WO2011030052A2 - Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et appareil de mise en oeuvre - Google Patents

Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et appareil de mise en oeuvre Download PDF

Info

Publication number
WO2011030052A2
WO2011030052A2 PCT/FR2010/051857 FR2010051857W WO2011030052A2 WO 2011030052 A2 WO2011030052 A2 WO 2011030052A2 FR 2010051857 W FR2010051857 W FR 2010051857W WO 2011030052 A2 WO2011030052 A2 WO 2011030052A2
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fibrous material
heating
series
impregnated
Prior art date
Application number
PCT/FR2010/051857
Other languages
English (en)
Other versions
WO2011030052A3 (fr
Inventor
Patrice Gaillard
Alexander Korzhenko
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2011030052A2 publication Critical patent/WO2011030052A2/fr
Publication of WO2011030052A3 publication Critical patent/WO2011030052A3/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/554Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving by radio-frequency heating
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/015Natural yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes

Definitions

  • the present invention relates to a method of manufacturing a fibrous material, such as a nonwoven fabric, felt, which may be in the form of strips, webs, braids, locks or pieces, based on reinforcing fibers and organic polymer that is to say thermoplastic or thermosetting polymer and an implementation apparatus.
  • a fibrous material such as a nonwoven fabric, felt, which may be in the form of strips, webs, braids, locks or pieces, based on reinforcing fibers and organic polymer that is to say thermoplastic or thermosetting polymer and an implementation apparatus.
  • the fibers that can be used in the composition of the material are more particularly carbon fibers, glass fibers, polymer-based fibers, vegetable fibers, used alone or as a mixture.
  • lightweight composite materials for the manufacture of mechanical parts having a 3-dimensional structure and having properties of good mechanical strength, thermal and able to evacuate electrostatic charges, that is to say to say properties compatible with the manufacture of parts in the field of mechanics, aeronautics and nautical.
  • composite fibers have also been used to manufacture, in particular, various aeronautical or automobile parts.
  • These composite fibers which are characterized by good thermomechanical and chemical resistance, consist of a reinforcing filament reinforcement intended to distribute the tensile, flexural or compressive tensile forces, in some cases to provide protection chemical material and give it its shape.
  • patent application FR 2 918 081 describes a process for impregnating continuous fibers with a composite polymeric matrix containing a thermoplastic polymer.
  • Methods for manufacturing composite parts from these coated fibers include various techniques such as, for example, contact molding, spray molding, autoclaved draping or low pressure molding.
  • a technique for making hollow parts is that called filament winding, which consists in impregnating dry fibers with a resin and then winding them on a mandrel formed of reinforcements and of a shape adapted to the part to be manufactured. The piece obtained by winding is then cured by heating.
  • Another technique for making plates or shells consists in impregnating fiber fabrics and then pressing them into a mold in order to consolidate the laminated composite obtained.
  • a sizing step is generally used, which consists in depositing a thermoplastic polymer film on fibers.
  • the method of manufacturing prepreg material described in document US Pat. No. 4,541,884 comprises, as a step for coating the fibers, the continuous passage of fibers in a melt of thermoplastic polymer containing an organic solvent such as benzophenone; this solvent makes it possible to adapt the viscosity of the melted mixture and to ensure a good coating of the fibers.
  • the pre-impregnated fibers of polymers are then shaped (for example cut into strips and then placed under a press, for producing the structural parts, and then heated to a temperature above the melting temperature of the polymer to ensure the cohesion of the polymer. material and in particular the adhesion of the polymer to the fibers.
  • the heating temperatures can rise to temperatures above 250 ° C, and even higher than 320 ° C, much higher temperatures than the boiling point of the solvent, resulting in a sudden departure of the solvent, causing defects in the room and therefore a lack of reproducibility of the process as well as the risk of explosion endangering the operators.
  • Another known method of fiber sizing is the continuous passage of the fibers in an aqueous dispersion of polymeric powder and then drying the fibers to evaporate the water in an oven, followed by a heat treatment for melting the polymer.
  • This heat treatment can be done in a shaping die, especially to make strips of pre-impregnated material. These strips are then used for the manufacture of structural parts, by arrangement in a mold, a press, etc. This process requires two separate heating zones or the use of two separate furnaces is complex and difficult to implement.
  • the problem to be solved by the present invention is to avoid the passage in a solvent bath of molten polymer as described in WO 2008/061 170, or the passage in an aqueous dispersion of polymer, because these methods of the art can cause imperfections in the prepreg material.
  • the impregnation of the mineral fibers is done according to the invention, directly by melting the polymer fibers which have been brought into contact.
  • the subject of the invention is a novel method of manufacturing "in line” and continuously of fibrous material, making it possible to overcome the above disadvantages.
  • the proposed method also makes it possible to obtain a homogeneous fibrous material. There can be no irregularities in the structure or knots that can weaken the material with risks of rupture as is the case with the processes of the prior art.
  • the subject of the invention is a process for producing a fibrous material pre-impregnated with an organic polymer consisting of i) using at least two sets of different fibers, a first series of fibers comprising reinforcing fibers and a second series of fibers comprising organic polymer fibers having a melting temperature Tf, ii) arranging the two series of fibers in contact with each other and then iii) heating all of the two sets of fibers to one temperature at least equal to the melting temperature Tf of the organic fibers and to allow the whole to cool to room temperature.
  • WO2008 / 061 170 does not disclose or suggest the use of two different sets of fibers, a first one being made of reinforcing fibers, and a second of which consists of an organic polymer, namely a thermoplastic or thermosetting polymer, and heating of the two sets of fibers to a temperature at least equal to the melting temperature Tf of the fibers.
  • organic fibers as is the case in the present invention.
  • preheating is carried out during contacting of the two sets of fibers at a temperature below the melting temperature Tf, preferably at a temperature less than or equal to the glass transition temperature Tv of the organic polymer fibers, of in order to mount the two series of fibers in temperature to reduce or eliminate the temperature difference caused by a distinct thermal inertia for the two sets of fibers.
  • the two sets of fibers are heated to the melting temperature Tf, they are also shaped to obtain a homogeneous material of calibrated shape and dimensions.
  • the reinforcing fibers constituting the first series may be mineral fibers or organic fibers of thermoplastic or thermosetting polymer or else mineral fibers and organic fibers of thermoplastic or thermosetting polymer.
  • the organic fibers constituting the fibers of the second series are made of thermoplastic or thermosetting polymer.
  • the melting temperature Tf of the fibers of the second series is always less than the melting temperature of the fibers of the second series.
  • the polymers forming part of the thermosetting fibers are chosen from: unsaturated polyesters, epoxy resins, vinyl esters, phenolic resins, polyurethanes, cyanoacrylates and polyimides, such as bis-maleimide resins, aminoplasts (resulting from the reaction of an amine such as melamine with an aldehyde such as glyoxal or formaldehyde) and mixtures thereof.
  • thermosetting polymers or "thermosetting resins” is meant a material generally liquid at room temperature, or low melting point, which is likely to be cured, generally in the presence of a hardener, under the effect of heat , a catalyst, or a combination of both, to obtain a thermoset resin
  • a thermoset resin This is made of a material containing polymeric chains of variable length interconnected by covalent bonds, so as to form a three-dimensional network .
  • this thermoset resin is infusible and insoluble. It can be softened by heating it above its glass transition temperature (Tg) but, once a shape has been imparted to it, it can not be reshaped later by heating.
  • Tg glass transition temperature
  • thermosetting polymers forming part of the thermosetting fibers according to the invention are chosen from: unsaturated polyesters, epoxy resins, vinyl esters, phenolic resins, polyurethanes, cyanoacrylates and polyimides, such as bis-maleimide resins, aminoplasts (resulting from the reaction of an amine such as melamine with an aldehyde such as glyoxal or formaldehyde) and mixtures thereof.
  • the unsaturated polyesters result from the condensation polymerization of dicarboxylic acids containing an unsaturated compound (such as maleic anhydride or fumaric acid) and glycols such as propylene glycol. They are generally hardened by dilution in a reactive monomer, such as styrene, and then reaction of the latter with the unsaturations present on these polyesters, generally with the aid of peroxides or a catalyst, in the presence of heavy metal salts or an amine, or using a photoinitiator, an ionizing radiation, or a combination of these different techniques.
  • an unsaturated compound such as maleic anhydride or fumaric acid
  • glycols such as propylene glycol
  • the vinyl esters include the products of the reaction of epoxides with (meth) acrylic acid. They can be cured after dissolution in styrene (similar to polyester resins) or with the aid of organic peroxides.
  • the epoxy resins consist of materials containing one or more oxirane groups, for example from 2 to 4 oxirane functions per molecule. In the case where they are polyfunctional, these resins may consist of linear polymers bearing epoxy end groups, or whose backbone comprises epoxy groups, or whose skeleton carries pendant epoxy groups. They generally require as the hardening agent an acid anhydride or an amine.
  • epoxy resins may result from the reaction of epichlorohydrin with a bisphenol such as bisphenol A. It may alternatively be alkyl- and / or alkenylglycidyl ethers or esters; polyglycidyl ethers of optionally substituted mono- and polyphenols, especially polyglycidyl ethers of bisphenol A; polyglycidyl polyol ethers; polyglycidyl ethers of aliphatic or aromatic polycarboxylic acids; polyglycidyl esters of polycarboxylic acids; Alternatively, it may be products of the reaction of epichlorohydrin with aromatic amines or glycidyl derivatives of mono- or aromatic diamines. Cycloaliphatic epoxides, and preferably the diglycidyl ethers of bisphenol A (or DGEBA), F or A / F, can also be used in the present invention.
  • hardeners or crosslinkers it is possible to use products of di-amino or tri-amine functional type used at contents ranging from 1 to 5%.
  • thermosetting fibers For the heating temperatures of the thermosetting fibers, the term melting or softening temperatures, they are of the order of 50 ° C to 80 ° C, typically 60 ° C.
  • the melting or softening temperature is then brought between 100 ° C. and 150 ° C., typically 120 ° C.
  • thermosetting polymer fibers may be shaped in an apparatus normally used for a thermoplastic polymer such as a twin extruder. -vis or a co-mixer.
  • the heating of the two sets of reinforcing fibers (mineral and / or organic) and of organic polymer can be achieved by laser heating or a plasma torch, nitrogen or an infrared or microwave oven. wave or induction.
  • heating step iii) will be carried out by induction or microwaves in the presence of electrically conductive fibers in the assembly or electrically conductive fillers in the pre-impregnated material.
  • the conductivity properties of the pre-impregnated material are interesting in combination with an induction heating or by microwave heating because then the electrical conductivity is implemented and contributes to obtaining a core cooking and a better homogeneity of the fibrous material.
  • the thermal conduction of the fibers of the assembly or of the fillers present in the preimpregnated fibrous material also contributes, with this type of heating, to core firing improving the homogeneity of the material.
  • the fillers used are, for example, metal powder, powdery carbon black, carbon fibrils, carbon nanotubes, or nanotubes of silicon carbide, boron carbonitride, boron nitride or silicon.
  • the charges used are conducting electricity and / or heat, such as carbon nanotubes, carbon fibrils or even carbon black.
  • carbon nanotubes are used.
  • NTC means one or more hollow tubes with one or more graphitic plane walls or graphene sheets, coaxial, or graphene sheet wound on itself. This or these tubes, usually “open” (that is to say open at one end) resemble several coaxially arranged mesh tubes; in cross section the CNTs are in the form of concentric rings. The external diameter of the CNT is from 2 to 50 nm.
  • SWNTs single-walled carbon nanotubes
  • MWNTs multi-walled carbon nanotubes
  • heating by microwave or by induction is particularly well suited in the presence of fillers such as carbon nanotubes NTC in the preimpregnated material because a better dispersion / distribution of the CNTs in the material is thus obtained, leading to a better homogeneity of the physico-chemical properties, and consequently better overall properties on the final product.
  • a conductive material is used. In the absence of conductive fibers in the assembly or conductive fillers in the preimpregnated fibrous material, this material may be in contact with the fiber assembly such as for example the fiber support on which they are laid for cooking. .
  • step iii) of heating mineral fillers in powder form, conductive as metal powder, powdery carbon black, carbon fibrils, carbon nanotubes, or as nanotubes of silicon carbide, boron carbonitride, boron nitride or silicon.
  • thermosetting fibers When the assembly of the two sets of fibers comprises thermosetting fibers, carbon nanotubes powder will be placed on this assembly before introducing a hardener.
  • An induction or microwave heating is preferable, especially in the presence of electrically conductive fibers in the assembly or in the presence of electrically conductive fillers in the pre-impregnated material to promote core heating.
  • the dusting of the loads can be ensured by means of a vibrating support, in order to ensure a homogeneous distribution on the fibers.
  • a vibrating support for example, the powder is deposited of NTC directly on the fibrous material, placed flat on a vibrating support, to allow the distribution of the powder on the fibers.
  • these fillers Before the dispersion of the charges on the two sets of fibers, these fillers can be subjected to a chemical treatment in order to bring them functions, for example polar, in order to improve their adhesion to the polymeric fibers or else subjected to a heat treatment, by example greater than 900 ° C and better at 1000 ° C to remove metal impurities due to their synthesis process.
  • a chemical treatment in order to bring them functions, for example polar, in order to improve their adhesion to the polymeric fibers or else subjected to a heat treatment, by example greater than 900 ° C and better at 1000 ° C to remove metal impurities due to their synthesis process.
  • the charges are neither chemically nor thermally treated.
  • thermoplastic fibers these fibers may consist of a single type of polymer or of several polymers; in the case of several polymers, the melting temperature Tf above is that of the highest melting temperature polymer.
  • thermoplastic polymers forming part of the fibers of the second series of fibers may be chosen, without limitation, from:
  • PEI polyethylenimines
  • polyolefins such as polyethylene, especially high density polypropylene and copolymers of ethylene and / or polypropylene;
  • thermoplastic polyurethanes TPU
  • polyesters such as polyhydroxyalkanoates
  • PET polyethylene terephthalates
  • PBT butylene
  • PPS polyphenylene sulfides
  • PAEK PolyArylEtherKetone such as polyetheretherketone (PEEK) and polyetherketoneketone (PEKK);
  • polyamides such as polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-11), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6), polyamide 4.6 ( PA-4.6), polyamide 6.10 (PA-6.10), polyamide 6.12 (PA-6.12), aromatic polyamides, in particular polyphthalamides and aramid, and block copolymers, in particular polyamide / polyether;
  • fluoropolymers comprising at least one monomer of formula (I):
  • X F and X -H, such as polyvinylidene fluoride (PVDF), preferably in the ⁇ form, copolymers of vinylidene fluoride with for example hexafluoropropylene (HFP), fluoroethylene copolymers / propylene (FEP), copolymers of ethylene with either fluoroethylene / propylene (FEP), or tetrafluoroethylene (TFE), or perfluoromethylvinyl ether (PMVE), or chlorotrifluoroethylene (CTFE), some of these polymers in particular being marketed by ARKEMA under the name Kynar®;
  • PVDF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • FEP fluoroethylene copolymers / propylene
  • TFE tetrafluoroethylene
  • PMVE perfluoromethylvinyl ether
  • CTFE chlorotrifluoroethylene
  • Phenoxy polymers are polyhydroxy ethers terminated by alpha-glycol groups. They result from the reaction between bisphenol A and epichlorohydrin; their weight average molecular weight is from 25,000 to 60,000. They are compatible with thermosetting resins of the epoxy resin type.
  • VDF vinylidene fluoride
  • copolymer of VDF comprising by weight at least 50% by weight of VDF and at least one other monomer copolymerizable with VDF.
  • the VDF content must be greater than 80% by weight, or even better 90% by weight, to ensure good mechanical strength to the structural part, especially when subjected to thermal stresses.
  • the comonomer may be a fluorinated monomer chosen, for example, from vinyl fluoride; trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafluoroethylene (TFE); ethylene tetrafluoroethylene (ETFE), hexafluoropropylene (HFP); perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3-dioxole) (PDD).
  • VF3 trifluoroethylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • HFP hexa
  • the optional comonomer is chosen from chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), trifluoroethylene (VF3) and tetrafluoroethylene (TFE).
  • CTFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • VF3 trifluoroethylene
  • TFE tetrafluoroethylene
  • the comonomer may also be an olefin such as ethylene or propylene.
  • the preferred comonomer is HFP.
  • PAEK PolyArylEtherKetone
  • PEK PolyArylEtherKetone
  • the process according to the present invention is perfectly well suited to polymers having high melting temperatures, for example greater than 130 ° C, such as fluoropolymers, PAEKs, high density polyethylenes. , or else PET or PBT.
  • Kevlar fibers or aramid fibers It is also possible to use Kevlar fibers or aramid fibers.
  • the mineral fibers to which the invention applies are in particular the fibers of carbon, glass, boron, silica, natural fibers such as flax, especially silk spider, hemp, sisal. These fibers can be used pure, treated or coated with an induction layer, in order to facilitate the adhesion / impregnation of the thermoplastic polymer fibers of the second series or their manipulation before impregnation by melting of this polymer.
  • Organic fibers may be blended with the mineral fibers to form the first series of fibers which is to be impregnated with polymer after melting the thermoplastic or thermosetting polymer fibers of the second series.
  • organic fibers that is to say polymer fibers whose melting temperature is higher than the melting temperature Tf fibers of the second series that one melts.
  • thermoplastic or thermosetting organic polymer fibers 50% of mineral fibers and 50% of thermoplastic or thermosetting organic polymer fibers, preferably with 30% of mineral fibers and 70% of thermoplastic or thermosetting organic polymer fibers.
  • the invention also relates to the use of fibrous material as described for the manufacture of mechanical parts in 3D, in particular the wings of an airplane, the fuselage of an airplane, the hull of a boat, the spars or spoilers of an automobile, or brake discs, or the cylinder body or steering wheels.
  • the method according to the invention is implemented by an apparatus which comprises a device for placing the fibers so as to arrange the two sets of fibers in contact with each other and a heating device of the two series of fibers made by a laser or plasma torch, nitrogen or an infrared oven or microwave or induction.
  • the induction heating device is obtained by exposing the fibers of the assembly to an alternating electromagnetic field by means of a high frequency unit from 650 KHz to 1 MHz for example.
  • the microwave heating device is obtained by exposing the fibers of the assembly to a microwave electromagnetic field by means of a microwave generator of 2 to 3 GHz for example.
  • the implementation apparatus may comprise a calendering device. It can also be provided that the heating is carried out by the calendering device.
  • the apparatus for implementing the method advantageously makes it possible to shape the two sets of fibers, for example, in the form of a strip or a sheet, or a strip which is cut to the desired length.
  • the apparatus for implementing the method comprises a line of continuous formation of said material in the form of a calibrated and homogeneous band of reinforcing fibers, for example mineral, impregnated with organic polymer, for example thermoplastic or thermosetting polymer.
  • the continuous training line comprises a device for setting up the two series of fibers provided with a first calendering device.
  • the placing device also comprises a preheating device for attenuating or reducing the temperature differences caused by the inertia of different types of fibers during heating at the melting temperature Tf
  • the placing apparatus can also ensure the shaping of the material.
  • the continuous training line comprises for this purpose, a shaping device implementing at least one calendering operation by means of a second calendering device and, preferably at least two successive calendering operations to obtain a material. fibrous impregnated calibrated in a desired and homogeneous manner, that is to say without defect and without air bubble.
  • a third calendering device may be placed at the outlet of the second calendering device.
  • the shaping apparatus comprises a heating device for heating the two series of fibers to a temperature at least equal to the melting temperature Tf.
  • each calendering device is notably provided with two cylinders, one of which has a male element ring, the other a flat-section female element groove of a determined width so that the fibers leaving the preheating device, are shaped in the groove by pressing the male element during their passage over the cylinder provided with the female element.
  • each calendering device comprises a synchronous drive motor of the two cylinders and a cylinder heating device.
  • the shaping device comprises a heating device placed between the first and the second calendering device.
  • the device for placing the fibers also comprises, at the line inlet, a continuous unwinding station of the two series of fibers followed by the preheating device.
  • the unwinding station of the fibers is advantageously provided with coils with horizontal unwinding axis.
  • the melting temperature Tf is high, preferably when it is greater than 200 ° C., as is the case, for example, for PAEK or PEEK fibers, it is intended to insert into the continuous training line, at the outlet of the shaping device, a cooling device.
  • the continuous forming line advantageously comprises a winding device at the outlet of the cooling device.
  • the preheating or heating device is advantageously carried out by microwave heating units or by induction in particular in the presence of conductive fillers to promote heating core fibers.
  • the heating device and the preheating device each consist of two half-ovens with horizontal opening to infrared lamps and adjustable temperature. At least one of the half-furnaces comprises a calibrated flat bottom groove on which the fibers side by side of the two sets of fibers rest.
  • All of the elements with electrical or electronic control is advantageously controlled and synchronized by a computer-type control station.
  • FIG. 1 represents the diagram of a first apparatus for implementing the method according to the invention
  • FIG. 2 represents the diagram of a second apparatus for implementing the method according to the invention
  • FIG. 3 represents the cross-sectional diagram AA of a support 50 covered with fibers according to the method
  • FIG. 4 represents the cross-sectional diagram BB of the support 50 after melting of the thermoplastic polymer fibers according to the method
  • FIG. 5 represents the diagram of a third apparatus for implementing the method.
  • FIG. 6 represents the diagram of a third apparatus for implementing the method according to the invention.
  • FIG. 7 shows the diagram of a half-oven with the groove of placing fibers.
  • FIG. 8 shows the schematic of calendering rolls with the complementary elements of calibration and shaping of the strip-shaped material.
  • the reinforcing fibers constituting the first series of fibers may be mineral fibers or thermoplastic fibers or thermosetting fibers or mineral fibers with thermoplastic fibers or with thermosetting fibers.
  • the fibers of the second series intended to be melted to form the preimpregnated fibrous material are organic fibers made of thermoplastic or thermosetting polymer. Whatever the assembly made, the melting temperature of the second series of fibers is lower than that of the first series so that the preheating or heating steps do not change the fiber structure of the first series and that the fibers of the second series melt.
  • fibers of thermosetting resins may constitute the second series of fibers (epoxy polymers (without crosslinking) at a melting point of 60 ° C.) whereas the first series could be thermoplastic fibers of higher melting point (example a homopolyamide at a melting temperature of the order of 90 ° C or a polyvinylidene (PVDF) with a melting point of about 130 ° C.
  • the first series could also be mineral fibers made of glass, silica, carbon, silicon carbide or metal.
  • thermosetting polymer fibers with different melting temperatures.
  • FIGS. 1, 2 and 5 allow implementation of the "in line” and continuous manufacturing method proposed according to the invention for the manufacture of fibrous material pre-impregnated with a thermoplastic or thermosetting polymer.
  • Each apparatus comprises a device 100 for setting up the two series of fibers, namely the first series of fibers 1 which comprises, for example, mineral fibers and the second series of fibers 2 which comprises, for example, thermoplastic polymer fibers having their temperature of fusion equal to Tf.
  • Each device also comprises a heating device 1 10 and possibly a calendering device 1 15 as is the case for the devices of Figures 1 and 5. It may be provided that the calendering device provides the heating function of two series fiber.
  • the device 100 for placing fibers comprises two superimposed paths.
  • the two series of fibers are brought by the two superimposed paths towards the same direction, these two paths approaching until the two sets of fibers are intercalated to form a homogeneous plane imposed by the size of the fibers, the fibers having constant dimensions.
  • the homogeneous plane is in the form of a strip conveyed so as to pass in front of the heating device 1 10.
  • This heating device makes it possible in a few seconds to reach the desired melting temperature Tf so that the thermoplastic polymer fibers having a melting temperature less than or equal to Tf, melt.
  • the molten polymer adheres to the fibers of the first series (comprising, in the example, mineral fibers).
  • the strip of fibrous material 10 thus produced can be used as required, for example, be cut by a cutting device 200 to enter the manufacture of mechanical parts.
  • Figure 2 shows a device adapted to the establishment of two sets of fibers on a support 50 serving as a mold to form the structure of a 3D piece of fibrous material.
  • the device for placing the fibers consists of two arms 102 and 103 disposed above a horizontal plane driven by a mechanical device (not shown) of conveyor belt 101.
  • Several supports 50 are arranged on this mat one after the other following the without advancement.
  • the arm 102 makes it possible to place the fibers of the first series 1 on a support 50 while the arm 103 makes it possible to place the fibers of the second series 2 on a support 50 on which the fibers of the first series have been put in place.
  • the arms 102 and 103 are motorized so that they can be moved closer to the surface of the supports 50 in order to have a good accuracy in setting up the fibers.
  • the device may comprise cutting arms.
  • the supports 50 comprise the two sets of fibers, they are conveyed into the heating zone. Each support 50 is placed facing the heating device 1 10 to allow the fusion of the thermoplastic polymer fibers of the second series.
  • FIG. 3 illustrates a support 50 covered with two sets of fibers 1 and 2, seen in cross section.
  • FIG. 4 makes it possible to illustrate this support 50 after melting the fibers of the second series. Only the fibers of the first series 1 can be seen on the section.
  • the positioning device 100 comprises two channels whose exits are opposite each other.
  • the two series of fibers 1 and 2 are brought by the two paths on the same plane so as to come into contact and to be intercalated in a zone of vis-à-vis and form a homogeneous plane imposed by the size of the fibers.
  • the plane formed by the two sets of fibers in contact passes for a few seconds in the heating zone provided to obtain the fusion of the thermoplastic polymer fibers.
  • the calendering device 1 15 can additionally provide the heating function and substitute for the device 1 10.
  • the fibrous material in the form of a strip 10 is obtained which can then be used according to needs.
  • the two sets of fibers are each driven by a treadmill device 1 1 1 and 1 12. It can advantageously be provided rules 1 13 and 1 14 for maintaining the spacing of fibers on each of the mats.
  • the positioning devices 100 allow to place two fibers side by side of the same series between two fibers of the other series.
  • such an arrangement will be used to have for example a mineral fiber for two thermoplastic polymer fibers.
  • thermoplastic polymer fibers in contact with this weaving, for example by placing them on one side of the weaving, this face being then facing the heater.
  • FIG. 6 A third apparatus for implementing the method according to the invention is illustrated in the diagram of FIG. 6. Details of certain elements are illustrated in FIGS. 7 and 8.
  • the apparatus comprises a line L of continuous formation of the material in the form of a calibrated and homogeneous strip.
  • This line of continuing education includes:
  • this device 104 comprises fiber coils 141 for the fibers of the first series and coils 142 for the fibers of the second series.
  • this device 104 comprises fiber coils 141 for the fibers of the first series and coils 142 for the fibers of the second series.
  • the preheating device 105 has two half-ovens horizontal opening, infrared ramps. Its length is 1 m. The maximum temperature that can be reached is 600 ° C.
  • the passage groove 13 has a section of 40x40mm approximately.
  • the calendering device 106 comprises two cylinders as illustrated in FIG. 8, of diameter 100 mm, width 100 mm, a polished chrome surface Ra of less than 0.1 micron.
  • the surface of the cylinders 15 and 17 has male and female elements 16 and 18 of a shape suitable for interlocking one into the other, by pressure, so as to calibrate the strip 10 in width at 6 mm, when its passage on the cylinders.
  • This device comprises electric heating providing a maximum temperature at about 260 ° C, a heating cartridge with collector supply and regulation by a thermocouple probe on the surface, a self-aligning bearing and adjustable spacing from 0 to 2mm by screw-nut, a synchronous drive of the two cylinders by chain or toothed belt, a geared motor with brushless brushless servomotor Allowing a maximum line speed of 30m / min and an electrical synchronization with the pulling train.
  • the heating device 1 10 identical to the preheating device 105.
  • the temperature of this device is set to reach the melting temperature Tf of the thermoplastic polymer fibers.
  • the half-oven 1 1 has a passage groove 13 shown in FIG.
  • these calendering devices are identical to the first calendering device 106.
  • the details of the cylinder structure are illustrated in the diagram of FIG. 8.
  • the device 1 18 for regulating the winding and maintaining the band preventing vibrations and operating up and down on a height corresponding to the width of the winding coils 300.
  • the winding device 300 comprises a plurality of flat roll-shaped coils 301, 302 etc., about 600mm in diameter.
  • the slabs are superimposed on a vertical axis XX as filling progresses. It is planned to store 10 to 20 pancakes with an interlayer between them.
  • the passage of a slab 301 to the next 302 is done manually.
  • the synchronization with pulling of the band is done by a regulating pad, the tension is regulated by the weight of the pad.
  • the draw train 350 which allows to drive the tape continuously. It comprises elastomer rollers and allows to exert a fixed pressure by pneumatic cylinder. It is electrically synchronized with the calendering devices.
  • the continuous training line L is controlled by a control station 400, of the computer type with display screen.
  • This station 400 is connected, for example by network, to the various electrical control devices of the line: electric motors; variable speed drives and speed controllers, temperature controllers; pulling motor to allow the different synchronizations necessary for the continuous operation of line L.
  • This control station also allows to save all the parameters for automation and synchronization management.
  • the coating layer may be removed, if necessary, that is to say, in the event of incompatibility with the thermoplastic polymer fibers to to melt.
  • the coating layer will be removed before contacting the two sets of fibers 1, 2.
  • the fibers of the two series arrive by two separate reels so that the desizing is performed on the mineral fibers before contacting the two sets of fibers; or that the desizing of the mineral fibers is carried out in a furnace such as oven 105 before contacting the two series of fibers in the furnace 105.
  • the laser device is arranged so that the laser beam arrives in the longitudinal axis of the fibers (ribbon), that is to say the axis of pulling.
  • the heating is direct and therefore concentrated on the fibers.
  • the heating device 1 10 is induction heating type or microwave.
  • an induction heating device or microwave is particularly suitable when electrically conductive fibers are present in the assembly or when electric conductive fillers are present in the pre-impregnated material. Because, in the case of induction or microwave heating, the electrical conductivity of the latter is implemented and contributes to obtaining a core cooking and better homogeneity of the fibrous material. The thermal conduction of the fibers of the assembly or of the fillers present in the preimpregnated fibrous material also contributes, with this type of heating, to core firing improving the homogeneity of the material.
  • Heating by microwave or induction which is particularly well adapted in the presence of fillers such as carbon nanotubes NTC in the prepreg, makes it possible to obtain a better dispersion / distribution of the CNTs within the material, leading to better homogeneity of physicochemical properties, and consequently better overall properties on the final product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un matériau fibreux tel qu'un tissu, feutre, non tissé pouvant se présenter sous forme de bandes, nappes, tresses, mèches ou morceaux, à base de fibres de renfort et de polymère. L'invention concerne également un appareil de mise en œuvre du procédé. Selon l'invention on utilise au moins deux séries de fibres différentes, une première série de fibres comprenant des fibres de renfort par exemple minérales et une seconde série de fibres comprenant des fibres de polymère organique (thermoplastique ou thermodurcissable) ayant une température de fusion Tf, on dispose les deux séries de fibres au contact l'une de l'autre puis on chauffe l'ensemble des deux séries de fibres jusqu'à une température au moins égale à la température de fusion Tf des fibres de la deuxième série, puis on laisse refroidir l'ensemble jusqu'à la température ambiante. L'invention s'applique à la fabrication de pièces 3D.

Description

PROCEDE DE FABRICATION D'UN MATERIAU FIBREUX PRE-IMPREGNE DE POLYMERE THERMOPLASTIQUE OU THERMODURCISSABLE ET APPAREIL
DE MISE EN ŒUVRE.
Domaine de l'invention
La présente invention concerne un procédé de fabrication d'un matériau fibreux, tel qu'un tissu, feutre, non tissé pouvant se présenter sous forme de bandes, nappes, tresses, mèches ou morceaux, à base de fibres de renfort et de polymère organique à savoir de polymère thermoplastique ou thermodurcissable et un appareil de mise en oeuvre.
Les fibres pouvant entrer dans la composition du matériau sont plus spécialement des fibres de carbone, des fibres de verre, des fibres à base de polymères, des fibres végétales, utilisées seules ou en mélange.
On s'intéresse dans la présente invention à des matériaux composites légers permettant la fabrication de pièces mécaniques ayant une structure à 3 dimensions et possédant des propriétés de bonne résistance mécanique, thermique et capables d'évacuer des charges électrostatiques, c'est-à-dire des propriétés compatibles avec la fabrication de pièces dans le domaine de la mécanique, de l'aéronautique et nautique.
Etat de la technique
II est connu d'utiliser des tissus réfractaires pré-imprégnés d'une résine pour réaliser une matrice thermiquement isolante afin d'assurer la protection thermique de dispositifs mécaniques soumis à de fortes températures comme cela peut être le cas dans le domaine de l'aéronautique ou de l'automobile. On pourra se reporter au brevet européen n°0 398 787 qui décrit une couche de protection thermique comprenant un tissu réfractaire, destinée à protéger la virole d'une chambre de moteur statoréacteur. Outre la complexité de réalisation de cette couche de protection thermique, le tissu réfractaire noyé dans cette couche ne remplit que la fonction de bouclier thermique.
On a également recours depuis quelques années à des fibres composites pour fabriquer, notamment, diverses pièces aéronautiques ou automobiles. Ces fibres composites qui se caractérisent par de bonnes résistances thermomécaniques et chimiques, sont constituées d'un renfort filamentaire formant armature, destinée à répartir les efforts de résistance à la traction, à la flexion ou à la compression, à conférer dans certains cas une protection chimique au matériau et à lui donner sa forme.
On peut par exemple se reporter à la demande de brevet FR 2 918 081 qui décrit un procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère thermoplastique. Les procédés de fabrication de pièces composites à partir de ces fibres enrobées comprennent diverses techniques telles que, par exemple, le moulage au contact, le moulage par projection, le drapage autoclavé ou le moulage basse pression.
Une technique pour réaliser des pièces creuses est celle dite de l'enroulement filamentaire, qui consiste à imprégner des fibres sèches d'une résine puis à les enrouler sur un mandrin formé d'armatures et de forme adaptée à la pièce à fabriquer. La pièce obtenue par enroulement est ensuite durcie par chauffage. Une autre technique, destinée à réaliser des plaques ou des coques, consiste à imprégner des tissus de fibres puis à les presser dans un moule afin de consolider le composite stratifié obtenu.
Pour la fabrication de matériau polymérique à renfort fibreux, on utilise généralement une étape d'ensimage, qui consiste à déposer un film de polymère thermoplastique sur des fibres. Ainsi le procédé de fabrication de matériau pre- imprégné décrit dans le document US 4, 541 ,884 comprend, comme étape d'enduction des fibres, le passage en continu de fibres dans un bain fondu de polymère thermoplastique contenant un solvant organique tel que la benzophénone ; ce solvant permettant d'adapter la viscosité du mélange fondu et d'assurer une bonne enduction des fibres. Les fibres pré-imprégnées de polymères sont ensuite mises en forme (par exemple découpées en bandes puis disposées sous une presse, pour la réalisation des pièces de structure, puis chauffées à une température supérieure à la température de fusion du polymère pour assurer la cohésion du matériau et notamment l'adhérence du polymère sur les fibres.
Selon la nature chimique du polymère, les températures de chauffe peuvent monter à des températures supérieures à 250 °C, et même supérieure à 320°C, températures très supérieures à la température d'ébullition du solvant, entraînant un départ brusque du solvant, provoquant des défauts dans la pièce et donc un manque de reproductibilité du procédé ainsi que des risques d'explosion mettant en danger les opérateurs.
Un autre procédé connu d'ensimage de fibre est le passage en continue des fibres dans une dispersion aqueuse de poudre polymérique puis le séchage des fibres pour évaporer l'eau dans un four, suivi d'un traitement thermique destiné à la fusion du polymère. Ce traitement thermique peut être fait dans une filière de mise en forme, notamment pour faire des bandes de matériau pré-imprégné. Ces bandes sont ensuite utilisées pour la fabrication des pièces de structure, par disposition dans un moule, une presse, etc. Ce procédé nécessitant 2 zones de chauffage distinctes ou l'utilisation de 2 fours distincts est complexe et de mise en œuvre délicate.
Comme autre état de la technique relatif à la fabrication d'un matériau fibreux, on peut se référer encore au document EP 0406 067 déposé aux noms conjoints d'Atochem et de l'Etat français. Comme état de la technique relatif à la mise en place des fibres pour la formation de matériau fibreux et la constitution de structures à base de ce matériau fibreux on pourra se reporter aux brevets US 6 607 626 ; US 6 939 424 et US 7 235 149.
On pourra également se reporter à l'état de la technique le plus proche constitué par le document WO2008/061 170. Ce document décrit un procédé de réalisation d'une structure de fibres orientées de façon unidirectionnelle dans lequel les fibres utilisées peuvent être de même type ou des assemblages de fibres. Cependant, le procédé consiste à agencer les fibres unidirectionnellement, à enrober ou imprégner cet agencement de fibres en les passant dans un bain d'un liquide visqueux comprenant par exemple une résine thermoplastique dont la viscosité est le paramètre le plus important, puis à étaler le liquide visqueux uniformément, à retirer l'excès, et enfin à sécher. Ainsi, la structure de fibres est obtenue par une imprégnation d'un agencement de fibres en passant ces fibres dans un bain d'un liquide visqueux puis en séchant. Les fibres de l'agencement sont ainsi collées les unes aux autres et forment la structure désirée.
Le problème qu'entend résoudre la présente invention est d'éviter le passage dans un bain solvanté de polymère fondu comme décrit dans le document WO 2008/061 170, ou le passage dans une dispersion aqueuse de polymère, car ces méthodes de l'art antérieur peuvent générer des imperfections dans le matériau préimprégné. En effet, l'imprégnation des fibres minérales se fait selon l'invention, directement par fusion des fibres de polymères qui ont été mises en contact.
Résumé de l'invention
L'invention a pour objet un nouveau procédé de fabrication « en ligne » et en continu de matériau fibreux, permettant de remédier aux inconvénients ci-dessus.
Le procédé proposé permet en outre d'obtenir un matériau fibreux homogène. Il ne peut pas y avoir d'irrégularités dans la structure ou de nœud susceptibles de fragiliser le matériau avec des risques de rupture comme c'est le cas avec les procédés de l'art antérieur.
De façon plus précise, l'invention a pour objet un procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique consistant à i) utiliser au moins deux séries de fibres différentes, une première série de fibres comprenant des fibres de renfort et une seconde série de fibres comprenant des fibres polymère organique ayant une température de fusion Tf, ii) disposer les deux séries de fibres au contact l'une de l'autre puis iii) chauffer l'ensemble des deux séries de fibres jusqu'à une température au moins égale à la température de fusion Tf des fibres organiques et à laisser refroidir l'ensemble jusqu'à la température ambiante.
Le procédé divulgué par le document WO2008/061 170, ne décrit pas et ne suggère pas l'utilisation de deux séries de fibres différentes, dont une première est constituée de fibres de renfort, et dont une seconde est constituée de polymère organique à savoir de polymère thermoplastique ou thermodurcissable, et le chauffage de l'ensemble des deux séries de fibres jusqu'à une température au moins égale à la température de fusion Tf des fibres organiques comme c'est le cas dans la présente invention.
Avantageusement, on réalise un préchauffage durant la mise en contact des deux séries de fibres, à une température inférieure à la température de fusion Tf, de préférence à une température inférieure ou égale à la température de transition vitreuse Tv des fibres de polymère organiques, de manière à monter les deux séries de fibres en température pour atténuer ou supprimer la différence de température provoquée par une inertie thermique distincte pour les deux séries de fibres. Cela permet ainsi, d'améliorer le contact et par conséquent l'imprégnation des fibres de la première série par les fibres de la seconde série, lors de la fusion des fibres polymère.
Lorsque les deux séries de fibres sont chauffées à la température de fusion Tf, elles sont également mises en forme pour obtenir un matériau homogène de forme et de dimensions calibrées.
La mise en place des deux séries de fibres et la mise en forme du matériau imprégné de fibres organiques fondues (fibres de la deuxième série), sont réalisées avantageusement par un système comprenant la mise en œuvre d'opérations de calandrage.
On réalise de préférence plusieurs opérations de calandrage successives pour affiner la mise en forme du matériau et obtenir un matériau homogène sans défaut c'est-à-dire sans granulosité et sans bulle d'air.
Les fibres de renfort constituant la première série, peuvent être des fibres minérales ou des fibres organiques de polymère thermoplastique ou thermodurcissable ou bien encore, des fibres minérales et des fibres organiques de polymère thermoplastique ou thermodurcissable.
Les fibres organiques constituant les fibres de la deuxième série sont en polymère thermoplastique ou thermodurcissable.
Dans tous les cas, c'est-à-dire quelque soit la composition des fibres de la première ou de la deuxième série, la température de fusion Tf des fibres de la deuxième série est toujours inférieure à la température de fusion des fibres de la première série de sorte que l'étape de chauffage provoque la fusion des fibres de la deuxième série, ces dernières imprégnant alors les fibres de la première série constituant des fibres de renfort du matériau fibreux ainsi obtenu.
Les polymères entrant dans la constitution des fibres thermodurcissables sont choisis parmi : les polyesters insaturés, les résines époxy, les esters vinyliques, les résines phénoliques, les polyuréthanes, les cyanoacrylates et les polyimides, tels que les résines bis-maléimide, les aminoplastes (résultant de la réaction d'une aminé telle que la mélamine avec un aldéhyde tel que le glyoxal ou le formaldéhyde) et leurs mélanges.
Par polymères thermodurcissables ou encore « résines thermodurcissables », on entend un matériau généralement liquide à température ambiante, ou à bas point de fusion, qui est susceptible d'être durci, généralement en présence d'un durcisseur, sous l'effet de la chaleur, d'un catalyseur, ou d'une combinaison des deux, pour obtenir une résine thermodurcie Celle-ci est constituée d'un matériau renfermant des chaînes polymères de longueur variable liées entre elles par des liaisons covalentes, de manière à former un réseau tridimensionnel . Sur le plan de ses propriétés, cette résine thermodurcie est infusible et insoluble. Elle peut être ramollie en la chauffant au-dessus de sa température de transition vitreuse (Tg) mais, une fois qu'une forme lui a été conférée, elle ne peut être remise en forme ultérieurement par chauffage.
Les polymères (ou résines) thermodurcissables entrant dans la constitution des fibres thermodurcissables selon l'invention sont choisis parmi : les polyesters insaturés, les résines époxy, les esters vinyliques, les résines phénoliques, les polyuréthanes, les cyanoacrylates et les polyimides, tels que les résines bis-maléimide, les aminoplastes (résultant de la réaction d'une aminé telle que la mélamine avec un aldéhyde tel que le glyoxal ou le formaldéhyde) et leurs mélanges.
Les polyesters insaturés résultent de la polymérisation par condensation d'acides dicarboxyliques renfermant un composé insaturé (tel que l'anhydride maléique ou l'acide fumarique) et de glycols tels que le propylène glycol. Ils sont généralement durcis par dilution dans un monomère réactif, tel que le styrène, puis réaction de ce dernier avec les insaturations présentes sur ces polyesters, généralement à l'aide de peroxydes ou d'un catalyseur, en présence de sels de métaux lourds ou d'une aminé, ou encore à l'aide d'un photo-initateur, d'un rayonnement ionisant, ou d'une combinaison de ces différentes techniques.
Les esters vinyliques comprennent les produits de la réaction d'époxydes avec l'acide (méth)acrylique. Ils peuvent être durcis après dissolution dans le styrène (de façon similaire aux résines polyesters) ou à l'aide de peroxydes organiques.
Les résines époxy sont constituées de matériaux contenant un ou plusieurs groupes oxiranes, par exemple de 2 à 4 fonctions oxirane par molécule. Dans le cas où elles sont polyfonctionnelles, ces résines peuvent être constituées de polymères linéaires porteurs de groupes époxy terminaux, ou dont le squelette comprend des groupes époxy, ou encore dont le squelette porte des groupes époxy pendants. Elles nécessitent généralement comme agent durcisseur un anhydride d'acide ou une aminé.
Ces résines époxy peuvent résulter de la réaction de l'épichlorhydrine sur un bisphénol tel que le bisphénol A. Il peut en variante s'agir d'alkyl- et/ou alkénylglycidyl éthers ou esters; de polyglycidyl éthers de mono- et polyphénols éventuellement substitués, notamment de polyglycidyl éthers de bisphénol A ; de polyglycidyl éthers de polyols; de polyglycidyl éthers d'acides polycarboxyliques aliphatiques ou aromatiques ; de polyglycidyl esters d'acides polycarboxyliques ; de polyglycidyl éthers de novolac En variante encore, il peut s'agir de produits de la réaction de l'épichlorhydrine sur des aminés aromatiques ou de dérivés glycidyle de mono- ou diamines aromatiques. On peut également utiliser dans la présente invention des époxydes cycloaliphatiques et de préférence les diglycidyl éthers de bisphénol A (ou DGEBA), F ou A/F
Parmi les durcisseurs ou réticulants, on peut utiliser des produits de type di- aminé ou tri-amine fonctionnelle utilisés à des teneurs allant de 1 à 5 %.
Pour les températures de chauffage des fibres thermodurcissables, on parle de températures de fusion ou de ramollissement, elles sont de l'ordre de 50°C à 80°C, typiquement 60°C.
Après rajout d'un durcisseur (ou réticulant), la température de fusion ou de ramollissement est amenée alors entre 100°C et 150°C, typiquement 120°C.
Le chauffage à la température de fusion Tf est associé à une mise en forme de l'ensemble des deux séries de fibres, les fibres en polymère thermodurcissable pourront être mises en forme dans un appareil normalement utilisé pour un polymère thermoplastique tel qu'une extrudeuse bi-vis ou un co-mélangeur.
Selon l'invention, le chauffage des deux séries de fibres de renfort (minérales et/ou organiques) et de polymère organique peut être réalisé par un chauffage laser ou une torche à plasma, à azote ou un four à infra rouge ou encore micro-ondes ou à induction.
De façon préférée l'étape iii) de chauffage sera réalisée par induction ou micro- ondes en présence de fibres conductrices électriquement dans l'assemblage ou de charges conductrices électriquement dans le matériau pré-imprégné. Les propriétés de conductivité du matériau pré-imprégné sont intéressantes en association avec un chauffage par induction ou par micro-ondes car alors la conductivité électrique est mise en œuvre et contribue à l'obtention d'une cuisson à cœur et à une meilleure homogénéité du matériau fibreux. La conduction thermique des fibres de l'assemblage ou des charges présentes dans le matériau fibreux pré-imprégné contribue également avec ce type de chauffage à une cuisson à cœur améliorant l'homogénéité du matériau.
Les charges utilisées sont par exemple de la poudre de métal, du noir de carbone pulvérulent, des fibrilles de carbone, des nanotubes de carbone, ou comme des nanotubes de carbure de silicium, de carbonitrure de bore, de nitrure de bore ou de silicium. De préférence, les charges utilisées sont conductrices de l'électricité et/ou de la chaleur comme les nanotubes de carbone, les fibrilles de carbone ou encore le noir de carbone.
De préférence, on utilise des nanotubes de carbone. On rappelle que par nanotubes de carbone NTC, on entend un ou plusieurs tubes creux à une ou plusieurs parois de plan graphitique ou feuillets de graphène, coaxiaux, ou feuillet de graphène enroulé sur lui-même. Ce ou ces tubes, le plus souvent « débouchant » (c'est-à-dire ouverts à une extrémité) ressemblent à plusieurs tubes de grillages disposés coaxialement ; en coupe transversale les NTC se présentent sous forme d'anneaux concentriques. Le diamètre externe des NTC est de 2 à 50nm. On parle de nanotubes de carbone monofeuillet, (en anglais : Single-walled Carbon Nanotubes, SWNT) ou de nanotubes de carbone multifeuillets, (en anglais Multi-walled Carbon Nanotubes, MWNT).
Ainsi, le chauffage par micro-onde ou par induction est particulièrement bien adapté en présence de charges telles que des nanotubes de carbone NTC dans le matériau pré-imprégné car on obtient alors une meilleure dispersion/répartition des NTC au sein du matériau, conduisant à une meilleure homogénéité des propriétés physico-chimiques, et par conséquent de meilleures propriétés au global sur le produit final.
Bien entendu, lorsque le chauffage est réalisé par induction, on utilise un matériau conducteur. En l'absence de fibres conductrices dans l'assemblage ou de charges conductrices dans le matériau fibreux pré-imprégné, ce matériau peut être en contact avec l'assemblage de fibres comme par exemple le support des fibres sur lequel elles sont posées pour la cuisson.
Pour l'introduction de charges conductrices, on procède de la façon suivante :
- on dispose sur l'assemblage des deux séries de fibres, juste avant l'étape iii) de chauffage, des charges minérales sous forme de poudre, conductrices comme de la poudre de métal, du noir de carbone pulvérulent, des fibrilles de carbone, des nanotubes de carbone, ou comme des nanotubes de carbure de silicium, de carbonitrure de bore, de nitrure de bore ou de silicium.
Lorsque l'assemblage des deux séries de fibres comporte des fibres thermodurcissables, on disposera sur cet assemblage, de la poudre de nanotubes de carbone, avant d'introduire un durcisseur.
Un chauffage par induction ou par micro-ondes est préférable, notamment en présence de fibres conductrices électriquement dans l'assemblage ou en présence de charges conductrices électriquement dans le matériau pré-imprégné pour favoriser le chauffage à cœur.
Le saupoudrage des charges peut être assuré à l'aide d'un support vibrant, afin d'assurer une répartition homogène sur les fibres. On dépose par exemple, la poudre de NTC directement sur le matériau fibreux, placé à plat sur un support vibrant, afin de permettre la répartition de la poudre sur les fibres.
Avant la dispersion des charges sur les deux séries de fibres, ces charges peuvent être soumises à un traitement chimique afin de leur apporter des fonctions par exemple polaires en vue d'améliorer leur adhérence sur les fibres polymériques ou encore soumises à un traitement thermique, par exemple supérieur à 900°C et mieux à 1000°C afin d'éliminer des impuretés métalliques dues à leur procédé de synthèse.
Avantageusement, les charges sont ni traitées chimiquement ni thermiquement.
Dans le cas des fibres thermoplastiques, ces fibres peuvent être constituées d'un seul type de polymère ou de plusieurs polymères ; dans le cas de plusieurs polymères, la température de fusion Tf ci-dessus est celle du polymère de température de fusion la plus élevée.
Les polymères thermoplastiques entrant dans la constitution des fibres de la seconde série de fibres peuvent être choisis, sans limitation, parmi :
- les polyéthylènimines (PEI),
- les polyimides (PI),
- les polyoléfines telles que le polyéthylène notamment haute densité, le polypropylène et les copolymères d'éthylène et/ou de polypropylène ;
- les polyuréthanes thermoplastiques (TPU) ;
- les polyesters tels que les polyhydroxyalcanoates ;
- les polytéréphtalates d'éthylène (PET) ou de butylène (PBT) ;
- les polyphenylenes sulfide (PPS) ;
- les polychlorures de vinyle ;
- les polymères siliconés ou fluorosiliconés ;
- les poly(alcool de vinyle) ;
- les polyaryléther cétones (PAEK PolyArylEtherKetone) telle que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) ;
- les polyamides tels que polyamide tel que le polyamide 6 (PA-6), le polyamide 1 1 (PA-1 1 ), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA- 4.6), le polyamide 6.10 (PA-6.10), le polyamide 6.12 (PA-6.12), les polyamides aromatiques, en particulier les polyphtalamides et l'aramide, et les copolymères blocs, notamment polyamide/polyéther ;
- les polymères fluorés comprenant au moins un monomère de formule (I) :
CFX=CHX' (I)
où X et X' désignent indépendamment un atome d'hydrogène ou d'halogène
(en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré), et de préférence X=F et X -H, tels que le poly(fluorure de vinylidène) (PVDF), de préférence sous forme a, les copolymères de fluorure de vinylidène avec par exemple l'hexafluoropropylène (HFP), les copolymères fluoroéthylène / propylène (FEP), les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE), soit le perfluorométhylvinyl éther (PMVE), soit le chlorotrifluoroéthylène (CTFE), certains de ces polymères étant notamment commercialisés par la société ARKEMA sous la dénomination Kynar® ;
- les polymères (ou résines) phénoxy, et
- leurs mélanges.
Les polymères (ou résines) phénoxy sont des polyhydroxyéthers terminés par des groupe alpha-glycols. Elles résultent de la réaction entre le bisphénol A et l'épichlorhydrine ; leur masse moléculaire moyenne en masse est de 25 000 à 60 000. Elles sont compatibles avec les résines thermodurcissables du type résine epoxy.
Pour les polymères fluorés, on préfère utiliser un homopolymère du fluorure de vinylidène (VDF de formule CH2=CF2) ou copolymère du VDF comprenant en poids au moins 50% en masse de VDF et au moins un autre monomère copolymérisable avec le VDF. La teneur en VDF doit être supérieure à 80% en masse, voire mieux 90% en masse, pour assurer une bonne résistance mécanique à la pièce de structure, surtout lorsqu'elle est soumise à des contraintes thermiques. Le comonomère peut être un monomère fluoré choisi par exemple parmi le fluorure de vinyle; le trifluoroéthylène (VF3); le chlorotrifluoroéthylène (CTFE); le 1 ,2-difluoroéthylène; le tétrafluoroéthylène (TFE); l'éthylène tétrafluoroéthylène (ETFE), l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(1 ,3-dioxole); le perfluoro(2,2-diméthyl-1 ,3-dioxole) (PDD). De préférence, le comonomère éventuel est choisi parmi le chlorotrifluoroéthylène (CTFE), l'hexafluoropropylène (HFP), le trifluoroéthylène (VF3) et le tétrafluoroéthylène (TFE). Le comonomère peut aussi être une oléfine telle que l'éthylène ou le propylène. Le comonomère préféré est l'HFP.
Pour des pièces de structure devant résister à des températures élevées, outre les polymères fluorés, on utilise avantageusement selon l'invention les PAEK (PolyArylEtherKetone) tels que PEK, PEEK, PEKK, PEKEKK etc.
Par rapport aux procédés de l'art antérieur, le procédé selon la présente invention, est parfaitement bien adapté à des polymères présentant des températures de fusion élevées, par exemple supérieurs à 130°C comme les polymères fluorés, les PAEK, les polyéthylènes haute densité, ou encore le PET ou PBT.
On peut aussi utiliser des fibres de Kevlar ou des fibres d'aramide.
Les fibres minérales auxquelles s'applique l'invention sont notamment les fibres de carbone, de verre, de bore, de silice, les fibres naturelles comme le lin, la soie notamment d'araignée, le chanvre, le sisal . Ces fibres peuvent être utilisées pures, traitées ou bien enduites d'une couche d'induction, en vue de faciliter l'adhérence/imprégnation des fibres de polymère thermoplastique de la deuxième série ou leur manipulation avant imprégnation par fusion de ce polymère.
Des fibres organiques peuvent être mélangées aux fibres minérales pour former la première série de fibres qui est destinée à être imprégnée de polymère après la fonte des fibres de polymère thermoplastique ou thermodurcissable de la seconde série. Dans ce cas on choisira bien sûr des fibres organiques c'est-à-dire des fibres de polymère dont la température de fusion est supérieure à la température de fusion Tf des fibres de la seconde série que l'on fond. Ainsi, il n'y a aucun risque de fusion pour les fibres organiques présentes dans la première série de fibres.
Le matériau fibreux réalisé avec le procédé est obtenu avantageusement avec
50% de fibres minérales et 50% de fibres de polymère organique thermoplastique ou thermodurcissable, de préférence avec 30% de fibres minérales et 70% de fibres de polymère organique thermoplastique ou thermodurcissable.
L'invention concerne également l'utilisation de matériau fibreux tels que décrits pour la fabrication de pièces mécaniques en 3D, notamment les ailes d'avion, le fuselage d'un avion, la coque d'un bateau, les longerons ou spoilers d'une automobile, ou des disques de freins, ou encore le corps de vérin ou de volants de direction.
Le procédé selon l'invention est mise en œuvre par un appareil qui comprend un dispositif de mise en place des fibres de manière à disposer les deux séries de fibres au contact l'une de l'autre et un dispositif de chauffage des deux séries de fibres réalisé par un laser ou une torche à plasma, à azote ou un four à infra rouge ou encore micro-ondes ou induction.
Le dispositif de chauffage par induction est obtenu par exposition des fibres de l'assemblage à un champ électromagnétique alternatif au moyen d'une unité hautes fréquences de 650 KHz à 1 MHz par exemple.
Le dispositif de chauffage par micro-ondes est obtenu par exposition des fibres de l'assemblage à un champ électromagnétique hyperfréquence au moyen d'un générateur hyperfréquence de 2 à 3 GHz par exemple.
L'appareil de mise en oeuvre peut comporter un dispositif de calandrage. Il peut également être prévu que le chauffage soit réalisé par le dispositif de calandrage.
L'appareil de mise en œuvre du procédé permet avantageusement de mettre en forme les deux séries de fibres, par exemple, sous forme de bande ou de nappe, ou ruban que l'on découpe selon la longueur voulue.
De préférence, l'appareil de mise en œuvre du procédé, comprend une ligne de formation continue dudit matériau sous forme d'une bande calibrée et homogène en fibres de renfort par exemple minérales, imprégnées de polymère organique par exemple thermoplastique ou thermodurcissable. La ligne de formation continue comporte un dispositif de mise en place des deux séries de fibres muni d'un premier dispositif de calandrage. Le dispositif de mise en place comporte en outre un dispositif de préchauffage pour atténuer ou diminuer les différences de température provoquées par l'inertie de fibres de nature différente lors de la chauffe à la température de fusion Tf
L'appareil de mise en place peut également assurer la mise en forme du matériau. Cependant la ligne de formation continue comporte à cette fin, un dispositif de mise en forme mettant en œuvre au moins une opération de calandrage au moyen d'un deuxième dispositif de calandrage et, de préférence au moins deux opérations de calandrages successives pour obtenir un matériau fibreux imprégné calibré de façon désirée et homogène, c'est-à-dire sans défaut et sans bulle d'air. Pour cela, un troisième dispositif de calandrage peut être placé en sortie du deuxième dispositif de calandrage.
L'appareil de mise en forme comporte un dispositif de chauffage permettant de chauffer les deux séries de fibres jusqu'à une température au moins égale à la température de fusion Tf.
Pour opérer la mise en forme en bande calibrée et continue, chaque dispositif de calandrage est notamment muni de deux cylindres dont l'un possède un anneau élément mâle, l'autre une gorge élément femelle à fond plat de largeur déterminée de sorte que les fibres sortant du dispositif de préchauffage, sont mises en forme dans la gorge par pression de l'élément mâle pendant leur passage sur le cylindre muni de l'élément femelle.
Bien entendu pour assurer la mise en forme et un bon fonctionnement de la ligne de formation, chaque dispositif de calandrage comprend un moteur d'entraînement synchrone des deux cylindres et un dispositif de chauffage des cylindres.
Pour obtenir la température de fusion Tf des fibres polymère, le dispositif de mise en forme comprend un dispositif de chauffage placé entre le premier et le deuxième dispositif de calandrage.
Le dispositif de mise en place des fibres comporte également en entrée de ligne, un poste de déroulement continu des deux séries de fibres suivi du dispositif de préchauffage.
A cette fin, le poste de déroulement des fibres est avantageusement muni de bobines à axe de déroulement horizontal.
Lorsque la température de fusion Tf est élevée de préférence lorsqu'elle est supérieure à 200°C, comme c'est le cas par exemple pour des fibres PAEK ou PEEK, il est prévu d'insérer dans la ligne de formation continue, en sortie du dispositif de mise en forme, un dispositif de refroidissement.
Pour permettre un conditionnement aisé de la bande de matériau fibreux obtenue, la ligne de formation continue comprend avantageusement un dispositif d'enroulement en sortie du dispositif de refroidissement. Le dispositif de préchauffage ou de chauffage sont avantageusement réalisés par des unités de chauffage micro-ondes ou par induction notamment en présence de charges conductrices pour favoriser le chauffage à cœur des fibres.
Il peut être également prévu que le dispositif de chauffage et le dispositif de préchauffage soient chacun constitué de deux demi-fours à ouverture horizontale à lampes à infra rouge et à température réglable. Au moins un des demi-fours comporte une gorge à fond plat, calibrée sur laquelle reposent les fibres côte à côte des deux séries de fibres.
L'ensemble de tous les éléments à commande électrique ou électronique est avantageusement piloté et synchronisé par un poste de commande de type ordinateur.
D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description qui est faite ci-après et qui est donnée à titre d'exemple illustratif et non limitatif et en regard des figures sur lesquelles :
- la figure 1 représente le schéma d'un premier appareil de mise en œuvre du procédé selon l'invention,
- la figure 2 représente le schéma d'un deuxième appareil de mise en œuvre du procédé selon l'invention,
- la figure 3 représente le schéma en coupe transversale AA d'un support 50 recouvert de fibres selon le procédé,
- la figure 4 représente le schéma en coupe transversale BB du support 50 après fonte des fibres polymère thermoplastique selon le procédé,
- la figure 5 représente le schéma d'un troisième appareil de mise en œuvre du procédé.
- la figure 6 représente le schéma d'un troisième appareil de mise en œuvre du procédé selon l'invention.
- la figure 7 représente le schéma d'un demi-four avec la gorge de mise en place des fibres.
- La figure 8 représente le schéma des cylindres de calandrage avec les éléments complémentaires de calibrage et mise en forme du matériau en forme de bande.
Les fibres de renfort constituant la première série de fibres peuvent être des fibres minérales ou des fibres thermoplastiques ou des fibres thermodurcissables ou des fibres minérales avec des fibres thermoplastiques ou avec des fibres thermodurcissables.
Les fibres de la deuxième série destinées à être fondues pour constituer le matériau fibreux pré-imprégné sont des fibres organiques en polymère thermoplastique ou thermodurcissable. Quelque soit l'assemblage réalisé, la température de fusion de la deuxième série de fibres est plus basse que celle de la première série de sorte que les étapes de préchauffage ou du chauffage ne modifient pas la structure des fibres de la première série et que les fibres de la deuxième série fondent.
Par exemple, des fibres en résines thermodurcissables peuvent constituer la deuxième série de fibres (polymères époxy (sans réticulant) à une température de fusion de 60°C) alors que la première série pourraient être des fibres thermoplastiques de température de fusion plus élevée (exemple un homopolyamide à une température de fusion de l'ordre de 90°C ou un polyvinylidène (PVDF) de température de fusion de l'ordre de 130°C. La première série pourraient aussi être des fibres minérales en verre, silice, carbone, carbure de silicium ou encore métallique.
On peut aussi prévoir l'utilisation de deux séries de fibres en polymère thermodurcissable avec des températures de fusion différentes.
Les appareils représentés sur les figures 1 , 2 et 5 permettent une mise en œuvre du procédé de fabrication « en ligne » et en continu proposé selon l'invention pour la fabrication de matériau fibreux pré-imprégné de polymère thermoplastique ou thermodurcissable.
Chaque appareil comporte un dispositif 100 de mise en place des deux séries de fibres à savoir la première série de fibres 1 qui comporte par exemple des fibres minérales et la seconde série de fibres 2 qui comporte par exemple des fibres de polymère thermoplastique ayant leur température de fusion égale à Tf.
Ces dispositifs portent la même référence 100 sur les figures 1 , 2 et 5 et assurent la même fonction à savoir disposer les deux séries de fibres au contact l'une de l'autre.
Chaque dispositif comporte également un dispositif de chauffage 1 10 et éventuellement un dispositif de calandrage 1 15 comme c'est le cas pour les dispositifs des figures 1 et 5. Il peut être prévu que le dispositif de calandrage assure la fonction de chauffage de deux séries de fibres.
Dans l'exemple de l'appareil représenté sur la figure 1 , le dispositif 100, de mise en place des fibres comporte deux voies superposées. Les deux séries de fibres sont amenées par les deux voies superposées vers une même direction, ces deux voies se rapprochant jusqu'à ce que les deux séries de fibres s'intercalent pour former un plan homogène imposé par le calibre des fibres, les fibres ayant des dimensions constantes. Le plan homogène se présente sous la forme d'une bande acheminée de manière à passer devant le dispositif de chauffage 1 10. Ce dispositif de chauffage permet en quelques secondes d'atteindre la température de fusion désirée Tf de sorte que les fibres de polymère thermoplastique ayant une température de fusion inférieure ou égale à Tf, fondent. Le polymère fondu adhère aux fibres de la première série (comportant dans l'exemple des fibres minérales). Après passage à température ambiante, la bande de matériau fibreux 10 ainsi réalisée peut être exploitée selon les besoins, par exemple, être découpée par un dispositif de découpe 200 pour entrer dans la fabrication de pièces mécaniques.
Sur la figure 2 on a représenté un dispositif adapté à la mise en place des deux séries de fibres sur un support 50 servant de moule pour former la structure d'une pièce 3D en matériau fibreux.
Dans cet exemple, le dispositif de mise en place des fibres est constitué de deux bras 102 et 103 disposés au-dessus d'un plan horizontal entraîné par un dispositif mécanique non représenté de type tapis roulant 101 . Plusieurs supports 50 sont disposés sur ce tapis les uns derrières les autres suivant le sans d'avancement. Le bras 102 permet de poser les fibres de la première série 1 sur un support 50 tandis que le bras 103 permet de poser les fibres de la deuxième série 2 sur un support 50 sur lequel les fibres de la première série ont été mises en place.
Bien entendu, les bras 102 et 103 sont motorisés de manière à pouvoir être déplacés au plus prés de la surface des supports 50 afin d'avoir une bonne précision dans la mise en place des fibres.
Pour l'arrêt net des fibres en bordure des supports 50, le dispositif peut comporter des bras de découpes.
Lorsque les supports 50 comportent les deux séries de fibres, ils sont acheminés dans la zone de chauffage. Chaque support 50 est placé face au dispositif de chauffage 1 10 pour permettre la fusion des fibres en polymère thermoplastique de la deuxième série.
Le schéma de la figure 3 illustre un support 50 recouvert des deux séries de fibres 1 et 2, vu en coupe transversale.
Le schéma de la figure 4 permet d'illustrer ce support 50 après fusion des fibres de la deuxième série. Seules les fibres de la première série 1 peuvent être vues sur la coupe.
Dans l'exemple du dispositif représenté sur la figure 5, le dispositif de mise en place100 comporte deux voies dont les issues sont en vis-à-vis. Les deux séries de fibres 1 et 2 sont amenées par les deux voies sur un même plan de manière à venir en contact et à s'intercaler dans une zone de vis-à-vis et former un plan homogène imposé par le calibre des fibres.
Le plan formé par les deux séries de fibres en contact, passe pendant quelques secondes dans la zone de chauffage prévue pour obtenir la fusion des fibres polymères thermoplastiques. Dans cet exemple le dispositif de calandrage 1 15 peut assurer en plus la fonction de chauffage et se substituer au dispositif 1 10. En sortie du dispositif de calandrage, on obtient le matériau fibreux sous forme de bande 10 que l'on peut ensuite exploiter selon les besoins. Dans cet exemple les deux séries de fibres sont entraînées chacune par un dispositif de type tapis roulant 1 1 1 et 1 12. Il peut avantageusement être prévu des règles 1 13 et 1 14 de maintien de l'écartement de fibres sur chacun des tapis.
Il est bien entendu que lorsque l'on parle de mettre en contact les fibres en les intercalant, cela ne se limite pas à placer une fibre d'une série entre deux fibres de l'autre série. En effet, les dispositifs de mise en place 100 permettent de placer deux fibres côte à côte d'une même série entre deux fibres de l'autre série. De préférence, un tel agencement sera utilisé de manière à avoir par exemple une fibre minérale pour deux fibres de polymère thermoplastique.
Cela ne se limite pas non plus à placer les fibres des deux séries côte à côte. Il peut être prévu également, dans le cas où les fibres minérales constituent déjà un entrecroisement de type tissage à deux directions, de mettre les fibres de polymère thermoplastique en contact avec ce tissage, par exemple en les plaçant sur une face du tissage, cette face étant ensuite placée face au dispositif de chauffage.
D'autres dispositifs comme par exemple les dispositifs mécaniques décrits dans les brevets US 6 607 626 ; US 6 939 424 et US 7 235 149 pourraient également convenir pour la mise en place des fibres.
Un troisième appareil de mise en œuvre du procédé selon l'invention est illustré sur le schéma de la figure 6. Des détails de certains éléments sont illustrés sur les figures 7 et 8.
Selon ce mode préféré de réalisation, l'appareil comprend une ligne L de formation continue du matériau sous forme d'une bande calibrée et homogène.
Cette ligne de formation continue comporte :
► Le dispositif de mise en place des fibres 100 équipé :
- du dispositif de déroulement des fibres, 104 ; ce dispositif 104 comporte des bobines de fibres 141 pour les fibres de la première série et des bobines 142 pour les fibres de la deuxième série. En pratique, il y a autant de bobines que de fibres et un dévidoir 143.
- du dispositif de préchauffage 105 ; il comporte deux demi-fours à ouverture horizontale, des rampes à infrarouge. Sa longueur est de 1 m. La température maximale pouvant être atteinte est de 600°C. La gorge de passage 13 a une section de 40x40mm environ.
- du dispositif de calandrage 106 ; il comporte deux cylindres comme illustré sur la figure 8, de diamètre 100mm, largeur 100mm, une surface chromée polie Ra inférieure à 0,1 micron. La surface des cylindres 15 et 17 possède des éléments 16 et 18, mâle et femelle de forme appropriée à l'emboîtement de l'un dans l'autre, par pression, de façon à calibrer la bande 10 en largeur à 6mm, lors de son passage sur les cylindres. Ce dispositif comporte un chauffage électrique fournissant une température maximale à environ 260°C, une cartouche chauffante avec collecteur tournant d'alimentation et régulation par une sonde thermocouple en surface, un palier auto-aligneur et écartement réglable de 0 à 2mm par vis-écrou, un entraînement synchrone des deux cylindres par chaîne ou courroie crantée, un motoréducteur avec servomoteur sans balais « brushless » permettant d'avoir une vitesse de ligne maximale de 30m/minute et une synchronisation électrique avec le train de tirage.
► Le dispositif de mise en forme 150 équipé :
- du dispositif de chauffage 1 10 identique au dispositif de préchauffage 105. La température de ce dispositif est réglée pour atteindre la température de fusion Tf des fibres polymères thermoplastiques. Le demi-four 1 1 comporte une gorge de passage 13 représenté sur la figure 7.
- d'un deuxième dispositif de calandrage 1 15 ;
- d'un troisième dispositif de calandrage 1 16 ;
-- ces dispositifs de calandrage sont identiques au premier dispositif de calandrage 106. Les détails de la structure des cylindres sont illustrés sur le schéma de la figure 8.
► Le dispositif de refroidissement 1 17. Il se présente sous la forme d'un bac de longueur 1 m en acier inoxydable dans lequel la bande est introduite et plongée dans de l'eau froide si nécessaire (la bande est représentée en pointillés dans la traversée du bac). Il comprend un sécheur à air comprimé et un groupe de réfrigération d'eau de 3KW environ.
► Le dispositif 1 18 de régulation du bobinage et de maintien de la bande empêchant les vibrations et opérant des mouvements de haut en bas sur une hauteur correspondant à la largeur des bobines d'enroulement 300.
► Le dispositif d'enroulement 300 ;ce dispositif comporte plusieurs bobines plates en forme de galettes 301 , 302 etc., d'environ 600mm de diamètre. Les galettes se superposent sur un axe XX vertical au fur et à mesure du remplissage. Il est prévu de stoker 10 à 20 galettes avec un intercalaire entre-elles. Le passage d'une galette 301 à la suivante 302 se fait manuellement. La synchronisation avec tirage de la bande se fait par un patin de régulation, la tension est réglée par le contre poids du patin. ► Le train de tirage 350 qui permet d'entraîner la bande en continu. Il comporte des rouleaux en élastomère et permet d'exercer une pression fixe par vérin pneumatique. Il est synchronisé électriquement avec les dispositifs de calandrage.
La ligne de formation continue L est pilotée par un poste de commande 400, du type ordinateur avec écran de visualisation. Ce poste 400 est relié, par réseau par exemple, aux différents dispositifs à commandes électriques de la ligne : moteurs électriques ; variateurs de vitesse et régulateurs de vitesse, de température ; moteur du train de tirage pour permettre les différentes synchronisations nécessaires au fonctionnement en continu de la ligne L. Ce poste de commande permet également d'enregistrer tous les paramètres pour la gestion des automatismes et de synchronisation.
Dans le cas où les fibres minérales 1 utilisées ont une couche d'enduction (ou ensimage), la couche d'enduction pourra être retirée, si nécessaire c'est-à-dire en cas d'incompatibilité avec les fibres de polymère thermoplastique à fondre. La couche d'enduction sera retirée avant mise en contact des deux séries de fibres 1 , 2. A cette fin, il peut être prévu que les fibres des deux séries arrivent par deux dévidoirs séparés de sorte que le désensimage soit opéré sur les fibres minérales avant mise en contact des deux séries de fibres ; ou que le désensimage des fibres minérales soit réalisé dans un four comme le four 105 avant la mise en contact des deux séries de fibres dans le four 105.
En outre, pour obtenir une fusion et imprégnation améliorée, on pourra utiliser un dispositif de chauffage 1 10 de type laser au lieu d'un four à infra rouge comme décrit dans l'exemple précédent. Dans ce cas, le dispositif laser est agencé de sorte que le rayon laser arrive dans l'axe longitudinal des fibres (du ruban), c'est-à-dire l'axe de tirage. Ainsi le chauffage est direct et donc concentré sur les fibres.
Préférentiellement, le dispositif chauffage 1 10 est de type chauffage par induction ou micro-ondes.
En effet, un dispositif de chauffage par induction ou micro-onde est particulièrement adapté lorsque des fibres conductrices électriquement sont présentes dans l'assemblage ou lorsque des charges conductrices électriques sont présentes dans le matériau pré-imprégné. Car, dans le cas d'un chauffage par induction ou par micro-ondes, la conductivité électrique de ces dernières est mise en œuvre et contribue à l'obtention d'une cuisson à cœur et à une meilleure homogénéité du matériau fibreux. La conduction thermique des fibres de l'assemblage ou des charges présentes dans le matériau fibreux pré-imprégné contribue également avec ce type de chauffage à une cuisson à cœur améliorant l'homogénéité du matériau.
Le chauffage par micro-onde ou par induction tout particulièrement bien adapté en présence de charges telles que des nanotubes de carbone NTC dans le matériau pré-imprégné permet d'obtenir une meilleure dispersion/répartition des NTC au sein du matériau, conduisant à une meilleure homogénéité des propriétés physico-chimiques, et par conséquent de meilleures propriétés au global sur le produit final.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique, consistant à i) utiliser au moins deux séries de fibres différentes, une première série de fibres comprenant des fibres de renfort et une seconde série de fibres comprenant des fibres de polymère organique ayant une température de fusion Tf, ii) disposer les deux séries de fibres au contact l'une de l'autre puis iii) chauffer l'ensemble des deux séries de fibres jusqu'à une température au moins égale à la température de fusion Tf des fibres organiques et à laisser refroidir l'ensemble jusqu'à la température ambiante.
2. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 1 , caractérisé en ce que les fibres de renfort constituant la première série, sont des fibres minérales, ou des fibres organiques de polymère thermoplastique ou thermodurcissable ou bien encore, des fibres minérales et des fibres organiques de polymère thermoplastique ou thermodurcissable.
3. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon les revendications 1 ou 2, caractérisé en ce que les fibres organiques constituant les fibres de la deuxième série sont en polymère thermoplastique ou thermodurcissable.
4. Procédé de fabrication d'un matériau fibreux pré-imprégné selon la revendication 2 ou 3, caractérisé en ce que les polymères entrant dans la constitution des fibres thermodurcissables sont choisis parmi : les polyesters insaturés, les résines époxy, les esters vinyliques, les résines phénoliques, les polyuréthanes, les cyanoacrylates et les polyimides, tels que les résines bis-maléimide, les aminoplastes (résultant de la réaction d'une aminé telle que la mélamine avec un aldéhyde tel que le glyoxal ou le formaldéhyde) et leurs mélanges.
5. Procédé de fabrication d'un matériau fibreux pré-imprégné selon la revendication , caractérisé en ce que les polyesters insaturés résultent de la polymérisation par condensation d'acides dicarboxyliques renfermant un composé insaturé (tel que l'anhydride maléique ou l'acide fumarique) et de glycols tels que le propylène glycol, durcis par dilution dans un monomère réactif, tel que le styrène, puis réaction de ce dernier avec les insaturations présentes sur ces polyesters, à l'aide de peroxydes ou d'un catalyseur, en présence de sels de métaux lourds ou d'une aminé, ou encore à l'aide d'un photo-initateur, d'un rayonnement ionisant, ou d'une combinaison de ces différentes techniques.
6. Procédé de fabrication d'un matériau fibreux pré-imprégné selon la revendication 4, caractérisé en ce que les esters vinyliques comprennent les produits de la réaction d'époxydes avec l'acide (méth)acrylique, pouvant être durcis après dissolution dans le styrène (de façon similaire aux résines polyesters) ou à l'aide de peroxydes organiques.
7 Procédé de fabrication d'un matériau fibreux pré-imprégné selon la revendication 4, caractérisé en ce que les résines époxy sont constituées de matériaux contenant un ou plusieurs groupes oxiranes, par exemple de 2 à 4 fonctions oxirane par molécule.
8. Procédé de fabrication d'un matériau fibreux pré-imprégné selon les revendications 2 ou 3, caractérisé en ce que les fibres thermodurcissables sont durcies avec un durcisseur ou réticulant de type di-amine ou tri-amine fonctionnelle utilisé à des teneurs allant de 1 à 5 %.
9. Procédé de fabrication d'un matériau fibreux pré-imprégné selon les revendications 2 ou 3, caractérisé en ce que les polymères thermoplastiques entrant dans la constitution des fibres thermoplastiques sont choisis parmi :
- les polyéthylènimines (PEI),
- les polyimides (PI),
- les polyoléfines telles que le polyéthylène notamment haute densité, le polypropylène et les copolymères d'éthylène et/ou de polypropylène ;
- les polyuréthanes thermoplastiques (TPU) ;
- les polyesters tels que les polyhydroxyalcanoates ;
- les polytéréphtalates d'éthylène (PET) ou de butylène (PBT) ;
- les polyphenylenes sulfide (PPS) ;
- les polychlorures de vinyle ;
- les polymères siliconés ou fluorosiliconés ;
- les poly(alcool de vinyle) ;
- les polyaryléther cétones (PAEK PolyArylEtherKetone) telle que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) ;
- les polyamides tels que polyamide tel que le polyamide 6 (PA-6), le polyamide 1 1 (PA-1 1 ), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA- 4.6), le polyamide 6.10 (PA-6.10), le polyamide 6.12 (PA-6.12), les polyamides aromatiques, en particulier les polyphtalamides et l'aramide, et les copolymères blocs, notamment polyamide/polyéther ;
- les polymères fluorés comprenant au moins un monomère de formule (I) :
CFX=CHX' (I)
où X et X' désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore) ou un radical alkyle perhalogéné (en particulier perfluoré), et de préférence X=F et X -H, tels que le poly(fluorure de vinylidène) (PVDF), de préférence sous forme a, les copolymères de fluorure de vinylidène (PVDF), de préférence sous forme a, les copolymères de fluorure de vinylidène avec par exemple l'hexafluoropropylène (HFP), les copolymères fluoroéthylène / propylène (FEP), les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE), soit le perfluorométhylvinyl éther (PMVE), soit le chlorotrifluoroéthylène (CTFE), certains de ces polymères étant notamment commercialisés par la société ARKEMA s
- les polymères (ou résines) phénoxy, et
- leurs mélanges.
10. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon l'une quelconque de revendications précédentes, caractérisé en ce que la température de fusion Tf des fibres de la deuxième série est toujours inférieure à la température de fusion des fibres de la première série de sorte que après l'étape de chauffage, les fibres de la deuxième série imprègnent par fusion les fibres de la première série qui constitue des fibres de renfort du matériau fibreux.
1 1 . Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 2 ou 3, caractérisé en ce que les températures de fusion des fibres de polymère thermodurcissable sont de l'ordre de 50°C à 80°C, typiquement 60°C.
12. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 8, caractérisé en ce que après rajout d'un durcisseur (ou réticulant) la température de fusion se situe entre 100°C et 150°C, typiquement 120°C.
13. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 1 , 2 ou 3, caractérisé en ce que le chauffage à la température de fusion Tf est associé à une mise en forme de l'ensemble des deux séries de fibres.
14. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on dispose sur l'assemblage des deux séries de fibres, juste avant l'étape iii) de chauffage, des charges minérales sous forme de poudre, conductrices comme de la poudre de métal, du noir de carbone pulvérulent, des fibrilles de carbone, des nanotubes de carbone, ou des nanotubes de carbure de silicium, de carbonitrure de bore, de nitrure de bore ou de silicium.
15. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 14 caractérisé en ce que l'on utilise comme charges conductrices des nanotubes de carbone.
16. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape iii) de chauffage est réalisée par chauffage au laser ou une torche à plasma, à azote ou un four à infra rouge ou encore par induction ou micro-ondes.
17. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 16, caractérisé en ce que le chauffage est réalisé par induction ou micro-ondes pour favoriser le chauffage à cœur.
18. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon la revendication 17, caractérisé en ce que lorsque le chauffage est réalisé par induction, on utilise un matériau conducteur, ce matériau étant en contact avec l'assemblage de fibres comme par exemple un support de fibres ou comme des charges minérales conductrices présentes dans l'assemblage lui-même, comme par exemple de la poudre de métal, du noir de carbone pulvérulent, des fibrilles de carbone, des nanotubes de carbone, ou comme des nanotubes de carbure de silicium, de carbonitrure de bore, de nitrure de bore ou de silicium.
19. Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère organique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre une étape de préchauffage consistant à préchauffer à une température inférieure à la température de fusion Tf des fibres de la deuxième série, les deux séries de fibres en contact l'une de l'autre.
20. Appareil de mise en œuvre du procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend un dispositif (100) de mise en place des fibres de manière à disposer les deux séries de fibres au contact l'une de l'autre et un dispositif de chauffage (1 10) des deux séries de fibres comme un chauffage au laser ou une torche à plasma, à azote ou un four à infra rouge ou encore par induction ou micro-ondes.
21 . Appareil de mise en œuvre du procédé selon la revendication 20 caractérisé en ce que le dispositif de chauffage est par induction comprenant l'exposition des fibres de l'assemblage à un champ électromagnétique alternatif au moyen d'une unité hautes fréquences de 650 KHz à 1 MHz.
22. Appareil de mise en œuvre du procédé selon la revendication 20 caractérisé en ce le dispositif de chauffage est par micro-ondes comprenant l'exposition des fibres de l'assemblage à un champ électromagnétique hyperfréquence au moyen d'un générateur hyperfréquence de 2 à 3 GHz.
23. Appareil de mise en œuvre du procédé selon la revendication 20, caractérisé en ce qu'il comprend une ligne (L) de formation continue dudit matériau sous forme d'une bande (20) calibrée et homogène en fibres minérales imprégnées de polymère, comprenant le dispositif (100) de mise en place des deux séries de fibres (1 , 2) de manière à disposer les deux séries de fibres au contact l'une de l'autre, ce dispositif étant muni d'un premier (106) dispositif de calandrage et, comprenant un dispositif (150) de mise en forme, muni d'un deuxième (1 15) dispositif de calandrage.
24. Appareil de mise en œuvre du procédé selon la revendication 23, caractérisé en ce que le dispositif (100) de mise en place des deux séries de fibres comprend en outre un poste (104) de déroulement des fibres, muni de bobines (141 , 142) à axe de déroulement horizontal et un dispositif (105) de préchauffage placé entre le poste (104) de déroulement des fibres et le premier dispositif (106) de calandrage, le dispositif (105) de préchauffage étant apte à recevoir les fibres du poste de déroulement.
25. Appareil de mise en œuvre du procédé selon la revendication 23, caractérisé en ce que le dispositif (150) de mise en forme comprend en outre un dispositif (1 10) de chauffage dont la température peut être au moins égale à la température de fusion Tf des fibres organiques, placé entre le premier (106) et le deuxième (1 15) dispositif de calandrage.
26. Appareil de mise en œuvre du procédé, selon la revendication 23, caractérisé en ce que le dispositif (150) de mise en forme comprend un troisième (1 16) dispositif de calandrage.
27. Appareil de mise en œuvre du procédé, selon la revendication 23, caractérisé en ce que la ligne (L) de formation continue du matériau fibreux sous forme d'une bande, comprend également un dispositif (1 17) de refroidissement en sortie du dispositif (150) de mise en forme.
28. Appareil de mise en œuvre du procédé, selon les revendications 23 ou 27, caractérisé en ce que la ligne (L) de formation continue du matériau fibreux sous forme d'une bande comprend un dispositif (300) d'enroulement de la bande en sortie du dispositif (1 17) de refroidissement.
29. Appareil de mise en œuvre du procédé, selon la revendication 23 et 26, caractérisé en ce que chaque dispositif (106, 1 15, 1 16) de calandrage est muni de deux cylindres (15,17) dont l'un possède un anneau (16) élément mâle, l'autre une gorge (18) élément femelle de forme appropriée à l'emboîtement de l'un dans l'autre par pression de façon à calibrer la bande en largeur lors de son passage sur les cylindres.
30. Appareil de mise en œuvre du procédé, selon la revendication 29, caractérisé en ce que chaque dispositif (106, 1 15, 1 16) de calandrage comprend un moteur d'entraînement synchrone (19) des deux cylindres et un système de chauffage des cylindres (14).
31 . Appareil de mise en œuvre du procédé, selon les revendications 24 et 25, caractérisé en ce que le dispositif (1 10) de chauffage et le dispositif (105) de préchauffage sont chacun constitué de deux demi-fours à ouverture horizontale à lampes à infra rouge à température réglable, au moins un des demi-fours comportant une gorge (13) à fond plat, calibrée et destinée à recevoir les fibres côte à côte des deux séries de fibres.
32. Appareil de mise en œuvre du procédé, selon la revendication 23, caractérisé en ce qu'il comprend un train de tirage (350) synchronisé avec les dispositifs de calandrage.
33. Appareil de mise en œuvre du procédé selon la revendication 23, caractérisé en ce qu'il comprend un poste de pilotage et de commandes de synchronisation des dispositifs de la ligne de formation continue du matériau.
PCT/FR2010/051857 2009-09-09 2010-09-07 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et appareil de mise en oeuvre WO2011030052A2 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR0956121A FR2949791B1 (fr) 2009-09-09 2009-09-09 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
FR0956121 2009-09-09
FR0956530A FR2949792A1 (fr) 2009-09-09 2009-09-22 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique et systeme de mise en oeuvre
FR0956530 2009-09-22
FR0959582A FR2949793A1 (fr) 2009-09-09 2009-12-24 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et systeme de mise en oeuvre
FR0959582 2009-12-24

Publications (2)

Publication Number Publication Date
WO2011030052A2 true WO2011030052A2 (fr) 2011-03-17
WO2011030052A3 WO2011030052A3 (fr) 2011-10-27

Family

ID=42104513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051857 WO2011030052A2 (fr) 2009-09-09 2010-09-07 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et appareil de mise en oeuvre

Country Status (2)

Country Link
FR (3) FR2949791B1 (fr)
WO (1) WO2011030052A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190224A1 (fr) 2012-06-22 2013-12-27 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
WO2014020265A1 (fr) * 2012-07-31 2014-02-06 Saint-Gobain Isover Procede de cuisson d'un matelas continu de fibres minerales ou vegetales
WO2014026736A1 (fr) * 2012-08-17 2014-02-20 Saint-Gobain Isover Procédé de durcissement par micro-ondes de laine minérale comprenant un liant
WO2019162324A1 (fr) * 2018-02-21 2019-08-29 Php Fibers Gmbh Procédé de fabrication de matériaux composites
CN112166016A (zh) * 2018-04-04 2021-01-01 斯道拉恩索公司 制造用于热成型的干法成网的垫的方法
CN113715377A (zh) * 2021-08-26 2021-11-30 上海永利输送系统有限公司 一种永久抗静电轻型毛毡输送带制作方法
CN115194982A (zh) * 2022-07-29 2022-10-18 润华(江苏)新材料有限公司 纤维增强复合材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981634B (zh) * 2014-05-30 2017-02-01 北京化工大学常州先进材料研究院 一种聚酰亚胺/二氧化硅复合纳米纤维膜及其制备
CN110669329A (zh) * 2019-10-30 2020-01-10 陈海艳 一种磁流变弹性体的制备方法
CN113387675B (zh) * 2020-03-12 2023-03-03 河南克莱威纳米碳材料有限公司 一种体型远红外发热制品及其制备方法
CN113265767A (zh) * 2021-04-13 2021-08-17 光大环保技术研究院(深圳)有限公司 一种用于等离子危废灰渣熔融系统的矿物棉生产装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541884A (en) 1982-07-28 1985-09-17 Imperial Chemical Industries, Plc Method of producing fibre-reinforced composition
EP0398787A1 (fr) 1989-05-16 1990-11-22 AEROSPATIALE Société Nationale Industrielle Dispositif frangé de protection thermique de structure et procédé adapté à sa fabrication
EP0406067A1 (fr) 1989-06-22 1991-01-02 ETAT-FRANCAIS représenté par le DELEGUE GENERAL POUR L'ARMEMENT (DPAG) Matériau composite à caractéristiques modulables par préimprégnation d'une fibre continue
US6607626B2 (en) 2000-07-28 2003-08-19 Hypercar Inc. Process and equipment for manufacture of advanced composite structures
US6939424B1 (en) 1999-11-03 2005-09-06 Oy Kwh Pipe Ab Method of making a spirally-wound tube
WO2008061170A1 (fr) 2006-11-16 2008-05-22 Honeywell International Inc. Procédé de formation de structures à fibres orientées de manière unidirectionnelle
FR2918081A1 (fr) 2007-06-27 2009-01-02 Arkema France Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707125C2 (de) * 1996-12-09 2000-02-03 Epo Faser Technik Gmbh Verfahren zur Herstellung eines unidirektionalen Geleges aus parallel einlaufenden Hochleistungsfasern
EP1641967B1 (fr) * 2003-07-08 2010-05-05 Fukui Prefectural Government Procede de production d'un faisceau de multifilaments disperse et dispositif correspondant pour l'utiliser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541884A (en) 1982-07-28 1985-09-17 Imperial Chemical Industries, Plc Method of producing fibre-reinforced composition
EP0398787A1 (fr) 1989-05-16 1990-11-22 AEROSPATIALE Société Nationale Industrielle Dispositif frangé de protection thermique de structure et procédé adapté à sa fabrication
EP0406067A1 (fr) 1989-06-22 1991-01-02 ETAT-FRANCAIS représenté par le DELEGUE GENERAL POUR L'ARMEMENT (DPAG) Matériau composite à caractéristiques modulables par préimprégnation d'une fibre continue
US6939424B1 (en) 1999-11-03 2005-09-06 Oy Kwh Pipe Ab Method of making a spirally-wound tube
US6607626B2 (en) 2000-07-28 2003-08-19 Hypercar Inc. Process and equipment for manufacture of advanced composite structures
US7235149B2 (en) 2000-07-28 2007-06-26 Hypercar, Inc. Process and equipment for manufacture of advanced composite structures
WO2008061170A1 (fr) 2006-11-16 2008-05-22 Honeywell International Inc. Procédé de formation de structures à fibres orientées de manière unidirectionnelle
FR2918081A1 (fr) 2007-06-27 2009-01-02 Arkema France Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190224A1 (fr) 2012-06-22 2013-12-27 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
WO2014020265A1 (fr) * 2012-07-31 2014-02-06 Saint-Gobain Isover Procede de cuisson d'un matelas continu de fibres minerales ou vegetales
FR2994201A1 (fr) * 2012-07-31 2014-02-07 Saint Gobain Isover Procede de cuisson d'un matelas continu de fibres minerales ou vegetales
US10279511B2 (en) 2012-07-31 2019-05-07 Saint-Gobain Isover Method for baking a continuous mat of mineral or plant fibers
WO2014026736A1 (fr) * 2012-08-17 2014-02-20 Saint-Gobain Isover Procédé de durcissement par micro-ondes de laine minérale comprenant un liant
US9708218B2 (en) 2012-08-17 2017-07-18 Saint-Gobain Isover Method for microwave curing of mineral wool including binder material
WO2019162324A1 (fr) * 2018-02-21 2019-08-29 Php Fibers Gmbh Procédé de fabrication de matériaux composites
CN112166016A (zh) * 2018-04-04 2021-01-01 斯道拉恩索公司 制造用于热成型的干法成网的垫的方法
CN112166016B (zh) * 2018-04-04 2022-10-04 斯道拉恩索公司 制造用于热成型的干法成网的垫的方法
CN113715377A (zh) * 2021-08-26 2021-11-30 上海永利输送系统有限公司 一种永久抗静电轻型毛毡输送带制作方法
CN115194982A (zh) * 2022-07-29 2022-10-18 润华(江苏)新材料有限公司 纤维增强复合材料及其制备方法
CN115194982B (zh) * 2022-07-29 2024-03-08 润华(江苏)新材料有限公司 纤维增强复合材料及其制备方法

Also Published As

Publication number Publication date
FR2949792A1 (fr) 2011-03-11
FR2949793A1 (fr) 2011-03-11
FR2949791B1 (fr) 2011-11-18
FR2949791A1 (fr) 2011-03-11
WO2011030052A3 (fr) 2011-10-27

Similar Documents

Publication Publication Date Title
WO2011030052A2 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique ou thermodurcissable et appareil de mise en oeuvre
CA2760080C (fr) Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux
JP6450773B2 (ja) 流動床内での熱可塑性ポリマー予備含浸繊維材料の生産方法
EP2864399B1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
EP3617254B1 (fr) Materiau fibreux impregne de polymere thermoplastique
CA2775053C (fr) Composites thermoplastiques et procedes pour leur realisation et leur utilisation
JP2020524727A5 (fr)
KR102585419B1 (ko) 분말 형태의 열가소성 폴리머로 예비 함침된 섬유성 재료를 제조하기 위한 방법
EP3823818B1 (fr) Procédé de soudage de pièces à base de matériau thermoplastique
WO2018115738A1 (fr) Procédé de fabrication d'un matériau fibreux pré-imprégné de polymère thermoplastique sous forme de poudre sèche
FR3083733A1 (fr) Procédé de soudage par induction de pièces à base de matériau thermoplastique
US4975321A (en) Structural composites of fluoropolymers reinforced with continuous filament fibers
FR3039554A1 (fr) Procede pour materiau fibreux pre-impregne par un polymere thermoplastique a l'aide d'un polymere a cristaux liquides
EP3887115B1 (fr) Procede d'impregnation d'un materiau fibreux en lit fluidise interpenetre
FR3083732A1 (fr) Procédé de soudage de pièces à base de matériau thermoplastique
FR3078010A1 (fr) Materiau composite et procede de realisation de ce materiau
FR3108057A1 (fr) Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
EP3768482A2 (fr) Nappe de materiau fibreux impregne, son procede de fabrication et son utilisation pour la fabrication de pieces composites en trois dimensions
AU2010298260B2 (en) Thermoplastic composites and methods of making and using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10763825

Country of ref document: EP

Kind code of ref document: A2