WO2011029221A1 - 活塞式大扭矩输出发动机 - Google Patents

活塞式大扭矩输出发动机 Download PDF

Info

Publication number
WO2011029221A1
WO2011029221A1 PCT/CN2009/001343 CN2009001343W WO2011029221A1 WO 2011029221 A1 WO2011029221 A1 WO 2011029221A1 CN 2009001343 W CN2009001343 W CN 2009001343W WO 2011029221 A1 WO2011029221 A1 WO 2011029221A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
crank
rod
torque output
hinged
Prior art date
Application number
PCT/CN2009/001343
Other languages
English (en)
French (fr)
Inventor
宋建农
李永磊
王继承
Original Assignee
中国农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业大学 filed Critical 中国农业大学
Publication of WO2011029221A1 publication Critical patent/WO2011029221A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • This invention relates to a piston engine, and more particularly to a piston type high torque output engine that converts a reciprocating motion of a piston into a rotational motion of a power output shaft.
  • the movement mechanism of the conventional reciprocating piston engine is mostly a crank linkage mechanism, which is composed of a piston 1', a connecting rod 2' and a crank 3' (as shown in FIG. 1), and functions as a piston.
  • the reciprocating motion of 1' is converted into a rotational motion of the crankshaft 4' by a crank-and-rod mechanism.
  • the working principle is that when the engine is working, the fuel is burned in the cylinder 5' to generate heat energy, and the gas is heated and expanded to push the piston 1' to move, and is transmitted to the crankshaft 4' through the connecting rod 2' and rotates to do work. In the course of work, after a continuous transition from thermal energy to mechanical energy, each transition undergoes a working cycle.
  • the piston 1' moves from top to bottom or bottom to top once called a stroke, generally reciprocating piston. It takes four strokes for the engine to complete one working cycle, namely the suction stroke, the compression stroke, the work (burst) stroke and the exhaust stroke. In one working cycle, the piston 1' reciprocates 4 times up and down, and the crank shaft 4' rotates twice. In a working cycle, only the power stroke is the active stroke of the crank linkage by the piston 1', and the power of the remaining three strokes. For the single cylinder engine, the crank linkage is driven by the inertial force of the energy storage flywheel 6'. For a multi-cylinder engine, the piston 1' that performs the power stroke travels the other cylinder 5' that does not perform the power stroke.
  • an object of the present invention is to provide a piston type high torque output engine that converts a reciprocating motion of a piston into a rotational motion of a power output shaft.
  • a piston type high torque output engine including a cylinder, a piston, a crankshaft, an energy storage flywheel, a crankshaft, a connecting rod, a fuel supply system, an intake system, and an exhaust system.
  • crank linkage mechanism a torque output mechanism composed of a piston, a push rod, a swing rod, an overrunning clutch and a power output shaft, one end of the push rod is hinged on the piston
  • the other end of the push rod is hinged with one end of the swing rod, the other end of the swing rod is fixed on the overrunning clutch, the overrunning clutch is set on the power output shaft, and the overrunning clutch and
  • the power output shaft has the same pivot axis; the other end of the link is hinged to any point on the push rod or the swing rod, so that Said output torque of said crank drive mechanism together form a complex kinematic mechanism of the engine.
  • the other end of the connecting rod is hinged to a hinge point of the push rod and the piston.
  • the other end of the connecting rod is hinged to the hinge point of the push rod and the swing rod.
  • a hinge point of the push rod and the piston is disposed on an axis of the piston, a hinge point of the push rod and the swing rod is disposed near an axis of the piston, and an intermediate position of the swing rod swings with the piston
  • the axis is vertically disposed, and the length of the swing bar is greater than the radius of the crank.
  • the length of the connecting rod is greater than 2 times the radius of the crank, and the sum of the length of the connecting rod, the length of the crank and the length of the swinging rod is greater than the axial center of the crankshaft to the rotational axis of the power output shaft distance.
  • the invention adopts the above technical solution, and has the following advantages compared with the prior art: 1.
  • the invention is attached with a piston, a push rod and a pendulum on the basis of a conventional crank-link mechanism composed of a crank and a connecting rod.
  • a torque output mechanism composed of a rod, an overrunning clutch and a power output shaft, the torque output mechanism and the crank linkage mechanism constitute a composite motion mechanism of the engine, which converts the reciprocating motion of the piston into a rotational motion of the power output shaft, and solves the crank connection
  • the technical problem of the dead point of the rod motion mechanism realizes the efficient and high torque output of the piston engine, improves the efficiency of the piston engine, and reduces the fuel consumption of the engine. 2.
  • the hinge point of the push rod and the piston of the present invention is disposed on the axis of the piston, and the hinge point of the push rod and the swing rod is disposed near the axis of the piston, and the intermediate position of the swing rod swing is perpendicular to the axis of the piston, and the swing rod is disposed.
  • the length is larger than the radius of the crank, so that the thrust of the piston can be fully utilized and the torque output of the power output shaft can be increased.
  • Figure 1 is a schematic view of the structure of a conventional piston engine
  • Embodiment 1 of the present invention is a schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention is another schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 2 of the present invention is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 5 is a schematic view showing the structure of Embodiment 3 of the present invention.
  • the engine of the embodiment includes a cylinder 1, a piston 2, a push rod 3, a swing rod 4, an overrunning clutch 5, a power output shaft 6, a crank shaft 7, an energy storage flywheel 8, a crank 9,
  • the connecting rod 10 the fuel supply system 11, the intake system 12, and the exhaust system 13.
  • the fuel supply system 11, the intake system 12 and the exhaust system 13 are disposed at the top of the cylinder 1, and the piston 2 is disposed within the cylinder 1.
  • the push rod 3 is hinged on the piston 2, the other end of the push rod 3 is hinged to one end of the swing rod 4, the other end of the swing rod 4 is fixed on the overrunning clutch 5, and the overrunning clutch 5 is fitted on the power output shaft 6 and beyond
  • the clutch 5 and the power output shaft 6 have the same rotation axis 0, such that the piston 2, the push rod 3, the swing rod 4,
  • the overrunning clutch 5 and the power take-off shaft 6 constitute a torque output mechanism of the engine.
  • the crank 9 and the energy storage flywheel 8 are fixedly coupled to the crank shaft 7, and one end of the link 10 is hinged to the crank 9 to constitute a crank link mechanism of the engine.
  • the other end of the connecting rod 10 can be hinged to any point on the push rod 3 (as shown in Fig. 2), or can be hinged to any point on the swing rod 4 (as shown in Fig. 3), so that the torque output mechanism and the crank
  • the linkage mechanism together constitutes a composite motion mechanism of the engine.
  • this embodiment differs from the first embodiment in that the other end of the link 10 is hinged to the hinge point A of the push rod 3 and the piston 2.
  • the present example is different from the first embodiment in that the other end of the link 10 is hinged to the hinge point B of the push rod 3 and the swing link 4.
  • the hinge point A of the push rod 3 and the piston 2 is disposed on the axis of the piston 2, and the hinge point B of the push rod 3 and the swing link 4 is disposed near the axis of the piston 2, and the swing rod 4 is swung in the middle position.
  • the length of the swing rod 4 is larger than the radius of the crank 9, so that the thrust of the piston 2 can be fully exerted and the torque output of the power output shaft 6 can be increased.
  • the length of the link 10 is greater than 2 times the radius of the crank 9, and the sum of the length of the link 10, the length of the crank 9 and the length of the swing link 4 is greater than the axis of the crankshaft 7 (X to power output)
  • the distance of the axis of rotation of the shaft 6 is to meet the motion requirements of the individual components.
  • the working principle of the invention is: in the working stroke of the engine, using the explosive force of the fuel combustion, pushing the piston 2 to move downward from the top dead center, the thrust of the piston 2 is divided into two parts, most of which are pushed by the push rod 3
  • the force of the piston 2 is transmitted to one end of the swing lever 4, and the swing lever 4 is swung around the power output shaft 6, and torque and motion are transmitted to the power output shaft 6 through the overrunning clutch 5, and the power is outputted from the power output shaft 6.
  • the torque obtained by the power output shaft 6 is equal to the product of the force of the push rod 3 and the force arm of the force with respect to the rotary shaft center 0, and the movement of the torque output mechanism during the movement of the piston 2 from the top dead center to the bottom dead center
  • the force arm variation is much smaller than the range of the crank arm force arm, so the power output shaft 6 can obtain a larger and relatively uniform torque output.
  • a further small portion of the thrust of the piston 2 is transmitted by the push rod 3, and the crankshaft 9 is rotated by the connecting rod 10 to rotate the energy storage flywheel 8 fixed to the crank shaft 7.
  • the inertial force of the energy storage flywheel 8 is utilized, and the piston rod mechanism is driven by the crank link mechanism to push the piston 2 to perform exhausting, inhaling, and compressing strokes to complete a working cycle.
  • the up and down movement of the piston 2 drives the swing rod 4 to swing simultaneously via the push rod 3.
  • four cylinders are used, and the power stroke is realized in a staggered configuration, so that the continuous uninterrupted rotation of the power output shaft 6 can be realized, and the power output can be realized at the same time.
  • the parameters of the preferred components of the present invention are: When the radius of the crank 9 is 40 mm, the stroke of the piston 2 is 80 mm, the length of the connecting rod 10 is 120 mm, the length of the push rod 3 is 120 mm, and the radius of the swing rod 4 is 120 mm. ⁇ 3, The maximum swing angle of the power output shaft 6 is about 7.6 times higher than the average average torque output from the crankshaft output. The force arm change rate is approximately 5%.
  • the engine adopting the technical scheme of the present invention can solve the dead point problem of the crank connecting rod engine, fully utilize the efficiency of the maximum force of the piston 2 during the fuel combustion explosion, realize the high-efficiency and large torque output of the engine, and greatly improve the engine.
  • the fuel efficiency and engine efficiency are very important to reduce engine fuel consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)

Description

活塞式大扭矩输出发动机 技术领域
本发明涉及一种活塞式发动机, 特别是关于一种将活塞的往复运动转化 成动力输出轴的旋转运动的活塞式大扭矩输出发动机。
背景技术
目前, 传统往复活塞式发动机的运动机构大部分为曲柄连杆机构, 该曲 柄连杆机构由活塞 1' 、 连杆 2' 和曲柄 3' 组成 (如图 1所示) , 其作用是将 活塞 1' 的往复运动, 通过曲柄连杆机构转化成曲柄轴 4' 的旋转运动。 其工 作原理是, 发动机工作时燃料在气缸 5' 内燃烧产生热能, 气体受热膨胀推动 活塞 1' 移动,经过连杆 2' 传递到曲柄轴 4' 并使其旋转做功。在工作过程中, 经过从热能到机械能要实现无数次的连续转变, 每次转变都经历一个工作循 环, 活塞 1' 从上到下或从下到上运动一次称为一个行程, 一般往复活塞式发 动机完成一个工作循环需要 4个行程, 即吸气行程、 压缩行程、 做功(爆发) 行程和排气行程。一个工作循环,活塞 1' 上下往复 4次, 曲柄轴 4' 旋转两圈。 在一个工作循环中, 只有做功行程是由活塞 1' 推动曲柄连杆机构的主动行 程, 其余三个行程的动力, 对于单缸发动机, 是由储能飞轮 6' 的惯性力带动 曲柄连杆机构运动的, 对于多缸发动机, 则是由进行做功行程的活塞 1' 带动 其它非做功行程的气缸 5' 工作的。
在做功行程, 当活塞 1' 在上止点位置时, 燃料被喷入被活塞 1' 压缩的 空气中, 燃料燃烧爆炸, 气体膨胀推动活塞 1' 向下运动做功, 此时活塞 1' 受力最大。 由曲柄连杆机构的特性决定了, 此时曲柄 3' 与连杆 2' 成直线, 活塞 1' 作用力相对于曲柄轴 4' 中心的力矩半径很小,对曲柄轴 4' 产生的扭 矩等于力与力矩半径的积, 因此由曲柄轴 4' 向外输出的扭矩较小。 而且, 随 活塞 1' 的向下运动, 曲柄 3' 也同时转动, 作用于曲柄轴 4' 中心的力矩半径 随之增大, 但由于气缸 5' 的体积同时扩大, 气体对活塞 1' 的压力迅速减小, 因此, 曲柄轴 4' 的扭矩输出也没有达到最好状态, 未能充分发挥燃料燃烧爆 炸所产生的最佳效能。在活塞 1' 的运动过程中, 作用力和力矩半径的变化也 比较大, 造成了曲柄轴 4' 扭矩输出的不稳定性, 不能充分发挥活塞 1' 在上 止点时, 燃料燃烧产生的对活塞 1' 最大推力的作用, 直接影响发动机效率水 平发挥, 造成能源的巨大浪费。
针对上述问题, 国内外大量专家学者一直致力于解决这方面的问题, 已 有许多如旋转活塞式发动机等新型发动机原理方面的专利出现(如下列技术 文件所述), 但由于其结构复杂, 控制系统难以实现等技术问题, 而未能在生 产上大量应用。 而且, 现在应用的柴油机、 汽油机等内燃机其运动机构仍然 是曲柄连杆结构。
技术文献 1 : 新型旋转活塞式发动机, 专利申请号 200810030021。
技术文献 2 : 旋转活塞式发动机, 专利申请号 200510103234。
技术文献 3 : 偏转式往复运动发动机, 专利申请号 200710163913。
技术文献 4: 机体旋转式内燃发动机, 专利申请号 200710133585。
技术文献 5 : 滑片转子发动机, 专利申请号 200710148485。
技术文献 6: 多连杆式发动机, 专利申请号 200810173230。
发明内容
针对以上问题, 本发明的目的是提供一种将活塞的往复运动转化成动力 输出轴的旋转运动的活塞式大扭矩输出发动机。
为了实现上述目的, 本实用新型采取以下技术方案: 一种活塞式大扭矩 输出发动机, 它包括气缸、 活塞、 曲柄轴、 储能飞轮、 曲轴、 连杆、 燃油供 给系统、 进气系统和排气系统, 所述燃油供给系统, 进气系统和排气系统设 置在所述气缸的顶部, 所述活塞设置在所述气缸内, 所述曲柄轴与所述储能 飞轮固定连接, 所述连杆的一端与曲柄铰接组成曲柄连杆机构, 其特征在于: 还包括由活塞、 推杆、 摆杆、 超越离合器和动力输出轴组成的扭矩输出机构, 所述推杆的一端铰接在所述活塞上,所述推杆另一端与所述摆杆的一端铰接, 所述摆杆的另一端固定在所述超越离合器上, 所述超越离合器套装在所述动 力输出轴上, 且所述超越离合器和动力输出轴具有同一回转轴心; 所述连杆 的另一端铰接于所述推杆或所述摆杆上的任意一点, 使所述扭矩输出机构与 所述曲柄连杆机构一起构成发动机的复合式运动机构。
所述连杆的另一端铰接于所述推杆与活塞的铰接点上。
所述连杆的另一端铰接于所述推杆与摆杆的铰接点上。
所述推杆与活塞的铰接点配置在所述活塞的轴线上, 所述推杆与摆杆的 铰接点配置在所述活塞的轴线附近, 所述摆杆摆动的中间位置与所述活塞的 轴线垂直配置, 所述摆杆的长度大于所述曲柄的半径。
所述连杆的长度大于 2倍的曲柄的半径, 所述连杆的长度、 曲柄的长度 和摆杆的长度之和大于所述曲柄轴的轴心到所述动力输出轴的回转轴心的距 离。
本发明由于采取以上技术方案,与已有技术相比较,其具有以下优点: 1、 本发明在由曲柄和连杆组成的传统曲柄连杆机构的基础上, 附加了由活塞、 推杆、 摆杆、 超越离合器和动力输出轴组成的扭矩输出机构, 该扭矩输出机 构与曲柄连杆机构一起构成发动机的复合式运动机构, 将活塞的往复运动转 化成动力输出轴的旋转运动, 解决了曲柄连杆运动机构存在的死点的技术难 题, 实现了活塞式发动机高效大扭矩输出, 提高了活塞式发动机的效率, 减 少了发动机的燃油消耗。 2、本发明的推杆与活塞的铰接点配置在活塞的轴线 上, 推杆与摆杆的铰接点配置在活塞的轴线附近, 摆杆摆动的中间位置与活 塞的轴线垂直配置, 摆杆的长度大于曲柄的半径, 这样可以充分发挥活塞的 推力作用, 增大动力输出轴的扭矩输出。
附图说明
图 1是传统活塞式发动机的结构示意图
图 2是本发明实施例 1的结构示意图
图 3是本发明实施例 1的另一结构示意图
图 4是本发明实施例 2的结构示意图
图 5是本发明实施例 3的结构示意图
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
实施例 1 :
如图 2、 图 3所示, 本实施例的发动机包括气缸 1、 活塞 2、 推杆 3、 摆 杆 4、 超越离合器 5、 动力输出轴 6、 曲柄轴 7、 储能飞轮 8、 曲柄 9、 连杆 10、 燃油供给系统 11、 进气系统 12和排气系统 13。 燃油供给系统 11, 进气 系统 12和排气系统 13设置在气缸 1的顶部, 活塞 2配置在气缸 1内。 推杆 3的一端铰接在活塞 2上, 推杆 3另一端与摆杆 4的一端铰接, 摆杆 4的另 一端固定在超越离合器 5上, 超越离合器 5套装在动力输出轴 6上, 且超越 离合器 5和动力输出轴 6具有同一回转轴心 0, 这样活塞 2、 推杆 3、 摆杆 4、 超越离合器 5和动力输出轴 6组成了发动机的扭矩输出机构。 曲柄 9和储能 飞轮 8固定连接在曲柄轴 7上,连杆 10的一端与曲柄 9铰接组成发动机的曲 柄连杆机构。连杆 10的另一端可以铰接于推杆 3上的任意一点(如图 2所示), 也可以铰接于摆杆 4上的任意一点 (如图 3所示) , 从而使扭矩输出机构与 曲柄连杆机构一起构成了发动机的复合式运动机构。
实施例 2 :
如图 4所示, 本实施例与实施例 1不同之处在于, 连杆 10的另一端铰接 于推杆 3与活塞 2的铰接点 A上。
实施例 3 :
如图 5所示, 本实例与实施例 1不同之处在于, 连杆 10的另一端铰接于 推杆 3与摆杆 4的铰接点 B上。
上述各实施例中, 推杆 3与活塞 2的铰接点 A配置在活塞 2的轴线上, 推杆 3与摆杆 4的铰接点 B配置在活塞 2的轴线附近, 摆杆 4摆动的中间位 置与活塞 2的轴线垂直配置, 摆杆 4的长度大于曲柄 9的半径, 这样可以充 分发挥活塞 2的推力作用, 增大动力输出轴 6的扭矩输出。
上述各实施例中, 连杆 10的长度大于 2倍的曲柄 9的半径, 连杆 10的 长度、 曲柄 9的长度和摆杆 4的长度之和大于曲柄轴 7的轴心 (X到动力输出 轴 6的回转轴心 0的距离, 以满足各个构件的运动要求。
本发明的工作原理是: 在发动机的做功行程, 利用燃料燃烧时的爆炸力, 推动活塞 2从上止点向下运动, 活塞 2的推力分为两部分, 其中大部分推力 通过推杆 3将活塞 2的力传递到摆杆 4的一端, 带动摆杆 4绕动力输出轴 6 摆动, 并通过超越离合器 5将扭矩和运动传递到动力输出轴 6, 由动力输出 轴 6将动力输出。 动力输出轴 6获得的扭矩等于推杆 3的力与该力相对于回 转轴心 0的力臂的积, 并且活塞 2从上止点到下止点的运动过程中, 扭矩输 出机构作用力的力臂变化远远小于曲柄连杆机构力臂的变化范围, 因此动力 输出轴 6可以获得较大且比较均匀的扭矩输出。 活塞 2的另外一小部分推力 由推杆 3传递, 经连杆 10带动曲柄 9转动, 使与曲柄轴 7固定的储能飞轮 8 旋转。
在发动机的非做功行程, 利用储能飞轮 8的惯性力, 由曲柄连杆机构经推 杆 3带动活塞 2运动, 进行排气、 吸气、 压缩行程, 完成一个工作循环。 此时, 活塞 2的上下运动经推杆 3带动摆杆 4同时进行摆动,由于超越离合器 5的作用, 当摆杆 4向上运动时, 动力输出轴 6不随其运动, 因此动力输出轴 6的运动输出 只有一个方向。 对于大多数的四冲程发动机, 采用 4个气缸, 交错配置做功行 程, 即可实现动力输出轴 6的连续不间断转动, 同时实现动力输出。
本发明优选的各部件的参数为: 当曲柄 9的半径为 40mm时, 活塞 2的行程 为 80mm,连杆 10的长度为 120mm,推杆 3的长度为 120mm,摆杆 4的半径为 120mm。 活塞一个行程时, 摆杆 4的最大摆角约 40度, 此时动力输出轴 6输出的平均扭 矩值比传统的由曲柄轴输出的平均扭矩输值增大约 7. 6倍, 推杆 3的作用力力 臂变化率约为 5 %。
由此可见, 采用本发明技术方案的发动机, 可解决曲柄连杆发动机存在 的死点问题, 充分发挥燃料燃烧爆炸时的活塞 2最大作用力的效率, 实现发动 机的高效大扭矩输出, 大大提高发动机的燃油利用率和发动机的工作效率, 对减少发动机的燃油消耗, 具有非常重要作用。
本发明仅以上述实施例进行说明, 各部件的结构、 设置位置、 及其连接 都是可以有所变化的, 在本发明技术方案的基础上, 凡根据本发明原理对个 别部件进行的改进和等同变换, 均不应排除在本发明的保护范围之外。

Claims

权 利 要 求
1、 一种活塞式大扭矩输出发动机, 它包括气缸、 活塞、 曲柄轴、 储能飞轮、 曲轴、 连杆、 燃油供给系统、 进气系统和排气系统, 所述燃油供给系统, 进气系 统和排气系统设置在所述气缸的顶部, 所述活塞设置在所述气缸内, 所述曲柄轴 与所述储能飞轮固定连接, 所述连杆的一端与曲柄铰接组成曲柄连杆机构, 其特 征在于: 还包括由活塞、 推杆、 摆杆、 超越离合器和动力输出轴组成的扭矩输出 机构, 所述推杆的一端铰接在所述活塞上, 所述推杆另一端与所述摆杆的一端铰 接, 所述摆杆的另一端固定在所述超越离合器上, 所述超越离合器套装在所述动 力输出轴上, 且所述超越离合器和动力输出轴具有同一回转轴心; 所述连杆的另 一端铰接于所述推杆或所述摆杆上的任意一点, 使所述扭矩输出机构与所述曲柄 连杆机构一起构成发动机的复合式运动机构。
2、 如权利要求 1所述的一种活塞式大扭矩输出发动机, 其特征在于: 所述连 杆的另一端铰接于所述推杆与活塞的铰接点上。
3、 如权利要求 1所述的一种活塞式大扭矩输出发动机, 其特征在于: 所述连 杆的另一端铰接于所述推杆与摆杆的铰接点上。
4、如权利要求 1或 2或 3所述的一种活塞式大扭矩输出发动机,其特征在于: 所述推杆与活塞的铰接点配置在所述活塞的轴线上, 所述推杆与摆杆的铰接点配 置在所述活塞的轴线附近, 所述摆杆摆动的中间位置与所述活塞的轴线垂直配置, 所述摆杆的长度大于所述曲柄的半径。
5、如权利要求 1或 2或 3所述的一种活塞式大扭矩输出发动机,其特征在于: 所述连杆的长度大于 2倍的曲柄的半径, 所述连杆的长度、 曲柄的长度和摆杆的 长度之和大于所述曲柄轴的轴心到所述动力输出轴的回转轴心的距离。
6、 如权利要求 4所述的一种活塞式大扭矩输出发动机, 其特征在于: 所述连 杆的长度大于 2倍的曲柄的半径, 所述连杆的长度、 曲柄的长度和摆杆的长度之 和大于所述曲柄轴的轴心到所述动力输出轴的回转轴心的距离。
1
PCT/CN2009/001343 2009-09-14 2009-11-23 活塞式大扭矩输出发动机 WO2011029221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910092401.3 2009-09-14
CN 200910092401 CN102022189B (zh) 2009-09-14 2009-09-14 活塞式高效大扭矩输出发动机

Publications (1)

Publication Number Publication Date
WO2011029221A1 true WO2011029221A1 (zh) 2011-03-17

Family

ID=43731911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001343 WO2011029221A1 (zh) 2009-09-14 2009-11-23 活塞式大扭矩输出发动机

Country Status (2)

Country Link
CN (1) CN102022189B (zh)
WO (1) WO2011029221A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832279B (zh) * 2015-01-08 2018-01-02 武汉富国发动机科技有限公司 新型的节能内燃机
CN110307309A (zh) * 2019-07-18 2019-10-08 天津宏能科技有限公司 相变能动力传动装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957069A (en) * 1987-05-08 1990-09-18 Gerhard Mederer Driving or working engine, in particular an internal combustion engine
US5163386A (en) * 1992-03-23 1992-11-17 Ford Motor Company Variable stroke/clearance volume engine
DE4317226A1 (de) * 1993-05-24 1994-12-01 Schweizer Viktor Dipl Ing Fh Der pleuelgeführte Motor
CN2343357Y (zh) * 1998-01-01 1999-10-13 阎官清 摆杆内燃机
CN1295181A (zh) * 2000-12-29 2001-05-16 天津大学 往复活塞式滞胀循环内燃机
CN1421597A (zh) * 2002-09-09 2003-06-04 苟贤忠 多元连杆内燃机
CN1502796A (zh) * 2002-11-22 2004-06-09 王长征 活塞式分圆内燃机
JP2005030234A (ja) * 2003-07-08 2005-02-03 Honda Motor Co Ltd 可変圧縮比エンジン
CN101016860A (zh) * 2007-02-13 2007-08-15 天津大学 一种压比可调发动机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957069A (en) * 1987-05-08 1990-09-18 Gerhard Mederer Driving or working engine, in particular an internal combustion engine
US5163386A (en) * 1992-03-23 1992-11-17 Ford Motor Company Variable stroke/clearance volume engine
DE4317226A1 (de) * 1993-05-24 1994-12-01 Schweizer Viktor Dipl Ing Fh Der pleuelgeführte Motor
CN2343357Y (zh) * 1998-01-01 1999-10-13 阎官清 摆杆内燃机
CN1295181A (zh) * 2000-12-29 2001-05-16 天津大学 往复活塞式滞胀循环内燃机
CN1421597A (zh) * 2002-09-09 2003-06-04 苟贤忠 多元连杆内燃机
CN1502796A (zh) * 2002-11-22 2004-06-09 王长征 活塞式分圆内燃机
JP2005030234A (ja) * 2003-07-08 2005-02-03 Honda Motor Co Ltd 可変圧縮比エンジン
CN101016860A (zh) * 2007-02-13 2007-08-15 天津大学 一种压比可调发动机

Also Published As

Publication number Publication date
CN102022189B (zh) 2013-01-02
CN102022189A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
CN101709671B (zh) 对称摆杆式大扭矩输出发动机
RU2125170C1 (ru) Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей
WO2011044748A1 (zh) 一缸双连杆双曲轴内置型内燃机
CN110778394A (zh) 一种节能四冲程内燃机
JP5904686B2 (ja) 内燃機関のための可変行程機構
WO2002059502A1 (fr) Nouveau type d'engrenage a mouvement de rotation et a mouvement rectiligne alternatif
WO2011029221A1 (zh) 活塞式大扭矩输出发动机
CN101705862B (zh) 弧形缸内燃机
WO2019178719A1 (zh) 活塞式内燃机
CN101608569A (zh) 缸外压缩可变冲程发动机
CN201588694U (zh) 连续可变容积压缩比发动机
JP5689948B2 (ja) 高速エンジン
CN112065574B (zh) 一种提高热机效率减少尾气污染的中燃热气轮机
CN201531309U (zh) 一种内燃发动机
WO2015030612A1 (en) An internal combustion engine
CN203925742U (zh) 一种斜盘式发动机
CN209228457U (zh) 一种四冲程四缸对置单向旋转发动机
CN201546812U (zh) 弧形缸内燃机
CN206175017U (zh) 一种可变膨胀比活塞往复式内燃发动机
CN201318212Y (zh) 弧形缸负荷响应发动机
CN111412059B (zh) 一种内燃机能量回收利用结构
RU2270925C1 (ru) Двигатель внутреннего сгорания
CN204691904U (zh) 一种发动机
CN202441489U (zh) 杠杆摇臂型柴油内燃机
WO2021063202A1 (zh) 一种双活塞杠杆高效发动机及其做功控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849097

Country of ref document: EP

Kind code of ref document: A1