WO2011031073A2 - 신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도 - Google Patents

신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도 Download PDF

Info

Publication number
WO2011031073A2
WO2011031073A2 PCT/KR2010/006139 KR2010006139W WO2011031073A2 WO 2011031073 A2 WO2011031073 A2 WO 2011031073A2 KR 2010006139 W KR2010006139 W KR 2010006139W WO 2011031073 A2 WO2011031073 A2 WO 2011031073A2
Authority
WO
WIPO (PCT)
Prior art keywords
independently
substituted
unsubstituted
pcb
macrocyclic compound
Prior art date
Application number
PCT/KR2010/006139
Other languages
English (en)
French (fr)
Other versions
WO2011031073A3 (ko
Inventor
유정수
달판 퍈다
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to US13/395,346 priority Critical patent/US9061078B2/en
Priority to EP10815618.3A priority patent/EP2476683B1/en
Publication of WO2011031073A2 publication Critical patent/WO2011031073A2/ko
Publication of WO2011031073A3 publication Critical patent/WO2011031073A3/ko
Priority to US14/645,967 priority patent/US9353120B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/082Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the peptide being a RGD-containing peptide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1045Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
    • A61K51/1051Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants the tumor cell being from breast, e.g. the antibody being herceptin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/10Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems

Definitions

  • Novel tetraaza macrocyclic compounds, preparation methods and uses thereof are novel tetraaza macrocyclic compounds, preparation methods and uses thereof
  • the present invention relates to a novel tetraaza macrocyclic compound, a manufacturing method and a use thereof, and more particularly to a cross-linked tetraaza macrocyclic compound having a novel structure, a manufacturing method, a contrast agent for imaging and radioactive It is about the use as a medicine.
  • Metallurgical diagnostic agents and therapeutic agents continue to increase in their application in biological and medical research and diagnostic and therapeutic procedures.
  • these preparations contain radioisotopes or paramagnetic metals and, when introduced into a subject, gather in a particular organ, tissue or skeletal structure selected.
  • various means may be used to produce images showing the in vivo distribution of radioisotopes or paramagnetic metals.
  • the distribution and comparable relative intensities of detected radioisotopes or paramagnetic metals may indicate not only the space occupied by the targeted tissue, but also the presence of receptors, antigens, abnormalities, pathological conditions, and the like.
  • the formulation typically contains a radioisotope and the radioactive formulation delivers a predetermined dose of radiation to the topical site.
  • ⁇ 3> targeted organs or tissues of interest and diagnostic or therapeutic procedures of interest.
  • a metal pharmaceutical formulation in a predetermined range can be used.
  • One common form is a conjugate comprising a radioactive or paramagnetic metal, a carrier that targets the conjugate to a particular organ or tissue site, and a linkage that chemically links the metal to the carrier.
  • the metal is usually linked to the conjugate in the form of a coordinating complex and more usually to the chelate of the macrocycle (see, for example, Liu, US Pat. No. 16,916,460). Reference).
  • PET positron emission tomography
  • the radionuclide of copper-64 is used in nuclear medicine and imaging because of its potential use in positron emission tomography (PET) and targeted radiotherapy due to its mass production capacity. Special attention was gathered.
  • PET positron emission tomography
  • One of the most important objectives is the use of various chelating agents for radionuclides. It is made as a stable complex and transferred from Cu (II) to Cu (I) without specific metal transition. In vivo, kinetic safety of Cu (II) is often more important than thermodynamic safety.
  • N-acetic acid pendant arm and its derivatives composed mainly of cyclen and cyclam, are bi funct ional chelating agents (BFCs).
  • BFCs bi funct ional chelating agents
  • D0TA and TETA a type of Cu (II) macrocyclic chelators derived from Cyclen and Cylam, are acyclic chelators such as EDTA and DTPA.
  • 1,4,8,11-tetraazacyclotetedecane-1,4,8,11-tetraacetic acid is a copper and a variety of radioactive agents for clinical contrast agents and peptide and antibody-related radiotherapy. It is widely used as a bifunct ional chelating agent (BFC) of radionuclide.
  • BFC bifunct ional chelating agent
  • TETA is not an optimal bifunctional chelating compound (BFC) because of the metal and protein binding caused by metal and chelate dissociation. Anderson and colleagues reported that TETA-D-Ph ⁇ -octreotide occurs in the rat liver.
  • Cu-CB-TE2A-Tyr 3 -octreotate cleared blood, liver and kidneys more clearly than Cu-TETA derivatives of similar chemicals.
  • Boswell et al. Is a third orthogonally protected arm that is structurally similar to CB-TE2A and can be easily complexed without affecting the peptide or other specific targeting material and the hexagonal position of Cu (II).
  • Cross-linked TE2A (CB-TE2A) was synthesized. There was no in vivo experiment, but in vitro evaluation experiments showed that 48 hours of radiolabeled peptide conjugates and human serum
  • ethylene cross-crosslinked tetraaza macrocyclic compounds react with glyoxal (CH0—CH0) to cyclam or cyclone. Since glyoxal was not able to attach a substituent, cross-crosslinked ethylene prepared by the conventional method could not attach a functional group capable of binding to a bioactive material such as NCS (J. Am. Chem. Soc. 2000). , 122, 10561-10572). Therefore, it was bound to bind the bioactive material to a functional group (carboxylic acid or NCS in the formula below) connected to the nitrogen atom. As a result, when a bioactive material is bonded to a functional group connected to a nitrogen atom, the functional group is difficult to act as a ligand when coordinating with metallic silver, resulting in poor biostability and activity of the coordinating compound.
  • a bioactive material such as NCS (J. Am. Chem. Soc. 2000). , 122, 10561-10572). Therefore, it was bound to
  • the tetraaza macrocyclic compound crosslinked with ethylene is excellent in bio stability, but the temperature condition for forming a complex by coordinating with a metal element is too high (80 to 100 ° C). Or when conjugated with a chemically active substance (the ICS moiety and a bioactive substance are combined in the following formula), and the bioactive substance is damaged (for example, denatured protein) and used as a therapeutic or diagnostic agent. There was no problem.
  • a tetraaza macrocyclic compound in order to use a tetraaza macrocyclic compound as a nuclear medicine contrast agent, complexation with a radioactive metal element should be performed.
  • the useful life of the tetraaza macrocyclic compound is shortened due to the half-life of the radioactive metal element. It is produced in the form of a tetraaza macrocyclic compound attached to a bioactive material (when a product is released without a bioactive material attached, it is necessary to attach the bioactive material directly from the hospital bed. It's almost impossible to do so, so all the actual products are released only with bioactive materials attached to tetraaza macrocyclic compounds).
  • the tetraaza macrocyclic compound to which the bioactive material is attached is purchased from a hospital and the like to form a complex with a radioactive metal element, and then used as a contrast agent and a radiotherapy agent. Therefore, when the complex formation temperature with the metal ion is high, the bound bioactive material (eg, protein) may be denatured, so that the tetraza macrocyclic compound crosslinked with conventional ethylene has a problem that is difficult to be used commercially. .
  • the bound bioactive material eg, protein
  • the present invention has been made to solve the above-mentioned problems, the first problem to be solved of the present invention is a novel structure of not only excellent in bio stability but also significantly lower the reaction resistance when coordination bond with a metal element It is to provide a cross-linked tetraaza macrocyclic compound.
  • the second problem to be solved of the present invention is to attach a functional group that can be easily combined with the bioactive material in the cross-crosslinked propylene portion to increase the stability when the macrocyclic compound is formed of metal ions and complexes. To provide a tetraaza macrocyclic compound cross-linked.
  • the third problem to be solved by the present invention is to provide a novel method for cross-crosslinking a propylene with a semi-unggi group to Tetraaza macrocyclic compound.
  • the fourth problem to be solved of the present invention is a coordination compound capable of coordinating covalently cross-linked tetraaza macrocyclic compound and a metal element of the novel structure of the present invention at a significantly low temperature and a method of preparing the same. To provide.
  • the fifth problem to be solved of the present invention is to provide a conjugate comprising a bioactive material or a chemically active material linked to the coordination compound of the present invention and a method for producing the conjugate in a significantly lower degree.
  • the sixth problem to be solved of the present invention is to provide various uses of the composition comprising the conjugate of the present invention.
  • a tetraaza macrocyclic compound comprising a compound represented by the following formula (1) or a pharmaceutically acceptable salt thereof is provided.
  • R is independently H, alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, substituted or unsubstituted 10 alkyl group, the substitution is At least one moiety selected from the group consisting of amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde;
  • R 1 is each independently H, alcohol, amino, amido, nitro, ether, ester, halogen, ketone, cyano, carboxy, hydroxy, thi, aldehyde, carbonyl, substituted or unsubstituted ( 15 Alkyl, substituted or unsubstituted ( 15 alkenyl, substituted or unsubstituted ( 15 alkynyl, substituted or unsubstituted ( 15 alkylaryl, substituted or unsubstituted (: 1-15 aryl, substituted or unsubstituted d- 15 of heteroalkyl, substituted or unsubstituted d- 15 of heterocyclic, heteroaryl or unsubstituted ring value of the C ring W5, the substitution is an imide, aldehyde,
  • X 1 is each independently H,-(CR 2 ),-CH,, -CR 2 -((CR 2 ) m-C0OH) 2 , -(CR),-C0 2 R,-(CR) ArO,-(CR) r SR,-(CR) S0 3 H,-(CR),-P0 2 HR,
  • R 2 and R are each independently H, alkyl of substituted or unsubstituted Cwo, substituted or unsubstituted Cwo Alkenyl, substituted or unsubstituted
  • L are each independently a linker present or absent and R 1 is directly bonded to a carbon atom when L is not present; a each independently represents an integer of 2 to 3; each a 1 is independently an integer of any one of 2 to 3; n is an integer of 0 to 2, each independently striking the valence of the carbon atom to which the R or LR 1 moiety is covalently bonded.
  • R 1 is independently an antibody, amino acid, nucleoside, nucleotide, aptamer, protein, antigen, peptide, nucleic acid, enzyme, lipid, albumin, It may be a functional group capable of binding to cells, carbohydrates, vitamins, hormones, nanoparticles, inorganic supports, polymers, single molecules or drugs.
  • a tetraaza macrocyclic compound comprising the step of reacting a tetraaza macrocyclic compound represented by Chemical Formula 2 and a compound represented by Chemical Formula 3 below is used.
  • a manufacturing method Provide a manufacturing method.
  • R is each independently ⁇ , alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, substituted or unsubstituted alkyl group of Cwo, wherein the substitution is At least one moiety selected from the group consisting of amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thi, and aldehyde;
  • X 1 is independently H,-(CR 2 ) ⁇ C00H,, -CR 2 -((CR 2 ) m-C00H) 2 (
  • R and R 3 are each independently H, substituted or unsubstituted d- 10 alkyl, substituted or unsubstituted Cwo alkenyl, substituted or unsubstituted
  • Heteroaryl, Ar is substituted or unsubstituted phenyl, the substitution being imide, aldehyde.
  • At least one moiety selected from the group consisting of carboxyl groups, ketones, nitros, aminos, thiols, succinimides, maleimides, aminooxyl, N 3 , acetylene, acetamino, azide, phosphate groups and NCS 1 is each independently an integer of 1 to 3, and each independently an integer of 1 to 5, wherein X 1 is not at least one H;
  • ⁇ 3i> a each independently represents an integer of any one of 2 to 3;
  • a 1 are each independently an integer of any one of 2 to 3;
  • N is an integer of 0 to 2, each independently stratifying the valence of the carbon atom to which the R or LR 1 moiety is covalently bonded
  • R is independently H, alcohol, amino, amido, nitro, ether, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, carbonyl, substituted or unsubstituted C 15.
  • Alkyl substituted or unsubstituted d- 15 alkenyl, substituted or unsubstituted d- 15 alkynyl, substituted or unsubstituted ( 15 alkylaryl, substituted or unsubstituted ( 15 aryl, substituted or unsubstituted) Substituted ( ⁇ -15 heteroalkyl, substituted or unsubstituted ( 15 heterocyclic, substituted or unsubstituted d- 15 heteroaryl, said substitution being an imide, aldehyde.
  • Carboxy group, ketone, nitro, amino At least one moiety selected from the group consisting of thiol, succinimide, maleimide, aminooxyl, acetylene, N 3 , acetamino, azide and NCS;
  • L is each independently present do or A linker that does not exist and R 4 is directly bonded to the carbon atom when 1 ⁇ is absent;
  • Y is each independently a leaving group; and
  • n is each independently a valence of the valence of the carbon atom to which the LR 4 moiety is covalently bonded Is an integer of any one of 0 to 2.
  • each R is independently H, a substituted or unsubstituted alkyl; and X One is at least one independently -A-C0 2 -R 5 , wherein A is absent or alkyl of C 3 , R 5 is t-Bu, methyl, ethyl, n-Bu, benzyl or benzylmethoxyyl Can be.
  • R is an antibody, amino acid, nucleoside, nucleotide, aptamer, protein, antigen, peptide, nucleic acid, enzyme, lipid, albumin, cell, carbohydrate, vitamin, hormone, nanoparticle, inorganic support, polymer, monomolecule or drug It may be a functional group that can be combined with the back.
  • a tetraaza macrocyclic compound and a coordinating compound including a metal element coordinated with the tetraaza macrocyclic compound are provided.
  • a pharmaceutical composition comprising the conjugate of the present invention and a pharmaceutically acceptable carrier.
  • the terminology used herein is briefly described.
  • aromatic has at least one ring having a shared pi electron field and contains a carbocyclic aryl (eg phenyl) and a heterocyclic aryl group (eg pyridine, furan, Indole, purine).
  • carbocyclic aryl eg phenyl
  • heterocyclic aryl group eg pyridine, furan, Indole, purine.
  • the term includes monocyclic or fused ring polycyclic (ie, rings that divide adjacent pairs of carbon atoms) groups.
  • heteroatom means atoms other than carbon and hydrogen.
  • heteroalkyl refers to a form (N, 0, S, etc.) in which at least one carbon atom of an alkyl group is substituted with another heteroatom.
  • heterocyclic refers to an aromatic group containing at least one heterocyclic ring, more particularly optionally having 5 or 6 atoms in each ring). Heteroaromatic groups preferably have one or two oxygen atoms, one or two sulfur atoms, and / or
  • heteroaromatics include furyl, thienyl, pyridyl, oxazolyl, pyryl, indolyl, quinolinyl or isoquinolinyl and the like.
  • substituents include hydrocarbyl, substituted hydrocarbyl, ketone, hydroxy, protected hydroxy, acyl, acyloxy alkoxy, Alkenoxy, alkynoxy, aryloxy, halogen, amido, amino, nitro, cyano, thiol, ketal, acetal, ester and ether.
  • heterocyclo or “heterocyclic” is an optionally substituted, fully saturated or unsaturated having one or more heteroatoms in one or more rings (preferably 5 or 6 atoms in each ring).
  • Monocyclic or bicyclic aromatic or non-aromatic group wherein the heterocyclo group preferably has one or two oxygen atoms, one or two sulfur atoms and / or one to four nitrogen atoms in the ring, carbon Or through heteroatoms
  • heterocyclo are heteroaromatics such as furyl, thienyl, pyridyl, oxazolyl, pyryl, indolyl, quinolinyl or isoqui Nolinyl, etc.
  • substituents include hydrocarbyl, substituted hydrocarbyl, ketone, hydroxy, protected hydroxy, acyl, acyloxy, alkoxy, alkenoxy, al Aryloxy, include halogen, amido, amino, nitro, cyano, thiol, ketal, acetal, at least one of esters and ethers ol.
  • alkyl refers to an aliphatic hydrocarbon group.
  • the alkyl moiety can be a "saturated alkyl” group, meaning that it does not contain any alkenes or alkyne moieties.
  • the alkyl moiety may be an "unsaturated alkyl” moiety, meaning that it contains at least one alkene or alkyne moiety.
  • Alkene moiety means a group in which at least two carbon atoms consist of at least one carbon-carbon double bond
  • an "alkyne” moiety refers to at least two carbon atoms in at least one carbon-carbon triple bond Means a group.
  • the alkyl moiety, whether saturated or unsaturated may be branched, straight chain or cyclic.
  • acyl refers to a moiety formed by removing a hydroxyl group from the -C00H group of an organic carboxylic acid, for example RC (0)-, where R is R 1 , R0-, RR 2 N- or I ⁇ S-, R 1 is hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclo, and R 2 is hydrogen, hydrocarbyl or substituted hydrocarbyl.
  • aryl or "ar” means an optionally substituted homocyclic aromatic group, preferably a monocyclic or bicyclic group containing 6 to 12 carbons in the ring portion, such as phenyl, bi Phenyl, naphthyl, substituted phenyl, substituted biphenyl or substituted naphthyl. Phenyl and substituted phenyl are more preferred aryls.
  • radioactive isotope refers to alpha ( ⁇ ) beta ( ⁇ + ) and gamma (
  • pharmaceutically acceptable salt means a formulation of a compound that does not cause serious irritation to the organism to which the compound is administered and does not impair the biological activity and properties of the compound.
  • conjugate indicates that the tetraaza macrocyclic compound of the present invention is bound to an antibody or the like irrespective of whether or not it forms a complex via a coordinating bond with a metal element.
  • the propylene crosslinked tetraaza macrocyclic compound of the present invention forms a metal complex more stably with various metals at a lower temperature than the conventional ethylene crosslinked tetraaza macrocyclic compound, and is bioactive and chemically active. There is an advantage that can be easily conjugated. As a result, it is commercially possible to prevent degeneration of bioactive molecules bound with macrocyclic compounds and to use them as therapeutics, diagnostics and contrast agents.
  • the cross-linked propylene portion of the present invention binds to the bioactive material.
  • the chelate (arm) portion linked to the nitrogen atom does not need to be bound to the bioactive substance when combined with the bioactive material, so that the chelate (arm) portion connected to the nitrogen atom may form part of the coordination bond with the metal ion. It is very beneficial for its formation and stability.
  • propylene cross-crosslinked tetraaza macrocyclic compounds form stable complexes with not only transition metals but also main and lanthanide metals, making it easy to label paramagnetic metals such as Gd as well as various radionuclides. This can be useful for the manufacture of radiopharmaceuticals and MRI contrast agents.
  • 1 to 4 are graphs showing radio TLC results for radiochemical purity after labeling of Cu-PCB-TE2A and Cu_PCB-D02A, respectively.
  • FIG. 5 to 9 are graphs showing radio TLC results for Cu-PCB-TE2A at respective temperature conditions.
  • FIG. 10 to FIG. 15 are graphs illustrating the results of radio TLC of Cu—PCB-TE2A added to an acid and corresponding to time.
  • 16 to 23 are graphs illustrating the results of radio TLC for adding Cu—PCB-TE2A to FBS and time zones thereof.
  • FIGS. 24 to 27 in FIGS. 24 to 27 show (a) Cu-PCB_TE2A and (b) in 5M HC1, respectively.
  • XMax is the measured value for Cu-PCB-D02A
  • FIGS. 26 and 27 show In (absorbance) bands for (c) Cu-PCB-TE2A and (d) Cu-PCB-D02A at 5M HC1 and 90 ° C, respectively.
  • FIG. 30 is an HPLC chromatogram of PCB-TE2A-c (RGDyK) using an analytical HPLC system
  • FIGS. 31 and 32 are mass spectrometry in positive and negative modes of PCB-TE2A-c (RGDyK), respectively. Spectra.
  • FIG. 33 is a Radio- TLC of Cu-PCB-TE2A-c (RGDyK)
  • FIG. 34 is a Radio-HPLC chromatogram of Cu-PCB-TE2A-c (RGDyK) using an analytical HPLC system
  • 35 shows UV-probe PCB-TE2A-c (RGDyK) at 220 nm (black) using an HPLC system for analysis.
  • FIG. 36 is a U87MG tumor model
  • FIG. 37 is a microPET image of a female nude mouse with U87MG cancer cells 1 hour after Cu-PCB-TE2A_c (RGDyK) (231 uCi) injection.
  • FIG. 38 shows PCB-TE2A-NCS-c (RGDyK) using a semipreparative HPLC system.
  • FIG. 42 is a Radio-TLC of Cu—PCB-TE2A-NCS-c (RGDyK), and FIG. 43 is for analysis.
  • FIG. 44 is UV probed at 220 nm (black) using an analytical HPLC system
  • FIG. 45 shows one hour after injection in nude mice implanted with U87MG cancer.
  • FIG. 46 shows trastuzumab identified as UV at 280 nra using SE-HPLC system.
  • FIG. 47 is the SE-HPLC chromatogram of PCB-TE2A-NCS-Trastuzumab identified as UV at 280 nm using SE-HPLC system
  • FIG. 49 shows Radio-ITLC of CuCl 2
  • FIG. 50 shows Cu-PCB-TE2A_NCS-Trastuziimab.
  • FIG. 51 shows PCB-TE2A- identified as UV at 280 nm using SE-HPLC system.
  • FIG. 52 is Radio-ITLC of CuCl 2 , FIG.
  • FIG. 53 is Radio—ITLC of Cu-PCB-TE2A-NCS-Trastuzumab
  • 55 to 59 and 63 to 68 are mass spectrometric graphs of synthesized compounds according to an exemplary embodiment of the present invention.
  • 60-62 are trastuzumab, Cu-PCB-TE2A-NH 2 -Trastuzunmb, and two overlapping HPLC chromatograms.
  • the conventional ethylene cross-crosslinked tetraaza macrocyclic compound is prepared by reacting glyoxal (CH0-CH0) with cyclam or cyclone, and since glyoxal cannot attach a substituent,
  • the cross-crosslinked ethylene produced by the method was unable to attach a functional group capable of binding to a bioactive material such as NCS. Therefore, there was no choice but to bind bioactive substances to functional groups linked with nitrogen atoms.
  • a bioactive material is bonded to a functional group linked to a nitrogen atom, the functional group becomes difficult to act as a ligand when coordinating with a metal ion, resulting in a decrease in biostability and activity of a coordination compound.
  • the conventional tetraaza macrocyclic compound crosslinked with ethylene is excellent in bio stability, but the temperature condition for forming a complex by coordinating with a metal element is too high (80 ⁇ 100 ° C), bioactive material or chemical
  • the temperature condition for forming a complex by coordinating with a metal element is too high (80 ⁇ 100 ° C), bioactive material or chemical
  • a complex with radioactive metal must be formed. In this case, the useful life of the tetraaza macrocyclic ring is shortened due to the half-life of the radioactive metal element.
  • the bioactive substance should be directly attached to the hospital using the same, except in the case of special circumstances such as hospitals). Is almost impossible, so the actual products are only released in the form of bioactive materials attached to tetraaza macrocyclic compounds).
  • the tetraaza macrocyclic compound to which the bioactive material is attached is purchased at a hospital to form a complex with a radioactive metal element and then used as a contrast agent and a radiotherapy agent. Therefore, when the complex formation temperature with the metal ion is high,
  • bioactive substances eg, proteins
  • proteins may be denatured
  • conventional tetraaza macrocyclic compounds crosslinked with ethylene are difficult to be used commercially.
  • the present invention provides a tetraaza macrocyclic compound crosslinked with propylene and a tetralaza macrocyclic compound having various functional groups attached to the propylene, which can be combined with a bioactive material, and the like. It was.
  • a tetraaza macrocyclic compound including a compound represented by the following Chemical Formula 1 and a pharmaceutically acceptable salt is provided.
  • R is each independently H, an alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, substituted or unsubstituted d- 10 alkyl group, the substitution being amino At least one moiety selected from the group consisting of amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde;
  • Each R 1 is independently H, alcohol, amino, amido, nitro, ether, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, carbonyl, substituted or unsubstituted (alkyl of ⁇ Substituted or unsubstituted
  • X 1 are each independently ⁇ ,-(CR 2 ),-C00H,
  • R and R are each independently H, substituted or unsubstituted alkyl of Cwo, substituted or Unsubstituted alkenyl, substituted or unsubstituted Cwo alkynyl, substituted or unsubstituted d- 10 alkylaryl, substituted or unsubstituted Caryl, substituted or unsubstituted ( 10 heteroalkyl, substituted or Unsubstituted heteroaryl of d- 10 , Ar is substituted or unsubstituted phenyl, the substitution is imide, al
  • the tetraaza macrocyclic compound of Formula 1 may be a cyclam-based compound in which a 'is 2 and a is 3 in Formula 1, or a' is a cyclone-based compound having 2 and a is 2.
  • the tetraaza macrocyclic compound of Chemical Formula 1 may be a Cyclam-based compound in which a ′ in Chemical Formula 1 is 2 and a is 3.
  • Formula 1 is a tetraaza macrocyclic compound in which propylene is cross-crosslinked to two nitrogen atoms to which X 1 is not attached, and complex formation at 30 to 60 ° C. is possible when forming complexes with metal atoms (FIGS. 5 to 7). Reference). This is a remarkably improved effect, considering that the complex formation temperature of the tetraaza macrocyclic compound crosslinked with ethylene and the metal atom is 80 ° C or more.
  • the tetraaza macromolecule to which a bioactive material such as a protein
  • a bioactive material such as a protein
  • the tetraaza represented by Chemical Formula 1 attached with the bioactive material may be lowered to a temperature below the denaturation temperature of the protein.
  • the macrocyclic compound is purchased at a hospital or the like and forms a complex with a radioactive metal element, it can be widely used for various purposes such as a contrast agent and a radiotherapy agent. The result is a commercially available cross-crossed tetraaza macrocyclic compound.
  • R in the general formula (1) can be used without limitation, as long as it can be applied to tetraaza macrocyclic compound commonly used in contrast agents and the like, to R 1 and X 1 to be described later although it may include a functional group used, preferably R 1 is a functional group that can not bind to bioactive molecules (antibodies, etc.), R may be a functional group capable of binding to a bioactive molecule, more preferably The R may be a functional group that is difficult to bind to the bioactive molecules.
  • R is independently H, alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thi, aldehyde, substituted or unsubstituted alkyl group of C HO , the substitution May comprise any one or more moieties selected from the group consisting of amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, most preferably R may each independently be H, halogen, ketone, C 1-10 alkyl.
  • R may be used without limitation in principle, but when R 1 has a functional group capable of binding to a bioactive substance, R may be a conventional functional group that is difficult to combine with a bioactive molecule.
  • each R 1 is independently H, alcohol, amino, amido, nitro, ether, ester, halogen, ketone, cyano, carboxy, hydroxy, Thiols, aldehydes, carbonyl, substituted or unsubstituted ( ⁇ -15 alkyl, substituted or unsubstituted ( ⁇ ⁇ 15 alkenyl, substituted or unsubstituted- 15 alkynyl, substituted or unsubstituted ( 15 Alkylaryl, substituted or unsubstituted aryl of d, substituted or unsubstituted ( 15 heteroalkyl, substituted or unsubstituted ( heterocyclic ring of ⁇ , substituted or unsubstituted ( 15 heteroaryl, said substitution already De, aldehyde, carboxyl group, ketone, nitro, amino, thiol, succinimide, maleimide, aminooxyl, acetylene, N 3
  • X 1 can act as a native ligand and stabilize the complex.
  • R 1 of Chemical Formula 1 when R 1 of Chemical Formula 1 is combined with a bioactive material or a chemically active material, X 1 can be used only for the formation of a complex with metal silver which is its original purpose, and thus has a very efficient configuration for stabilizing the complex. Therefore, any functional group that has been used for X 1 to perform the conventional bioactive materials and the like can be used without limitation in R 1 of the present invention.
  • X 1 disclosed in US Patent Publication No. 2006-62728 described above may also be included in R 1 of the present invention.
  • R 1 as a functional group capable of binding to a bioactive substance or a chemically active substance is preferably each independently H, substituted or unsubstituted ( 15 alkyl, substituted or unsubstituted). 15 alkenyl of d-, substituted or unsubstituted (15 Al kinil, substituted or unsubstituted alkylaryl, substituted or unsubstituted C W5 ring (aryl, unsubstituted or unsubstituted value (15 heteroalkyl, a substituted Or unsubstituted ( 15 heterocycle, substituted or unsubstituted heteroaryl of d- 15 , the substitution being imide, aldehyde.
  • each R 1 is independently of H, substituted or unsubstituted d- 10 alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted dK) of Cwo) Alkynyl, substituted or unsubstituted (alkyl of ⁇ , substituted or unsubstituted aryl of Cwo, substituted or unsubstituted dK) heteroalkyl, the substitution being imide, al Dehydro.
  • each R 1 is independently H,
  • R 5 is each independently H, alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, (alkyl group of 3 ;
  • P, Q, R are each Not independently present, Ar, C0 2) H, CO or 0;
  • A is imide, aldehyde.
  • Ar is each independently substituted or unsubstituted phenyl, the substitution being halogen; a are each independently an integer of 1-5, b is an integer of 0-5 each independently, c is an integer of 0-5 independently of each other, d is an integer of 0-5 independently of each other, and R 1 is at least One or more may not be H.
  • P is not present in the formula, (CR 5 2 ) a and (CR 5 2 ) b are directly bonded, and when b is 0, (CR 5 2 ) a and Q are directly Will be combined.
  • each R 1 is independently H
  • each R 5 is independently H, alcohol, amino, amido, nitro, ester, halogen, ketone, A cyano, carboxy, hydroxy, thiol, aldehyde, d- 3 alkyl group; A is imide, aldehyde.
  • Car reubok group ketone, nitro, amino, thiol, succinimide, maleimide, amino oxyl, oh three ethylene, N 3, acetamido, amino, azide, NCS, ester, halogen, C 2 - 6 alkenyl, C 2 -Of 6 Alkyne and C0 2 R;
  • Ar is each independently substituted or unsubstituted phenyl, and the substituent is halogen;
  • n are each independently an integer of 1 to 5
  • m is each independently an integer of 0 to 5
  • P is each independently an integer of 0 or 1, when m is 0,
  • A is NH, CO, Ar,
  • R 1 may be H.
  • R may most preferably independently include any one or more of the functional groups represented by the following Chemical Formula a.
  • each R is independently NH 2 , C00H, N 3 , CHO, NCO, SH or (alkyne of 6 , X is each independently C 1 or Br, n is each independently An integer from 0 to 5.
  • R 1 of the formula (1) may be independently attached to each of the six carbon atoms of the cross-crosslinked propylene two each, preferably the bioactive material or the chemical active material described above in the carbon atom 2 of propylene One functional group that can be attached is attached, and the rest can all be H bonded.
  • R 1 may be directly bonded to a carbon atom of cross-crosslinked propylene or may be bonded to a carbon atom after being linked to a linker, and the linker is typically connected between a functional group and a carbon atom in a tetraaza macrocyclic compound.
  • linker (L) may be any one or more of linkers represented by the following formula.
  • R, 3 ⁇ 4 and R 2 are each independently a hetero of ( ⁇ ⁇ ⁇ alkyl, d- 10 alkenyl, ( ⁇ alkynyl, Cwo aryl, d- ⁇ ) arylalkyl, d- ⁇ )
  • Aryl and n are each independently an integer of 1-20.
  • X in Formula 1 is preferably independently of each other H,-(CR 2 ) rC00H,, -CR 2 -((CR 2 ) m-C00H) 2) -(CR 2 ),-C0 2 R 3 ,-(CR 2 ),-ArOR 3 ,
  • R 2 and R 3 are each independently H, substituted or unsubstituted (alkyl of ⁇ , alkenyl of substituted or unsubstituted Cw 0 , alkynyl of substituted or unsubstituted Cwo, substituted or unsubstituted d- 10 alkylaryl, substituted or unsubstituted ( ⁇ of aryl, substituted or unsubstituted Cwo
  • Heteroalkyl substituted or unsubstituted ( ⁇ heteroaryl, Ar is substituted or unsubstituted phenyl, the substitution being imide, aldehyde, carboxyl group, ketone, nitro, amino, thiol, succinimide, maleimide, At least one selected from the group consisting of aminooxyl, N 3 , acetylene, acetamino, azide, phosphoric acid group, alkyne and NCS
  • a moiety wherein 1 is each independently an integer of 1 to 3, and m is each independently an integer of 1 to 5, and X 1 may be at least one not H. .
  • X 1 may preferably be a functional group capable of forming a coordinating bond with a metal ion, and when forming a complex of a compound of Formula 1 with a metal ion, X 1 may serve as an intrinsic ligand to stabilize the complex. You can. E.g
  • Cu is a metal ion having a 6 coordination number, and when complexed with the tetraaza macrocyclic compound of Formula 1 to form a coordination bond with 4 nitrogen atoms of Formula 1 and 2 X 1 You can do it. Therefore, X may be used without any limitation as long as it is a functional group that can participate in coordination bonds when forming complexes with metal ions, and all of X 1 disclosed in US Patent Publication No. 2006-62728 as an example of the present invention. Reference may be made.
  • each X 1 is independently ⁇ ,
  • F is an alkyne of COOH, PO 3 H 2 , SO 3 H, OH, NH 2 , C0NH 2 , NCS, C 2 ;
  • Each R 2 independently is H, carboxyl, halogen, alkyl group of C 3 ;
  • 1 is each independently an integer of any one of 0 to 3 and
  • m is each independently an integer of any one of 1 to 3, wherein X 1 may be at least one is not H.
  • the 3 ⁇ 4 and 3 ⁇ 4 are each independently H, t-Bu, Et, Me, benzyl, mepsibenzyl or
  • X 1 may be any one of functional groups represented by at least one independently of formula (b).
  • R is Ph, Bn. Me, Et or n-Bu, n is each independently an integer of 0 ⁇ 1.
  • R may bind to a bioactive material or a chemically active material.
  • Functional groups and / or X may be functional groups capable of forming coordinating bonds with metal ions, in particular, wherein R 1 is a functional group capable of binding to a bioactive substance or a chemically active substance, and at the same time X 1 coordinates with a metal ion
  • R 1 binds to a bioactive substance (eg protein) and X 1 forms coordination bonds with metal ions, which not only stabilizes the coordinated complex but also significantly lower temperatures.
  • the propylene cross-linked tetraaza macrocyclic compound combined with the bioactive material is produced as a product, and it is supplied from a hospital and radioactive at a temperature so low that the bioactive material is not denatured.
  • Complexes with metals can be used for radiotherapy and contrast agents.
  • R 1 and X 1 may be independent combinations of each of the functional groups of R 1 and X 1 already listed, but preferably, X is at least one independently of the formula At least one of the functional groups represented by b, and at least one R may be at least one functional group represented by the formula (a) independently.
  • the tetraaza macrocyclic compound may be any one or more of the following chemical formulas.
  • the tetraaza macrocyclic compound may be one or more of the following formula.
  • the tetraaza macrocyclic compound may be any one or more of the following formulae.
  • the tetraaza macrocyclic compound may be one or more of the following formula.
  • the tetraaza macrocyclic compound may be any one or more of the following formulae.
  • the propylene cross-linked tetraaza macrocyclic compound of the present invention has a lower complex formation temperature than the conventional ethylene cross-cross-linked tetraaza macrocyclic compound, thereby preventing the modification of the bioactive material bound to the tetraaza 'macrocyclic compound.
  • Propylene cross-linked tetraaza macrocyclic compounds with bioactive materials can be purchased at frontline hospitals to form complexes with radioactive metals at low temperatures and can be used in a variety of applications as contrast agents and radiotherapy.
  • chelate arm (X 1 ) which participates in the coordination bond with metallic silver, does not have to bind to the bioactive material. Both arms (X 1 ) can participate in the coordination bond, which has a great effect on the stability of the complex.
  • a method for preparing a tetraaza macrocyclic compound capable of attaching a small container to the crosslinked propylene by an easy method As mentioned above, the conventional ethylene cross-crosslinked tetraaza macrocyclic compound ' Glyoxal (CH0-CH0) is produced by reacting glyoxal with cyclones. Since glyoxal can not be attached to the chelate, cross-crosslinked ethylene prepared by the conventional method can be easily combined with bioactive materials such as NCS. could not attach a functional group. Therefore, there has been a problem of binding a bioactive material to a functional group linked to a nitrogen atom.
  • the present invention solves the above problems by providing a method for preparing a tetraaza macrocyclic compound comprising the step of reacting the tetraaza macrocyclic compound represented by the formula (2) and the compound represented by the following formula (3). .
  • R is independently H, alcohol, amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, substituted or unsubstituted d- 10 alkyl group, Substitutions include any one or more moiety selected from the group consisting of amino, amido, nitro, ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde;
  • X 1 is independently H,-(CR 2 ) ⁇ C00H,, -CR 2 -((CR 2 ) m-C00H) 2 ,
  • R 2 and R 3 are each independently H, substituted or unsubstituted dM) alkyl, substituted or unsubstituted Cwo alkenyl, substituted or unsubstituted Cwo Alkynyl, substituted or unsubstituted Cwo alkylaryl, substituted or unsubstituted ⁇ -10 Reel, substituted or unsubstituted ( 10 heteroalkyl, substituted or unsubstituted Cwo
  • Heteroaryl, Ar is substituted or unsubstituted phenyl, the substitution is imide, aldehyde.
  • each 1 is independently an integer of any one of 1 to 3 and m is each independently an integer of any one of 1 to 5, wherein X 1 is not at least one H; a is each independently an integer of 2 to 3; a 'is an integer of any two or three independently; n is an integer of 0 to 2, each independently satisfying the valence of the carbon atom to which the R or LR 1 moiety is covalently bonded
  • R is independently H, alcohol, amino, amido, nitro, ether ester, halogen, ketone, cyano, carboxy, hydroxy, thiol, aldehyde, carbonyl, substituted or unsubstituted alkyl substituted d Or unsubstituted ( 15 alkenyl, substituted or unsubstituted ( 15 alkynyl, substituted or unsubstituted Cws alkylaryl, substituted or unsubstituted ( 15 aryl, substituted or unsubstituted d heteroalkyl, Substituted or unsubstituted- 15 heterocycle, substituted or unsubstituted (heteroaryl of 15 , said substitution being imide, aldehyde.
  • L is each independently present or absent Is a linker and R is bonded directly to a carbon atom when L is absent;
  • Each Y is an independent leaving group; and each n independently represents an integer of 0 to 2, which satisfies the valence of the carbon atom to which the L - R 4 moiety is covalently bonded.
  • the compound of Formula 3 may include a functional group (R 4 ) capable of binding to a bioactive material such as an antibody to the carbon skeleton of each propylene from the beginning,
  • phase complexes can be formed at the silver, thereby preventing degeneration of the bioactive molecule, thereby enabling the commercialization of tetraaza macrocyclic compounds.
  • a functional group bonded to the carbon skeleton is combined with a bioactive molecule such as a protein, phase complexes can be formed at the silver, thereby preventing degeneration of the bioactive molecule, thereby enabling the commercialization of tetraaza macrocyclic compounds.
  • various kinds of functional groups can be attached by one synthesis method, the synthesis time, cost, and yield can be significantly improved, and the process can be simplified.
  • R, X 1 of Formula 2 and R 4 of Formula 3 are each of Formula 1
  • X 1 and R 1 can be applied equally.
  • X 1 and the reaction can be used to select the appropriate X 1 according to the type of starting material and the various synthesis strategies and the X 1 can be variously substituted or modified during the synthesis process.
  • Y may be used without limitation as long as it can perform a substitution reaction as a leaving group.
  • Y is independently tosylate, mesylate, brosylate, tresylate, triflate, Nosylate, Br, C1 or I.
  • the tetraaza macrocyclic compound represented by the formula (2) and the compound represented by the following formula (3) may be reacted with a molar ratio of 1:10 to 10: 1, and a molar ratio outside of the above range. If the reaction is carried out, the yield of the reaction may fall or result in excessive loss of starting material.
  • Semi-solvents that can be used in the reaction are preferably MeCN, MeOH,
  • EtOH, THF and toluene may be used alone or in combination, more preferably ' ⁇ 3 ⁇ 4' ⁇ ⁇ ( MH ( ⁇ ⁇ ( ⁇ ⁇ '3 ⁇ 4! ( ⁇ ( 3 ⁇ 4I ( ⁇ 3 ⁇ 4' ⁇ 3 ⁇ 4
  • Tl Tl, Bi, Tl, Bi, Bi or Bi As, Bi, Ac.
  • the metal element is a group consisting of Ba, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg, Nb, Mo, Zr, Te, W, Pd, Ag, Pt, and Au
  • the metal element is Cu, Mn, Fe, Co or Ni; radioisotopes (preferably m in,
  • the tetraaza macrocyclic compound represented by Chemical Formula 1 may be in the form of a bioactive material or a chemically active material attached to R 1 of Chemical Formula 1.
  • a tetraaza macrocyclic compound or coordination compound represented by the formula (1) provides a conjugate comprising a bioactive material or a chemical active material connected with the coordination compound.
  • the conjugates of the present invention include one or more bioactive substances or chemically active substances (also known as biological molecules) that direct the conjugate to a targeted tissue, organ, receptor, or other biologically expressed composition.
  • each bioactive or chemiactive is selective or specific for the targeted organ or tissue site.
  • bioactive or chemically active substances include antibodies, amino acids, nucleosides, nucleotides, aptamers, proteins, antigens, peptides, nucleic acids, enzymes, lipids, albumin, cells, carbohydrates, vitamins, hormones, nanoparticles, Inorganic supports, polymers, monomolecules or drugs.
  • bioactive substances or chemoactive substances include steroid hormones for the treatment of breast and prostate lesions; Somatos for the Treatment of Neuroendocrine Tumors Tartin, bombesin, CCK and neurotensin receptor binding molecules; CCK receptor binding molecule for the treatment of lung cancer; ST receptor and cancer embryo antigen (CEA) binding molecules for colorectal cancer treatment; Dihydroxyindolecarboxylic acid and other melanin producing biosynthetic intermediates for the treatment of melanoma; Integrin receptor and atherosclerosis plaque binding molecules for the treatment of vascular disease; And amyloid plaque binding molecules for the treatment of brain lesions.
  • bioactive or chemically active substances are also synthetic polymers such as polyamino acids, polyols, polyamines, polyacids, oligonucleotides, aborols, dendrimers and aptamers.
  • the bioactive material or chemically active material may be a nanoparticle, an antibody (eg, NeutroSpect®, Zevalin®, and herceptin ( Herceptin® protein (eg, TCII, HSA,
  • Annexin and Hb peptides (eg octreotide, bombesin, neurotensin and angiotensin), nitrogen-containing simple or complex carbohydrates (eg glucosamine and glucose), nitrogen- Vitamins (eg, vitamins A, Bl, B2, B12, C, D2, D3, E, H and K), nitrogen-containing hormones (eg, estradiol, progesterone and testosterone), nitrogen-containing Active pharmaceuticals (eg, celecoxib or other nitrogen-containing NSAIDS, AMD3100, CXCR4 and CCR5 antagonists) and nitrogen-containing steroids.
  • peptides eg octreotide, bombesin, neurotensin and angiotensin
  • nitrogen-containing simple or complex carbohydrates eg glucosamine and glucose
  • nitrogen- Vitamins eg, vitamins A, Bl, B2, B12, C, D2, D3, E, H and K
  • nitrogen-containing hormones eg, estradiol, progesterone
  • various embodiments of the present invention may include conjugates with multiple bioactives or chemically active materials.
  • a number of bioactive or chemiactive agents can be used to increase the specificity for a particular target tissue, organ receptor or other biologically expressed composition.
  • the bioactive or chemically active may be the same or different.
  • a single conjugate can carry multiple antibodies or antibody fragments directed against the desired antigen or hapten.
  • the antibody used in the conjugate is a monoclonal antibody or antibody fragment directed against the antigen or hapten of interest.
  • the conjugate may comprise two or more monoclonal antibodies which increase the concentration of the conjugate at the desired site with specificity for the desired epitope.
  • the conjugates may comprise two or more different bioactive materials, each targeted for different sites on the same target tissue or organ.
  • the use of multiple bioactives or chemically active substances in the conjugate advantageously concentrates in various areas of the target tissue or organ, which potentially increases the effectiveness of the therapeutic treatment.
  • the conjugates may be conjugated to target tissues or organs that best achieve the desired therapeutic and / or diagnostic results while minimizing non-target deposition. It may have a proportion of bioactive wells or chemoactive materials designed to concentrate the sites.
  • 1) preparing a tetraaza macrocyclic compound of the present invention described above, 2) binding a bioactive material or a chemical active material to the tetraaza macrocyclic compound prepared And 3) coordinating a metal element to the tetraaza macrocyclic compound to form a complex, or a conjugate can be prepared by changing the steps 2) and 3).
  • steps 1), 2) and 3) are performed sequentially.
  • the complex forming step may be performed at a temperature of 30 to 6 (rc, not at a high temperature, thereby preventing degeneration of a bioactive material or a chemically active material, and thus may be variously used as a therapeutic agent, a diagnostic agent, and a contrast agent.
  • the complex forming step may be performed at a temperature of 30 to 6 (rc, not at a high temperature, thereby preventing degeneration of a bioactive material or a chemically active material, and thus may be variously used as a therapeutic agent, a diagnostic agent, and a contrast agent.
  • a pharmaceutical composition comprising the conjugate of the present invention and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention comprises a conjugate that is complexed with a metal, sprayed onto a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers also known in the art as excipients, vehicles, adjuvants, adjuvants, or diluents
  • Carriers are generally considered "pharmaceutically or pharmacologically acceptable” if they do not produce an unacceptable adverse reaction, allergic reaction or other inappropriate response when administered to a mammal, particularly a human.
  • the metal pharmaceutical compositions of the present invention may be formulated for use in any route of administration as long as the target tissue is accessible via the route of administration.
  • suitable routes of administration include oral, parenteral (e.g., intravenous, intraarterial, subcutaneous, rectal, subcutaneous, intramuscular, orbital, intraoral, spinal, intraperitoneal, or intrasternal), topical ( Nasal cavity, percutaneous, intraocular), bladder, intramedullary, visceral, lung, lymph node, intraluminal, vaginal, transurethral, intradermal, ear, intramammary, intraoral, intratracheal, intratracheal, percutaneous, Endoscopic, transmucosal, sublingual and intestinal administration.
  • Examples of pharmaceutically acceptable carriers for use in the pharmaceutical compositions of the present invention are known to those skilled in the art, and conventional carriers may be selected based on a number of factors.
  • the pharmaceutical composition of the present invention is effective for tumors, heart diseases, brain diseases or fractures, but is not limited thereto. Bioactive materials and radioactive metals suitable for the purpose may be used.
  • Other pharmaceutically acceptable solvents for use in the present invention are known to those of skill in the art and can be referred to The Chemotherapy Source Book (Williams & ffilkens Publishing) and the like.
  • Dosages and prescriptions used for administration of the pharmaceutical compositions of the present invention can be readily determined by those skilled in the diagnosis or treatment of a disease. It is understood that the dosage of the conjugate will vary depending on the age, sex, health and weight of the recipient, the type of treatment involved, the number of treatments, if any, and the nature of the desired effect. For any mode of administration, the actual amount of conjugate delivered, as well as the dosage regimen required to achieve the beneficial effects described herein, may also be partly due to the bioavailability of the conjugate, the disorder being treated or diagnosed, the desired treatment or diagnosis Depend on factors such as dosage, and other factors that will be apparent to those skilled in the art.
  • the dosage administered to an animal should be subdivided to exhibit the desired treatment or diagnostic response over an appropriate period of time in the animal, and preferably the dosage or dosage of the pharmaceutical composition is the weight, age of the patient.
  • the range varies according to sex, health condition, diet, time of administration, method of administration, excretion rate and severity of the disease.If taking, take 20 to 200 mg once or several times a day for adults. It is preferable.
  • Radioisotope labeled scintogram imaging imaging agents provided by the present invention having a suitable amount of radioactivity are provided.
  • the unit dose administered has a radioactivity of about 0.01 mCi to about 100 mCi, preferably about 1 mCi to about 30 mCi.
  • the solution injected at the unit dose is about 0.01 mL to about 10 mL.
  • the amount of radioisotope labeled conjugate suitable for administration depends on the distribution profile of the selected conjugate, in that a higher dosage may need to be administered than a faster removing conjugate may be removed less quickly.
  • In vivo distribution and localization can be tracked according to standard scintogram techniques, typically between 30 and 180 minutes, depending on the rate of accumulation at the target site relative to the time of administration and the rate of clearance in non-target tissue. have.
  • the In-Ill diagnostic dose is between 3 and 6 mCi, whereas a typical Tc-99m dose is between 5 and 30 mCi.
  • the radiotherapy dose of a radiopharmaceutical varies greatly depending on the tumor and the number of injection cycles.
  • the cumulative dosage of Y—90 ranges from about 100 to 600 mCi (20 to 150 mCi / dose), while the cumulative dosage of Lu-177 is About 200 to 800 mCi (50 to 200 mCi / dose).
  • the contrast agent is ultrasound, computed tomography (CT) contrast agent, magnetic resonance imaging (MRI) contrast agent, Single Photon Emission Computed Tomography: SPECT) or positron emission tomography (PET) contrast medium.
  • CT computed tomography
  • MRI magnetic resonance imaging
  • SPECT Single Photon Emission Computed Tomography
  • PET positron emission tomography
  • PET imaging methods and devices are described in US Pat. Nos. 6,151, 377, 6,072,177, 5,900,636, 5,608,221, 5,532,489, 5,272,343, and 5,103,098. This patent document is incorporated herein by reference.
  • SPECT imaging method and apparatus US Patent Nos. 6,115,446, Crab 6,072,177, Crab 5,608,221, 5,600,145, Crab 5, 210, 421, and No. 5, 103,098, which is incorporated herein by reference.
  • fluorescent and optical substances When fluorescent and optical substances are bound to the conjugate or coordination compound of the present invention, they may be used for optical imaging and spectroscopy.
  • the optical image When the optical image is obtained using the compound prepared according to the present invention, it may be preferably combined with luminescence, fluorescence, Cherenkov luminescence or chemiluminescence material.
  • fluorescent material examples include fluorosane, rhodamine, lucifer yellow, B-phytoerythrin, 9-acridine isothiocyanate, lucifer yellow VS, 4-acetamido-4'-isothio- Cyanatostilben-2,2'—disulfonic acid, 7-diethylamino-3- (4'-isothiocyatophenyl) -4-methylcoumarin, succinimidyl-pyrenebutyrate, 4-acetami Fig.
  • conjugate or the coordination compound of the present invention may be used in ultrasound examination in combination with an ultrasound diagnostic agent (eg, microbubble).
  • an ultrasound diagnostic agent eg, microbubble
  • the contrast agent comprising the conjugate or coordination bar compound of the present invention basically enables imaging, and other chemical / biological functions (eg, Cell tracking, cancer treatment). For example, when binding an antibody specifically binding to cancer cells to the chelating agent of the present invention, cancer-specific imaging is possible.
  • imaging and treatment can be performed simultaneously.
  • examples of preferred labeling materials include fluorophores [eg, fluorescein, phycoerythr in, rhodamine, lissamine, and Cy3; Cy5 (Pharmacia)], chromophores, chemilumines, magnetic particles, radioisotopes, mass labels, electron dense particles, enzymes (alkaline phosphatase or horseradish peroxidase), cofactors, substrates for enzymes, heavy metals ( Gold) and hapten with specific binding partners, such as, but not limited to, antibodies, straptavidin, biotin, digoxigenin, and chelating groups. , X-ray diffraction or absorption, magnetic, enzymatic activity, mass analysis, binding affinity, polarization high frequency, provides a signal that can be detected by nanocrystals. [Form for implementation of invention]
  • Mass solvent removal was carried out by a low pressure rotary evaporation process, and residual solvent removal was performed using a vacuum pump. All reaction products and solvents were purchased from Sigma-Aldrich and Fluka. Cyclam and cyclen were purchased from CheMatech and Marocyclics.
  • Pentadecane '2TFA PCB-D02A [4,10-Bis (carboxyinethyl) -l, 4,7,10-tetraazabicyclo [5.5
  • step 1-a 1,2 propanediol di-p-tosylate (1,3-propanediol di-p-tosylate) (4.52 g, 11.76 mmol) and anhydrous Na 2 CO 3 (2.87, 27.05 mmol) were refluxed in anhydrous acetonitrile (200 mL) for 6 days.
  • the solvent was evaporated from the reaction mixture at low pressure and then CH 2 C1 2 (200 mL) was added.
  • the resulting brown sultry was filtered with celite pad and washed with C3 ⁇ 4C1 2 (2 ⁇ 20 mL). The solvent was evaporated at low pressure.
  • the synthesis of propylene cross-crosslinked D02A (PCB-D02A) in Example 1 starts with regioselective trans-alkylation starting from the first cyclone.
  • Synthesis procedure for the preparation of Synthesis 2 was raised by one step using two equivalents of benzyl chloroformate in chloroform solvent. Due to the formation of sediments, the chemical reaction proceeded rapidly. Therefore, at the end of the reaction, a large amount of di-Cbz-cyclen was produced in the form of the dihydrochloride salt.
  • the free base could be obtained by addition of 3M NaOH.
  • the intermediate 3 was removed from the protecting group due to catalytic hydrogenation reaction in an EtOH solvent for the production of propylene crosslinked cyclen 4.
  • Precursor Lophylene cross-crosslinked cyclones [1,4,7,10 6 ⁇ 33231) ⁇ ⁇ 0 [5.5.3] pentadecane are dialkylated with t-butyl bromoacetate and can be conveniently different and quantifiable. As many bis (t-butyl ester) pendant arms were produced with good yields of 85%.
  • the intermediate 5 was protected with trifluoroacetic acid in dichloromethane to form a PCB-D02A 6 in the form of a bis (trifluoroacetic acid) salt (Ref. 1).
  • the synthesis procedure of PCB-D02A according to an aspect of the present invention is significantly improved compared to the conventional synthesis method of cross-crosslinked cyclones in view of overall yield (57%), simple synthesis method, and selective synthesis procedure. will be.
  • PCB-D02A Pentadecane .2TFA [4,10-Bis (carboxTmethyl) -l, 4,7,10-tetraazabicyclo [5.5 .3] pentadecane-2TFA] (6-2TFA, hereinafter referred to as "PCB-D02A" )
  • step 2-b 8 solution obtained in step 2-b (4.2 g, 10.48 mraol), 1,3-propanediol di-p-tosylate (1,3-propanediol di-p-tosylate) (4.03 g, 10.48 kPa) ol) and anhydrous Na 2 CO 3 (2.56 g, 24.10 ′ ol) were refluxed for 6 days in anhydrous toluene (200 mL) solvent. The solvent was evaporated from the reaction mixture at low pressure and then CH 2 C1 2 (200 mL) was added. The resulting brown slurry was filtered through celite pad and washed with CH 2 C1 2 (2 ⁇ 20 mL). The solvent was evaporated at low pressure.
  • PCB-TE2A Heptadecane2TFA [4,11-Bi sCcarboxymethyl) -1,4,8,11-tet raazabi eye 1 o [6.6 .3] heptadecane 2TFA] (12 ⁇ 2TFA, hereinafter “PCB-TE2A Synthesis
  • PCB-TE2A Heptadecane2TFA
  • PCB-TE2A ll-Bis (carboxyraethyl) -l, 4,8, ll-tetraazabicyclo [6.6.3] heptadecane-2TFA] (12-2TFA, hereinafter "PCB-TE2A '" Synthesis
  • step 4-d 15 (1.23 g, 2.62 mrao) synthesized in step 4-d was mixed at a ratio of 1: 1.
  • the production of regioselective transbisubstituted products by direct alkylation of unprotected cyclam is usually not feasible and usually results in a mixture of mono, di and tri—N-substituted products.
  • the deprotection strategy is a very effective and easy way to trans-alkylate cyclam across the formation of a bisaminal macrotr icyclic complex, using the appropriate alkylating agents and the two amine bridges ( Due to the decomposition of the aminal bridge, the conversion of two non-adjacent nitrogen atoms of the Bisminal cyclara to a quaternary amine (quarternization) yields the desired trans double-substituted cyclelam.
  • trans-bisubstituted cycle 18 The cleavage of the bisaminol binding moiety of Compound 17 readily produced trans-bisubstituted cycle 18 by basic hydrolysis with 3M NaOH (aq) solution in the room.
  • the true meaning of the procedure for the synthesis of these trans-bisubstituted cyclic derivatives is not only the need for column cleaning and crystallization, but also the efficiency and economical practicality of the procedure.
  • Compound 18 was refluxed with ditosyl ester, a kind of 1,3-propane diol, under truene containing carbonate salts after the preparation of trans-disubstituted cycloram 18 to enable propylene crosslinking of two non-adjacent nitrogens. .
  • step 5-b dissolved solution obtained in step 5-b (4.27 g, 8.59 ⁇ l ol), 1,3-propanedi-di-p-tosylate (1, 3—propanediol di-p-tosylate) (3.3 g, 8.59 lng) and anhydrous
  • PCB-TE2A is a good chelator with an octahedral coordination structure containing metals such as copper, it has two pendant arms connected to nitrogen atoms whenever it is combined with bioactive materials. One of the arms must be regenerated. Therefore, the pendant arm can be combined with the bioactive material while maintaining the pendant arm to form the octahedral coordination structure. It is essential to add extra functionalities that can be added.
  • the nitrogen derivative prepared for this purpose is the ditosyl ester of 1,3-propane diol 25.
  • step 7-b The compound 27 (2.56 g, 4.46 mmol) synthesized in step 7-b was mixed in a mixture of (vol: vol) CF 3 CO 2 H (TFA) and CH 2 C1 2 (70 mL) in a ratio of 1: 1. Dissolved. The mixture was stirred at room temperature for 24 hours. The solvent was removed at low pressure, an oily residue formed and treated with Et 2 0 to prepare a white solid (28). (TFA equivalent of 2 equivalents when mass calculated) (Yield: 3.05 g, 99%)
  • PCB-TE2A-NCS This enables proper binding between the generated PCB-TE2A-NCS complex and the antibody.
  • the synthesis of PCB-TE2A-NCS reduces the synthesis step, simplifies the entire synthesis procedure, and selectively attaches functional groups to propylene, compared to the conventional methods for attaching NH 2 and NCS functional groups to bifunctional chelates.
  • Example 9 4,10-bis (carboxymethyl) -14- (4-isothiocyanatobenzyl) -1,4,7,10-tetra azabicyclo [5,5,3] —penta Decane2TFA [4,10-Bis- (carboxymethyl) — 14— (4- isothi ocyanat Beingzyl) -1,4,7, 10—t etraazab i eye 1 o [5.5.3] pant adecane .2TFA
  • PCB-TE2A CU-PCB-TE2A
  • FIGS. 5 to 9 are graphs showing the formation of Cu_PCB-TE2A complexes at 40 ° C., 50 ° C., 60 ° C., 70 ° C., and 75 ° C., respectively, and the results through radio-TLC. Foot
  • Cu-PCB-TE2A can be found to be complexed with the metal ions at a significantly lower silver than Cu-ECB-TE2A (90 ° C).
  • CU-PCB-TE2A is decomposed within 24 hours in FBS.
  • Cu-PCB-D02A synthesized in Example 12 and Cu—PCB-TE2A synthesized in Example 13 were injected. (20yCi labeling compound in 200 saline solution per rat) After 4 hours to 24 hours, tissues and organs of interest were separated and labeled.
  • Table 4 compares the washing ability of blood, liver and kidneys 24 hours after injecting the labeled compounds of Example 11 12 and Comparative Examples 1 to 6 (blood 0.012 0.00 0.004 vs 0.21, 0.05, liver 0.142 ⁇ 0.004 vs 0.49 ⁇ 0.11, and elongation 0.064 ⁇ .009 vs 0.21 ⁇ 0.03). These two complexes are compared in their overall charge.
  • Cu (II) -TETA has a total charge of -2 by two free carboxylates.
  • PCB-TE2A completely surrounds Cu (II) cations and forms a neutral complex.
  • cross-crosslinked similarity of CU-labeled propylene crosslinked chelates It shows that washing ability was better in blood, liver and kidney than water (Cu-TETA). This is shown by leaving 64 Cu in the blood and tissues with the lowest 64 Cu-PCB-TE2A.
  • Cu (II) cross-linked macrocyclic compounds show higher biosecurity than comparable cross-linked macrocyclic compounds, possibly due to coordination chemistry differences. The size of the parent molecule structure also greatly influences biosafety.
  • Acid desorbent experiments were conducted under pseudo first-order conditions using the same concentration of 3 ⁇ at 90 ° C 5M HC1.
  • the change in maximum absorbance over time was monitored with a Shimadzu UV-Vis spectrophotometer (UV-1650PC) using a thermally safe cell.
  • Decreased absorbance for max of each spectrum Cu-PCB-TE2A 655 nm, Cu-PCB-D02A 596 nm was used to monitor the progress of desorbent reaction (FIGS. 24-25).
  • the half-life is calculated from the slope of the line with respect to In (absorbance) versus time. Each experiment was repeated 2-3 times and the average half-life value reported. Typical absorbance over time for each case is shown in Figures 24-27.
  • FIGS. 24 and 25 show the? Unax side for Cu—PCB-TE2A and Cu-PCB-D02A, respectively.
  • FIGS. 26 and 27 are graphs of In (absorbance) vs. time for Cu—PCB—TE2A and Cu-PCB-D02A at 90 ° C. 5M HC1.
  • PCB-TE2A forms a more stable copper complex than PCB-D02A.
  • Cyclic voltammetry was performed using a Biologic model SP-150 with a three-electrode array.
  • Samples were tested in 0.1 M acetic acid adjusted to pH 7.0 with glacial acetic acid at a scan rate of 100 mV / s.
  • the solution was deoxygenated with argon for 30 minutes prior to maintaining and testing in argon (Ar) atmosphere during the measurement.
  • PCB-TE2A-c (RGDylO (40) was prepared by semi-preparative HPLC (Zorbax Agilent Prep-C18; 21.2 X 100 mm; The mobile phase was 35% solvent A and 65% solvent B at 32 minutes starting with 95% solvent A [0.1% TFA water solution] and 5% solvent B [Q.1% TFA in acetonitrile] [0-2 minutes]; Flow rate 3 ml / min). Peaks containing PCB-TE2A-c (RGDyK) were collected and lyophilized to give the final product of white powder.
  • PCB—TE2A—c (RGDyK) 40 is analytical HPLC.
  • FIG. 30 is an HPLC chromatogram graph of PCB-TE2A-c (RGDyK), and FIG.
  • FIG. 31 is a mass spectrometry spectrogram graph in the positive mode of PCB-TE2A-c (RGDyK)
  • FIG. 32 is a mass spectrometry graph in the negative mode of PCB-TE2A-c (RGDyK).
  • FIG. 33 is a Radio-TLC graph of Cu-PCB—TE2A-c (RGDyK), and FIG. 34 is for analysis. Radio-HPLC chromatogram of Cu-PCB-TE2A-c (RGDyK) using HPLC system. The upper graph of FIG. 35 shows UV probes at 220 nm using an analytical HPLC system.
  • PCB-TE2A-c (RGDyK) chromatogram and bottom graph is Radio-HPLC chromatogram of Cu-PCB-TE2A-c (RGDyK).
  • PET scans and image analysis were performed using a microPET R4 rodent model scanner. Imaging experiments proceeded to 21 days old female nude mice after U87MG injection.
  • Cu-PCB-TE2A-c (RGDyK) (41) (231 uCi) labeled at 14 was injected into the tail of the mouse.
  • the rats were anesthetized with 1-2% isoflurane and fixed in the prone position to obtain an image. Images were reconstructed using a 2—dimensional ordered subsets expect at ion maximum (OSEM) algorithm, with no attenuation or scatter correction.
  • OEM ion maximum
  • FIG. 36 is a U87MG tumor model
  • FIG. 37 is a microPET image of nude mouse with U87MG tumor 1 hour after Cu-PCB-TE2A-c (RGDyK) 41 (231 yCi) injection.
  • the tumor shows very high radiation uptake compared to other organs.
  • Cu-PCB-TE2A-c (RGDyK) can be stably accumulated in the U87MG model without the release of copper ions in the body, and can be widely used for the diagnosis of diseases using many other disease-specific peptides using PCB-TE2A. It can be seen that.
  • PCB-TE2A-NCS-c peaks containing RGDylO were collected at a residence time of 17.2 min. The texture was dried to give the final product (42) of a white powder.
  • PCB-TE2A-NCS-c (RGDyK) (42) was used for HPLC analysis (Vydac TP C 18 ; 3 ⁇ , 4.6 X 100 ⁇ s; flow rate 1 mL / min, mobile phase 0.1%
  • FIG. 38 illustrates a semi preparative HPLC system.
  • FIG. 39 is HPLC chromatogram of purified PCB-TE2A-NCS-c (RGDyK) using an analytical HPLC system, FIG.
  • Mass spectrometry graph in positive mode of PCB-TE2A-NCS-c (RGDyK)
  • Figure 41 is mass spectrometry spectrum in negative mode of PCB-TE2A-NCS-c (RGDyK)
  • Cu labeled peptide is 0.1% mobile phase (if required)
  • Cu-PCB-TE2A-NCS-c (RGDy) (ret. Time [t R ] 17.1 min) was collected in 1-2 mL HPLC solvent. The solvent was blown off and recovered in PBS, passed through a 0.22 ⁇ Millipore filter and transferred to sterile bottles for animal experiments.
  • FIG. 42 is a Radio-TLC graph of Cu-PCB-TE2A-NCS_c (RGDyK), and FIG. 43 is minutes Radio-HPLC chromatography of Cu-PCB-TE2A-NCS-c (RGDyK) using a stone HPLC system.
  • the upper graph of FIG. 44 is a Cu-PCB—TE2A-NCS-c (RGDyK) chromatogram UV-detected at 220 nm using an analytical HPLC system, and the lower graph is
  • PCB-TE2A-NCS-c RGDyK
  • Cu-PCB-TE2A-NCS-c (RGDyk) (43) was injected into the tail of U87MG transplanted female nude mice.
  • One group (n 4) was performed after 1 hour. All experiments were performed by killing animals, removing tissues and organs of interest, weighing them, and using a gamma counter to measure radiation dose.
  • Table 6 and FIG. 45 show one hour post-injection in nude mice implanted with cancer.
  • Tumor uptake of Cu1 TE2A-NCS-c was 4.76% ID / g, which is 6.4 times and 4.9 times higher than that of blood and muscle.
  • PCB-TE2A-NCS Trastuzumab
  • PCB-TE2A-NCS (29) (0.55 mg) synthesized in Example 8 dissolved in 100 yL) was added. This solution was gently stirred in silver for 24 hours. The next day it was transferred to centricon YM-50 and rotated to reduce volume. PBS (pH 7.2, 3 ⁇ 2 mL) was added to PCB-TE2A-NCS-Tr as tuzumab (44) and centrifuged to remove unreacted ligand. 2.00 mL PBS was added to the purified antibody conjugates and stored at -20 ° C.
  • FIG. 46 is a SE-HPLC chromatogram of trastuzumab identified as UV at 280 nm using a SE (Size Exclusion) HPLC system
  • FIG. 47 is a PCB-TE2A- identified as UV at 280 nm using an SE-HPLC system.
  • FIG. 46 is a SE-HPLC chromatogram of trastuzumab identified as UV at 280 nm using a SE (Size Exclusion) HPLC system
  • FIG. 47 is a PCB-TE2A- identified as UV at 280 nm using an SE-HPLC system.
  • Example 48 shows SE of PCB-TE2A-NCS-Trastuzumab (red) as compared to Trastuzumab (black) identified as UV at 280 nra using SE-HPLC system -HPLC chromatogram. Through this, it can be confirmed that the compound prepared in Example 16-a is PCB-TE2A-NCS-Tr as t uzumab (44).
  • FIG. 49 is a Rad) -ITLC graph of CuCl 2 and FIG. 50 is a Radio-ITLC graph of Cu-PCB—TE2A-NCS-Trastuzumab. because of this
  • PCB The TE2A-NCS-trastuzuraab is more than 96% labeled with Cu.
  • PCB-TE2A was added to trastuzumab using (N-hydroxysuliosuccinimidyl PCB-TE2A (TETA-OSSu, 46). 13.5 mg (37.8 ⁇ ) PCB dissolved in water—The solution of ⁇ 2 ⁇ was adjusted to pH 5.5 with 0.1 N NaOH at 4 t: To this solution sulfo-NHS (8.2 mg, 37.8 iimol) and EDC (0.72 mg, 3.8 ymol), the reaction product was stirred at 4'C for 1 hour to synthesize PCB-TE2A-0SSu (46).
  • PCB-TE2A-conjugated antibody was synthesized without purification. four was used.
  • the pH of PCB-TE2A—OSSu solution was adjusted to 7.5 by adding 0.1 M Na 2 HP0 4 , pH 7.5. Trastuzial pressure (4 mg) dissolved in 0.1 M Na 2 HP0 4 , pH 7.5
  • FIG. 51 is a diagram of UV confirmed at 280 nm using SE-HPLC system.
  • FIG. 52 is a Radio-ITLC graph of 64 CuCl 2 and FIG. 53 is a Cu—
  • Cu-PCB-TE2A-Trastuzumab 48 was injected into the tail of U87MG implanted female nude mice. All experiments were killed, detached and weighed tissues and organs of interest, and radiation dose measured with gamma counter.
  • Table 7 and FIG. 54 show 48 hours after injection in nude mice implanted with cancer.
  • Intratumoral intake of Cu-PCB-TE2A-trastuzumab can be identified by at least 2.2 and 2.6 to 3.3 and 3.9 times that of blood and muscle, respectively.
  • Cu-PCB-TE2A-trastuzumab is selectively ingested into the tumor without leaving Cu.
  • FIG. 55 is a mass spectrometry spectrum of the prepared white solid (49). It can be seen that -PCB-TE2A.
  • FIG. 56 is a mass spectrometry spectrum of the produced white solid (50), wherein the white solid produced was Zn-PCB. It can be seen that -D02A.
  • FIG. 60 shows SE-HPLC chromatogram of trastuzumab before conjugation (UV detector: 220 nm)
  • FIG. 61 shows SE-HPLC chromatogram of trastuzumab conjugated with Cu_PCB-TE2A-H 2 (UV detector: 220).
  • FIG. 62 is a chromatogram comparison (UV detector: 220 nm) of trastuzumab (red) prior to conjugation with trastuzumab (black) conjugated with Cu-PCB_TE2A-NH 2 . This confirms that trastuzumab is conjugated to Cu_PCB-TE2A-NH 2 .
  • PCB-TE2A In addition to labeling species, it is also possible to label PCB-TE2A first with radioactive metals such as Cu in high yield and to further label the labeled PCB-TE2A with the antibody at low temperatures without straining the antibody. Doing.
  • the pH of the aqueous layer was again adjusted to 1.5-1.8 using 3 M HC1 and extracted twice with the same amount of ethyl ester.
  • the pH was readjusted with 3 M HC1 and extracted twice with the same amount of ethyl ester. This process continued until the remaining pH remained unchanged.
  • the remaining ester was removed from the aqueous layer under reduced pressure.
  • the pH of this solution was adjusted to 4.5 using 3 M NaOH and after dispensing the synthesis of PCB-TE2A-N-NHC0CH 2 Br (54) was completed by storage in -7CTC (75 mg, 88% yield).
  • 63 is a mass spectrometry spectrum of the synthesized compound, and it can be confirmed that the synthesized compound is PCB-TE2A-NH 2 -NHC0CH 2 Br (54).
  • FIG. 65 is a mass spectrometric spectrum of the synthesized complex, wherein the synthesized compound is Ga-PCB. — D02M56).
  • PCB-TE2A (16) (52 mg, 0.145 mmol) and GdCl 3 (40 mg, 0.15 ⁇ L) were dissolved in water (15 mL) and maintained at pH 6.0-6.5 with monitoring with 0.1 M NaOH. This reaction was refluxed for 24 hours. Then dropped to room temperature. The pH was adjusted to 10 and the precipitate formed was filtered off. The pH of the filtrate was adjusted to 7.4. The filtrate was evaporated under reduced pressure to dilute 40 mg of a slightly yellowish solid (57). MS (FAB): Calculated for C 17 H 29 N 4 C10 4 Gd, 546.12 [(M + C1_H) + ] Found: 545.94
  • FIG. 66 is a mass spectrometry spectrum of the yellow solid 57, which shows that the synthesized compound is Gd-PCB-TE2A 57.
  • PCB-D02A (6) (82 mg, 0.249 ⁇ ⁇ and GdCl 3 (66 mg, 0.25 mmol) in water (20 mL)
  • FIG. 67 is a mass spectrometry spectrum of the white solid 58, which shows that the synthesized compound is Gd-PCB-D02A 58.
  • PCB-TE2A-NCS 29 Gd-PCB-TE2A-NCS 59 PCB-TE2A-NCS (29) (51 mg, 0.101 ol) and GdCl 3 (28 mg, 0.105 ol)
  • FIG. 68 is a mass spectrometry spectrum of the yellow solid (59), through which the synthesized compound may be identified as Gd-PCB-TE2A-NCS (59).
  • the compound of the present invention When used as a contrast agent, it is a very useful invention in the field of diagnostic imaging because it has excellent stability in vivo, can be labeled at low temperature, and is easy to be conjugated with a biological material. It may be used as a therapeutic radiopharmaceutical in conjugation with specific antibodies. It can also be used as an MRI contrast agent by forming a stable complex with a paramagnetic metal such as Gd.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 진단영상용 조영제 및 방사성 의약품 등으로 사용할 수 있는 신규한 구조의 교차가교된 테트라아자 거대고리 화합물 및 그 제조방법을 제공한다. 본 발명의 테트라아자 거대고리 화합물은 종래의 교차가교된 테트라아자 거대고리 화합물에 비하여 낮은 온도에서 안정한 금속 착물을 형성하고 생물활성물질 및 화학활성물질과 손쉽게 컨쥬게이션을 시킬 수 있는 장점이 있다.

Description

【명세서】
【발명의 명칭】
신규한 테트라아자 거대고리 화합물 , 제조방법 및 그 용도
【기술분야】
<1> 본 발명은 신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도에 관한 것으로, 보다 상세하게는 신규한 구조의 교차가교된 테트라아자 거대고리 화합물, 제조방법, 이를 진단영상용 조영제 및 방사성 의약품으로 활용하는 용도에 관한 것 이다.
【배경기술】
<2> 금속제약 진단제 및 치료제는 생물학적 및 의학적 연구, 및 진단 및 치료 절 차에 있어 발견되는 그의 적용 범위가 계속 증가하고 있다. 일반적으로, 이들 제제 는 방사성 동위원소 또는상자성 금속을 함유하며, 대상체에 도입되면 선택된 특정 기관, 조직 또는 골격 구조에 모인다. 절차의 목적이 진단인 경우, 다양한수단으 로 방사성 동위원소 또는 상자성 금속의 생체내 분포를 보여주는 영상을 만들 수 있다. 검출된 방사성 동위원소 또는 상자성 금속의 분포 및 상웅하는 상대적 강도 는 표적화된 조직이 차지하는 공간을 나타낼 뿐만 아니라수용체, 항원, 이상, 병 적 상태 등의 존재를 나타낼 수도 있다. 절차의 목적이 치료인 경우 제제는 통상 적으로 방사성 동위원소를 함유하고 방사성 제제는 국소 부위에 소정의 투여량의 방사선을 전달한다.
<3> 관심있는 표적화된 기관또는 조직 및 목적하는 진단 또는 치료 절차에
따라, 소정 범위의 금속제약 제제를 사용할 수 있다. 한 가지 통상적인 형태는 방 사성 또는 상자성 금속 , 컨쥬게이트를 특정 기관 또는 조직 부위에 표적화시키는 운반물질, 및 금속을 운반자에 화학적으로 연결시키는 연결을 포함하는 컨쥬게이 트이다. 이러한 컨쥬게이트에서, 금속은 통상적으로 배위결합 착물 형태로 컨쥬게 이트와 연결되어 있고, 보다통상적으로는 거대고리의 킬레이트로 연결되어 있다 ( 예를 들면, 리우 (Liu)의 미국 특허 저 16, 916,460호 참조).
<4> 한편, 반감기 (t1/2 = 12.7h), 붕괴특성 (β+ (19%); β一 (39%)) 및 생물의학적 사이클로트론의 특정활성도가 높은 구리 -64의 방사성 핵종 (Cu-64 radionuclide)의 대량생산 능력으로 인한 양전자 방출 단층 촬영법 (PET: positron emission tomography) 및 표적 (targeted) 방사선요법에 잠재 사용능력 때문에 구리 -64의 방 사성 핵종이 핵의학 (nuclear medicine) 및 이미징 분야에 대한 특별한 관심올 모 았다. 가장 중요한 목적 증 하나는 이 방사성 핵종을 여러가지 킬레이화제를 이용 해 안정된 착물 (着物)로 만들어 특정 /지정 세포조직으로 Cu(II) 에서 Cu(I)으로 금 속변화 (transmetalation)가 없이 전달하는 것이다. 생체조건 내에서는 Cu(II)의 동 역학 안전성이 열역학 안전성보다 중요한 인자로 작용하는 경우가 많다. 사이클렌 (cyclen) 및 사이클람 (cyclam)이 주축으로 구성된 N—아세트산의 펜던트 암 (N- acetic acid pendant arm)과 그의 유도체들은 이관능성 (bi funct ional ) 킬레이트 화합물 (BFC: bi funct ional chelating agent)로서 연구되어왔다. 사이클렌 (Cyclen) 과 사이클람 (cyclam)에서 유도된 Cu(II) 거대고리 (macrocycl ic) 킬레이터 (chelators)의 일종인 D0TA 및 TETA 는 EDTA 및 DTPA와 같은 고리가 아닌 (acyclic) 킬레이터들과 비슷하거나 보다 뛰어난 수치의 높은 동역학 및 생체적 안
64 64
전도를 보였다. 하지만 Cu-DOTA 및 Cu-TETA의 생분포 (biodistribution)와 신진
64
대사 연구에 따르자면 Cu 의 금속이온교체 (transchelation)와 그에 따라 일어나는 간과의 결합 및 비특정 세포조직의 높은 흡수도의 인하여 어느 정도의 생체적 불안 정성이 존재하였다. 이 킬레이터들의 방사능의약품으로서의 실용성은 킬레이터의 신축성, 공극의 크기와 착물화의 여부 및 정도 / 복합체 분리 동역학 등이 결정한 다. 금속 착물들의 생체내 안전성을 높이려면 금속이온교체 및 비특정 세포조직의 흡수도 및 축적현상을 줄여야 한다. 이를 위해 이 유형의 폴리아자마크로사이클 (polyazamacrocycle)들의 주축구조의 화학적 변형이 사례로 논문에 보고된 적이 있 다. 이 화학적 변화들은 측면가교 (side-bridge)와 교차가교 (cross-bridge)를 화학 구조에 삽입시켜 골격체에 유연성을 더한다.
<5> 1,4,8, 11-테트라아자시클로테트라데칸 -1,4,8, 11-테트라아세트산 (TETA)은 임 상적인 조영제 과 펩티드 및 항체 관련 방사선 치료요법을 위한 구리 및 다양한 방 사성 핵종 (radionuclide)의 이관능성 킬레이트 화합물 (BFC: Bi funct ional chelating agents)로 널리 쓰여지고 있다. 하지만 최근 연구에 따르자면, 금속과 킬레이트 (chelates)와의 해리에 따른 금속과 단백질의 결합으로 인해 TETA는 이관 능성 킬레이트 화합물 (BFC: Bi funct ional chelating anget)로서 최적의 물질이 아 니다. Anderson 과 동료들은 쥐의 간에서 일어나는 TETA-D-Ph^-octreotide 에서부
64
터 Cu의 해리 및 그에 따른 슈퍼옥사이드 디스뮤타제 (superoxide dismutase, SOD) 와의 결합을 실험으로 증명하였다. Weisman 과 Wong 은 두개의 아세테이트 펜던트 암 (acetate pendant arm)이 TETA 내 두개의 근접하지 않은 (non-adjacent) 질소 사 이의 에틸렌 브릿지로 대체된 신개념 에틸렌 교차가교된 (cross-bridged) 아자마크 로시클릭 킬레이터 CB-TE2A를 설계하였다. 1,8-에틸렌 교차가교물 (cross bridges) 을 CB-TE2A 에 새롭게 삽입하여 구조상의 완고함을 구현하면서 금속 착물들의 안전 성을 개량하였다. Anderson 그룹 또한 이런 에틸렌 교차가교 CB-D02A의 Cu(II) 착 물을 합성 및 묘사하였다. 이런 교차가교 리간드들, CB-TE2A 및 CB-D02A, 의 Cu(II) 착물들의 8면체 배위기하 들은 킬레이터 (chelators)의 질소 전자쌍 4개와 카복실레이트 펜던트 암 (pendant arm)2개 에 포위되어 Cu(II )_CB_TE2A 와 Cu(II)- CB-D02A를 탄생시킨다. 그들의 연구는 이러한 새로운 교차가교 리간드는 비교차가 교된 D02A 와 TETA에 비교했을 때에 더욱 우수한 동역학적 안전성의 Cu(II) 착물과 보다 높은 생체학적 안전성의 방사표지된 (radiolabeled) 착물을 구성하는 것을 보
64 64 여주었다. Cu-CB-TE2A-Tyr3-octreotate는 유사한 화학물질의 Cu-TETA 유도체에 비교했을 때 혈액, 간 및 신장을 더욱 맑게 하였다.
<6> 2개의 카복실레이트 그룹이 모두 본래대로 부착되어 있는 가능성의 문제를 극복하기 위해, 골격체와 공유결합 되어있는 다른 펜던트 암 (pendant arm)를 첨가 시키는 것은 생체 내 안전성을 더욱 높일 수도 있다. Lewis et al은
비오틴 (biotin) 분자가 공유결합 된 CB-TE2A 유도체를 합성시켰지만 이 합성체 Cu(II)-CB-TE2A-Bz-biotin의 동역학적 및 생체적 안전성은 알려진 바가 없다.
Boswell et al. 은 CB-TE2A와 구조상 유사하고 펩티드 (peptide)나 그 외 특정 표적 화 물질과 Cu(II)의 6배위 (hexacoordination) 위치에 영향 없이 손쉽게 컴플렉스 될 수 있도록 직각보호된 3번째 암 (third orthogonally protected arm)을 가지는 것을 특징으로 하는 가교결합 (cross bridged) TE2A (CB-TE2A)를 합성하였다. 이에 대한 생체실험은 없었지만, 시험관 내에서 실시한 평가실험에 의하면 방사표지된 펩티드 컨쥬게이트 (radiolabeled peptide conjugates)와 인체혈청과의 48시간의
64 _ 실험기간 동안 Cu와 인체혈청 단백질과의 새로운 결합 (transchelation)의 흔적이 없었으므로 안전한 방사구리 (radiocopper) 이온 합성물임이 증명되었다.
<7> 한편, 국제공개특허 제 02-26267호 및 미국공개특허 제 2006-62728호에서는 에 틸렌이 교차가교된 테트라아자 거대고리 화합물 및 그 용도에 관하여 개시하고 있 다. 보다 구체적으로 하기 화학식은 미국공개특허 제 2006-62728호의 바람직한 일실 시예로서 N과 N사이에 C2의 에틸렌이 교차가교되어 있음을 확인할 수 있다. 그러나 에틸렌이 교차가교된 테트라아자 거대고리 화합물은 교차가교된 지방족 탄화수소의 길이가 짧으므로 금속원소과 배위결합올 통해 착물을 형성하는 경우 높은 온도에서 만 금속착물이 형성되는 불리함이 있었다. 톡히 종래의 에틸렌 교차가교된 테트라 아자 거대고리 화합물은 사이클람이나 사이클렌에 글리옥살 (CH0— CH0)을 반웅시켜 제조하게 되는데 , 글리옥살에는 치환기를 부착할 수 없으므로 종래의 방법으로 제 조된 교차가교된 에틸렌에는 NCS와 같은 생물활성물질과 결합할 수 있는 작용기를 붙일 수 없었다 (J. Am. Chem. Soc. 2000, 122, 10561-10572). 그러므로 질소원자와 연결된 작용기 (하기 화학식에서는 카복시산이나 NCS)에 생물활성물질을 결합시킬 수 밖에 없었다. 그 결과 질소원자와 연결된 관능기에 생물활성물질이 결합하면 상 기 관능기는 금속이은과의 배위결합 시 리간드로 작용하기 어렵게 되어 결국 배위 결합 화합물의 생체안정성 및 활성이 떨어지는 문제가 있었다.
<8> 나아가 종래의 에틸렌이 교차가교된 테트라아자 거대고리 화합물은 생체 안 정성은 우수하나 금속원소과 배위결합하여 착물을 형성하기 위한 온도조건이 너무 나 고은이므로 (80 ~ 100 °C) 생물활성물질 또는 화학활성물질과 컨쥬게이션 되는 경 우 (하기 화학식에서 ICS 부분과 생물활성물질 등이 결합됨) 상기 생물활성물질 등 이 손상 (예를 들어 단백질의 변성 등)을 받아 치료제 또는 진단제 등으로 사용할 수 없는 문제가 있었다.
<9> 특히, 실제 테트라아자 거대고리 화합물을 핵의학 조영제 등으로 사용하기 위해서는 방사성 금속원소와 착물형성이 이루어져야 하는데 이 경우 방사성 금속원 소의 반감기로 인해 사용가능기간이 매우 짧아지게 되므로, 실제 제품에는 테트라 아자 거대고리 화합물에 생물활성물질을 부착한 형태로 생산된다 (생물활성물질이 부착되지 않은 형태로 제품이 출시될 경우 병원둥에서 생물활성물질을 직접 붙여야 하지만 이는 병원 등의 여건상 특수한 경우를 제외하고는 거의 불가능한 일이므로 실제 제품은 모두 테트라아자 거대고리 화합물에 생물활성물질을 부착한 형태로만 출시된다). 상기 생물활성물질을 부착된 테트라아자 거대고리 화합물을 병원 등에 서 구입하여 방사성 금속원소와 착물을 형성시킨 뒤 조영제 및 방사성 치료제 등으 로 사용하게 되는 것이다. 따라서 금속이온과의 착물형성온도가 높은 경우 결합된 생물활성물질 (예 : 단백질)이 변성될 수 있으므로, 종래의 에릴렌이 교차가교된 테 트라아자 거대고리 화합물은 상업적으로 활용되기 어려운 문제가 있었다.
<10> [화학식]
Figure imgf000006_0001
【발명의 상세한설명】
【기술적 과제】
<12> 본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 첫번째 해결하고자 하는 과제는 생체안정성이 우수할 뿐 아니라 금속원소과 배위결합 시 반웅은도를 현저히 낮출 수 있는 신규한 구조의 교차가교된 테트라아자 거대고리 화합물을 제공하는 것이다.
<13> 본 발명의 두번째 해결하고자 하는 과제는 교차가교된 프로필렌 부분에 생 물활성물질과 손 쉽게 결합할수 있는 작용기를 추가적으로 부착하여 거대고리 화 합물이 금속이온과 착물의 형성 시 안정성을 도모할 수 있는 신규한 구조의 교차가 교된 테트라아자 거대고리 화합물을 제공하는 것이다.
<14> 본 발명의 세번째 해결하고자 하는 과제는 반웅기를 부착한 프로필렌을 테트 라아자 거대고리 화합물에 교차가교시킬 수 있는 신규한 제조방법을 제공하는 것이 다.
<15> 본 발명의 네번째 해결하고자 하는 과제는 현저히 낮은 온도에서 본 발명의 신규한 구조의 교차가교된 테트라아자거대고리 화합물과 금속원소가 반웅하여 배 위결합할 수 있는 배위결합 화합물 및 그 제조방법을 제공하는 것이다.
<16> 본 발명의 다섯번째 해결하고자 하는 과제는 본 발명의 배위결합화합물과 연결된 생물활성물질 또는 화학활성물질을포함하는 컨쥬게이트 및 현저히 낮은은 도에서 컨쥬게이트를 제조하는 방법을 제공하는 것이다.
<17> 본 발명의 여섯번째 해결하고자 하는 과제는 본 발명의 컨쥬게이트를 포함하 는 조성물의 다양한 용도를 제공하는 것이다.
【기술적 해결방법】
<18> 상술한 첫번째 과제를 해결하기 위하여, 하기 화학식 1로 표시되는 화합물 또는 그 의 약제학적으로 허용가능한 염을 포함하는 테트라아자 거대고리 화합물을 제공한 다.
<19> [화학식 1]
Figure imgf000008_0001
<2i> R은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 치환 또는 비치환된 10의 알킬기이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아 노, 카르복시, 히드록시, 티올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
<22> R1은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티을, 알데하이드, 카보닐, 치환 또는 비치환된 ( 15의 알킬 , 치환또는 비치환된 ( 15의 알케닐, 치환 또는 비치환 ( 15의 알키닐, 치환또는 비치환된 ( 15의 알킬아릴, 치환또는 비치환된 (:1-15의 아릴, 치환또는 비치환된 d-15의 헤테로알킬 , 치환또는 비치환된 d-15의 헤테로고리 , 치 환또는 비치환된 CW5의 헤테로아릴, 상기 치환은 이미드, 알데하이드,
카르복시기, 케톤, 니트로, 아미노, 티을, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, 에스테르, 할로겐, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
<23> X1은 각각 독립적으로 H, -(CR2),-C H, , -CR2-((CR2)m-C0OH)2, -(CR ),-C02R, -(CR ) ArO , -(CR )rSR , -(CR ) S03H, -(CR ),-P02HR ,
-(CR)MCR)2, -(CR2)nC0N(CR2)2이며, 상기 R2 및 R가각각 독립적으로 H, 치환또 는 비치환된 Cwo의 알킬, 치환또는 비치환된 Cwo의 알케닐, 치환또는 비치환
^-10의 알키닐, 치환 또는 비치환된 Cwo의 알킬아릴, 치환또는 비치환된 (:^의 아 릴 , 치환또는 비치환된 d-10의 헤테로알킬, 치환또는 비치환된 d-10의 헤테로아릴 이고, 상기 Ar이 치환또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, N3l 아세틸렌, 아세트아미노, 아자이드, 인산기, 알킨 및 NCS로 구성되는 군으로부 터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 5중 어느 하나의 정 수이되, 상기 X1은 적어도 하나 이상이 H가 아니고;
<24> L은 각각 독립적으로 존재하거나존재하지 않는 링커이고 R1은 L이 존재하 지 않을 경우 탄소원자에 직접 결합되고; a는 각각 독립적으로 2 내지 3 증 어느 하나의 정수; a1는 각각 독립적으로 2 내지 3 중 어느 하나의 정수; n은 각각 독립 적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자가를 층족시키는 0 내 지 2증 어느 하나의 정수이다.
<25> 본 발명의 두번째 해결하고자 하는 과제를 달성하기 위하여 , 상기 R1은 각각 독립적으로 항체, 아미노산, 뉴클레오시드, 뉴클레오티드, 압타머, 단백질, 항원, 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비타민, 호르몬, 나노입자, 무기지지체, 고분자, 단분자 또는 약물 등과 결합할수 있는 작용기일 수 있다.
<26> 본 발명의 상기 세번째 해결하고자 하는 과제를 달성하기 위하여 하기 화학 식 2로 표시되는 테트라아자 거대고리 화합물과 하기 화학식 3으로 표시되는 화합 물을 반웅시키는 단계를 포함하는 테트라아자 거대고리 화합물의 제조방법을 제공 한다.
Figure imgf000010_0001
<29> R은 각각 독립적으로 Η, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 치환또는 비치환된 Cwo의 알킬기 이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카 르복시, 히드록시, 티을, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
<30> X1은 각각독립적으로 H, -(CR2)厂 C00H, , -CR2-((CR2)m-C00H)2(
-(CR2)i-C02R3, -(CR2VArOR3, -(CR2 SR3, -(CR^-SO^, -(CR2),-P02HR3,
Figure imgf000010_0002
(αΛΠ∞Ν(αΛ2이며, 상기 R 및 R3가 각각독립적으로 H, 치환또 는 비치환된 d-10의 알킬, 치환또는 비치환된 Cwo의 알케닐, 치환또는 비치환
(:^의 알키닐, 치환또는 비치환된 의 알킬아릴, 치환또는 비치환된 d-10의 아 릴 , 치환또는 비치환된 ( 10의 헤테로알킬, 치환또는 비치환된 Cwo의
헤테로아릴, Ar이 치환 또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티을, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인산기 및 NCS로 구성되는 군으로부터 선택 되는 어느 하나 이상의 성분 (moiety)을포함하고, 1은 각각 독립적으로 1 내지 3 증 어느 하나의 정수 및 각각독립적으로 1 내지 5중 어느 하나의 정수이되, 상기 X1은 적어도 하나 이상이 H가 아니고;
<3i> a는 각각 독립적으로 2 내지 3중 어느 하나의 정수; <32> a1는 각각 독립적으로 2 내지 3중 어느 하나의 정수;
<33> n은 각각 독립적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자 가를 층족시키는 0 내지 2 증 어느 하나의 정수
<34> [화학식 3]
Figure imgf000011_0001
<36> R는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 카보닐, 치환 또는 비치환된 Cᅳ 15의 알킬 , 치환 또는 비치환된 d-15의 알케닐, 치환 또는 비치환 d-15의 알키닐, 치환 또는 비치환된 ( 15의 알킬아릴 , 치환 또는 비치환된 ( 15의 아릴, 치환 또는 비치환된 (^-15의 헤테로알킬, 치환 또는 비치환된 ( 15의 헤테로고리, 치 환 또는 비치환된 d-15의 헤테로아릴 , 상기 치환은 이미드 , 알데하이드. 카르복시 기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸 렌, N3, 아세트아미노, 아자이드 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고; L은 각각 독립적으로 존재하거나 존재하지 않는 링커이고, R4는 1^1 존재하지 않을 경우 탄소원자에 직접 결합되고; Y는 각각 독립 적인 이탈기; 및 n은 각각 독립적으로 L-R4부분이 공유결합하고 있는 탄소원자의 원자가를 층족시키는 0 내지 2 중 어느 하나의 정수이다. 본 발명의 바람직한 일 실시예에 따르면, 상기 R은 각각 독립적으로 H, 치환 또는 비치환된 의 알킬;이 고 상기 X1은 적어도 하나 이상이 각각 독립적으로 -A-C02-R5이고, 상기 A는 존재하 지 않거나 C 3의 알킬이고, R5는 t-Bu, 메틸, 에틸, n-Bu , 벤질 또는 벤질메톡시일 수 있다. R는 항체 , 아미노산, 뉴클레오시드, 뉴클레오티드, 압타머 , 단백질, 항 원, 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비타민, 호르몬, 나노 입자, 무기지지체, 고분자, 단분자 또는 약물 등과 결합할 수 있는 작용기일 수 있 다.
<37> 상기 본 발명의 네번째 해결하고자 하는 과제를 달성하기 위하여 본 발명에 따른 테트라아자 거대고리 화합물 및 상기 테트라아자 거대고리 화합물과 배위결합 된 금속원소를 포함하는 배위결합화합물을 제공한다.
<38> 상기 본 발명의 다섯번째 해결하고자 하는 과제를 달성하기 위하여 1) 상술 한본 발명의 테트라아자 거대고리 화합물을 제조하는 단계 , 2) 제조된 테트라아자 거대고리 화합물에 상기 항체 등을 결합시키는 단계, 및 3) 상기 테트라아자 거대 고리 화합물에 금속원소를 배위결합시켜 착물을 형성하는 단계를 포함하여 컨쥬게 이트를 제조할수 있으며, 이 경우상기 착물형성단계는 30 - 60°C에서 수행될 수 있다.
<39> 본 발명의 상기 여섯번째 해결하고자하는 과제를 달성하기 위하여 , 본 발명 의 컨쥬게이트 및 제약상 허용되는 담체를 포함하는 제약 조성물 등을 제공한다. <40> 본 명세서에서 사용된 용어에 대해 간략히 설명한다.
<41> 용어 "방향족 (aromatic)"은 공유 파이 전자계를 가지고 있는 적어도 하나의 링을 가지고 있고 카르보시클릭 아릴 (예를 들어, 페닐)과 헤테로시클릭 아릴기 (예 를 들어 , 피리딘, 퓨란, 인돌, 퓨린)를 포함하는 방향족 그룹을 의미한다. 이 용어 는 모노시클릭 또는 융합 링 폴리시클릭 (즉, 탄소원자들의 인접한 쌍들을 나눠 가 지는 링들) 그룹들올 포함한다.
<42> 용어 "헤테로원자 "는 탄소 및 수소 이외의 원자를 의미한다.
<43> 용어 "해테로알킬"은 알킬그룹의 탄소원자 중 하나 이상이 다른 헤테로원자 로 치환된 형태 (N, 0, S 등)를 의미한다.
<44> 용어 "해테로 방향족 (heteroaromatic)' '은 적어도 하나의 헤테로시클릭 링을 포함하고 있는 방향족 그룹을 의미하는 것으로, 보다 상세하게는 각각의 고리에 5 개 또는 6개의 원자)를 갖는 임의로 치환된 방향족 기를 나타낸다. 헤테로방향족 기는 바람직하게는 고리에 1 또는 2개의 산소 원자, 1또는 2개의 황 원자 및 /또는
1 내지 4개의 질소 원자를 갖고, 탄소또는 헤테로원자를 통해 분자의 나머지 부분 에 결합될 수 있다. 헤테로방향족의 예로는 푸릴, 티에닐, 피리딜, 옥사졸릴, 피를 릴, 인돌릴, 퀴놀리닐 또는 이소퀴놀리닐 등이 있다. 치환기의 예는 히드로카르빌, 치환된 히드로카르빌, 케톤, 히드록시, 보호된 히드록시, 아실, 아실옥시 알콕시, 알켄옥시, 알킨옥시, 아릴옥시, 할로겐, 아미도, 아미노, 니트로, 시아노, 티올, 케탈, 아세탈, 에스테르 및 에테르 중 하나 이상을 포함한다.
<45> 용어 "헤테로시클로'' 또는 "헤테로시클릭"은 하나 이상의 고리에 하나 이상 의 헤테로원자 (바람직하게는, 각각의 고리에 5또는 6개의 원자)를 갖는 임의로 치환되고, 완전히 포화되거나 불포화된 모노시클릭 또는 바이시클릭 방향족 또는 비방향족 기를 나타낸다. 헤테로시클로기는 바람직하게는 고리에 1또는 2개의 산 소 원자, 1 또는 2개의 황 원자 및 /또는 1 내지 4개의 질소 원자를 갖고, 탄소 또 는 해테로원자를 통해 분자의 나머지 부분에 결합될 수 있다. 헤테로시클로의 예로 는 해테로방향족, 예컨대 푸릴, 티에닐, 피리딜, 옥사졸릴, 피를릴, 인돌릴, 퀴놀 리닐 또는 이소퀴놀리닐 등이 있다. 치환기의 예는 히드로카르빌, 치환된 히드로카 르빌, 케톤, 히드록시, 보호된 히드록시, 아실, 아실옥시, 알콕시, 알켄옥시, 알킨 옥시, 아릴옥시, 할로겐, 아미도, 아미노, 니트로, 시아노, 티올, 케탈, 아세탈, 에스테르 및 에테르 중 하나 이상올 포함한다.
<46> 용어 "알킬 (alkyl)"은 지방족 탄화수소 그룹을 의미한다. 알킬 부위는 어떠 한 알켄이나 알킨 부위를 포함하고 있지 않음을 의미하는 "포화 알킬 (saturated alkyl)" 그룹일 수 있다. 알킬 부위는 적어도 하나의 알켄 또는 알킨 부위를 포함 하고 있는있음을 의미하는 "불포화 알킬 (unsaturated alkyl)" 부위일 수도 있다. " 알켄 (alkene)" 부위는 적어도 두 개의 탄소원자가 적어도 하나의 탄소 -탄소 이중 결합으로 이루어진 그룹을 의미하며, "알킨 (alkyne)" 부위는 적어도 두 개의 탄소 원자가 적어도 하나의 탄소 -탄소 삼중 결합으로 이루어진 그룹을 의미한다. 포화이 든 불포화이든 간에 알킬 부위는 분지형, 직쇄형 또는 환형일 수 있다.
<47> 용어 "아실''은 유기 카르복실산의 -C00H기로부터 히드록실기를 제거하여 형 성된 잔기를 나타내며, 예를 들면 RC(0)-이고, 여기서 R은 R1, R0-, RR2N-또는 I^S-이고, R1은 히드로카르빌, 헤테로치환된 히드로카르빌 또는 헤테로시클로이고, R2는 수소, 히드로카르빌 또는 치환된 히드로카르빌이다.
<48> 용어 "아릴'' 또는 "아르''는 임의로 치환된 호모시클릭 방향족기, 바람직하게 는 고리 부분에 6 내지 12개의 탄소를 함유하는 모노시클릭 또는 바이시클릭 기, 예컨대 페닐, 바이페닐, 나프틸, 치환된 페닐, 치환된 바이페닐 또는 치환된 나프 틸을 나타낸다. 페닐 및 치환된 페닐이 보다 바람직한 아릴이다.
<49> 용어 "방사성 동위원소" 는 핵이 불안정하여 알파 ( α) ·베타 (β+ ) ·감마 (
Υ)선을 자발적으로 방출하면서 과량의 에너지를 방산시키는 질량이 다른 화학원소 를 의미 한다.
<50> 용어 "약제학적으로 허용되는 염 " 은, 화합물이 투여되는 유기체에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시 키지 않는 화합물 의 제형을 의미 한다 .
<51 > 용어 "컨쥬게이트 "는 본 발명의 테트라아자 거 대고리 화합물이 금속원소과 배위결합을 통한 착물을 형성하는지 또는 형성하지 않는지 여부와 관계없이 항체 등과 결합된 것을 나타낸다 .
<52> 기타 용어들은 본 발명 이 속하는 분야에서 통상적으로 이해되는 의 미로서 해 석될 수 있다.
【유리한 효과】
<53> 본 발명 의 프로필렌 교차가교된 테트라아자 거 대고리 화합물은 종래의 에틸 렌 교차가교된 테트라아자 거 대고리 화합물에 비하여 낮은 온도에서 다양한 금속과 안정하게 금속 착물을 형성하고 생물활성물질 및 화학활성물질과 손쉽 게 컨쥬게이 션을 시 킬 수 있는 장점 이 있다. 그 결과 거 대고리 화합물과 결합된 생물활성분자 둥의 변성을 방지하여 이를 치료제, 진단제 및 조영제로 활용하는 것을 상업 적으로 가능하게 한다.
<54> 또한 , 종래의 에틸렌 교차가교된 테트라아자 거 대고리 화합물의 에틸렌에는 생물활성물질과 결합할 수 있는 작용기를 부착할 수 없었던 것과는 달리, 본 발명 의 교차가교된 프로필렌 부분에 생물활성물질과 결합할 수 있는 작용기를 부착할 수 있다 . 그 결과 생물활성물질과의 결합 시 질소원자에 연결된 킬레이트 (팔) 부분 이 생물활성물질과 결합하지 않아도 되므로 질소원자에 연결된 킬레이트 (팔) 부분 이 금속이온과 배위결합의 일부를 형성할 수 있어 착물의 형성 및 안정에 매우 유 리하다.
<55> 나아가, 프로필렌 교차가교된 테트라아자 거 대고리 화합물은 전이금속 뿐 아 니라 메 인금속 그리고 란타나이드 금속과도 안정한 착물을 형성하므로 다양한 방사 성금속핵종 뿐 아니 라 Gd 같은 상자성 금속을 쉽 게 표지하여 방사성의 약품 및 MRI 조영 제 제조시 유용하게 사용될 수 있다 .
【도면의 간단한 설명】
64 64
<56> 도 1 내지 도 4는 각각 Cu-PCB-TE2A 와 Cu_PCB-D02A 의 표지후 방사화학 적 순도에 대한 radio TLC 결과를 나타내는 그래프이다 .
64
<57> 도 5 내지 도 9는 각각의 온도조건에서 Cu-PCB-TE2A에 대한 radio TLC 결 과를 나타내는 그래프이다. <58> 도 10 내지 도 15는 Cu— PCB-TE2A를 산에 부가하고 시간대별로 이에 대한 radio TLC 결과를 나타내는 그래프이다.
64
<59> 도 16 내지 도 23은 FBS에 Cu— PCB-TE2A를 부가하고 시간대별로 이에 대한 radio TLC 결과를 나타내는 그래프이다.
<60> 도 24 내지 27에서 도 24, 25는 각각 5M HC1에서 (a) Cu-PCB_TE2A와 (b)
Cu-PCB-D02A에 대한 XMax의 측정값이고, 도 26, 27은 각각 5Μ HC1, 90°C에서 (c) Cu-PCB-TE2A와 (d) Cu-PCB-D02A에 대한 In (흡광도)대 시간 곡선을 나타내는 그래 프이다.
<61> 도 28 및 도 29는 각각 Cu-PCB-TE2A와 1-PCB-D02A의 Cyclic 0 3讓0 5
이다.
<62> 도 30은 분석용 HPLC 시스템을 이용한 PCB-TE2A-c(RGDyK)의 HPLC 크로마토그 램이고, 도 31 및 32는 각각 PCB-TE2A— c(RGDyK)의 포지티브 및 네거티브 모드에서 의 질량 분석 스펙트라이다.
64
<63> 도 33은 Cu-PCB-TE2A-c(RGDyK)의 Radio— TLC이고, 도 34는 분석용 HPLC 시 스템을 이용한 Cu-PCB-TE2A-c(RGDyK)의 Radio-HPLC 크로마토그램이며, 도 35는 분 석용 HPLC 시스템을 이용한 220 nm (검은색)에서 UV 탐침된 PCB-TE2A-c(RGDyK)와
64
비교한 Cu-PCB-TE2A-c(RGDyK) (빨간색)의 Radio-HPLC크로마토그램이다.
54
<64> 도 36은 U87MG종양모델이고, 도 37은 Cu-PCB-TE2A_c(RGDyK)(231 uCi) 주사 후 1시간 후에 U87MG 암세포를 지닌 암컷 누드 마우스의 microPET 영상이다. <65> 도 38은 semipreparative HPLC 시스템올 사용한 PCB-TE2A-NCS-c(RGDyK)의
HPLC크로마토그램, 도 39는 분석용 HPLC 시스템을 사용한 정제된
PCB-TE2A-NCS-c(RGDyK)의 HPLC 크로마토그램이며, 도 40 및 41은 각각
PCB-TE2A-NCS-c(RGDyK)의 포지티브 및 네거티브 모드에서의 질량 분석 스펙트라이 다.
64
<66> 도 42는 Cu—PCB-TE2A-NCS-c(RGDyK)의 Radio-TLC이고, 도 43은 분석용
64
HPLC 시스템을 사용한 Cu— PCB-TE2A— NCS— c(RGDyK)의 Radio-HPLC 크로마토그램이며, 도 44는 분석용 HPLC시스템을 사용하여 220 nm (검은색)에서 UV 탐침된
64
PCB-TE2A-I S-c(RGDyK)와 비교한 Cu-PCB-TE2A-NCS-c(RGDyK) (빨간색)의
Radio-HPLC크로마토그램이다. <6?> 도 45는 U87MG 암 이식된 누드 마우스에서 주사 후 1시간에
64
Cu-TE2A-NCS-c(RGDy ) (WD/g士 SD, n=4)의 생체 내 분포를 나타내는그래프이다. <68> 도 46은 SE-HPLC 시스템을 사용하여 280 nra에서 UV로 확인된 트라스투주맙의
SE-HPLC크로마토그램이고, 도 47은 SE-HPLC 시스템을 사용하여 280 nm에서 UV로 확인된 PCB-TE2A-NCS-Trastuzumab의 SE-HPLC크로마토그램이며, 도 48은 SE-HPLC 시스템을 사용하여 280 nm (검은색)에서 UV로 확인된 트라스투주맙와 비교한
PCB-TE2A-NCS-Trastuzumab (빨간색)의 SE-HPLC크로마토그램이다.
64 64
<69> 도 49는 CuCl2의 Radio-ITLC이고, 도 50은 Cu-PCB-TE2A_NCS-Trastuziimab의
Radio— ITLC이다.
<70> 도 51은 SE-HPLC 시스템을 사용하여 280 nm에서 UV로 확인된 PCB-TE2A-
64
Trastuzumab의 SE-HPLC 크로마토그램이고, 도 52는 CuCl2의 Radio-ITLC이고, 도
64
53은 Cu-PCB-TE2A-NCS-Trastuzumab의 Radio—ITLC이고, 도 54는 NIH3T6.7 암 이식 된 누드 마우스에서 주사 후 48시간에 64Cu-PCB-TE2A-Trastuzumab (투여 양 /무게 , n=l)의 생체 내 분포를 나타내는 그래프이다.
<7i> 도 55 내지 도 59 및 도 63 내지 도 68은 본 발명의 바람직한 일실시예에 따 른 합성된 화합물의 질량분석 스펙트럼 그래프이다.
<72> 도 60 내지 도 62는 트라스투주맙, Cu-PCB-TE2A-NH2-Trastuzunmb, 그리고 두 개의 겹친 HPLC크로마토그램이다.
【발명의 실시를 위한 최선의 형태】
<73> 이하, 본 발명을 보다 상세히 설명한다.
<74> 상술한 바와 같이 종래의 에틸렌 교차가교된 테트라아자 거대고리 화합물은 사이클람이나 사이클렌에 글리옥살 (CH0-CH0)을 반웅시켜 제조하게 되는데, 글리옥 살에는 치환기를 부착할 수 없으므로 종래의 방법으로 제조된 교차가교된 에틸렌에 는 NCS와 같은 생물활성물질과 결합할 수 있는 작용기를 붙일 수 없었다. 그러므로 질소원자와 연결된 작용기에 생물활성물질을 결합시킬 수 밖에 없었다. 그 결과 질 소원자와 연결된 관능기에 생물활성물질이 결합하면 상기 관능기는 금속이온과의 배위결합 시 리간드로 작용하기 어려워지게 되어 결국 배위결합 화합물의 생체안정 성 및 활성이 떨어지는 문제가 있었다. 나아가 종래의 에틸렌이 교차가교된 테트라 아자 거대고리 화합물은 생체 안정성은 우수하나 금속원소과 배위결합하여 착물을 형성하기 위한온도조건이 너무나 고온이므로 (80 ~ 100 °C) 생물활성물질 또는 화학 활성물질과 컨쥬게이션 되는 경우상기 생물활성물질 등이 손상 (예를 들어 단백질 의 변성 등)을 받아 치료제 또는 진단제 등으로사용하기 어려웠다. 특히, 실제 테 트라아자 거대고리 화합물을조영제 등으로사용하기 위해서는 방사성 금속원소와 착물형성이 이루어져야 하는데 이 경우 방사성 금속원소의 반감기로 인해 사용가능 기간이 매우 짧아지게 되므로, 실제 제품에는 테트라아자 거대고리 화합물에 생물 활성물질을 부착한 형태로 생산된다 (생물활성물질이 부착되지 않은 형태로 제품이 출시될 경우 이를사용하는 병원 등에서 생물활성물질을 직접 붙여야하지만 이는 병원등의 여건상특수한 경우를 제외하고는 거의 불가능한 일이므로 실제 제품은 모두 테트라아자 거대고리 화합물에 생물활성물질을 부착한 형태로만출시된다). 상기 생물활성물질을부착된 테트라아자 거대고리 화합물을 병원 등에서 구입하여 방사성 금속원소와 착물을 형성시킨 뒤 조영제 및 방사성 치료제 등으로 사용하게 되는 것이다. 따라서 금속이온과의 착물형성온도가높은 경우 결합된
생물활성물질 (예 : 단백질)이 변성될 수 있으므로, 종래의 에틸렌이 교차가교된 테 트라아자 거대고리 화합물은상업적으로 활용되기 어려운 문제가 있었다.
<75> 이에 본 발명에서는 프로필렌이 교차가교된 테트라아자 거대고리 화합물 및 상기 프로필렌에 생물활성물질 등과 결합될 수 있는 다양한 작용기를 부착한 테트 라아자 거대고리 화합물을 제공하여 상술한문제점의 해결올 모색하였다 .
<76> 구체적으로 본 발명의 첫번째 양태에 따르면 하기 화학식 1로 표시되는 화합 물 및 약제학적으로 허용가능한 염을 포함하는 테트라아자 거대고리 화합물을 제공 한다.
<77> [화학식 1]
Figure imgf000018_0001
R은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 치환 또는 비치환된 d-10의 알킬기이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아 노, 카르복시, 히드록시, 티올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고; R1은 각각 독립적으로 H, 알콜, 아미노, 아 미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티 올 , 알데하이드, 카보닐, 치환 또는 비치환된 ( ^의 알킬, 치환또는 비치환된
( 15의 알케닐, 치환 또는 비치환 d 의 알키닐, 치환 또는 비치환된 d-15의 알킬아 릴 , 치환 또는 비치환된 d-15의 아릴, 치환 또는 비치환된 (^15의 헤테로알킬, 치 환또는 비치환된 d-15의 헤테로고리, 치환 또는 비치환된 15의 헤테로아릴, 상기 치환은 이미드, 알데하이드, 카르복시기, 케톤, 니트로, 아미노, 티을,
숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, 에 스테르, 할로겐, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고; X1은 각각 독립적으로 Η, -(CR2),-C00H,
-CR2-((CR2)m-C00H)2, -(CR2),-C02R3, _(CR2)厂 ArOR3, -(CR2),-SR3, _(CR2)厂 S03H, -(CR ) P02HR , -(CR )MCR )2, -(CR )mCON(CR )2이며, 상기 R 및 R가 각각 독립적으 로 H, 치환 또는 비치환된 Cwo의 알킬, 치환또는 비치환된 Cwo의 알케닐, 치환 또는 비치환 Cwo의 알키닐, 치환또는 비치환된 d-10의 알킬아릴, 치환 또는 비치 환된 Cwo의 아릴, 치환또는 비치환된 ( 10의 헤테로알킬, 치환 또는 비치환된 d-10 의 해테로아릴이고, 상기 Ar이 치환또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인산기, 알킨 및 NCS로 구성 되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 5 중 어 느 하나의 정수이되, 상기 X1은 적어도 하나 이상이 H가 아니고; L은 각각 독립적으 로 존재하거나 존재하지 않는 링커이고, R1은 L이 존재하지 않을 경우 탄소원자에 직접 결합되고; a는 각각독립적으로 2 내지 3중 어느 하나의 정수; a'는 각각 독립적으로 2 내지 3중 어느 하나의 정수; n은 각각 독립적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자가를 충족시키는 0내지 2 중 어느 하나의 정수 이다. 다시 말해 R이 결합된 탄소원자를 기준으로 n=2인 경우 탄소원자의 2개의 결합가능한자리에 모두 각각동일 또는 상이한 R이 결합되며, n=0인 경우에는 탄 소원자의 2개의 결합가능한 자리에 모두 H가 결합되어 있는 것이다.
한편, 바람직하게는상기 화학식 1의 테트라아자 거대고리화합물은 화학식 1 의 a'는 2이고 a가 3인 사이클람 계열의 화합물이거나, a'는 2이고 a가 2인 사이클 렌 계열의 화합물일 수 있으나, 보다 바람직하게는 상기 화학식 1의 테트라아자 거 대고리화합물은 화학식 1의 a'는 2이고 a가 3인 사이클람 계열의 화합물일 수 있다.
상기 화학식 1은 X1이 부착되지 않은 질소원자 2개에 프로필렌이 교차가교된 테트라아자 거대고리 화합물로서 금속원자와의 착물형성 시 30 ~ 60°C에서 착물형 성이 가능하다 (도 5 ~ 7 참조). 이는 종래의 에틸렌이 교차가교된 테트라아자 거대 고리 화합물과 금속원자의 착물형성 온도가 80°C 이상인 점을 고려하면 현저하게 개선된 효과로서 특히 생체활성물질 (예 : 단백질)이 부착된 테트라아자 거대고리 화합물을 금속원자와 착물을 형성시키는 경우 착물형성온도를 단백질의 변성온도 이하로 낮출 수 있어 상기 생물활성물질을부착된 화학식 1로 표시되는 테트라아자 거대고리 화합물을 병원 등에서 구입한 뒤 방사성 금속원소와 착물을 형성시키면 조영제 및 방사성 치료제 등 다양한 용도로폭넓게 활용가능하다. 그 결과 교차가 교된 테트라아자 거대고리 화합물을 상업적으로 활용할수 있게 되는 것이다.
<82> 본 발명의 바람직한 한 양태에 따르면, 상기 화학식 1의 R은 통상적으로 조 영제 등에 사용되는 테트라아자 거대고리 화합물에 적용될 수 있는 것이면 제한없 이 사용가능하며, 후술하는 R1 및 X1에 사용되는 작용기를 포함할수 있으나, 바람 직하게는 R1이 생물활성분자 (항체 등)와 결합할 수 없는 작용기인 경우에는 R이 생 물활성분자와 결합할 수 있는 작용기일 수 있으나, 보다 바람직하게는상기 R은 생 물활성분자와 결합하기 어려운 작용기일 수 있다. 구체적으로 R은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히 드록시, 티을, 알데하이드, 치환또는 비치환된 CHO의 알킬기이고, 상기 치환은 아 미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드톡시, 티 올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함할수 있으며, 가장 바람직하게는 R은 각각독립적으로 H, 할로겐, 케톤, C1-10 의 알킬일 수 있다. 다시 말해, R은 원칙적으로 제한없이 사용될 수 있으나, R1이 생물활성물질 등과 결합할수 있는 작용기를 갖는 경우에는 R은 생물활성분자와 결 합하기 어려운 통상의 작용기일 수 있는 것이다.
<83> 한편, 본 발명의 바람직한 한 양태에 따르면, 상기 R1은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복 시, 히드록시, 티올, 알데하이드, 카보닐, 치환또는 비치환된 (^-15의 알킬, 치환 또는 비치환된 (^ᅳ15의 알케닐, 치환 또는 비치환 -15의 알키닐, 치환또는 비치환 된 ( 15의 알킬아릴, 치환또는 비치환된 d 의 아릴, 치환 또는 비치환된 ( 15의 헤테로알킬, 치환또는 비치환된 (^ 의 헤테로고리 , 치환또는 비치환된 ( 15의 헤 테로아릴, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이 드, 에스테르, 할로겐, 알킨 및 ICS로 구성되는 군으로부터 선택되는 어느 하나 이 상의 성분 (moiety)을 포함할 수 있다. 이 경우상기 R1은 바람직하게는 항체, 아미 노산, 뉴클레오시드, 뉴클레오티드, 압타머, 단백질, 항원, 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비타민, 호르몬, 나노입자, 무기지지체, 고분자, 단분자또는 약물 등과 결합할 수 있는 작용기일 수 있으며, 이를 통해 상기 화학 식 1의 X1이 생물활성물질 (예: 항체) 등과 결합을 수행할 필요가 없으므로 화학식 1 의 화합물과 금속이온의 착물형성 시 X1은 본래의 리간드 역할을 수행할수 있어 착 물을 안정화시킬 수 있다. 다시말해, 화학식 1의 R1이 생물활성물질 또는 화학활성 물질과 결합할 경우 X1을 본래의 목적인 금속이은과의 착물형성에만 이용할 수 있게 되어 착물을 안정화시키는데 대단히 효율적인 구성을 가진다. 그러므로 종래의 생 물활성물질 등과 결합을 수행하기 위하여 X1에 사용되었던 작용기라면 본 발명의 R1 에 제한없이 사용될 수 있다. 이에 상술한 미국공개특허 제 2006-62728호에 개시된 X1들도모두본 발명의 R1에 포함될 수 있다.
<84> 본 발명의 바람직한 한 양태에 따르면, 생물활성물질 또는 화학활성물질과 결합할수 있는 작용기로서 R1은 바람직하게는 각각 독립적으로 H, 치환또는 비치 환된 ( 15의 알킬, 치환또는 비치환된 d-15의 알케닐, 치환또는 비치환 ( 15의 알 키닐, 치환또는 비치환된 CW5의 알킬아릴, 치환 또는 비치환된 ( 의 아릴, 치 환 또는 비치환된 ( 15의 헤테로알킬, 치환또는 비치환된 ( 15의 해테로고리, 치환 또는 비치환된 d-15의 해테로아릴, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, 에스테르, 할로겐, 알킨 및 ICS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)올포함하되, 상기 R1은 적어도 하나 이상 이 H가 아닐 수 있다. 한편 R1은 교차가교된 프로필렌의 3개의 탄소에 결합된 반응 기로서 그 증 가운데 탄소에 결합된 R1은상술한 이미드 등의 성분, 즉 항체 등과 결합할수 있는 작용기를 포함하고 나머지 2개의 탄소에 결합된 R1은 수소이거나 항 체 등과 결합할 수 없는 작용기일 수 있다.
<85> 본 발명의 더욱 바람직한 한 양태에 따르면, 상기 R1은 각각 독립적으로 H, 치환또는 비치환된 d-10의 알킬, 치환 또는 비치환된 Cwo의 알케닐, 치환또는 비 치환 d-K)의 알키닐, 치환 또는 비치환된 ( ^의 알킬아릴 , 치환 또는 비치환된 Cwo의 아릴, 치환 또는 비치환된 d-K)의 헤테로알킬이고, 상기 치환은 이미드, 알 데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아 미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, 에스테르, 할로겐, 알킨 및 ICS 로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하되, 상 기 R1은 적어도 하나 이상이 H가 아닐 수 있다. 본 발명의 더욱 바람직한 한 양태에 따르면 상기 R1은 각각 독립적으로 H,
(CR5 2)a-P-(CR5 2)b-Q-(CR5 2)c-R-(CR5 2)d-A, 이고; 상기 R5는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, ( 3의 알킬기이고; 상기 P, Q, R은 각각 독립적으로 존재하지 않거나; Ar, C02) H, CO 또는 0이고; 상기 A는 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, NCS, 에스테르, 할로겐, C2-6의 알켄 , C2-6의 알킨, 및
C02R5이고; Ar은 각각 독립적으로 치환또는 비치환된 페닐이고, 상기 치환은 할로 겐이고; a는 각각 독립적으로 1 - 5의 정수, b는 각각 독립적으로 0 ~ 5의 정수, c 는 각각 독립적으로 0 ~ 5의 정수, d는 각각 독립적으로 0 ~ 5의 정수이고, 상기 R1 은 적어도 하나 이상이 H가 아닐 수 있다. 예를 들어, 상기 화학식 중 P가 존재하 지 않는 경우 (CR5 2)a 와 (CR5 2)b가 직접 결합하게 되며, 이 때 b가 0이라면, (CR5 2)a 와 Q가 직접 결합하게 되는 것이다.
본 발명의 더욱 바람직한 한 양태에 따르면 상기 R1은 각각 독립적으로 H,
(CR2)nAr (CR2)m-A , (CR5 2)nAr (CR5=CR )n-A , (CR5 2)nArp(CR5 2)mC02(CR5 2)ra-A, (CR5 2)nArp(CR52)mC0(CR5 2)m-A, (CR2)nC02(CR52)mArp-A, (CR5 2)nArp(CR5 2)mNHC0(CR5 2)m-A,
(CR5 2)nC0NH(CR5 2)m-A또는 (CR5 2)n-A 일 수 있으며, 이 때 상기 R5는 각각 독립적으 로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, d-3의 알킬기이고; 상기 A는 이미드, 알데하이드. 카 르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아 세틸렌, N3, 아세트아미노, 아자이드, NCS, 에스테르, 할로겐, C2-6의 알켄, C2-6의 알킨 및 C02R이고; Ar은 각각 독립적으로 치환 또는 비치환된 페닐이고, 상기 치 환은 할로겐 이고; n은 각각 독립적으로 1 ~ 5의 정수, m은 각각 독립적으로 0 ~ 5 의 정수, P는 각각 독립적으로 0 또는 1의 정수이고, m이 0일 때 A가, NH, CO, Ar,
¾2. (:02에 직접 결합하고, 상기 R1은 적어도 하나 이상이 H일 수 있다. 이 경우 마 찬가지로 (CR5 2)nArp(CR5 2)mC0(CR5 2)m-A에서 p가 0이면 (CR5 2)n과 (CR5 2)m이 직접 결합 하게 되고, m 역시 0인 경우에는 (CR5 2)n과 CO가 직접 결합하게 되는 것이다. 생물활성물질 또는 화학활성물질과 결합할 수 있는 작용기로서 R은 가장 바 람직하게는 하기 화학식 a로 표시되는 작용기 중 어느 하나 이상을 각각 독립적으 로 포함할 수 있다.
Figure imgf000023_0001
단, 상기 화학식 a에서 R은 각각 독립적으로 NH2, C00H, N3, CHO, NCO, SH 또는 ( 6의 알킨이고, X는 각각 독립적으로 C1 또는 Br이며, n은 각각 독립적으로 0 ~ 5의 정수이다.
한편, 상기 화학식 1의 R1은 교차가교된 프로필렌의 탄소원자에 각각 2개씩 모두 6개가 독립적으로 부착될 수 있으나, 바람직하게는 프로필렌의 2번 탄소원자 에 상술한 생물활성물질 또는 화학활성물질과 결합할 수 있는 하나의 작용기가 부 착되고 나머지 부분에는 모두 H가 결합될 수 있다 .
이 경우 상기 R1은 교차가교된 프로필렌의 탄소원자에 직 접 결합되거나 링 커 에 연결된 후 탄소원자에 결합될 수 있으며 , 상기 링 커는 통상적으로 테트라아자 거 대고리 화합물에서 작용기와 탄소원자 사이를 연결하는데 사용되는 것이면 종류 의 제한이 없지 만, 바람직하게는 상기 링 커 (L)는 하기 화학식으로 표시되는 링 커 중 어느 하나 이상일 수 있다.
Figure imgf000024_0001
Figure imgf000025_0001
단, R, ¾ 및 R2는 각각 독립적으로 (^ᅳ^의 알킬, d-10의 알케닐, ( ^의 알키 닐, Cwo의 아릴, d-κ)의 아릴알킬, d-κ)의 헤테로아릴이고, n은 각각 독립적으로 1 내지 20의 정수이다.
본 발명의 다른 양태에 따르면 , 상기 화학식 1의 X은 바람직하게는 각각 독 립적으로 H, -(CR2)rC00H, , -CR2-((CR2)m-C00H)2) -(CR2),-C02R3, -(CR2),-ArOR3,
-(CR2),-SR3, -(CR2 S03H, -(CR2),-P02HR3, -(CR)MC )2, -(CR2)mC0N(CR)2이며, 상 기 R2 및 R3가 각각 독립적으로 H, 치환 또는 비치환된 (^-^의 알킬, 치환 또는 비치 환된 Cw0의 알케닐, 치환 또는 비치환 Cwo의 알키닐, 치환 또는 비치환된 d-10의 알킬아릴, 치환 또는 비치환된 (^ 의 아릴 , 치환 또는 비치환된 Cwo의
해테로알킬 , 치환 또는 비치환된 (^ 의 헤테로아릴, Ar이 치환 또는 비치환된 페닐 이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인 산기, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의
성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 5증 어느 하나의 정수이되, 상기 X1은 적어도 하나 이 상이 H가 아닐 수 있다. 이 경우 상기 X1은 바람직하게는 금속이온과 배위결합을 형성할 수 있는 작용기일 수 있으며, 화학식 1의 화합물과 금속이온의 착물형성 시 X1은 본래의 리간드 역할을 수행할 수 있어 착물을 안정화시킬 수 있다. 예를 들어
64
Cu의 경우 6배위수를 가지는 금속이온으로서, 상기 화학식 1의 테트라아자 거대고 리화합물과 착물형성시 화학식 1의 4개의 질소원자 및 2개의 X1과 배위결합을 형성 할 수 있는 것이다. 따라서, 상기 X은금속이온과의 착물형성 시 배위결합에 참여 할수 있는 작용기라면 종류의 제한없이 사용될 수 있으며, 상술한 미국공개특허 제 2006-62728호에 개시된 X1들도 모두 본 발명의 예시로서 참조될 수 있다.
본 발명의 바람직한 한 양태에 따르면, 금속이온과의 착물형성 시 배위결합 에 참여할 수 있는 작용기로서 바람직하게는 상기 X1은 각각 독립적으로 Η,
-(CR^^CR^, -(CR2)mC0N(CR )2. -(CR2)m-E-(CR^^ 상기 E는 존재하지 않거나;
CONH, NHC0이고; F는 COOH, PO3H2, SO3H, OH, NH2, C0NH2, NCS, C2의 알킨이고; R2는 각각독립적으로 H, 카르복시기, 할로겐 , C 3의 알킬기이고; 1은 각각 독립적으로 0 내지 3중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이되, 상기 X1은 적어도 하나 이상이 H가 아닐 수 있다. 또한 보다 바람직하게 는 상기 ¾및 ¾는 각각 독립적으로 H, t-Bu, Et, Me, 벤질, 메특시벤질 또는
-C¾C02-t-Bu일 수 있다. 가장 바람직하게는 상기 X1은 적어도 하나 이상이 독립적으로 하기 화학식 b 로 표시되는 작용기 증 어느 하나일 수 있다.
Figure imgf000026_0001
COOH
NCS
단 상기 화학식 b에서 R은 Ph, Bn. Me, Et 또는 n-Bu이며, n은 각각 독립적 으로 0 ~ 1의 정수이다.
보다 바람직하게는 상기 R이 생물활성물질 또는 화학활성물질과 결합할 수 있는 작용기 및 /또는 X이 금속이온과 배위결합을 형성할 수 있는 작용기일 수 있다, 특히 상기 R1이 생물활성물질 또는 화학활성물질과 결합할 수 있는 작용기이 고 동시에 X1이 금속이온과 배위결합을 형성할 수 있는 작용기인 경우 R1이 생물활 성물질 (예 : 단백질)과 결합하고, X1이 금속이온과 배위결합을 형성하게 되어 배위 결합된 착물을 안정화시킬 수 있을 뿐 아니라 현저히 낮은 온도에서 착물을 형성시 킬 수 있다ᅳ 그 결과 생체활성물질과 결합된 프로필렌 교차가교된 테트라아자 거대 고리 화합물을 제품으로 생산하고 이를 병원 등에서 납품받아 생체활성물질 등이 변성되지 않을 정도로 현저히 낮은 온도에서 방사성 금속과 착물을 형성하여 방사 성 치료제 및 조영제 등에 사용할 수 있는 것이다.
:108> 이때 적용가능한 R1과 X1의 구체적인 작용기 종류는 이미 열거된 R1과 X1의 작용기들의 각각의 독립적인 조합일 수 있으나 바람직하게는, 상기 X은 적어도 하 나 이상이 독립적으로 화학식 b로 표시되는 작용기 중 어느 하나 이상이고, R은 적 어도 하나 이상이 독립적으로 화학식 a로 표시되는 작용기 증 어느 하나 이상일 수 있다.
:109> 본 발명의 바람직한 한 양태에 따르면 바람직하게는 상기 테트라아자 거대고 리 화합물은 하기 화학식 중 어느 하나 이상일 수 있다.
10> [화 식]
Figure imgf000027_0001
113> G2Et
Figure imgf000028_0001
본 발명의 바람직한 한 양태에 따르면 보다 바람직하게는 상기 테트라아자 거대고리 화합물은 하기 화학식 증 어느 하나 이상일 수 있다 .
[화학식]
Figure imgf000028_0002
:I23> 본 발명의 바람직한 한 양태에 따르면 바람직하게는 상기 테트라아자 거대고 리 화합물은 하기 화학식 중 어느 하나 이상일 수 있다.
<I24> [화학식]
Figure imgf000029_0001
<128> 본 발명의 바람직한 한 양태에 따르면 보다 바람직하게는 상기 테트라아자 거대고리 화합물은 하기 화학식 증 어느 하나 이상일 수 있다.
<Ι29> [화학식]
Figure imgf000029_0002
:Ι32> 본 발명의 바람직한 한 양태에 따르면 보다 바람직하게는 상기 테트라아자 거대고리 화합물은 하기 화학식 중 어느 하나 이상일 수 있다.
:Ι33> [화학식]
Figure imgf000030_0001
결국, 본 발명의 프로필렌 교차가교 테트라아자 거대고리 화합물은 종래의 에틸렌 교차가교 테트라아자 거대고리 화합물에 비하여 착물형성 온도가 낮으므로 테트라아자'거대고리 화합물에 결합된 생물활성물질의 변성을 막을 수 있어 일선 병원 등에서 생물활성물질이 부착된 프로필렌 교차가교 테트라아자 거대고리 화합 물을 구입하여 방사성 금속과 낮은온도에서 착물을 형성시킨 후 조영제, 방사성 치 료제 등으로 다양하게 활용할 수 있다.
나아가, 교차가교된 프로필렌에 생물활성물질과 결합할 수 있는 작용기가 부 착된 테트라아자 거대고리 화합물은 금속이은과의 배위결합에 참여하는 킬레이트 팔 (X1)이 생물활성물질과 결합하지 않아도 되므로 킬레이트 팔 (X1)이 모두 배위결합 에 참여할 수 있어 착물의 안정에 큰 효과를 가진다.
본 발명의 다른 양태에 따르면, 교차가교된 프로필렌에 손쉬운 방법으로 작 용기를 부착할 수 있는 테트라아자 거대고리 화합물의 제조방법을 제공한다. 상술 한 바와 같이, 종래의 에틸렌 교차가교된 테트라아자 거대고리 화'합물은 사이클람 이나 사이클렌에 글리옥살 (CH0-CH0)을 반웅시켜 제조하게 되는데, 글리옥살에는 치 환기를 부착할 수 없으므로 종래의 방법으로 제조된 교차가교된 에틸렌에는 NCS와 같은 생물활성물질과 쉽게 결합할 수 있는 작용기를 붙일 수 없었다. 그러므로 질 소원자와 연결된 작용기에 생물활성물질을 결합시킬 수 밖에 없는 문제가 존재하였 다.
<140> 이에 본 발명에서는 하기 화학식 2로 표시되는 테트라아자 거대고리 화합물 과 하기 화학식 3으로 표시되는 화합물을 반웅시키는 단계를 포함하는 테트라아자 거대고리 화합물의 제조방법을 제공하여 상술한 문제점을 해결하였다.
<141> [화학식 2]
Figure imgf000031_0001
<143> R은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 치환 또는 비치환된 d-10의 알킬기이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아 노, 카르복시, 히드록시, 티올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
<i44> X1은 각각 독립적으로 H, -(CR2)厂 C00H, , -CR2-((CR2)m-C00H)2,
-(CR2)i-C02R3, -(CR ),-ArOR3, -(CR2)rSR3, -(CR2VS03H, -(CR2),-P02HR3,
Figure imgf000031_0002
-(CR CON(CR2)2이며, 상기 R2 및 R3가 각각 독립적으로 H, 치환 또 는 비치환된 d-M)의 알킬 , 치환 또는 비치환된 Cwo의 알케닐, 치환 또는 비치환 Cwo의 알키닐, 치환 또는 비치환된 Cwo의 알킬아릴, 치환 또는 비치환된 ^-10의 아 릴, 치환또는 비치환된 ( 10의 헤테로알킬, 치환 또는 비치환된 Cwo의
헤테로아릴, Ar이 치환 또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티을, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인산기 및 NCS로 구성되는 군으로부터 선택 되는 어느 하나 이상의 성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수 및 m은 각각독립적으로 1 내지 5 중 어느 하나의 정수이되, 상기 X1은 적어도 하나 이상이 H가 아니고; a는 각각독립적으로 2 내지 3중 어느 하나의 정수; a'는 각각 득립적으로 2내지 3중 어느 하나의 정수; n은 각각 독립 적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자가를 충족시키는 0 내 지 2중 어느 하나의 정수
<145> [화학식 3]
Figure imgf000032_0001
<147> R는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 카보닐, 치환 또는 비치환된 d 의 알킬 치환또는 비치환된 ( 15의 알케닐, 치환 또는 비치환 ( 15의 알키닐, 치환 또는 비치환된 Cws의 알킬아릴, 치환 또는 비치환된 ( 15의 아릴 , 치환 또는 비치환된 d 의 헤테로알킬, 치환 또는 비치환된 -15의 헤테로고리, 치 환 또는 비치환된 ( 15의 헤테로아릴 , 상기 치환은 이미드, 알데하이드. 카르복시 기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸 렌, N3, 아세트아미노, 아자이드 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고; L은 각각 독립적으로 존재하거나 존재하지 않는 링커이고, R는 L이 존재하지 않을 경우 탄소원자에 직접 결합되고; Y는 각각독 립적인 이탈기; 및 n은 각각 독립적으로 L-R 4부분이 공유결합하고 있는 탄소 원자의 원자가를 충족시키는 0 내지 2 증 어느 하나의 정수이다.
<148> 한편, 상기 화학식 3의 화합물은 각각의 프로필렌의 탄소골격에 항체 등의 생물활성물질과 결합할 수 있는 작용기 (R4)를 처음부터 포함할 수 있으므로 화학식
2의 이관능성 킬레이트 화합물과 반응하여 상기 화학식 1의 프로필렌 가교결합 테 트라아자 거대고리 화합물을 제조하는 경우 가교결합된 프로필렌의 탄소골격에 작 용기가 결합된다. 그 결과 상술한 바와 같이 가교결합된 부분이 아닌 테트라아자 거대고리 화합물의 고리부분에 작용기가 결합된 종래의 에틸렌 가교결합 테트라아 자 거대고리 화합물에 비하여 본 발명의 가교결합된 프로필렌의 탄소골격에 작용기 가 결합되는 경우 금속원소과의 배위결합에 의한 착물형성시 종래의 80°C가 아닌 30 ~ 60°C에서 반응올 수행할 수 있다. 그 결과 상기 탄소골격에 결합된 작용기와 단백질과 같은 생물활성분자가 결합된 경우 상은에서 착물을 형성할 수 있으므로 생물활성분자의 변성을 막을 수 있어 테트라아자 거대고리 화합물의 상용화가 가능 해진다. 또한, 하나의 합성방법에 의하여 다양한 종류의 작용기를 부착할 수 있으 므로 합성시간, 비용 및 수율을 현저히 개선할 수 있올 뿐 아니라, 공정을 단순화 할 수 있다.
<149> 이 경우, 상기 화학식 2의 R, X1과 화학식 3의 R4는 각각 상기 화학식 1의
R, X1 및 R1과 동일하게 적용될 수 있다. 또한 링커 역시 동일하게 적용될 수 있다. 한편, X1과 반웅의 시작물질의 종류 및 다양한 합성전략에 따라 적절한 X1을 선택하 여 사용할수 있으며 상기 X1은 합성과정에서 다양하게 치환 또는 변형될 수 있다. <150> 상기 Y는 이탈기로서 치환반응을수행할 수 있으면 제한없이 사용될 수 있으 나, 바람직하게는상기 Y는 각각 독립적으로 토실레이트, 메실레이트, 브로실레이 트, 트레실레이트, 트리플레이트, 노실레이트, Br, C1 또는 I일 수 있다.
<151> 본 발명의 다른 양태로서 화학식 2로 표시되는 테트라아자 거대고리 화합물 과 하기 화학식 3으로 표시되는 화합물을 1 : 10 ~ 10 : 1의 몰비로 반웅될 수 있 으며, 만일 상기 범위를 벗어나는 몰비로 반웅이 수행되는 경우 반웅의 수율이 떨 어지거나지나친 시작물질의 손실을 가져올수 있다.
<152> 상기 반응에서 사용될 수 있는 반웅용매로서 바람직하게는 MeCN, MeOH,
EtOH, THF 및 를루엔을 단독 또는 혼합하여 사용할 수 있으며, 보다 바람직하게는 'η¾ '§ν (MH ν ν '¾! (Φί (¾I (π¾ 'ι¾
^ 'ny (¾ 'λ 'λ '' JJZZ 'λ ''人入 ' 'λλ ^2
스 1 ε8
Figure imgf000034_0001
I T13 'n 'ι ) ''0033 ' ('00D3 ''0033 IJ3 F 77 £7
^o^ ^(q人극¾ ¾ 'jg 'OH 'Ad 'qx 'PO 'ng 'u 'uy 'pN '93 'B )
¾ ½ϊ¾¾ '(¾극¾ 'Id 'JI '3¾ ' '¾ 'JH 'PO '3V 'Pd ' 'na Ό∑ ΌΚ 'qN ' '人 'η;) 'Λ ' !1 'JS) [ ^ '( 3S 'S) t¾-
½9i '(ia ^ qs 'sv) ½si '( 극 ¾ is) ½n '(ui 극¾ Eo)
½SI 극 ¾ eg '-IS 'BQ '9Β) ^은 ½Ζ '(¾극¾ Π) Ψ¾- ^ ½ΐ
Figure imgf000034_0002
(ΙΙΙ)ηΗ'(ΙΙ)ηΗ'(ΙΙ)Ρε1,(ΙΛ)ΛΙ'(Λ) '(ΛΙ)ΛΙ'(ΙΛ)0Ι¾'(Λ)0Ι,(ΛΙ)0,(Λ)Λ'(ΛΙ)Λ'(ΙΙΙ)Λ '(IA)-iD,(A)-i3'(AI)-i3'(III)J3'(II)-i3'(III)n3'(II)n3'(I)n3'(iii)iM'(II)!N'(I)!N '(III)o3'(II)o3'(I)o0'(AI)3d'(III)3d'(II)9d'(A)ui'(AI)ui'(III)uM'(II)UN
4그^ ÷
Figure imgf000034_0003
^ ^은 를^ (Λ+) Lrth (T+) ¾ '눋은 : t3¾?P '^은
Figure imgf000034_0004
^픈 Myfn극王
'- ft^l^룽튿 ftfr
Figure imgf000034_0005
융 {Y 름 )^를 긍폭 룡 ^ { ^ Ιό륨^^ ^ 웅{ Tfe ^ 웅^^ 극
Figure imgf000034_0006
Ψ ¾융 극 ΐ ½ί¾ 통 i ^를 ¾ 'HO 'N33H
6CT900/0l0ZaM/X3d ε.οιεο/ΐΐοζ OAV 104 105 105 106 108 109 110 111 115 116 117„ 115 116
Ag, Ag, Ru, Ag, In, In, In, In, Sb, Sb, Sb, Te, Te,
117 117 U8 118 119 119 119 120 120 121 121 122 123 124
Te, I I, Xe, Xe, I Te, I, Xe, Xe, I, I Xe, I
126 128 129 130 131 132 133 135 136 140 141 142 144
I , I , La, La, La, La, La, La, La, Sm, Sm, Sm, Gd,
145 145 146 146 147 147 148 149 150 153 159 166 169
Gd, Eu, Gd, Eu, Eu, Gd, Eu, Pr, Eu, Sm, Gd, Ho, Yb,
177 186 188 190 191 192 193 193 194 194 195 196 197
Lu, Re, Re, Au, Au, Au, Au, Tl , Tl , Au, Tl , Tl , Tl ,
198 200 200 201 202 203 205 206 211 212 225
Tl, Tl, Bi, Tl, Bi, Bi, Bi 또는 Bi As, Bi , Ac로 구성되는 군으로부터 선택되는 어느 하나 이상일 수 있다.
보다 바람직하게는, 상기 금속 원소는 Ba, Cr, Mn, Fe, Co, Ni , Cu, Zn, Cd, Hg, Nb, Mo, Zr, Te, W, Pd, Ag, Pt , 및 Au로 구성된 군으로부터 선택되는 전이 금 속 원소, Ga, In, Sn, Pb, Bi로 구성된 군으로부터 선택되는 13족~15족 원소, 또는 Gd, Tb, Dy, Ho, Er, Sm 및 Nd로 구성된 군으로부터 선택되는 란탄족 또는 악티늄 족 금속 원소; 및 방사성 동위원소로부터 선택되는 원소이다. 가장 바람직하게는, 상기 금속 원소는 Cu, Mn, Fe, Co 또는 Ni; 방사성 동위원소 (바람직하게는, min,
67 68 86 90 99m 57 58 51 59 75 169 60 61 62 64
Ga, Ga, Y, Y, Tc , Co, Co, Cr, Fe, Se, Yb, Cu, Cu, Cu, Cu 및 Cu)로부터 선택되는 원소이다.
한편 , 보다 바람직하게는 상기 화학식 1로 표시되는 테트라아자 거대고리 화 합물은 화학식 1의 R1에 생물활성물질 또는 화학활성물질이 부착된 형태일 수 있다. 본 발명의 또 다른 양태로서, 상기 화학식 1로 표시되는 테트라아자 거대고 리 화합물 또는 배위결합 화합물; 및 상기 배위결합 화합물과 연결된 생물활성물질 또는 화학활성물질을 포함하는 컨쥬게이트를 제공한다. 구체적으로 본 발명의 컨쥬 게이트는 컨쥬게이트를 표적화된 조직, 기관, 수용체 또는 다른 생물학적으로 발현 된 조성물로 지시하는 하나 이상의 생물활성물질 또는 화학활성물질 (생물학적 분 자로도 알려져 있음)를 포함한다. 이상적으로, 각각의 생물활성물질 또는 화학활성 물질는 표적화된 기관또는 조직 부위에 대해 선택적이거나 또는 특이적이다.
통상적인 생물활성물질 또는 화학활성물질로는 항체, 아미노산, 뉴클레오시 드, 뉴클레오티드, 압타머, 단백질, 항원, 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비타민, 호르몬, 나노입자, 무기지지체, 고분자, 단분자 또는 약 물 등이 있다. 생물활성물질 또는 화학활성물질의 구체적 예로는 유방 및 전립선 병소의 치료를 위한 스테로이드 호르몬; 신경내분비 종양의 치료를 위한 소마토스 타틴 , 봄베신, CCK 및 뉴로텐신 수용체 결합 분자; 폐암 치료를 위한 CCK수용체 결합분자; 결장직장 암 치료를 위한 ST수용체 및 암배 항원 (CEA) 결합 분자; 흑 색종 치료를 위한 디히드록시인돌카르복실산 및 다른 멜라닌 생성 생합성 중간체 ; 혈관 질환 치료를 위한 인테그린 수용체 및 아테롬성 동맥경화증 플라크 결합 분자; 및 뇌 병소 치료를 위한 아밀로이드 플라크 결합 분자가 있다. 생물활성물질 또는 화학활성물질의 예로는 또한 합성 중합체, 예컨대 폴리아미노산, 폴리올, 폴 리아민, 폴리산, 올리고뉴클레오티드, 아보롤, 덴드리머 및 아프타머가 있다.
<163> 본 발명의 일 실시예로서 , 생물활성물질 또는 화학활성물질은 나노입자, 항 체 (예를 들면, 뉴트로스펙트 (NeutroSpect;등록상표), 제발린 (Zevalin; 등록상표) 및 해르셉틴 (Herceptin; 등록상표) 단백질 (예를 들면, TCII, HSA,
<164> 아넥신 및 Hb), 펩티드 (예를 들면, 옥트레오티드, 봄베신, 뉴로텐신 및 안지오텐 신), 질소 -함유 단순 또는 복합 탄수화물 (예를 들면, 글루코사민 및 글루코스), 질소 -함유 비타민 (예를 들면, 비타민 A, Bl, B2, B12, C,D2, D3, E, H 및 K), 질 소 -함유호르몬 (예를 들면, 에스트라디올, 프로게스테론 및 테스토스테론), 질소- 함유활성 제약 (예를 들면, 샐레콕시브또는 다른 질소 -함유 NSAIDS, AMD3100, CXCR4 및 CCR5 길항제) 및 질소 -함유 스테로이드 중에서 선택될 수 있다.
<165> 상기 언급된 바와 같이, 본 발명의 여러 실시예에서는 다수의 생물활성물질 또는 화학활성물질를 갖는 컨쥬게이트를 포함할 수 있다. 예를 들면, 특정 표적 조 직, 기관수용체 또는 다른 생물학적으로 발현된 조성물에 대한 특이성올 증가시키 기 위해, 다수의 생물활성물질 또는 화학활성물질이 사용될 수 있다. 이러한 경우 에, 생물활성물질 또는 화학활성물질은동일하거나상이할 수 있다. 예를 들면, 단 일 컨쥬게이트는 목적하는 항원 또는 합텐에 대해 지시된 다수의 항체 또는 항체 단편을 보유할 수 있다. 통상적으로, 컨쥬게이트에 사용되는 항체는 목적하는 항원 또는 합텐에 대해 지시된 모노클로날 항체 또는 항체 단편이다. 따라서, 예를 들면, 컨쥬게이트는 목적하는 에피토프에 대한 특이성올 가져 목적하는 부위에서 컨쥬게이트의 농도를 증가시키는 둘 이상의 모노클로날 항체를 포함할수 있다. 이 와유사하게 독립적으로, 컨쥬게이트는각각 동일한 표적 조직 또는 기관 상의 다 른 부위에 대해 표적화된 둘 이상의 상이한 생물활성물질 등올 포함할수 있다. 이 러한 방식으로 다수의 생물활성물질 또는 화학활성물질올 사용하면 컨쥬게이트는 유리하게는 표적 조직 또는 기관의 여러 영역에 집중되며, 이는 잠재적으로 치료 처치의 효과를 증가시킨다. 또한, 컨쥬게이트는 비 -표적 침착을 최소화시키면서 목 적하는 치료 및 /또는 진단 결과를 가장 잘 달성하는 표적 조직 또는 기관에 컨쥬게 이트가 집중되도록 설계된 소정 비율의 생물활성물잘또는 화학활성물질을 가질 수 있다.
<166> 본 발명의 또 다른 양태에 따르면, 1) 상술한본 발명의 테트라아자 거대고 리 화합물을 제조하는 단계, 2) 제조된 테트라아자 거대고리 화합물에 생물활성물 질 또는 화학활성물질을 결합시키는 단계, 및 3) 상기 테트라아자 거대고리 화합물 에 금속원소를 배위결합시켜 착물을 형성하는 단계를 포함하여 컨쥬게이트를 제조 하거나, 상기 2), 3)단계를 바꾸어 컨쥬게이트를 제조할 수 있으나 가장 바람직하 게는상기 1), 2), 3)단계가 순차적으로 수행된다. 이 경우상술한 바와 같이 상기 착물형성단계를 고온이 아닌 30 ~ 6(rc에서 수행할 수 있으므로 생물활성물질 또는 화학활성물질의 변성을 막올 수 있어 후술하는 치료제, 진단제 및 조영제로서 다양 하게 활용될 수 있다.
<167> 본 발명의 또 다른 양태에 따르면, 본 발명의 컨쥬게이트 및 제약상 허용되 는 담체를 포함하는 제약조성물을 제공한다. 구체적으로 본 발명의 제약 조성물은 제약상 허용되는 담체에 분사된, 금속과 착물을 형성한 컨쥬게이트를 포함한다. 제 약상 허용되는 담체 (또한, 당업계에 부형제, 비히클, 보조제, 아주반트 또는 회석 제로 알려져 있음)는 통상적으로 제약상 비활성인 물질이고, 조성물에 적합한 경도 또는 형태를 부여하고, 컨쥬게이트의 치료 또는 진단효능을 감소시키지 않는다. 담 체는 일반적으로 포유동물, 특히 인간에게 투여되었을 때 허용되지 않는 역반응, 알레르기성 반웅 또는 다른 적절하지 못한 반응을 생성하지 않는다면 "제약상 또는 약리학상 허용되는" 것으로 간주된다.
<168> 제약상 허용되는 담체의 선택은 적어도 부분적으로는 목적하는 투여 경로에 영향을 받는 경향이 있다. 일반적으로, 본 발명의 금속제약조성물은 표적 조직이 투여 경로를 통해 접근가능한 한 임의의 투여 경로에 사용되도록 제제화될 수 있다. 예를 돌면, 적합한투여 경로로는 경구, 비경구 (예를 들면, 정맥내, 동맥내, 피하, 직장, 피하, 근육내, 안와내, 낭내, 척수내, 복막내 또는 흉골내), 국소 (비강, 경피, 안내), 방광내, 수막강내, 내장, 폐, 임파선내, 강내, 질, 경요 도, 피내, 귀, 유방내, 구강 동소 (同所), 기관내, 병소내, 경피적, 내시경, 경점 막, 설하 및 장 투여 등이 있다.
<169> 본 발명의 제약조성물에 사용하기 위한 제약상 허용되는 담체의 예는 당업 자에 공지되어 있으며, 다수의 요인에 기초하여 통상의 담체를 선택할수 있다. 본 발명의 제약조성물은 종양, 심장질환, 뇌질환 또는 골절에 효과적이나 이에 제한되 지 않으며 목적에 맞추어 적절한 생물활성물질 및 방사성 금속을사용할 수 있다. <170> 본 발명에 사용하기 위한 다른 제약상 허용되는 용매는 당업자에게 공지되어 있으며, 문헌 [The Chemotherapy Source Book (Williams & ffilkens Publishing)] 등을 참조할 수 있다.
<171> 본 발명의 제약 조성물의 투여에 사용되는 투여량 및 처방은 질환의 진단 또 는 치료에 있어 숙련된 자에 의해 용이하게 결정될 수 있다. 컨쥬게이트의 투여량 은 수혜자의 연령, 성별, 건강 및 체중, 수반되는 치료의 종류, 만약 있다면 치료 횟수, 및 목적하는 효과의 특성에 따라 달라질 것으로 이해된다. 임의의 투여 방식 에 있어, 전달되는 컨쥬게이트의 실제량 뿐만 아니라 본원에 기재된 유리한 효과를 달성하는데 필요한 투여 계획은 또한 부분적으로는 컨쥬게이트의 생체이용가능성, 치료 또는 진단되는 장애, 목적하는 치료 또는 진단 투여량, 및 당업자에게 명백할 것인 다른 요인과 같은 요인에 따라 달라질 것이다. 본 발명에 있어서 동물, 특히 인간에게 투여되는 투여량은 동물에서 적당한 기간에 걸쳐 목적하는 치료 또는 진 단 반웅을 나타내기에 층분해야 하며 바람직하게는 약학적 조성물의 투여량 또는 복용량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하며, 복용하는 경우 성인을 기준으로 1일 20 ~ 200 mg을 1회 내지 수회에 나누어 복용하는 것이 바람직하다.
<172> 적합한 양의 방사성을 갖는 본 발명에 의해 제공되는 방사성 동위원소 표지 된 신티그램 촬영 영상화제가 제공된다. 진단 방사성 착물 형성에 있어, 일반적으 로는 약 0.01 밀리퀴리 (mCi)/mL 내지 100 mCi/mL농도의 방사성을 함유하는 용액 에서 방사성 착물을 형성하는 것인 바람직하다. 일반적으로, 투여되는 단위 투여량 은 약 0.01 mCi 내지 약 100 mCi, 바람직하게는 약 1 mCi 내지 약 30 mCi의 방사성 을 갖는다. 단위 투여량으로 주입되는 용액은 약 0.01 mL 내지 약 10 mL이다. 투여 에 적절한 방사성 동위원소 표지된 컨쥬게이트의 양은 빠르게 제거되는 컨쥬게이트 가 덜 빠르게 제거되는 것 보다 높은 투여량이 투여될 필요가 있을 수 있다는 점에 서 선택된 컨쥬게이트의 분배 프로파일에 따라 달라진다. 생체내 분배 및 국지화는 투여 후의 적절한 시점, 비 -표적 조직에서의 제거 속도에 대한 표적 부위에서의 축 적 속도에 따라 통상적으로는 30 분과 180분 사이에 표준 신티그램촬영 기술에 따 라 추적할 수 있다.
<173> 통상적으로, In-Ill 진단 투여량은 3 내지 6 mCi인 반면, 통상적인 Tc-99m 투여량은 5내지 30 mCi이다. 일반적으로 , 방사성제약의 방사선치료 투여량은 종양 및 주사 주기 횟수에 따라 크게 달라진다. 예를 들면, Y— 90의 누적 투여량은 약 100 내지 600 mCi (20 내지 150 mCi/투여량) 범위인 반면, Lu-177의 누적 투여량은 약 200 내지 800 mCi (50 내지 200 mCi/투여량) 범위이다.
<174> 본 발명의 또 다른 양태에 따르면 , 본 발명의 컨쥬게이트를 포함하는 조영제 및 방사성 치료제를 제공한다. 본 발명의 바람직한 구현예에 따르면, 상기 조영제 는 초음파, 컴퓨터단층촬영 (computed tomography: CT) 조영제, 자기공명영상 (magnetic resonance imaging: MRI) 조영제, 단일 광자 방출 컴퓨터 단충촬영 (Single Photon Emission Computed Tomography: SPECT) 또는 양전자방출단층영상촬 영 (positron emission tomography: PET) 조영제이다.
<!75> 본 발명의 조영제를 이용하여 PET 및 MR 이미지를 모두 얻을 수 있다. 이 러한 특징은, PET 및 MR 이미징의 장점을 모두 취할 수 있도록 하며 결국, PET의 우수한 민감도 및 높은 일시적 해상도와 MR의 높은 공간 해상도가 반영된 이미지를 동시에 얻을 수 있다. PET 이미징 방법 및 장치는, 미국 특허 제 6, 151, 377호, 제 6,072,177호 제 5,900,636호, 제 5, 608,221호, 계 5,532,489호 제 5,272,343호, 및 제 5,103,098호에 기재되어 있으며, 상기 특허 문헌은 본 명세서에 참조로서 삽입된 다. 또한, SPECT 이미징 방법 및 장치는, 미국 특허 제 6,115,446호, 게 6,072,177 호, 게 5,608,221호, 제 5,600,145호, 게 5, 210, 421호, 및 게 5, 103,098호에 개시되어 있으며 , 상기 특허 문헌은 본 명세서에 참조로서 삽입된다.
<176> 본 발명의 컨쥬게이트 또는 배위결합 화합물에 형광 및 광학 물질이 결합되 는 경우 광학 이미징 (optical imaging and spectroscopy)에 사용될 수 있다. 본 발명에 의하여 제조된 화합물을 이용하여 광학 이미지를 얻는 경우, 바람직하게는 발광, 형광, 체렌코프 발광 또는 화학발광 물질과 결합될 수 있다. 상기 형광 물 질의 예는, 플루오로세인, 로다민, 루시퍼 앨로우, B-파이토에리쓰린, 9-아크리딘 이소티오시아네이트, 루시퍼 엘로우 VS, 4-아세트아미도 -4'-이소티오-시아나토스틸 벤 -2,2 '—다이설폰산 , 7-다이에틸아미노 -3-(4' -이소티오시아토페닐) -4—메틸쿠마린, 석시니미딜 -파이렌부티레이트, 4-아세트아미도 -4'-이소티오시아나토스틸벤 -2, 2'-다 이설폰산 유도체, LC™-Red 640, LC™-Red 705, Cy5, Cy5.5, 리사민, 이소티오시아 네이트, 에리쓰로신 이소티오시아네이트, 다이에틸렌트리아민 펜타아세테이트, 1- 다이메틸아미노나프틸 -5-설포네이트, 丄 -아닐리노 -8-나프탈렌 설포네이트, 2-소티토 우이디닐 -6-나프탈렌 설포네이트, 3-페닐 -7-이소시아나토쿠마린, 9-이소티오시아나 토아크리딘트, 크리딘 오렌지 9-이 (소티 (2-벤족사조일릴)페닐)멜레이미드 70족사디 아졸, 스틸벤, 파이렌, 이벤도체, 형광 물질올 포함한 실리카, 노 입자, Π/IV족 반도체 양자점 , ΙΠ/V족 반도체 양자점, IV족 반도체 양자점 , 또는 이다성분 혼성 구조체를 포함하지만 이에 제한된 에아니렌트리아민 펜타아상기 광학 물질 에금, 노 입자, 에 노 입자, 또는 이들의 다성분 흔성 구조체를 포함하나 이에 제한되는 것은 아니다. 광학 이미징의 일반적인 내용은 미국 특허 제 5,650,135호에 개시되어 있다.
<177> 또한, 본 발명의 컨쥬게이트 또는 배위결합 화합물에 X-ray조영 효과를 나 타내는 다양한 물질 (예: 바륨 설페이트, 요오드, 요오드를 포함하는 유도체, 또는 이들의 다성분 흔성 구조체)과 결합되어 CT 이미지를 함께 얻을 수 있으며 CT 이미 지를 얻는 경우, 미국 특허 제 6, 151,377호, 제 5,946,3기호, 제 5,446, 799호, 제 5,406, 479호, 제 5, 208,581호, 및 계 5,109ᅳ 397호에 개시된 방법에 따라 실시할 수 있다.
<178> 또한, 상기 본 발명의 컨쥬게이트 또는 배위결합 화합물은 초음파 검사용 진 단제 (예: 마이크로버블 등)와 결합되어 초음파 검사에도 사용될 수 있다.
<179> 상술한 바와 같이, 본 발명의 컨쥬게이트 또는 배위결 바 화합물을 포함하 는 조영제는 기본적으로 이미징을 가능하게 하며, 생물활성물질 또는 화학활성물질 에 의해 화학적 /생물학적으로 다른 기능 (예컨대, 세포 추적, 암 치료)을 더 수행 할 수 있다. 예를 들어, 암세포에 특이적으로 결합하는 항체를 본 발명의 킬레이 트에 결합시키는 경우에는 암 특이적인 이미징올 가능하게 한다.
<180> 예컨대, 암세포의 아폼토시스를 일으키는 약물을 본 발명의 컨쥬게이트에 결 합시키는 경우에는 이미징과 치료를 동시에 할 수 있게 된다.
<181> 본 발명의 조영제에 표지를 하는 경우, 바람직한 표지 물질의 예는 형광단 [ 예컨대, 플루오리신 (fluorescein), 피코에리트린 (phycoerythr in), 로다민, 리사 민 (lissamine), 그리고 Cy3와 Cy5 (Pharmacia)], 발색단, 화학발광단, 자기입자, 방사성동위원소, 매스표지, 전자밀집입자, 효소 (알칼린 포스파타아제 또는 호스래 디쉬 퍼옥시다아제), 조인자, 효소에 대한 기질, 중금속 (예컨대, 금) 그리고 항체, 스트랩타비딘, 바이오틴, 디곡시게닌과 킬레이팅기와 같은 특정 결합 파트너를 갖 는 햅텐을 포함하나, 이에 한정되는 것은 아니다ᅳ 표지는 형광, 방사능, 발색 측 정, 중량 측정, X-선 회절 또는 흡수, 자기, 효소적 활성, 매스 분석, 결합 친화 도, 흔성화 고주파, 나노크리스탈에 의하여 검출할 수 있는 시그널을 제공한다. 【발명의 실시를 위한 형태】
<182> 이하 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 본 발 명의 범위가 하기 실시예의 내용으로 한정되는 것은 아니다.
<183> 별도로 기재되어 있지 않다면, 시작 물질 (starting materials)은 상업제품 제조업자에서 공급받은 그대로 사용하였다. 플래쉬 크로마토그래피 (Flash chromatography)는 실리카 겔 (silica gel, 70-230 mesh)과 알루미늄 산화물 90 액 티브 뉴트럴 (aluminum oxide 90 active neutral ,70-230 mesh)을 이용하여 수행하 였다. 모든 NMR (500 MHz)과 (125MHz) NMR의 spectra는 TMS를 내부표준 (internal standard)으로 쓰면서 CDC13를 이용해 측정하였고 MeCN은 D20 용액의 證 spectra의 제 2 내부표준 (internal standard)으로 사용하였다. Mass spectra (MS)는 fast atom bombardment source (FABMS)와 electron spray ionization source (ESIMS)에서 획득하였다. 모든 ESIMS spectra는 MeOH를 용매로 사용하여 이행되었 다. 저해상도와 HRMS-FAB는 한국 대구에 설립된 한국기초 과학 연구소에서 획득하 였다. 대량 용매 제거는 저압력 회전증발공정에 의해 수행되었고, 남아있는 용매 제거는 진공펌프를 사용하였다. 모든 반웅물과 용매는 Sigma-Aldrich 및 Fluka사 에서 구입하였다. 사이클람 (Cyclam)과 사이클렌 (cyclen)은 CheMatech와 Marocyclics에서 구입하였다.
<184> <실시예 1> 4,10-비스 (카복시메틸 )-1,4,7,10-테트라아자비시클로 [5.5.3]
펜타데칸 ' 2TFA(PCB-D02A)[4,10-Bis(carboxyinethyl)-l,4,7,10-tetraazabicyclo[5.5
.3]pentadecane .2TFA](6 · 2TFA, 이하 TCB-D02A' '라 함)의 합성
<185> [반웅식 1]
Figure imgf000041_0001
98% 72% 3 97%
Figure imgf000041_0002
PCB-D02A
Overall yield = 57%
<186>
<187> 1-a) 1,7-비스- (벤질록시카보닐)—1,4,7,10, 테트라아자시클로도데칸 [l,7_Bis- (benzy 1 oxycar bony 1 )-1,4,7, 10, tetraazacyclododecane] (2)의 합성
<188> 상기 반웅식 1을 참조하면 아이스 수조에 있는 사이클렌 (l)(20g, 116.1
圍 ol)에 벤질 클로로포르메이트 (benzyl chloroformate) (34.32mL, 41.59g,
243.8mmol)를 방울단위로 소량씩 첨가하였다. 첨가반웅이 완전하게 끝나면 혼합물 이 실내온도에서 10시간동안 교반하면서 풍부한 만큼의 고체를 형성시켰다. 흰 고 체를 얻기 위해서 저압력에서 용매를 증발시킨 후 에테르 (200mL)를 첨가하였다. 고체는 거른후, 에테르 (2 X 50mL)로 세척하고, 45 °C 진공에서 건조되어서 59.01g (99%)의 디하이드로클로라이드 염 (dihydroloride salt)이 흰 고체로 석출되었다. 3M NaOH(250mL)를고체에 첨가하여 유리염기를 수득하였다. 수성상은 클로로포름 (3 X 200mL)으로추출되었다. 결합된 추출물은 소금물로 수세되고 MgS04로 건조되었다. 용매는 회전 증발공정을 통해 제거되었고 잔여물은 몇시간동안 진공하에 건조되어, 회전이 끝났을 때는 고체화되는 투명한 기름 (1,7-비스- (벤질록시카보닐) -1,4, 7, 10, 테트라아자시콜로도데칸 (2)을 얻었다.
<189> H NMR (400 MHz , CDC13): d 7.52-7.32(m, 10H) , 5.18(s, 4H), 3.83-3.65(m, 8H),
3.10— 2.83(m, 8H); NMR (100.6 MHz, CDC13): d 156.5, 136.3, 136.2, 129.0,
128.8, 128.7, 128.4 128.3, 128.2 68.1, 68.0, 50.9, 50.8, 50.6, 50.5, 50.3, 50.0, 49.6, 49.3.
<i90> 1-b) 4,10, 비스- (벤질로옥시카보닐 )-1,4,7,10-테트라아자비시클로 [5.5.3]펜타데칸
[4, 10, Bis-(benzyloxycarbonyl)-l,4,7, 10-tetraazabicyclo[5.5.3]pentadecane] (3)의 합성
<191> 상기 1-a단계에서 수득한 2의 용해액 (5.18g, 11,76面 ol), 1,3_프로판디올 디 -p-토실레이트 (1,3-propanediol di-p-tosylate) (4.52g, 11.76 mmol) 및 무수 Na2C03 (2.87, 27.05 mmol)를 무수 아세토니트릴 (200mL) 내에서 6일 동안환류하였 다. 용매는 반웅 혼합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성된 밤색의 술러리는 celite pad로 거른 후 C¾C12 (2 x 20mL)로 세척하였다. 용 매는 낮은압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼올 갖 는 컬럼 크로마토그래피를 통하여 정제하고, C¾CL2/methanol (20:1)로 용출시켜 엷은색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20M NaOH (lOOraL)에서 용해시켰다. 8시간동안교반한후에, 남아있는 용액이 CHC13 (3
X lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었 다. 용매는 저기압에서 증발하여 흰색의 가루 (3)가형성되었다. (수득를: 4.07g (72%))
<192> H NMR (500 MHz, CDC13): d 7.38-7.30(m, 10H) , 5.30(brs, 2H), 5.09(brs, 2H), 4.10(brs, 2H), 3.9(brs, 2H), 3.81-2.62(m, 16H) , 1.55(s, 2H); C NMR (125 MHz, CDC13): d 155.3, 135.6, 128.69, 128.64, 67.6, 57.1, 56.1, 54.7, 54.6, 54.4,
48.3, 47.8, 46.9, 18.9, 18.8 ; HRMS (FAB) calculated for C27H37N404 , 481.2815
[(M+H)+] , found: 481.2816 [(M+H)+];
<i93> 1-c) 1,4,7,10-테트라아자비시클로 [5.5.3]펜타데칸 [1, 4, 7, 10- tetraazabicyclo[5.5.3]pentadecane] (4)의 합성
<194> 합성물 3(3.67 g, 7.64圆 ol)을포함하는 에탄올 용액 (50mL)에 10% Pd/C
(1.10 g)를 첨가하였다. 그 뒤 상기 혼합물은 H2(g)분위기 아래에서 10시간동안실 내온도에서 교반하였다. 반응흔합물은 celite pad를 통해 거른 후 에탄올 (2 x 10mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (4)가 생성되었다. (수득를: 1.57 g (97%))
<i95> H NMR (400 MHz, CD30D): d 3.20-3.16(m, 8H) , 2.96-2.86(m, 12H) , 2.00-1.96(m, 2H); 13C NMR (100.6 MHz, CD30D): d 57.9, 55.1, 47.5, 20.7; HRMS (FAB) calculated for CiiH25N4 ) 213.2079 [(M+H)+], found: 213.2083 [(M+H)+];
<196> 1-d) 4, 10-비스 (카보 -터트 -부특시메틸 )-1,4, 7, 10-테트라아자비시클로 [5.5.3]펜타데
¾[4, 10-Bis(carbo-tert-butoxymethyl)-l,4,7, 10-tetraazabicyclo[5.5.3]pentadeca ne] (5)의 합성
<197> 상기 1-c단계에서 제조된 합성물 4를 포함하는 무수 아세토니트릴 (50mL)용 액 (1.2g, 5.65隱 ol)에 Ν,Ν-디이소프로필 아민 (Ν,Ν-di isopropylethyl amine) (4.92 mL, 3.65 g, 28.25隱 ol) 및 t_부틸 브로모아세테이트 (t-butyl
bromoacetate) (1.83mL, 2.42g, 12.43 mmol)을 첨가하였다.반웅 흔합물은 천천히 60°C의 온도에서 가열하면서 , 18 시간동안교반하였다. 저기압에서의 용매를 증발 시킨 후 나머지의 물질은 물 (50mL)에 용해시켰다. 수성용액은 메틸렌 클로라이드 (3 X 50mL으로 추출되었고, 결합된 추출물은 소금물로씻고 MgS04로 건조시키고, 그리 고 엷은 기름이 형성되도록 농축하였다. 기름은 알루미나 (basic)의 컬럼을 갖는 크 로마토그래피로 정제하였고 메틸클로라이드:메탄을 (20:1)로 처리하여 고체화되는 투명한 기름을 추출하였다. (수득률: 1.12 g (85%))
<198> H NMR (500 MHz, CDC13): d 3.28(s, 4H) , 3.26— 3.25(m, 4H) , 3.08-2.88(m, 16H), 1.92-1.86(m, 2H), 1.35(s, 18H); C NMR (100.6 MHz, CDC13): d 170.7, 82.0, 57.4, 55.8, 55.3, 51.8, 28.5, 21.4; HRMS (FAB) calculated for C23H45N404,
441.3441 [(M+H)+], found: 441.3438 [(M+H)+].
<199> 1-e) 4,10-비스(카복시메틸)-1,4,7,10-테트라아자비시클로[5.5.3]
펜타데칸 · 4HCl(carboxymethyl)-l,4,7,10-tetraazabicyclo[5.5.3]pentadecane.4HCl (6a.4HCl) (6)의 합성
<200> 상기 화합물 5(1.12 g, 2.54隱 ol) 를 6N HC1 (60 raL)에 녹인 후 100°C에서
24시간동안 천천히 가열하였다. 모든 용해액을 증발시킨 후 건조물을 에탄올 /디에 틸 에테르에서 고체형상 (6)으로 재결정화하였다. (수득률 1.18g (98%))
<20i> H NMR (400 MHz, D20): d 4.10(s, 4H), 3.59(s, 8H) , 3.5-3.2(m, 12H), 2.14- 2.08(m, 2H); NMR (100.6 MHz, D20): d 172.5, 59.5, 54.4, 53.9, 5.8, 18.3; HRMS (FAB) calculated for C15H29N404, 329.2189 [(M+H)+], found: 329.2189
Figure imgf000044_0001
<202> 결국 본 발명의 한 양태에 따르면 상기 실시예 1에서 프로필렌 (propylene) 교차가교된 D02A (PCB-D02A)의 합성법은 최초 사이클렌에서 시작하여 위치선택적 트랜스 -알킬레이션 (trans-alkylation)과 클로로포름 용매하에서 2당량의 벤질 클로 로포메이트 (benzyl chloroformate)를 이용하여 상기 합성물 2를 만들던 합성절차를 한단계 끌어올렸다. 침전물 형성으로 화학반웅은 빠르게 진행되었다. 그러므로, 반 웅이 끝났을 때, 디하이드로클로라이드 염 형태의 다량의 di-Cbz-cyclen이 생성되 었다. 유리 염기는 (free base) 3M NaOH의 첨가로 수득할 수 있었다. Trans- di substituted eye 1 en [ 1 , 7-Bi s-( benzyl oxycar bony 1 )-1,4,7, 10- t et r aazacyc 1 ododecane , 2]이 만들어진 후 두개의 근접하지 않은 (non-adjacent) 질소에 가교되는 프로필렌 (propylene)은 1,3-프로판다이올의 다이토실 에스테르 (ditosyl ester)가 소디움 카보네이트 (sodium carbonate)를 포함하는 MeCN 용매하 에 환류하여 첨가하였다. 이로 인하여 가교결합된 화합물 3의 토실레이트 염이 생 성되었다. 토실레이트 카운터 음이온 제거를 위고 유리 염기형상의 화합물 3의 72% 수율을 감당하기 위해 20% NaOH를 첨가하였다.
<203> 상기 합성중간체 3은 프로필렌 교차가교된 사이클렌 (cyclen) 4의 생산올 위 한 EtOH 용매하에서 촉매 수소화반웅으로 인해 보호기가 제거되었다. 전구체인 프 로필렌 교차가교된 사이클렌[1,4,7,10 6^33231)^ ^0[5.5.3] pentadecane]은 t- butyl bromoacetate와 이중알킬화 (dialkylated) 되어 편리하게 다를 수 있고 정량 화할 수 있을 만큼의 bis(t-butyl ester) 펜던트 암 (pendant arm)이 85%의 좋은 수 득를로 생산되었다. 이 합성중간생성물 5는 디클로로메탄 (dichloromethane) 내부의 트리플루오로아세트산 (trif luoroacetic acid)으로 보호기가 제거되어 bis(trifluoroacetic acid)염 (반웅식 1)의 형상으로 PCB-D02A 6이 만들어졌다. 이 런 본 발명의 한 양태에 따른 PCB-D02A의 합성절차는 전체 수득률 (57%), 간단한 합성방법, 및 선택적 합성절차 등을 고려할 때 종래의 교차가교된 사이클렌의 합성 방법에 비하여 현저히 개선된 것이다.
<실시예 2> 4,10—비스 (카복시메틸 )-1,4, 7,10-테트라아자비시클로 [5.5.3]
펜타데칸 .2TFA(PCB-D02A)[4,10-Bis(carboxTmethyl)-l,4,7,10-tetraazabicyclo[5.5 .3]pentadecane - 2TFA](6 - 2TFA, 이하 "PCB-D02A"라 함)의 합성
[반웅식 2]
Figure imgf000045_0001
Overall yield = 59%
2-a) 1,7-비스- (벤질옥시카보닐) -4ᅳ 1-비스 (카보 -터트 -부톡시메틸 )-1,4, 7, 10-테트라 아자시클로도데칸 [l,7-Bis-(benzyloxycarbonyl)—4,10-Bis(carbo-tert-butoxynethyl )-1,4,7, 10-tetraazacyclododecane] (7)의 합성
상기 1-a단계에서 제조된 합성물 2를 포함하는 무수 아세토니트릴 (150mL) 용액 (6.84 g, 15.53 mmol)에 Ν,Ν-디이소프로필 아민 (N,N-di isopropylethyl amine) (13.52 niL, 10.03 g, 77.63 mmol) 및 t—부틸 브로모아세테이트 (t-butyl
bromoacetate) (1.83mL, 2.42g, 12.43 mmol)을 첨가하였다.반응 혼합물은 천천히 60°C의 온도에서 가열하면서, 10 시간동안 교반하였다. 저기압에서의 용매를 증발 시킨 후 나머지의 물질은 Na2C03(100mL)에 용해시켰다. 수성용액은 메틸렌 클로라이 드 (3 X lOOmL)로 추출되었고, 결합된 추출물은 소금물로 씻고 MgS04로 건조시키고, 그리고 엷은 기름이 형성되도록 농축시키고 디에틸에테르로 재결정시켜 고체화합물 7을 제조하였다. (수득를 : 9.55 g, 92%)
H NMR (500 MHz, CDC13): d 7.26-7.19(m, 10H), 5.04(s, 4H) , 3.34-3.05(m,
12H),2.9-2.6(m, 8H), 1.35(s, 18H); 匿 (125 MHz, CDC13): d 170.4, 156.3,
136.7, 128.3, 127.8, 127.7, 80.8, 66.8, 55.8, 54.2, 46.9, 46.5, 28.1; HRMS (FAB) calculated for C36H51N408 , 669.3863 [(M+H)+], found: 669.3860 [(M+H)+]; 2-b) 1,7-비스 (카보 -터트 -부특시메틸 )-1,4,7,10-테트라아자시클로도데칸
[ 1 , 7-B i s ( car bo-t er t -but oxyme t hy 1 ) -1 , 4 , 7 , 10-t et r aazacyc 1 ododecane ] (8)의 합성 합성물 7(8.52 g, 12.74 mmol)을 포함하는 에탄올 용액 (130mL)에 10% Pd/C
(2.6 g)를 첨가하였다. 그 뒤 상기 흔합물은 ¾(g)분위기 아래에서 12시간동안실 내온도에서 교반하였다. 반웅 흔합물은 celite pad를 통해 거른 후 에탄을 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 8이 생성되었다. (수득를 : 4.85g, 97%) H NMR (500 MHz, CD30D): d 3.44(s, 4H) , 2.91(s, 16H) , 1.47(s, 18H); 賺
(125 MHz, CD3OD): d 173.0, 82.8, 57.4, 52.2, 46.5, 28.5; HRMS (FAB) calculated for C20H41N4O4, 401.3128 [(M+H)+], found: 401.3132 [(M+H)+]; ' 2-c) 4, 10-비스 (카보 -터트 -부톡시메틸 )-1,4,7,10-테트라아자비시클로 [5.5.3]펜타데 칸 [4, 10—Bis (car bo— tert— butoxymethyl )-1,4,7, 10-tetraazabi eye lo [5.5.3]pentadeca ne] (5)
상기 2-b단계에서 수득한 8의 용해액 (4.2 g, 10.48 mraol), 1,3-프로판디올 디 -p—토실레이트 (1,3-propanediol di-p-tosylate) (4.03 g, 10.48隱 ol) 및 무수 Na2C03 (2.56 g, 24.10隱 ol)를 무수를루엔 (200mL) 용매하에서 6일 동안 환류하였 다. 용매는 반웅 흔합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성된 밤색의 슬러리는 celite pad로 거른후 CH2C12 (2 x 20mL)로 세척하였다. 용 매는 낮은압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖 는 컬럼 크로마토그래피를 통하여 정제하고, CH2CL2/methanol (20:1)로 용출시켜 엷은색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20% NaOH (lOOmL)에서 용해시켰다. 4시간 동안 교반한 후에, 남아있는 용액이 CHC13 (3 lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었 다. 용매는 저기압에서 증발하여 흰색의 가루 (5)가 형성되었다.
<216> 수득률 : 3.23 g, 70%
<2i7> H 腿 (500 MHz, CDC13): d 3.28(s, 4H), 3.26-3.25(m, 4H), 3.08-2.88(m, 16H),
1.92-1.86(m, 2H) , 1.35(s, 18H); NMR (100.6 MHz, CDC13): d 170.7, 82.0, 57.4, 55.8, 55.3, 51.8, 28.5, 21.4; HRMS (FAB) calculated for C23H45N404,
441.3441 f(M+H)+], found: 441.3438 [(M+H)+].
<2i8> 2-d) 4, 10-비스 (카복시메틸 )-1,4,7, 10-테트라아자비시클로 [5.5.3]
펜타데칸 · 2TFA [ , 10-b i s- ( car boxyrae t hy 1 ) - 1 , 4 , 7 , 10- 1 etraazabicyclo[5.5.3]pentad ecane.2TFA](6)의 합성
<2i9> 상기 2-c 단계에서 합성된 5(1.25g. 2/84 隱 ol)가 1:1의 비율로 혼합된
(vol: vol) CF3CO2H (TFA)와 CH2C12 (45mL)의 흔합용액에 용해되었다. 흔합물은 실내 온도에서 24시간동안 교반되었다. 용매는 저기압에서 제거되고 기름진 잔여물이 형 성되고 Et20로 처리하여 최종 흰고체 (6)를 제조하였다. (질량계산 되었을 때 2 당량 의 TFA)
<220> 수득률 1.55g, 98%
<22i> ). H 丽 (400 MHz, D20): d 4.10(s, 4H), 3.59(s, 8H), 3.5-3.2(m, 12H),
2.14-2.08(m, 2H); NMR (100.6 MHz, D20): d 172.5, 59.5, 54.4, 53.9, 5.8, 18.3; HRMS (FAB) calculated for C15H29N404, 329.2189 [(M+H)+], found: 329.2189 [(M+H)+].
<222> <실시예 3> 4, 11-비스 (카복시메틸 )-1ᅳ4,8, 11-테트라아자비시클로 [6.6.3]
헵타데칸 · 2TFA(PCB-TE2A) [4 , 11-Bi sCcarboxymethyl )-1,4,8, 11-tet raazabi eye 1 o[6.6 .3]heptadecane · 2TFA] ( 12 · 2TFA, 이하 "PCB-TE2A 라 함)의 합성
Figure imgf000048_0001
Figure imgf000048_0002
PCB-TE2A
Overall yield = 50%
<224>
<225> 3-a) 1 ,4, 8, 11-테트라아자시클로 [9.3.1.14'8] 핵사데칸 [l,4,8,ll-Tetraazatricyclo[9.3.1.14'8]hexadecane] (10)의 합성
<226> 반웅식 3을 참조하면 2당량의 포름알데히드 (15.1 mL, 37% in water)에 신속 히 0°C의 사이클람 (9) (20.3g, 200mL안에 0.1 mol)을 추가하였다. 반응혼합물을 실 내은도에서 2시간 동안 교반하였다. 흔합물이 0-5 °C정도로 식혀졌을 때 흰 침전물 이 발생하여 이를 거른 후, 찬물로 수세하였다 (2 X 10mL). 형성된 흰 고체를
CHCl3(200mL)로 용해한 후, MgS04를 이용해 건조하고 이를 여과하였다. 여과액에서 부터 CHC13는 저압에서 증발하여 흰 고체 (10)를 생성하였다. (수득률 : 22.05g, 97%)
<227> H NMR (400 MHz, CDC13): d 5.63-5.60(dt , 2H, J = 10.8 Hz), 3.14-3.12(d, 4H, J
= 9.8 Hz), 2.90-2.87(d, 2H, J = 10.8 Hz), 2.84-8.80(m, 4H), 2.65-2.58(m, 4H). 2.38-2.35(d, 4H, J = 9.9Hz), 2.3-2. Km, 2H), 1.17-1.14(m, 2H); NMR (100.6 MHz, CDC 13): d 69.3, 54.1, 49.8, 20.6.
<228> 3-b) 1,8-비스- (벤질 )-4, 11-디아조니아트리시클로 [9.3.1.14'8]핵사데칸 디브로마이 드 [1,8—Bis一 (benzyl )一 4, 11— diazoniatr icyclo[9.3.1.1 ' ]hexadecane dibromide] (11)의 합성
<229> 상기 화합물 10 (3.17 g, 14.13 mmol)이 포함된 MeCN(50mL) 용액을 2당량의
(equivalent) 벤질브로마이드 (3.36 mL, 4.83 g, 28.26 mmol)에 첨가하였다. 이 반 웅흔합물을 실내온도에서 24시간동안 교반하고, 그 결과 결과물이 침전되었다. 생 긴 하얀 침전물은 여과된 후 MeCN (2 X lOmL)로 세척하고 진공조건에서
건조되었다. 건조물은 THF/물에서 흰 고체 (11)로 재결정화되었다. (수득를 : 7.36 g, 92% )
<230> ¾ NMR (500 MHz, D20): d 7.51(m, 10H) , 5.50(d, 2H) ' 4.65(d, 4H), 4.40(t, 2H),
3.5-3.2(m, 10H), 2.90(d, 4H) , 2.70-2.20(m, 4H), 1.85(m, 2H); NMR (125 MHz, D20): d 135.5, 133.5, 131.9, 128.5, 82.2, 77.0, 63.5, 60.1, 51.5, 48.0, 19.8.
<23i> 3-c) 1,8-비스-(벤질)-1,4,8,11-테트라아자시클로테트라데칸1,8-815-0 ^ 1)-
1,4,8, 11-tetraazacyc lot etradecane (12)의 합성
<232> 3M NaOH용액을 (200mL) 상기 화합물 11 (6.92 g, 12.22 mmol)에
부가하였다. 4시간동안 상온에서 교반한 후 , 용해액은 CHC13 (3 X lOOmL)로 추출하 였고, 결합된 유기상은 소금물로 세척되고, MgS04로 건조되었다. 용매는 저기압상 태에서 증발되어 고체화되는 기름형태의 물질 (10)을 생산하였다.
<233> 수득률 : 4.56 g, 98%
<234> H NMR (400 MHz, CDC13): d 7.25-7.12(m, 10H) , 3.64(s, 4H), 2.67-2.43(m, 18H) ,
1.80-1.74(m, 4H); NMR (100.6 MHz, CDC13): d 137.7, 129.9, 128.5, 127.4, 58".3, 54.1, 51.9, 50.4, 48.1, 26.1; HRMS (FAB) calculated for C24¾7N4,
381.3013 [(M+H)+], found: 381.3014 [(M+H)Y
<235> 3-d) 4 ,11-비스- (벤질 )-1,4,8, 11-테트라아자시클로 [6.6.3]
헵타데칸 [4,ll-Bis-(dibenzyl)—l,4,8,ll—tetraazabicyclo[6.6.3]heptadecane] (13) 의 합성
<236> 12의 용해액 (3.56 g, 9.73 mmol), 1,3-프로관디올 디 -p—
토실레이트(1,3-!)1ᅳ0 3^^01 di-p-tosylate) (3.74g, 9.73 mmol) 및 무수 Na2C03
(2.37g, 22.38 mmol) 를 무수 를루엔 (200mL) 용매하에서 6일 동안환류하였다. 용 매는 반웅 흔합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성 된 밤색의 슬러리는 celite pad로 거른 후 CH2C12 (2 x 20mL)로 세척하였다. 용매는 낮은압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖는 컬 럼 크로마토그래피를 통하여 정제하고, C¾CL2/메탄올 (20:1)로 용출시켜 엷은색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20M NaOH (lOOmL) 에서 용해시켰다. 4시간동안교반한후에, 남아있는 용액이 CHC13 (3 X lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었다. 용매는 저기압에서 증발하여 흰색의 가루 (13)가 되었다. (수득률 : 4.56 g, 69%)
<237> H MR (500 MHz, CDC13): d 7.26-7.14(m, 10H), 3.68-3.65(d, 2H, J = 14 Hz),
3.52-3.49(d, 2H, J = 14 Hz), 3.08-2.51(m, 20H), 1.80(brs, 411), 1.60-1.26(m, 2H) ; 13C NMR (125 MHz, CDC13): d 135.8, 129.8, 128.3, 127.4, 56.8, 56.6,
54.2, 52.8, 47.4, 22.6, 19.9; HRMS (FAB) calculated for C27H41N4, 421.3331
[(M+H)+], found: 421.3333 [(M+H)Y
<238> 3-e) 1,4,8, 11-테트라아자시클로 [6.6.3]
헵타데칸 [l,4,8,ll-tetraazabicyclo[6.6.3]heptadecane] (14)의 합성
<239> 화합물 13(3.23 g, 7.68隱01)을 포함하는 에탄올 (80mL)용액에 2(» Pd(0H)z
(0.97 g)를 첨가하였다. 그 뒤 상기 흔합물은 (g)분위기 아래에서 24시간 동안실 내온도에서 교반하였다. 반웅 흔합물은 celite pad를 통해 거른 후 에탄올 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (14)가 생성되었다.
<240> 수득률 : 1.75 g, 95%
<24i> HRMS (FAB) calculated for C13H29N4, 241.2392 [( +H)+] , found: 241.2397 [(M+H)+].
<242> 3-f) 4,11—비스- (카보 -터트 -부톡시메틸 )-1,4,8,11-테트라아자시클로 [6.6.3]헵타데 칸 [4,11— Bis-(dibenzyl)-l,4,8,ll-tetraazabicyclo[6.6.3]heptadecane] (15)의 합 성
<243> 화합물 14를 포함하는 무수 아세토니트릴 (50mL)용액 (1.2g, 5.65画 ol)에
Ν,Ν-디이소프로필 아민 (Ν,Ν-diisopr opyl ethyl amine) (5.65 mL, 4.19 g, 32.45 mmol) 및 t-부틸 브로모아세테이트 (t-butyl bromoacetate) (2.01 mL, 2.66 g, 13.63 mmol)을 첨가하였다.반웅 혼합물은 천천히 60°C의 온도에서 가열하면서, 10 시간동안교반하였다. 저기압에서의 용매를 증발시킨 후 나머지의 물질은 물 (50mL) 에 용해시켰다. 수성용액은 메틸렌 클로라이드 (3 X 50mL)로 추출되었고, 결합된 추 출물은 소금물로 세정하고 MgS04로 건조시키고, 그리고 엷은 기름이 형성되도록 농 축하였다. 건조물은 알루미나 (basic)의 컬럼을 갖는 크로마토그래피로 정제하였고 메틸클로라이드:메탄올 (20:1)로 처라하여 고체화되는 투명한 기름 15를 추출하였 다.
<244> 수득를: 2.74 g, 90% '
<245> H NMR (500 MHz, CDC13): d 3.26-3.22(d, 4H, J = 17.5 Hz), 3.12-3.09(d, 4H, J =
17.5 Hz), 3.01(brs, 4H) 2.86-2.69(m, 16H) , 1.96(brs, 4H), 1.67— 1.62(m, 2H), 1.43(s, 18H) ; 13C NMR (125 MHz, CDC13): d 169.8, 81.3, 56.2, 55.6, 52.3,
49.1, 27.9, 22.5, 19.6; HRMS (FAB) calculated for C25H49N404, 469.3754 [(M+H)+]
, found: 469.3759 [(M+H)Y
<246> 3-g) 4, 11-비스- (카복시메틸 )-1,4,8, 11-테트라아지비시클로 [6,6,3]헵타데칸 - 2FTA
<247> [4, ll-Bis-(carboxymethyl)-l,4,8, ll-tetraazabicyclo[6.6.3]heptadecane 4HC1
(16a'4HCl)] (16)의 합성
<248> 상기 화합물 15(1.05 g, 2.24隱 ol)를 6N HC1 (60 mL)에 녹인 후 100°C에서
24시간동안 천천히 가열하였다. 모든 용해액을 증발시킨 후 건조물을 에탄올 /디에 틸 에테르에서 고체형상 (16)으로 재결정화하였다. (수득률 1.10 g, 98%)
<249> H NMR (500 MHz, DMS0-d6): d 3.63-3.16(m, 8H) 3.12-2.5(m, 16H) ,
1.85(brs, 4H), 1.68(brs, 2H); NMR (125 MHz, DMS0_d6): d 172.1, 55.3, 54.0, 51.7, 48.6, 48.04, 21.6, 19.2; HRMS (FAB) calculated for C17H33N404 , 357.2502
[(M+H)+] , found: 357.2504 [(匪 /].
<250> <실시예 4> 4, 11-비스 (카복시메틸 )-1,4, 8, 11-테트라아자비시클로 [6.6.3]
헵타데칸 · 2TFA(PCB-TE2A)[4,ll-Bis(carboxyraethyl)-l,4,8,ll-tetraazabicyclo[6.6 .3]heptadecane - 2TFA](12 - 2TFA, 이하 "PCB-TE2A' '라 함)의 합성 [
Figure imgf000052_0001
Overall yield = 62%
4-a) 1, 4,8, 11-테트라아자시클로 [9.3.1.14'8]핵세데칸 (1, 4,8, 11-
Te t r aazat r i eye 1 o [ 9.3.1.14' 8] hexadecane ) (10)의 합성
반웅식 4를 참조하면 2당량의 포름알데히드 (15.1 mL, 37% in water)에 신속 히 0°C의 사이클람 (9) (20.3g, 200raL안에 0.1 mol)올 추가하였다ᅳ 반웅흔합물을실 내온도에서 2시간동안 교반하였다. 흔합물이 0-5 °C정도로 식혀졌을 때 흰 침전물 이 발생하여 이를 거른 후, 찬물로 수세하였다 (2 X 10mL). 형성된 흰 고체를
CHCl3(200mL)로 용해한후, MgS04를 이용해 건조하고 이를 여과하였다. 여과액에서 부터 CHC13는 저압에서 증발하여 흰 고체 (10)를 생성하였다. (수득률 22.05g (97%)) H NMR (400 MHz, CDC13): d 5.63-5.60(dt , 2H, J = 10.8 Hz), 3.14-3.12(d, 4H, J
= 9.8 Hz), 2.90-2.87(d, 2H, J = 10.8 Hz), 2.84-8.80(m, 4H), 2.65-2.58(m, 4H), 2.38— 2.35(d, 4H, J = 9.9Hz), 2.3-2. Km, 2H) , 1.17-1.14(m, 2H); NMR (100.6 MHz, CDCls): d 69.3, 54.1, 49.8, 20.6.
4-b) 1 , 8-비스- (카보-터트-부록시메틸)—4, 11-디아조니아트리시클로 [9.3.1. l ]핵사 데칸 디브로마이드[1,8- 3- :311)0 61"1;—13^0 30^1;1^1)-4,11- diazoniatr icyclo[9.3.1.1 ' ] hexadecane Dibromide] (17)의 합성
상기 화합물 10 (3.56 g, 15.87 mmol)이 포함된 MeCN(lOOmL) 용액올 4당량 의 (equivalent) t_부틸브로모아세테이트 (t— Butylbromoacetate) (9.38 mL, 12.38 g, 63.48 mmol)에 첨가하였다. 이 반웅흔합물을 실내온도에서 24시간동안 교반하 고, 그 결과 결과물이 침전되었다. 생긴 하얀 침전물은 여과된 후 MeCN (2 X 20mL) 로 세척하고 45°C의 진공조건에서 건조되었다. 잔여물은 에탄올에서 재결정되어 흰 색의 고체 (17)가수득되었다. (수득률 9.26 g, 95% )
<258> ¾ MR (500 MHz, DMS0_d6): d 1.48(s, 18H) , 1.76-1.78(d, 2Η, J = 8.5 Hz), 2.35-
2.45(m, 4H), 2.70-2.73(d, 2H, J = 15Hz) , 3.08-3.09(d, 2H, J = 5Hz), 3.24- 3.38(m, 4H), 3.53-3.58(m, 2H) , 3.64-3.66(d, 2H, J = lOHz), 3.79— 3.81(d, 2H, J = 11.5Hz), 4.33-4.38(t, 2H, J = 14Hz), 4.43-4.46(d, 2H, J = 16.5 Hz), 4.59-
4.62(d, 2H, J = 16.5 Hz), 5.23-5.25(d, 2H, J = 9.5 Hz); NMR (125 MHz, DMSO-de): d 163.5, 84.2, 76.5, 59.8, 57.2, 50.6, 47.7, 46.3, 27.5, 19.2; HRMS
(ESI) calculated for C24H47N404, 455.3591 [(M+H)+] , found: 455.3594 [(M+H)+];
Anal. Calcd. For C24H46Br2N404. : C 46.91, H 7.55, N 9.12; Found C 46.63, H 7.74, N 9.21.
<259> 4-c) 1, 8-비스- (카보-터트-부톡시메틸) -1, 4, 8 , 11-테트라아자시클로테트라데칸
[ 1 , 8~Bi s-(cabo~ter t-butoxymethyl )-1,4,8, 11-tetraazacyclotetradecane] (18)의 합성
<260> 3Μ NaOH 용액을 (200mL) 상기 화합물 17 (9.15 g, 14.89 隱 ol)에 부가하였 다. 3시간동안 교반한 후, 용해액은 CHC13 (3 X lOOmL)로 추출하였고, 결합된 유기 상은 소금물로 세척하고, MgS04로 건조하였다. 용매는 저기압 상태에서 증발되어 고 체화되는 기름형태의 물질 (18)을 수득하였다. (수득률 : 6.25 g, 98% )
<26i> H NMR (500 MHz, CDC13): d 3.25(s, 4H), 2.72-2.59(m, 16H), 1.71-1.69(m, 4H) ,
1.37(s, 18H); 13C NMR (125 MHz, CDC13): d 170.43, 80.57, 54.74, 54.13, 52.47, 50.02, 47.59, 28.09, 25.78; HRMS (FAB) calculated for C22H45N404, 429.3441
[(M+H)+], found: 429.3439 [(M+H) +]
<262> 4-d) 4, 11-비스- (카보 -터트 -부톡시메틸 )-1,4,8, 11-테트라아자비시클로 [6.6.3]헵타 데칸 [4,ll-Bis-(carbo-tert-butoxymethyl)-l,4,8,ll- tetraazabicyclo[6.6.3]heptadecane] (15)의 합성
<263> 상기 4-c단계에서 수득한 18의 용해액 (4.68 g, 10.92 隱 ol), 1,3—프로판디 을 디-!广토실레이트(1,3- 0 3^^01 di-p-tosylate) (4.2 g, 10.92 隱 ol) 및 무 수 Na2C03 (2.66 g, 25.12 mmol) 를 무수 를루엔 (220raL) 용매하에서 6일 동안 환류 하였다. 용매는 반웅 흔합물로부터 저압에서 증발시킨 후 C C12 (250mL)를 첨가하 였다. 생성된 밤색의 슬러리는 celite pad로 거른 후 CH2C12 (2 x 30mL)로 세척하였 다. 용매는 낮은압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼 올 갖는 컬럼 크로마토그래피를 통하여 정제하고, C¾CL2/methanol (20:1)로 용출 시켜 엷은색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20% NaOH (lOOmL)에서 용해시켰다. 4시간동안 교반한 후에 , 남아있는 용액이 CHC13
(3 X lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되 었다. 용매는 저기압에서 증발하여 흰색의 가루 (15)가 되었다. (수득률 3.58 g, 70%
) H NMR (500 MHz, CDC13): d 3.26-3.22(d, 4H, J = 17.5 Hz), 3.12— 3.09(d, 4H, J
= 17.5 Hz), 3.01(brs, 4H) 2.86-2.69(m, 16H), 1.96(brs, 4H) , 1.67-1.62(m, 2H), 1.43(s, 18H) ; 13C NMR (125 MHz, CDC13): d 169.8, 81.3, 56.2, 55.6, 52.3,
49.1, 27.9, 22.5, 19.6; HRMS (FAB) calculated for C25H49N4O4, 469.3754 [(M+H)+]
, found: 469.3759 [(M+H)+].
<264> 4-e) 4, 11-비스- (카복시메틸 )-1,4,8, 11-테트라아지비시클로 [6, 6, 3]헵타데칸 · 2FTA <265> [4, ll-Bis-(carboxymethyl)-l,4,8, ll-tetraazabicyclo[6.6.3]heptadecane · 2TFA
](12.2TFA) (16)의 합성
<266> 상기 4-d 단계에서 합성된 15(1.23 g, 2.62 mrao)을 1:1의 비율로흔합된
(vol:vol) CF3CO2H (TFA)와 CH2C12 (45mL)의 흔합용액에 용해시켰다. 혼합물은실내 온도에서 24시간 동안 교반되었다. 용매는 저기압에서 제거되고 기름진 잔여물이 형성되고 Et20로 처리하여 최종 흰고체 (16)를 제조하였다. (질량계산 되었을 때 2 당량의 TFAK수득률 31.505 g, 98%)
<267> H匿 (500 MHz, DMSO-de): d 3.63-3.16(m, 8H) 3.12-2.5(m, 16H) , 1.85(brs, 4H),
1.68(brs, 2H); 13C匿 (125 MHz, DMS0— d6) : d 172.1, 55.3, 54.0, 51.7, 48.6,
48.04, 21.6, 19.2; HRMS (FAB) calculated for C17H33N404, 357.2502 [(M+H)+] , found: 357.2504 [(M+H)Y <268> 결국 선택적 트랜스-이중치환 된 사이클람 (cyclam) 유도체들의 합성에 대한 관심은 지난 몇 년 동안 더더욱 깊어지고 있다. 특히 등가의 킬레이트로 이루어진 육각배위 착물들이 형성될 수 있기 때문에 관심은 더더욱 높아져 왔다. 사이클렌 골격체에 직접적인 트랜스-이증알킬화는 쉽게 이루어지지만, 사이클람의 경우에는 이중치환 생성물을 획득하기가 매우 어렵다. 특히 보호되지 않은 사이클람의 직접 적 알킬화에 의해 위치선택적 트랜스이중치환 생성물을 생산하는 것은 보통 실행할 수 없는 일이고, 보통 mono, di, 그리고 tri— N-치환 생산물의 흔합물을 만들게 된 다. 탈보호 전략은 비스아미널 마크로트리시클릭 (bisaminal macrotr icycl ic) 흔합 물의 형성을 걸쳐 사이클람을 트랜스 -알킬화하는 아주 효과적이고 손쉬운 방법이 다 적절한 알킬화제 (alkylating agents)의 사용 및 2개의 아미널 브릿지 (aminal bridge)의 분해로 인해 비스아미날 사이클람 (Bisaminal cyclara)의 2개 비근접 질소 원자들을 4차 아민으로 바꾸면 (quarternization) 목표한 트랜스 이중치환 사이클람 이 생산된다. 이 비스아미널 마크로트리시클릭 (bisaminal macrotr i eye lie)은 사이 클람에 포름알데히드를 첨가하는 것을 통해 이루어진다. 반응식 4로 알 수 있듯이 , 우리는 상온에서 사이클람 9와 포름알데히드와의 반웅을 통해 정량적인 마크로트리 사이클 10을 얻을 수 있었다. 선택적인 트랜스-이중알킬화를 위해 1,4,8,11_ tetraazatricyclo[9.3.1.1 4,8]hexadecane ligand 10이 C¾CN에 용해되었다. 또한 이중-치환된 마크로트리사이클 17은 4개의 질소 원자가 2개씩 비근접하기 때문에, 이를 감당하기 위해 4등가의 t-부틸브로모아세테이트 (t-butylbromoacetate)가 신속 히 추가되었다. 2등가의 알킬화제의 사용은 낮은 수득률을 보이지만, 초과량의 알 킬화제의 사용은 트랜스 이중알킬화된 생성물들을 매우 높은 수준으로 수득할 수 있게 하였다.
<269> 합성물 17의 비스아미널 결합부분의 절단은 실내은도에서 3M NaOH(aq) 용액 을 이용한 염기성 가수분해를 통해 손쉽게 트랜스-이중치환사이클람 18을 생성하 였다. 이 트랜스-이중치환사이클람 유도체의 합성절차의 진정한 의미는 컬럼세정 및 결정화가불필요할 뿐 아니라 그로인한 절차의 효율성 경제적 실용성에 있다. 트랜스-이중치환사이클람 18의 제조 후에 카보네이트 염올 포함하는 틀루엔 하에 서 화합물 18을 1,3-프로판 다이올의 일종인 다이토실 에스테르와 환류시켜 두개의 비근접한 질소들의 프로필렌 교차결합이 가능하게 되었다. 이 과정을 통해 교차가 교 생성물질 15와토실레이트 염이 생성되었다. 20% NaOH의 첨가로 인해 토실레이 트 카운터 음이온 (counter anion)은 제거되었고, 합성물 15의 유리염기는 70%의 수 득률을 나타내었다. 합성 중간생성물 15으로부터의 t-부틸 에스테르 (ester) 비보 호는 비스 (트리플루오로아세트산) 염 형태의 PCB-TE2A를 생성할 수 있도록 트리플 루오로아세트산을 포함하는 디클로로메탄에서 수행되었다. PCB-TE2A 16의 합성의 전 과정의 수득률이 매우 높아 사이클람에서 시작한 전체 수율이 63%로 매우 높았 다.
<실시예 5> 4,11-비스(카복시메틸)-1,4,8,11-테트라아자비시클로[6.6.3]
헵타데칸 (PCB— TE2A)[4,ll-Bis(carboxymethyl)-l,4,8,ll-tetraazabicyclo[6.6.3]hep tadecane · 2TFAK16)의 합성
Figure imgf000056_0001
Overall yield = 62%
4,8,
5-a) 1,8-비스— (벤질옥시카보닐메틸) -4, ,11-디아조니아트리시클로 [9.3.1.ΓΊ 핵 사데칸 디브로마이드 [ 1, 8-Bi s-(benzyloxycarbonylmethyl)-4 , 11-
4,8 _
diazoniatricyclo[9.3.1.1 ' ] hexadecane dibromide] (19)의 합성
상기 실시예 4-b에서 제조된 화합물 10 (상기 화합물 10 (3.56 g, 15.87 mmol)이 포함된 MeCN(lOOmL) 용액을 4당량의 (equivalent) 벤질 2-브로모아세테이 트 (10.29 mL, 15.03 g, 65.6 瞧 ol)에 첨가하였다. 이 반웅흔합물을 실내온도에서 24시간동안 교반하고, 그 결과 결과물이 침전되었다. 생긴 하얀 침전물은 여과된 후 MeCN (2 X 20mL)로 세척하고 진공조건에서 건조되었다. 잔여물은 에탄올에서 재 결정되어 흰색의 고체 (19)가 수득되었다. (수득률 : 10.3 g, 92%)
H NMR (500 MHz, DMS0_d6): d 7.32-7.41(m, 10H, ArH) , 5.16(s, 4H, ), 3.52(s,
4H), 3.33 (s, 4H), 3.09(brs, 8H,), 2.85(brs, 4H), 2.76-2.74(t, 4H, J = 5 Hz), 1.86(brs, 4H); 賺 (125 MHz, DMS0-d6) : d 172.20, 135.54, 128.46, 128.21, 128.03, 66.43, 55.97, 54.06, 52.80, 51.27, 47.39, 44.15, 22.15, 18.52; HRMS (ESI) calculated for C30H42N404, 523.3284 [(M+H)+] , found: 523.3281 [(M+H)+].
<276> 5-b) 1 , 8-비스- (벤질옥시카보닐메틸) -1, 4 , 8 , 11-테트라아지시클로테트라데칸 [ 1, 8_
Bis-(benzyloxycarbonylmethyl)-l,4,8, ll~tetraazacyclotetradecane ] (20)의 합 성
<277> 3M NaOH 용액을 (200mL) 상기 화합물 19 (9.23 g, 13.52 瞧 ol)에 부가하였 다. 3시간동안 교반한 후, 용해액은 CHC13 (3 X lOOmL)로 추출하였고, 결합된 유기 상은 소금물로 세척하고, MgS04로 건조하였다. 용매는 저기압 상태에서 증발되어 고 체화되는 기름형태의 물질 (20)을 수득하였다. (수득률 : 6.58 g, 98% )
<278> H NMR (500 MHz, CDC13): c/ 7.20—7.14 m, 10H, ArH), 4.92(s, 4H) , 3.25(s, 4H) ,
2.71-2.66(m, 12H) , 2.49-2.47(t, 4H, J = 4.2Hz), 1.70(brs, 4H) ; NMR (125 MHz, CDC13): d 171.36, 135.09, 128.34, 128.12, 127.84, 66.21, 54.70, 54.01,
51.96, 49.12, 46.36, 24.39; HRMS (FAB) calculated for C28H41N404, 497.3128
[(M+H)+], found: 497.3129 [(M+H)Y
<279> 5-c) 4, 11-비스- (벤질옥시카보닐메틸) -1,4, 8, 11-테트라아자비시클로 [6.6.3Γ헵타데 칸 [4, 11-B i s- ( benzy 1 oxycar bony 1 me t hy 1 )-1,4,8, ll-tetraazabicyclo[6.6.3] heptadecane] (21)의 합성
<280> 상기 5-b단계에서 수득한 20의 용해액 (4.27 g, 8.59 議 ol), 1,3-프로판디을 디 -p-토실레이트 (1, 3— propanediol di-p-tosylate) (3.3 g, 8.59 國 ol) 및 무수
Na2C03 (2.09 g, 19.76 mmol)를 무수 를루엔 (220mL) 용매하에서 6일 동안 환류하였 다. 용매는 반응 혼합물로부터 저압에서 증발시킨 후 C¾C12 (250mL)를 첨가하였다. 생성된 밤색의 슬러리는 celite pad로 거른 후 CH2C12 (2 x 30mL)로 세척하였다. 용 매는 낮은 압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖 는 컬럼 크로마토그래피를 통하여 정제하고, CH2CL2/methanol (20:1)로 용출시켜 엷은색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20% NaOH (lOOmL)에서 용해시켰다. 4시간 동안 교반한 후에, 남아있는 용액이 CHC13 (3
X lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었 다. 용매는 저기압에서 증발하여 흰색의 가루 (21)가 되었다. (수득률 : 3.32 g, 72%)
<28i> HRMS (FAB) calculated for C31H451N404537.3435 [(M+H)+], found: 537.3437 [(M+H)+] .
<282> 5-d) 4, 11-비스- (카복시메틸 )-1,48 11-테트라아지비시클로 [6,63]헵타데칸 [ (4,11- Bis-(carboxymethyl )-1,4,8, 11-tetraazabi eye lo [6.6.3]heptadecane] (16)의 합성
<283> 합성물 21(3.19 g, 5.94隱 ol)을 포함하는 에탄올 용액 (120mL)에 10% Pd/C
(0.96 g)를 첨가하였다. 그 뒤 상기 흔합물은 H2(g)분위기 아래에서 12시간동안실 내온도에서 교반하였다. 반웅 흔합물은 celite pad를 통해 거른 후 에탄올 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (16)가 생성되었다. (수득를 : 2.1 g, 99%)
<284> H NMR (500 MHz, DMS0-d6) d 3.63-3.16(m, 8H) 3.12-2.5(m, 16H) , 1.85(brs, 4H) , 1.68(brs, 2H); NMR (125 MHz, DMS0_d6) : d 172.1, 55.3, 54.0 51.7 48.6, 48.04 21.6 19.2; HRMS (FAB) calculated for C17H33N404 , 357.2502 [(M+H)+] found: 357.2504 [(M+H) ].
<285> <실시예 6> 2-[4-니트로페닐)메틸]프로판 -1,3-디을 비스 (4-메틸벤젠설포네이트 )[2- [ ( -n i t r opheny 1 )methyl ]pr opan- 1 , 3-d iol Bis( 4-methy 1 benzenesu 1 f onat e ) ] ( 25 )의 합성
<286> 6-a) 디에틸 2-[(4-니트로페닐)메틸]프로판디에이트 (Diethyl-2-[(4-
Nitrophenyl )methyl ] propanedioate) (23)의 합성
<287> [반웅식 6]
Figure imgf000058_0001
Figure imgf000058_0002
<289> 반응식 6을 중심으로 설명하면, 4-니트로벤질 브로마이드 (4-Nitrobenyl bromide) (22) (10.57g, 48.93mmol)과 디메틸 말로네이트 (diethyl malonate)(21)(52mL, 54.86g, 342.51mmol )를 아세론 (acetone) (40mL)과 K2C03 (14.21g, 102.8mmol)의 용매하에서 반웅시켰다. 상기 반웅흔합물을 45°C에서 1시간 동안 가열하였다. 혼합물을 실내온도로 냉각시킨 후, 생성된 노란 슬러리 (slurry) 를 K2C03를 제거하기 위하여 여과시킨 후 아세톤 (acetone) (2 x 20mL)으로 세정하였 다. 용매는 결합된 여과액과 세정용액을 통해 저기압하에서 증발시켰다. 과량의 디 메틸 말로네이트는 수평증류법 (horizontal distillation) (2 h, 80-130°C , 및 0.005mbar)으로 제거되었다. 노란 기름 (oily) 찌꺼기는 에탄올 (200mL) 에 용해시켰 다. 침전된 하얀 고체는 (dialkylated 생성물)은 여과시킨 후, 에탄올 (2 x 20mL)로 세정시켰다. 용매는 결합된 여과액과 세정용액을 통해 저기압하에서 증발되어 hexane/Et20 (1:1)에서부터 재결정화되어 흰 결정상의 고체인 디에틸 -2-[(4-니트로 페닐)메틸]프로판디에이트 (Diethyl -2- [ (4-Nitrophenyl )methyl ] propanedioate) (23)가 형성되었다. (수득률: 12.72 g 88%)
<290> H NMR (500MHz, CDC13): δ: 1.20-1.23 (t, 6H, J = 7 Hz), 3.31— 3.32(d, 2H, J =
7.5 Hz), 3.65(t, 1H, J = 7.7Hz), 4.13-4.21(m, 4H), 7.38-7.40(d, 2H, J = 8.5 Hz), 8.13-8.15(dd, 2H, J = 2 Hz, 7Hz); NMR (125 MHz, CDC13): δ: 15.5,
35.8, 54.6, 63.3, 125.2, 131.3, 147.1, 148.5, 169.7; HR MS (FAB) C14H17N06,
296.1129 [(M+H)+]를위해 계산, 결과: 296.1134 [(M+H)+]
<29i> 6-b) 2-[(4-니트로페닐)메틸프로판 -1,3-디올 ^-[^-nitropheny methylbropan- l -diol]^^의 합성
<292> 부유물 (suspension)로서 NaBH4 (14.35 g, 379.3 圍 ol)을 포함하는 EtOH
(200mL)에 대하여, EtOH (lOOmL)에 상기 화합물 23 (11.2g, 37.93 mmol)을 방울단 위로 (drop-wise) 첨가하였다. 적은 양의 (5¾>, 150mL) 수용성 NH4C1올 첨가한 후, 진 공하서에 EtOH를 제거하기 위하여 증류시켰다. CH2C12 (200mL)이 첨가한 후 흔합물 을 여과하였다. 여과 후 2개의 층으로 분리되었고, 수성상 (phase)는 C¾C12 (3 x
50mL)로 추출되었으며 , 결합된 유성상은 수성 (aqueous) NaHC03 (5%, lOOmL)로 세정 시켜 MgS04로 건조하여 진공하에서 농축시켰다. 형성되는 노란 기름은 EtOAC/Hexane 으로부터 재결정화되어 흰색을 띄는 가루인 2-[(4-니트로페닐)메틸프로판 -1,3-디'올 (2-[(4-nitrophenyl)methyl]propan-l,3-diol )(24)을 형성하였다. (수득률: 6.81 g 85%) <293> H NMR (500MHz, CD30D): δ: 1.93-1.96 (h, 1H, J= 6Hz, 7Hz, 13 Hz), 277-
2.79(d, 2H, J = 8 Hz), 3.53-3.54(d, 4H, J = 5Hz), 7.43-7.45(d, 2H, J = 8.5 Hz), 8.11-8.12(d, 2H, j = 2 Hz, 6.5 Hz); 13C NMR (125 MHz, CD30D): δ: 35.0,
46.5, 62.8, 124.4, 131.3, 147.8, 150.4; Hr MS (FAB) C10H13N04, 212.0917 [(M+H)+] 으로 계산했을 때, 결과: 212.0923 [(M+H) +]
<294> 6-c) 2-[4-니트로페닐)메틸]프로판 -1,3-디을 비스 (4-메틸벤젠설포네이트 )[2-[(4- n i t r opheny 1 )met hy 1 ] r opan- 1 , 3-d i o 1 Bis(4-methylbenzenesulfonate)] (25)의 합성
<295> p—틀루엔설포닐 클로라이드 ? toluenesulfonyl chloride) (14.51g, 76.11 mmol)를 포함하는 피리딘 (30mL) 용액에 대하여, 피리딘 (20mL)에 상기 화합물 24(6. 3.2g, 30.44 隱 ol)를 방울단위로 (drop— wise) 첨가하였고, 은도를 0°C 이하로 유지하였다. 첨가가 완료된 후, 반웅합성물은 10시간동안 실내은도에서 교반하였 고, 얼음-온도의 수성 5M HC1 (lOOmL)에 첨가하였다. 수성상은 CH2C12 (3 x lOOmL) 로 추출하였다. 결합된 유기상올 소금물로 (2 X lOOmL) 세정하였고, MgS04로 건조되 었으몌 저기압에서 엷은 노란색의 기름이 형성되도록 증발시켰으몌 이 결과물은 . 에탄올로부터 결정화되어 최종적으로 흰색의 고체 2-[(4 니트로페닐)메틸]프로판-
1,3-디올 비스 (4-메틸벤젠설포네이트 )(2-[(4-nitrophenyl)methyl]propan 1,3— diol Bis(4-methylbenzenesulfonate)) (25)를 형성하였다.
<296> 수득를: 14.08g (89%); H NMR (500MHz, CDC13): δ: 2.32-2.34 (m, 1H) , 2.46(s, 6H, 2 x ArCH3) , 2.72-2.74(d, 2H, J = 7.5 Hz), 3.85-3.89(dd, 2H, J = 5.5 Hz,
10.5 Hz), 3.96-3.99(dd, 2H, J = 5.5 Hz, 10.5 Hz), 7.13-7.15(d, eH, J = 8 Hz), 7.33-7.35(d, 4H, J = 8.5 Hz), 7.70-7.72(d, 4H, J = 8 Hz), 8.00-8.02(d, 2H, J
= 9Hz); 13C NMR (125 MHz, CDC13): δ: 21.5, 32.9, 39.6, 67.6, 123.7, 127.8, 129.7, 129.9, 132.0, 145.0, 145.3, 146.7; HR MS (FAB) C24H25N08S2,
520.1094[(M+H)+]으로 계산했을 때, 결과: 520.1097 [(M+H)+]
<297> 결국, PCB-TE2A가 구리와 같은 금속이 포함된 8면체 배위구조를 가지는 좋은 킬레이터 (chelator)라고 하지만, 생물활성물질 등과 결합할 때 마다 질소원자와 연 결된 2개의 펜던트 암 (pendant arm) 중의 하나는 회생하여야 한다. 따라서, 8면체 배위구조가 본래대로 형성되도록 펜던트 암을 유지하면서 생물활성물질과 결합할 수 있는 여분의 작용기를 추가하는 것이 반드시 필요하다. 이 목적을 달성하기 위 해 제조된 질소유도체가 1,3-프로판 (propane) 디올 25의 다이토실 에스테르이다. 생물활성물질과 결합할 수 있는 작용기를 부착한 프로필렌 가교 (propylene bridge) 의 전구체인 합성물 25를 합성하기 위하여, 먼저 K2C03를 포함하는아세톤 용매하에 서 1당량의 4-니트로벤질 브로마이드와 7당량의 디에틸 말로네이트를 웅축시켜 수 득률 88%로 합성물 23을 합성하였다. 상기 반웅에서는 금속 알콕사이드 대신에 이 온농도가 낮은 약염기와 초과량의 디에틸 말로네이트가 이중알킬화물질의 생성을 막기 위해 사용되었다. 다이올 화합물 24를 높은 수율로 합성하기 위하여 합성물 23을 NaBH4로 환원하였다. 최종 전구체 합성물 25를 높은 수율로 합성하기 위하여 합성물 24는 피리딘에 존재하는 토실클로라이드에 의해 토실화되었다 . 상술한 반응 식 6의 합성방법을 통해 최종 합성물 25를 매우 높은 수을로 합성할 수 있었다.
<실시예 7> 4, 11-비스 (카복시메틸 )-16-(4ᅳ이소티오시안나토벤질) -1,4,8, 11-테트라 아자비시클로 [6,6,3]-헵타데칸 · 2TFA(4 , 11-bi s-(carboxymethyl )-16-(4- i so t h i ocyanat obenz 1 )-1,4,8, 11-t et r aazab i eye 1 o [6.6.3 ] -hept adecane .2TFA (29 -
2TFA)의 합성
Figure imgf000061_0001
Figure imgf000061_0002
7-a) 4, 11-비스ᅳ (카보 -터트 -부록시메틸 )-16-(4-니트로벤질) -1,4, 8, 11-테트라아자비 시클로 [6.6.3]헵타데칸 (4,ll-Bis-(carbo-tert-butoxyraethyl)-16-(4-nitrobenzyl)- 1 , 4 , 8 , 11-t e t r aazab i eye 10 [ 6.6.3 ] hept adecane ) (26)의 합성
반웅식 7을 증심으로 설명하면 상기 실시예 4-c에서 합성한 화합물 (5.23g, 12.20隱 ol)과 실시예 6의 반웅식 6을 통해 제조한 2-[(4-니트로페닐)메틸]프로관- 1,3—디올 비스 (4-메틸벤젠설포네이트 )(2-[(4-nitrophenyl)niethyl]propan-l,3—diol B i s ( -me t hy 1 benzenesu 1 f onat e ) ) (25)(6.34g, 12.20 mmol) 및 무수 Na2C03 (2.97 g,
28.06 mmol) 를 무수 를루엔 (200mL) 용매하에서 6일 동안 환류하였다. 용매는 반웅 흔합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성된 밤색의 슬러리는 celite pad로 여과한 후 C C12 (2 x 20mL)로 세척하였다. 용매는 낮은압 력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖는 컬럼 크 로마토그래피를 통하여 정제하고, CH2CL2/메탄올 (20:1)로 용출시켜 은색의 기름 형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20M NaOH (lOOmL)에서 용해시켰다. 8시간 동안 교반한후에, 남아있는 용액이 CHC13 (3 X lOOmL)로 추출되 었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었다. 용매는 저기압 에서 증발하여 흰색의 가루 (26)가 되었다. (수득률 : 5.53 g, 75%)
<303> H NMR (500 MHz, CeD6): d 8.19-8.17(d, 2H, J = 8 Hz), 7.83-7.82(d, 2H, J = 8
Hz), 4.06(t, 1H, J = 12Hz), 3.48-2.79(m, 16H) , 2.79-2.27 (m, 8H) , 1.55- 1.17(m, 24H);13C NMR (125 MHz, CeD6):
<304> d 171.5, 170.5, 149.3, 147.4, 131.7, 124.2, 81.1, 81.0, 61.3, 60.9, 56.9,
56.1, 56.0, 50.9, 50.7, 47.6, 37.0, 32.5, 28.6, 24.1, 23.1; HRMS (FAB) calculated for C32H54N506ᅳ 604.4074 [(M+H)+] , found: 604.4077 [(M+H)Y
<305> 7-b) 4 , 11-비스- (카보-터트-부록시메틸) -16- -아미노벤질 )-1,4 , 8, 11-테트라아자비 시클로 [6.6.3]헵타데칸 (4,ll-Bis-(carbo-tert-butoxyniethyl)-16— (4-aminobenzyl)- l,4,8,ll-tetraazabicyclo[6.6.3]heptadecane)(27)의 합성
<306> 합성물 26(4.26 g, 7.06 mmol)을 포함하는 에탄올 용액 (50mL)에 10% Pd/C
(1.28g)를 첨가하였다. 그 뒤 상기 흔합물은 H2(g)분위기 아래에서 10시간 동안 실 내은도에서 교반하였다. 반웅 혼합물은 celite pad 를 통해 거른 후 에탄올 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (27)가 생성되었다. (수득률: 3.93 g, 97% )
<307> H NMR (500 MHz, CeD6): d 7.25-7.23(d, 2H, J = 8 Hz), 6.90-6.88(d, 2H, J = 8
Hz), 3.41(t, 1H, J = 12 Hz), 3.29-2.88(m, 8H), 2.73-1.98 (m, 16H), 1.51- 1.10(m, 24H); NMR (125 MHz, CsDs): d 175.6, 171.3, 170.5, 147.8, 130.6, 127.5, 115.8, 81.0, 61.8, 61.0, 56.7, 55.9, 55.7, 50.5, 47.1, 36.5, 32.4, 28.6, 24.6, 23.7, 22.7; HRMS (FAB) calculated for C32H56N504, 574.4332 [(M+H)+]
, found: 574.4330 [(M+H)Y
<308> 7-c) 4, 11-비스— (카복시메틸 )-16— (4-아미노벤질) -1,4,8, 11-테트라아자비시클로
[6.6.3]헵타데칸 · 2TFAC 4 , 11-b i s- ( car boxyraet hy 1 )- 16- ( 4-am i nobenzy 1 ) - 1 , 4 , 8 , 11- tetraazabicyclo[6.6.3]heptadecane - 2TFA) (28 · 2TFA, 이하 "PCB-TE2A— ΝΗ2' '라 함) 의 합성 . .
<309> 상기 7-b 단계에서 합성된 합성물 27(2.56 g, 4.46 mmol)을 1:1의 비율로 흔 합된 (vol:vol) CF3CO2H (TFA)와 CH2C12 (70mL)의 흔합용액에 용해시켰다. 혼합물은 실내온도에서 24시간 동안 교반되었다. 용매는 저기압에서 제거되고 기름진 잔여물 이 형성되고 Et20로 처리하여 흰고체 (28)를 제조하였다. (질량계산 되었을 때 2 당 량의 TFA) (수득률: 3.05 g, 99%)
<3io> H NMR (500 MHz, DMS0-d6): d 6.92-6.90(d, 2H, J = 8.5 Hz), 6.50-6.48(d, 2H, J
= 8.5 Hz), 3.42-3.16(m, 8H) , 2.92-2.50(m, 12H) , 2.38-1.79(m, 5HJ, 1.63- 1.16(m, 4H); 13C NMR (125 MHz, DMS0-d6): d 174.2, 173.2, 146.8, 145.7, 137.5,
129.1, 128.0, 125.5, 114.1, 60.4, 59.8, 54.5, 50.3, 46.8, 35.4, 30.2, 23.1, 21.2, 20.7; HRMS (FAB) calculated for C24H4oN504, 462.3080 [(M+H)+], found:
Figure imgf000063_0001
<3ii> 7-d) 4, 11-비스— (카복시메틸 )-16— (4-이소티오시아나토벤질) -1,4, 8, 11—테트라아자비 시클로 [6.6.3]헵타데칸 2TFA(4,ll-bis-(carboxymethyl)-16-(4- isothiocyanatobenzyl )-1,4,8, 11-tetraazabi eye lo [6.6.3]heptadecane - 2TFA) (29 - 2TFA, TCB-TE2A-NCS' '라 함)의 합성 .
3i2> 합성물 28 (1.21g, 1.75mmol)을 포함하는 0.5M의 HC1 (50mL) 용액을 티오포 스젠 (thioposgene, CSC12) (4.03 mL, 6.04g, 52.5 mmol) 에 조심스럽게 첨가하였다. 반웅 흔합물은 5시간동안 실내온도에서 교반하여 층들을 분리하였다. 수성의
(aqueous) 층은 제거되고 유기 CHC13 층은 물 (2 x 50 mL)로 수세되었다. 흔합된 수 성층들은 미반응 (unreacted) 티오포스젠을 제거하기 위해 CHC13 (3 x 50mL)로 세척 되었다. 마지막으로, 수성층 (aqueous layer)는 흰색의 결정성 고체 (29)를 생성하 기 위해 냉동건조되었다. (수득를: 1.26 g, 98)
H NMR (500 MHz, DMS0-d6): d 7.26(s, 4H, ArH), 4.01(d, 4H, ), 3.62-3.15(m,
8H), 2.97-2.49(tii, 12H) , 2.28-1.86 (m, 5H,), 1.61-1.22(ra, 4H); 匿 (125 MHz, DMSO-de): d 187.9, 174.4, 173.2, 145.7, 137.5, 136.8, 135.1, 129.1, 128.6,
125.5, 122.6, 121.6, 60.4, 59.7, 57.8, 57.2, 56.9, 56.1, 54.5, 48.5, 35.5, 29.7, 23.3, 20.7; HRMS (FAB) calculated for C25H38N504S, 504.2645 [(M+H)+], found: 504.2647 [(M+H)+]
결국 상기 반웅식 7에서 살펴본 바와 같이, 링커 (linker) N02 가 부착된 프 로필렌 교차가교체는 소디움 카보네이트를 포함하는 를루엔 용매하에 합성물 18과 합성물 25의 환류를 통해 합성물 26인 교차가교된 토실레이트 염이 생성된다. 토실 레이트 카운터 음이온은 20% NaOH로 제거되어 75%의 유리염기 26 (free base)을 생 성하였다. 생성물질 26의 질소그룹의 환원은 촉매를 통한 수소화반응을 이용하여 합성물 27을 정량적으로 생산하였다. 합성 중간생성물 27로부터의 t-부틸 에스테르 (ester) 비보호는 비스 (트리플루오로아세트산) 염 형태의 PCB-TE2A-NCS 착물을 생 성할 수 있도록 트리플루오로아세트산을 포함하는 디클로로메탄에서 수행되었다. 이를 통해 생성된 PCB-TE2A-NCS 착물와 항체 (antibody)간의 적절한 결합을 가능하 게 하였다. 이러한 PCB-TE2A-NCS의 합성은 합성단계를 줄이고 전체 합성절차를 단 순화하고 작용기를 선택적으로 프로필렌에 부착할 수 있어 종래에 발표된 이관능성 킬레이트에 NH2 및 NCS 작용기를 부착하는 합성방법에 비하여 대단히 효율적이다. <실시예 8> 4,11—비스(카복시메틸)-16-(4-이소티오시안나토벤질)-1,4,8,11-테트라 아자비시클로[6,6,3]-헵타데칸[4,11-1 3- :^1)0 ;^ 1;1^1)-16-(4- isothiocyanatobenzyl)-l,4,8, ll-tetraazabicyclo[6.6.3]-heptadecane] (29)의 합성 <316>
Figure imgf000065_0001
Figure imgf000065_0002
<318> 8-a) 4, 11-비스- (벤질옥시카보닐메틸) -16-(4-니트로벤질) -1,4,8, 11-테트라아자비시 클로 [6.6.3]헵타데칸 ]4,ll-Bis-(benzyloxycarbonylmethyl)-16-(4-nitrobenzyl)- 1,4,8,11-tetraaza b i eye 1 o [ 6.6.3 ] hept adecane ] (30)의 합성
<3l > 반웅식 8을 중심으로 설명하면 상기 실시예 5-c에서 합성한 화합물 20(4.12 g, 8.29 mraol)과 실시예 6의 반응식 6을 통해 제조한 2-[4-니트로페닐)메틸]프로판 -1,3-디올 비스 (4-메틸벤젠설포네이트 )(2-[(4-mtrophenyl)methyl]propan—l,3-diol Bis(4-methylbenzenesulfonate)) (25)(4.31 g, 8.29画 1) 및 무수 Na2C03 (2.02 g,
19.07 mmol) 를 무수 를루엔 (200mL) 용매하에서 6일 동안 환류하였다. 용매는 반웅 혼합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성된 밤색의 슬러리는 celite pad로 여과한 후 C C12 (2 x 20mL)로 세척하였다. 용매는 낮은압 력에서 중발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖는 컬럼 크 로마토그래피를 통하여 정제하고, CH2CL2/methanol (20:1)로 용출시켜 엷은색의 기 름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20M NaOH (lOOmL)에 서 용해시켰다. 8시간 동안 교반한 후에, 남아있는 용액이 CHC13 (3 X lOOmL)로 추 출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었다. 용매는 저 기압에서 증발하여 흰색의 가루 (30)가 생성되었다. (수득률 : 4.12 g, 74%)
<320> HRMS (FAB) calculated for C38H50N506 , 672.3761 [(Μ+Η) , found: 672.3757
[(M+H)
<32i> 8-b) 4, 11-비스- (카복시메틸 )-16-(4-아미노벤질) -1,4, 8, 11-테트라아자비시클로 [6.6.3]헵타데칸[4,11-^3-(03 0 ^ 1)-16-(4-3111^056^ 1)-1,4,8,11- t e t r aazab i eye 1이: 6. β .3 ] hep t adecane ] ( 28 )의 합성
<322> 합성물 30(3.97 g, 5.91 画 ol)을 포함하는 에탄올 용액 (lOOmL)에 10% Pd/C
(1.28g)를 첨가하였다. 그 뒤 상기 혼합물은 (g)분위기 아래에서 12시간 동안 실 내온도에서 교반하였다. 반웅 흔합물은 celite pad 를 통해 거른 후 에탄을 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (28)가 생성되었다. (수득률: 2.67 g, 98% )
<323> H NMR (500 MHz, DMS0-d6): d 6.92-6.90(d, 2H, J = 8.5 Hz), 6.50-6.48(d, 2H, J
= 8.5 Hz), 3.42-3.16(m, 8H) , 2.92-2.50(m, 12H) , 2.38-1.79(m, 5H,), 1.63- 1.16(m, 4H); 13C NMR (125 MHz, DMSO— d6): d 174.2, 173.2, 146.8, 145.7, 137.5,
129.1, 128.0, 125.5, 114.1, 60.4, 59.8, 54.5, 50.3, 46.8, 35.4, 30.2, 23.1, 21.2, 20.7; HRMS (FAB) calculated for C24H4oN504 , 462.3080 [(M+H)+], found:
Figure imgf000066_0001
<324> 8-c) 4, 11-비스- (카복시메틸 )-16-(4-이소티오시아나토벤질) -1,4, 8, 11-테트라아자비 시클로 [6.6.3]헵타데칸 [4 , 11-bi s-(carboxymethyl )-16-(4-isothiocyanatobenzyl ) - l,4,8,H-tetraazabicyclo[6.6.3]heptadecane] (29)의 합성.
<325> 합성물 28 (1.21g, 1.75讓 ol)을포함하는 0.5M의 HC1 용액 (50mL)을 티오포스 젠 (thioposgene, CSC12) (4.03 mL, 6.04g, 52.5 mmol) 에 조심스럽게 첨가하였다. 반응흔합물은 5시간동안실내온도에서 교반하여 층들을 분리하였다. 수성의 (aqueous) 층은 제거되고 유기 CHC13층은 물 (2 x 50 mL)로 수세되었다. 흔합된 수 성층들은 미반웅 (unreacted) 티오포스젠을 제거하기 위해 CHC13 (3 x 50mL)로 세척 되었다. 마지막으로, 수성층 (aqueous layer)는 흰색의 결정성 고체 (29)를 생성하 기 위해 냉동건조되었다. (수득를: 1.26 g, 98)
<326> H NMR (500 MHz, DMS0-d6): d 6.92-6.90(d, 2H, J = 8.5 Hz), 6.50-6.48(d, 2H, J
= 8.5 Hz), 3.42-3.16(m, 8H), 2.92-2.50(m, 12H) , 2.38-1.79(m, 5H,), 1.63- 1.16(m, 4H); 13C NMR (125 MHz, DMSO— d6) : d 174.2, 173.2, 146.8, 145.7, 137.5,
129.1, 128.0, 125.5, 114.1, 60.4, 59.8, 54.5, 50.3, 46.8, 35.4, 30.2, 23.1 21.2, 20.7; HRMS (FAB) calculated for C24H4oN504 , 462.3080 [(M+H) ], found:
462.3085 [(M+H) ].
<m> <실시예 9> 4,10-비스 (카복시메틸 )-14-(4-이소티오시안나토벤질) -1,4,7,10-테트라 아자비시클로 [5,5,3]—펜타데칸 · 2TFA[4,10-Bis-(carboxymethyl)— 14— (4- isothi ocyanat obenzyl )-1,4,7, 10—t etraazab i eye 1 o [ 5.5.3 ] pant adecane .2TFA
(342TFA)](34)의 합성
<328> [반응식 9]
Figure imgf000067_0001
<330> 9-a) 4, 10-비스- (카보 -터트 -부특시메틸 )-14-(4-니트로벤질) -1,4, 7, 10-테트라아자비 시클로 [5.5.3]펜타데칸 [4,10-Bis-(carbo-tert-butoxyniethyl)-14-(4-nitrobenzyl)- 1,4,7, 10-tetraaza bicyclo[5.5.3]pentadecane] (31)의 합성
<33l> 반웅식 9를 중심으로 설명하면 상기 실시예 2— b에서 합성한 화합물 8(4.19 g, 10.46 隱 ol)과 실시예 6의 반응식 6을 통해 제조한 2-[4-니트로페닐)메틸]프로 판 -1,3-디올 비스 (4-메틸벤젠설포네이트 X^t -mtrophenyOmethylhropan-l^- diol Bis(4-methylbenzenesulfonate)) (25)(5.44 g, 10.46 讓 ol) 및 무수 Na2C03
(2.97 g, 28.06 mmol) 를 무수 를루엔 (200mL) 용매하에서 6일 동안 환류하였다. 용 매는 반웅 혼합물로부터 저압에서 증발시킨 후 CH2C12 (200mL)를 첨가하였다. 생성 된 밤색의 슬러리는 celite pad로 여과한 후 CH2C12 (2 x 20mL)로 세척하였다. 용매 는 낮은압력에서 증발시켰다. 남아있는 잔여물은 알루미나 (염기성)의 컬럼을 갖는 컬럼 크로마토그래피를 통하여 정제하고, CH2CL2/methanol (20:1)로 용출시켜 엷은 색의 기름형태의 토실레이트 (tosylate) 염을 수득하였다. 상기 기름은 20% NaOH 수 용액 (120mL)에서 용해시켰다. 4시간 동안 교반한 후에, 남아있는 용액이 CHC13 (3 x lOOmL)로 추출되었고, 결합된 유기상들은 소금물로 세정된 후, MgS04로 건조되었다. 용매는 저기압에서 증발하여 흰색의 가루 (31)가석출되었다.
<332> 수득률 : 4.58 g, 76%, MS (ESI): Calculated for
C30H50N5O6 , 576.38 [ (M+H)+] Found :576.45[(M+H)+]
<333> 9-b) 4, 10-비스- (카보-터트-부톡시메틸 )-14-(4-아미노벤질 )-1,4,7, 10—테트라아자비 시클로 [ 5.5.3 ]펜타데칸 [ 4, 10-B i s- ( car bo-t er t -butoxyme thyl )-14-(4-ami nobenzy 1 ) - 1,4,7, 10-tetraaza bicyclo[5.5.3]pentadecane](32)의 합성
<334> 합성물 31(4.18 g, 7.26 隱 ol)을 포함하는 에탄올 용액 (lOOmL)에 10% Pd/C
(1.25g)를 첨가하였다. 그 뒤 상기 혼합물은 H2(g)분위기 아래에서 10시간 동안 실 내온도에서 교반하였다. 반웅 흔합물은 celite pad 를 통해 거른 후 에탄올 (2 x 20mL)로 세척하였다. 결합된 여과액은 진공하에 증발되고 생성된 기름진 잔여물은 Et20로 처리하여 흰색 고체 (32)가 생성되었다. (수득률: 3.88 g, 98% )
<335> 9— c ) 4, 10-비스- (카복시메틸) -14-(4-아미노벤질) -1, 4 , 7, 10-테트라아자비시클로
[5.5.3]펜타데칸 · 2TFA(4 ' 10-Bi s-(carboxymethyl )-14-(4-aminobenzyl )-1,4,7,10- tetraazabicyclo [5.5.3] ent adecane · 2TFA ) (33)의 합성
<336> 상기 9-b 단계에서 합성된 합성물 32(2.69 g, 4.93圆 ol)를 1:1의 비율로 흔 합된 (vol:vol) CF3C02H (TFA)와 CH2C12 (70mL)의 혼합용액에 용해시켰다. 흔합물은 실내온도에서 24시간 동안교반되었다. 용매는 저기압에서 제거되고 기름진 잔여물 이 형성되고 Et20로 처리하여 흰고체 (33)를 제조하였다. (질량계산 되었을 때 2 당 량의 TFA),(수득률: 3.23 g, 99%)
<337> 9-d) 4 , 10-비스- (카복시메틸) -14-(4-이소티오시아나토벤질 )-1, 4, 7, 10—테트라아자비 시클로 [5.5.3]펜타데칸 · 2TFA[4, 10-Bi s-(carboxymethyl)-14-(4- i so t h i ocyanat obenzy l)-l,4,7,10-tetr aazab i eye 10 [ 5.5.3 ] ant adecane - 2TFA] (34) 의 합성
<338> 합성물 33 (1.39 g, 2.1誦 ol)을 포함하는 0.5M의 HC1 용액 (50mL)을 티오포 스젠 (thioposgene, CSC12) (4.03 mL, 6.04g, 52.5隱 ol)에 조심스럽게 첨가하였다. 반응 흔합물은 5시간동안실내온도에서 교반하여 층들을 분리하였다. 수성의 (aqueous) 층은 제거되고 유기 CHC13층은 물 (2 x 50 mL)로 수세되었다. 혼합된 수 성층들은 미반응 (unreacted) 티오포스젠을 제거하기 위해 CHC13 (3 x 50mL)로 세척 되었다. 마지막으로, 수성층 (aqueous layer)는 흰색의 결정성 고체 (34)를 생성하 기 위해 냉동건조되었다. (수득률: 1.45 g, 98%)
<실시예 10> Cu-PCB-D02A(35) 의 합성
Figure imgf000069_0001
PCB-D02A GU-PGB-D02A
<341>
<342> 상기 실시예 1에서 제조된 PCB— D02A2 CF3C00H 6의 수용액 (187 mg, 0.34 瞧 01), 그리고 30mL의 메탄올에 포함된 Cu(C104)2 · 6¾0 (126 mg, 0.34 瞧 ol)올 준 비하였다. 그 뒤 NaOH (2.04 mmol)의 수성 (aqueous) 용해액 (2 mL, 1.02 N)을 첨 가하였다. 형성된 맑고 푸른색의 용해액을 2시간 동안 환류시킨 후, 냉각하고, celite pad를 이용하여 여과하였다. 여과액은 디에틸에테르 확산제를 첨가하였다. 침전된 푸른 결정들은 수집한 후 건조하여 35를 합성하였다.
<343> 수득율 : 0.115 g, 88%
<344> HRMS (FAB) calculated for C15H27N404Cu 390.1323 [(M+H)+] , found: 390.1325
Figure imgf000069_0002
<345> <실시예 11> Cu— PCB-D02A(36) 의 합성
<346>
Figure imgf000069_0003
16 36
PCB-TE2A CU-PCB-TE2A
<347>
348> 시작물질로서 실시예 4에서 합성된 화합물 16을 사용한 것을 제외하고는 실 시예 10과 동일하게 실시하여 Cu-PCB-D02A(36)를 합성하였다.
<349> 수득율 : 0.115 g, 88%
<350> HRMS (FAB) calculated for C17H31N404Cu, 418.1641 [(M+H)+] , found: 418.1643
Figure imgf000070_0001
64
<35i> <실시예 12> Cu-PCB-D02A (37) 의 합성
<352>
Figure imgf000070_0002
<354> a) Cu와 PCB-D02A의 착물의 형성은 30분 동안 과량의 0 (:03가 포함된 EtOH 안에 PCB-D02A 6 (5mM)을 75°C에서 전교반시키며 지속적인 교반을 통해 형성되었 다. 원심분리 이후 캐리어 성분의 추가없이 64CuCl2를 분리된 상청액에 첨가하자
CsCl의 침전이 발생하였다. 흔합물을 교반하고 30분동안 75°C에서 교반하였다. 상
_ 64 청액은 0.1 M NH40Ac buffer (pH 6.5)에 옮긴 후 에탄올로 희석시켰다. Cu-PCB-
D02A 착물의 형성은 실리카 플레이트 상의 MeOH/10% 암모니아 아세테이트가 1:1로 존재하는 이동상을 이용한 radio-TLC을 통해 확인하여 그 결과를 도 1에 나타내었 다.
64
<355> b) 0.01N HC1에 존재하는 캐리어가 첨가되지 않은 CuCl2올 5mM의 PCB-D02A
6을 포함하는 0.1M 암모니아 아세테이트 (pH6.55)에 첨가하고 1시간 동안 7C C에서
64 ― ᅳ
교반하였다. Cu-PCB-D02A 착물의 형성은 실리카 플레이트 상의 MeOH/10% 암모니 아 아세테이트가 1:1로 존재하는 이동상을 이용한 radio-TLC을 통해 확인하여 그 결과를 도 2에 나타내었다.
64
<356> <실시예 13> Cu-PCB-TE2A (38) 의 합성 <357> [반웅식 13]
Figure imgf000071_0001
16 0.1 M NH4OAG (pH 6.5) 38
70°C, 1h
PGB-TE2A 100% MCu-PCB-TE2A
<358>
64
<359> a) Cu와 PCB-TE2A의 착물의 형성은 30분 동안 과량의 Cs2C03가 포함된 EtOH 안에 PCB-TE2A 16 (5mM)을 75°C에서 전교반시키며 지속적인 교반을 통해 형성되었 다. 원심분리 이후 캐리어 성분의 추가없이 S4CuCl2를 분리된 상청액에 첨가하자
CsCl의 침전이 발생하였다. 흔합물을 교반하고 30분동안 75°C에서 교반 (incubate) 를 하였다. 상청액은 0.1 M NH40Ac buffer (pH 6.5)에 옮긴 후 에탄올로 회석시켰
64 ᅳ
다. Cu-PCB-TE2A 착물의 형성은 실리카 플레이트 상의 MeOH/10% 암모니아 아세테 이트가 1:1로 존재하는 이동상을 이용한 radio-TLC을 통해 확인하여 그 결과를 도 3에 나타내었다.
64
<360> b) 0.01N HC1에 존재하는 캐리어가 첨가되지 않은 CuCl2을 5mM의 PCB-TE2A 6을 포함하는 0.1M 암모니아 아세테이트 (pH6.55)에 첨가하고 1시간 동안 70°C에서
64
교반 (incubate)하였다. Cu—PCB— TE2A 착물의 형성은 실리카 플레이트 상의 MeOH/10% 암모니아 아세테이트가 1:1로 존재하는 이동상을 이용한 radi으 TLC을 통 해 확인하여 그 결과를 도 4에 나타내었다.
64
<361> 한편, 도 5 ~ 9는 각각 40°C, 50 °C, 60 °C, 70 °C 및 75°C에서 Cu_PCB-TE2A 착물의 형성하고 그 결과를 radio-TLC을 통해 나타낸 그래프이다. 이를 통해 본 발
64 64
명의 Cu-PCB-TE2A는 Cu-ECB-TE2A(90°C)에 비하여 현저히 낮은은도에서 금속이 온과의 착물형성이 가능한 것을 확인할 수 있다.
<362> <비교예 1>
<363> TETA( 1,4,8, 11-t etraazacyclotetradecane-1, , 8, 11-tetraacet ic acid)를 'm z-i) vsai-aod-no to ≠oz 긍^^
Figure imgf000072_0001
V23i-aod-nD <LH>
i ^툰
Figure imgf000072_0002
륭^ ft톱
lloSI ~ Οΐ ΐ 를 ff : ττ 를; TlL-o!peJ ί^ί Τ ^ 곱 OS '^9 ^ ΤΓ
Figure imgf000072_0003
1 W 5 -tz-tz 를
' 12-T) vzax-aod-no to ^os극 롬 to vzai-aod-no (B <πε> ir ^¾를
Figure imgf000072_0004
^을 를 (uo!iexsiduio^p-ppE)^륜^^ -: & ·χ <αί>
Figure imgf000072_0005
■• ^is^ib: 를 vsoa-g:)3-n:) ^
79 IY응 <50zwz o o)nd를
(9UBDapEJi9i[2-g g]oi3AoiqBZBEJia;-oi'A 'T-(iAm9mA oqjEO)siq-oi»V2(XI-g3a
'-b^ia^l^ 를 VSOCH ) 응
^0¾9ζ( Ι )η 를 (PPE o 1 ip-, ' i -suBDapo o I D DBZKB j ja _oi ' Z ' ΐ ) V2(XI <69e>
a¾{s^^ 를 VIXXH ) 웅 -t50¾9z(¾ )i3
를 (p )E oua3EEj;a;_ox ' 'l-3ue3apopo A3BZEejia¾_oi 'A 'T)VI(XI <i9£>
- ^-la^^ 를 VS31-n ^ί^—ί ᅳ O¾9z( I3)n
oz
6Cl900/0l0ia¾/13d 52pCi)를 0.5m£의 FBS(Fetal Bovine Serum)에 부가하는 것을 통해 수행되었다. 용 해액은 37°C에서 교반된 후 10분, 30분, 60분, 2시간, 4시간, 10시간 및 24시간 이 후의 radio-TLC를 측정하여 그 결과를 도 16 ~ 22에 나타내었다. 또한 24시간 동안 37°C에서 교반한 후 1시간 동안 50°C에서 교반하여 radio-TLC를 측정하고 그 결과 를 도 23에 나타내었다.
54
<378> 도 16 ~ 23에 따르면 CU-PCB-TE2A 는 FBS 내에서 24시간 내에 분해가 발생
64
하지 않으며 이를통해 CU-PCB-TE2A가 생체내에서도 안정성이 높을 것으로 예상할 수 있다.
<379> 3. 생분포 연구
<380> 성숙한 Spr ague-Daw ley계 생쥐 (180-200 g, n = 5) 에 대하여 식염수에 회석
64 64
된 실시예 12에서 합성된 Cu-PCB-D02A와 실시예 13에서 합성된 Cu— PCB-TE2A를 주 입하였다. (쥐 1마리당 200 의 살린용액 내부에 20yCi의 표지화합물) 4시간에서 24시간 경과 후 관심있는 조직과 기관을 분리하여 무게를 표시하였다.
64
<38i> [표 1] Cu-PCB-TE2A 주입 4시간 후 생분포 자료 (¾ID / organ 土 sd)
Tissoe/
PolD/organ^ -1
Organs
Bloods 0.013 ±^0.ΰ03 0.192 ±.0.048 :
Hearts 0015 ±.Q00 0.011 ±^p.ooo ^
Figure imgf000073_0001
Fat. 0 60 ¾θ?(3 3 1.686 ±^0:322 ^
Bo e^ 0i030 ±.0:004 .' 0.656 ±45.110 ^
Spleens G 025 ±0¾0β 0.013 ±^0.00 ^
Kidney' 0.421 ±.0.019: >,. 0.794 ± 0.056 f
Liver^ 0.213 ± 0.032 -- 1.679 ±^0,241 -,
TaiU 004Β ϊ- ί)39 0.252 ±.0.213 ,
<382> [표 2] Cu-PCB-TE2A 주입 24시간 후 생분포 자료 (%ID I organ 士 sd)
Tissue/^
P/dlD/orgah^
Orgarv
Blood. 0,006 ±^0.OQ 0.108 ±.0.029
Figure imgf000074_0001
0.020 ±,0.005 , 0.569 ±.0.181 ,
Spleen^ ΐ).0ί5 ±^0009 ^ 0.009 ±.0.004
0.049 ±.0.007 -' 0.112 ±.0.011 .·'
Liver 0015 ±v0,p01 - 0.122 ±.0013
Figure imgf000074_0002
[표 3] Cu-PCB-D02A 주입 24시간 후 생분포 자료 (¾ID I organ 士 sd)
Tissue/^
-PplD/prgah
Organs
Bloods 0.045 ±,0.005 , 0.579 ±^0,066 -
Heart' 0;027 ±,0:005 0.017 ±^0.003 ,
Lung 0:043 ±,0.009 . 0:046 ± 0:011 ^
Muscle^ 0.008 ±.0.001 ^ 0.631 ±,0.080
Fat^ 0.026 ±«:0:011 0,6β1 ±^0.30 '
Bohfe 0.037 i,0;005 , 0.74Ό½^0.107 ,
Spleen* 6M5 ± Q
Kidney^ 0.249 ±.0.027 0.383 ±^0.052
Liver^ Q.2P5 ±,0.012 Λ 0.569 ;±^0,079 ,
Taij 0. 36 0.0^5 0.728 ±-0.238 ^ 상기 표 1 ~ 3을 통해 알 수 있듯이 , Cu-PCB-TE2A 및 Cu-PCB-D02A는 혈 액, 간, 신장 등 생체내에서 신속하게 세정되었음을 확인할 수 있다
[표 4] 사이클렌과 사이클람 구조체에서 유도된 교차가교 또는 비교차가교 킬러 jo 터들의 주입 24시간 후 쥐-생분포 자료의 비교 (%ID I organ 土 sd)
Figure imgf000075_0001
<390> 표 4는 실시예 11 12 및 비교예 1 ~ 6의 표지된 화합물을 주입하고 24시간 후 혈액, 간, 신장의 세정능력을 비교한 것이다 (혈액 0.012 士 0.004 vs 0.21 士 0.05, 간 0.142 ±0.004 vs 0.49 ±0.11, 그리고 신장 0.064 ±.009 vs 0.21 士 0.03). 이 2개의 착물들은 전체적 전하에서 비교된다. Cu(II)-TETA는 2개의 자유 카복실레이트에 의해 전체적으로 -2의 전하를 가지고 있는데, PCB-TE2A는 Cu(II)양 이온을 완전히 감싸고 , 중성착물을 형성한다.
64
<39i> 또한, 표 3을 통해 PCB-TE2A의 Cu 착물이 트랜스-킬레이션
64
(transchelation) 에 대한 저항이 Cu-TETA 보다 크다는 것을 보여준다. 이와 유사 하게, PCB-D02A와 CB-D02A를 비교했을 때 비슷한 양상이 나타났다. 에틸렌 교차가 교 화합물과 프로필렌 교차가교 화합물들은 비슷한 유형의 세정능력을 보여준다 ._ <392> 결국 이들은 연결선에서 하나의 탄소거리 차이밖에 없다. 사이클람을 증심으 로 살펴보면, 사이클람 구조물이 Cu(II)와의 선호된 착물화가 이루어지면서 생체적 으로 안정된 착물이 만들어졌다. 이는 PCB-TE2A의 생분포 성질은 PCB-D02A와 비교 해 봤을 때 더욱 신속한 세정효과를 드러내는 것 또한 보여준다.
64
<393> 그러므로 CU-표지된 프로필렌 교차가교 킬레이트들이 비교차가교 유사화합 물( Cu-TETA)보다 혈액, 간, 신장에서 더욱 세정능력이 뛰어났다는 것을 보여준다. 이는 64Cu-PCB-TE2A가 제일 적은 64Cu를 혈액과 세포조직에 남김으로써 보여지는 것 이다. Cu(II) 교차가교 거대고리 화합물들이 비교차가교 거대고리 화합물보다 높은 생체적 안전성을 보이는 것은 배위화학적 (coordination chemistry) 차이 때문일 수 도 있다. 기원분자 (parent molecule)구조의 크기도 생체적 안전성을 크게 좌우한 다.
<394> 4. 분광 광도계를 이용한산 탈착물 실험
<395> 산 탈착물 실험은 90°C 5M HC1 에서 3 瞧 의 같은 농도를 사용하여 pseudo first-order 조건하에 시행되었다. 시간에 따른 최대 흡광도의 변화를 열적으로 안 전한 셀을 사용하여 Shimadzu UV-Vis 분광 광도계 (UV—1650PC)로 모니터링하였다. 각 스펙트럼의 max (Cu-PCB-TE2A 655 nm, Cu-PCB-D02A 596 nm)에 대한 감소하는 흡광도는 탈착물 반웅의 진행을 모니터링하는데 사용하였다 (도 24 ~ 도 25). 반감 기는 In (흡광도) 대 시간에 대한 직선의 기울기로부터 계산된 것이다. 각 실험은 2-3번 반복하였고 그 평균 반감기 값을 보고하였다. 각 경우에 대한 시간별 전형적 인 흡광도를 도 24 ~ 27에 나타내었다.
<396> 구체적으로 도 24, 25는 각각 Cu— PCB-TE2A와 Cu-PCB-D02A에 대한 ?unax의 측
64 64 정값을 나타낸 그래프이고, 도 26, 27은 90°C 5M HC1 에서 Cu— PCB—TE2A와 Cu-PCB- D02A에 대한 In (흡광도) 대 시간의 그래프이다.
<397> 이를 통해, 90°C, 5M HC1에서 Cu-PCB-TE2A와 Cu-PCB-D02A의 반감기는 각각
231과 144분으로 PCB-TE2A가 PCB-D02A 보다 안정한 구리 착물을 형성함을 알 수 있 다.
<398> 5. 전기 화학적 실험
<399> Cyclic voltammetry는 3-전극 배열을 가지는 Biologic model SP-150을사용 하여 수행하였다. 실험 전극은유리탄소 (지름 =3隱)이고, Ag/AgCl (sat. KC1) 대 조 전극 그리고 Pt 선 계수 전극이 있다. 샘플은 스캔 속도 100 mV/s에서 빙초산으 로 pH 7.0 로 맞춘 0.1 M아세트산에서 실험하였다. 용액은 측정하는 동안 아르곤 (Ar) 대기 상태에서 유지하고 실험하기 위해 앞서 아르곤으로 30분 동안산소를 제 거하였다.
<400> 도 28 및 29는 각각 Cu-PCB-TE2A와 Cu-PCB-D02A에 대한 Cyclic
voltammograms이고, 표 5는 구리 (2가) 착물의 산 탈착물에 대한 반감기와 환원력 에 관한 것이다. Cu-PCB-TE2A와 CU-PCB-D02A의 환원력은 -Q.66과 -0.69 V로 비슷 하지만 Cu-PCB-D02A가 비가역적 산화환원 반웅을 보이는 보이는 반면 Cu— PCB-TE2A 는 준-가역적 산화환원 반웅을 보임을 알 수 있다. 따라서 생체환경 하에서 Cu-PCB-TE2A 착물이 CU-PCB-D02A 착물에 비해 보다 안정하리라는 예측이 가능하다. <40!> [표 5] 구리 (2가) 착물의 산 탈착물에 대한 반감기와 환원력
Complex 5M HCI, 90X Ered(V) vs Ag/AgCI
CU-P B-TE2A 231(2)h -0:66(qii si-rev)
Figure imgf000077_0001
<403> <실시예 14> PCB-TE2A-c(RGDyK)의 합성과 구리 표지
<404> [반응식 14]
Figure imgf000078_0001
64Cu-PCB-TE2A-c(RGDyK)
<405> 41
<406> 14— a) PCB-TE2A-c(RGDyK)의 합성 (40)
<407> 반웅식 14를 중심으로 설명하면 상기 실시예 5에서 제조한 PCB-TE2AC16)
(13.5 mg, 37.9 μηιοΐ)에 대하여 EDC (3.6 mg, 18,9 umol) 및 SNHS (4.9 mg, 22.7 μπιοΐ)는 500 의 물에 녹였고 4。(:에서 pH를 5.5로 맞추기 위해 0.1 N NaOH (200 ^)를 첨가하였다. 반응 흔합물은 4°C에서 30분 동안 저어주었다. Cyclic RGDyK peptide (1.42 mg, 2·3μηιο1)(39)를 물 (100 )에 녹이고 반웅 흔합물에 첨가하였 고 pH는 0.1 N NaOH (200 로 8.5로 맞추었다. 흔합물은 4°C에서 하룻밤 반웅시 켰다.
<408> PCB-TE2A-c(RGDylO(40)는 semi-preparative HPLC (Zorbax Agilent Prep-C18; 21.2 X 100 mm; 이동상은 95% 용매 A [0.1% TFA 물용액] 그리고 5% 용매 B [아세토 니트릴에 Q.1% TFA] [0-2분]을 시작으로 32분에 35% 용매 A 그리고 65% 용매 B; 유 속 3 ml/분)으로 분리하였다. PCB-TE2A-c(RGDyK)를 포함한 피크를 모았고, 동결 건 조하여 흰 가루의 최종 산물을 얻었다.
<409> PCB— TE2A— c(RGDyK)(40)는 분석용 HPLC.CVydac TP C18; 3 ym, 4.6 X 100 mm;
유속 1 mL/분, 이동상은 0.1% TFA/H20 (용매 A)와 0.1% TFA/acetonitr i le (용매 B), 그리고 기울기 용리 조건은 20분에 1% B에서 70% B로) 상에서 체류시간은 12.2 분 으로 70% 수율로 얻었다. 정제된 PCB-TE2A-c(RGDyK)는 분사형 질량분석기로 확인하 였다 (C44H72N130u에 대한 계산된 m/z값 958.54, [MH]+와 [MH2]+2 에 대한 확인된 m/z 값은 각각 958.5 와 480.0 였음).
<4io> 구체적으로 도 30은 PCB-TE2A-c(RGDyK)의 HPLC 크로마토그램 그래프이고, 도
31은 PCB-TE2A— c(RGDyK)의 포지티브 모드에서의 질량분석 스퍽트럼 그래프이며, 도 32는 PCB-TE2A-c(RGDyK)의 네거티브 모드에서의 질량분석 스펙트럼 그래프이다. 이 를 통해 실시예 14-a 에서 제조된 화합물이 순수하게 정제된 PCB-TE2A- c(RGDyK)(40)임을 확인할 수 있다.
64
<4!i> 14-b) Cu-PCB-TE2A-c(RGDyK)의 합성 (41)
64
<4i2> 100 uL 0.1 M NH40Ac 완층액 (pH 8.0)에 있는 Cu (0.5-2 mCO를 100 uL
0.1 M NH40Ac 완충액 (pH 8.0)에 있는 5 ug PCB-TE2A-c(RGDyK)(40)에 첨가하였다. 흔합물은 80°C에서 30분간 반웅시켰다. 반웅은 30:70 10% NH40Ac/ methanol
64
( Cu-PCB-TE2A-c(RGDyK) Rf = 0.9)에 전개된 Whatman MKC18F TLC 판을 radio_TLC로
64
모니터하였다. Cu 표지된 펩타이드는 (필요시에) 이동상 0.1% TFA/H20 (용매 A)와
0.1% TFA/acetonitrile (용매 B), 그리고 기울기 용리로 20분에 1% B에서 70% B로 되며 1 mL/분의 유속에서 Vydac TP C18, 3 pm, 4.6 X 100 mm 컬럼을 사용하여
_ 64
reverse-phase HPLC (RP-HPLC)로 추가적으로 정제하였다. Cu-TE2A-C(RGDyK) (체류 시간 [tR] 13.5 분)는 1 ~ 2 mL HPLC 용매로모았다. 용매는 날린 후 PBS로 회수하 였고, 0.22 μπι Millipore 필터를 통과시키고 동물 실험을 위해 멸균된 병으로 옮
64
겨 최종적으로 Cu-PCB-TE2A-c(RGDyK)(41)을 표지하였다.
64
<413> 도 33은 Cu-PCB— TE2A-c(RGDyK)의 Radio-TLC 그래프이고, 도 34는 분석용 HPLC 시스템을 사용한 Cu-PCB-TE2A-c(RGDyK)의 Radio-HPLC크로마토그램이다. 도 35의 상부 그래프는 분석용 HPLC 시스템을 사용하여 220nm에서 UV 탐침된
64
PCB-TE2A-c(RGDyK) 크로마토그램이고, 하부 그래프는 Cu-PCB-TE2A-c(RGDyK)의 Radio-HPLC크로마토그램이다.
64
<414> 도 33 ~ 35를 통해 PCB-TE2A-c(RGDyK)가 97% 이상의 수율로 Cu에 의해 표 지되었음을 알 수 있고 HPLC에서 PCB-TE2A-c(RGDyK)의 UV 피크와
64
Cu-PCB-TE2A-c(RGDyK)의 방사성 피크의 체류시간이 유사함을 통해 표지한 방사성
64
물질이 Cu-PCB-TE2A-c(RGDyK)임올 확인할 수 있었다.
<4i5> <실험예 2> MicroPET 영상
<4i6> PET 스캔과 영상 분석은 microPET R4 rodent 모델 스캐너를 사용하여 이루어 졌다. 영상 실험은 U87MG 주사 후 21일된 암컷 누드 마우스로 진행하였다. 실시예
64
14에서 표지한 Cu-PCB-TE2A-c(RGDyK)(41)(231 uCi)를 마우스의 꼬리로 주사하였 다. 주사 후 1시간후에 1-2% isoflurane으로 쥐를 마취하고 엎드린 자세로 고정한 뒤 이미지를 얻었다 . 이미지는 2— dimensional ordered一 subsets expect at ion maximum (OSEM) 알고리즘으로 재구성하였고 감쇄나 흩어짐 보정은 하지 않았다.
64
<417> 도 36은 U87MG종양모델이고, 도 37은 Cu-PCB-TE2A-c(RGDyK)(41)(231 yCi) 주사후 1시간 후에 U87MG 종양을 지닌 누드 마우스의 microPET 영상이다. 종양에 다른 장기에 비해 매우 높은 방사능 섭취가 보이는 것올 알 수 있다. 이를
64
통해 Cu-PCB-TE2A-c(RGDyK)가 체내에서 구리 이온의 이탈없이 안정하게 U87MG 모 델에 축적됨을 알 수 있고 PCB-TE2A를 이용해 다른 많은 질병특이적 펩타이드를 이 용한 질병 진단에 널리 사용될 수 있음을 알 수 있다.
64
<418> <실시예 15> PCB-TE2A-NCS— c(RGDyK)의 합성과 구리 표지
<419> [반웅식 15]
Figure imgf000081_0001
<421> 15-a) PCB-TE2A-NCS-c(RGDyK)의 합성 (43)
<422> 반웅식 15를 중심으로 설명하면, 상기 실시예 8에서 합성한 PCB-TE2A-NCS
(29) (8.61 umol, 4.33 mg)에 0.1 M Na2C03(pH 9.5, 100 iL)에 녹아있는 c(RGDyK)(39) (2.87 ymol, 1.78 mg)올 첨가하였다. 이 용액을 어두운 환경하에서 하루 동안상온에서 저어 준 후, PCB-TE2A-NCS에 접합된 c(RGDyK) peptide는 semi -preparative HPLC (Waters μ bondapak C18; 10 μηι, 7.8 X 300 mm; 유속 3 mL/분; 이동상은 95% 용매 A [0.1% TFA물용액] 그리고 5%용매 B [아세토나이트릴 에 0. TFA] [0-2분]을 시작으로 32분에 35% 용매 A 그리고 65% 용매 B)으로 분리 하였다. PCB-TE2A-NCS-c(RGDylO를 포함한 피크는 17.2분의 체류시간에 모았고, 동 결 건조하여 흰 가루의 최종 산물 (42)을 얻었다. PCB-TE2A-NCS-c(RGDyK)(42)는 분 석용 HPLC.(Vydac TP C18; 3 μιη, 4.6 X 100隱; 유속 1 mL/분, 이동상은 0.1%
TFA/H20 (용매 A)와 0.1% TFA/acetonitrile (용매 B;), 그리고 기을기용리 조건은 20 분에 1% B에서 7 B로) 상에서 체류시간은 15.7 분으로 72% 수율로 얻었다. 정제 된 PCB-TE2A-NCS-c(RGDyK)는 분사형 질량분석기로 확인하였다 (C52H79N14012S에 대한 계산된 m/z값 1123.57, [MH]+와 [MH2]+2 에 대한 확인된 m/z 값은 각각 1123.55와 562.66 였음).
<423> 구체적으로 도 38은 semi preparative HPLC 시스템을 사용한
PCB-TE2A-NCS-c(RGDyK)의 HPLC 크로마토그램이고, 도 39는 분석용 HPLC 시스템을 사용한 정제된 PCB-TE2A-NCS-c(RGDyK)의 HPLC 크로마토그램이며, 도 40은
PCB-TE2A-NCS-c(RGDyK)의 포지티브 모드에서의 질량분석 스펙트럼 그래프이며, 도 41은 PCB-TE2A-NCS-c(RGDyK)의 네거티브 모드에서의 질량분석 스펙트럼
그래프이다. 이를 통해 실시예 15-a 에서 제조된 화합물이 깨끗하게 정제된 PCB-TE2A— NCS-c(RGDyK)(42)임을 확인할 수 있다.
64
<424> 15-b) Cu-PCB-TE2A-NCS-c(RGDyK)의 표지 (43)
64
<425> 100 μί 0.1 M NH40Ac 완층액 (pH 8.0)에 있는 Cu (0.5~2 mCi)를 100 μᄂ
0.1 M NH40Ac 완충액 (pH 8.0)에 있는 5 ug PCB-TE2A-NCS-c(RGDyK)(42)에 첨가하였 다. 흔합물은 90°C에서 1시간 반응하였다. 반응은 30:70 10% H40Ac/ methanol
64
( Cu-PCB-TE2A-NCS-c ( RGDyK ) Rf = 0.9)에 전개된 Whatman MKC18F TLC 판을
64
radio-TLC로 모니터하였다. Cu 표지된 펩타이드는 (필요시에) 이동상 0.1%
TFA/H20 (용매 A)와 0.1% TFA/acetonitrile (용매 B) , 그리고 기울기 용리로 20분 에 1% B에서 70% B로 되며 1 mL/분의 유속에서 Grace smart RP C18, 5μηι, 4.6 X 250画 컬럼을 사용하여 reverse-phase HPLC (RP—HPLC)로 추가적으로 정제하였다.
64
Cu-PCB-TE2A-NCS-c ( RGDy ) (체류시간 [tR] 17.1 분)는 1-2 mL HPLC 용매로 모았다. 용매는 날린 후 PBS로 회수하였고, 0.22 μπι Millipore 필터를 통과시키고 동물 실험을 위해 멸균된 병으로 옮겼다.
64
<426> 도 42는 Cu-PCB-TE2A-NCS_c(RGDyK)의 Radio-TLC 그래프이고, 도 43은 분 석용 HPLC 시스템을사용한 Cu-PCB-TE2A-NCS-c(RGDyK)의 Radio_HPLC 크로마토그 램이다. 도 44의 상부 그래프는 분석용 HPLC 시스템을사용하여 220nm에서 UV탐 침된 Cu-PCB— TE2A-NCS-c(RGDyK) 크로마토그램이고, 하부 그래프는
64
Cu-PCB-TE2A-NCS-c(RGDyK)의 Radi으 HPLC 크로마토그램이다.
64
<427> 도 42 내지 도 44를 통해 PCB-TE2A-NCS-c(RGDyK)가 Cu로 97% 이상의 높은 수을로 쉽게 표지할 수 있음을 확인하였고 HPLC분석을 통해 펩타이드의 분해 없이
64
순수한 Cu-PCB-TE2A-NCS-c(RGDyK)임을 확인할 수 있었다. 또한 HPLC에서 체류시간
64 64
비교를 통해 Cu로 표지된 화합물이 Cu-PCB-TE2A-NCS-c(RGDyK)임을 확인하였다. <428> <실험예 3> 생분포 연구
<429> 실시예 15를 통해 제조된 120 μί PBS에 있는 16 μ Ci
64
Cu-PCB-TE2A-NCS— c(RGDyk)(43)를 U87MG 이식된 암컷 누드 마우스의 꼬리에 주사하 였다. 1 그룹 (n=4)을 1시간후에 실시하였다. 모든 실험은 동물올 죽인 후 관심 있는조직과 장기를 떼어내고 무게를 재었고, 감마카운터로 방사선양을
측정하였다. 그람당 주사한 양의 백분율 (%ID/g)은 알고 있는 기준값과 비교하여 계 산된 것이다.
64
<430> [표 6] 암 이식된 누드 마우스에서 주사 후 1시간에 Cu-TE2A— NCS-c(RGDyK) ( ID/g
士 SD, n=4)의 생체 내 분포
Tissue °/oIE>/« lh)
Blood 0:..74 ±0 1 '9
Luiig 2.99 ±0.37
Mitscle 0.97±0.45
Fat 331 ± 1 β3
Bone 1 ^Q^tO 15
Spleen 221 ±002
Kicliieys S 58 ±:1.3-2^
stoiiiacli 1 21 ±의26'
ijitestijie <5.28 ±0.7
liver .5.64 ±0-75
tiuiiori 7 ± 1,93
tiunor2 .5.15 ±5.10.
<431>
<432> 표 6 및 도 45는 암 이식된 누드 마우스에서 주사후 1시간에
64
Cu-TE2A-NCS-c(RGDyK) («D/g士 SD, n=4)의 생체 내 분포를 나타낸다. 64
Cu一 TE2A-NCS-c(RGDyK)의 종양에 대한 섭취는 평균 4.76 %ID/g으로 혈액과 근육의 섭취량의 6.4배와 4.9배로 매우 높음을 알 수 있다.
64
〈실시예 16> PCB— TE2A— NCS— Trastuzumab의 합성과 구리 표지
[반웅식 16]
Figure imgf000084_0001
PCB-TE2A-NCS Trastuzumab PCB-TE2A-NCS-Tras uzumab
Figure imgf000084_0002
s4Cu-PCB-TE2A-NCS-Trastuzumab 45
Scheme 3 IVastuzumab에 PCB-TE2A-NCS의 접합과구리 -64표지
16-a) PCB-TE2A-t S-Trastuzumab의 합성 (44)
반웅식 16을 중심으로 설명하면, 트라스투주맙 (½g)에 0.1 M Na2C03(pH 9.5,
100 yL)에 녹아있는 실시예 8에서 합성된 PCB-TE2A-NCS(29) (0.55 mg)을 첨가하였 다. 이 용액은 24시간 동안 상은에서 부드럽게 저어 주었다. 다음 날 centricon YM-50으로 옮기고 부피를 줄이기 위해 회전시켰다. PCB-TE2A-NCS-Tr as t uzumab ( 44 ) 에 PBS (pH 7.2, 3 X 2 mL)를 첨가하고, 반웅하지 않은 리간드를 제거하기 위해 원 심분리하였다. 2.00 mL PBS를 정제된 항체 접합물에 첨가하고 -20°C에 보관하였다. PCB-TE2A-NCS-Trastuzumab의 순도는 크기배제 HPLC로 측정하였다 (Bio Silect SEC 250-5300 X 7.8 mm; 유속 1 mL/분, PBS, pH =7.4로 이루어진 등용리 이동상). 구체적으로 도 46은 SE(Size Exclusion) HPLC 시스템을 사용한 280nm 에서 UV로 확인된 트라스투주맙의 SE-HPLC크로마토그램이고, 도 47은 SE-HPLC 시스템 을 사용한 280nm 에서 UV로 확인된 PCB-TE2A-NCS— Trastuzumab의 SE-HPLC 크로마토 그램이며, 도 48은 SE-HPLC 시스템을 사용하여 280 nra 에서 UV로 확인된 트라스투 주맙 (검은색)와 비교한 PCB-TE2A-NCS-Trastuzumab (빨간색)의 SE-HPLC크로마토그램 이다. 이를 통해 실시예 16-a 에서 제조된 화합물이 PCB-TE2A-NCS-Tr as t uzumab ( 44 ) 임올 확인할 수 있다.
64
16-b) Cu- PCB-TE2A-NCS-Trastuzumab의 표지 (45) 64
100 iiL 0.1 M NH40Ac충액 (pH 8.0)에 있는 Cu (0.5-2 mCi)를 100 μί 0.1 M NH4OAc 완층액 (pH 8.0)에 있는 50 PCB-TE2A— NCS— Trastuzumab에 첨가하였다.
64
혼합물은 40°C에서 1시간 반웅하였다. Cu 표지된 PCB-TE2A-NCS-Trastuzumab(45)은 cent r icon YM— 50을사용한 원심 분리법으로 정제하였다. 방사화학적 순도는 instant thin layer chromatography (ITLC-SG, 식염수로 전개)로 확인하였다.
64 64
도 49는 CuCl2의 Rad )-ITLC그래프이고 도 50은 Cu- PCB— TE2A-NCS-Trastuzumab의 Radio-ITLC그래프이다. 이를 통해
64
PCB— TE2A-NCS-trastuzuraab이 96%이상으로 Cu로 표지되었음을 알수 있다.
64
<실시예 17〉 PCB-TE2A-Trastuzumab의 합성과 구리 표지
[반 17]
Figure imgf000085_0001
PCB-TE2A PCB-TE2A-OSSU
Figure imgf000085_0002
8
17-a) PCB-TE2A-Trastuzumab의 합성 (47)
반응식 17올 중심으로 설명하면, (N- 하이드록시설포숙신이미딜 (N-hydroxysuliosuccinimidyl) PCB-TE2A (TETA-OSSu, 46) 를사용하여 트라스투주맙에 PCB-TE2A를 첨가하였다. 400 uL의 물에 녹아 있는 13.5 mg (37.8 μηιοΐ)의 PCB— ΤΕ2Α용액을 4t:에서 0.1 N NaOH으로 pH 5.5로 맞추었 다. 이 용액에 sulfo-NHS (8.2 mg, 37.8 iimol)와 EDC (0.72 mg, 3.8 ymol )을 첨 가하였다. 이 반웅물은 1시간 동안 4'C에서 저어 주어 PCB-TE2A-0SSu(46)을 합성하 였다, 반응이 끝나자 마자 정제 과정 없이 PCB-TE2A-접합된 항체를 합성하는데 사 용되 었다 . PCB-TE2A— OSSu 용액의 pH는 0. 1 M Na2HP04, pH 7.5를 첨가하여 7.5로 맞 추었다. 트라스투주압 ( 4 mg)을 0. 1 M Na2HP04, pH 7.5에 녹아 있는
PCB-TE2A-0SSU 용액에 저으면서 첨가하였다 . 이 반응물은 24시간 동안 상온에서 부 드럽 게 저어주면서 반웅하였다 . 다음 날 centr icon YM-50으로 옮기고 부피를 즐이 기 위해 회 전시 켰다. PCB-TE2A-Trastuzumab(47)에 PBS (pH 7.2 , 3 X 2 mL)를 첨가 하고, 반응하지 않은 리 간드를 제거하기 위해 원심분리하였다. 2.00 mL PBS를 정 제 된 항체 접 합물에 첨가하고 -20°C에 보관하였다 . PCB-TE2A-NCS-Trastuzumab의 순 도는 크기배제 HPLC로 측정하였다 (Bio Si lect SEC 250-5 300 X 7.8 隱; 유속 1 mL/분, PBS, pH =7.4로 이루어진 등용리 이동상 사용)
<447> 도 51은 SE-HPLC 시스템을 사용한 280nm 에서 UV로 확인된 의
PCB-TE2A-Trastuzumab의 SE-HPLC 크로마토그램이다. 이를 통해 실시 예 17_a 에서 제조된 화합물이 PCB-TE2A-Trastuzumab(47)임을 확인할 수 있다 .
64
<448> 17-b) Cu-PCB-TE2A-Trastuzumab의 표지 (48)
64
<449> 100 L 0. 1 M NH40Ac 완층액 (pH 8.0)에 있는 Cu (0.5-2 mCi )를 100 p L
0.1 M NH40Ac 완층액 (pH 8.0)에 있는 50 11 g PCB-TE2A-Trastuzumab(47)에 첨가하였
64
다. 흔합물은 40°C에서 1시간 반웅하였다. Cu 표지된 PCB-TE2A-Trastuzumab(48)은 centricon YM-50을 사용한 원심 분리 법으로 정제하였다. 방사화학적 순도는 instant thin layer chromatography ( ITLC-SG, 식 염수로 전개 )로 확인하였다 .
<450> 도 52는 64CuCl2의 Radio-ITLC 그래프이고 도 53은 Cu-
PCB-TE2A-Trastuzumab의 Radio-ITLC 그래프이다. 이를 통해 PCB-TE2A-trastuzumab
64
이 ΚΧ»의 순도로 Cu로 표지되 었음을 알 수 있다.
<451> <실험 예 4> 생분포 연구
<452> 실시 예 17을 통해 제조된 120 u L PBS에 있는 17 μ θί
64
Cu-PCB-TE2A-Trastuzumab(48)를 U87MG 이식된 암컷 누드 마우스의 꼬리에 주사하 였다. 모든 실험은 죽인 후 관심 있는 조직과 장기를 떼어내고 무게를 재었고, 감 마카운터로 방사선양을 측정하였다.
<«3> [표 7] 암 이식된 누드 마우스에서 주사 후 48시간에 64Cu-PCB-TE2A-Trastuzumab
(%ID/g士 SDᅳ n=l)의 생체 내 분포 Tissue
Luiig
Figure imgf000087_0001
intestine . 2795.52
liver 1¾202;.7ΰ
tiuiioi 6S02 QS
tiunor¾ 459451
<455> 표 7 및 도 54는 암 이식된 누드 마우스에서 주사 후 48시간에
64
Cu-PCB-TE2A- 1 r a s t uzumab (activity/weight, n=l)의 생체 내 분포를 나타낸다.
64
Cu-PCB-TE2A-trastuzumab의 종양 내 섭취가 혈액과 근육에 비해 각각 최소 2.2배 와 2.6배에서 최고 3.3배와 3.9배에 이름을 확인할 수 있어
64 64
Cu-PCB-TE2A-trastuzumab가 Cu의 이탈없이 선택적으로 종양에 섭취됨올 알 수 있 다.
<456> <실시예 18> Zn-PCB-TE2A의 합성
<457> [반웅식 18]
Figure imgf000087_0002
PCB-TE2A 16 Zn-PCB-TE2A 49 반웅식 18과 같이 실시예 3에서 수득한 PCB-TE2A.2(CF3C00H)(16) (151 mg,
0.258隱 ol)이 녹아 있는 메탄을 (10 mL)에 NaOH (1M, 1.55 mL, 1.55 mmol) 용액을 첨가하였다. 그런 다음 Zn(C104)2 · 6¾0 (99 mg, 0.265隱 ol)이 녹아 있는 메탄올
(6 mL)을 위의 용액에 첨가하였다. 하루 동안 환류시킨 후 상온으로 넁각시켰고 원 심분리하여 메탄올 용액만 회수하여 적은 양의 침전물은 제거하였다. 이 상등액에 Et20을 분산시켜 85 mg (78%)의 결정화된 흰색 고체 (49)를 얻었다. MS (ESI): Calculated for C17H30N4Na04Zn , 441.15 [(MNa) ] Found: 441.37 [(MNa) ] 도 55는 제조된 흰색고체 (49)의 질량분석 스펙트럼로서 이를 통해 제조된 흰 색고체가 Zn-PCB-TE2A임을 알 수 있다.
<실시예 19> Zn-PCB— D02A의 합성
Figure imgf000088_0001
PCB-D92A 6 Zn-PCB-DQ2A 50
반웅식 19와 같이, 실시예 2에서 합성된 PCB-D02A(6) (167 mg, 0.508 mmol) 이 녹아 있는 메탄올 (10 mL)에 NaOH (1M, 3.05 mL, 3.05 mmol) 용액을 첨가하였다. 그런 다음 Zn(C104)2.H20 (192 mg, 0.515 mmol)이 녹아 있는 메탄올 (6 mL)을 위의 용액에 첨가하였다. 하루 동안 환류시킨 후 상온으로 냉각시켰고 원심분리하여 메 탄올 용액만 회수하여 적은 양의 침전물은 제거하였다. 이 상등액에 Et20을 분산시 켜 139 mg (7OT)의 흰색 고체 (50)를 얻었다. MS (FAB): Calculated for
CisHzgN+NaOiZn, 413.11 [(M+Na) + ] Found: 412.87 [(M+Na) + ] 도 56은 제조된 흰색고체 (50)의 질량분석 스펙트럼로서 이를 통해 제조된 흰 색고체가 Zn-PCB-D02A임을 알 수 있다.
<실시예 20> Cu-PCB-TE2A-NH2의 합성
Figure imgf000089_0001
26 -TE2A-NO, 51
Figure imgf000089_0002
PCB-TE2A-NH, 28 CU-PCB-TE2A- H, 52
20-a) 4 , 11-비스- (카보-터트-부특시메틸 )-16-(4-니트로벤질) -1 ,4,8, 11ᅳ테트라아자 비시클로 [6.6.3]헵타데칸 (2.2TFA) [4, ll-Bis-(carbo-tert-butoxymethyl )-16-(4- nitrobenzyl)-l,4,8,H-tetraaza bicyclo[6.6.3]heptadecane (2.2TFA)](51)의 합성 반응식 20과 같이 실시예 7에서 수득한 화합물 26 (0.45 g, 0.745 mmol)을 CF3C02H (TFA)와 C¾C12 (12mL) 의 1:1 (vol:vol) 혼합용액에 녹인다. 이 반웅물은
24시간 동안 실온에서 저으면서 반웅하였다. 유기용매는 감압하에서 증발시켜 유질 의 잔류물을 얻었고 여기에 Et20를 첨가하여 노란색의 고체 (51)(0.53 g, 99%수율) 를 얻었다. (질량 분석에 의하면 2 당량의 TFA로 계산됨). MS (ESI) calculated for C24H38N506, 492.28 [(M+H)+] , found: 492.04 [(M+H)+]. 도 57은 제조된 노란색 고체 (51)의 질량분석 스펙트럼로서 이를 통해 제조된 흰색고체가 PCB-TE2A-N02임을 알수 있다.
20-b) 4, 11-비스- (카복시메틸 ) -16-(4-아미노벤질 ) -1, 4, 8, 11-테트라아자비시클로 [6.6.3]헵타데칸' 2TFA (3'2TFA)(28) [4, ll-Bis-(carboxyraethyl )-16-(4- aminobenzyl )-1,4,8, 11-tetraazabicyclo [6.6.3] heptadecane 2TFA (3'2TFA)]의 합 성
에탄올 (50 raL)에 녹아 있는 화합물 51 (0.42 g, 0.58 mmol)에 10% Pd/C (0.13 g)을 첨가하였다. 이 반웅물은 12시간 동안 실온에서 수소가스 하에서 저으 면서 반웅하였다. 반응물은 셀라이트 층으로 통과시켜 필터하고 에탄올 (2 X 20 mL) 로 씻어주었다. 회수한 여과액은 감압 하에서 증발시켜 유질의 잔류물을 얻었고 여 기에 Et20를 첨가하여 노란색의 고체 28 (0.39 g, 98%수율)을 얻었다. (질량 분석에 의하면 2 당량의 TFA로 계산됨 ). H NMR (500 MHz, DMSO-d6): d 6.92-6.90(d, 2H, J
= 8.5 Hz), 6.50-6.48(d, 2H, J = 8.5 Hz), 3.42-3.16(m, 8H), 2.92-2.50(m, 12H), 2.38-1.79(m, 5H,), 1.63-1.16(m, 4H); NMR (125 MHz, DMS0_d6) : d 174.2,
173.2, 146.8, 145.7, 137.5, 129.1, 128.0, 125.5, 114.1, 60.4, 59.8, 54.5, 50.3, 46.8, 35.4, 30.2, 23.1, 21.2, 20.7; HRMS (FAB) calculated for C24H40N504,
462.31 [(M+H)+], found: 462.60 [(M+H)+].
<474> 도 58은 제조된 노란색 고체 (28)의 질량분석 스펙트럼로서 이를 통해 제조된 흰색고체가 PCB-TE2A-NH2임을 알 수 있다.
<475> 20-c) Cu-PCB-TE2A-NH2 (52)의 합성
<476> 20 mL의 메탄올에 녹아 있는 PCB-TE2A-NH2 (102 mg, 0.148 画 ol)(28)
Cu(C104)2.6H20 ( 58 mg, 0.155 mmol )에 1M NaOH (0.887 隱 ol)을 첨가하였다. 투명 한 파란색 반웅 용액을 2시간 동안 환류시키고 냉각시킨 후 셀라이트 층으로 통과 시켜 필터하였다. 여과액은 다이에틸 에스터로 분산시켰다. 침전을 형성한 녹색 결 정 (52) 후 건조시켰다. (62 mg, 80% 수율). MS (ESI): Calculated for
C24¾7CuN5Na04, 545.20 [(M+Na)+] Found: 545.39 [(M+Na)+]
<477> 도 59는 제조된 합성된 화합물의 질량분석 스펙트럼로서 이를 통해 제조된 녹색결정이 Cu-PCB-TE2A-NH2(52)임을 알 수 있다.
<478> <실시예 21> 트라스투주맙에 Cu-PCB-TE2A-N¾의 접합
<479>
Figure imgf000090_0001
반웅식 21과 같이 0.1 M NH40Ac(pH 5.0, 1 mL)에 녹아 있는 500배 몰 과량의 EDC (2.63 mg)와 250배 몰 과량의 Cu-PCB-TE2A_NH2 (3.6 mg)(52) 을 트라스투주맙 (4mg)에 첨가하였다. 이 반응물은 30분간 37°C에서 부드럽게 저어주면서 반응하였 다. 그런 다음 centricon YM-50에 옮겨 스핀다운 하여 부피를 줄였다.
CU-PCB-TE2A— N¾— Trastuzumab(53)의 남은 용액에 PBS (pH 7.2, 3 X 2 mL)을 첨가하 였고 원심분리하여 반웅하지 않고 남아 있는 리간드를 제거하였다. 정제되고 접합 된 항체는 PBS로 2 mL 부피가 되도록 하였고 20°C에 보관하였다. Cu-PCB-TE2A- N¾-Trastuzumab의 순도는 크기 배제 HPLC로 측정하였다 (Bio Silect SEC 250-5 300
X 7.8 mm; 유속 1 mL/min, PBS, pH =7.4의 등용리 이동상).
도 60은 접합하기 전의 트라스투주맙의 SE-HPLC 크로마토그램 (UV 검출기: 220 nm)이고, 도 61은 Cu_PCB-TE2A- H2가 접합된 트라스투주맙의 SE-HPLC 크로마토 그램 (UV 검출기: 220 nm)이며, 도 62는 Cu-PCB_TE2A-NH2가 접합된 트라스투주맙 ( 검정색)과 접합하기 전 트라스투주맙 (빨강색 )의 크로마토그램 비교 (UV 검출기 : 220 nm) 그래프이다. 이를 통해 트라스투주맙이 Cu_PCB-TE2A-NH2에 접합된 것을 확 인할수 있다.
이상의 실험결과는 PCB-TE2A를 이용해서 항체를 S4Cu등 방사성핵종으로 표 지할 경우 PCB-TE2A를 먼저 항체에 결합시킨후 항체와 결합한 PCB-TE2A를 방사성핵
64
종으로 표지하는 방법 뿐 아니라 PCB-TE2A를 먼저 Cu와 같은 방사성금속으로 높은 수율로 표지하고 표지된 PCB-TE2A를 항체에 무리가 가지 않는 낮은 온도에서 항체 에 결합시키는 또 다른 표지방법도 가능함을 증명하고 있다.
<실시예 22> 4 , 11-비스- (키복시메틸 ) -16-(4- (브로모아세트아미도)벤질 ) -1 , 4-8, 11- 테트라아자시클로 [6 6 3]헵타데칸 [4,ll-Bis-(carboxymethyl)— 16-(4-
( bromoacet ami do) benzy l)-l,4,8,ll-tetr aazab icyclo[6.6.3] hept adecane ] ( 54 )의 합 성
Figure imgf000091_0001
PCB-TE2A-NH2 PCB-TE2A-NH-CO-CH2-Br
반웅식 22와 같이 실시예 21의 화합물 28 (0.101 g, 0.146 mmol)은 15 mL의 물에 녹였다. 다이아이소프로필에틸아민을 사용하여 pH는 그 8로 맞추었다. 15 mL 클로로포름에 녹아 있는 브로모아세틸 브로마이드 용액 0.1 mL에 위의 용액을 한 방울씩 떨어드리면서 첨가하였다. 이 반웅물은 다시 다이아이소프로필에틸아민을 사용하여 pH 7.0으로 맞추었고 10분간 강하게 저어주었다. 층이 분리되면 수용액층 은 클로로포름으로 추출하였다. 수용액 층의 pH는 다이아이소프로필에틸아민으로 7-8로 맞춘 후 클로로포름으로 추출하였다. 이 과정을 4회 더 반복하였다. 수용액 층의 pH는 다시 3 M HC1를 사용하여 1.5-1.8로 맞추었고 같은 양의 에틸 에스터로 2번 추출하였다. pH는 3 M HC1로 재조정하였고, 같은 양의 에틸 에스터로 2번 추출 하였다. 이런 과정은 남아 있는 pH가 변화없을 때까지 계속 진행되었다. 잔류해 있 는 에스터는 감압 하에서 수용액 층으로부터 제거되었다. 이 용액의 pH는 3 M NaOH 를 사용하여 4.5로 맞추었고 분주한 후에 -7CTC (75 mg, 88% 수율)에 보관함으로써 PCB-TE2A-N -NHC0CH2Br(54)의 합성을 마무리하였다.
<487> MS(ESI): Calculated for C26H41BrN505 , 582.23 [(M+H+] Found: 582.54 [(M+H+]
<488> 도 63은 합성된 화합물의 질량 분석 스펙트럼으로서 이를 통해 합성된 화합 물이 PCB-TE2A-NH2-NHC0CH2Br(54)임을 확인할 수 있다.
<489> <실시예 23> Ga-PCB-TE2A의 합성
<490> 반웅식 23]
Figure imgf000092_0001
PCB-TE2A
<491> 16 G3-PCB-TE2A 55
<492> 메탄을 (20 mL)에 녹아 있는 PCB-TE2A.2(CF3C0OH)(16) (86.7 mg, 0.148 隱 ol) 용액에 메탄올 (10 mL)에 녹아 있는 Ga(N03)3 hydrate (38.4 mg, 0.15 睡 ol) 용액을 첨가하였다. 그런 다음 메탄을 (10 mL)에 녹아 있는 무수 소오듐 아세테이 트 (48.6 mg, 0.592 mmol)을 첨가하였다. 반웅물은 이를 동안 환류시켰고 원심분리 하여 흰색의 첨전물을 회수하였고 건조시켜 최종 착물 (55) (44 mg, 70%)을 얻었다.
MS (FAB): Calculated for C17H30N404Ga, 423.15 [(M)+] Found: 422.86 [(M)+] 도 64는 합성된 착물의 질량 분석 스펙트럼으로서 이를 통해 합성된 이 Ga-PCB-TE2A(55)임을 확인할 수 있다.
<실시예 24> Ga-PCB-D02A의 합성
[반웅식 24]
Figure imgf000093_0001
PCB-D02A 6 Ga-PCB-D02A 56
메탄올 (15 mL)에 녹아 있는 PCB-D02A(6)(112 mg, 0.341 mmol) 용액에 메탄 올 (10 mL)에 녹아 있는 Ga(N03)3 hydrate (88.2 mg, 0.345 圍 ol) 용액을 첨가하였 다. 그런 다음 메탄올 (12 mL)에 녹아 있는 무수 소오듬 아세테이트 (112 mg, 1.36 mmol)을 첨가하였다. 반응물은 이를 동안 환류시켰고 원심분리하여 흰색의 침전물 을 회수하였고 건조시켜 최종 착물 (56) (97 mg, 72%)을 얻었다. MS (ESI):
Calculated for C15H26N4Na04Ga, 418.11 [(M+Na)*] Found: 418.33 [(M+Na)+] 도 65는 합성된 착물의 질량 분석 스펙트럼으로서 이를 통해 합성된 화합물 이 Ga-PCB— D02M56)임을 확인할 수 있다.
<실시예 25> Gd-PCB-TE2A의 합성
[반응식 25]
Figure imgf000093_0002
PCB-TE2A 16 Gd-PCB-TE2A 57
PCB-TE2A(16) (52 mg, 0.145 mmol)와 GdCl3 (40 mg, 0.15 隱 ol)을 물 (15 mL) 에 녹이고 0.1 M NaOH를 사용하여 모니터링하면서 pH 6.0-6.5로 유지하였다. 이 반 응물은 24시간 동안 환류시켰다. 그런 다음 실온으로 떨어뜨렸다. pH는 10으로 맞 추었고 이 때 생긴 침전물은 여과하여 제거하였다. 여과액의 pH는 7.4로 맞추었다. 여과액은 감압 하에서 증발시켜서 40 mg의 약간 노란색을 띄는 고체 (57)를 희수하 였다. MS (FAB): Calculated for C17H29N4C104Gd, 546.12 [(M+C1_H)+] Found: 545.94
[(M+C1-H)
도 66은 노란색 고체 (57)의 질량 분석 스펙트럼으로서 이를 통해 합성된 화 합물이 Gd-PCB-TE2A(57)임을 확인할 수 있다.
<실시예 26> Gd— PCB-D02A의 합성
Figure imgf000094_0001
PCB-D02A 6 Gd-PGB,0O2A 58
PCB-D02A(6) (82 mg, 0.249 隱 οθ와 GdCl3 (66 mg, 0.25 mmol)을 물 (20 mL)
' 에 녹이고 0.1 M NaOH를 사용하여 모니터링하면서 pH 6.0-6.5로 유지하였다. 이 반 웅물은 24시간 동안 환류시켰다. 그런 다음 실온으로 떨어뜨렸다. pH는 10으로 맞 추었고 이 때 생긴 침전물은 여과하여 제거하였다. 여과액의 pH는 7.4로 맞추었다. 여과액은 감압 하에서 증발시켜서 72 mg의 회색빛이 도는 흰색의 고체 (58)를 회수 하였다. MS (FAB): Calculated for C15H26ClN4GdNa04, 542.08 [(M+Cl+Na)+] Found:
541.80 [(M+Cl+Na)+]
도 67은 흰색 고체 (58)의 질량 분석 스펙트럼으로서 이를 통해 합성된 화합 물이 Gd-PCB-D02A(58)임을 확인할 수 있다.
<실시예 27> Gd-PCB-TE2A-NCS의 합성
Figure imgf000094_0002
PCB-TE2A-NCS 29 Gd-PCB-TE2A-NCS 59 PCB-TE2A-NCS(29) (51 mg, 0.101 ol)와 GdCl3 (28 mg, 0.105 ol)을 물
(10 mL)에 녹이고 0.1 M NaOH를 사용하여 모니터링하면서 pH 6.0-6.5로 유지하였 다. 이 반응물은 24시간 동안 환류시켰다. 그런 다음 실은으로 떨어뜨렸다. pH는 10으로 맞추었고 이 때 생긴 침전물은 여과하여 제거하였다. 여과액의 pH는 7.4로 맞추었다. 여과액은 감압 하에서 증발시켜서 32 mg의 약간 노란색을 띄는 고체 (59) 를 회수하였다. MS (FAB): Calculated for C25H36Cl2N504GdS, 730.80 [(M+2C1+H)+]
Found: 731.00 [(M+2C1+H)+] .
도 68은 노란색 고체 (59)의 질량 분석 스펙트럼으로서 이를 통해 합성된 화 합물이 Gd-PCB-TE2A-NCS(59)임을 확인할 수 있다.
【산업상 이용가능성】
본 발명의 화합물을 조영제로 사용하는 경우 생체내에서 안정성이 뛰어나고 표지가 낮은온도에서 가능하며 생체물질과 컨쥬게이션이 용이하여 진단영상분야에 서 대단히 유용한 발명이며 의료용 방사성 핵종과 착물이 형성된 킬레이트를 질병 특이적 항체와 컨쥬게이션시 치료용 방사성 의약품으로 사용될 수 있다. 또한 Gd과 같이 상자성을 띠는 금속과 안정한 착물을 형성함으로 MRI 조영제로도 사용가능하 다.

Claims

【청구의 범위】 【청구항 1】 하기 화학식 1로 표시되는 화합물 또는 그의 약제학적으로 허용가능한 염올 포함하는 테트라아자 거대고리 화합물.
[화학식 1]
Figure imgf000096_0001
R은 각각 독립적으로 Hᅳ 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 치환 또는 비치환된 Cwo의 알킬기이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아 노, 카르복시, 히드록시, 티올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
R1은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티올, 알데하이드, 카보닐, 치환 또는 비치환된 ( 15의 알킬, 치환 또는 비치환된 d-15의 알케닐, 치환 또는 비치환 ( 15의 알키닐, 치환 또는 비치환된 d-15의 알킬아릴, 치환 또는 비치환된 ( 15의 아릴, 치환 또는 비치환된 ( 15의 헤테로알킬, 치환 또는 비치환된 ( 15의 헤테로고리, 치 환 또는 비치환된 ( 15의 헤테로아릴, 상기 치환은 이미드, 알데하이드,
카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실 아세틸렌, N3, 아세트아미노, 아자이드, 에스테르, 할로겐, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)올 포함하고; X은 각각 독립적으로 H, -(CR )rCOOH, , -CR -((CR )m-C00H)2) -(CR2)i-C02R3, — (CR2)厂 ArOR3, — (CR2)厂 SR3, -(CR2),-S03H, — (CR2)厂 P02HR3,
- ΛΝ Λ, -(CR2)nC0N(CR2)2이며, 상기 R 및 R3가 각각 독립적으로 H,치환 또 는 비치환된 d-10의 알킬, 치환 또는 비치환된 Cwo의 알케닐, 치환 또는 비치환
( 10의 알키닐, 치환 또는 비치환된 ( 10의 알킬아릴, 치환 또는 비치환된 Cwo의 아 릴, 치환 또는 비치환된 (:-10의 헤테로알킬, 치환 또는 비치환된 Cwo의 헤테로아릴 이고, 상기 Ar이 치환 또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인산기, 알킨 및 NCS로 구성되는 군으로부 터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 5 중 어느 하나의 정 수이되, 상기 X1은 적어도 하나 이상이 H가 아니고;
L은 각각 독립적으로 존재하거나 존재하지 않는 링커이고, R1은 L이 존재하 지 않을 경우 탄소원자에 직접 결합되고;
a는 각각 독립적으로 2 내지 3 중 어느 하나의 정수;
a'는 각각 독립적으로 2 내지 3 중 어느 하나의 정수;
n은 각각 독립적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자 가를 층족시키는 0 내지 2 중 어느 하나의 정수이다.
【청구항 2]
제 1항에 있어서,
상기 R은 각각 독립적으로 H, 할로겐, 케톤, Cwo의 알킬기인 것올 특징으로 하는 테트라아자 거대고리 화합물.
【청구항 3】
제 1항에 있어서,
상기 R1은 각각 독립적으로 H, 치환 또는 비치환된 (^ᅳ15의 알킬, 치환 또는 비치환된 ᅳ15의 알케닐, 치환 또는 비치환 d-15의 알키닐, 치환 또는 비치환된 d-15 의 알킬아릴, 치환 또는 비치환된 C 15의 아릴, 치환 또는 비치환된 ( 15의 헤테로 알킬, 치환 또는 비치환된 ( 15의 헤테로고리 , 치환 또는 비치환된 ( 15의 해테로아 릴, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노,' 아자이드, 에 스테르, 할로겐, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하되, 상기 R1은 적어도 하나 이상이 H가 아닌 것을 특징으로 하는 테트라아자 거대고리 화합물.
【청구항 4】
제 1항에 있어서,
상기 R1은 각각 독립적으로 H, 치환 또는 비치환된 Cwo의 알킬, 치환 또는 비치환된 d-10의 알케닐, 치환 또는 비치환 Cwo의 알키닐, 치환 또는 비치환된 Cwo 의 알킬아릴, 치환 또는 비치환된 (^ 의 아릴, 치환 또는 비치환된 Cwo의 헤테로 알킬이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이 드, 에스테르, 할로겐, 알킨 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이 상의 성분 (moiety)을 포함하되, 상기 R1은 적어도 하나 이상이 H가 아닌 것을 특징 으로 하는 테트라아자 거대고리 화합물.
【청구항 5】
제 1항에 있어서,
상기 R1은 각각 독립적으로 H, (CR5 2)a-P-(CR5 2)b-Q— (CR5 2)c-R-(CR5 2)d-A, 이 고; 상기 R5는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할 로겐, 케톤ᅳ 시아노, 카르복시, 히드록시, 티올, 알데하이드, d-3의 알킬기이고; 상기 P, Q, R은 각각 독립적으로 존재하지 않거나; Ar, C02) NH, CO 또는 0 이고;
상기 A는 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙 신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, NCS, 에스테르, 할로겐, C26의 알켄, C2-6의 알킨 또는 C02R5이고, ; Ar은 각각 독립적으로 치환 또는 비 치환된 페닐이고, 상기 치환은 할로겐이 고 ;
a는 각각 독립적으로 1 - 5의 정수 , b는 각각 독립적으로 0 ~ 5의 정수, c는 각각 독립적으로 0 ~ 5의 정수, d는 각각 독립 적으로 0 ~ 5의 정수이고, 상기 R1은 적어도 하나 이상이 H가 아닌 것을 특징으로 하는 테트라아자 거 대고리 화합물 .
【청구항 6】
제 1항에 있어서 ,
상기 R1은 각각 독립 적으로 H, (CR5 2)nAr(CR5 2)m-A, (CR5 2)nAr(CR5=CR5)n-A,
(CR5 2)nArp(CR5 2)mC02(CR5 2)m-A, (CR5 2)nArp(CR5 2)mCO(CR5 2)m-A, (CR5 2)nC02(CR5 2)mArp-A,
(CR5 2)nArp(CR5 2)mNHCO(CR5 2)m— A (CR5 2)nC0NH(CR5 2)m-A 또는 (CR5 2)n-A이고 ; 상기 R5는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할 로겐, 케톤, 시아노 , 카르복시, 히드록시, 티올, 알데하이드, d-3의 알킬기 이고 ; 상기 A는 이 미드, 알데하이드 . 카르복시 기, 케톤, 니트로, 아미 노 ᅳ 티 올, 숙 신이 미드, 말레 이 미드, 아미노옥실, 아세틸렌, N3, 아세트아미 노 아자이드, NCS, 에스테르, 할로겐, (:26의 알켄 , C2-6 의 알킨 또는 C02R5이고, ;
Ar은 각각 독립적으로 치환 또는 비 치환된 페닐이고, 상기 치환은 할로겐 또 는 PP¾이고 ;
n은 각각 독립 적으로 1 ~ 5의 정수, m은 각각 독립 적으로 0 ~ 5의 정수, p는 각각 독립적으로 0 또는 1의 정수이고, m이 0일 때 A가, NH, CO, Ar , S02 , C02에 직 접 결합하고, 상기 R1은 적어도 하나 이상이 H가 아닌 것을 특징으로 하는 테트라아 자 거 대고리 화합물 .
【청구항 7】
제 1항에 있어서,
상기 R1은 각각 독립적으로 하기 화학식 a로 표시 되는 작용기 중 어느 하나 인 것을 특징으로 하는 테트라아자 거 대고리 화합물 .
[화학식 a]
Figure imgf000100_0001
단, R은 각각 독립적으로 NH2, COOH, N3, CHO, NCO, SH 또는 C2-6의 알킨이고, χ는 각각 독립적으로 C1 또는 Br이며, n은 각각 독립적으로 0 ~ 5의 정수이다.
【청구항 8】
제 1항에 있어서,
상기 ¾및 ¾는 각각 독립적으로 H, t-Bu, Et, Me, 벤질, 메톡시벤질 또는 -CH2C02-t-Bu인 것을 특징으로 하는 테트라아자 거대고리 화합물.
【청구항 9】
제 1항에 있어서,
상기 X1은 각각 독립적으로 H, -(0^)^(0^)2, -(CR2)mC0N(CR2)2l
-(CR2)m-E-(CR2)厂 F이고; 상기 E는 존재하지 않거나; C0NH, NHC0이고;
F는 C00H, P03H2) S03H, OH, NH2l C0NH2, ICS 또는 C2의 알킨이고; R 는 각각 독립적으로 H, 카르복시기, 할로겐 또는 d-3의 알킬기이고;
1은 각각 독립적으로 0 내지 3중 어느 하나의 정수, m은 각각 독립적으로 1 내지 3 중 어느 하나의 정수이되, 상기 X1은 적어도 하나 이상이 H가 아닌 것을 특 징으로 하는 테트라아자 거대고리 화합물.
【청구항 10]
1항에 있어서,
상기 X1은 적어도 하나 이상이 독립적으로 하기 화학식 b로 표시되는 작용기 중 어느 하나인 것을 특징으로 하는 테트라아자 거대고리 화합물.
b]
Figure imgf000101_0001
단 R은 Ph, Bn. Me, Et 또는 n_Bu이며, n은 각각 독립적으로 0 ~ 1의 정수이 다.
【청구항 11】
제 1항에 있어서,
상기 화학식 1의 a는 2 또는 3이고 a'은 2인 것을 특징으로 하는 테트라아자 거대고리 화합물.
【청구항 12]
제 1항에 있어서,
상기 L은 하기 화학식으로 표시되는 링커 중 어느 하나 이상인 것을 특징으 로 하는 테트라아자 거대고리 화합물.
[화학식]
Figure imgf000102_0001
단, R, ¾ 및 R2는 각각 독립적으로 Cwo의 알킬, ( 10의 알케닐, d-10의 알키 닐, Cwo의 아릴, d-κ)의 아릴알킬, (:^의 해테로아릴이고, n은 각각 독립적으로 1 내지 20의 정수이다.
【청구항 13]
겨 U항에 있어서, 상기 테트라아자 거대고리 화합물은 하기 화학식 중 어느 하나 이상의 화합물인 것 을 특징으로 하는 테트라아자 거대고리 화합물 .
[화학식]
Figure imgf000103_0001
【청구항 14】
제 1항에 있어서,
상기 테트라아자 거대고리 화합물은 하기 화학식 중 어. 하나 이상의 화합 물인 것을 특징으로 하는 테트라아자 거대고리 화합물.
[화학식]
Figure imgf000103_0002
Figure imgf000104_0001
【청구항 15]
제 1항에 있어서,
상기 테트라아자 거대고리 화합물은 하기 화학식 중 어느 하나 이상의 화합 물인 것을 특징으로 하는 테트라아자 거대고리 화합물.
[화학식]
Figure imgf000104_0002
【청구항 16]
제 1항에 있어서,
상기 테트라아자 거대고리 화합물은 하기 화학식 중 어느 하나 이상의 화합 물인 것을 특징으로 하는 테트라아자 거대고리 화합물.
[화학식]
Figure imgf000105_0001
【청구항 17]
제 1항에 있어서,
상기 R1은 각각 독립적으로 항체, 아미노산, 뉴클레오시드, 뉴클레오티드, 압타머, 단백질, 항원ᅳ 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비 타민, 호르몬, 나노입자, 무기지지체, 고분자, 단분자 또는 약물과 결합할 수 있는 것을 특징으로 하는 테트라아자 거대고리 화합물 .
【청구항 18]
제 1항에 있어서,
상기 X1은 금속이온과 배위결합을 형성할 수 있는 것을 특징으로 하는 테트 라아자 거대고리 화합물 .
【청구항 19]
하기 화학식 2로 표시되는 테트라아자 거대고리 화합물과 하기 화학식 3으로 표시되는 화합물을 반웅시키는 단계를 포함하는 테트라아자 거대고리 화합물의 제 조방법ᅳ
[화학식 2]
Figure imgf000106_0001
R은 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시 , 티올, 알데하이드, 치환 또는 비치환된 (^ 의 알킬기이고, 상기 치환은 아미노, 아미도, 니트로, 에스테르, 할로겐, 케톤, 시아 노, 카르복시, 히드록시, 티올, 알데하이드로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
X1은 각각 독립적으로 H, -(CR2),-C00H, , -CR2-((CR2)m-C00H)2) -(CR2),-C02R3, -(CR2),-ArOR , -(CR2),-SR , -(CR2),-S03H, -(CR2),-P02HR3,
-(CR^^CCR^z, _(CR2)mC0N(CR2)2이며, 상기 R 및 R3가 각각 독립적으로 H, 치환 또 는 비치환된 d-10의 알킬, 치환 또는 비치환된 Cwo의 알케닐, 치환 또는 비치환
( 10의 알키닐, 치환 또는 비치환된 (: 의 알킬아릴, 치환 또는 비치환된 Cwo의 아 릴, 치환 또는 비치환된 d-10의 헤테로알킬, 치환 또는 비치환된 Cwo의
헤테로아릴, Ar이 치환 또는 비치환된 페닐이고, 상기 치환은 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, N3, 아세틸렌, 아세트아미노, 아자이드, 인산기 및 NCS로 구성되는 군으로부터 선택 되는 어느 하나 이상의 성분 (moiety)을 포함하고, 1은 각각 독립적으로 1 내지 3 중 어느 하나의 정수 및 m은 각각 독립적으로 1 내지 5 중 어느 하나의 정수이되, 상기 X은 적어도 하나 이상이 H가 아니고;
a는 각각 독립적으로 2 내지 3 중 어느 하나의 정수;
a'는 각각 독립적으로 2 내지 3 중 어느 하나의 정수;
n은 각각 독립적으로 R 또는 L-R1부분이 공유결합하고 있는 탄소원자의 원자 가를 충족시키는 0 내지 2 중 어느 하나의 정수
[화학식 3]
Figure imgf000107_0001
R는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에테르, 에스테르, 할로겐, 케톤, 시아노, 카르복시, 히드록시, 티을, 알데하이드, 카보닐, 치환 또는 비치환된 d-15의 알킬, 치환 또는 비치환된 d-15의 알케닐, 치환 또는 비치환 d-15의 알키닐, 치환 또는 비치환된 d-15의 알킬아릴, 치환 또는 비치환된 ( 15의 아릴, 치환 또는 비치환된 (^ᅳ15의 헤테로알킬, 치환 또는 비치환된 ( 15의 헤테로고리, 치 환 또는 비치환된 ( 의 헤테로아릴, 상기 치환은 이미드, 알데하이드. 카르복시 기, 케톤, 니트로, 아미노, 티올, 숙신이미드, 말레이미드, 아미노옥실, 아세틸 렌, N3, 아세트아미노, 아자이드 및 NCS로 구성되는 군으로부터 선택되는 어느 하나 이상의 성분 (moiety)을 포함하고;
L은 각각 독립적으로 존재하거나 존재하지 않는 링커이고, R4는 L이 존재하 지 않을 경우 탄소원자에 직접 결합되고;
Y는 각각 독립적인 이탈기; 및
n은 각각 독립적으로 L-R4 부분이 공유결합하고 있는 탄소원자의 원자가를 충족시키는 0 내지 2 중 어느 하나의 정수
【청구항 20]
제 19항에 있어서,
상기 R4는 각각 독립적으로 H, (CR5 2)nAr(CR5 2)m-A, (CR5 2)nAr(CR5=CR5)n-A,
(CR5 2)nArp(CR5 2)mC02(CR5 2)m-A, (CR5 2)nArp(CR5 2)mC0(CR52)m-A, (CR5 2)nC02(CR5 2)mArp-A,
(CR5 2)nArp(CR5 2)mNHC0(CR5 2)m— A (CR5 2)nC0NH(CR5 2)m-A또는 (CR5 2)n_A이고; 상기 R5는 각각 독립적으로 H, 알콜, 아미노, 아미도, 니트로, 에스테르, 할 로겐, 케톤, 시아노, 카르복시, 히드록시, 티을, 알데하이드, d-3의 알킬기이고; 상기 A는 이미드, 알데하이드. 카르복시기, 케톤, 니트로, 아미노, 티올, 숙 신이미드, 말레이미드, 아미노옥실, 아세틸렌, N3, 아세트아미노, 아자이드, NCS, 에스테르, 할로겐, ( 6의 알켄 , C2-6의 알킨 또는 C02R5이고, ;
Ar은 각각 독립적으로 치환 또는 비치환된 페닐이고, 상기 치환은 할로겐이 고;
n은 각각 독립적으로 1 ~ 5의 정수, m은 각각 독립적으로 0 ~ 5의 정수, p는 각각 독립적으로 0 또는 1의 정수이고, m이 0일 때 A가, NH, CO, Ar, S02. C02에 직 접 결합하고, 상기 R4는 적어도 하나 이상이 H가 아닌 것을 특징으로 하는 테트라아 자 거대고리 화합물.
【청구항 21]
제 19항에 있어서,
상기 Y는 각각 독립적으로 토실레이트, 메실레이트, 브로실레이트, 트레실레 이트, 트리플레이트, 노실레이트, Br, C1 또는 I인 것을 특징으로 하는 테트라아자 거대고리 화합물의 제조방법 .
【청구항 22]
제 1항에 따른 테트라아자 거대고리 화합물; 및 상기 테트라아자 거대고리 화 합물과 배위결합된 금속원소를 포함하는 배위결합 화합물.
【청구항 23】
제 22항에 있어서,
상기 금속원소는 비방사성 금속원소 또는 방사성 금속원소인 것을 특징으로 하는 배위결합 화합물.
【청구항 24]
제 22항에 있어서,
상기 금속원소는
Cu, Re, Tc, Ga, In, Y, Gd, Mn, Fe, Sc, Zr, Mg, Zn, Pt, La, Sm, Eu, Tb, Ra, Th, Ac, Ho, Lu으로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징 으로 하는배위결합 화합물.
【청구항 25]
제 22항에 있어서,
, , -, , Λ1 , 43„ 44 45 51 51 52 52 53 55 56 상기 금속원소는 Sc, Sc, Ti, Mn, Cr, Mn, Fe, Fe, Co, Co,
61 62 62 63 64 65 66 66 67 6그 67.
Co, , Co, , Fe, , Cu,
68 70 70 71 71 72 73ᅳ 74 74 75 75 76 77
Ga, e, , 69As, , As,
77 78 78 79 81 82 83„ 84 84 85 86 87 87 88
Kr, Br, , Rb, , Rb,
90 89 92 93 94 95 95 95 96 97 97 98 99 94m
Y, Zr, Tc, Tc,
99m 100 - 101 _ 102 102 103 103 104 105 105 106
Rh, Ag, Ag, Rh, Ag, Ru, Ag, Ag, Ru, Ag
110 111 115 116
In, In, Sb, Sb, Sb, Te, Te, Te, I, I, Xe, Xe, I,
119 120 120 121 121 122 i 123 124 126 128 m 130 131 132
Te, I, Xe, Xe, I, I, Xe, I, I, , I, La, La, La, La,
133 135 136 140 141 144 145 145 146 146 147 147^
La, La, La, Sm, Sm, Sm, Gd, Gd, Eu, Gd, Eu, Eu, Gd,
148 149 150 153 159 166 169 177 186 188 190 191 192
Eu, Pr, Eu, Sm, Gd, Ho, Yb, Lu, Re, Re, Au, Au, Au,
193 193 194 194 195 196 197 198 200 200 201 202 203
Au, Tl, Tl, Au, Tl, Tl, Tl, Tl, Tl, Bi, Tl Bi, Bi,
Bi 또는 Bi, As, Bi, Ac로 구성되는 군으로부터 선택되는 어느 하나 이상 인 것을 특징으로 하는 배위결합 화합물.
【청구항 26]
제 1항에 따른 테트라아자 거대고리 화합물 또는 제 22항의 배위결합 화합물; 및 상기 테트라아자 거대고리 화합물 또는 배위결합 화합물과 연결된 항체, 아미노 산, 뉴클레오시드, 뉴클레오티드, 압타머, 단백질, 항원, 펩타이드, 핵산, 효소, 지질, 알부민, 세포, 탄수화물, 비타민, 호르몬, 나노입자, 무기지지체, 고분자, 단분자 또는 약물을 포함하는 컨쥬게이트.
【청구항 27] 1) 제 1항의 테트라아자 거대고리 화합물을 제조하는 단계 ;
2) 제조된 테트라아자 거대고리 화합물에 생물활성물질 또는 화학활성물질을 결합시키는 단계; 및
3) 상기 테트라아자 거대고리 화합물에 금속원소를 배위결합시켜 착물을 형 성하는 단계를 포함하는 컨쥬게이트의 제조방법.
【청구항 28】
1) 제 1항의 테트라아자 거대고리 화합물을 제조하는 단계;
2) 상기 테트라아자 거대고리 화합물에 금속원소를 배위결합시켜 착물을 형 성하는 단계; 및 -
3) 상기 착물에 생물활성물질 또는 화학활성물질을 결합시키는 단계를 포함 하는 컨쥬게이트의 제조방법.
【청구항 29】
제 26항의 컨쥬게이트 및 제약상 허용되는 담체를 포함하며 종양, 마이코플라 스마, 병원체표면항원, 독소, 효소, 알레르기원, 약물, 생물학적 활성분자 박테리 아, 곰광이, 바이러스, 기생충, 자가면역, 치매, 심장 및 /또는 신경계와 관련된 질환을 진단 또는 치료하기 위한 제약 조성물.
【청구항 30]
제 26항의 컨쥬게이트를 포함하는 방사성 치료제.
【청구항 31]
제 1항의 테트라아자 거대고리 화합물을 포함하는 조영제.
【청구항 32]
제 31항에 있어서,
상기 조영제는 MRI, PET, CT또는 SPECT에 사용되는 조영제.
PCT/KR2010/006139 2009-09-09 2010-09-09 신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도 WO2011031073A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/395,346 US9061078B2 (en) 2009-09-09 2010-09-09 Tetraaza macrocyclic compound, preparation method thereof and use thereof
EP10815618.3A EP2476683B1 (en) 2009-09-09 2010-09-09 Novel tetra-aza macrocyclic compound, method for preparing same, and use thereof
US14/645,967 US9353120B2 (en) 2009-09-09 2015-03-12 Tetraaza macrocyclic compound, preparation method thereof and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090084943 2009-09-09
KR10-2009-0084943 2009-09-09
KR1020100073954A KR101199570B1 (ko) 2009-09-09 2010-07-30 신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도
KR10-2010-0073954 2010-07-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,346 A-371-Of-International US9061078B2 (en) 2009-09-09 2010-09-09 Tetraaza macrocyclic compound, preparation method thereof and use thereof
US14/645,967 Division US9353120B2 (en) 2009-09-09 2015-03-12 Tetraaza macrocyclic compound, preparation method thereof and use thereof

Publications (2)

Publication Number Publication Date
WO2011031073A2 true WO2011031073A2 (ko) 2011-03-17
WO2011031073A3 WO2011031073A3 (ko) 2011-08-04

Family

ID=43934348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006139 WO2011031073A2 (ko) 2009-09-09 2010-09-09 신규한 테트라아자 거대고리 화합물, 제조방법 및 그 용도

Country Status (4)

Country Link
US (2) US9061078B2 (ko)
EP (1) EP2476683B1 (ko)
KR (1) KR101199570B1 (ko)
WO (1) WO2011031073A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871186A1 (en) * 2013-11-12 2015-05-13 Université de Bretagne Occidentale Picolinate cross-bridged cyclams, chelates with metallic cations and use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2619210A4 (en) * 2010-09-20 2014-01-22 Nordion Canada Inc METHOD FOR CHELATING COPPER IONS WITH BIFUNCTIONAL CHELATING AGENT CB-TE2A
US10077284B2 (en) 2014-05-30 2018-09-18 The Governing Council Of The University Of Toronto UBA5 inhibitors
KR102374087B1 (ko) * 2019-04-25 2022-03-16 경북대학교 산학협력단 면역 컨쥬게이트 및 그의 용도
US11541134B1 (en) 2021-08-02 2023-01-03 Rayzebio, Inc. Stabilized compositions of radionuclides and uses thereof
EP4148051A1 (en) * 2021-09-10 2023-03-15 Ustav organicke chemie a biochemie AV CR, v.v.i. Compounds for complexation of rare earth elements and/or s-, p-, d- block metals, their coordination compounds, peptide conjugates, method of their preparation and use thereof
WO2023178313A2 (en) * 2022-03-18 2023-09-21 The Research Foundation For The State University Of New York Radiopharmaceutical compositions, synthetic methods, and methods of treatment

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103098A (en) 1989-11-09 1992-04-07 Board Of Regents, The University Of Texas System High resolution gamma ray detectors for positron emission tomography (pet) and single photon emission computed tomography (spect)
US5109397A (en) 1988-04-22 1992-04-28 Analogic Corporation X-ray tomography apparatus with lateral movement compensation
US5208581A (en) 1991-11-22 1993-05-04 General Electric Company High speed communication apparatus for computerized axial tomography (cat) scanners with matching receiver
US5210421A (en) 1991-06-10 1993-05-11 Picker International, Inc. Simultaneous transmission and emission converging tomography
US5272343A (en) 1992-07-27 1993-12-21 General Electric Company Sorter for coincidence timing calibration in a PET scanner
US5406479A (en) 1993-12-20 1995-04-11 Imatron, Inc. Method for rebinning and for correcting cone beam error in a fan beam computed tomographic scanner system
US5446799A (en) 1993-11-01 1995-08-29 Picker International, Inc. CT Scanner with improved processing efficiency 180 degrees+ fan angle reconstruction system
US5532489A (en) 1993-06-10 1996-07-02 Hamamatsu Photonics K.K. Positron imaging apparatus
US5600145A (en) 1995-01-19 1997-02-04 Picker International, Inc. Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator
US5608221A (en) 1995-06-09 1997-03-04 Adac Laboratories Multi-head nuclear medicine camera for dual SPECT and PET imaging with monuniform attenuation correction
US5650135A (en) 1994-07-01 1997-07-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US5900636A (en) 1997-05-30 1999-05-04 Adac Laboratories Dual-mode gamma camera system utilizing single-photon transmission scanning for attenuation correction of PET data
US5946371A (en) 1997-12-08 1999-08-31 Analogic Corporation Method and apparatus for volumetric computed tomography scanning with offset symmetric or asymmetric detector system
US6072177A (en) 1997-01-08 2000-06-06 Smv America, Inc. Gamma camera for PET and SPECT studies
US6115446A (en) 1999-04-09 2000-09-05 Arch Development Corp. Fast reconstruction of fan-beam CT and SPECT
US6151377A (en) 1996-07-01 2000-11-21 Nilsson; Stefan Computer tomographic method and a computer tomograph
WO2002026267A2 (en) 2000-09-25 2002-04-04 The Procter & Gamble Company Manganes complexes for magnetic resonance imaging
US6916460B2 (en) 1999-09-13 2005-07-12 Bristol-Myers Squibb Pharma Company Macrocyclic chelants for metallopharmaceuticals
US20060062728A1 (en) 2004-09-23 2006-03-23 General Electric Company Multifunctional cross-bridged tetraaza macrocyclic compounds and methods of making and using

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109397A (en) 1988-04-22 1992-04-28 Analogic Corporation X-ray tomography apparatus with lateral movement compensation
US5103098A (en) 1989-11-09 1992-04-07 Board Of Regents, The University Of Texas System High resolution gamma ray detectors for positron emission tomography (pet) and single photon emission computed tomography (spect)
US5210421A (en) 1991-06-10 1993-05-11 Picker International, Inc. Simultaneous transmission and emission converging tomography
US5208581A (en) 1991-11-22 1993-05-04 General Electric Company High speed communication apparatus for computerized axial tomography (cat) scanners with matching receiver
US5272343A (en) 1992-07-27 1993-12-21 General Electric Company Sorter for coincidence timing calibration in a PET scanner
US5532489A (en) 1993-06-10 1996-07-02 Hamamatsu Photonics K.K. Positron imaging apparatus
US5446799A (en) 1993-11-01 1995-08-29 Picker International, Inc. CT Scanner with improved processing efficiency 180 degrees+ fan angle reconstruction system
US5406479A (en) 1993-12-20 1995-04-11 Imatron, Inc. Method for rebinning and for correcting cone beam error in a fan beam computed tomographic scanner system
US5650135A (en) 1994-07-01 1997-07-22 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US5600145A (en) 1995-01-19 1997-02-04 Picker International, Inc. Emission/transmission device for use with a dual head nuclear medicine gamma camera with the transmission source located behind the emission collimator
US5608221A (en) 1995-06-09 1997-03-04 Adac Laboratories Multi-head nuclear medicine camera for dual SPECT and PET imaging with monuniform attenuation correction
US6151377A (en) 1996-07-01 2000-11-21 Nilsson; Stefan Computer tomographic method and a computer tomograph
US6072177A (en) 1997-01-08 2000-06-06 Smv America, Inc. Gamma camera for PET and SPECT studies
US5900636A (en) 1997-05-30 1999-05-04 Adac Laboratories Dual-mode gamma camera system utilizing single-photon transmission scanning for attenuation correction of PET data
US5946371A (en) 1997-12-08 1999-08-31 Analogic Corporation Method and apparatus for volumetric computed tomography scanning with offset symmetric or asymmetric detector system
US6115446A (en) 1999-04-09 2000-09-05 Arch Development Corp. Fast reconstruction of fan-beam CT and SPECT
US6916460B2 (en) 1999-09-13 2005-07-12 Bristol-Myers Squibb Pharma Company Macrocyclic chelants for metallopharmaceuticals
WO2002026267A2 (en) 2000-09-25 2002-04-04 The Procter & Gamble Company Manganes complexes for magnetic resonance imaging
US20060062728A1 (en) 2004-09-23 2006-03-23 General Electric Company Multifunctional cross-bridged tetraaza macrocyclic compounds and methods of making and using

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Chemotherapy Source Book", WILLIAMS & WILKENS PUBLISHING
J. AM. CHEM. SOC., vol. 122, 2000, pages 10561 - 10572
See also references of EP2476683A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871186A1 (en) * 2013-11-12 2015-05-13 Université de Bretagne Occidentale Picolinate cross-bridged cyclams, chelates with metallic cations and use thereof
WO2015071334A1 (en) * 2013-11-12 2015-05-21 Université De Bretagne Occidentale Picolinate cross-bridged cyclams, chelates with metallic cations and use thereof
US10434199B2 (en) 2013-11-12 2019-10-08 Université De Bretagne Occidentale Picolinate cross-bridged cyclams, chelates with metallic cations and use thereof

Also Published As

Publication number Publication date
US20120219495A1 (en) 2012-08-30
US9353120B2 (en) 2016-05-31
KR20110027555A (ko) 2011-03-16
US20150291608A1 (en) 2015-10-15
EP2476683A4 (en) 2013-06-19
KR101199570B1 (ko) 2012-11-13
EP2476683B1 (en) 2019-04-03
WO2011031073A3 (ko) 2011-08-04
US9061078B2 (en) 2015-06-23
EP2476683A2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
TWI657827B (zh) 用於正子斷層掃描之化合物
CN111741751B (zh) 伊文思蓝衍生物的化学缀合物及其作为靶向前列腺癌的放射疗法和显像剂的用途
US9353120B2 (en) Tetraaza macrocyclic compound, preparation method thereof and use thereof
CA3050094C (en) Treatment of cancer cells overexpressing somatostatin receptors using ocreotide derivatives chelated to radioisotopes
WO2016062370A1 (en) 18f-tagged inhibitors of prostate specific membrane antigen (psma), their use as imaging agents and pharmaceutical agents for the treatment of prostate cancer
CA2969551C (en) Bifunctional do2pa derivatives, chelates with metallic cations and use thereof
JPH08504399A (ja) 3−,8−置換ジューテロポルフィリン誘導体、これを含用する薬剤及びその製法
CN111344021A (zh) 用于分子成像的双标记的探针及其用途
KR101106433B1 (ko) 암 조직의 타겟팅을 위한 마크로사이클릭 아미노산 계열의 유도체 및 그의 방사성 또는 비방사성 금속 표지화합물
CA3205844A1 (en) Ligands and their use
AU2020257135B2 (en) Radiotherapeutic and companion imaging agents to target MC1R
JP2022529007A (ja) 診断及び治療のための新規な放射性標識されたcxcr4を標的とする化合物
EP2970154B1 (en) Tetrahydroxamate chelators of zirconium89 and niobium90 for use in diagnostic applications
KR101191649B1 (ko) 이작용기성 테트라아자 거대고리 화합물의 제조방법 및 용도
CA3208649A1 (en) Precursor and radiotracer for neuroendocrine theranostics
KR101253100B1 (ko) 폴리아자마크로사이클릭 화합물, 그 제조 방법 및 생의학적 적용
WO2024037635A1 (en) A trifunctional compound and use thereof
WO2024193724A1 (zh) 用于诊断或治疗表达前列腺特异性膜抗原癌症的新型标记靶向剂
EP2619210A1 (en) Process for chelating copper ions using cb-te2a bifunctional chelate
JP2024518097A (ja) 刷子縁膜酵素切断可能リンカーを持つ葉酸受容体標的コンジュゲート並びにガンのイメージング及び治療における使用方法
KR20230082178A (ko) Her2-발현 암의 광역동 치료용 조성물 및 이의 용도
CN117642184A (zh) 具有刷状缘膜酶可裂解接头的叶酸受体靶向缀合物以及在癌症成像和治疗中的使用方法
WO2011124713A1 (en) Labelled huprine derivatives and their use in medical imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010815618

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13395346

Country of ref document: US