X8 to the second conductive strip Y7, so the detecting unit V3 can detect that the first conductive strip 8 is pressed.
  • the driving unit D3 sequentially supplies the high potential VH3 to one of the second conductive strips (Y1, ⁇ 2, ..., ⁇ 8), and the Witt ground potential VL3 is overlapped with the second conductive strip to which the high potential VH3 is supplied. All of the first conductive strips (X1, ⁇ 2, ..., ⁇ 8), the detecting unit V3 thereby detecting the second conductive conductive layer being pressed, such as the second conductive strip ⁇ 7.
  • the detection of the conductive strip provided with the high potential VH2 is similar to the detection of the first conductive strip provided by the high potential VH1, which may include but is not limited to detecting potential, current or logic level, and may be One or both ends of the first conductive strip of the high potential VH3 are provided for detection.
  • the high potential VH3 may be supplied to one of the conductive strips through an extension resistor Re by detecting the extension resistance Re-side (such as between the extension resistance Re and the conductive strip). Potential, current or logic level to detect each of the depressed conductive strips.
  • At least one of the possibly depressed contact regions of the pressed contact strips can be judged by the plurality of conductive strips (e.g., the conductive strips X8, Y7) being pressed.
  • the intersecting area is not more than three, the depressed intersecting area may be the depressed intersecting area.
  • the driving unit D3 can simultaneously supply the high potential VH3 to the majority of the conductive strips, and the detecting unit V3 can simultaneously detect some or all of the conductive strips that are supplied with the high potential VH3, but are provided with the conductive strips of the high potential VH3. Must be either the first conductive strip or the second conductive strip at the same time.
  • the above-mentioned conductive strips are selectively selected for driving or detecting, and those skilled in the art can push It is to be understood that the selection of the conductive strips may include, but is not limited to, switching devices such as switches, multiplexers, buses, etc., and the invention is not limited thereto. Further, the above-described high potentials VH1, VH2, and VH3 may be the same or different. Similarly, the above-described low potentials VL1, VL2, and VL3 may be the same or different, and the present invention is not limited thereto. Furthermore, the above-mentioned extension resistors may be the same or different, and the invention is not limited thereto.
  • the driving unit D3 and the detecting unit V3 are included in the foregoing driver 23 and the detector 24, respectively, and the detection of the detecting unit V3 of the driving unit D3 includes but is not limited to the foregoing controller. 25 controls.
  • the controller 25 controls the selector 22, the driver 23, and the detector 24, including but not limited to: indirectly providing high potential and low power respectively at the first end of the at least one first conductive strip and the at least one second conductive strip One end; and detecting a signal between the conductive strip and the extension resistor.
  • all the contact points can be detected to show the image of the intersecting area as shown in FIG.
  • the contact of the pressure contact causes the image of the intersecting area to exhibit a corresponding contact signal.
  • the image of the intersecting area will present a corresponding plurality of contact point signals, as shown in Fig. 10A.
  • the contact points corresponding to the same pressure contact are grouped together as shown in Fig. 10B, so that the corresponding contact points of the respective pressure contacts can be analyzed.
  • the time at which each contact is generated may also be utilized to analyze the corresponding contact points of the respective pressure contacts.
  • the shape of the pressure contact can be determined according to the number of contact points of each pressure contact. For example, whether the pressure contact is a pen or a finger can be determined according to the number of corresponding contact points of the pressure contact. In addition, the pressure at the pressure contact of the pressure contact can be simulated according to the corresponding number of contact points of the pressure contact.
  • a gesture can be determined according to the pressure contact position trajectory of the pair of pressure contacts, and the pressure contact position trajectory of the pair of pressure contacts includes: away from each other, one pressure contact away from the other pressure contact, and close to each other, The pressure contact is moved toward the other pressure contact, rotates with each other, and a pressure contact rotates around the other pressure contact.
  • each pressure contact object may be judged as one stroke or one finger according to the number of contact points corresponding to each pressure contact object, or may be simulated according to the number or distribution range of contact points corresponding to each pressure contact object.
  • the pressure at which each pressure contact is pressed When a corresponding contact point of a pressure contact is a plurality of points, the position of the center of mass corresponding to the contact point of each pressure contact can be used as the pressure contact position of the pressure contact.
  • an example of the present invention is a position detecting device, which includes a plurality of conductive strips, a first and second driving unit, and a first and second detecting unit.
  • the conductive strips comprise a plurality of first and second conductive strips, wherein the first and second conductive strips are overlapped with the plurality of intersecting regions, and when the at least one pressure contact is pressed, the first and second conductive strips are in contact Forming corresponding to each pressure contact Less contact points.
  • the first driving unit and the first detecting unit may be as described in steps 310 and 320 of FIG. 3 or the driving unit D1 and the detecting unit VI of FIG. 4A to FIG. 4C, respectively, providing a high potential and a first driving unit respectively.
  • the second detecting unit detects the first conductive strip provided by the first driving unit with a high potential to detect each pressed phase The area.
  • the second driving unit and the second detecting unit may be as described in steps 510 and 520 of FIG. 5 or the driving unit D2 and the detecting unit V2 of FIG. 6A to FIG. 6C, and the second driving unit is respectively driven to be superposed on each of the pressed units.
  • the second detecting unit detects that the pair of conductive strips are not driven when the one of the pair of conductive strips that are overlapped in any of the pressed intersecting regions is driven by the second driving unit.
  • the conductive strips are driven to detect the position of each contact point, wherein the second driving unit provides a high potential and a low power to be located on the driven conductive strip.
  • another example of the present invention is a position detecting device, including a plurality of conductive strips, a first, second, and third driving units, and a first, second, and third detecting units.
  • the conductive strips comprise a plurality of first and second conductive strips, wherein the first and second conductive strips are overlapped with the plurality of intersecting regions, and when the at least one pressure contact is pressed, the first and second conductive strips are in contact At least one contact point corresponding to each pressure contact is formed.
  • the first driving unit and the first detecting unit may be as described in steps 710 to 740 of FIG. 7 or the driving unit D3 and the detecting unit V3 of FIGS. 8A to 8C.
  • the first driving unit selectively provides a high power respectively.
  • the conductive strip is located on the conductive strip, and the first detecting unit detects a conductive strip that is supplied with a high potential by the first driving unit to detect a plurality of conductive strips that are pressed.
  • the intersecting regions where the pressed conductive strips overlap are those which may be pressed against the intersecting regions.
  • the first driving unit When the conductive strip provided by the first driving unit as a high potential strip is the first conductive strip, the first driving unit provides a low electric current on all the second conductive strips, and when the first driving unit provides a high potential conductive strip as the first In the case of two conductive strips, the first driving unit provides a low power at all of the first conductive strips.
  • the second driving unit and the second detecting unit may be as described in steps 310 and 320 of FIG. 3 or the driving unit D1 and the detecting unit VI of FIGS. 4A to 4C, and selectively provide high potentials respectively in the second driving unit.
  • the second detecting unit detects the first conductive strip that is supplied with the high potential by the second driving unit to detect the first conductive strip that is connected to each of the possible depressed regions. Each is pressed against the intersecting area.
  • the third driving unit and the third detecting unit may be as described in steps 510 and 520 of FIG. 5 or the driving unit D2 and the detecting unit V2 of FIG. 6A to FIG. 6C, and the third driving unit is respectively driven to be superposed on each of the pressed units.
  • the third driving unit detects that the pair of conductive strips are not Driving the conductive strip to detect the position of each contact point, wherein the third driving unit provides high potential and low The electricity is located on the driven strip.
  • the driving and detecting method of the winter invention does not cause the contact point signal after the detection to be weak due to too many contact points in the front, and does not need to be different for different detection areas. Judging criteria.
  • the present invention can not only detect which intersecting regions are pressed, but also determine the position of the contact points in the intersecting regions, that is, the present invention can obtain higher resolution with fewer conductive strips.
  • an example of the present invention is a position detecting device, which may include the plurality of conductive strips, a first, second, third, and fourth driving units, and a first, second, and third detecting unit. The measuring unit, and a fourth and fifth detecting unit.
  • the conductive strips comprise a plurality of first and second conductive strips, wherein the first and second conductive strips are overlapped with the plurality of intersecting regions, and when the at least one pressure contact is pressed, the first and second conductive strips are in contact At least one contact point corresponding to each pressure contact is formed. According to the above description, each of the depressed intersecting regions and the contact points in the intersecting regions of the pressed contacts can be respectively detected when at least one of the pressure contact is pressed.
  • a method and apparatus for determining contact impedance based on a contact point position are provided, and contact impedance determination of each contact point is performed after each contact point is detected.
  • the fourth driving unit and the fourth and fifth detecting units respectively provide a high potential VH4 and a low potential VL4 driving unit D4 and detecting units V4 and V5 as shown in FIG.
  • the fourth driving unit selectively provides a high potential VH4 and a low potential VL4 in each of the depressed intersecting regions, and the detecting units V4 and V5 respectively detect that the supplied high potential VH4 is in contact with the low potential VL4 conductive strip. Point potential.
  • the detecting unit V4 detects a first potential P1 located at the other end of the first conductive strip
  • the low potential VL4 is When the one end of the second conductive strip is pressed in the intersecting region, the detecting unit V5 detects a second potential P2 located at the other end of the second conductive strip. Since the resistance value is roughly proportional to the position on the conductive strip uniformly distributed, the resistance values R1 and R2 can be respectively estimated from the positions of the contact points at the first and second conductive strips, respectively, according to the high potential VH4.
  • the low potential VL4, the first and second potentials P1 and P2 and the resistance values R1 and R2 can calculate the contact impedance 11 between the first and second conductive strips at the contact point.
  • a contact impedance determination program is included, and the contact impedance determination program can be operated by the controller, including but not limited to determining the contact impedance of each of the depressed intersecting regions, the contact The impedance is judged based on the potential of one of the pair of conductive strips in the depressed intersecting region and the other potential at the contact point and the position of the contact point.
  • the determining of the contact impedance includes: determining a first dimension position and a second dimension position of the contact point, and determining a first dimension according to the first dimension position and the second dimension position. Impedance and a second dimensional impedance; detecting a first contact potential of one of the pair of conductive strips on the pair of conductive strips when one of the pair of conductive strips is provided with a high potential and a low potential a second contact potential; determining a contact impedance according to the first dimension impedance, the second dimension impedance, the high potential, the low potential, the first contact potential, and the second contact potential.
  • the driving unit D4 and the detecting unit V4, V5 are included in the foregoing driver 23 and the detector 24, respectively, and the driving unit D4 and the detecting unit V4, V5 include but are not limited to the foregoing controller. 25 controls.
  • the control of the controller 25 for the selector 22, the driver 23, and the detector 24 includes, but is not limited to, providing a high potential and a low power directly at least at a first end and at least one of the first conductive layers directly or through an extension resistor. a first end of the second conductive strip; and respectively detecting a potential of one of the first conductive strips and the second end of one of the second conductive strips.
  • the method and apparatus for determining the contact impedance according to the position of the intersecting region may be based on the position of the depressed intersecting region to estimate the resistance values R1 and R2, as shown in FIG. 11B.
  • the resistance values R1, R2 may be estimated based on the number of intersecting regions between the high potential and the low potential provided on the first and second conductive strips, respectively, according to the depressed intersecting regions. For example, when there are m intersecting regions between the depressed intersecting region and the end to which the high potential VH4 is supplied, the resistance value R1 is m units, and may also be m+1 units including the depressed intersecting region. .
  • the resistance R1 is n units, and may also be n+1 including the depressed intersecting regions. unit. Therefore, the estimation of the resistance values R1 and R2 may be after the judgment of the depressed detection area and before the contact point is detected.
  • a method and apparatus for determining contact impedance based on position includes a contact impedance determination program, and the itb ⁇ J ⁇ determination program may be operated by the controller, including but not limited to determining each The contact impedance of the intersecting region is judged by the position of one of the pair of conductive strips in the depressed intersecting region and the position of the other at the contact point and the region where the depressed portion is pressed.
  • the determining of the contact impedance includes: determining a first dimension impedance and a second dimension impedance according to the position of the depressed intersecting region; providing high potential and low potential respectively in one of the pair of conductive strips and the other Detecting a first contact potential and a second contact potential of one of the pair of conductive strips on the pair of conductive strips; according to the first dimension impedance, the second dimension impedance, the high potential, the low potential, and the first contact potential The contact resistance is determined with the second contact potential.
  • the potential difference between the depressed conductive strips, the first guide can determine the contact resistance of the first conductive strip and the second conductive strip at the contact point.
  • the detection of each of the pressed and intersecting regions may be detected by the first potential P1 or the fifth detecting unit V5 detected by the fourth detecting unit V4.
  • Two potentials P2 to judge. For example, when the first potential P1 is not at the high potential VH4 or the second potential P2 is not at the low potential VL4, it is judged that the intersecting region where the high and low potentials are supplied is the depressed intersecting region. For example, when the potential difference between the first potential P1 and the second potential P2 is not the potential difference between the high potential and the low potential, it is judged that the intersecting region where the high and low potentials are supplied is the depressed intersecting region. It is well known to those skilled in the art that the determination of whether the first potential P1 is at the high potential VH4 and whether the second potential P2 is at the low potential VL4 is allowed to be within an error range.
  • the intersecting regions of the pressed regions can be respectively determined, and the intersecting regions of the 3 ⁇ 4 ⁇ touches are electrically one.
  • the detection of the depressed intersecting region may be determined according to one or both of the first potential and the second potential (eg, determining whether the first conductive strip and the second conductive strip are paths), and detecting The contact resistance of the first conductive strip and the second conductive strip at the contact point in the depressed intersecting region can be judged while being pressed against the intersecting region.
  • the manner in which the depressed intersecting regions are described in FIG. 11A or FIG. 11B may be determined by first determining the pressed conductive strip and then according to the pressed conductive. The strip judges that the intersecting area may be pressed, and then the pressed intersecting area is judged by the pressing intersecting area.
  • one of the high potential VH4 and the low potential VL4 is operatively coupled to a conductive strip, and the other operability of the high potential VH4 and the low potential VL4 is coupled to the plurality of conductive strips to determine that the strip is pressed. Touch the strip.
  • the high potential VH4 sequentially operatively couples each of the first conductive strips.
  • the low potential VL4 simultaneously couples all of the second conductive strips, according to the first conductive strip and the second conductive strip. Whether it is a path to determine the first conductive strip that is pressed. For example, whether the first conductive strip operatively coupled is a pressed conductive strip is determined according to whether the first potential P1 detected by the detecting unit V4 is equal or close to the high potential VL4.
  • the high potential VH4 is coupled to all the first conductive strips
  • the low potential VL4 is operatively coupled to each of the second conductive strips in sequence, and the pressed contact is determined according to whether the first conductive strip and the second conductive strip are paths.
  • the second conductive strip Next, according to all the pressed conductive strips, it is determined that the intersecting regions may be pressed, for example, the overlapping regions of all the pressed first conductive strips and the pressed second conductive strips may be pressed as possible Touch the intersecting area. Then, according to the above-mentioned judgment of the depressed intersecting regions, the depressed intersecting regions are discriminated, and the contact resistance on each of the pressed intersecting regions can be simultaneously determined.
  • the contact regions of the pressed regions can be judged without extending the resistance, and the contact points and contact impedances of the depressed regions can be determined.
  • the contact impedance can be judged before the contact point. Judgment.
  • the position detecting device detects the depressed intersecting region as shown in FIG.
  • 11C includes detecting units VI, V6, V7 and a driving unit D1, and the driving unit D1 provides a a high potential VH1 and a low potential VL1, wherein the high potential VH1 is supplied to one of the first conductive strips (X1, X2, ..., X8), and the low potential VL1 is supplied to the second conductive strip (Yl, Y2, One of ..., Y8), the detecting unit VI detects the conductive strip that is supplied with the high potential VH1.
  • the detection of the first conductive strip provided with the high potential VH1 may include, but is not limited to, detecting potential, current, or logic level.
  • the high potential VH1 may be supplied to one of the first conductive strips (XI, X2, ..., X8) through an extension resistor Re by detecting the extension resistance Re-side ( For example, the potential, current or logic level on the extension resistor Re and the conductive strip) detects the intersecting regions of each pressed contact.
  • the high potential VH1 and the low potential VL1 are respectively provided at a first end of the first conductive strip and the second conductive strip.
  • the reusable detecting units V6 and V7 respectively detect the first conductive strip and the second conductive strip which are overlapped with the pressed intersecting region.
  • the intersecting regions of the pressed regions can be respectively determined, and the first and second conductive regions in the intersecting regions of the touches are respectively determined.
  • the resistance R between the bars when the driving unit D1 provides the high potential VH1 and the low potential VL1 to each of the intersecting regions, the intersecting regions of the pressed regions can be respectively determined, and the first and second conductive regions in the intersecting regions of the touches are respectively determined.
  • the resistance R between the bars is respectively determined.
  • the driving unit D1 and the detecting unit VI, V6, and V7 are included in the driver 23 and the detector 24, respectively, and the driving unit D4 and the detecting unit V4, V5 include, but are not limited to, the foregoing.
  • the controller 25 controls.
  • the control of the controller 25 for the selector 22, the driver 23, and the detector 24 includes, but is not limited to: providing the high potential and the low power directly at the first end and the at least one of the at least one first conductive strip directly or indirectly through an extension resistor. a first end of the second conductive strip; detecting a signal between the conductive strip and the extension resistor; and detecting a potential of one of the first conductive strips and the second end of the one of the second conductive strips, respectively.
  • the pressure contact of a single object may simultaneously touch a plurality of adjacent overlapping regions, as shown in FIG. 12C, so that the distance between the contact points of adjacent intersecting regions can be used to determine whether the pressure of the same object is, for example,
  • the distance between the contact points of two adjacent intersecting regions in the same axial direction does not exceed the width of one intersecting region, and can be regarded as the pressure contact of the same object.
  • the distance between the contact points of the two overlapping sections in the diagonal position does not exceed the diagonal width of the single-phase overlapping zone, and can also be regarded as the pressure contact of the same object.
  • the present invention includes but is not limited to the above-mentioned contact points. Whether the judgment of the distance is the pressure of the same object.
  • the contact resistance R between the first and second conductive strips in the adjacent intersecting regions pressed by the object may be regarded as the parallel contact impedance as the total contact impedance of the same object pressure contact.
  • the two adjacent intersecting regions are the pressure contact of the same object, and are regarded as two adjacent intersecting regions under the same pressure contact, and the contact impedances of the contact points between the first and second conductive strips in the two adjacent intersecting regions are respectively
  • the total contact resistance of the pressure contact is l / (RaRb / Ra + Rb). Accordingly, the contact trajectory of an object can be tracked by the parallel contact impedance of adjacent intersecting regions.
  • the total contact resistance of the pressure contact in a single intersecting region and the pressure contact in a plurality of adjacent intersecting regions is not large, and thus can be used to determine whether the adjacent depressed intersecting region is With the pressure of the finger.
  • the pressure points of each other can be distinguished according to the resistance values of the two fingers at the previous pressure contact.
  • the total contact resistance of the first pressure contact may be respectively determined according to The total contact impedance of the second pressure contact determines that the adjacent depressed intersecting regions are two different pressure contacts of the first subsequent pressure contact and the second subsequent pressure contact, instead of the same pressure contact, and can be further judged Two different pressure touches.
  • the determination of the moving direction and the total contact impedance of the first subsequent pressure contact and the second subsequent pressure contact may also be determined by the watershed algorithm according to the contact impedance of each of the pressed intersecting regions.
  • a watershed algorithm is performed based on the contact impedance of each contact point, wherein the weight is inversely proportional to the contact resistance.
  • it may be determined as a single pressure contact or a multiple pressure contact according to the total contact impedance of the adjacent depressed intersecting regions.
  • the two contact points which are the farthest distance are respectively used as the positions of the two pressure contacts.
  • the palm when the pen is written by the hand, the area of the pen tip pressing portion 122 is small, so the contact resistance R between the first and second conductive strips at the contact point is large, and conversely, the palm may have a Or a plurality of palm pressing portions 124, and each of the palm pressing portions 124 has a large area, that is, the contact resistance R between the first and second conductive strips of the palm pressing portion 124 is small, so that the area can be clearly The pressure contact 124 of the palm is separated.
  • the palm press is at 124. Accordingly, the pressure difference between the pen, the finger, and the palm can be distinguished by different threshold values depending on the resistance R between the first and second conductive strips at the pressure contact.
  • the contact resistance R can be calculated before or after the contact point is detected. Since the detection of the potential value takes a long time, if the contact resistance R is judged before the contact point is detected, only the contact point of the non-palm pressure contact can be detected, and the potential of the contact point of the palm pressure contact can be omitted. Detection, with the advantage of improved performance.
  • the coordinates of the pressure contact can be calculated from the centroid coordinates of the contact points under the pressure contact.
  • the contact impedance of the pressed intersecting regions is determined, and
  • the intersecting regions of the object's pressure contact respectively determine the total contact impedance of each object's pressure contact.
  • the parallel contact impedance of the intersecting region of the same object pressing may be used as the total contact impedance, and the contact point of the intersecting region of the same pressure contact may be determined according to whether the intersecting region is adjacent to determine whether it is the same object. The position at which the object is pressed.
  • the continuous contact pressure of the same object can be tracked according to the total contact impedance of adjacent intersecting regions, that is, the total contact impedance of the object in continuous motion is similar, and the total contact impedance is detected and contacted at different times before and after.
  • the position is within a predetermined range and can be judged as a continuous pressure contact of the same object, and the pressure contact trajectory of the object is tracked by the total contact impedance of each of the pressure contacts in the continuous pressing of the object.
  • the neglected depressed intersecting region or pressure contact can be determined according to the total contact impedance of each object, and the contact points on the neglected depressed intersecting regions need not be detected.
  • the total contact impedance caused by the pressure contact of each part can be judged as the pressure contact of the palm, and ignored, so when handwriting or handwriting with a finger, the difference can be clearly distinguished. Pressing the pressure of the pen or finger and the pressure of the palm of the hand, and detecting only the position of the pen or finger pressing, or tracking the total contact impedance of each of the pressure contacts of the pen or finger.
  • the pressure trace of the pen or finger the present invention distinguishes between pressure contact and contact by whether or not the conductive strip is contacted by pressure.
  • the device for detecting the position of the piezoresistive layer may include a first insulating layer 131, a first conductive strip layer 132, and a piezoresistive layer 133.
  • the first and second conductive strip layers 132, 134 respectively include the first and second conductive strips.
  • the piezoresistive layer 133 is insulated when it is not subjected to pressure, that is, the resistance is extremely large, and the resistance value is lowered when pressed, and even becomes a conductor.
  • the piezoresistive layer 133 can replace the above-mentioned insulating spacers, and when pressed, an alternative contact point can be generated between the first and second conductive strips due to the decrease in the resistance of the piezoresistive layer 133 under pressure.
  • capacitive pressure touch detection can be performed before the piezoresistive layer is insulated as a conductor.
  • mutual capacitive touch detection is adopted, so that when the piezoresistive layer is insulated You can detect multiple touches. For example, it is possible to detect which intersecting regions are touched.
  • the above-mentioned pressure contact type pressure touch detection can be performed, so that which intersecting regions are touched and which intersecting regions are pressed. Therefore, the contacted intersecting region of the capacitive touch and the depressed intersecting region of the pressure-contact pressure contact can be applied to the confirmation of the position detection, or applied to the above-mentioned palm neglect.
  • the contact point determination is made only for the touched intersecting region that is simultaneously capacitively touched and the depressed intersecting region of the pressed contact.
  • the contact point detection is performed after the touched intersecting area which is also capacitively touched is excluded from the pressed contact area of the pressure contact type.
  • the detection position of the two different multi-point pressure detection can be used to ignore or exclude the pressure contact position of the palm to identify the pressure of the pen. touch.
  • the present invention includes, without limitation, performing the same two types of sensors 21 to On the touch or pressure detection, a plurality of sensors 21 can be used for most kinds of touch or pressure detection, and the palm touch can be ignored or the palm pressure can be eliminated by different touch or pressure detection results. The area touched.
  • IR type infrared type
  • Capaci t ive type capacitive type
  • res ive type pressure touch type
  • optical type Limera type or Opt ical type
  • SAW type surface acoustic wave type
  • the present invention provides a device and method for ignoring the palm of the hand by using a multi-position detection method, including but not limited to the detection method of the second type of touch or pressure touch by the first type of touch or pressure touch detection mode.
  • a neglected range is defined, wherein the neglected range may include a plurality of independent neglected areas.
  • a capacitively detected touched intersecting region defines a neglected range, and in addition to optical detection (such as infrared), the detected touch in the ignored range is considered non-existent.
  • the first detection mode is a detection mode capable of detecting multiple touches or multiple touches.
  • a capacitive capacitive sensor mutual capacitance detection is performed, and a plurality of touched intersecting regions are detected, and a neglected range is defined according to the touched intersecting region, for example, each touched intersecting region Extend a range outward as a neglected area.
  • the touched intersecting region is judged based on the amount of change in capacitance between the first conductive strip and the second conductive strip in each of the intersecting regions. It is also possible to use the above-mentioned sensor 21 for mutual capacitance detection, in which all touched intersecting regions are ignored.
  • the mutual capacitance detection is to determine the touched intersecting region by detecting the change of the signal of each of the second axial conductive strips when the first axial conductive strip is supplied with the driving signal.
  • the pressure touch detection is performed on the pressure touch sensor, and the surrounding area is defined by the pressed intersecting area or the contact point, wherein the neglected range can be further expanded according to the contact impedance of the pressed intersecting area.
  • the contact impedance of any depressed intersecting regions falls within a range (eg, less than one threshold, and The overlapping regions adjacent to the depressed intersecting regions where the contact impedance falls within the range are also defined as the neglected range.
  • the present invention further includes the contact impedance according to the contacted regions of the depressed portions, which are pressed In the intersecting area, the pressed intersecting area of the pen or the finger pressing is excluded or the contact point which is pressed by the pen or the finger is excluded from the contact point, and the defined area is defined as described above.
  • the intersecting regions A, B, and C are simultaneously pressed, and when the first conductive strip and the second conductive strip of the intersecting region D are respectively provided with a high potential VH1 and a low potential VL1, The overlap region is not pressed, and the current flows from the first conductive strip on the intersecting region D through the intersecting regions A, B, and C to the second conductive strip on the intersecting region D, forming a via, resulting in a intersecting region. D is mistakenly judged as being pressed and intersected.
  • the present invention provides an apparatus and method for detecting a positional misjudgment, which may negate or exclude contact of a contact point position outside the detected intersecting area when detecting a contact point of the depressed intersecting area. point.
  • the controller does not output a position of the contact point that falls outside of the detected intersecting region.
  • the determination of the position of the contact point on the detected depressed intersecting region is allowed to be within an error range, for example, the contact point position is enlarged outwardly in the detected depressed intersecting region. It is excluded or ignored when it is outside the scope.
  • the depressed or excluded pressure contact may include a plurality of contact points, wherein at least one of the contact points falls outside of the above error range.
  • a depressed or excluded pressure contact may include a plurality of contact points, wherein all of the contact points fall outside of the above error range.
  • the intersecting regions A and B may be caused by the pressure contact of the palm, thereby causing a misjudgment of the intersecting region D, and thus the above-mentioned misjudgment contact point or misjudgment is pressed against the intersecting region.
  • Neglect or disposition is also an application of palm neglect, that is, neglecting the pressure of the palm.
  • the determination of the contact point falling within the detected depressed intersecting region may be judged on the judgment of an axial position. That is, when the above-mentioned first-dimensional coordinate Px is detected, it is not necessary to perform the detection of the second one-dimensional coordinate Py.
  • a filter program is further included, and the filter program may be operated by the foregoing controller.
  • the filtering process includes determining the pressure taps that are excluded from the pressure taps. Any excluded pressure contact satisfies at least one of the following conditions: the total contact impedance is less than the aforementioned threshold value; and the position of the contact point corresponding to the same pressure contact at least one contact point falls within the corresponding intersecting region Out of the aforementioned margin of error.
  • the filtering program further includes determining a position of each of the pressure touches that are not excluded, wherein the position of each pressure touch is according to the contact point of the pressed intersecting area corresponding to the same pressure contact. Position to judge.
  • the determination of the contact impedance may be the detection of the touched intersecting region, that is, prior to the contact point. Therefore, by the above filtering procedure, the detection of the contact point can be greatly reduced. Therefore, in an example of the present invention, the detection of the contact impedance is prior to the detection of the contact point, and in the filtering procedure, the determination that the total contact impedance is less than the threshold value is prior to the detection of the contact point. In other words, in the filtering process, it may be determined whether the total contact impedance is less than the threshold value, and then it is determined whether the position corresponding to the contact point of the same pressure contact exists at the corresponding phase. The aforementioned error range of the overlap region is outside.
  • the filtering process in the filtering process, it may be determined that the position of the contact point corresponding to the same pressure contact exists at least one contact point falls on the eve of the aforementioned error range of the corresponding intersecting area. Then, it is judged whether the total contact impedance is smaller than the aforementioned threshold value. That is, the contact point is judged first, and the pressure contact of the misjudgment is excluded, and then the pressure contact that excludes the total contact impedance is less than the threshold value of the threshold, for example, the palm is ignored.
  • the detection list is described in accordance with FIG. 6A.
  • the potential Vp detected by the element V2 the detected pressure contact position of the pen is at the pressure contact position P, and the pressure contact position P is the same as the actual pressure contact position of the pen.
  • the palm pressure contact range may form a total contact resistance Rpalm across a plurality of conductive strips (same layer conductive strips) at the pressure touch position of the detecting pen. At P, the total contact resistance Rpalm may cause an error in the pressure contact position P.
  • an extension resistor Re is provided to electrically couple a conductive strip to form a driven conductive strip, and respectively provide a first high potential VH5 and a first low potential VL5 to the driven conductive strip. Both ends.
  • an unpressurized potential between the extension resistance Re and the conductive strip is detected when the driven conductive strip is not depressed.
  • a depressed potential between the extension resistor and the strip is detected when the driven strip is depressed.
  • a conductive strip is selected as a detected conductive sheath, and as shown in steps 1650 and 1660, a second high potential VH2 and a second low potential VL2 are respectively provided to the detected conductive.
  • the strip detects a detection potential via a conductive strip that is pressed against the detected conductive strip.
  • step 1670 determining the position of the contact point on the depressed intersecting region according to the unpressed potential, the pressed potential, and the detected potential, as described above, the first-dimensional coordinate Px Or the second one-dimensional coordinate Py.
  • the first high potential VH5 and the first low potential VL5 are respectively provided by a driving unit D5.
  • the driving unit D2 and the driving unit D5 may be the same driving unit.
  • the detection potential may be detected by the detecting unit V2.
  • the above-mentioned unpressed potential and the depressed potential may be detected by a detecting unit V8.
  • the driving units D2 and D5 and the detecting units V2 and V8 are included in the driver 23 and the detector 24 respectively, and the driving units D2 and D5 and the detecting units V2 and V8 include but not It is limited to being controlled by the aforementioned controller 25.
  • the control of the controller 25 for the selector 22, the driver 23, and the detector 24 includes, but is not limited to: providing the high potential and the low power respectively at the first end and the second end of the same conductive strip directly or through an extension resistor; Or providing a high potential and a low power indirectly through the first end of the at least one first conductive strip and the first end of the at least one second conductive strip; detecting a signal between the conductive strip and the extension resistor; When one of the pressed conductive strips is supplied with a high potential and a low potential, the potential of the other end or both ends of the pair of pressed conductive strips is detected, wherein the high potential and the low power are indirectly connected by the extension resistor. When the first end and the second end of the strip are detected, a signal between the conductive strip and the extension resistor is detected to determine an unpressed potential and a depressed potential.
  • the impedances of the extension resistor and the detected conductive strip are Re and R, respectively, and the first high potential and the first low potential are respectively at Vdd and ground potential. Indicates that the ground potential is preset to 0.
  • the impedance between the pen pressure contact and the extension electrode is Rc. Since the pressure of the pen has little effect on the overall impedance, The overall impedance is equivalent to the state of being untouched, that is, the contacted potential between the extension resistance and the conductive strip is equivalent to the untouched potential Vu.
  • the detected conductive strip has a resistance Rpalm across the conductive strip (cross-layer conductive strip) pressing (such as the pressure of the palm)
  • the correct position detected is at position C
  • the impedance of the conductive strip is Rp
  • the pressure contact potential is Vd.
  • the detection of the position P is detected by detecting the potential Vp detected by the unit V2.
  • Vd _ Rp Vdd an R « Vdd-Vu
  • the bit Vd and the detection potential Vp can correct the error of the detection potential Vp and detect the correct detection potential Vc.
  • Vc Vp 4- V
  • VttCVdd Vd
  • Vd VttCVdd
  • the position on the conductive strip (such as the first end or the second end) is The change of the potential determines the position error ratio on the conductive strip with the contact impedance across the intersecting region (cross-layer conductive strip).
  • knowing the position error ratio is also equivalent to knowing the error position, that is, according to the position on the conductive strip (eg, The change in potential on the first end or the second end can determine the position error amount or error position on the conductive strip with the contact resistance across the intersecting regions.
  • Vc Vp - (Vp one ⁇ L)
  • Vc Vp - (Vp - VH) - (VH " VL) Vu ' Vd ⁇ H-vD-ivu-vd)
  • the present invention can correct the error of the detection potential Vp according to the unpressed potential Vu and the pressed potential Vd, and detect the correct position C of the contact point.
  • the depressed conductive strip is detected first, and then the pressed phase is detected.
  • the overlapping regions are as shown in the foregoing FIGS. 4A to 4C, 7 to 8C, 11A and 11B, and related descriptions.
  • the palm ignoring is performed according to the total contact impedance, and after the position error correction is performed, the position misjudgment detection is performed to ignore or filter out the misjudged pressure contact, and finally the contact point detection is performed.
  • the centroid coordinates of the contact points of the respective pressure touches are judged as the positions of the respective pressure contacts.
  • the present invention provides a device and method for position detection.
  • the device for position detection includes a plurality of intersecting regions formed by a plurality of conductive strips being stacked, wherein a pair of conductive strips stacked in any of the intersecting regions are electrically
  • the contact forms a contact point to form a depressed contact region.
  • Each pressure contact can be judged based on the depressed intersecting area. By judging the contact impedance of each depressed intersecting region, the total contact impedance of each of the pressure contacts can be determined, wherein the total contact impedance of the pressure contact across the intersecting regions is all the overlapping regions of the corresponding same pressure contact The parallel impedance of the contact impedance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)
  • User Interface Of Digital Computer (AREA)

Description

位置侦测的装置及方法 技术领域
本发明涉及一种位置侦测的装置与方法,特别是涉及一种压触式的位 置侦测的装置与方法。 背景技术
美国专利公开号 US2007/0198926中, Jouget et a l.揭示了一种压触 式位置侦测的装置,包括一上电极层与一下电极层,上、 下电极层分别包 括多数条不同方向的平行排列导线,并且上下层间分布绝缘粒子 (spacer),藉以将上、 下电极层隔开。 因此当上电极层受到下压时, 部份 上电极层的导线会与下电极的导线接触, 其中所有下电极层导线接地。 上电极层的导线是循序被驱动,并且在任一条上电极层导线被驱动时,所 有下电极层导线皆会被循序侦测一次, 藉此可侦测所有上、 下电极层导 线相交的相迭点。 因此被驱动的上电极层导线与被侦测的下电极层导线 因下压而接触时,电流会由被驱动的电极层导线流向被侦测的下电极层 导线,藉由侦测下电极层导线的讯号, 便可以侦测到哪些相迭点被压触。
然而如图 1所示,当手指压触时可能同时造成一群相迭点同时被压触, 在侦测的过程中会造成在后被侦测的下电极层导线的讯号变小, 因此必 须针对不同位置的相迭点给予不同的比较值, 才能在讯号较小时仍可分 辨是否被压触。 然而这样的解决办法还是可能因为在前被压触的相迭点 数过多而不准确,显然地,各相迭点的比较值的建立、 储存都需要花上许 多成本,但却又无法保证准确度。 此外, 当分辨率要求比较高时, 就必须 增加导线的密度, 相对地侦测的频率就必须降低。
由此可见, 上述现有技术显然存在有不便与缺陷,而极待加以进一步 改进。为了解决上述存在的问题,相关厂商莫不费尽心思来谋求解决之道: 但长久以来一直未见适用的设计被发展完成, 而一般产品及方法又没有 适切的结构及方法能够解决上述问题, 此显然是相关业者急欲解决的问 题。 因此如何能创设一种新的技术, 实属当前重要研发课题之一, 亦成 为当前业界极需改进的目标。 发明内容
本发明的第一目的为提供一种位置侦测的装置与方法,位置侦测的装 置包括: 一感应器, 包括复数条导电条相迭构成的复数个相迭区, 其中 相迭于任一相迭区的一对被压触导电条因电性接触形成一接触点时构成 一被压触相迭区; 一驱动器,分别提供一高电位与一低电位;一侦测器,侦 侧至少一导电条之一讯号; 一选择器, 操作性耦合些导电条于驱动器与 侦测器; 以及一控制器,包括对驱动器、侦测器与选择器进行至少以下控 制: 直接或通过一延伸电阻间接分别提供高电位与低电位于同一导电条 的一第一端与一第二端;直接或通过一延伸电阻间接分别提供高电位与 低电位于至少一第一导电条的第一端与至少一第二导电条的第一端;侦 测些导电条之一与延伸电阻间的讯号; 在一对被压触导电条之一被提供 高电位与低电位时,侦测对被压触导电条之另一的第一端或第二端之一 或两者的电位;以及通过延伸电阻间接提供高电位与低电位于同一导电 条的第一端与第二端时,通过侦测导电条与延伸电阻间的讯号,以判断一 未被压触电位与一被压触电位。
前述的相迭的导电条间由复数个绝缘粒子相隔,未被压触时彼此电性 绝缘, 并且在被压触时构成被压触相迭区。
在上述位置侦测装置中,位置侦测的方法是通过侦测出被压触的相迭 区, 再依据被压触相迭区分别侦测出位于被压触相迭区上的接触点。 被 压触相迭区的侦测可以是先侦测被压触的导电条,依据被压触的导电条 判断出可能被压触相迭区,再由可能^ £触相迭区侦测出¾ ^触相迭区。
通过侦测被压触导电条, 可以缩小搜寻被压触相迭区的范围,并且通 过侦测被压触相迭区, 可以缩小搜寻接触点的范围。 因此,本发明的位置 侦测的装置与方法可以快速地侦测出所有的接触点 , 各接触点的位置可 以用二维坐标来表示。
由于本发明采用较宽的导电条, 导电条涵盖的侦测范围大于习知技 术, 因此得到优于先前技术的分辨率。
此外,本发明能同时侦测出多个不同压触物压触的接触点,可用以追 踪后续压触, 并判断出不同的手势。
本发明的第二目的在提供一种判断压触的总 Ρϋ^的装置与方法,在 前述的本发明的位置侦测装置中, 更包括: 判断压触在该些相迭区上的 每一个压触, 以及每一个压触的一总接触阻抗, 其中跨相迭区的压触的 该总接触阻抗为复数个相迭区的一接触阻抗的并联阻抗。
前述的控制器更包括依据每一压触的该总接触阻抗追踪每一压触的 后续压触, 其中每一压触与每一后续压触的该总接触阻抗的差在一预设 范围内, 并且相应于相同压触的该被压触相迭区为相邻的相迭区。
依据总接触阻抗, 可判断出笔、 手指或手掌的压触。
在总接触阻抗小于一门坎限值时,可判断为多压触于一群相 的被压 触相迭区, 反之, 为单压触相迭区。
本发明的第三目的在提供^ 位置判断接触阻抗的装置与方法,在 前述的本发明的位置侦测装置中, 接触阻抗是依据被压触相迭区的一对 导电条之一与另一在接触点的电位与接触点或相迭区的位置来判断。
本发明的接触阻抗可以是依据接触点位置或相迭区位置来判断,前者 可以得到较精确的接触阻抗, 后者可以在不知道接触点前就判断出大致 的接触阻抗, 省去侦测将被忽视的接触点位置, 可大幅度提升效能。 此 外, 在接触点或相迭区位置为已知的前提下, 仅需判断被压触导电条之 一与另一位于接触点上的电位, 即能判断出接触阻抗, 省去其它的讯号 侦测。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据 前述的本发明提出的一种判断接触阻抗的装置与方法, 该控制器对于该 接触阻抗的判断包括: 判断接触点 /或相迭区的一第一维度位置与一第二 维度位置, 并且依据第一维度位置与第二维度位置判断出一第一维度阻 抗与一第二维度阻抗; 在一对导电条之一与另一分别被提供高电位与低 电位时侦测接触点或相迭区在该对导电条上之一与另一的一第一接触电 位与一第二接触电位; 以及判断出接触阻抗, 其中接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为第一维度阻抗、 第二维度阻抗、 高电位、 低电位、 第一接触电位与第 二接触电位。
本发明的第四目的在提供 具手掌忽视的位置侦测的装置与方法,在 前述的本发明的位置侦测装置中, 控制器更包括判断该些压触中被排除 的压触, 其中被排除的压触的总接触阻抗小于一门坎限值。
本发明能依据总接触阻将各压触区分为笔、手指或手掌的压触, 因此 能据此将手掌的压触忽视, 在书写过程中手掌不需要悬空, 手掌可置放 在感应器上书写。
本发明的第五目的在提供一种校正位置误差的装置与方法,在前述的 本发明的位置侦测装置中, 当导电条存在因跨同层导电条的压触的并联 阻抗时, 侦测到的接触点位置会偏向跨同层导电条的压触,造成误差。 本 发明的接触点误差校正能校正误差, 校正出正确的压触的位置。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据 前述的本发明的位置侦测装置,控制器对于被压触相迭区的接触点的判 断包括: 轮流选择对导电条之一与另一分别作为一被驱动导电条与一被 侦测导电条;在提供一高电位与一低电位于被驱动导电条两端时侦测被 侦测导电条的电位作为一位置电位;电性耦合一延伸电阻与被驱动导电 条以构成一延伸导电条;在延伸导电条未被压触时提供高电位与低电位 于延伸导电条以侦测延伸电阻与被驱动导电条间的电位作为一未压触电 位;在延伸导电条被压触时提供高电位与低电位于延伸导电条以侦测延 伸电阻与被驱动导电条间的电位作为一被压触电位;以及依据位置电位、 被 驱动导电条的未压触电位与被压触电位判断接触点在被驱动导电条的位 置。
当跨导电条的压触较接近低电位时, 正确的侦测电位 C " P " l P " ' (Va-VL)(VH-Vd),亦即在高电位与低电位的电位差为已知 时, 依据未被压触电位 Vu、被压触电位 Vd、侦测电位 Vp, 便可以校正侦 测电位 Vp的误差, 侦测出正确的侦测电位 Vc。
当跨导电条的压触较接近高电位时,
C " P _ i P— 《一《一 ,亦即在高电位 VH与低电位 V的电位差 为已知时, 依据未被压触电位 Vu、被压触电位 Vd、侦测电位 Vp, 便可以 校正侦测电位 Vp的误差, 侦测出正确的侦测电位 Vc。
因此,依据导电条上一位置(如第一端或第二端)上电位的变化判断出 具跨相迭区接触阻抗的导电条上的位置误差比例。
本发明的第六目的在提供一种侦测位置误判的装置与方法,在前述的 本发明的位置侦测装置中,被压触相迭区的侦测会因为三个压触位于一 矩形区域的三顶点位置,误判第四个顶点位置亦是被压触相迭区, 即错误 的被压触相迭区。本发明藉由接触点位置与被压触相迭区位置的比对,来 忽视或排除错误的被压触相迭区, 亦可以进一步忽视或排除错误的被压 触相迭区的接触点。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据 前述的本发明的位置侦测装置,控制器判断该些压触中被排除的压触,被 排除的压触相应的所有接触点中存在至少一接触点的位置落在相应的相 迭区的一误差范围之外。
前述控制器更包括:判断该些压触中被排除的压触,其中任一被排除 的压触至少满足下列条件之一: 总接触阻抗小于一门坎限值; 以及相应 于相同压触的接触点中存在至少一接触点的位置落在相应的该相迭区的 一误差范围之外; 以及判断该些压触中每一未被排除的压触的位置, 其 中每一压触的位置系依据相应于相同压触的该被压触相迭区的该接触点 的位置来判断。
前述的相应于相同压触的接触点中存在至少一接触点的位置落在相 应的该相迭区的一误差范围之外的判断可以是先于前述校正接触点误差 的判断。
本发明的第七目的在提供一种利用多位置侦测方式忽视手掌的装置 与方法。 本发明以第一种碰触或压触的侦测方式在第二种碰触或压触的 侦测方式上定义一被忽视范围,其中该被忽视范围可包括复数个独立的 被忽视区域。 利用第一种侦测方式定义出手掌或大面积压触或碰触的范 围, 即被忽视范围,因此在第二种位置侦测时可忽视在被忽视范围中的压 触或碰触。第一种侦测方式可以是较粗略的多压触或多碰触侦测方式,再 以第二种侦测方式精确地侦测被忽视范围外的压触或碰触 , 同时兼具效 能快与精确度高的优点。
前述第一种碰触或压触的侦测方式在第二种碰触或压触可以是利用 相同的感应器来达成, 例如前述的第一导电条与第二导电条间是以一压 阻层相隔, 侦测第一导电条与第二导电条间的电荷耦合来作为第一种侦 测方式, 并且以上述侦测被压触相迭区及接触点的方式来作为第二种侦 测方式。
依据本发明提出的位置侦测装置与方法中 ,可判断出每一个压触的接 触阻抗, 能被用来判断每一压触的接触面积大小或比例, 亦能被用来追 踪后续的连续压触, 提供习知技术中没有具备的额外信息。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据 本发明提出的一种位置侦测的装置, 包括: 一感应器, 包括复数条导电 条相迭构成的复数个相迭区, 其中相迭于任一相迭区的一对被压触导电 条因电性接触形成一接触点时构成一被压触相迭区; 一驱动器, 分别提 供一高电位与一低电位; 一侦测器, 侦侧至少一导电条之一讯号; 一选 择器, 操作性耦合该些导电条于该驱动器与该侦测器; 以及一控制器,藉 由控制该驱动器、 该侦测器与该选择器进行至少以下作业: 判断压触在 该些相迭区上的每一个压触; 以及判断每一个压触的一总接触阻抗, 其 中跨相迭区的压触的该总接触阻抗为该跨相迭区的压触的所有相迭区的 一接触阻抗的并联阻抗。
本发明的目的及解决其技术问题还可采用以下技术措施进一步来实 现。
前述控制器更包括依据每一压触的该总接触阻抗追踪每一压触的后 续压触, 其中每一压触与每一后续压触的该总接触阻抗的差在一预设范 围内, 并且相应于相同压触的该被压触相迭区为相邻的相迭区。
前述控制器更包括判断每一个被压触相迭区的该接触阻抗,该接触阻 抗是依据该被压触相迭区的该对导电条之一与另一在该接触点的电位与 该接触点的位置来判断。
前述控制器对于该接触阻抗的判断包括:判断该接触点的一第一维度 位置与一第二维度位置,并且依据该第一维度位置与该第二维度位置判 断出一第一维度阻抗与一第二维度阻抗;在该对导电奈之一与另一分别 被提供该高电位与该低电位时侦测该接触点在该对导电条上之一与另一 的一第一接触电位与一第二接触电位;以及判断出该接触阻抗,其中该接 触阻抗为 (R1+R2) / ( ( (VH-VL) / (P1- P2) ) - 1),其中 Rl、 R2、 VH、 VL、 Pl、 P2 分别为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 该第 一接触电位与该第二接触电位。
前述控制器更包括判断每一个被压触相迭区的该接触阻抗,该接触阻 抗是依据该被压触相迭区的该对导电条之一与另一在该接触点的电位与 该被压触相迭区的位置来判断。
前述控制器对于该接触阻抗的判断包括:依据该被压触相迭区的位置 判断出一第一维度阻抗与一第二维度阻抗; 在该对导电条之一与另一分 别被提供该高电位与该低电位时侦测该接触点在该对导电条上之一与另 一的一第一接触电位与一第二接触电位; 以及判断出该接触阻抗, 其中 该接触阻抗为(R1+R2)八((VH-VL) / (P1 - P2))- 1), 其中 Rl、 R2、 VH、 VL、 Pl、 P2 分别为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 第一 接触电位、 第二接触电位。
前述控制器更包括:判断该些压触中被排除的压触,其中任一被排除 的压触至少满足下列条件之一: 该总接触阻抗小于一门坎限值;以及相应 于相同压触的该接触点中存在至少一接触点的位置落在相应的该相迭区 的一误差范围之外; 以及判断该些压触中每一未被排除的压触的位置,其 中每一压触的位置系依据相应于相同压触的该被压触相迭区的该接触点 的位置来判断。
前述控制器对于该被压触相迭区的该接触点的判断包括:轮流选择该 对导电条之一与另一分别作为一被驱动导电条与一被侦测导电条; 在提 供一高电位与一 4氏电位于该被驱动导电条两端时侦测该被侦测导电条的 电位作为一位置电位; 电性耦合一延伸电阻与该被驱动导电条以构成一 延伸导电条; 在该延伸导电条未被压触时提供该高电位与该低电位于该 电位; 在该延伸导电条被压触^提供该高电位与该低电 于该延伸导电 条以侦测该延伸电阻与该被驱动导电条间的电位作为一被压触电位; 以 及依据该位置电位、 该被驱动导电奈的该未压触电位与该被压触电位判 断该接触点在该被驱动导电条的位置。
前述控制器对该驱动器、该侦测器与该选择器的控制至少包括: 直接 或通过一延伸电阻间接提供该高电位与该低电位于同一导电条的一第一 端与一第二端; 直接或间接分别提供该高电位与该低电位于至少一第一 导电条的该第一端与至少一第二导电条的该第一端; 侦测该些导电条之 一与该延伸电阻间的该讯号; 在一对被压触导电条之一被提供该高电位 与该低电位时, 侦测该对被压触导电条之另一的该第一端或该第二端之 一或两者的电位; 以及分别侦测该些第一导电条之一与该些第二导电条 之一的一第二端的电位。
前述控制器藉由对该驱动器、该侦测器与该选择器的控制更包括:通 过一延伸电阻间接提供该高电位与该低电位于同一导电条的一第一端与 一第二端时, 侦测该导电条与该延伸电阻间的该讯号。
本发明的目的及解决其技术问题还可以下技术方案来实现的。依据本 发明提出的一种位置侦测的方法, 包括: 提供复数条导电条相迭构成的 复数个相迭区, 其中相迭于任一相迭区的一对导电条在电性接触形成一 接触点时构成一被压触相迭区; 在该些相迭区判断出每一个压触; 判断 每一个跨相迭区的压触相应的每一个相迭区的一接触阻抗; 以及判断每 一个跨相迭区的压触的一总接触阻抗, 该总接触阻抗为相应相同压触的 所有相迭区的该接触阻抗的并联阻抗。
前述位置侦测的方法更包括依据每一压触的该总接触阻抗追踪每一 压触的后续压触, 其中每一压触与每一后续压触的该总接触阻抗的差在 一预设范围内,并且相应于相同压触的该被压触相迭区为相邻的相迭区。
前述接触阻抗是依据该对导电条之一与另一在该接触点的电位差与 该接触点的位置来判断。
前述接触阻抗的判断包括:判断该接触点的一第一维度位置与一第二 维度位置, 并且依据该第一维度位置与该第二维度位置判断出一第一维 度阻抗与一第二维度阻抗; 在该对导电条之一与另一分别被提供一高电 位与一低电位时侦测该接触点在该对导电条上之一与另一的一第一接触 电位与一第二接触电位; 以及判断出该接触阻抗, 其中该接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该^氏电位、 第一接触 电位、 第二接触电位。
前述接触阻抗是依据该对导电条之一与另一在该接触点的电位差与 该被压触相迭区的位置来判断。
前述接触阻抗的判断包括:依据该被压触相迭区的位置判断出一第一 维度阻抗与一第二维度阻抗; 在该对导电条之一与另一分别被提供一高 电位与一低电位时侦测该接触点在该对导电条上之一与另一的一第一接 触电位与一第二接触电位; 以及判断出该接触阻抗, 其中该接触阻抗为 (R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 第一接触 电位、 第二接触电位。
前述位置侦测的方法, 更包括: 判断该些压触中被排除的压触, 其中 任一被排除的压触至少满足下列条件之一: 该总接触阻抗小于一门坎限 值; 相应于相同压触的该接触点中存在至少一接触点的位置落在相应的 该相迭区的一误差范围之外; 以及判断该些压触中每一未被排除的压触 的位置, 其中每一压触的位置系依据相应于相同压触的该被压触相迭区 的该接触点的位置来判断。
前述被压触相迭区的该接触点的判断包括:轮流选择该对导电条之一 与另一分别作为一被驱动导电条与一被侦测导电条;在提供一高电位与 置电位;电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条;在 该延伸导电条未被压触时提供该高电位与该低电位于该延伸导电条以侦 测该延伸电阻与该被驱动导电条间的电位作为一未压触电位; 在该延伸 导电条被压触时提供该高电位与该低电位于该延伸导电条以侦测该延伸 电阻与该被驱动导电条间的电位作为一被压触电位; 以及依据该位置电 位、 该被驱动导电条的该未压触电位与该被压触电位判断该接触点在该 被驱动导电条的位置。
前述位置侦测的方法,更包括: 直接或通过一延伸电阻间接提供一高 电位与一低电位于同一导电条的一第一端与一第二端; 直接或间接分别 提供该高电位与该低电位于至少一第一导电条的该第一端与至少一第二 导电条的该第一端; 侦测该些导电条之一与该延伸电阻间的该讯号; 在 一对被压触导电条之一被提供该高电位与该 4氐电位时, 侦测该对被压触 导电条之另一的该第一端或该第二端之一或两者的电位; 以及分别侦测 该些第一导电条之一与该些第二导电条之一的一第二端的电位。
前述位置侦测的方法,更包括:通过一延伸电阻间接提供该高电位与 该低电位于同一导电条的一第一端与一第二端时, 侦测该导电条与该延 伸电阻间的该讯号。
在本发明提供校正位置误差的装置与方法中,是依据导电条上一位置 (如第一端或第二端)上电位的变化判断出具跨相迭区接触阻抗的导电条 上的位置误差比例。 依据位置误差比例可校正位置误差。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据 本发明提出的一种校正位置误差的装置, 包括: 一感应器, 包括复数条 导电条相迭构成的复数个相迭区, 其中相迭于任一相迭区的一对被压触 导电条因电性接触形成一接触点时构成一被压触相迭区;一驱动器,分别 提供一高电位与一低电位;一侦测器, 侦侧至少一导电条之一讯号; 一选 择器, 操作性耦合该些导电条于该驱动器与该侦测器;以及一控制器,藉 由控制该驱动器、 该侦测器与该选择器进行至少以下作业: 侦测每一导 电条的一端的一未压触电位; 侦测每一被压触导电条在该端的一被压触 电位; 以及依据该未压触电位、 该被压触电位判断每一条被压触导电条 上的该接触点的一误差比例。
本发明的目的及解决其技术问题还可采用以下技术措施进一步来实 现。
前述未压触电位与该被压触电位的侦测包括:轮流选择该些导电条之 一成为一被驱动导电条; 电性耦合一延伸电阻与该被驱动导电条以构成 一延伸导电条; 在该延伸导电条未压触时提供该高电位与该低电位于该 电位; 以及在该延伸导电条被压触时提供该高电位与该低电位于该延伸 导电条以侦测该延伸电阻与该被驱动导电条间的电位作为该被压触电 位„ (VH-V1,).(VM-Vd;
前述误差比例为 (Vu_V (VH Vd), 其中 VH、 VL、 Vd与 Vu分别为该高电 位、 该^ [氏电位、 该被压触电位与该未压触电位。
前述控制器更包括藉由控制该驱动器、该侦测器与该选择器进行至少 以下作业: 侦测每一接触点的一位置, 当该被压触导电条存在一跨同层 导电条的接触阻抗时, 该未校正位置存在因该跨同层导电条的接触阻抗 造成的一误差; 以及依据该未校正位置、 该偏差比例校正该误差。
前述接触点位置的侦测包括:轮流选择该对被压触导电条之一与另一 分别作为一被驱动导电条与一被侦测导电条; 在提供一高电位与一低电 位; 以及依据该对被压触导电条的该些侦测电位判断出该位置。
前述接触点位置的侦测包括:电性耦合一延伸电阻与该被驱动导电条 以构成一延伸导电条; 在该延伸导电条未压触时提供该高电位与该低电 作为该未压触电位; 以及在该延伸导电条被压触时提供该高电位与该低 该被压触电位。
前述对导电条之一上的该接触点位于该跨同层导电条的接触阻抗与 被提供高电位的该端间时, 该被压触导电条之一上的该位置经校正该误
(VH-VL) (Vu-Vd]
Vp― ( Vp - VH)
Vu-Vi)(VH-Vd)
差后为 "U"V¾AV""V", 其中 VP、 VH、 VL、 Vd与 Vu分别为该 侦测电位、 该高电位、 该 4氏电位、 该被压触电位与该未压触电位。
前述对导电条之一上的该接触点位于该跨同层导电条的接触阻抗与 被提供低电位的该端间时, 该被压触导电条之一上的该位置经校正该误
(VH-VL)-(Vu-Vd)
Vp― (Vp - VL)
差后为 其中 VP、 VH、 VL、 Vd与 Vu分别为该 侦测电位、 该高电位、 该低电位、 该被压触电位与该未压触电位 前述控制器更包括藉由控制该驱动器、该侦测器与该选择器进行至少 以下作业: 依据相迭于相迭区的导电条间是否为通路判断出该对被压触 导电条, 其中该未压触电位的侦测先于该对被压触导电条的判断。
前述控制器更包括藉由控制该驱动器、该侦测器与该选择器进行至少 以下作业: 依据每一条导电条与任一相迭的导电条间是否为通路侦测出 该些被压触导电条, 该些导电条分别位于相迭的一第一导电条层与一第 二导电条层, 并且该第一导电条层与该第二导电条层间散布复数个绝缘 粒子。
本发明的目的及解决其技术问题还可以下技术方案来实现的。依据本 发明提出的一种校正位置误差的方法, 包括: 提供复数条导电条相迭构 成的复数个相迭区, 其中相迭于任一相迭区的一对被压触导电条在电性 接触形成一接触点时构成一被压触相迭区; 侦测每一导电条的一端的一 未压触电位; 侦测每一被压触导电条在该端的一被压触电位; 以及依据 该未压触电位、 该被压触电位判断每一条被压触导电条上的该接触点的 一误差比例。
本发明的目的及解决其技术问题还可采用以下技术措施进一步来实 现。
前述未压触电位与该被压触电位的侦测包括:轮流选择该些导电条之 一成为一被驱动导电条; 电性耦合一延伸电阻与该被驱动导电条以构成 一延伸导电条; 在该延伸导电条未压触时提供一高电位与一低电位于该 延伸导电条以侦测该延伸电阻与该被驱动导电条间的电位作为该未压触 电位; 以及在该延伸导电条被压触时提供该高电位与该低电位于该延伸 导电条以侦测该延伸电阻与该被驱动导电条间的电位作为该被压触电 位。 (VM-VL) (Vu-Vd)
前述误差比例为 ^"^0^^, 其中 VH、 VL、 Vd与 Vu分别为该高电 位、 该低电位、 该被压触电位与该未压触电位。
前述校正位置误差的方法更包括:侦测每一接触点的一位置, 当该被 压触导电条存在一跨同层导电条的接触阻抗时, 该未校正位置存在因该 跨同层导电条的接触阻抗造成的一误差; 以及依据该未校正位置、 该偏 差比例校正该误差。
前述接触点位置的侦测包括:轮流选择该对被压触导电条之一与另一 分别作为一被驱动导电条与一被侦测导电条; 在提供一高电位与一低电 位于该被驱动导电条两端时侦测该被侦测导电条的电位作为一侦测电 位; 以及依据该对被压触导电条的该些侦测电位判断出该位置。
前述接触点位置的侦测包括:电性耦合一延伸电阻与该被驱动导电条 以构成一延伸导电条; 在该延伸导电条未压触时提供该高电位与该低电 ^1甲 ¾ I'丑 ^7 ¾隶 I曰 j的 ϋ 作为该未压触电位; 以及在该延伸导电条被压触时提供该高电位与该低 该被压触电位。 、.
前述该对导电条之一上的该接触点位于该跨同层导电条的接触阻抗 与被提供高电位的该端间时, 该被压触导电条之一上的该位置经校正该
Vp― (Vp一 VH)
误差后为 Cv«-vt vH-vd)5 其中 vp、 VH、 VL、 Vd与 Vu分别为 该侦测电位、 该高电位、 该低电位、 该被压触电位与该未压触电位。
前述该对导电条之一上的该接触点位于该跨同层导电条的接触阻抗 与被提供低电位的该端间时, 该被压触导电条之一上的该位置经校正该 误差后为
Figure imgf000013_0001
, 其中 VP、 VH、 VL、 Vd与 Vu分别为 该侦测电位、 该高电位、 该氏电位、 该被压触电位与该未压触电位。
前述校正位置误差的方法,更包括:依据相迭于相迭区的导电条间是 否为通路判断出该对被压触导电条, 其中该未压触电位的侦测先于该对 被压触导电条的判断。
前述校正位置误差的方法,更包括:依据每一条导电条与任一相迭的 导电条间是否为通路侦测出该些被压触导电条, 该些导电条分别位于相 迭的一第一导电条层与一第二导电条层, 并且该第一导电条层与该第二 导电条层间散布复数个绝缘粒子。
本发明的目的及解决其技术问题还可以是采用以下技术方案来实现 的。 依据本发明提出的校正手写位置误差的方法, 包括: 提供复数条导 电条相迭构成的复数个相迭区; 在该些相迭区判断出一笔的压触与一手 的跨导电条压触; 判断该笔压触的位置, 其中该笔与该手同时压触的导 电条上, 该笔的压触位置因该手的跨导电条压触造成一误差; 以及在该 笔位于该手压触的导电条时, 修正该误差。
本发明的目的及解决其技术问题还可采用以下技术措施进一步来实 现。
前述相迭于任一相迭区的一对被压触导电条在电性接触形成一接触 点时构成一被压触相迭区, 并且该笔的压触位置的判断系依据至少一接 触点的位置来判断, 其中该接触点的位置的判断包括: 轮流选择该对被 压触导电条之一与另一分别作为一被驱动导电条与一被侦测导电条; 在 提供一高电位与一低电位于该被驱动导电条两端时侦测该被侦测导电条 的电位作为一侦测电位; 以及依据该对被压触导电条的该些侦测电位判 断出该接触点的位置。 前述误差的修正包括:在该手压触的导电条未被压触前侦测该手压触 的导电条的一端的一未压触电位; 在该手压触的导电条被压触前侦测该 手压触的导电条的一端的一被压触电位; 以及依据该手压触的导电条上 侦测到的该未压触电位、 该被压触电位与该接触点位置修正该误差。
前述误差的修正是依据一误差比例,该误差比例的判断包括:侦测每 一导电条的一端的一未压触电位; 侦测每一被压触导电条在该端的一被 压触电位; 以及依据该未压触电位、 该被压触电位判断每一条被压触导 电条上该误差比例。
本发明与现有技术相比具有明显的优点和有益效果。
1、本发明的位置侦测的装置与方法可以快速地侦测出所有的接触点,各 接触点的位置可以用二维坐标来表示。
2、 可以快速地侦测出所有的接触点, 各接触点的位置可以用二维坐 标来表示。
3、 由于本发明采用较宽的导电条, 导电条涵盖的侦测范围大于现有 技术, 因此得到优于先前技术的分辨率。
4、 本发明能同时侦测出多个不同压触物压触的接触点, 可用以追踪 后续压触, 并判断出不同的手势。
5、 本发明的接触阻抗可以是依据接触点位置或^ li 区位置来判断,前 者可以得到较精确的接触阻抗, 后者可以在不知道接触点前就判断出大 致的接触阻抗, 省去侦测将被忽视的接触点位置, 可大幅度提升效能。
6、 本发明在接触点或相迭区位置为已知的前提下, 仅需判断被压触 导电条之一与另一位于接触点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述 和其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配 合附图,详细说明如下。 附图的简要说明
图 1是一现有压触式位置侦测的装置的示意图;
图 2Α是本发明的一位置侦测的装置的结构示意图;
图 2Β是本发明的一位置侦测的方法的流程示意图;
图 3是本发明的被压触相迭区驱动与侦测的流程示意图;
图 4Α、 图 4Β与 图 4C是本发明的位置侦测的装置侦测被压触相迭 区的结构示意图;
图 5是本发明的接触点侦测的流程示意图;
图 6Α、 图 6Β与图 6C是本发明的位置侦测的装置侦测接触点的结构 示意图;
图 7是本发明的被压触导电条侦测的流程示意图;
图 8A、 图 8B与图 8C是本发明的位置侦测的装置侦测被压触导电条 的结构示意图;
图 9是以尖端压触的相迭区影像示意图;
图 10A与图 10B是以单指与双指压触的相迭区影像示意图; 图 11A与图 11B为本发明的一种侦测接触阻抗的装置的结构示意图; 图 11 C为本发明的另一种侦测接触阻抗的装置的结构示意图; 图 12A与图 12 B为本发明用笔或手指书写的示意图;
图 12C为手指压触的示意图;
图 1 3为本发明的另一位置侦测的装置的结构示意图;
图 14为误判出错误的被压触相迭区的示意图;
图 15 A为侦测笔压触位置的示意图;
图 15B为跨相迭区接触阻抗造成位置误差的示意图;
图 16A、 图 17A、 图 17B、 图 17C与图 17D为本发明校正跨相迭区接 触阻抗造成的位置误差的结构示意图; 以及
图 16B 为本发明校正跨相迭区接触阻抗造成的位置误差的流程示意
122:笔尖压触处 124:手掌压触处 12: 手指压触处
131:第一绝缘层 132:第一导电条层 133: 压阻层
1 34:第二导电条层 135:第二绝缘层 20:侦测位置的装置
21:感应器 212:导电条 214:相迭区
22:选择器 23:驱动器 24:侦测器
25:控制器 26:主机
A、 B、 C、 D:相迭区 XI, X2, •,X8:第一导电条
Yl, Y2,…, Y8:第二导电条 D1 D3, D4: D5 驱动单元 VI, V2, V3, V4, V5, V6, V7, V8:侦测单元
C 、 P:位置 Px:第——维坐标
Py:第二一维坐标 Re:延申电阻
Rpa lm:跨同层导电条的接触阻抗 R1:第一维度阻抗
R2:第二维度阻抗 R、 Rc、 Re ' 、 Rp:阻抗
VH1, VH2, VH3, VH4, VH5:高电位 VL1, VL2, VL3, VL4, VL5:低电位 Vc:正确的侦测电位 Vd:被压触电位
Vp:侦测电位 Vu:未被压触电位 实现发明的最佳方式
为更进一步阐述^^明为达成预定发明目的所采取的技术手段及功效, 以下结合附图及较佳实施例,对依据本发明提出的位置侦测的装置及方 法,其具体实施方式、 结构、 步骤、 特征及其功效, 详细说明如后。
请参照图 2A所示, 本发明提供一种位置侦测的装置 20, 包括感应器 (Sensor) 21、 选择器(Selecting Device) 22、 驱动器(Driving Device) 23、 侦测器(Sens ing) 24、 控制器(Control 1 ing Device) 25、 主机(Host) 26。
再参照图 2B所示, 本发明提供一种多点位置侦测的方法。 首先, 如 步骤 210 所示, 侦测一位置侦测的装置 20 上至少一被压触相迭区 (depressed intersect ing region) , 接下来如步骤 220 所示, 依据各被 压触相迭区侦测至少一接触点(contact point)。
上述的侦测器 21 包括多数条导电条 212,这些导电条包括多数条第一、 第二导电条, 第一、 第二导电条相迭于多数个相迭区(intersect ing regions) 214, 当至少一压触物(object)压压触触时, 部份第一、 第二导 电条相接触形成相应于各压触物压触的至少一接触点, 其中相迭于被压 触相迭区的导电条为一对被压触导电条。
第一、 第二导电条在未被压触时保持不接触,在本发明的一范例中, 第一、 第二导电条间可以用多数个绝缘粒子(spacer)散布在其间, 藉以 隔开第一、 第二导电条。 此外, 本发明不限制第一、 第二导电条彼此上 下之间的位置, 可以是第一导电条在上, 亦可以是第二导电条在上。 在 本发明之一范例中, 第一、 第二导电条不同轴向排列, 以构成由多数个 相迭区排列而成的一相迭区数组(intersect ing matrix)。 例如第一导电 条以水平方向排列, 而第二导电条以垂直方向排列, 反之亦然。 换言之, 该些第一、 第二导电条分别位于不同层。
第一、 第二导电条可分别具有预定的宽度, 因此第一、 第二导电条相 迭处形成相迭区。 熟知相关技艺者可推知, 上述导电条的宽度并不需要 一致, 可以各导电条是不同的宽度, 因此相迭区的面积也可能不同, 本 发明包括但不加以限制。
此外, 熟知相关技艺者可推知, 依据压触物的不同, 第一、 第二导电 条间接触的相迭区的数量与面积亦可能不同。在本发明的一较佳范例中, 各相迭区上的接触点为单一, 亦即不论在一相迭区上压触的面积大小, 此相迭区上压触的范围视为单一接触点。 熟知相关技艺者亦可以推知, 如果相迭区较大时, 亦有可能有两个以上的接触点, 在此情况下, 可以 依据压触的先后顺序, 分辨出两个不同接触点的, 本发明对于单一相迭 区中接触点的数量包括但不限于一个以上。
控制器 25电性耦合于选择器 22、 驱动器 23、侦测器 24,用以控制选 择器 22、 驱动器 23、 侦测器 24。 选择器 22依据控制器 25命令将驱动器 23与侦测器 24操作性耦合于侦测器 21。 在本发明的一范例中,驱动器 23 与侦测器 24依据控制器 22的命令通过选择器 22操作性耦合于侦测器 21。例如,选择器 24依据控制器 22的命令选择至少一导电条的一端或两 端, 并且提供被选择的导电条的一端或两端成为耦合端, 以电性耦合于 驱动器 23与侦测器 24之一或两者。
在本发明的一范例中, 耦合端是藉由选择器 22直接电性耦合于驱动 器 23或侦测器 24。在本发明的另一范例中,耦合端是藉由选择器 22结合 一延伸电阻间接电性耦合于驱动器 23或侦测器 24。 例如,用延伸电阻电 性耦合于被选择的导电条构成一延伸导电条, 由延伸电阻电性耦合于驱 动器 23或侦测器 24, 亦即耦合端藉由延伸电阻电性耦合于驱动器 23或 侦测器 24。
在本发明的一范例中,驱动器 23提供一高电位与一低电位于两耦合端, 高电位与 /或低电位可以是依上述直接或通过一延伸电阻间接分别提供 给两耦合端, 该两耦合端可以是位于相同或不同导电条。 例如位于一第 一导电条的一第一端与一第二导电条的一第二端。
在本发明的另一范例中, 侦测器 24侦测耦合端的讯号, 所侦测的讯 号可以是电位、 电流、 电容、 电荷转移(charge transferr ing)或其它电 性讯号。 侦测器 24操作性耦合的耦合端可以是上述的第一端、 或在导电 条上相对于第一端的一第二端。 例如, 第一端为上述导电条耦合于延伸 电阻的耦合端。
据此, 控制器 25对于选择器 22、 驱动器 23、 侦测器 24的控制包括 但不限于: 直接或通过一延伸电阻间接分别提供高电位与低电位于同一 导电条的第一端与第二端; 直接或通过一延伸电阻间接分别提供高电位 与低电位于至少一第一导电条的第一端与至少一第二导电条的第一端; 侦测导电条与延伸电阻间的讯号; 在一对被压触导电条之一被提供高电 位与低电位时, 侦测该对被压触导电条的另一的一端或两端的电位; 以 及分别侦测该些第一导电条之一与该些第二导电条之一的第二端的电 位。
在本发明的一范例中,控制器 25可以是整合成为主机 26的一部份, 包括但不限于由主机的处理器、 协同处理器、 数字讯号处理器(DSP)或其 它可程序电路构成。在本发明的另一范例中,控制器 25不为主机 26的一 部份。 控制器 25依据侦测器 24侦测到的讯号判断出各压触,其中一对象可 能造成一处或多处的压触,例如手掌压触时可能会造成一处整片的压触, 亦可能造成多处独立的压触。此外,控制器 25更可以依据侦测器 24侦测 到的讯号忽视 (排除或过滤)部份的压触,例如在手写时忽视手掌的压触, 或忽视误判造成的不存在的压触。 另外, 控制器 25还提供压触的位置给 主机 26。
本发明更包括追踪各压触的后续压触,并依据各压触及后续压触判断 出至少一手势, 并且手势对应成为一命令, 其中手势可以是由控制器 25 或主机 26来判断。 当控制器 25没有整合成为主机 26的一部份时, 可以 是由控制器 25提供压触的位置, 由主机 26进行上述压触忽视及手势判 断,亦可以是由控制器 25进行压触忽视后提供压触的位置, 再由主机 26 进行手势判断。 或者是, 由控制器 25进行压触忽视及手势判断后, 提供 主机 26压触的位置或手势之一或两者。 当控制器 25整合于主机 26之中 时,压触忽视及手势可是为控制器 25处理, 亦可视为主机 26处理。
图 3是本发明的被压触相迭区的侦测方法。如步骤 310所示,分别提 供一高电位与一低电位于相迭于各相迭区的第一、 第二导电条, 并且如 步骤 320所示, 藉由判断相迭于各相迭区的第一导电条与第二导电条间 是否为通路判断出各压触相迭区。
例如,循序地提供高电位给第一导电条,在每一条第一导电条被提供 高电位的期间, 循序地提供低电位给每一条第二导电条, 如此, 便可以 逐一侦测被驱动的第一导电条上各相迭区是否被压触。
据此,在本发明的一较佳范例中,位置侦测的装置在侦测被压触相迭 区如图 4A所示, 包括一侦测单元 VI与一驱动单元 D1 , 驱动单元提供一 高电位 VH1 与一低电位 VL1 , 其中高电位 VH1 是提供给第一导电条 (XI, X2,…, X8)之一,另外低电位 VL1是提供给第二导电条 (Yl, Y2, Y8) 之一, 侦测单元 VI 侦测被提供高电位 VH1 的导电条。 上述第一导电条 (XI, X2,…, X8)与第二导电条 (Yl, Y2, . · ·, Υ8)的数量是为方便举例说明 , 本发明包括但不限于该数量。
被提供高电位 VH1的第一导电条的侦测可以是包括但不限于侦测电位、 电流或是逻辑准位,并且可以是在被提供高电位 VH1的第一导电条的一端 或两端来侦测。 例如,在本发明的一范例中,高电位 VH1可以是通过一延 伸电阻 Re提供给第一导电条第一导电条^1^2,... 8)之一, 藉由侦测 延伸电阻 Re—侧(如延伸电阻 Re与导电条之间)上的电位、 电流或是逻 辑准位来侦测出各个被压触的相迭区。
例如, 当高电位 VH1与低电位 VL1分别提供给导电条 XI、 Y1时,侦测 单元 VI便可以侦测出导电条 XI、 Y1相迭的相迭区是否被压触。 例如,当 轮到导电条 XI、 Y1相迭的相迭区被侦测时, 驱动单元 D1分别提供高电 位 VH1与低电位 VL1给导电条 XI、 Y1 , 如图 4B所示,若导电条 XI、 Y1 相迭的相迭区未被压触,电流未由导电条 XI流经导电条 Π, 因此延伸电 阻 Re的讯号不会有明显变化,侦测单元 VI可藉此判断导电条 XI、 Y1相 迭的相迭区未被压触。 同样地,当轮到导电条 X8、 Y7相迭的相迭区被侦 测时, 驱动单元 D1分别提供高电位 VH1、 低电位 VL1给导电条 X8、 Y7。 当导电条 Χ8、Υ7相迭的相迭区被压触时,电流由导电条 Χ8流向导电条 Υ7, 侦测单元 VI通过侦测延伸电阻 Re的电位改变,可侦测出导电条 X8、 Y7 相迭的相迭区被压触。熟知相关技艺者可推知,驱动单元亦可以是分别提 供低电位 VL1与高电位 VH1给第一导电条(X1,X2, ...,X8)之一与第二导电 条(Yl, Y2, ..., Y8)之一,如图 4C所示。 上述的驱动单元 D1与侦测单元 VI 包括但不限于分别整合于前述的驱动器 23与侦测器 24中,并且驱动单元 D1的与侦测单元 VI的侦测包括但不限于由前述的控制器 25控制。 控制 器 25对于选择器 22、 驱动器 23、 侦测器 24的控制包括但不限于: 间接 分别提供高电位与低电位于至少一第一导电条的第一端与至少一第二导 电条的第一端; 以及侦测导电条与延伸电阻间的讯号。
图 5是依据各被压触相迭区侦测至少一接触点的流程示意图。如步骤 510所示,分别驱动相迭于各被压触相迭区的各导电条, 被驱动的导电条 的两端分别被提供一高电位与一低电位。 又如步骤 520所示, 当相迭于 '任一被压触相迭区的一对导电条之一被驱动时, 侦测这对导电条中未被 驱动的导电条, 以侦测出各接触点位置。 对于未被驱动的导电条的侦测, 可以同时侦测未被驱动的导电条的一端或两端。
换言之,针对每一个被压触的相迭区中, 轮替地将相迭于这相迭区的 这对导电条之一驱动, 并侦测这对导电条中未被驱动的另一导电条, 以 侦测出接触点的二维坐标。 例如, 先驱动这对导电条中的第一导电条, 并侦测第二导电条,以侦测出接触点在第一导电条轴向上的位置,作为二 维坐标中的一第一一维坐标 Ρχ。 接下来, 驱动这对导电条中的第二导电 条, 并侦测第一导电条, 以侦测出接触点在第二导电条轴向上的位置, 作为二维坐标中的一第二一维坐标 Py。 驱动第一、 第二导电条的先后顺 序并不限定, 待笫一、 第二导电条都侦测后, 可得到接触点分别在第一、 第二导电条轴向上的位置, 此位置可用二维坐标(Px,Py)来表示。
在本发明的一较佳范例中, 位置侦测的装置 20对于接触点的侦测如 图 6A所示。 位置侦测装置包括多数条导电条、 一侦测单元 V2与一驱动 单元 D2。 多数条导电条为上述第一导电条(X1 , X2,...,X8)与第二导电条 (Yl, Y2, ..., Y8)。驱动单元提供一高电位 VH2与一低电位 VL2以驱动多数 条导电条之一,并且侦测单元 V2侦测与被驱动导电条相迭的导电条之一。 因此当被驱动导电条与被侦测导电条相迭于一被压触相迭区时, 侦测单 元 V2可以侦测出接触点 P在被驱动导电条轴向上的位置。
例如,当压触相迭区为导电条 X8、 Y7相迭的相迭区时,如图 6B所示, 驱动单元先提供高电位 VH2、 低电位 VL2于导电条 X8两端, 并且侦测导 电条 Y7, 以侦测接触点 Ρ位于导电条 Χ8轴向(第一导电条轴向)的位置 Ρχ。 同样地, 如图 6C所示, 驱动单元再提供高电位 VH2、 低电位 VL2于 导电条 Y7两端, 并且侦测导电条 X8, 以侦测接触点 P位于导电条 Y7轴 向(第二导电条轴向)的位置 Px。 上述的驱动单元 D2与侦测单元 V2包括 但不限于分别整合于前述的驱动器 23与侦测器 24中 , 并且驱动单元 D2 的与侦测单元 V2的侦测包括但不限于由前述的控制器 25控制。 控制器 25对于选择器 22、 驱动器 23、 侦测器 24的控制包括但不限于: 直接或 通过一延伸电阻间接分别提供高电位与低电位于同一导电条的第一端与 第二端; 以及在一对被压触导电条之一被提供高电位与低电位时, 侦测 该对被压触导电条的另一的一端或两端的电位。
在本发明之一范例中,驱动单元 D1与侦测单元 VI依序分别侦测各相 迭区, 以侦测出所有被压触相迭区,并且驱动单元 D2与侦测单元 V2依序 分别侦测各相迭区,以侦测出各相迭区的在一第一导电条轴向二维影像 与一第二导电条轴向二维影像,再依据各被压触相迭区由第一、第二导电 条轴向二维影像中判断出 触点的位置。显然地,相较于上述先挑出被 压触相迭区,再只针对被压触相迭区侦测出各接触点位置,本范例效能较 差。
在上述说明中, 侦测单元 VI的侦测可以是包括但不限于侦测电位、 电流或是逻辑准位, 而侦测单元 V2侦测的是讯号的实际值, 如电压值、 电流值, 并且每一相迭区必须进行两个维度的侦测, 因此被压触相迭区 的侦测远快于接触点的侦测。
上述第一导电条 (XI, X2,…, X8)与第二导电条(Yl, Y2,…, Y8)的数量 仅为了举例的用,并非用以限制本发明,第一导电条与第二导电条的数量 可分别依设计上的需要而改变。 因此当第一、 第二导电条分别具有 m、 n 将会有 m*n个相迭区需要侦测,第一、 第二导电条的数量越多,侦测 所有相迭区的时间就会越久。 因此,加速所有相迭区的侦测, 才能提升整 体的效能。
据此, 本发明的一范例如图 7所示。如步骤 710所示,侦测位置侦测 的装置上多数条被压触导电条。 又如步骤 720所示, 依据这些被压触导 电条判断出被压触导电条相迭上可能被压触相迭区。再如步骤 730所示, 依据可能被压触相迭区侦测位置侦测的装置上至少一被压触相迭区。 更 如步骤 740所示, 依据各被压触相迭区侦测出至少一接触点。 换言之,可以是先判断哪些第一导电条与第二导电条被压触,依据被 压触的第一、 第二导电条可判断出可能被压触相迭区。 相较于上述图 3、 图 4A至图 4C针对所有的相迭区来侦测出被压触相迭区, 本范例只需针 对可能被压触相迭区来侦测出被压触相迭区。
在本发明的一较佳范例中,位置侦测的装置对于被压触导电条的侦测 如图 8A所示。 位置侦测的装置包括多数条导电条、 一侦测单元 V3与一 驱动单元 D3。多数条导电条为上述第一导电条 (XI, X2, X8)与第二导电 条 (Yl, Y2,…, Y8)。 驱动单元 D3分别提供一高电位 VH3给这些导电条之 一,并且提供与一低电位 VL3给与被提供高电位 VH3导电条相迭的所有导 电条,以分别侦测出被压触的导电条。
例如,如图 8B所示,驱动单元 D3依序提供高电位 VH3给第一导电条 (XI, X2, ...,X8)之一,'并且提供低电位 VL3给与被提供高电位 VH3的第一 导电条相迭的所有第二导电条 1,丫2,...,丫8) , 侦测单元 V3侦测被提供 高电位 VH3的第一侦测奈。例如,第一导电条 1^2,...,或 7未被压触, 因此电流未由被侦测的第一导电条 X1,X2,...,或 X7 流向任何第二导电 条, 因此侦测单元 V3未侦测到第一导电条 XI, X2,…,或 X7被压触。 当第 一导电条 X8被提供高电位 VH3时, 电流由第一导电条 X8流向第二导电 条 Y7, 因此侦测单元 V3可以侦测出第一导电条 Χ8被压触。
同样地,驱动单元 D3依序提供高电位 VH3给第二导电条 (Yl, Υ2, ..., Υ8) 之一, 并且提 氏电位 VL3给与被提供高电位 VH3的第二导电条相迭的 所有第一导电条 (Xl, Χ2, ..., Χ8), 侦测单元 V3藉此侦测出被压触的第二 导电奈, 如第二导电条 Υ7。
被提供高电位 VH2的导电条的侦测相似于上述被提供高电位 VH1的第 一导电条的侦测,可以是包括但不限于侦测电位、 电流或是逻辑准位,并 且可以是在被提供高电位 VH3的第一导电条的一端或两端来侦测。例如, 在本发明的一范例中,高电位 VH3可以是通过一延伸电阻 Re提供给上述 导电条之一, 藉由侦测延伸电阻 Re—侧(如延伸电阻 Re与导电条之间)上的 电位、 电流或是逻辑准位来侦测出各被压触的导电条。
因此, 通过被压触的多数条导电条 (如导电条 X8、 Y7)可判断出这些 被压触导电条相迭的至少一可能被压触相迭区。 当被可能被压触相迭区 不大于三个时, 可能被压触相迭区即为被压触相迭区。
此外, 驱动单元 D3可同时分别提供高电位 VH3给多数奈导电条, 并 且侦测单元 V3可同时分别侦测被提供高电位 VH3的部份或全部导电条, 然而被提供高电位 VH3的导电条须同时为第一导电条或同时为第二导电 条。
上述的导电条是选择性地被挑选来驱动或侦测,现有相关技艺者可推 知, 导电条的挑选可包括但不限于通过开关、 多功器、 总线等切换装置, 本发明并不加以限制。 此外,上述的高电位 VH1、 VH2、 VH3可以是相同, 亦可以不同, 同样地,上述的低电位 VL1、 VL2、 VL3可以是相同,亦可以 不同,本发明并不加以限制。再者,上述的延伸电阻可以是相同,亦可以不 同,本发明并不加以限制。
上述的驱动单元 D3与侦测单元 V3包括但不限于分别整合于前述的驱 动器 23与侦测器 24中, 并且驱动单元 D3的与侦测单元 V3的侦测包括 但不限于由前述的控制器 25控制。控制器 25对于选择器 22、驱动器 23、 侦测器 24的控制包括但不限于: 间接分别提供高电位与低电位于至少一 第一导电条的第一端与至少一第二导电条的第一端; 以及侦测导电条与 延伸电阻间的讯号。
根据上述,所有接触点经过侦测后可以呈现出如图 9的相迭区影像。 当压触物具有尖端时, 压触物的接触会使得相迭区影像呈现出相应的接 触点讯号。 当手指或接触面积较大的压触物压触时, 相迭区影像会呈现 相应的多数个接触点讯号, 如图 10A所示。
相应于相同压触物的接触点会群聚在一起,如图 10B所示, 因此可以 分析出各压触物相应的接触点。 在本发明另一范例中, 亦可以利用各接 触点产生的时间来分析出各压触物相应的接触点。
通过对相迭区影像的分析,可依据各压触物的接触点数量判断出压触 物的形态, 例如可以依据压触物相应的接触点数量的多寡判断压触物是 笔还是手指。 此外, 还可以依据压触物相应的接触点数量来模拟压触物 压触时的压力。
此外, 藉由连续不同时间的相迭区影像的差异分析,更可以追踪压触 物压触时的移动轨迹,以判断出特定的手势。 例如, 可依据一对压触物的 压触位置轨迹判断出一手势,该对压触物的压触位置轨迹包括: 相互远 离、 一压触物朝另一压触物远离、 相互靠近、 一压触物朝另一压触物靠 近、 相互旋转、 一压触物绕另一压触物旋转。
在本发明之一范例中,可依据相应于各压触物的接触点数量判断各压 触物为一笔或一手指, 亦可分别依据相应于各压触物的接触点数量或分 布范围模拟出各压触物压触的压力。 当一压触物相应的接触点为多数个 时,可依据相应于各压触物的接触点的质心位置作为该压触物的压触位 置。
据此, 本发明之一范例为一位置侦测的装置, 包括多数条导电条、一 第一、 第二驱动单元、 一第一、 第二侦测单元。 这些导电条包括多数条 第一、 第二导电条, 这些第一、 第二导电条相迭于多数个相迭区, 当至 少一压触物压触时, 第一、 第二导电条相接触形成相应于各压触物的至 少一接触点。 :
第一驱动单元与第一侦测单元可以是如图 3的步骤 310、 320或图 4A 至图 4C的驱动单元 D1与侦测单元 VI所述,在第一驱动单元分别提供一 高电位与一低电位于相迭于各相迭区的第一、第二导电条时,第二侦测单 元侦测被第一驱动单元提供高电位的第一导电条, 以侦测出各被压触相 迭区。
第二驱动单元与第二侦测单元可以是如图 5的步骤 510、 520或图 6A 至图 6C的驱动单元 D2与侦测单元 V2所述,第二驱动单元分别驱动相迭 于各被压触相迭区的各导电条, 当相迭于任一被压触相迭区的一对导电 条的一被第二驱动单元驱动时, 第二侦测单元侦测这对导电条中未被驱 动导电条, 以侦测出各接触点位置, 其中第二驱动单元提供高电位与低 电位于被驱动的导电条。
本范例的相关细节已揭示前述说明中, 在此不再赘述。
另外, 本发明的另一范例是一位置侦测的装置,包括多数条导电条、 一第一、 第二、 第三驱动单元、 一第一、 第二、 第三侦测单元。 这些导 电条包括多数条第一、 第二导电条, 这些第一、 第二导电条相迭于多数 个相迭区, 当至少一压触物压触时, 第一、 第二导电条相接触形成相应 于各压触物的至少一接触点。
第一驱动单元与第一侦测单元可以是如图 7的步骤 710至 740或图 8A至图 8C的驱动单元 D3与侦测单元 V3所述,第一驱动单元选择性地分 别提供一高电位于上述导电条, 并且第一侦测单元侦测被第一驱动单元 提供高电位的导电条, 以侦测出多数条被压触的导电条。 这些被压触导 电条相迭的各相迭区为可能被压触相迭区。 当被第一驱动单元提供一高 电位的导电条为第一导电条时, 第一驱动单元提供一低电位于所有第二 导电条, 并且当被第一驱动单元提供高电位的导电条为第二导电条时, 第一驱动单元提供一低电位于所有第一导电条。
第二驱动单元与第二侦测单元可以是如图 3的步骤 310、 320或图 4A 至图 4C的驱动单元 D1与侦测单元 VI所述,在第二驱动单元选择性地分 别提供高电位与低电位于相迭于各可能被压触相迭区的第一、 第二导电 条时,第二侦测单元侦测被第二驱动单元提供高电位的第一导电条, 以侦 测出各被压触相迭区。
第三驱动单元与第三侦测单元可以是如图 5的步骤 510、 520或图 6A 至图 6C的驱动单元 D2与侦测单元 V2所述,第三驱动单元分别驱动相迭 于各被压触相迭区的导电条时, 当相迭于任一被压触相迭区的一对导电 条的一被第三驱动单元驱动时, 第三侦测单元侦测这对导电条中未被驱 动导电条, 以侦测出各接触点位置, 其中第三驱动单元提供高电位与低 电位于被驱动的导电条。
本范例的相关细节已揭示前述说明中, 在此不再赘述。
相较于上述先前技术,冬发明的驱动与侦测方式不会因为在前的接触 点过多而造成在后侦测的接触点讯号变得微弱, 亦不需针对不同的侦测 区给予不同的判断标准。 此外, 本发明不仅能侦测出哪些相迭区被压触, 更可判断出接触点位于相迭区内的位置, 亦即本发明可以用较少的导电 条得到更高的分辨率。
此外, 本发明更包括书写时的手掌忽视功能, 亦即当书写模式下, 可 辨识笔尖的压触与手掌的压触, 藉以追踪笔尖的压触轨迹。 据此, 本发 明的一范例为一种位置侦测的装置, 可包括上述多数条导电条、 一第一、 第二、 第三、 第四驱动单元、一第一、 第二、 第三侦测单元,以及一第四、 第五侦测单元。 这些导电条包括多数条第一、 第二导电条, 这些第一、 第二导电条相迭于多数个相迭区, 当至少一压触物压触时, 第一、 第二 导电条相接触形成相应于各压触物的至少一接触点。 依据上述的说明, 可在至少一压触物压触时, 分别侦测出各被压触相迭区以及各压触相迭 区内的接触点。
在本发明之一范例中 ,提供一种依据接触点位置判断接触阻抗的方法 与装置, 在各接触点被侦测出后进行各接触点的接触阻抗判断。 第四驱 动单元与第四、 第五侦测单元分别如图 1 OA的提供一高电位 VH4与一低 电位 VL4的驱动单元 D4及侦测单元 V4、 V5所示。 第四驱动单元选择性 地分别提供一高电位 VH4与一低电位 VL4于各被压触相迭区, 并且侦测 单元 V4、 V5分别侦测被提供高电位 VH4与低电位 VL4导电条位于接触点 的电位。 例如当高电位 VH4被提供于被压触相迭区的第一导电条的一端 时,侦测单元 V4是侦测位于第一导电条的另一端的一第一电位 P1 ,并且 低电位 VL4被提供于被压触相迭区的第二导电条的一端时, 侦测单元 V5 是侦测位于第二导电条的另一端的一第二电位 P2。 由于在材质均匀分布 的导电条上, 阻值与位置大致呈正比, 据此, 由接触点在第一、 第二导 电条的位置可分别推测出阻值 Rl、 R2 , 才艮据高电位 VH4、 低电位 VL4、 第 一、 第二电位 Pl、 P2与阻值 Rl、 R2, 可计算出接触点触第一、 第二导电 条间的接触阻抗11。
据此, 依据本发明的一范例, 包括一接触阻抗判断程序, 此接触阻抗 判断程序可以是由前述控制器来作业, 包括但不限于判断每一个被压触 相迭区的接触阻抗, 此接触阻抗是依据被压触相迭区的一对导电条之一 与另一在该接触点的电位与该接触点的位置来判断。
上述该接触阻抗的判断包括:判断该接触点的一第一维度位置与一第 二维度位置, 并且依据第一维度位置与第二维度位置判断出一第一维度 阻抗与一第二维度阻抗;. 在该对导电条之一与另一分别被提供高电位与 低电位时侦测接触点在该对导电条上之一与另一的一第一接触电位与一 第二接触电位; 依据第一维度阻抗、 第二维度阻抗、 高电位、 低电位、 第一接触电位与第二接触电位判断出接触阻抗。
上述的驱动单元 D4与侦测单元 V4、V5包括但不限于分别整合于前述 的驱动器 23与侦测器 24中, 并且驱动单元 D4与侦测单元 V4、 V5包括 但不限于由前述的控制器 25控制。控制器 25对于选择器 22、驱动器 23、 侦测器 24的控制包括但不限于: 直接或通过一延伸电阻间接分别提供高 电位与低电位于至少一第一导电奈的第一端与至少一第二导电条的第一 端; 以及分别侦测该些第一导电条之一与该些第二导电条之一的第二端 的电位。
在本发明的另一范例中,为一种依据相迭区位置判断接触阻抗的方法 与装置, 可以是依据被压触相迭区的位置推估出阻值 Rl、 R2, 如图 11B 所示。 例如, 可以是依据被压触相迭区分别在第一、 第二导电条上距被 提供高电位与低电位之一端间的相迭区数来推估出阻值 Rl、 R2。 例如, 当被压触相迭区与被提供高电位 VH4的一端间有 m个相迭区, 则阻值 R1 为 m个单位, 亦可以是包括被压触相迭区的 m+1个单位。 同理, 当被压 触相迭区与被提供高电位 VH4的一端间有 n个相迭区,则阻值 R1为 n个 单位, 亦可以是包括被压触相迭区的 n+1个单位。 因此阻值 Rl、 R2的推 估可以是介于判断出被压触侦测区后及在接触点被侦测出前。
据此,依据本发明的一范例,为依据位置判断接触阻抗的方法与装置, 包括一接触阻抗判断程序, itb^ J^判断程序可以是由前述控制器来作 业,包括但不限于判断每一个被压触相迭区的接触阻抗,此接触阻抗是依 据被压触相迭区的一对导电条之一与另一在接触点的电位与被压触相迭 区的位置来判断。
上述该接触阻抗的判断包括:依据该被压触相迭区的位置判断出一第 一维度阻抗与一第二维度阻抗;在该对导电条之一与另一分别被提供高 电位与低电位时侦测接触点在该对导电条上之一与另一的一第一接触电 位与一第二接触电位;依据第一维度阻抗、 第二维度阻抗、 高电位、 低电 位、 第一接触电位与第二接触电位判断出接触阻抗。
依据上述描述,可得出公式 1,为 (P1-P2) I (VH4-VL4) =R/ (R1+R+R2), 据此可推导出公式 2 , ^ R= (R1+R2) / ( ( (VH4-VL4) / (P1-P2) ) -1) , 亦即可 根据高电位 VH4、低电位 VL4、 第一、 第二电位 Pl、 P2 (如第一接触电位、 第二接触电位)与阻值 Rl、 R2 (如第一维度阻抗、 第二维度阻抗), 可计算 出接触点在第一、 第二导电条间的接触阻抗 R。换言之,依据导被压触相 迭区的位置或接触点的位置、 被压触导电条间被提供的电位差、 第一导 电条与第二导电条在接触点上被侦测出的电位差可判断出第一导电条与 第二导电条在接触点上的接触阻抗。
此外,如图 11A及图 1 1B所示, 上述各被压触相迭区的侦测可以是依 据第四侦测单元 V4侦测的第一电位 P1或第五侦测单元 V5侦测的第二电 位 P2来判断。 例如,当第一电位 P1不为高电位 VH4时或第二电位 P2不 为低电位 VL4时,判断出被提供高、 低电位的相迭区为被压触相迭区。 又 例如,第一电位 P1与第二电位 P2间的电位差不为高电位与低电位间的电 位差时判断出被提供高、 低电位的相迭区为被压触相迭区。 熟知相关技 术者可推知,第一电位 P1是否为高电位 VH4的判断及第二电位 P2是否为 低电位 VL4的判断容许在一误差范围内。
因此,如图 11B所示,利用驱动单元 D4对各相迭区提供高电位 VH4与 低电位 VL4时,可分别判断出被压触的相迭区,及¾ ^触的相迭区中电一、 第二导电条间的接触阻抗 R。换言之,被压触相迭区的侦测可以是依据第 一电位与第二电位之一或两者来判断(如判断第一导电条与第二导电条 间是否为通路),并且在侦测被压触相迭区的同时可以判断出被压触相迭 区中第一导电条与第二导电条在接触点上的接触阻抗。
如同前述图 3至图 4C与图 7至图 8C所示,图 11A或图 11B描述的被 压触相迭区的判断方式亦可以是先判断出被压触导电条, 再依据被压触 导电条判断出可能被压触相迭区, 再由可能被压触相迭区判断出被压触 相迭区。在本发明的一范例中,高电位 VH4与低电位 VL4之一操作性耦合 于一导电条,并且高电位 VH4与低电位 VL4的另一操作性耦合于多数条导 电条,以判断出被压触导电条。
例如, 高电位 VH4依序操作性耦合每一条第一导电条,在任一条第一 导电条被操作性耦合时, 低电位 VL4 同时耦合所有第二导电条, 依据第 一导电条与第二导电条间是否为通路来判断出被压触的第一导电条。 例 如依据侦测单元 V4侦测的第一电位 P1是否相等或相近于高电位 VL4来 判断出被操作性耦合的第一导电条是否为被压触导电条。 同理, 高电位 VH4耦合所有第一导电条,低电位 VL4依序操作性耦合于每一条第二导电 条, 依据第一导电条与第二导电条间是否为通路来判断出被压触的第二 导电条。 接下来, 依据所有被压触导电条判断出可能被压触相迭区, 例 如以所有被压触的第一导电条与被压触的第二导电条相迭的相迭区作为 可能被压触相迭区。 再接下来, 依据上述被压触相迭区的判断辨别出各 被压触相迭区, 也可以同时判断出每一个被压触相迭区上的接触阻抗。 在本范例中, 可不通过延伸电阻即可判断出各被压触相迭区, 亦可判断 出各被压触相迭区的接触点与接触阻抗, 其中接触阻抗的判断可以是先 于接触点的判断。 另外在本发明的一范例中,位置侦测的装置对于被压触相迭区的侦测 如图 11C所示, 包括侦测单元 VI、 V6、 V7与一驱动单元 Dl, 驱动单元 D1提供一高电位 VH1与一低电位 VL1 , 其中高电位 VH1是提供给第一导 电条(X1,X2,...,X8)之一, 另外低电位 VL1 是提供给第二导电条 (Yl, Y2,…, Y8)之一, 侦测单元 VI侦测被提供高电位 VH1的导电条。
如先前所述,被提供高电位 VH1的第一导电条的侦测可以是包括但不 限于侦测电位、 电流或是逻辑准位。 例如, 在本发明的一范例中, 高电 位 VH1可以是通过一延伸电阻 Re提供给第一导电条 (XI, X2, ..., X8)之一, 藉由侦测延伸电阻 Re—侧(如延伸电阻 Re与导电条之间)上的电位、 电 流或是逻辑准位来侦测出各个被压触的相迭区。 其中, 高电位 VH1与低 电位 VL1分别被提供于第一导电条与第二导电条的一第一端。
通过 VI侦测出的电位 P3判断出一被压触相迭区时,可再利用侦测单 元 V6与 V7分别侦测相迭于被压触相迭区的第一导电条与第二导电条的 第二端, 其中侦测单元 VI、 V6与 V7分别侦测出一第一电位 Pl、 一第二 电位 P2与一第三电位 P3。 依据延伸电阻 Re的阻抗、 第一电位 Pl、 第二 电位 P2与第三电位 P3,可判断出被压触的相迭区中电一、第二导电条间 的接触阻抗 R。因此,由于串联电路中电流相等, (VH1-P3) /Rl= (P1-P2) /R, R= Rl (P1-P2) I (VH1-P3)。
依据图 11C所示, 利用驱动单元 Dl对各相迭区提供高电位 VH1与低 电位 VL1时, 可分别判断出被压触的相迭区, 及 触的相迭区中电一、 第二导电条间的阻值 R。
上述的驱动单元 D1与侦测单元 VI、 V6、 V7包括但不限于分别整合于前 述的驱动器 23与侦测器 24中,并且驱动单元 D4与侦测单元 V4、 V5包括 但不限于由前述的控制器 25控制。控制器 25对于选择器 22、驱动器 23、 侦测器 24的控制包括但不限于: 直接或通过一延伸电阻间接分别提供高 电位与低电位于至少一第一导电条的第一端与至少一第二导电条的第一 端; 侦测导电条与延伸电阻间的讯号; 以及分别侦测该些第一导电条之 一与该些第二导电条之一的第二端的电位。 单一对象的压触可能同时压 触到相邻的多数个相迭区, 如图 12C所示, 因此相邻的相迭区的接触点 间的距离可用来判断是否为同一对象的压触, 例如在同一轴向上两相邻 的相迭区的接触点间的距离未超过一个相迭区的宽度, 可视为相同对象 的压触。 同理, 位于对角位置两相迭区间的接触点间的距离未超过单相 迭区对角宽度, 亦可视为相同对象的压触, 本发明包括但不受限于以上 述接触点间的距离的判断是否为同对象的压触。
另夕卜, 亦可以将同对象压触的相邻相迭区处第一、第二导电条间的接 触阻抗 R视为并联的接触阻抗, 作为同对象压触的总接触阻抗。 例如, 两相邻相迭区为同对象的压触, 视为同压触下的两相邻相迭区, 该两相 邻相迭区中接触点在第一、第二导电条间的接触阻抗分别为 Ra与 Rb,则 压触的总接触阻抗为 l / (RaRb/Ra+Rb)。 据此, 更可以藉由相邻相迭区的 并联接触阻抗, 追踪一对象的压触轨迹。 例如, 以单一手指压触时, 压 触在单一相迭区与压触在多个相邻相迭区的总接触阻抗差异不大, 因此 可用来判断相邻的被压触相迭区是否为同手指的压触处。 例如, 当两手 指较接近时, 可依据两手指先前压触处的阻值来区分出彼此的压触处。
例如,相应于第一压触的一第一后续压触与第二压触的一第二后续压 触的被压触相迭区相邻时,可分别依据第一压触的总接触阻抗与第二压 触的该总接触阻抗判断出这些相邻的被压触相迭区为第一后续压触与第 二后续压触的两个不同压触,而非同一压触,并且可进一步判断出两个不 同压触。 例如,由第一后续压触与第二后续压触的移动方向及总接触阻抗 判断,亦可以依据各被压触相迭区的接触阻抗以分水岭算法判断。例如依 据各接触点的接触阻抗产生权重来进行分水岭算法,其中权重与接触阻 抗成反比。 熟知相关技艺者可推知其它在相邻相迭区判断出不同压触的 方式, 本发明包括但不限于上述方式。
在本发明的一范例中,可以是依据相邻的被压触相迭区的总接触阻抗 来判断为单压触或多压触。 另外, 在判断为两压触时, 可以是相距最远 的两接触点分别作为两压触的位置。
如图 12A所示, 当手拿笔书写时, 笔尖压触处 122的面积很小, 因此 接触点处在第一、 第二导电条间的接触阻抗 R很大, 相反地, 手掌可能 有一个或多个手掌压触处 124,且每个手掌压触处 124的面积都较大, 亦 即手掌压触处 124在第一、 第二导电条间的接触阻抗 R很小, 因此可以 明显地区隔出手掌的压触处 124。
同样地, 如图 12B所示, 若是手指压触的同时, 手掌亦压触到感应器 21, 手指压触处 126面积亦会小于各手掌压触处 124的压触面积, 因此 也可以区隔出手掌压触处 124。据此,可用不同的门坎限值依压触处第一、 第二导电条间的阻值 R大小区分出笔、 手指、 手掌的压触。
此外,接触阻抗 R的计算可以是在接触点被侦测出来之前或之后。 由 于电位值的侦测需要较长的时间, 若是接触阻抗 R的判断在接触点被侦 测出来之前, 则可以只侦测非手掌压触的接触点, 省去手掌压触的接触 点的电位侦测, 具有提升效能的优点。 此外, 可由压触处下各接触点的 质心坐标计算出压触处的坐标。
依据图 11A与图 11C相关说明,在本发明的一范例中, 是在判断每个 相迭区是否被压触的阶段,同时对被压触的相迭区进行接触阻抗的判断, 并且针对各对象压触的相迭区分别判断各对象压触的总接触阻抗。例如, 可以是以相迭区是否相邻判断是否为相同对象的压触, 将同对象压触的 相迭区的并联接触阻抗作为总接触阻抗, 并且依据同对象压触的相迭区 的接触点判断出该对象压触的位置。 此外, 还可以依据相邻相迭区的总 接触阻抗追踪同一对象的连续压触, 亦即同对象在持续移动中的总接触 阻抗相近, 在前后不同时点侦测到总接触阻抗相近且接触位置在一预设 范围内, 可被判断为同对象的连续压触, 藉由同物件连续压触中每一个 压触的总接触阻抗来追踪该对象的压触轨迹。
在本发明的另一范例中,可以依据各对象的总接触阻抗判断被忽视的 被压触相迭区或压触,各被忽视的被压触相迭区上的接触点不需被侦测。 例如, 当手掌上至少一部位压触时, 可依每一个部位压触造成的总接触 阻抗判断为手掌的压触, 并加以忽视, 因此当拿笔手写或用手指手写时, 可明显地分辨出笔或手指的压触与手掌各部位的压触, 并只侦测笔或手 指压触的位置, 亦可以藉由笔或手指的连续压触中每一个压触的总接触 阻抗, 来追踪笔或手指的压触轨迹。 在此, 本发明是以导电条是否会因 受压而接触来区分压触与碰触。
在本发明的另一范例中,如图 13所示,为具压阻层的位置侦测的装置, 可包括一第一绝缘层 131、 一第一导电条层 132、 一压阻层 133、 一第二 导电条层 134及一第二绝缘层 135。 第一、 第二导电条层 132、 134分别 包括上述第一、 第二导电条。 压阻层 133在未受到压力时为绝缘,亦即阻 值极大,并且在受压时阻值会降低, 甚至成为导体。 因此压阻层 133可取 代上述的绝缘粒子(spacer) , 在受压时一样能在第一、 第二导电条间因 压阻层 133受压处阻值降低而产生另类的接触点。
此外, 在压阻层未成为导体前为绝缘, 可进行电容式压触侦测, 在本 发明的一较佳范例中, 是采互电容式的碰触侦测, 因此在压阻层绝缘时 便可以侦测出多点碰触。 例如, 可以侦测出哪些相迭区被碰触。 另外, 在压阻层因压触成为导体时, 可进行上述的压触式的压触侦测, 因此可 侦测出有哪些相迭区被碰触及哪些相迭区被压触。 因此, 比对电容式碰 触的被碰触相迭区与压触式压触的被压触相迭区, 可应用于位置侦测的 确认, 或应用于上述的手掌忽视。 例如, 仅对同时被电容式碰触的被碰 触相迭区与被压触式压触的被压触相迭区进行接触点判断。 又例如, 当 用绝缘的笔书写时, 在压触式压触的被压触相迭区中排除同时也被电容 式碰触的被碰触相迭区后, 再进行接触点侦测。
据此,可结合两种以上不同的多点压触侦测,藉由两种以上不同的多 点压触侦测的侦测结果,忽视或排除手掌的压触位置, 以辨识出笔的压 触。 例如结合一电容式侦测与一红外线式侦测, 进行上述具手掌忽视功 能的压触侦测。 因此, 本发明包括并不受限以同一感应器 21进行两种以 上的碰触或压触侦测, 亦可用多数种感应器 21进行多数种碰触或压触侦 测, 更可以藉由不同的碰触或压触侦测结果来进行手掌忽视或排除手掌 压触的区域。 其中, 上述的多数种压触感应器可包括但不限于红外线式 (IR type)、 电容式 (Capaci t ive Type)、 压触式 (res i s t ive type)、 光 学式(Camera type or Opt ical Type)、 表面声波式(SAW type)感应器 (sensor)。
换言之,本发明提供一种利用多位置侦测方式忽视手掌的装置与方法, 包括但不限于以第一种碰触或压触的侦测方式在第二种碰触或压触的侦 测方式上定义一被忽视范围, 其中该被忽视范围可包括多数个独立的被 忽视区域。 例如, 以电容式侦测到的被碰触相迭区定义一被忽视范围, 另外再用光学式侦测(如红外线式)时将被忽视范围内侦测到的碰触视为 不存在。
在本发明的一较佳范例中,第一种侦测方式为能侦测到多碰触或多压 触的侦测方式。例如在投射式电容感应器上进行互电容式侦测,侦测出多 数个被碰触相迭区,依据被碰触相迭区定义出被忽视范围,如以每一个被 碰触相迭区向外扩大一范围作为被忽视范围。 例如, 依据每一个相迭区 中第一导电条与第二导电条间的电容变化量判断出被碰触相迭区。 亦可 以是例用上述感应器 21进行互电容式侦测, 以所有被碰触相迭区为被忽 视范围。 上述互电容式侦测是在每一奈第一轴向的导电条被提供驱动讯 号时, 由每一条第二轴向导电条侦测讯号的变化来判断出被碰触相迭区。
又例如在上述压触式感应器上进行压触侦测,再依被压触相迭区或接 触点定义出 围 ,其中被忽视范围更可以依据被压触相迭区的接触 阻抗向外扩大到包括与被压触相迭区相邻的未被压触相迭区。 例如定义 所有被压触相迭区为被忽视范围,并且判断每一个被压触相迭区的接触 阻抗,任何被压触相迭区的接触阻抗落于一范围(如小于一门坎限 时,与 接触阻抗落于该范围的被压触相迭区相邻的相迭区亦被定义为被忽视范 围。 另夕卜,本发明更包括依据被压触相迭区的接触阻抗, 由被压触相迭区 中排除笔或手指压触的被压触相迭区或由接触点中排除笔或手指压触的 接触点, 再依上述方式定义被忽«目迭区。
请参照图 4Α与图 14, 相迭区 A、 B、 C同时被压触, 当相迭区 D的第 一导电条与第二导电条被分别提供高电位 VH1与低电位 VL1时, 虽然相 迭区没有被压触, 电流会分别由相迭区 D上的第一导电条流经相迭区 A、 B、 C至相迭区 D上的第二导电条, 形成通路, 造成相迭区 D被误判为被 压触相迭区。
此外, 依据图 6A所述的接触点侦测方法, 当相迭区 D的一导电条两 端被分别提供高电位 VH2与低电位 VL2时,相迭区 A、 B、 C为等电位, 因 此接触点位置可能被误判位于相迭区 B。 据此,本发明提出一种侦测位置 误判的装置与方法, 可以是在侦测被压触相迭区接触点时, 忽视或排除 接触点位置落于被侦测相迭区外的接触点。 在本发明的一范例中, 控制 器不输出落于被侦测相迭区外的接触点的位置。熟知相关技术者可推知, 接触点位置落于被侦测的被压触相迭区的判断容许在一误差范围内 , 例 如接触点位置落于被侦测的被压触相迭区向外扩大的一范围外时才被排 除或忽视。 在本发明的一范例中, 被忽视或排除的压触可能包括多数个 接触点, 其中至少一接触点落在上述误差范围之外。 在本发明另一范例 中, 被忽视或排除的压触可能包括多数个接触点, 其中全部接触点落在 上述误差范围之外。 在本发明的一例子中, 相迭区 A与 B可能是由手掌 的压触所造成, 因此造成相迭区 D的误判, 因此上述对误判接触点或误 判被压触相迭区的忽视或排持, 亦是一种手掌忽视的应用, 即忽视手掌 的压触。
在本发明的一范例中,上述落于被侦测的被压触相迭区的接触点的判 断, 可以是在一轴向位置的判断上判断出来。 亦即在侦测上述第——维 坐标 Px时判断出来, 因此不需要再进行上述第二一维坐标 Py的侦测。
据此,在本发明的一范例中,更包括一过滤程序(Π 1 ter procedure), 此过滤程序可以是由前述控制器来作业。 过滤程序包括判断该些压触中 被排除的压触。 任一被排除的压触至少满足下列条件之一: 该总接触阻 抗小于前述门坎限值; 以及相应于相同压触的该接触点中存在至少一接 触点的位置落在相应的该相迭区的前述误差范围之外。 另外, 过滤程序 更包括判断该些压触中每一未被排除的压触的位置, 其中每一压触的位 置是依据相应于相同压触的该被压触相迭区的该接触点的位置来判断。
在前述说明中,接触阻抗的判断可以是在侦测被压触相迭区的同时, 即先于接触点的侦测。 因此藉由上述过滤程序,可大幅度地减少接触点的 侦测。因此,在本发明的一范例中,接触阻抗的侦测是先于接触点的侦测, 并且过滤程序中,总接触阻抗小于前述门坎限值的判断是先于接触点的侦 测。 换言之, 在过滤程序中, 可以是先进行总接触阻抗是否小于前述门 坎限值的判断后, 再判断相应于相同压触的该接触点中是否存在至少一 接触点的位置落在相应的该相迭区的前述误差范围之外。
在本发明的另一范例中,在过滤程序中,可以是先判断相应于相同压 触的该接触点中是否存在至少一接触点的位置落在相应的该相迭区的前 述误差范围之夕卜,再判断总接触阻抗是否小于前述门坎限值的判断。 亦即, 先进行接触点的判断, 排除误判的压触后, 再进行排除总接触阻抗是否 小于前述门坎限值的压触, 例如手掌忽视。
请参照图 15A, 当一笔压触时, 依据上述图 6A相关说明所述侦测单 元 V2侦测到的电位 Vp, 该笔被侦测到的压触位置位于压触位置 P, 压触 位置 P与笔实际压触的位置相同。再参照图 15B, 当一手掌压触到多数个 相邻导电条时, 手掌压触范围可能形成跨多数个导电条(同层导电条)的 总接触阻抗 Rpalm,在侦测笔的压触位置 P时,总接触阻抗 Rpalm可能造 成压触位置 P产生误差。
请参照图 16A、 图 16B与上述图 6A相关说明, 本发明提出一种校正 位置侦测误差的装置与方法。 首先, 如步骤 1610所示, 提供一延伸电阻 Re来电性耦合一导电条以形成一被驱动导电条, 并且分别提供一第一高 电位 VH5与一第一低电位 VL5于该被驱动导电条之两端。 此外, 如步骤 1620所示,在被驱动导电条未被压触时侦测延伸电阻 Re与导电条间的一 未被压触电位。 另外, 如步骤 1630所示, 在被驱动导电条被压触时侦测 延伸电阻与导电条间的一被压触电位。 之后, 如步骤 1640所示, 选择一 导电条作为一被侦测导电奈, 并且如步骤 1650、 1660所示, 分别提供一 第二高电位 VH2与一第二低电位 VL2于该被侦测导电条, 经由被压触于 该被侦测导电条的一导电条侦测一侦测电位。接下来,如步骤 1670所示, 依据该未被压触电位、 该被压触电位、 该侦测电位判断一被压触相迭区 上的接触点的位置,如上述第——维坐标 Px或第二一维坐标 Py。
上述第一高电位 VH5与第一低电位 VL5分别是由一驱动单元 D5所提 供, 在本发明的一范例中, 驱动单元 D2与驱动单元 D5可以是相同的驱 动单元。 此外, 上述侦测电位可以是由前述侦测单元 V2所侦测。 再者, 上述未被压触电位与被压触电位可以是由一侦测单元 V8所侦测。
上述的驱动单元 D2、 D 5与侦测单元 V2、 V8包括但不限于分别整合 于前述的驱动器 23与侦测器 24中,并且驱动单元 D2、 D 5与侦测单元 V2、 V8包括但不限于由前述的控制器 25控制。 控制器 25对于选择器 22、 驱 动器 23、侦测器 24的控制包括但不限于: 直接或通过一延伸电阻间接分 别提供高电位与低电位于同一导电条的第一端与第二端; 直接或通过一 延伸电阻间接分别提供高电位与低电位于至少一第一导电条的第一端与 至少一第二导电条的第一端; 侦测导电条与延伸电阻间的讯号; 以及在 一对被压触导电条之一被提供高电位与低电位时, 侦测该对被压触导电 条的另一的一端或两端的电位, 其中通过延伸电阻间接提供高电位与低 电位于同一导电条的第一端与第二端时, 通过侦测导电条与延伸电阻间 的讯号, 以判断一未被压触电位与一被压触电位。
请参照图 17A与图 17B所示,在本发明的一范例中,延伸电阻与被侦 测导电条的阻抗分别为 Re与 R,第一高电位与第一低电位分别以 Vdd与接 地电位来表示, 其中接地电位预设为 0。 当只有笔压触于位置 P时, 笔压 触处与延伸电极间的阻抗为 Rc。由于笔的压触对于整体阻抗的影响不大, 整体阻抗相当于未被压触的状态,亦即侦测延伸电阻与导电条间的被压 触电位相当于未 ^触电位 Vu。当被侦测导电条存在跨导电条 (跨同层导 电条)压触(如手掌的压触)的阻抗 Rpalm时,被侦测出来的正确位置位于 位置 C, 导电条的阻抗为 Rp, 被压触电位为 Vd。 另外, 位置 P的侦测是 通过侦测单元 V2侦测到的电位 Vp来侦测。
依据上述, 可得出下列算式。
参照图 17A,
Vu _ R ― νάά _ ^ ^ Re
νάά― Vu R— Vu
参照图 17B,
vd _ Rp Vdd , 一 R« Vdd-Vu
Vdd― Rs+Rp Vu R R Vu 此外,
Figure imgf000033_0001
Vdd Vp
Rc= Rp 一
Vdd
再参照图 17A,
Vc _ - c R~Rp Vdd Vdd-Vp Vdd-Vu Vd Vdd-Vp
1- Rp 1- Vdd― K Vdd Vu vdd-Vd Vdd
Vc - Vdd - .„:VP = Vp + AV
Vu Vdd-Vd
Ay = Vdd― V ^ . d dd - VP ― Vo = (V A一 yp)― νάά'ν" VP)
Vu Vdd- Vd ν , Vu Vdd-—V"d
Vu-vdd-VuVd-vddvd- Vu-vd
(Vdd-Vp) (l-^ ^ ) = (Vdd-Vp)
Vu- (Vdd-Vd)
Vdd(Vu-Vd)
ΔΥ (Vdd― Vp)
Vu-(Vdd-Vd)
相较于接触点(:, 当跨导电条的压触较接近低电位时,
Vc = Vdd一 Vu · V V(dLddd V"JdP) = ρ + Δν, 亦即在高电位与低电位的电位差为 已知时, 依据未被压触电位 Vu、 被压触电位 Vd、 侦测电位 Vp, 便可以校 正侦测电位 Vp的误差, 侦测出正确的侦测电位 Vc。
同理, 当跨导电条的压触较接近高电位时, 如图 17D所示, 可得出下 列算式。 Vc Re*
Vp
-^2- =—→ Rc ' = Rp
Vdd *- ^ Vdd
Vc Rp Vp
Vdd一 R * νύά
Vc = Vp 4- V
Figure imgf000034_0001
νάά-Va Vd \ _ , Vdd'Vd—V。'Vd-Vdd-Vu+Vu'Vd _ , „
I Vu d-¥d― / ~ P " P V«i{V.id-Vd} P十 P
Figure imgf000034_0002
Vdd(Vet-V«3
= Vp Vu(vdd_v^ 相较于接触点 c, 当跨导电条的压触较接近高电位时,
Vc = Vp + Vp - ¾¾=¾ = Vp + A '
VttCVdd"Vd) , 亦即在高电位与低电位的电位差为已 知时, 依据未被压触电位 Vu、 被压触电位 Vd、侦测电位 Vp, 便可以校正 侦测电位 Vp的误差, 侦测出正确的侦测电位 Vc。 再者, 由 Vc = VP + AF'与 V Vdd_Vli)可知, 位置误差量与位置 成正比。 亦即,从未被压触电位 Vu与被压触电位 Vd可判断出具跨相迭区 接触阻抗的导电条上的位置误差比例。 据此,在本发明的一范例中,是依 据导电条上一位置(如第一端或第二端)上电位的变化判断出具跨相迭区 (跨同层导电条)接触阻抗的导电条上的位置误差比例。事实上,知道位置 误差比例也等同知道误差位置, 亦即依据导电条上一位置(如第一端或第 二端)上电位的变化可判断出具跨相迭区接触阻抗的导电条上的位置误 差量或误差位置。
依据上述说明,相较于接触点 C,当跨导电条的压触较接近高电位时,
(VH-VI,)-CV -Viiij
Vc = Vp - (Vp一 ¥L)
(VU-V„ , 并且当跨导电条的压触较接近低电位
Vc = Vp - (Vp - VH) - (VH"VL) Vu'Vd ^H-vD-ivu-vd)
时, „KVH - 误差比例为 dVL)„》。 换言之, 在侦测接触点时, 本发明依据未被压触电位 Vu与被压触电 位 Vd, 可校正侦测电位 Vp的误差, 侦测出接触点正确的位置 C。
在本发明的一最佳模式中,是先侦测被压触导电条,再侦测被压触相 迭区, 如前述图 4A至图 4C、 图. 7至图 8C、 图 1 1A与图 11B及相关说明 所示。 此外,更包含依据前述总接触阻抗进行手掌忽视,并且在进行前述 位置误差校正后,进行位置误判的侦测,以忽视或滤除误判的压触,最后 再进行接触点的侦测, 判断各压触的接触点的质心坐标, 以作为各压触 的位置。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定 本发明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内, 当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实 施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以 上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术 方案的范围内。 工业应用, !·生
本发明提供一种位置侦测的装置与方法,位置侦测的装置包含多数条 导电条相迭构成的多数个相迭区, 其中相迭于任一相迭区的一对导电条 在电性接触形成一接触点时构成一被压触相迭区。依据被压触相迭区,可 判断出每一个压触。 藉由判断每一个被压触相迭区的接触阻抗, 可判断 出每一个压触的总接触阻抗, 其中跨相迭区的压触的总接触阻抗为相应 相同压触的所有相迭区的接触阻抗的并联阻抗。

Claims

权. 利 要 求
1、 一种位置侦测的装置, 其特征在于包括:
一感应器, 包括复数条导电条相迭构成的复数个相迭区,其中相迭于 任一相迭区的一对导电条因电性接触形成一接触点时构成一被压触相迭 区;
一驱动器, 分别提供一高电位与一低电位;
一侦测器, 侦侧至少一导电条之一讯号;
一选择器, 操作性耦合该些导电条于该驱动器与该侦测器; 以及 一控制器,藉由控制该驱动器、该侦测器与该选择器进行至少以下作 业:
判断压触在该些相迭区上的每一个压触; 以及
判断每一个压触的一总接触阻抗 ,其中跨相迭区的压触的该总接触阻 抗为该跨相迭区的压触的所有相迭区的一接触阻抗的并联阻抗。
2、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器更包 括依据每一压触的该总接触阻抗追踪每一压触的后续压触, 其中每一压 触与每一后续压触的该总接触阻抗的差在一预设范围内, 并且相应于相 同压触的该被压触相迭区为相邻的相迭区。
3、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器更包 括判断每一个被压触相迭区的该接触阻抗, 该接触阻抗是依据该被压触 相迭区的该对导电条之一与另一在该接触点的电位与该接触点的位置来 判断。
4、 如权利要求 3所述的位置侦测的装置, 其特征在于该控制器对于 该接触阻抗的判断包括:
判断该接触点的一第一维度位置与一第二维度位置,并且依据该第一 维度位置与该第二维度位置判断出一第一维度阻抗与一第二维度阻抗; 在该对导电条之一与另一分别被提供该高电位与该低电位时侦测该 接触点在该对导电条上之一与另一的一第一接触电位与一第二接触电 位; 以及
判断出该接触阻抗, 其中该接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该 <电位、 该第一接 触电位与该第二接触电位。
5、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器更包 括判断每一个被压触相迭区的该接触阻抗, 该接触阻抗是依据该被压触 相迭区的该对导电条之一与另一在该接触点的电位与该被压触相迭区的 位置来判断。
6、 如权利要求 5所述的位置侦测的装置, 其特征在于该控制器对于 该接触阻抗的判断包括:
依据该被压触相迭区的位置判断出一第一维度阻抗与一第二维度阻 抗;
在该对导电条之一与另一分别被提供该高电位与该 <电位时侦测该 接触点在该对导电条上之一与另一的一第一接触电位与一第二接触电 位; 以及
判断出该接触阻抗, 其中该接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分另' J 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 第一接触 电位、 第二接触电位。
7、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器更包 括:
判断该些压触中被排除的压触,其中任一被排除的压触至少满足下列 条件之一:
该总接触阻抗小于一门坎限值; 以及
相 于相同压触的该接触点中存在至少一接触点的位置落在相应的 该相迭区的一误差范围之外; 以及
判断该些压触中每一未被排除的压触的位置,其中每一压触的位置系 依据相应于相同压触的该被压触相迭区的该接触点的位置来判断。
8、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器对于 该被压触相迭区的该接触点的判断包括:
轮流选择该对导电条之一与另一分别作为一被驱动导电条与一被侦 测导电条;
在提供一高电位与一低电位于该被驱动导电条两端时侦测该被侦测 导电条的电位作为一位置电位;
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条; 在该延伸导电条未被压触时提供该高电位与该低电位于该延伸导电 条以侦测该延伸电阻与该被驱动导电条间的电位作为一未压触电位; 在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条 以侦测该延伸电阻与该被驱动导电条间的电位作为一被压触电位; 以及 依据该位置电位、该被驱动导电条的该未压触电位与该被压触电位判 断该接触点在该被驱动导电条的位置。
9、 如权利要求 1所述的位置侦测的装置, 其特征在于该控制器对该 驱动器、 该侦测器与该选择器的控制至少包括: 直接或通过一延伸电阻间接提供该高电位与该低电位于同一导电条 的一第一端与一第二端;
直接或间接分别提供该高电位与该低电位于至少一第一导电条的该 第一端与至少一第二导电条的该第一端;
侦测该些导电条之一与该延伸电阻间的该讯号;
在一对导电条之一被提供该高电位与该低电位时,侦测该对导电条之 另一的该第一端或该第二端之一或两者的电位; 以及
分别侦测该些第一导电条之一与该些第二导电条之一的一第二端的 电位。
10、如权利要求 1所述的位置侦测的装置,其特征在于该控制器藉由 对该驱动器、 该侦测器与该选择器的控制更包括:
通过一延伸电阻间接提供该高电位与该低电位于同一导电条的一第 一端与一第二端时, 侦测该导电条与该延伸电阻间的该讯号。
11、 一种位置侦测的方法, 其特征在于包括:
提供复数条导电条相迭构成的复数个相迭区,其中相迭于任一相迭区 的一对导电条在电性接触形成一接触点时构成一被压触相迭区;
在该些相迭区判断出每一个压触;
判断每一个跨相迭区的压触相应的每一个相迭区的一接触阻抗;以及 判断每一个跨相迭区的压触的一总接触阻抗,该总接触阻抗为相应相 同压触的所有相迭区的该接触阻抗的并联阻抗。
12、 如权利要求 11所述位置侦测的方法, 其特征在于更包括依据每 一压触的该总接触阻抗追踪每一压触的后续压触, 其中每一压触与每一 后续压触的该总接触阻抗的差在一预设范围内, 并且相应于相同压触的 该被压触相迭区为相邻的相迭区。
13、 如权利要求 11所述位置侦测的方法, 其特征在于该接触阻抗是 依据该对导电条之一与另一在该接触点的电位差与该接触点的位置来判 断。
14、 如权利要求 11所述位置侦测的方法, 其特征在于该接触阻抗的 判断包括:
判断该接触点的一第一维度位置与一第二维度位置,并且依据该第一 维度位置与该第二维度位置判断出一第一维度阻抗与一第二维度阻抗; 在该对导电条之一与另一分别被提供一高电位与一低电位时侦测该 接触点在该对导电条上之一与另一的一第一接触电位与一第二接触电 位; 以及
判断出该接触阻抗, 其中该接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 第一接触 电位、 第二接触电位。
15、 如权利要求 11所述位置侦测的方法, 其特征在于该接触阻抗是 依据该对导电条之一与另一在该接触点的电位差与该被压触相迭区的位 置来判断。
16、 如权利要求 15所述位置侦测的方法, 其特征在于该接触阻抗的 判断包括:
依据该被压触相迭区的位置判断出一第一维度阻抗与一第二维度阻 抗 ^
在该对导电条之一与另一分别被提供一高电位与一低电位时侦测该 接触点在该对导电条上之一与另一的一第一接触电位与一第二接触电 位; 以及
判断出该接触阻抗, 其中该接触阻抗为
(R1+R2) / ( ( (VH-VL) / (P1-P2) ) -1) , 其中 Rl、 R2、 VH、 VL、 Pl、 P2分别 为该第一维度阻抗、 该第二维度阻抗、 该高电位、 该低电位、 第一接触 电位、 第二接触电位。
17、 如权利要求 11所述位置侦测的方法, 其特征在于更包括: 判断该些压触中被排除的压触,其中任一被排除的压触至少满足下列 条件之一:
该总接触阻抗小于一门坎限值;
相应于相同压触的该接触点中存在至少一接触点的位置落在相应的 该相迭区的一误差范围之外; 以及
判断该些压触中每一未被排除的压触的位置,其中每一压触的位置系 依据相应于相同压触的该被压触相迭区的该接触点的位置来判断。
18、 如权利要求 11所述位置侦测的方法, 其特征在于该被压触相迭 区的该接触点的判断包括:
轮流选择该对导电条之一与另一分别作为一被驱动导电条与一被侦 测导电条;
在提供一高电位与一低电位于该被驱动导电条两端时侦测该被侦测 导电条的电位作为一位置电位;
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条; 在该延伸导电条未被压触时提供该高电位与该低电位于该延伸导电 条以侦测该延伸电阻与该被驱动导电条间的电位作为一未压触电位; 在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条 以侦测该延伸电阻与该被驱动导电条间的电位作为一被压触电位; 以及 依据该位置电位、该被驱动导电条的该未压触电位与该被压触电位判 断该接触点在该被驱动导电条的位置。
19、 如权利要求 11所述位置侦测的方法, 其特征在于更包括: 直接或通过一延伸电阻间接提供一高电位与一低电位于同一导电条 的一第一端与一第二端;
直接或间接分别提供该高电位与该低电位于至少一第一导电条的该 第一端与至少一第二导电条的该第一端;
侦测该些导电条之一与该延伸电阻间的该讯号;
在一对导电条之一被提供该高电位与该低电位时,侦测该对导电条之 另一的该第一端或该第二端之一或两者的电位; 以及
分别侦测该些第一导电条之一与该些第二导电条之一的一第二端的 电位。
20、 如权利要求 11所述位置侦测的方法, 其特征在于更包括: 通过一延伸电阻间接提供该高电位与该低电位于同一导电条的一第 一端与一第二端时, 侦测该导电条与该延伸电阻间的该讯号。
21、 一种校正位置误差的装置, 其特征在于包括:
一感应器, 包括复数条导电条相迭构成的复数个相迭区,其中相迭于 任一相迭区的一对被压触导电条因电性接触形成一接触点时构成一被压 触相迭区;
一驱动器, 分别提供一高电位与一低电位;
一侦测器, 侦侧至少一导电条之一讯号;
一选择器, 操作性辆合该些导电条于该驱动器与该侦测器; 以及 一控制器,藉由控制该驱动器、该侦测器与该选择器进行至少以下作 业:
侦测每一导电条的一端的一未被压触电位;
侦测每一被压触导电条在该端的一被压触电位;
依据该未被压触电位、该被压触电位判断每一奈被压触导电条上的该 接触点的一误差比例。
22、 如权利要求 21所述的校正位置误差的装置, 其特征在于该未被 压触电位与该被压触电位的侦测包括:
轮流选择该些导电条之一成为一被驱动导电条;
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条; 在该延伸导电条未被压触时提供该高电位与该低电位于该延伸导电 及
在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条
23、 如权利要求 22所述的校正位置误差的裴置, 其特征在于该误差
(VH-Vl)-(V -Vd3
比例为 (Vuv"(viM d》, 其中 VH、 VL、 Vd与 Vu分别为该高电位、 该低电位、 该被压触电位与该未被压触电位。
24、 如权利要求 21所述的校正位置误差的装置, 其特征在于该控制 器更包括藉由控制该驱动器、 该侦测器与该选择器进行至少以下作业: 侦测每一接触点的一位置,当该被压触导电条存在一跨同层导电条的 接触阻抗时, 该未校正位置存在因该跨同层导电条的接触阻抗造成的一 误差;
依据该未校正位置、 该偏差比例校正该误差。
25、 如权利要求 24所述的校正位置误差的装置, 其特征在于该接触 点位置的侦测包括:
轮流选择该对被压触导电条之一与另一分别作为一被驱动导电条与 一被侦测导电条;
在提供一高电位与一低电位于该被驱动导电条两端时侦测该被侦测 导电条的电位作为一侦测电位; 以及
依据该对被压触导电条的该些侦测电位判断出该位置。
26、 如权利要求 25所述的校正位置误差的装置, 其特征在于该接触 点位置的侦测包括:
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条;
,、 在,延伸导 '电条未被压触 提供该高电位与该低,位于 i亥延伸导电 电位; 以及
在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条 以侦测该延伸电阻与该被驱动导电条间的电位作为该被压触电位。
27、 如权利要求 26所述的校正位置误差的装置, 其特征在于在该对 导电条之一上的该接触点位于该跨同层导电条的接触阻抗与被提供高电 位的该端间时, 该被压触导电条之一上的该位置经校正该误差后为
Vp一 (Vp— VH)♦ (VH-v ,Hv.-vdl
iv.-v,)(vH-v )5 其中 vpVHVLVdVu分别为该侦测电 位、 该高电位、 该 4氏电位、 该被压触电位与该未被压触电位。
28、 如权利要求 26所述的校正位置误差的装置, 其特征在于在该对 导电奈之一上的该接触点位于该跨同层导电条的接触阻抗与被提供低电 位的该端间时, 该被压触导电条之一上的该位置经校正该误差后为 一 , 其中 VPVHVL、 Vd与 Vu分别为该侦测电 位、 该高电位、 该 4氏电位、 该被压触电位与该未被压触电位。
29、 如权利要求 21 所述的校正位置误差的装置,其特征在于该控制 器更包括藉由控制该驱动器、 该侦测器与该选择器进行至少以下作业: 中该未被压触电位的侦测先于该对被压触导电条的判断、。 ' ^
30、如权利要求 21所述的校正位置误差的装置,其特征在于该控制器 更包括藉由控制该驱动器、 该侦测器与该选择器进行至少以下作业: 依据每一条导电奈与任一相迭的导电条间是否为通路侦测出该些被 压触导电条, 该些导电条分别位于相迭的一第一导电条层与一第二导电 条层, 并且该第一导电条层与该第二导电条层间散布复数个绝缘粒子。
31、 一种校正位置误差的方法, 其特征在于包括:
提供复数条导电条相迭构成的复数个相迭区,其中相迭于任一相迭区 的一对被压触导电条在电性接触形成一接触点时构成一被压触相迭区; 侦测每一导电条的一端的一未被压触电位;
侦测每一被压触导电条在该端的一被压触电位;
依据该未被压触电位、该被压触电位判断每一条被压触导电条上的该 接触点的一误差比例。
32、 如权利要求 31所述的校正位置误差的方法, 其特征在于该未被 压触电位与该被压触电位的侦测包括:
轮流选择该些导电条之一成为一被驱动导电条;
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条; 在该延伸导电条未被压触时提供一高电位与一低电位于该延伸导电 以 及
在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条
33、如权利要求 32所述的校正位置误差的方法,其特征在于该误差比
<VH-VL)'<Vtt-V(¾
例为 (VUHXVH- νφ,其中 、 VdVu分别为该高电位、 该低电位、 该被 压触电位与该未被压触电位。
34、如权利要求 31所述的校正位置误差的方法,其特征在于更包括: 侦测每一接触点的一位置,当该被压触导电条存在一跨同层导电条的 接触阻抗时, 该未校正位置存在因该跨同层导电条的接触阻抗造成的一 误差;
依据该未校正位置、 该偏差比例校正该误差。
35、 如权利要求 34所述的校正位置误差的方法, 其特征在于该接触 点位置的侦测包括: 轮流选择该对被压触导电条之一与另一分别作为一被驱动导电条与 一被侦测导电条;
在提供一高电位与一低电位于该被驱动导电条两端时侦测该被侦测 导电条的电位作为一侦测电位; 以及
依据该对被压触导电条的该些侦测电位判断出该位置。
36、 如权利要求 35所述的校正位置误差的方法, 其特征在于该接触 点位置的侦测包括:
电性耦合一延伸电阻与该被驱动导电条以构成一延伸导电条; 在该延伸导电条未被压触时提供该高电位与该低电位于该延伸导电 电位; 以及
在该延伸导电条被压触时提供该高电位与该低电位于该延伸导电条 以侦测该延伸电阻与该被驱动导电条间的电位作为该被压触电位。
37、 如权利要求 36所述的校正位置误差的方法, 其特征在于在该对 导电条之一上的该接触点位于该跨同层导电条的接触阻抗与被提供高电 位的该端间时, 该被压触导电条之一上的该位置经校正该误差后为
Vp - CVp - VH) . ^-^^"^
iv«-vLKvH-vd)5 其中 vp、 VH、 VL、 Vd与 Vu分别为该侦测电 位、 该高电位、 该低电位、 该被压触电位与该未被压触电位。
38、 如权利要求 36所述的校正位置误差的方法, 其特征在于在该对 导电条之一上的该接触点位于该跨同层导电条的接触阻抗与被提供低电 位的该端间时, 该被压触导电条之一上的该位置经校正该误差后为 Vp . (Vp . VL) . ^H-^HVu-v<i)
(Vu-VL)CVH"Vd), 其中 VP、 VH、 VL、 Vd与 Vu分别为该侦测电 位、 该高电位、 该 4氏电位、 该被压触电位与该未被压触电位。
39、 如权利要求 31所述的校正位置误差的方法,其特征在于更包括: 依据相迭于相迭区的导电条间是否为通路判断出该对被压触导电条,其 中该未被压触电位的侦测先于该对被压触导电条的判断。
40、 如权利要求 31所述的校正位置误差的方法,其特征在于更包括: 依据每一奈导电条与任一相迭的导电条间是否为通路侦测出该些被 压触导电条, 该些导电条分别位于相迭的一第一导电条层与一第二导电 条层, 并且该第一导电条层与该第二导电条层间散布复数个绝缘粒子。
PCT/CN2010/000514 2009-09-23 2010-04-16 位置侦测的装置及方法 WO2011035527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10818221.3A EP2500806A4 (en) 2009-09-23 2010-04-16 POSITION DETECTION DEVICE AND METHOD THEREFOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24506309P 2009-09-23 2009-09-23
US61/245,063 2009-09-23
US30166110P 2010-02-05 2010-02-05
US61/301,661 2010-02-05

Publications (1)

Publication Number Publication Date
WO2011035527A1 true WO2011035527A1 (zh) 2011-03-31

Family

ID=43795318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000514 WO2011035527A1 (zh) 2009-09-23 2010-04-16 位置侦测的装置及方法

Country Status (4)

Country Link
EP (1) EP2500806A4 (zh)
CN (8) CN102023742B (zh)
TW (9) TWI563442B (zh)
WO (1) WO2011035527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459275B (zh) * 2011-12-21 2014-11-01 Futaba Denshi Kogyo Kk 投射式電容觸摸面板及其座標檢測方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466004B (zh) 2009-04-17 2014-12-21 Egalax Empia Technology Inc 電阻式多點觸控裝置及方法
TWI563442B (en) * 2009-09-23 2016-12-21 Egalax Empia Technology Inc Method and device for position detection
TWI447630B (zh) * 2011-11-25 2014-08-01 Wistron Corp 觸控信號之處理方法及其計算機裝置
TWI465994B (zh) * 2011-12-09 2014-12-21 Nuvoton Technology Corp 電荷分配式觸控感測方法及其感測裝置
TWI599935B (zh) * 2011-12-19 2017-09-21 禾瑞亞科技股份有限公司 偵測小面積接觸或接近的方法與裝置
TWI453646B (zh) * 2012-07-11 2014-09-21 Novatek Microelectronics Corp 電容式觸控裝置及其感測方法
TWI472974B (zh) * 2012-09-06 2015-02-11 Au Optronics Corp 多類物體觸控點偵測方法
TWI486837B (zh) * 2012-09-18 2015-06-01 Egalax Empia Technology Inc 基於預測的位置追蹤方法
JP6485618B2 (ja) * 2013-11-11 2019-03-20 Tianma Japan株式会社 圧電シートならびにそれを用いたタッチパネルならびにそれらを用いた入出力装置
CN105117009B (zh) * 2015-08-25 2018-08-10 联想(北京)有限公司 一种控制方法及电子设备
TWI549037B (zh) * 2015-12-23 2016-09-11 Imagination Broadway Touch detection method to prevent false touch in touch system
TWI775255B (zh) * 2020-12-25 2022-08-21 禾瑞亞科技股份有限公司 用於計算壓力校正函數的觸控處理裝置與觸控系統及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181030A (en) * 1989-12-28 1993-01-19 Gunze Limited Input system including resistance film touch panel and pushed position detecting device
CN1596413A (zh) * 2001-11-30 2005-03-16 3M创新有限公司 在电容性触屏上定位触摸的系统与方法
CN1663124A (zh) * 2002-06-21 2005-08-31 3M创新有限公司 具有唯一传感器条寻址的电容性接触式传感器架构
US20090127086A1 (en) * 2007-11-20 2009-05-21 Chen-Yu Liu Touch control device and method thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526043A (en) * 1983-05-23 1985-07-02 At&T Bell Laboratories Conformable tactile sensor
US4587378A (en) * 1984-07-30 1986-05-06 Koala Technologies Corporation Two-layer touch tablet
JP2739001B2 (ja) * 1991-11-01 1998-04-08 シャープ株式会社 タッチパネル式入力装置
CA2082136C (en) * 1991-11-08 1998-01-06 Hiroshi Tsujioka Coordinates input device
JPH0944290A (ja) * 1995-07-31 1997-02-14 Pentel Kk 座標入力装置
EP1509887A2 (en) * 2001-10-25 2005-03-02 Koninklijke Philips Electronics N.V. Method and system for authenticating a packaged good
KR100847813B1 (ko) * 2001-12-27 2008-07-23 엘지디스플레이 주식회사 터치패널 구동장치 및 방법
KR100451773B1 (ko) * 2002-11-20 2004-10-08 엘지.필립스 엘시디 주식회사 디지털 저항막 방식의 터치 패널
TWI231453B (en) * 2003-01-20 2005-04-21 Htc Corp Method and apparatus for avoiding pressing inaccuracies on a touch panel
US7492358B2 (en) * 2004-06-15 2009-02-17 International Business Machines Corporation Resistive scanning grid touch panel
JP2006039686A (ja) * 2004-07-22 2006-02-09 Pioneer Electronic Corp タッチパネル装置、タッチ領域検出方法およびタッチ領域検出プログラム
US7847789B2 (en) * 2004-11-23 2010-12-07 Microsoft Corporation Reducing accidental touch-sensitive device activation
CN101017419B (zh) * 2005-06-30 2010-05-12 智点科技(深圳)有限公司 触控式平板显示器
TWI269998B (en) * 2005-07-12 2007-01-01 Elan Microelectronics Corp Method for detecting hand gesture on touch pad
US7868874B2 (en) * 2005-11-15 2011-01-11 Synaptics Incorporated Methods and systems for detecting a position-based attribute of an object using digital codes
TWI320541B (en) * 2005-12-19 2010-02-11 Mediatek Inc Touch screen digitizing system touch screen digitizing system
US8049732B2 (en) * 2007-01-03 2011-11-01 Apple Inc. Front-end signal compensation
TW200915165A (en) * 2007-09-17 2009-04-01 Ad Semiconductor Co Ltd Resistive touch screen which can identify multi-touch
CN101424994B (zh) * 2007-10-30 2010-11-03 华硕电脑股份有限公司 触控显示装置及判断触控方式的方法
TWI387915B (zh) * 2007-11-20 2013-03-01 Tpk Touch Solutions Inc 觸控裝置之觸控感測方法
TW200925969A (en) * 2007-12-11 2009-06-16 Tpk Touch Solutions Inc Device for scanning and detecting touch point of touch control panel and method thereof
CN101526865B (zh) * 2008-03-06 2012-01-11 升达科技股份有限公司 触控板侦测多指触的方法
CN101398736B (zh) * 2008-11-10 2011-03-23 华硕电脑股份有限公司 电阻式触控面板及其接触点检测方法
CN101446872B (zh) * 2008-12-31 2012-02-29 广东威创视讯科技股份有限公司 触摸定位的方法及装置
TW201104531A (en) * 2009-07-17 2011-02-01 Egalax Empia Technology Inc Method and device for palm rejection
TWI563442B (en) * 2009-09-23 2016-12-21 Egalax Empia Technology Inc Method and device for position detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181030A (en) * 1989-12-28 1993-01-19 Gunze Limited Input system including resistance film touch panel and pushed position detecting device
CN1596413A (zh) * 2001-11-30 2005-03-16 3M创新有限公司 在电容性触屏上定位触摸的系统与方法
CN1663124A (zh) * 2002-06-21 2005-08-31 3M创新有限公司 具有唯一传感器条寻址的电容性接触式传感器架构
US20090127086A1 (en) * 2007-11-20 2009-05-21 Chen-Yu Liu Touch control device and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2500806A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459275B (zh) * 2011-12-21 2014-11-01 Futaba Denshi Kogyo Kk 投射式電容觸摸面板及其座標檢測方法

Also Published As

Publication number Publication date
TWI464663B (zh) 2014-12-11
CN102023743A (zh) 2011-04-20
TWI410855B (zh) 2013-10-01
CN102023775A (zh) 2011-04-20
CN102023780A (zh) 2011-04-20
EP2500806A1 (en) 2012-09-19
CN102023743B (zh) 2013-10-30
TWI407360B (zh) 2013-09-01
CN102023775B (zh) 2013-10-30
TW201112103A (en) 2011-04-01
CN102023776B (zh) 2013-06-19
TWI563442B (en) 2016-12-21
CN102023781B (zh) 2012-07-25
CN102023742B (zh) 2012-08-29
TW201112104A (en) 2011-04-01
CN102023777B (zh) 2013-03-27
TWI447633B (zh) 2014-08-01
TWI521419B (zh) 2016-02-11
EP2500806A4 (en) 2014-08-27
TW201346693A (zh) 2013-11-16
CN102023777A (zh) 2011-04-20
CN102023779B (zh) 2013-03-27
TW201135570A (en) 2011-10-16
CN102023779A (zh) 2011-04-20
TWI437480B (zh) 2014-05-11
CN102023776A (zh) 2011-04-20
TW201112099A (en) 2011-04-01
TW201112102A (en) 2011-04-01
TW201129925A (en) 2011-09-01
CN102023780B (zh) 2013-01-23
CN102023742A (zh) 2011-04-20
TW201112101A (en) 2011-04-01
TW201112100A (en) 2011-04-01
TWI430168B (zh) 2014-03-11
TWI409687B (zh) 2013-09-21
CN102023781A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
TWI521419B (zh) 校正位置誤差的裝置及方法
US9080919B2 (en) Method and device for position detection with palm rejection
US8531429B2 (en) Method and device for capacitive sensing
WO2011041947A1 (zh) 位置侦测的方法与装置
US8319748B2 (en) Touch panel and output method therefor
TWI451299B (zh) 具異向性材質薄膜之觸控面板之觸控點座標的決定方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010818221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE