WO2011033912A1 - チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機 - Google Patents

チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機 Download PDF

Info

Publication number
WO2011033912A1
WO2011033912A1 PCT/JP2010/064463 JP2010064463W WO2011033912A1 WO 2011033912 A1 WO2011033912 A1 WO 2011033912A1 JP 2010064463 W JP2010064463 W JP 2010064463W WO 2011033912 A1 WO2011033912 A1 WO 2011033912A1
Authority
WO
WIPO (PCT)
Prior art keywords
discrete cosine
unit
cosine transform
channel information
information
Prior art date
Application number
PCT/JP2010/064463
Other languages
English (en)
French (fr)
Inventor
養幸 畑川
聡 小西
知子 松本
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Priority to US13/395,735 priority Critical patent/US9118440B2/en
Priority to CN201080041933.5A priority patent/CN102577198B/zh
Publication of WO2011033912A1 publication Critical patent/WO2011033912A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/007Transform coding, e.g. discrete cosine transform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/04Colour television systems using pulse code modulation
    • H04N11/042Codec means
    • H04N11/044Codec means involving transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Definitions

  • the present invention relates to a channel information compression apparatus and method, a channel information expansion apparatus and method, a receiver, and a transmitter.
  • the transmitter does not perform precoding by performing precoding (Precoding) based on channel information (CSI: Channel State Information) indicating the state of a signal transmission path (communication channel) for transmission data.
  • CSI Channel State Information
  • channel information is generally acquired by a receiver, but the following two methods (1) and (2) are used as methods for precoding transmission data based on the channel information.
  • (2) is known (see, for example, Non-Patent Document 2).
  • (1) The channel response matrix acquired by the receiver is transmitted to the transmitter, and the transmitter performs precoding according to the channel response matrix.
  • a codebook having a plurality of precoder indexes is shared between the transmitter and the receiver, and the precoder index corresponding to the channel response matrix acquired by the receiver is transmitted. And the transmitter uses the precoder for that index.
  • the transmitter can perform precoding using the channel response matrix obtained by the receiver, but the amount of information in the channel response matrix sent from the receiver to the transmitter is small. Since there are many, the radio
  • the present invention has been made in view of such circumstances, and provides a channel information compression device, a channel information compression method, and a receiver capable of performing information compression while maintaining good accuracy of channel information. Is an issue.
  • Another object of the present invention is to provide a channel information expansion device, a channel information expansion method, and a transmitter corresponding to the channel information compression device, the channel information compression method, and the receiver.
  • a channel information compression device includes a discrete cosine transform unit that performs discrete cosine transform on channel information representing a communication channel state, and a discrete cosine transform obtained by the discrete cosine transform. And an information compression unit that compresses high-frequency component information included in the data.
  • the discrete cosine transform unit performs the discrete cosine transform in a transform unit composed of channel information representing the state of the same communication channel.
  • the channel information is acquired for each subcarrier of the multicarrier transmission scheme, and the discrete cosine transform unit is a continuous subcarrier or a subspace separated at equal intervals.
  • the discrete cosine transform may be performed in a transform unit composed of carrier channel information.
  • the channel information is a channel response matrix between transmitting and receiving antennas of a MIMO system
  • the discrete cosine transform unit is a subcarrier of the MIMO system that uses a multicarrier transmission scheme.
  • the discrete cosine transform may be performed in transform units composed of the same elements of the channel response matrix.
  • the channel information is acquired at regular intervals, and the discrete cosine transform unit is composed of channel information for one or a plurality of consecutive acquisition times.
  • the discrete cosine transform may be performed in units.
  • the information compression unit can change a compression rate of the discrete cosine transform data, and the channel information compression device can adjust a moving speed of a receiver that receives the communication channel. Accordingly, a control unit that changes the compression rate of the discrete cosine transform data may be provided.
  • the information compression unit can change a compression rate of the discrete cosine transform data, and the channel information compression device uses an information transmitted on the communication channel.
  • a control unit that changes the compression rate of the discrete cosine transform data according to the required throughput may be provided.
  • the information compression unit can change a compression rate of the discrete cosine transform data, and the channel information compression apparatus determines the number of receivers that simultaneously use shared radio resources. Accordingly, a control unit that changes the compression rate of the discrete cosine transform data may be provided.
  • the discrete cosine transform unit can change the size of a transform unit of the discrete cosine transform
  • the channel information compression device is a receiver for receiving the communication channel. You may provide the control part which changes the magnitude
  • the discrete cosine transform unit can change the size of a transform unit of the discrete cosine transform
  • the channel information compression device is a receiver for receiving the communication channel. You may provide the control part which changes the magnitude
  • the receiver may be a software defined radio receiver
  • the control unit converts the discrete cosine transform according to a restriction on a memory amount usable for software defined radio. You may make it change the magnitude
  • a channel information compression device receives a variable length coding unit capable of changing a size of a coding unit by variable length coding the compressed data of the discrete cosine transform data, and the communication channel And a control unit that changes the size of the coding unit according to the moving speed of the receiver.
  • a channel information compression device receives a variable length coding unit capable of changing a size of a coding unit by variable length coding the compressed data of the discrete cosine transform data, and the communication channel And a control unit that changes the size of the coding unit according to restrictions on the use of hardware resources of the receiver.
  • the receiver may be a software defined radio receiver
  • the control unit is configured to increase a size of the coding unit according to a restriction on a memory amount usable for software defined radio. The height may be changed.
  • a channel information expansion device includes an information expansion unit that expands compressed data of discrete cosine transform data of channel information representing a communication channel state, and an inverse discrete cosine to discrete cosine transform data obtained by the information expansion unit.
  • An inverse discrete cosine transform unit for performing transform is included in the information expansion unit.
  • the information expansion unit is capable of changing a expansion rate of the discrete cosine transform data, and the channel information expansion device performs the information expansion unit according to control information related to the compressed data. You may provide the control part which controls.
  • the inverse discrete cosine transform unit can change the size of the transform unit of the inverse discrete cosine transform, and the channel information expansion device relates to the discrete cosine transform data.
  • the channel information expansion device can change the size of the encoding unit by variable-length decoding the variable-length encoded data of the compressed data of the discrete cosine transform data of the channel information representing the state of the communication channel A variable length decoding unit, and a control unit that controls the variable length decoding unit in accordance with control information related to the variable length encoded data.
  • the channel information compression method includes a step of performing discrete cosine transform on channel information representing a state of a communication channel, and a step of compressing high-frequency component information included in discrete cosine transform data obtained by the discrete cosine transform Including.
  • the channel information expansion method includes a step of expanding compressed data of discrete cosine transform data of channel information representing a state of a communication channel, and an inverse discrete cosine transform of the discrete cosine transform data obtained by the expanding step. Steps.
  • a computer-readable recording medium includes a step of performing discrete cosine transform on channel information representing a state of a communication channel, and compressing high-frequency component information included in discrete cosine transform data obtained by the discrete cosine transform.
  • a computer program for causing the computer to execute the step of performing can be realized using a computer.
  • a computer-readable recording medium includes a step of expanding compressed data of discrete cosine transform data of channel information representing a state of a communication channel, and an inverse discrete cosine to the discrete cosine transform data obtained by the expanding step.
  • a computer program for causing the computer to execute the conversion step is recorded.
  • the receiver according to the present invention is obtained by the discrete cosine transform in the receiver of the MIMO system and the discrete cosine transform unit that performs discrete cosine transform on channel information between the transmitter and the receiver of the MIMO system.
  • An information compression unit that compresses high-frequency component information included in the discrete cosine transform data, and a transmission unit that transmits the compressed data to the transmitter.
  • the transmitter according to the present invention includes a receiver that receives compressed data of discrete cosine transform data of channel information between the own transmitter and the receiver of the MIMO system in the transmitter of the MIMO system; An information expansion unit that expands the received data, an inverse discrete cosine transform unit that performs inverse discrete cosine transform on the discrete cosine transform data obtained by the information expansion unit, and channel information acquired by the inverse discrete cosine transform are used. And a precoding unit for precoding transmission data.
  • FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention. It is a block diagram which shows the structure of the channel information compression part shown by FIG. It is a block diagram which shows the structure of the channel information expansion
  • FIG. 1 is a block diagram showing a configuration of a wireless communication system according to an embodiment of the present invention.
  • This wireless communication system has a MIMO transmitter 1 and a MIMO receiver 2 and performs MIMO transmission from the MIMO transmitter 1 to the MIMO receiver 2.
  • the MIMO transmitter 1 includes a precoding unit 11, a transmission unit 12, a control information reception unit 13, and a channel information expansion unit 14.
  • the precoding unit 11 uses the channel information CSI supplied from the channel information expansion unit 14 to precode transmission data.
  • the transmission unit 12 has a plurality of transmission antennas, and transmits precoded transmission data from the plurality of transmission antennas.
  • the control information receiving unit 13 receives control information from the MIMO receiver 2. This control information includes channel information compression encoded data B and control data C.
  • the channel information expansion unit 14 acquires channel information using the channel information compression encoded data B and the control data C.
  • the channel information expansion unit 14 supplies the acquired channel information CSI to the precoding unit 11.
  • the MIMO receiver 2 includes a reception unit 21, a channel estimation unit 22, a reception processing unit 23, a channel information compression unit 24, a control information transmission unit 25, and an information acquisition unit 26.
  • the receiving unit 21 has a plurality of receiving antennas, and receives signals transmitted from the plurality of transmitting antennas of the MIMO transmitter 1 by the plurality of receiving antennas.
  • the channel estimation unit 22 estimates channel information CSI using the reception signal of each reception antenna.
  • the reception processing unit 23 performs reception processing using the channel information CSI and acquires reception data.
  • the channel information compression unit 24 generates channel information compression encoded data B from the channel information CSI estimated by the channel estimation unit 22.
  • the channel information compression unit 24 outputs the channel information compression encoded data B and the control data C to the control information transmission unit 25.
  • the control information transmission unit 25 transmits the channel information compression encoded data B and the control data C to the MIMO transmitter 1.
  • the information acquisition unit 26 acquires control information A for controlling the generation of channel information compression encoded data B, and supplies the control information A to the channel information compression unit 24.
  • FIG. 2 is a block diagram showing a configuration of the channel information compression unit 24 shown in FIG.
  • FIG. 3 is a block diagram showing the configuration of the channel information expansion unit 14 shown in FIG.
  • the channel information compression unit 24 includes a discrete cosine transform (DCT) unit 41, an information compression unit 42, a variable length coding unit 43, and a control unit 44 that controls these units.
  • the information compression unit 42 includes an information deletion unit 45 and a quantization unit 46.
  • the channel information CSI is input from the channel estimation unit 22 to the DCT unit 41.
  • the DCT unit 41 performs discrete cosine transform on the channel information CSI.
  • the discrete cosine transform data obtained by the discrete cosine transform of the channel information CSI is output to the information compression unit 42.
  • the discrete cosine transform data has a DCT coefficient as information on each frequency component.
  • the information compression unit 42 compresses high frequency component information included in the discrete cosine transform data (reduction of the number of information bits or deletion of information). This is because the channel information CSI representing the state of the communication channel concentrates information on low frequency components as a result of discrete cosine transform. For this reason, the channel information subjected to discrete cosine transform can maintain good accuracy of the channel information even if the high frequency component is compressed (reduced or deleted). Focusing on this fact, the information compression unit 42 compresses high frequency component information included in the discrete cosine transform data.
  • information compression of discrete cosine transform data is performed by the information deletion unit 45 and the quantization unit 46.
  • the information compression unit 42 outputs the compressed data obtained by compressing the discrete cosine transform data to the variable length coding unit 43.
  • the variable length encoding unit 43 performs variable length encoding on the compressed data received from the information compression unit 42.
  • the variable length encoding unit 43 outputs the channel information compression encoded data B obtained by variable length encoding of the compressed data to the control information transmitting unit 25.
  • the control information A is input from the information acquisition unit 2 to the control unit 44. Based on the control information A, the control unit 44 controls the operations of the DCT unit 41, the information compression unit 42, and the variable length coding unit 43. The control unit 44 outputs the control data C related to the channel information compression encoded data B to the control information transmission unit 25.
  • the channel information expansion unit 14 includes a variable length decoding unit 51, an information expansion unit 52, an inverse discrete cosine transform (IDCT) unit 53, and a control unit 54 that controls these units.
  • the information expansion unit 52 includes an inverse quantization unit 55 and an information complementing unit 56.
  • the channel information compression encoded data B is input from the control information receiving unit 13 to the variable length decoding unit 51.
  • the variable length decoding unit 51 performs variable length decoding on the channel information compression encoded data B.
  • the variable length decoding unit 51 outputs compressed data obtained by variable length decoding of the channel information compression encoded data B to the information expansion unit 52.
  • the information expansion unit 52 expands information of the compressed data received from the variable length decoding unit 51.
  • information expansion of the compressed data is performed by the inverse quantization unit 55 and the information complementing unit 56.
  • the information expansion unit 52 outputs the discrete cosine transform data obtained by the information expansion of the compressed data to the IDCT unit 53.
  • the IDCT unit 53 performs inverse discrete cosine transform on the discrete cosine transform data.
  • IDCT unit 53 outputs channel information CSI obtained by inverse discrete cosine transform to precoding unit 11.
  • Control data C is input from the control information receiving unit 13 to the control unit 54. Based on the control data C, the control unit 54 controls the operations of the variable length decoding unit 51, the information expansion unit 52, and the IDCT unit 53.
  • the DCT unit 41 provided in the channel information compression unit 24 generates a transform unit of discrete cosine transform from the channel information, and performs discrete cosine transform in the transform unit.
  • the transform unit of the discrete cosine transform according to the present embodiment will be described.
  • the channel information is a channel response matrix between a plurality of transmission antennas of the MIMO transmitter 1 and a plurality of reception antennas of the MIMO receiver 2.
  • the wireless communication system according to the present embodiment uses a multicarrier transmission scheme.
  • An example of the multicarrier transmission scheme is an orthogonal frequency division multiplexing (OFDM) scheme.
  • the channel response matrix is acquired for each subcarrier of the multicarrier transmission method.
  • a transform unit of discrete cosine transform is configured from the same element of the channel response matrix of each subcarrier. For example, when there are 1024 subcarriers, 1024 channel response matrices corresponding to each of the 1024 subcarriers are acquired by the channel estimation unit 22. In this 1024 channel response matrix, a transform unit of discrete cosine transform is constructed from the same element (element in the same row and the same column).
  • each element of the channel response matrix is represented by an element a 11 of 1 row 1 column, an element a 12 of 1 row 2 column, an element a 21 of 2 rows 1 column, 2 rows
  • the element a 22 in two rows.
  • the element a 11 is extracted from the channel response matrix of each subcarrier, and the first conversion unit is configured only from the element a 11 .
  • the element a 12 is extracted from the channel response matrix of each subcarrier, and the second conversion unit is configured only from the element a 12 .
  • the element a 21 is extracted from the channel response matrix of each subcarrier, and the third conversion unit is configured only from the element a 21 .
  • the element a 22 is extracted from the channel response matrix of each subcarrier, and the fourth conversion unit is configured only from the element a 22 .
  • the DCT unit 41 performs discrete cosine transform for each transform unit, targeting these four transform units (first to fourth transform units). As a result, four discrete cosine transform data corresponding to each of the first to fourth transform units are obtained.
  • the information compression part 42 compresses the information of the high frequency component contained in discrete cosine transform data for every discrete cosine transform data.
  • the same element of the channel response matrix of each subcarrier represents the state of the same communication channel in each subcarrier.
  • the state change between subcarriers is gentle, and it can be considered that the correlation is high. Therefore, it can be expected that information is concentrated on the low frequency components included in the discrete cosine transform data by performing the discrete cosine transform on the basis of the transform unit composed only of elements representing the state of the same communication channel.
  • the information of the high frequency component included in the discrete cosine transform data is compressed (reduction of the number of bits of information or deletion of information), the accuracy of the channel response matrix of each subcarrier can be kept good. .
  • a conversion unit may be configured by all subcarriers, or a conversion unit may be configured by some subcarriers.
  • a conversion unit is configured with some subcarriers, it is possible to configure a conversion unit with continuous subcarriers or subcarriers separated at equal intervals from the viewpoint of maintaining a high correlation of communication channel states between subcarriers. preferable.
  • the channel response matrix is acquired at regular intervals. For example, a channel response matrix is acquired for each predetermined number (one or more) of transmission frames. Therefore, a transform unit of discrete cosine transform is configured from a channel response matrix for a predetermined number of acquisition times.
  • the conversion unit may be configured only from the channel response matrix for one acquisition, or the conversion unit may be configured from the channel response matrix for a plurality of acquisitions.
  • the DCT unit 41 can change the size of the transform unit of the discrete cosine transform.
  • the size of the transform unit of the discrete cosine transform is instructed from the control unit 44.
  • the DCT unit 41 generates a transform unit for discrete cosine transform in accordance with an instruction from the control unit 44 (size of transform unit for discrete cosine transform).
  • the size of the transform unit of the discrete cosine transform is specified by the number of subcarriers or the number of acquisitions of the channel response matrix. For example, when the size of the transform unit of the discrete cosine transform is designated by the number of subcarriers, the DCT unit 41 generates a transform unit of the discrete cosine transform from the channel response matrix for the designated number of subcarriers.
  • the DCT unit 41 When the size of the transform unit of the discrete cosine transform is designated by the number of acquisitions of the channel response matrix, the DCT unit 41 generates a transform unit of the discrete cosine transform from the channel response matrix for the designated number of acquisitions. When the size of the transform unit of the discrete cosine transform is specified by the number of subcarriers and the number of acquisitions of the channel response matrix, the DCT unit 41 uses the channel response matrix for the specified number of subcarriers by the specified number of acquisitions. Generate a unit of discrete cosine transform.
  • the control unit 44 outputs the size of the unit of discrete cosine transform to the control information transmitting unit 25 as control data C related to the discrete cosine transform data.
  • the control unit 54 converts the size of the discrete cosine transform specified by the control data C related to the discrete cosine transform data to the size of the inverse discrete cosine transform.
  • the IDCT unit 53 is instructed.
  • the IDCT unit 53 performs inverse discrete cosine transform with the size of the designated inverse discrete cosine transform unit.
  • the IDCT unit 53 can change the size of the transform unit of the inverse discrete cosine transform.
  • the control unit 44 changes the size of the conversion unit of the discrete cosine transform based on the control information A input from the information acquisition unit 2.
  • a method for changing the size of the transform unit of the discrete cosine transform for each type of the control information A will be described.
  • the control unit 44 changes the size of the transform unit of the discrete cosine transform according to the moving speed of the own MIMO receiver 2.
  • the moving speed of the own MIMO receiver 2 is supplied from the information acquisition unit 26 to the control unit 44 as control information A.
  • the control unit 44 sets the size of the unit of discrete cosine transform as the standard size.
  • the control unit 44 sets the size of the transform unit of the discrete cosine transform to a reduced size smaller than the standard size. Note that the size of the transform unit of the discrete cosine transform may be finely changed stepwise according to the moving speed of the MIMO receiver 2.
  • the channel response matrix When the MIMO receiver 2 moves, the channel response matrix usually changes. However, if the moving speed is fast, the change speed of the channel response matrix is considered to be fast. Therefore, by changing the size of the transform unit of the discrete cosine transform according to the moving speed of the MIMO receiver 2, the interval at which the channel response matrix is supplied to the MIMO transmitter 1 is adjusted, and the transmission data in the MIMO transmitter 1 is adjusted. Is made to correspond to the change rate of the channel response matrix. That is, when the moving speed of the MIMO receiver 2 is fast, it is considered that the channel response matrix change speed is also fast.
  • the size of the transform unit of the discrete cosine transform is reduced to shorten the interval at which the channel response matrix is supplied to the MIMO transmitter 1, and the transmission at the MIMO transmitter 1 is performed.
  • the moving speed of the MIMO receiver 2 is low, it is considered that the change speed of the channel response matrix is also slow. Therefore, even if the channel response matrix is not frequently supplied to the MIMO transmitter 1, the MIMO transmitter 1
  • the precoding of transmission data can be made to follow changes in the channel response matrix.
  • the interval of supplying the channel response matrix to the MIMO transmitter 1 is lengthened by increasing the size of the transform unit of the discrete cosine transform, thereby transmitting the channel response matrix. Reduce the amount of radio resources used.
  • Control Information A Restrictions on Use of Hardware Resources of MIMO Receiver 2>
  • the control unit 44 changes the size of the transform unit of the discrete cosine transform according to restrictions on the use of hardware resources of the own MIMO receiver 2. Restrictions on the use of hardware resources of the own MIMO receiver 2 are supplied from the information acquisition unit 26 to the control unit 44 as control information A.
  • the control unit 44 sets the size of the transform unit of the discrete cosine transform as the standard size when the restriction on the use of the hardware resources of the own MIMO receiver 2 is equal to or less than the reference, that is, when the restriction is equal to or less than the reference. To do.
  • the control unit 44 sets the size of the unit of discrete cosine transform to the standard size. Smaller size. Note that the size of the transform unit of the discrete cosine transform may be finely changed step by step according to restrictions on the use of hardware resources of the MIMO receiver 2.
  • Examples of restrictions on the use of hardware resources of the MIMO receiver 2 include restrictions on the amount of memory used. In the case of a software defined radio receiver, there is a restriction on the amount of memory that can be used for software defined radio.
  • the information compression unit 42 compresses the information of the high frequency component included in the discrete cosine transform data (reduction of the number of bits of information or deletion of information).
  • the information compression unit 42 includes an information deletion unit 45 and a quantization unit 46.
  • the information compression method according to the present embodiment will be sequentially described.
  • first information compression method In the first information compression method, high frequency component information (DCT coefficient) included in the discrete cosine transform data is deleted. Which frequency component information (which DCT coefficient) is to be deleted may be fixedly determined, or may be designated by the control unit 44.
  • the information deletion unit 45 performs the first information compression method.
  • the information deletion unit 45 receives the discrete cosine transform data from the DCT unit 41
  • the information deletion unit 45 deletes the DCT coefficients to be deleted from the DCT coefficients included in the discrete cosine transform data, and the remaining DCT coefficients to the quantization unit 46. Output.
  • control unit 44 designates a DCT coefficient to be deleted.
  • the control unit 44 instructs the information deletion unit 45 on the number of DCT coefficients to be deleted.
  • the information deletion unit 45 deletes the DCT coefficients corresponding to the number of deletions in order from the DCT coefficient of the highest frequency component to the DCT coefficient of the lower frequency component.
  • the control unit 44 outputs the number of DCT coefficients to be deleted to the control information transmission unit 25 as control data C related to the channel information compression encoded data B.
  • the control unit 54 instructs the information complementing unit 56 on the number of DCT coefficients to be deleted specified by the control data C related to the channel information compression encoded data B.
  • the information complementing unit 56 receives discrete cosine transform data from the inverse quantization unit 55. This discrete cosine transform data is incomplete because the DCT coefficient to be deleted is deleted by the information deleting unit 45 in FIG.
  • the information complementing unit 56 applies the DCT coefficients for the number of deletions instructed from the control unit 54 (from the DCT coefficient of the highest frequency component to the DCT coefficient of the lower frequency component). In the order of the number of deletions) is complemented with the value “0”.
  • the information complementing unit 56 outputs the discrete cosine transform data after DCT coefficient complementation to the IDCT unit 53.
  • the information deleting unit 45 deletes the fixed DCT coefficient to be deleted, and the information complementing unit 56 is fixedly determined.
  • the deletion target DCT coefficient is complemented with a value “0”.
  • the control unit 44 changes the number of deleted DCT coefficients based on the control information A input from the information acquisition unit 2. Thereby, the control part 44 changes the compression rate of discrete cosine transform data.
  • the control part 44 changes the compression rate of discrete cosine transform data.
  • Control information A Movement speed of MIMO receiver 2>
  • the control unit 44 changes the number of deleted DCT coefficients according to the moving speed of the own MIMO receiver 2.
  • the control unit 44 sets the number of deleted DCT coefficients as the standard number.
  • the control unit 44 sets the number of DCT coefficients to be deleted to an expanded number larger than the standard number. Note that the number of DCT coefficients to be deleted may be changed finely and stepwise according to the moving speed of the MIMO receiver 2.
  • the channel response matrix When the MIMO receiver 2 moves, the channel response matrix usually changes. However, if the moving speed is fast, the change speed of the channel response matrix is considered to be fast. Therefore, the accuracy of the channel response matrix supplied to the MIMO transmitter 1 is adjusted by changing the information amount of the discrete cosine transform data in accordance with the moving speed of the MIMO receiver 2, and the transmission data preconditions in the MIMO transmitter 1 are adjusted. Coding is made to correspond to the rate of change of the channel response matrix. That is, when the moving speed of the MIMO receiver 2 is fast, it is considered that the change speed of the channel response matrix is also fast. Therefore, even if the accuracy of the channel response matrix is lowered, the precoding effect does not deteriorate much.
  • the moving speed of the MIMO receiver 2 when the moving speed of the MIMO receiver 2 is high, the amount of radio resources used for transmission of the channel response matrix is reduced by reducing the information amount of the discrete cosine transform data.
  • the moving speed of the MIMO receiver 2 when the moving speed of the MIMO receiver 2 is slow, it is considered that the change speed of the channel response matrix is also slow. Therefore, by increasing the information amount of the discrete cosine transform data and increasing the accuracy of the channel response matrix, Increase the precoding effect.
  • the control unit 44 changes the number of deleted DCT coefficients according to the required throughput of the application that uses the information transmitted by MIMO.
  • the control unit 44 sets the number of deleted DCT coefficients as the standard number.
  • the control unit 44 sets the number of deleted DCT coefficients to a reduced number smaller than the standard number. This is because when the required throughput of the application is large, the precoding effect is enhanced by increasing the amount of information of the discrete cosine transform data and increasing the accuracy of the channel response matrix, which can be expected to increase the throughput. It is. Note that the number of DCT coefficients to be deleted may be finely changed stepwise according to the required throughput.
  • the control unit 44 changes the number of deleted DCT coefficients according to the number of receivers that simultaneously use the shared radio resource (the number of simultaneously used receivers).
  • the shared radio resource is a radio resource used for transmission of control information from the MIMO receiver 2 to the MIMO transmitter 1.
  • the control unit 44 sets the number of deleted DCT coefficients as the standard number.
  • the control unit 44 sets the number of deleted DCT coefficients to be an expanded number larger than the standard number.
  • the number of DCT coefficients to be deleted may be changed in a stepwise manner according to the number of simultaneously used receivers.
  • the second information compression method In the second information compression method, the number of bits of high-frequency component information (DCT coefficient) included in the discrete cosine transform data is reduced. Which frequency component information (which DCT coefficient) the number of bits to be reduced may be fixedly determined, or may be designated by the control unit 44. The number of bits to be reduced may be fixedly determined, or may be designated by the control unit 44.
  • the quantization unit 46 performs the second information compression method.
  • the quantizing unit 46 receives the discrete cosine transform data from the information deleting unit 45, the quantizing unit 46 reduces the number of bits of the DCT coefficient to be reduced in number among the DCT coefficients included in the discrete cosine transform data.
  • the quantization unit 46 outputs the discrete cosine transform data (compressed data) after the bit number reduction process to the variable length encoding unit 43.
  • the control unit 44 specifies the DCT coefficient to be reduced in the number of bits and how many bits to reduce will be described.
  • the control unit 44 instructs the quantization unit 46 of the number of bits to be reduced and the number of reduction bits of the DCT coefficient.
  • the quantization unit 46 selects DCT coefficients corresponding to the number of bits to be reduced in order from the DCT coefficient of the highest frequency component in the discrete cosine transform data to the DCT coefficient of the lower frequency component.
  • the quantization unit 46 performs a process of reducing the number of bits of the selected DCT coefficient by the number of reduction bits (reduction of the number of quantization bits).
  • the control unit 44 outputs the DCT coefficient bit number reduction target number and the reduction bit number to the control information transmission unit 25 as control data C related to the channel information compression encoded data B.
  • the control unit 54 sends the number of bits to be reduced and the number of reduction bits of the DCT coefficient specified by the control data C related to the channel information compression encoded data B to the inverse quantization unit 55. Instruct.
  • the inverse quantization unit 55 receives the discrete cosine transform data compressed from the variable length decoding unit 51.
  • the discrete cosine transform data is incomplete because the number of bits of the DCT coefficient subject to bit number reduction is reduced by the number of reduction bits by the quantization unit 46 in FIG.
  • the inverse quantization unit 55 applies the DCT coefficients (the highest frequency component in the discrete cosine transform data) for the number of bits to be reduced instructed from the control unit 54 to the discrete cosine transform data received from the variable length decoding unit 51.
  • the DCT coefficient of the lower frequency component is complemented by the reduced bit number (quantization bit number complementation) in order from the DCT coefficient of the lower frequency component to the number of bits to be reduced.
  • the inverse quantization unit 55 outputs the discrete cosine transform data after bit complementation to the information complementing unit 56.
  • the quantization unit 46 reduces the fixedly determined bit number reduction target DCT coefficient bit number by the reduced bit number.
  • the inverse quantization unit 55 supplements the fixed number of bits of the DCT coefficient to be reduced in number by the reduced number of bits. If the reduction bit number is fixedly determined, the quantization unit 46 reduces the bit number of the bit number reduction target DCT coefficient by the fixed reduction bit number, and the inverse quantization unit 55 complements the number of bits of the DCT coefficient subject to bit number reduction by a fixed number of reduction bits.
  • the control unit 44 changes the number of bits to be reduced or the number of bits to be reduced of the DCT coefficient based on the control information A input from the information acquisition unit 2. Thereby, the control part 44 changes the compression rate of discrete cosine transform data.
  • a method of changing the number of bits to be reduced or the number of bits to be reduced in the DCT coefficient for each type of control information A will be described.
  • Control information A Movement speed of MIMO receiver 2>
  • the control unit 44 changes the number of bits to be reduced or the number of bits to be reduced of the DCT coefficient according to the moving speed of the own MIMO receiver 2.
  • the control unit 44 sets the number of bits to be reduced and the number of bits to be reduced in the DCT coefficient as standard values.
  • the control unit 44 sets the number of bits to be reduced or the number of bits to be reduced in the DCT coefficient to an expanded value larger than each standard value. Note that the number of bits to be reduced and the number of bits to be reduced in the DCT coefficient may be changed in fine steps in accordance with the moving speed of the MIMO receiver 2.
  • the channel response matrix supplied to the MIMO transmitter 1 can be changed by changing the information amount of the discrete cosine transform data according to the moving speed of the MIMO receiver 2 in the same manner as the change in the number of deleted DCT coefficients.
  • the accuracy is adjusted so that the precoding of transmission data in the MIMO transmitter 1 corresponds to the change rate of the channel response matrix.
  • the control unit 44 changes the number of bits to be reduced or the number of bits to be reduced of the DCT coefficient according to the required throughput of the application that uses the information transmitted by MIMO.
  • the control unit 44 sets the number of bits to be reduced and the number of bits to be reduced for each DCT coefficient as standard values.
  • the control unit 44 sets the number of bits to be reduced or the number of bits to be reduced of the DCT coefficient to a reduced value smaller than each standard value. Note that the number of bits to be reduced and the number of bits to be reduced in the DCT coefficient may be changed in fine steps in accordance with the required throughput.
  • Control information A Number of simultaneous receivers>
  • the control unit 44 changes the number of bits to be reduced or the number of bits to be reduced in the DCT coefficient according to the number of receivers that simultaneously use the shared radio resource (the number of simultaneously used receivers).
  • the shared radio resource is a radio resource used for transmission of control information from the MIMO receiver 2 to the MIMO transmitter 1.
  • the control unit 44 sets the number of bits to be reduced and the number of bits to be reduced for each DCT coefficient as standard values.
  • control unit 44 sets the number of bits to be reduced or the number of bits to be reduced in the DCT coefficient to an expanded value larger than each standard value. Note that the number of bits to be reduced and the number of bits to be reduced in the DCT coefficient may be changed in small steps in accordance with the number of simultaneously used receivers.
  • variable length coding unit 43 can change the size of a coding unit for variable length coding.
  • the control unit 44 instructs the variable length coding unit 43 on the size of the coding unit of the variable length coding.
  • the variable length coding unit 43 performs variable length coding on the compressed data received from the information compression unit 42 in the coding unit designated by the control unit 44.
  • the control unit 44 outputs the size of the coding unit of variable length coding to the control information transmission unit 25 as control data C related to the channel information compression coding data B.
  • the control unit 54 performs variable-length decoding on the size of the coding unit of variable-length coding specified by the control data C related to the channel information compression-coded data B.
  • the unit 51 is instructed.
  • the variable length decoding unit 51 performs variable length decoding of the channel information compression encoded data B received from the control information receiving unit 13 in the encoding unit instructed by the control unit 54.
  • the variable length decoding unit 51 outputs the compressed data obtained by the variable length decoding to the information expansion unit 52.
  • the control unit 44 changes the size of the coding unit for variable length coding based on the control information A input from the information acquisition unit 2.
  • a method of changing the size of the coding unit of variable length coding for each type of control information A will be described.
  • Control information A Movement speed of MIMO receiver 2>
  • the control unit 44 changes the size of the coding unit of variable length coding according to the moving speed of the own MIMO receiver 2.
  • the control unit 44 sets the size of the encoding unit for variable length coding as the standard size.
  • the control unit 44 sets the size of the coding unit for variable length coding to a reduced size smaller than the standard size. Note that the size of the coding unit of the variable length coding may be changed finely and stepwise according to the moving speed of the MIMO receiver 2.
  • the channel response matrix is changed by changing the size of the coding unit of the variable length coding according to the moving speed of the MIMO receiver 2 in the same manner as the change of the size of the transform unit of the discrete cosine transform described above. Is adjusted to the MIMO transmitter 1 so that the precoding of the transmission data in the MIMO transmitter 1 corresponds to the change rate of the channel response matrix.
  • Control Information A Restrictions on Use of Hardware Resources of MIMO Receiver 2>
  • the control unit 44 changes the size of the coding unit of the variable length coding according to restrictions on the use of hardware resources of the own MIMO receiver 2. Restrictions on the use of hardware resources of the own MIMO receiver 2 are supplied from the information acquisition unit 26 to the control unit 44 as control information A. When the restriction on the use of hardware resources of the own MIMO receiver 2 is equal to or less than the reference (equal or looser than the reference), the control unit 44 sets the size of the encoding unit of the variable length encoding as the standard size. To do.
  • control unit 44 sets the size of the encoding unit of variable length coding to be larger than the standard size when the restriction on the use of hardware resources of the own MIMO receiver 2 exceeds the standard and is stricter than the standard. Is also a small reduction size. Note that the size of the coding unit of the variable-length coding may be changed in fine steps in accordance with restrictions on the use of hardware resources of the MIMO receiver 2.
  • information compression can be performed while keeping the accuracy of the channel response matrix good.
  • accurate precoding can be performed on the channel response matrix obtained by the MIMO receiver 2 by the MIMO transmitter 1, and the channel response matrix sent from the MIMO receiver 2 to the MIMO transmitter 1 can be reduced.
  • the amount of information can be reduced. As a result, it is possible to secure the precoding effect and reduce the amount of radio resources used for transmitting the channel response matrix.
  • the specific structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.
  • only one of the information deletion unit 45 or the quantization unit 46 may be provided in the information compression unit 42 of the channel information compression unit 24 shown in FIG.
  • the information expansion unit 52 of the channel information expansion unit 14 illustrated in FIG. 3 either the inverse quantization unit 55 or the information complementing unit 56 is associated with the information compression unit 42 of the channel information compression unit 24. Need only be provided.
  • variable length coding unit 43 may not be provided in the information compression unit 42 of the channel information compression unit 24 shown in FIG. In this case, the variable length decoding unit 43 does not have to be provided in the channel information expansion unit 14 shown in FIG.
  • the channel information is a channel response matrix between the transmission and reception antennas of the MIMO system.
  • the channel information is applied to a radio communication system other than the MIMO system and represents the state of the communication channel.
  • the channel information may be subjected to discrete cosine transform.
  • you may apply to a single carrier transmission system.
  • the program for realizing the function of the channel information compressing unit 24 shown in FIG. 2 or the function of the channel information expanding unit 14 shown in FIG. 3 is recorded on a computer-readable recording medium, and this recording medium is recorded.
  • Channel information compression processing or channel information expansion processing may be performed by causing the computer system to read and execute the program recorded in the above.
  • the “computer system” may include an OS and hardware such as peripheral devices.
  • “Computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a DVD (Digital Versatile Disk), and a built-in computer system.
  • a storage device such as a hard disk.
  • the “computer-readable recording medium” means a volatile memory (for example, DRAM (Dynamic DRAM) in a computer system that becomes a server or a client when a program is transmitted through a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc., which hold programs for a certain period of time.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the present invention can be applied to a wireless communication system or the like that employs a MIMO (Multiple Input Multiple Output) system that performs precoding, and according to the present invention, information compression can be performed while maintaining good channel information accuracy.
  • MIMO Multiple Input Multiple Output

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Radio Transmission System (AREA)

Abstract

 本発明のチャネル情報圧縮装置は、通信チャネルの状態を表すチャネル情報(CSI)を離散コサイン変換するDCT部と、離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮する情報圧縮部とを備え、チャネル情報の精度を良好に保ちながら情報圧縮を行う。

Description

チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機
 本発明は、チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機に関する。
 本願は、2009年9月16日に、日本に出願された特願2009-214855号に基づき優先権を主張し、その内容をここに援用する。
 次世代の無線通信システムにおいては、MIMO(Multiple Input Multiple Output)システムを採用することが検討されている。MIMOシステムでは、送信機が送信データに対して信号伝送路(通信チャネル)の状態を表すチャネル情報(CSI:Channel State Information)に基づいたプリコーディング(Precoding)を行うことにより、プリコーディングを行わない場合に比べて周波数利用効率を向上できることが知られている(例えば、非特許文献1参照)。
 また、FDD(Frequency Division Duplex)の場合、一般的にチャネル情報は受信機で取得されるが、そのチャネル情報に基づいた送信データのプリコーディングを行う方法として以下の2通りの方法(1)、(2)が知られている(例えば、非特許文献2参照)。
(1)受信機が取得したチャネル応答行列を送信機へ送信し、送信機がそのチャネル応答行列に応じたプリコーディングを行う。
(2)複数のプリコーダー(Precoder)のインデックス(Index)を有するコードブック(Codebook)を送信機と受信機とで共有し、受信機が取得したチャネル応答行列に応じたプリコーダーのインデックスを送信機へ送信し、送信機がそのインデックスのプリコーダーを使用する。
M. Vu, A. Paulraj, "MIMO Wireless Linear Precoding", IEEE Signal Processing Magazine, Sep. 2007. 3GPP TS 36.211 V.8.7.0, May 2009.
 しかし、上述した従来の方法(1)では、送信機は受信機で得られたチャネル応答行列を用いてプリコーディングを行うことができるが、受信機から送信機へ送るチャネル応答行列の情報量が多いため、その情報送信に使用する無線リソース量が多くなる。従来の方法(2)では、受信機から送信機へ送る情報量を削減できるが、コードブックで表すことのできるプリコーダーの種類が限られるので、受信機で得られたチャネル応答行列に的確なプリコーダーがない場合にはプリコーディング効果が薄れる。
 本発明は、このような事情を考慮してなされたもので、チャネル情報の精度を良好に保ちながら情報圧縮を行うことのできるチャネル情報圧縮装置、チャネル情報圧縮方法、および受信機を提供することを課題とする。
 また、本発明は、上記チャネル情報圧縮装置、チャネル情報圧縮方法、および受信機に対応する、チャネル情報展開装置、チャネル情報展開方法、および送信機を提供することを課題とする。
 上記の課題を解決するために、本発明に係るチャネル情報圧縮装置は、通信チャネルの状態を表すチャネル情報に離散コサイン変換を行う離散コサイン変換部と、前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮する情報圧縮部とを備える。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記離散コサイン変換部は、同一通信チャネルの状態を表すチャネル情報から構成される変換単位で前記離散コサイン変換を行うことが好ましい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記チャネル情報はマルチキャリア伝送方式のサブキャリア毎に取得されるものであり、前記離散コサイン変換部は連続したサブキャリア又は等間隔で離れたサブキャリアのチャネル情報から構成される変換単位で前記離散コサイン変換を行ってもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記チャネル情報はMIMOシステムの送受アンテナ間のチャネル応答行列であり、前記離散コサイン変換部はマルチキャリア伝送方式を使用する前記MIMOシステムの各サブキャリアの前記チャネル応答行列の同じ要素から構成される変換単位で前記離散コサイン変換を行ってもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記チャネル情報は一定間隔で取得されるものであり、前記離散コサイン変換部は1つ又は連続する複数取得回数分のチャネル情報から構成される変換単位で前記離散コサイン変換を行ってもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記情報圧縮部は前記離散コサイン変換データの圧縮率を変更可能であり、前記チャネル情報圧縮装置は前記通信チャネルを受信する受信機の移動速度に応じて前記離散コサイン変換データの圧縮率を変化させる制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記情報圧縮部は前記離散コサイン変換データの圧縮率を変更可能であり、前記チャネル情報圧縮装置は前記通信チャネルで伝送される情報を使用するアプリケーションの要求スループットに応じて前記離散コサイン変換データの圧縮率を変化させる制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記情報圧縮部は前記離散コサイン変換データの圧縮率を変更可能であり、前記チャネル情報圧縮装置は共用無線リソースを同時に利用する受信機の個数に応じて前記離散コサイン変換データの圧縮率を変化させる制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記離散コサイン変換部は前記離散コサイン変換の変換単位の大きさを変更可能であり、前記チャネル情報圧縮装置は前記通信チャネルを受信する受信機の移動速度に応じて前記離散コサイン変換の変換単位の大きさを変化させる制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記離散コサイン変換部は前記離散コサイン変換の変換単位の大きさを変更可能であり、前記チャネル情報圧縮装置は前記通信チャネルを受信する受信機のハードウェアリソースの使用上の制約に応じて前記離散コサイン変換の変換単位の大きさを変化させる制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記受信機はソフトウェア無線受信機であってもよく、前記制御部はソフトウェア無線に使用可能なメモリ量の制約に応じて前記離散コサイン変換の変換単位の大きさを変化させるようにしてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置は、前記離散コサイン変換データの圧縮データを可変長符号化して符号化単位の大きさを変更可能な可変長符号化部と、前記通信チャネルを受信する受信機の移動速度に応じて前記符号化単位の大きさを変化させる制御部とを備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置は、前記離散コサイン変換データの圧縮データを可変長符号化して符号化単位の大きさを変更可能な可変長符号化部と、前記通信チャネルを受信する受信機のハードウェアリソースの使用上の制約に応じて前記符号化単位の大きさを変化させる制御部とを備えてもよい。
 本発明の実施形態に係るチャネル情報圧縮装置において、前記受信機はソフトウェア無線受信機であってもよく、前記制御部はソフトウェア無線に使用可能なメモリ量の制約に応じて前記符号化単位の大きさを変化させるようにしてもよい。
 本発明に係るチャネル情報展開装置は、通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開する情報展開部と、前記情報展開部により得られた離散コサイン変換データに逆離散コサイン変換を行う逆離散コサイン変換部とを備える。
 本発明の実施形態に係るチャネル情報展開装置において、前記情報展開部は前記離散コサイン変換データの展開率を変更可能であり、前記チャネル情報展開装置は前記圧縮データに係る制御情報に従って前記情報展開部を制御する制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報展開装置において、前記逆離散コサイン変換部は前記逆離散コサイン変換の変換単位の大きさを変更可能であり、前記チャネル情報展開装置は前記離散コサイン変換データに係る制御情報に従って前記逆離散コサイン変換部を制御する制御部を備えてもよい。
 本発明の実施形態に係るチャネル情報展開装置は、通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データの可変長符号化データを可変長復号化して符号化単位の大きさを変更可能な可変長復号化部と、前記可変長符号化データに係る制御情報に従って前記可変長復号化部を制御する制御部を備えてもよい。
 本発明に係るチャネル情報圧縮方法は、通信チャネルの状態を表すチャネル情報に離散コサイン変換を行うステップと、前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮するステップとを含む。
 本発明に係るチャネル情報展開方法は、通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開するステップと、前記展開するステップにより得られた離散コサイン変換データを逆離散コサイン変換するステップとを含む。
 本発明に係るコンピュータ読み取り可能な記録媒体は、通信チャネルの状態を表すチャネル情報に離散コサイン変換を行うステップと、前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮するステップとをコンピュータに実行させるためのコンピュータプログラムを記録する。
 これにより、前述のチャネル情報圧縮装置がコンピュータを利用して実現できるようになる。
 本発明に係るコンピュータ読み取り可能な記録媒体は、通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開するステップと、前記展開するステップにより得られた離散コサイン変換データに逆離散コサイン変換を行うステップとをコンピュータに実行させるためのコンピュータプログラムを記録する。
 これにより、前述のチャネル情報展開装置がコンピュータを利用して実現できるようになる。
 本発明に係る受信機は、MIMOシステムの受信機において、前記MIMOシステムの送信機と自受信機との間のチャネル情報に離散コサイン変換を行う離散コサイン変換部と、前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮する情報圧縮部と、前記圧縮データを前記送信機へ送信する送信部とを備える。
 本発明に係る送信機は、MIMOシステムの送信機において、自送信機と前記MIMOシステムの受信機との間のチャネル情報の離散コサイン変換データの圧縮データを前記受信機から受信する受信部と、前記受信データを展開する情報展開部と、前記情報展開部により得られた離散コサイン変換データに逆離散コサイン変換を行う逆離散コサイン変換部と、前記逆離散コサイン変換により取得されたチャネル情報を用いて送信データのプリコーディングを行うプリコーディング部とを備える。
 本発明によれば、チャネル情報の精度を良好に保ちながら情報圧縮を行うことができるという効果が得られる。
本発明の一実施形態に係る無線通信システムの構成を示すブロック図である。 図1に示されたチャネル情報圧縮部の構成を示すブロック図である。 図1に示されたチャネル情報展開部の構成を示すブロック図である。
 以下、図面を参照し、本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る無線通信システムの構成を示すブロック図である。この無線通信システムは、MIMO送信機1とMIMO受信機2とを有し、MIMO送信機1からMIMO受信機2へMIMO伝送を行う。
 図1において、MIMO送信機1は、プリコーディング部11と送信部12と制御情報受信部13とチャネル情報展開部14とを有する。プリコーディング部11は、チャネル情報展開部14から供給されるチャネル情報CSIを用いて送信データのプリコーディングを行う。送信部12は、複数の送信アンテナを有し、プリコーディングされた送信データを複数の送信アンテナから送信する。制御情報受信部13は、MIMO受信機2から制御情報を受信する。この制御情報は、チャネル情報圧縮符号化データBと制御データCとを含む。チャネル情報展開部14は、チャネル情報圧縮符号化データBと制御データCとを用いてチャネル情報を取得する。チャネル情報展開部14は、取得したチャネル情報CSIをプリコーディング部11へ供給する。
 MIMO受信機2は、受信部21とチャネル推定部22と受信処理部23とチャネル情報圧縮部24と制御情報送信部25と情報取得部26とを有する。受信部21は、複数の受信アンテナを有し、MIMO送信機1の複数の送信アンテナから送信された信号を複数の受信アンテナで受信する。チャネル推定部22は、各受信アンテナの受信信号を用いてチャネル情報CSIを推定する。受信処理部23は、チャネル情報CSIを用いて受信処理を行い、受信データを取得する。
 チャネル情報圧縮部24は、チャネル推定部22で推定されたチャネル情報CSIからチャネル情報圧縮符号化データBを生成する。チャネル情報圧縮部24は、チャネル情報圧縮符号化データBと制御データCとを制御情報送信部25へ出力する。制御情報送信部25は、チャネル情報圧縮符号化データBと制御データCとをMIMO送信機1へ送信する。情報取得部26は、チャネル情報圧縮符号化データBの生成を制御するための制御用情報Aを取得し、その制御用情報Aをチャネル情報圧縮部24へ供給する。
 図2は、図1に示すチャネル情報圧縮部24の構成を示すブロック図である。図3は、図1に示すチャネル情報展開部14の構成を示すブロック図である。
 まず、図2を参照してチャネル情報圧縮部24を説明する。図2において、チャネル情報圧縮部24は、離散コサイン変換(DCT:Discrete Cosine Transform)部41と情報圧縮部42と可変長符号化部43とこれら各部を制御する制御部44とを有する。情報圧縮部42は、情報削除部45と量子化部46とを有する。
 DCT部41には、チャネル推定部22からチャネル情報CSIが入力される。DCT部41は、チャネル情報CSIを離散コサイン変換する。チャネル情報CSIの離散コサイン変換により得られた離散コサイン変換データは、情報圧縮部42へ出力される。離散コサイン変換データは、各周波数成分の情報としてDCT係数を有する。
 情報圧縮部42は、離散コサイン変換データに含まれる高周波成分の情報を圧縮(情報のビット数の削減または情報の削除)する。この理由は、通信チャネルの状態を表すチャネル情報CSIには、離散コサイン変換の結果、低周波成分に情報が集中するからである。このため、離散コサイン変換されたチャネル情報は、その高周波成分が圧縮(削減または削除)されても、チャネル情報の精度を良好に保つことができる。このことに着目し、情報圧縮部42によって、離散コサイン変換データに含まれる高周波成分の情報が圧縮される。
 情報圧縮部42では、情報削除部45と量子化部46とによって離散コサイン変換データの情報圧縮が行われる。情報圧縮部42は、離散コサイン変換データを情報圧縮した圧縮データを可変長符号化部43へ出力する。可変長符号化部43は、情報圧縮部42から受け取った圧縮データを可変長符号化する。可変長符号化部43は、圧縮データの可変長符号化により得られたチャネル情報圧縮符号化データBを制御情報送信部25へ出力する。
 制御部44には、情報取得部2から制御用情報Aが入力される。制御部44は、制御用情報Aに基づいて、DCT部41、情報圧縮部42及び可変長符号化部43の動作を制御する。制御部44は、チャネル情報圧縮符号化データBに係る制御データCを制御情報送信部25へ出力する。
 次に、図3を参照してチャネル情報展開部14を説明する。図3において、チャネル情報展開部14は、可変長復号化部51と情報展開部52と逆離散コサイン変換(IDCT:Inverse Discrete Cosine Transform)部53とこれら各部を制御する制御部54とを有する。情報展開部52は、逆量子化部55と情報補完部56とを有する。これら図3の各部は図2の各部に対応して設けられる。
 可変長復号化部51には、制御情報受信部13からチャネル情報圧縮符号化データBが入力される。可変長復号化部51は、チャネル情報圧縮符号化データBを可変長復号化する。可変長復号化部51は、チャネル情報圧縮符号化データBの可変長復号化により得られた圧縮データを情報展開部52へ出力する。
 情報展開部52は、可変長復号化部51から受け取った圧縮データを情報展開する。情報展開部52では、逆量子化部55と情報補完部56とによって圧縮データの情報展開が行われる。情報展開部52は、圧縮データの情報展開により得られた離散コサイン変換データをIDCT部53へ出力する。IDCT部53は、離散コサイン変換データを逆離散コサイン変換する。IDCT部53は、逆離散コサイン変換により得られたチャネル情報CSIをプリコーディング部11へ出力する。
 制御部54には、制御情報受信部13から制御データCが入力される。制御部54は、制御データCに基づいて、可変長復号化部51、情報展開部52及びIDCT部53の動作を制御する。
 次に、本実施形態に係る離散コサイン変換処理及び逆離散コサイン変換処理、情報圧縮処理及び情報展開処理、可変長符号化処理及び可変長復号化処理、並びに制御処理について詳細に説明する。
[離散コサイン変換処理及び逆離散コサイン変換処理、並びに制御処理]
 チャネル情報圧縮部24に設けられたDCT部41は、チャネル情報から離散コサイン変換の変換単位を生成し、その変換単位で離散コサイン変換を行う。以下、本実施形態に係る離散コサイン変換の変換単位を説明する。
 本実施形態では、チャネル情報は、MIMO送信機1の複数の送信アンテナとMIMO受信機2の複数の受信アンテナとの間のチャネル応答行列である。また、本実施形態に係る無線通信システムは、マルチキャリア伝送方式を使用する。マルチキャリア伝送方式としては、例えば、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)方式が挙げられる。
 チャネル応答行列は、マルチキャリア伝送方式のサブキャリア毎に取得される。本実施形態では、各サブキャリアのチャネル応答行列の同じ要素から、離散コサイン変換の変換単位を構成する。例えば、1024個のサブキャリアが存在する場合、1024個のサブキャリアの各々に対応する1024個のチャネル応答行列がチャネル推定部22によって取得される。この1024個のチャネル応答行列において同じ要素(同じ行かつ同じ列の要素)から離散コサイン変換の変換単位を構成する。
 例えば、2行2列のチャネル応答行列の場合に、チャネル応答行列の各要素を1行1列の要素a11、1行2列の要素a12、2行1列の要素a21、2行2列の要素a22とする。この場合、各サブキャリアのチャネル応答行列から要素a11を抽出し、要素a11のみから第1の変換単位を構成する。さらに、各サブキャリアのチャネル応答行列から要素a12を抽出し、要素a12のみから第2の変換単位を構成する。さらに、各サブキャリアのチャネル応答行列から要素a21を抽出し、要素a21のみから第3の変換単位を構成する。さらに、各サブキャリアのチャネル応答行列から要素a22を抽出し、要素a22のみから第4の変換単位を構成する。DCT部41は、それら4つの変換単位(第1から第4の変換単位)を対象にして、変換単位毎に離散コサイン変換を行う。これにより、第1から第4の変換単位の各々に対応する4つの離散コサイン変換データが得られる。情報圧縮部42は、その離散コサイン変換データ毎に、離散コサイン変換データに含まれる高周波成分の情報を圧縮する。
 各サブキャリアのチャネル応答行列の同じ要素は、各サブキャリアにおける同一通信チャネルの状態を表す。同一通信チャネルであれば、サブキャリア間の状態変化はなだらかであり、相関関係が高いと考えることができる。従って、同一通信チャネルの状態を表す要素のみから構成される変換単位で離散コサイン変換することによって、離散コサイン変換データに含まれる低周波成分に情報が集中することが期待できる。これにより、離散コサイン変換データに含まれる高周波成分の情報を圧縮(情報のビット数の削減または情報の削除)しても、各サブキャリアのチャネル応答行列の精度を良好に保つことが可能となる。
 なお、全サブキャリアで変換単位を構成してもよく、或いは、一部のサブキャリアで変換単位を構成してもよい。一部のサブキャリアで変換単位を構成する場合、連続したサブキャリア又は等間隔で離れたサブキャリアで変換単位を構成することが、サブキャリア間の通信チャネル状態の相関関係を高く保つという観点から好ましい。
 チャネル応答行列は一定間隔で取得される。例えば、所定数(1又は複数)の伝送フレームごとにチャネル応答行列が取得される。従って、所定の取得回数分のチャネル応答行列から離散コサイン変換の変換単位を構成する。例えば、1取得回分のチャネル応答行列のみから変換単位を構成してもよく、或いは、複数取得回分のチャネル応答行列から変換単位を構成してもよい。複数取得回分のチャネル応答行列から変換単位を構成する場合、連続する複数取得回数分のチャネル応答行列から変換単位を構成することが、取得時点間の通信チャネル状態の相関関係を高く保つという観点から好ましい。
 DCT部41は、離散コサイン変換の変換単位の大きさを変更することができる。離散コサイン変換の変換単位の大きさは、制御部44から指示される。DCT部41は、制御部44からの指示(離散コサイン変換の変換単位の大きさ)に従って、離散コサイン変換の変換単位を生成する。離散コサイン変換の変換単位の大きさは、サブキャリア数、又は、チャネル応答行列の取得回数で指定される。例えば、離散コサイン変換の変換単位の大きさがサブキャリア数で指定される場合、DCT部41は、指定のサブキャリア数分のチャネル応答行列から、離散コサイン変換の変換単位を生成する。離散コサイン変換の変換単位の大きさがチャネル応答行列の取得回数で指定される場合、DCT部41は、指定の取得回数分のチャネル応答行列から、離散コサイン変換の変換単位を生成する。離散コサイン変換の変換単位の大きさがサブキャリア数及びチャネル応答行列の取得回数で指定される場合、DCT部41は、指定のサブキャリア数分のチャネル応答行列を指定の取得回数分を用いて、離散コサイン変換の変換単位を生成する。
 制御部44は、離散コサイン変換の変換単位の大きさを、離散コサイン変換データに係る制御データCとして制御情報送信部25へ出力する。図3に示されたチャネル情報展開部14において、制御部54は、離散コサイン変換データに係る制御データCで指定される離散コサイン変換の変換単位の大きさを逆離散コサイン変換の変換単位の大きさとしてIDCT部53に指示する。IDCT部53は、指示された逆離散コサイン変換の変換単位の大きさで、逆離散コサイン変換を行う。IDCT部53は、逆離散コサイン変換の変換単位の大きさを変更することができる。
  制御部44は、情報取得部2から入力される制御用情報Aに基づいて、離散コサイン変換の変換単位の大きさを変更する。以下、制御用情報Aの種類別に離散コサイン変換の変換単位の大きさを変更する方法について説明する。
<制御用情報A:MIMO受信機2の移動速度>
 制御部44は、自MIMO受信機2の移動速度に応じて、離散コサイン変換の変換単位の大きさを変更する。自MIMO受信機2の移動速度は、情報取得部26から制御用情報Aとして制御部44に供給される。制御部44は、自MIMO受信機2の移動速度が基準速度以下である場合には、離散コサイン変換の変換単位の大きさを標準サイズとする。一方、制御部44は、自MIMO受信機2の移動速度が基準速度超過である場合には、離散コサイン変換の変換単位の大きさを標準サイズよりも小さい縮小サイズとする。なお、離散コサイン変換の変換単位の大きさは、MIMO受信機2の移動速度に応じて細かく段階的に変化させるようにしてもよい。
 MIMO受信機2が移動すると、通常、チャネル応答行列は変化するが、その移動速度が速いとチャネル応答行列の変化速度も速くなると考えられる。そこで、MIMO受信機2の移動速度に応じて離散コサイン変換の変換単位の大きさを変化させることにより、チャネル応答行列をMIMO送信機1に供給する間隔を調整し、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化速度に対応させるようにする。つまり、MIMO受信機2の移動速度が速い場合には、チャネル応答行列の変化速度も速いと考えられる。したがって、MIMO受信機2の移動速度が速い場合には、離散コサイン変換の変換単位の大きさを小さくしてチャネル応答行列をMIMO送信機1に供給する間隔を短くし、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化に追従させやすくする。一方、MIMO受信機2の移動速度が遅い場合には、チャネル応答行列の変化速度も遅いと考えられるので、頻繁にチャネル応答行列をMIMO送信機1に供給しなくても、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化に追従させることができる。したがって、MIMO受信機2の移動速度が遅い場合には、離散コサイン変換の変換単位の大きさを大きくしてチャネル応答行列をMIMO送信機1に供給する間隔を長くし、チャネル応答行列の伝達に使用する無線リソース量の削減を図る。
<制御用情報A:MIMO受信機2のハードウェアリソースの使用上の制約>
 制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約に応じて、離散コサイン変換の変換単位の大きさを変更する。自MIMO受信機2のハードウェアリソースの使用上の制約は、情報取得部26から制御用情報Aとして制御部44に供給される。制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約が基準以下である場合、すなわち、基準と同等か緩い場合には、離散コサイン変換の変換単位の大きさを標準サイズとする。一方、制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約が基準超過である場合、すなわち、基準よりも厳しい場合には、離散コサイン変換の変換単位の大きさを標準サイズよりも小さい縮小サイズとする。なお、離散コサイン変換の変換単位の大きさは、MIMO受信機2のハードウェアリソースの使用上の制約に応じて細かく段階的に変化させるようにしてもよい。
 MIMO受信機2のハードウェアリソースの使用上の制約としては、例えば、メモリの使用量の制約が挙げられる。また、ソフトウェア無線受信機である場合には、ソフトウェア無線に使用可能なメモリ量の制約が挙げられる。
[情報圧縮処理及び情報展開処理、並びに制御処理]
 情報圧縮部42は、離散コサイン変換データに含まれる高周波成分の情報を圧縮(情報のビット数の削減または情報の削除)する。情報圧縮部42は、情報削除部45と量子化部46を有する。以下、本実施形態に係る情報圧縮方法を順次説明する。
(第1の情報圧縮方法)
 第1の情報圧縮方法では、離散コサイン変換データに含まれる高周波成分の情報(DCT係数)を削除する。どの周波数成分の情報(どのDCT係数)を削除するのかは、固定的に定められていてもよく、或いは、制御部44が指定してもよい。
 本実施形態では、情報削除部45が第1の情報圧縮方法を行う。情報削除部45は、DCT部41から離散コサイン変換データを受け取ると、この離散コサイン変換データに含まれるDCT係数のうち、削除対象のDCT係数を削除し、残りのDCT係数を量子化部46へ出力する。
 以下、制御部44が削除対象のDCT係数を指定する場合を説明する。
 制御部44が削除対象のDCT係数を指定する場合、制御部44は、DCT係数の削除個数を情報削除部45へ指示する。これにより、情報削除部45は、最も高い周波数成分のDCT係数から低い周波数成分のDCT係数の方へと順番に、削除個数分のDCT係数を削除する。制御部44は、DCT係数の削除個数を、チャネル情報圧縮符号化データBに係る制御データCとして制御情報送信部25へ出力する。
 図3のチャネル情報展開部14において、制御部54は、チャネル情報圧縮符号化データBに係る制御データCで指定されるDCT係数の削除個数を情報補完部56に指示する。情報補完部56は、逆量子化部55から離散コサイン変換データを受け取る。この離散コサイン変換データは、図2の情報削除部45によって削除対象DCT係数が削除されたものであり、不完全である。情報補完部56は、逆量子化部55から受け取った離散コサイン変換データに対し、制御部54から指示された削除個数分のDCT係数(最も高い周波数成分のDCT係数から低い周波数成分のDCT係数の方へと順番に削除個数分)を値「0」で補完する。情報補完部56は、DCT係数補完後の離散コサイン変換データをIDCT部53へ出力する。
 なお、どのDCT係数を削除するのかが固定的に定められている場合には、情報削除部45は固定的に定められている削除対象DCT係数を削除し、情報補完部56は固定的に定められている削除対象DCT係数を値「0」で補完する。
  制御部44は、情報取得部2から入力される制御用情報Aに基づいて、DCT係数の削除個数を変更する。これにより、制御部44は、離散コサイン変換データの圧縮率を変化させる。以下、制御用情報Aの種類別にDCT係数の削除個数を変更する方法について説明する。
<制御用情報A:MIMO受信機2の移動速度>
 制御部44は、自MIMO受信機2の移動速度に応じて、DCT係数の削除個数を変更する。制御部44は、自MIMO受信機2の移動速度が基準速度以下である場合には、DCT係数の削除個数を標準個数とする。一方、制御部44は、自MIMO受信機2の移動速度が基準速度超過である場合には、DCT係数の削除個数を標準個数よりも多い拡大個数とする。なお、DCT係数の削除個数は、MIMO受信機2の移動速度に応じて細かく段階的に変化させるようにしてもよい。
 MIMO受信機2が移動すると、通常、チャネル応答行列は変化するが、その移動速度が速いとチャネル応答行列の変化速度も速くなると考えられる。そこで、MIMO受信機2の移動速度に応じて離散コサイン変換データの情報量を変化させることにより、MIMO送信機1に供給するチャネル応答行列の精度を調整し、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化速度に対応させるようにする。つまり、MIMO受信機2の移動速度が速い場合には、チャネル応答行列の変化速度も速いと考えられるので、チャネル応答行列の精度を落としてもプリコーディング効果はあまり低下しない。したがって、MIMO受信機2の移動速度が速い場合には、離散コサイン変換データの情報量を少なくすることによりチャネル応答行列の伝達に使用する無線リソース量の削減を図る。一方、MIMO受信機2の移動速度が遅い場合には、チャネル応答行列の変化速度も遅いと考えられるので、離散コサイン変換データの情報量を多くしてチャネル応答行列の精度を高くすることにより、プリコーディング効果の増大を図る。
<制御用情報A:要求スループット>
 制御部44は、MIMO伝送される情報を使用するアプリケーションの要求スループットに応じて、DCT係数の削除個数を変更する。制御部44は、要求スループットが基準値以下である場合には、DCT係数の削除個数を標準個数とする。一方、制御部44は、要求スループットが基準値超過である場合には、DCT係数の削除個数を標準個数よりも少ない縮小個数とする。この理由は、アプリケーションの要求スループットが大きい場合には、離散コサイン変換データの情報量を多くしてチャネル応答行列の精度を高くすることによりプリコーディング効果を高め、これによりスループットの増大が期待できるからである。なお、DCT係数の削除個数は、要求スループットに応じて細かく段階的に変化させるようにしてもよい。
<制御用情報A:同時利用受信機数>
 制御部44は、共用無線リソースを同時に利用する受信機の個数(同時利用受信機数)に応じて、DCT係数の削除個数を変更する。本実施形態では、共用無線リソースは、MIMO受信機2からMIMO送信機1への制御情報の送信に使用される無線リソースである。制御部44は、同時利用受信機数が基準値以下である場合には、DCT係数の削除個数を標準個数とする。一方、制御部44は、同時利用受信機数が基準値超過である場合には、DCT係数の削除個数を標準個数よりも多い拡大個数とする。これは、同時利用受信機数が多い場合には、共用無線リソースを節約するために、離散コサイン変換データの情報量を少なくするためである。なお、DCT係数の削除個数は、同時利用受信機数に応じて細かく段階的に変化させるようにしてもよい。
(第2の情報圧縮方法)
 第2の情報圧縮方法では、離散コサイン変換データに含まれる高周波成分の情報(DCT係数)のビット数を削減する。どの周波数成分の情報(どのDCT係数)のビット数を削減するのかは、固定的に定められていてもよく、或いは、制御部44が指定してもよい。また、何ビット削減するのかは、固定的に定められていてもよく、或いは、制御部44が指定してもよい。
 本実施形態では、量子化部46が第2の情報圧縮方法を行う。量子化部46は、情報削除部45から離散コサイン変換データを受け取ると、この離散コサイン変換データに含まれるDCT係数のうち、ビット数削減対象のDCT係数のビット数を削減する。量子化部46は、ビット数削減処理後の離散コサイン変換データ(圧縮データ)を可変長符号化部43へ出力する。
 以下、制御部44がビット数削減対象のDCT係数および何ビット削減するのかを指定する場合について説明する。
 制御部44がビット数削減対象のDCT係数および何ビット削減するのかを指定する場合、制御部44は、DCT係数のビット数削減対象個数および削減ビット数を量子化部46へ指示する。これにより、量子化部46は、離散コサイン変換データ中の最も高い周波数成分のDCT係数から低い周波数成分のDCT係数の方へと順番に、ビット数削減対象個数分のDCT係数を選択する。次に、量子化部46は、選択したDCT係数のビット数を、削減ビット数だけ削減する処理(量子化ビット数の削減)を行う。制御部44は、DCT係数のビット数削減対象個数および削減ビット数を、チャネル情報圧縮符号化データBに係る制御データCとして制御情報送信部25へ出力する。
 図3のチャネル情報展開部14において、制御部54は、チャネル情報圧縮符号化データBに係る制御データCで指定されるDCT係数のビット数削減対象個数および削減ビット数を逆量子化部55に指示する。逆量子化部55は、可変長復号化部51から情報圧縮された離散コサイン変換データを受け取る。この離散コサイン変換データは、図2の量子化部46によってビット数削減対象DCT係数のビット数が削減ビット数だけ削減されており、不完全である。逆量子化部55は、可変長復号化部51から受け取った離散コサイン変換データに対し、制御部54から指示されたビット数削減対象個数分のDCT係数(離散コサイン変換データ中の最も高い周波数成分のDCT係数から低い周波数成分のDCT係数の方へと順番にビット数削減対象個数分)のビット数を削減ビット数だけ補完する処理(量子化ビット数の補完)を行う。逆量子化部55は、ビット補完後の離散コサイン変換データを情報補完部56へ出力する。
 なお、DCT係数のビット数削減対象個数のみが固定されていてもよく、或いは、削減ビット数のみが固定されていてもよい。どのDCT係数のビット数を削減するのかが固定的に定められている場合には、量子化部46は固定的に定められているビット数削減対象DCT係数のビット数を削減ビット数だけ削減し、逆量子化部55は固定的に定められているビット数削減対象DCT係数のビット数を削減ビット数だけ補完する。また、削減ビット数が固定的に定められている場合には、量子化部46はビット数削減対象DCT係数のビット数を固定的に定められている削減ビット数だけ削減し、逆量子化部55はビット数削減対象DCT係数のビット数を固定的に定められている削減ビット数だけ補完する。
 次に、DCT係数のビット数削減対象個数または削減ビット数を変更する方法について説明する。
 制御部44は、情報取得部2から入力される制御用情報Aに基づいて、DCT係数のビット数削減対象個数または削減ビット数を変更する。これにより、制御部44は、離散コサイン変換データの圧縮率を変化させる。以下、制御用情報Aの種類別にDCT係数のビット数削減対象個数または削減ビット数を変更する方法について説明する。
<制御用情報A:MIMO受信機2の移動速度>
 制御部44は、自MIMO受信機2の移動速度に応じて、DCT係数のビット数削減対象個数または削減ビット数を変更する。制御部44は、自MIMO受信機2の移動速度が基準速度以下である場合には、DCT係数のビット数削減対象個数および削減ビット数を各標準値とする。一方、制御部44は、自MIMO受信機2の移動速度が基準速度超過である場合には、DCT係数のビット数削減対象個数または削減ビット数を各標準値よりも多い拡大値とする。なお、DCT係数のビット数削減対象個数および削減ビット数は、MIMO受信機2の移動速度に応じて細かく段階的に変化させるようにしてもよい。
 これにより、上述のDCT係数の削除個数の変更と同様に、MIMO受信機2の移動速度に応じて離散コサイン変換データの情報量を変化させることにより、MIMO送信機1に供給するチャネル応答行列の精度を調整し、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化速度に対応させるようにする。
<制御用情報A:要求スループット>
 制御部44は、MIMO伝送される情報を使用するアプリケーションの要求スループットに応じて、DCT係数のビット数削減対象個数または削減ビット数を変更する。制御部44は、要求スループットが基準値以下である場合には、DCT係数のビット数削減対象個数および削減ビット数を各標準値とする。一方、制御部44は、要求スループットが基準値超過である場合には、DCT係数のビット数削減対象個数または削減ビット数を各標準値よりも少ない縮小値とする。なお、DCT係数のビット数削減対象個数および削減ビット数は、要求スループットに応じて細かく段階的に変化させるようにしてもよい。
 これにより、上述のDCT係数の削除個数の変更と同様に、アプリケーションの要求スループットが大きい場合には、離散コサイン変換データの情報量を多くしてチャネル応答行列の精度を高くすることによりプリコーディング効果を高め、スループットの増大を期待する。
<制御用情報A:同時利用受信機数>
 制御部44は、共用無線リソースを同時に利用する受信機の個数(同時利用受信機数)に応じて、DCT係数のビット数削減対象個数または削減ビット数を変更する。本実施形態では、共用無線リソースは、MIMO受信機2からMIMO送信機1への制御情報の送信に使用される無線リソースである。制御部44は、同時利用受信機数が基準値以下である場合には、DCT係数のビット数削減対象個数および削減ビット数を各標準値とする。一方、制御部44は、同時利用受信機数が基準値超過である場合には、DCT係数のビット数削減対象個数または削減ビット数を各標準値よりも多い拡大値とする。なお、DCT係数のビット数削減対象個数および削減ビット数は、同時利用受信機数に応じて細かく段階的に変化させるようにしてもよい。
 これにより、上述のDCT係数の削除個数の変更と同様に、同時利用受信機数が多い場合には、離散コサイン変換データの情報量を少なくして共用無線リソースを節約する。
[可変長符号化処理及び可変長復号化処理、並びに制御処理]
 可変長符号化部43は、可変長符号化の符号化単位の大きさを変更可能である。制御部44は、可変長符号化の符号化単位の大きさを可変長符号化部43へ指示する。これにより、可変長符号化部43は、制御部44から指示された符号化単位で、情報圧縮部42から受け取った圧縮データを可変長符号化する。制御部44は、可変長符号化の符号化単位の大きさを、チャネル情報圧縮符号化データBに係る制御データCとして制御情報送信部25へ出力する。
 図3に示されたチャネル情報展開部14において、制御部54は、チャネル情報圧縮符号化データBに係る制御データCで指定される可変長符号化の符号化単位の大きさを可変長復号化部51に指示する。可変長復号化部51は、制御情報受信部13から受け取ったチャネル情報圧縮符号化データBを、制御部54から指示された符号化単位で可変長復号化する。可変長復号化部51は、可変長復号化により得られた圧縮データを情報展開部52へ出力する。
制御部44は、情報取得部2から入力される制御用情報Aに基づいて、可変長符号化の符号化単位の大きさを変更する。以下、制御用情報Aの種類別に可変長符号化の符号化単位の大きさを変更する方法について説明する。
<制御用情報A:MIMO受信機2の移動速度>
 制御部44は、自MIMO受信機2の移動速度に応じて、可変長符号化の符号化単位の大きさを変更する。制御部44は、自MIMO受信機2の移動速度が基準速度以下である場合には、可変長符号化の符号化単位の大きさを標準サイズとする。一方、制御部44は、自MIMO受信機2の移動速度が基準速度超過である場合には、可変長符号化の符号化単位の大きさを標準サイズよりも小さい縮小サイズとする。なお、可変長符号化の符号化単位の大きさは、MIMO受信機2の移動速度に応じて細かく段階的に変化させるようにしてもよい。
 これにより、上述の離散コサイン変換の変換単位の大きさの変更と同様に、MIMO受信機2の移動速度に応じて可変長符号化の符号化単位の大きさを変化させることにより、チャネル応答行列をMIMO送信機1に供給する間隔を調整し、MIMO送信機1における送信データのプリコーディングをチャネル応答行列の変化速度に対応させるようにする。
<制御用情報A:MIMO受信機2のハードウェアリソースの使用上の制約>
 制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約に応じて、可変長符号化の符号化単位の大きさを変更する。自MIMO受信機2のハードウェアリソースの使用上の制約は、情報取得部26から制御用情報Aとして制御部44に供給される。制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約が基準以下(基準と同等か緩い)である場合には、可変長符号化の符号化単位の大きさを標準サイズとする。一方、制御部44は、自MIMO受信機2のハードウェアリソースの使用上の制約が基準超過であり、基準よりも厳しい場合には、可変長符号化の符号化単位の大きさを標準サイズよりも小さい縮小サイズとする。なお、可変長符号化の符号化単位の大きさは、MIMO受信機2のハードウェアリソースの使用上の制約に応じて細かく段階的に変化させるようにしてもよい。
 上述した実施形態によれば、チャネル応答行列の精度を良好に保ちながら情報圧縮を行うことができる。これにより、MIMOシステムにおいて、MIMO受信機2で得られたチャネル応答行列に的確なプリコーディングをMIMO送信機1で行うことができると共に、MIMO受信機2からMIMO送信機1へ送るチャネル応答行列の情報量を削減することができるようになる。この結果、プリコーディング効果の確保と共に、チャネル応答行列の伝達に使用する無線リソース量の削減を図ることが可能になる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、図2に示されたチャネル情報圧縮部24の情報圧縮部42において、情報削除部45または量子化部46のいずれか一方のみを設けるようにしてもよい。この場合、図3に示されたチャネル情報展開部14の情報展開部52においては、チャネル情報圧縮部24の情報圧縮部42に対応させて逆量子化部55または情報補完部56のいずれか一方のみを設ければよい。
 また、図2に示されたチャネル情報圧縮部24の情報圧縮部42において、可変長符号化部43は設けなくてもよい。この場合、図3に示されたチャネル情報展開部14においては、可変長復号化部43は設けなくてもよい。
 また、上述の実施形態では、MIMOシステムに適用し、チャネル情報はMIMOシステムの送受アンテナ間のチャネル応答行列であるとしたが、MIMOシステム以外の無線通信システムに適用し、通信チャネルの状態を表すチャネル情報を離散コサイン変換するようにしてもよい。また、上述の実施形態では、マルチキャリア伝送方式に適用したが、シングルキャリア伝送方式に適用してもよい。
 また、図2に示されたチャネル情報圧縮部24の機能または図3に示されたチャネル情報展開部14の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませて実行することにより、チャネル情報圧縮処理またはチャネル情報展開処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disk)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 本発明は、プリコーディングを行うMIMO(Multiple Input Multiple Output)システムを採用する無線通信システム等に適用することができ、本発明によってチャネル情報の精度を良好に保ちながら情報圧縮を行うことができる。
1…MIMO送信機、
2…MIMO受信機、
11…プリコーディング部、
12…送信部、
13…制御情報受信部、
14…チャネル情報展開部、
21…受信部、
22…チャネル推定部、
23…受信処理部、
24…チャネル情報圧縮部、
25…制御情報送信部、
26…情報取得部、
41…DCT部、
42…情報圧縮部、
43…可変長符号化部、
44…制御部、
45…情報削除部、
46…量子化部、
51…可変長復号化部、
52…情報展開部、
53…IDCT部、
54…制御部、
55…逆量子化部、
56…情報補完部

Claims (24)

  1.  通信チャネルの状態を表すチャネル情報に離散コサイン変換を行う離散コサイン変換部と、
     前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮する情報圧縮部と、
     を備えるチャネル情報圧縮装置。
  2.  前記離散コサイン変換部は、同一通信チャネルの状態を表すチャネル情報から構成される変換単位で前記離散コサイン変換を行う請求項1に記載のチャネル情報圧縮装置。
  3.  前記チャネル情報は、マルチキャリア伝送方式のサブキャリア毎に取得されるものであり、
     前記離散コサイン変換部は、連続したサブキャリア又は等間隔で離れたサブキャリアのチャネル情報から構成される変換単位で前記離散コサイン変換を行う、
     請求項2に記載のチャネル情報圧縮装置。
  4.  前記チャネル情報は、MIMOシステムの送受アンテナ間のチャネル応答行列であり、
     前記離散コサイン変換部は、マルチキャリア伝送方式を使用する前記MIMOシステムの各サブキャリアの前記チャネル応答行列の同じ要素から構成される変換単位で前記離散コサイン変換を行う、
     請求項2に記載のチャネル情報圧縮装置。
  5.  前記チャネル情報は、一定間隔で取得されるものであり、
     前記離散コサイン変換部は、1つ又は連続する複数取得回数分のチャネル情報から構成される変換単位で前記離散コサイン変換を行う
     請求項2から請求項4のいずれか1項に記載のチャネル情報圧縮装置。
  6.  前記情報圧縮部は、前記離散コサイン変換データの圧縮率を変更可能であり、
     前記チャネル情報圧縮装置は、前記通信チャネルを受信する受信機の移動速度に応じて、前記離散コサイン変換データの圧縮率を変化させる制御部を備える、
     請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  7.  前記情報圧縮部は、前記離散コサイン変換データの圧縮率を変更可能であり、
     前記チャネル情報圧縮装置は、前記通信チャネルで伝送される情報を使用するアプリケーションの要求スループットに応じて、前記離散コサイン変換データの圧縮率を変化させる制御部を備える、
     請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  8.  前記情報圧縮部は、前記離散コサイン変換データの圧縮率を変更可能であり、
     前記チャネル情報圧縮装置は、共用無線リソースを同時に利用する受信機の個数に応じて、前記離散コサイン変換データの圧縮率を変化させる制御部を備える、
     請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  9.  前記離散コサイン変換部は、前記離散コサイン変換の変換単位の大きさを変更可能であり、
     前記チャネル情報圧縮装置は、前記通信チャネルを受信する受信機の移動速度に応じて、前記離散コサイン変換の変換単位の大きさを変化させる制御部を備える、
     請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  10.  前記離散コサイン変換部は、前記離散コサイン変換の変換単位の大きさを変更可能であり、
     前記チャネル情報圧縮装置は、前記通信チャネルを受信する受信機のハードウェアリソースの使用上の制約に応じて、前記離散コサイン変換の変換単位の大きさを変化させる制御部を備える、
     請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  11.  前記受信機はソフトウェア無線受信機であり、
     前記制御部は、ソフトウェア無線に使用可能なメモリ量の制約に応じて、前記離散コサイン変換の変換単位の大きさを変化させる、
     請求項10に記載のチャネル情報圧縮装置。
  12.  前記離散コサイン変換データの圧縮データを可変長符号化して符号化単位の大きさを変更可能な可変長符号化部と、
     前記通信チャネルを受信する受信機の移動速度に応じて、前記符号化単位の大きさを変化させる制御部と、
     を備える請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  13.  前記離散コサイン変換データの圧縮データを可変長符号化して符号化単位の大きさを変更可能な可変長符号化部と、
     前記通信チャネルを受信する受信機のハードウェアリソースの使用上の制約に応じて、前記符号化単位の大きさを変化させる制御部と、
     を備える請求項1から4のいずれか1項に記載のチャネル情報圧縮装置。
  14.  前記受信機はソフトウェア無線受信機であり、
     前記制御部は、ソフトウェア無線に使用可能なメモリ量の制約に応じて、前記符号化単位の大きさを変化させる、
     請求項13に記載のチャネル情報圧縮装置。
  15.  通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開する情報展開部と、
     前記情報展開部により得られた離散コサイン変換データに逆離散コサイン変換を行う逆離散コサイン変換部と、
     を備えるチャネル情報展開装置。
  16.  前記情報展開部は、前記離散コサイン変換データの展開率を変更可能であり、
     前記チャネル情報展開装置は、前記圧縮データに係る制御情報に従って前記情報展開部を制御する制御部を備える、
     請求項15に記載のチャネル情報展開装置。
  17.  前記逆離散コサイン変換部は、前記逆離散コサイン変換の変換単位の大きさを変更可能であり、
     前記チャネル情報展開装置は、前記離散コサイン変換データに係る制御情報に従って、前記逆離散コサイン変換部を制御する制御部を備える、
     請求項15又は16に記載のチャネル情報展開装置。
  18.  通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データの可変長符号化データを可変長復号化して符号化単位の大きさを変更可能な可変長復号化部と、
     前記可変長符号化データに係る制御情報に従って、前記可変長復号化部を制御する制御部を備える、
     請求項15又は16に記載のチャネル情報展開装置。
  19.  通信チャネルの状態を表すチャネル情報に離散コサイン変換を行うステップと、
     前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮するステップと、
     を含むチャネル情報圧縮方法。
  20.  通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開するステップと、
     前記展開するステップにより得られた離散コサイン変換データに逆離散コサイン変換を行うステップと、
     を含むチャネル情報展開方法。
  21.  通信チャネルの状態を表すチャネル情報に離散コサイン変換を行うステップと、
     前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮するステップと、
     をコンピュータに実行させるためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体。
  22.  通信チャネルの状態を表すチャネル情報の離散コサイン変換データの圧縮データを展開するステップと、
     前記展開するステップにより得られた離散コサイン変換データに逆離散コサイン変換を行うステップと、
     をコンピュータに実行させるためのコンピュータプログラムを記録したコンピュータ読み取り可能な記録媒体。
  23.  MIMOシステムの受信機において、
     前記MIMOシステムの送信機と自受信機との間のチャネル情報に離散コサイン変換を行う離散コサイン変換部と、
     前記離散コサイン変換により得られた離散コサイン変換データに含まれる高周波成分の情報を圧縮する情報圧縮部と、
     前記圧縮データを前記送信機へ送信する送信部と、
     を備える受信機。
  24.  MIMOシステムの送信機において、
     自送信機と前記MIMOシステムの受信機との間のチャネル情報の離散コサイン変換データの圧縮データを前記受信機から受信する受信部と、
     前記受信データを展開する情報展開部と、
     前記情報展開部により得られた離散コサイン変換データに逆離散コサイン変換を行う逆離散コサイン変換部と、
     前記逆離散コサイン変換により取得されたチャネル情報を用いて、送信データのプリコーディングを行うプリコーディング部と、
     を備える送信機。
PCT/JP2010/064463 2009-09-16 2010-08-26 チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機 WO2011033912A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/395,735 US9118440B2 (en) 2009-09-16 2010-08-26 Channel information compressing apparatus adapted to a MIMO system and method
CN201080041933.5A CN102577198B (zh) 2009-09-16 2010-08-26 信道信息压缩装置和方法、信道信息解压缩装置和方法、mimo接收机、以及mimo发送机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009214855A JP2011066640A (ja) 2009-09-16 2009-09-16 チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、コンピュータプログラム、受信機、送信機
JP2009-214855 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011033912A1 true WO2011033912A1 (ja) 2011-03-24

Family

ID=43758523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064463 WO2011033912A1 (ja) 2009-09-16 2010-08-26 チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機

Country Status (4)

Country Link
US (1) US9118440B2 (ja)
JP (1) JP2011066640A (ja)
CN (1) CN102577198B (ja)
WO (1) WO2011033912A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074926A (ja) * 2010-09-29 2012-04-12 Kddi Corp 送信機、受信機選択方法およびコンピュータプログラム
JP2012074925A (ja) * 2010-09-29 2012-04-12 Kddi Corp 受信機、チャネル情報圧縮方法およびコンピュータプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171551A1 (en) * 2013-04-16 2014-10-23 Sharp Kabushiki Kaisha Wireless receiving device, wireless transmitting device, wireless communication system, wireless receiving method and wireless transmitting method
TWI760970B (zh) * 2020-12-14 2022-04-11 瑞昱半導體股份有限公司 具有記憶體共享機制的無線通訊裝置及其記憶體共享方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126764A1 (ja) * 2007-04-05 2008-10-23 Sharp Kabushiki Kaisha 通信方式決定装置、送信装置、受信装置、ofdm適応変調システムおよび通信方式決定方法
WO2008133185A1 (ja) * 2007-04-20 2008-11-06 Sharp Kabushiki Kaisha 基地局装置、無線通信システム、端末装置、受信状態通知方法およびプログラム
WO2009020174A1 (ja) * 2007-08-07 2009-02-12 Sharp Kabushiki Kaisha 通信装置および受信品質情報生成方法
WO2009025221A1 (ja) * 2007-08-17 2009-02-26 Ntt Docomo, Inc. データ送信方法、データ受信方法、移動端末及び無線通信システム
JP2009530899A (ja) * 2006-03-17 2009-08-27 エルジー エレクトロニクス インコーポレイティド データ変換方法及びこれを用いたデータ送受信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7386046B2 (en) * 2001-02-13 2008-06-10 Realtime Data Llc Bandwidth sensitive data compression and decompression
JP4356756B2 (ja) 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US8385218B2 (en) * 2006-10-12 2013-02-26 Sharp Kabushiki Kaisha Communication apparatus and communication method
WO2008132865A1 (ja) 2007-04-20 2008-11-06 Sharp Kabushiki Kaisha 基地局装置、端末装置、通信システム及び通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530899A (ja) * 2006-03-17 2009-08-27 エルジー エレクトロニクス インコーポレイティド データ変換方法及びこれを用いたデータ送受信方法
WO2008126764A1 (ja) * 2007-04-05 2008-10-23 Sharp Kabushiki Kaisha 通信方式決定装置、送信装置、受信装置、ofdm適応変調システムおよび通信方式決定方法
WO2008133185A1 (ja) * 2007-04-20 2008-11-06 Sharp Kabushiki Kaisha 基地局装置、無線通信システム、端末装置、受信状態通知方法およびプログラム
WO2009020174A1 (ja) * 2007-08-07 2009-02-12 Sharp Kabushiki Kaisha 通信装置および受信品質情報生成方法
WO2009025221A1 (ja) * 2007-08-17 2009-02-26 Ntt Docomo, Inc. データ送信方法、データ受信方法、移動端末及び無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUYUKI HATAKAWA ET AL.: "A study of CSI compression using DCT for MIMO-OFDM system", IEICE TECHNICAL REPORT, vol. 109, no. 341, 10 December 2009 (2009-12-10), pages 89 - 94 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074926A (ja) * 2010-09-29 2012-04-12 Kddi Corp 送信機、受信機選択方法およびコンピュータプログラム
JP2012074925A (ja) * 2010-09-29 2012-04-12 Kddi Corp 受信機、チャネル情報圧縮方法およびコンピュータプログラム

Also Published As

Publication number Publication date
CN102577198A (zh) 2012-07-11
US20120170641A1 (en) 2012-07-05
US9118440B2 (en) 2015-08-25
JP2011066640A (ja) 2011-03-31
CN102577198B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5417141B2 (ja) チャネル情報圧縮装置及び方法、コンピュータプログラム、受信機
KR102613744B1 (ko) 무선 통신에서의 채널 상태 정보 피드백
US11923975B2 (en) Device and method for compressing and/or decompressing channel state information
CN112235088B (zh) 处理参考信号的方法、基站和终端
TWI543554B (zh) 使用多重預編碼器索引提供預編碼器回饋之方法及相關通信器件及系統
RU2426232C2 (ru) Система, устройство и способ для асимметричного диаграммообразования с передачей одинаковой мощности
KR20210106548A (ko) 무선통신 네트워크에서 피드백 보고를 위한 방법 및 장치
KR102127313B1 (ko) 코딩 지시 정보의 전송 및 프리코딩 매트릭스의 결정 방법 및 장치
WO2008137523A1 (en) A codebook method for multiple input multiple output wireless system
KR20150105090A (ko) 다중 입력 다중 출력 시스템에서 채널 피드백 장치 및 방법
MX2012010580A (es) Metdo y sistema para realimentar informacion de estado de canal.
WO2011033912A1 (ja) チャネル情報圧縮装置及び方法、チャネル情報展開装置及び方法、受信機、ならびに送信機
CN111262611B (zh) 确定正交基向量的索引的方法和设备
JP5568162B2 (ja) チャネル情報圧縮装置及び方法、コンピュータプログラム、受信機
WO2020030160A1 (zh) 信道状态信息发送、接收方法及装置、通信节点及存储介质
JP5538166B2 (ja) 受信機、チャネル情報圧縮方法およびコンピュータプログラム
JP5322970B2 (ja) チャネル情報圧縮制御装置、チャネル情報圧縮制御方法、受信機及びコンピュータプログラム
JP5538152B2 (ja) 受信機、チャネル情報圧縮方法およびコンピュータプログラム
TWI846398B (zh) 用於多輸入和多輸出(mimo)通道狀態資訊(csi)回饋的方法和設備
EP4358428A2 (en) Wireless communication device and method employing channel state information compression
KR20240053499A (ko) 채널 정보의 압축을 위한 무선 통신 장치 및 그의 동작 방법
KR101625741B1 (ko) 다수의 사용자가 존재하는 무선 통신시스템에서 채널 피드백을 위한 적응형 코드북 설계 시스템 및 방법
CN117914367A (zh) 采用信道状态信息压缩的无线通信装置和方法
CN108234002A (zh) 一种构造多天线预编码的方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041933.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395735

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817025

Country of ref document: EP

Kind code of ref document: A1