RU2125170C1 - Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей - Google Patents

Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей Download PDF

Info

Publication number
RU2125170C1
RU2125170C1 RU95115545A RU95115545A RU2125170C1 RU 2125170 C1 RU2125170 C1 RU 2125170C1 RU 95115545 A RU95115545 A RU 95115545A RU 95115545 A RU95115545 A RU 95115545A RU 2125170 C1 RU2125170 C1 RU 2125170C1
Authority
RU
Russia
Prior art keywords
eccentric
wheel
piston
engine
profile
Prior art date
Application number
RU95115545A
Other languages
English (en)
Other versions
RU95115545A (ru
Inventor
Бьяни Ливио
Original Assignee
Помециа С.р.л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Помециа С.р.л. filed Critical Помециа С.р.л.
Publication of RU95115545A publication Critical patent/RU95115545A/ru
Application granted granted Critical
Publication of RU2125170C1 publication Critical patent/RU2125170C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • F01B2009/061Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces by cams
    • F01B2009/063Mono-lobe cams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Body Structure For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Система предназначена для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодна, в частности, для возвратно-поступательных эндотермических двигателей. Система содержит колесо или вращающийся соединительный стержень, свободно закрепленный на поршневом пальце поршня двигателя, и эксцентрик, установленный на выходном валу, имеющий профилированный периметр, состоящий по крайней мере из двух сегментов или плечей эксцентрика для оптимизации тактов рабочего цикла двигателя. Причем колесо вращается вдоль профиля эксцентрика со связью, характеризующейся отсутствием трения или малым трением. Изобретение позволяет осуществить рабочий цикл с постоянным объемом сгорания, значительное приращение величины вращающего момента, снижение габаритов, снижение загрязнения окружающей среды. 9 з.п. ф-лы, 1 табл., 9 ил.

Description

Изобретение относится к кривошипной механической системе для преобразования возвратно-поступательного движения во вращательное движение, в частности для возвратно-поступательных эндотермических двигателей.
Более узко, изобретение относится к системе, упомянутой выше, которая позволяет улучшить эффективность термодинамического цикла и эксплуатацию сил, получаемых от этого термодинамического цикла. Хорошо известно, что в эндотермическом возвратно-поступательном двигателе возвратно-поступательное движение поршня преобразуется во вращательное движение, обычно путем присоединения системы кривошипного стержня, каковой фиксированно соединен с выходным валом.
На прилагаемой фиг. 1 показаны детали двигателя в существующем исполнении и использована следующая терминология:
l - длина соединительного стержня;
r - радиус кривошипа, так что ход поршня C будет равен 2r;
β - угол между осью соединительного стержня и осью цилиндра;
α - угловое перемещение кривошипа по отношению к Верхней Мертвой Точке (ВМТ).
Более того, известно, что направление движения поршня меняется на противоположное дважды за полный оборот кривошипа в соответствии с Верхним Мертвым Центром (ВМЦ) и Нижним Мертвым Центром (НМЦ).
Далее, на фиг. 2 можно видеть, что момент, воздействующий на выходной вал, является функцией как силы, действующей вдоль оси соединительного стержня, так и радиуса кривошипа.
Сила Fb получается векторным сложением силы Fn, полученной от термодинамического цикла, и силы F реакции стенки цилиндра на упор поршня, каковая сила обусловлена наклоном β оси соединительного стержня. Упомянутый упор определяет потери на трение.
Вращающий момент равен
Figure 00000002

Пренебрегая членом λ2sin2αo, получим
Mm= F·r·[sinα + λ/2 ·sinα],
т.е. Mm = F•f, где f = r·[sinα + λ/2 ·sinα],
В приведенной выше формуле Mm есть вращающий момент, F есть сила, действующая на головку поршня и происходящая от термодинамического цикла, r - радиус кривошипа, α - угол кривошипа по отношению к оси цилиндра и λ есть отношение r/l.
Сила F, действующая на головку поршня, получается посредством термодинамического цикла, который приблизительно представлен для четырехтактного эндотермического двигателя по циклу Отто (с зажиганием воздушно-топливной смеси от контролируемой искры) на чертеже в ортогональных осях, где по оси абсцисс отложено перемещение поршня, а по оси ординат - давление в цилиндре над головкой поршня.
На фиг. 2 можно заметить, что реальный цикл, показанный сплошной линией, по ряду причин покрывает нижнюю область относительно теоретического цикла (показан штриховкой). Из этих причин одной из наиболее важных является то, что сжигание, контролируемое искрой, не происходит мгновенно в точке ВМТ, а в течение некоторого периода времени, так что поршень в процессе своего возвратно-поступательного движения совершает часть такта по направлению к ВМТ и часть положительного цикла после ВМТ до тех пор, пока происходит полное сгорание топлива.
Как хорошо ясно из литературы, этот факт приводит к сокращению полезной работы, каковое сокращение оценивается некоторыми авторами как 10-15% всей работы цикла.
Известно также, что рабочий цикл двигателя, скажем четырехтактного двигателя, рассматривается, принимая во внимание только его геометрические аспекты, в четырех тактах каждый соответствует полоборота, т.е. углу 180o, который проходит кривошип. Посредством такого рассогласования оси цилиндра по отношению к центру вращения выходного вала можно получить такт различной продолжительности (обычно можно получить короткое рассогласование и следовательно небольшие различия, так что этим случаем можно пренебречь).
Вышеприведенные соображения сформулированы применительно к четырехтактному эндотермическому двигателю с контролируемым зажиганием искрой, однако те же соображения с соответствующей корректировкой работают и в случае и двухтактного двигателя и дизельного.
В настоящее время уже реализованы роторные двигатели, каковые двигатели не требуют системы преобразования возвратно-поступательного движения во вращательное движение, они весьма интересны с технической точки зрения.
Например, можно обратиться к рассмотрению турбинного двигателя или двигателя Ванкеля, наиболее пригодных для работы в качестве одиночных.
Несмотря на хорошие технические характеристики решения, производители двигателей не слишком заинтересованы в нем, в основном потому, что преимущества этих двигателей (особенно для мало- и микролитражных случаев) слишком невелики для того, чтобы принять решение о демонтаже существующих производственных линий с соответствующим инструментарием и проведении соответствующих исследовательских работ для создания нового продукта с ограниченными преимуществами.
Очевидно, что новое решение в области двигателестроения должно давать существенные преимущества - экономические, легкость в производстве, возможность использования уже существующих заводов и снижение производственных затрат.
С учетом вышесказанного, заявитель осуществил кривошипный механизм, позволяющий получить значительные преимущества с учетом доступных в настоящее время решений, и дальнейшая реализация решения преимущественно приспособлена для производителей двигателей.
По существу, предлагаемое решение позволяет осуществить рабочий цикл с постоянным объемом сгорания.
Далее, предлагаемое решение позволяет осуществить циклы переменной амплитуды без использования рассогласования в значительных пределах.
Посредством решения в соответствии с изобретением можно также осуществить значительное приращение в величине вращающего момента в формуле, вплоть до удвоения пондеромоторного среднего в соответствующем интеграле. Это означает пропорционально снижение расхода (в процентах) с соответствующим увеличением удельной мощности поршневой единицы.
Осуществление предлагаемого технического решения позволит производить двигатели уменьшенных размеров, и таким образом более легкие и дешевые.
Более того, изобретение позволяет задействовать уже существующие производственные линии, агрегаты и технологии.
Другим преимуществом, предоставляемым системой в соответствии с настоящим изобретением, является преимущество, относящееся к решению задачи стратификации горючей смеси с целью достижения нулевого загрязнения окружающей среды, как этого требуют законы, вступающие в силу в конце девяностых годов.
Эти и другие результаты могут быть получены в соответствии с предлагаемым изобретением с помощью кривошипного механизма - эксцентрика, заменяющего традиционную шатунно-кривошипную пару комбинацией колеса, иными словами, вращающимся соединительным элементом, свободно сидящим на конце поршня, и эксцентриком, сидящим на выходном валу.
Таким образом, объектом настоящего изобретения является кривошипная система для преобразования возвратно-поступательного движения во вращательное движение, пригодная, в частности, для эндотермических двигателей, содержащая колесо или вращающийся соединительный стержень, свободно сидящий на конце поршня, и эксцентрик, смонтированный на выходном валу, имеющий по периметру профиль, содержащий по крайней мере два сегмента или плеч эксцентрика, для оптимизации тактов рабочего цикла двигателя, причем колесо вращается по профилю эксцентрика в соединении, отличающемся отсутствием трения или минимальным трением.
В частности, в соответствии с изобретением указанный эксцентрик может иметь первый сегмент профиля с одной или более образующей кривизной для оптимизации такта впуска и такта расширения и второй сегмент профиля с одной или более образующей кривизной для оптимизации такта сжатия и такта выпуска.
В преимущественном конструктивном исполнении системы в соответствии с изобретением указанный эксцентрик может обладать другими сегментами или плечами для оптимизации сгорания, в частности для получения постоянного объема сгорания, соответствующего ВМТ, и оптимизации такта расширения в соответствии с НМТ.
В частности, указанные другие сегменты или плечи могут иметь луч постоянной кривизны, соответствующий расстоянию между осью двигателя и кривизной, определенной Нижней Мертвой Точкой, и, соответственно, Верхней Мертвой Точкой. Фактически должно быть принято во внимание, что если колесо, соединенное с поршнем, катится по концентрическому профилю по отношению к оси вращения выходного вала, поршень приостанавливается в своем прямолинейном движении вдоль цилиндра, в то время как выходной вал продолжает свое вращение.
В том случае, если это происходит в ВМТ, вдоль плеча, соответствующего моменту времени, необходимого от момента зажигания для полного сгорания порции горючей смеси, находящейся внутри головки поршня, обеспечивается такт сгорания при постоянном объеме. Этот идеальный тип цикла сгорания согласно мнению всех изобретений и исследователей обеспечивает значительное возрастание эффективности термодинамического цикла.
Тем же способом и теми же описанными выше методами обеспечиваются преимущества при положении поршня на НМТ, приводя в первую очередь к завершенному расширению продуктов сгорания с использованием полного такта расширения до момента открытия выпускного клапана. Фактически, как показано графически, полный такт может происходить вдоль угла, отсчитанного от ВМТ, который конструктор считает оптимальным, подбирая профиль эксцентрика.
Известно, что в двигателях, производимых согласно предшествующему уровню, такт работает в пределах 180o, между ВМТ и НМТ (исключая некоторое рассогласование, обсужденное выше), и для обеспечения необходимой амплитуды для такта выпуска в этом типе двигателей выпускной клапан открывается задолго до достижения НМТ (даже на 70-80o раньше этой точки), что определяет неполное расширение и, соответственно, снижение эффективности такта расширения.
Четырехтактный двигатель, сконструированный по предлагаемой схеме, работает следующим образом:
1) Впуск
2) Сжатие и примерно за 35o до достижения ВМТ зажигание и начало сгорания, в то время как поршень идет вверх к ВМТ
3) Расширение от ВМТ к НМТ. Сгорание не завершено до ВМТ и, таким образом, продолжается в процессе такта расширения поршня. Расширение резко прекращается до достижения НМТ (обычно за 70o до НМТ) путем открытия выпускного клапана
4) Выпуск, идущий под напором поршня, движущегося вверх от НМТ к ВМТ.
Четыре цикла совершаются на 720o поворота выходного вала, т.е. за два полных оборота.
Четырехтактный двигатель, реализованный в соответствии с настоящим изобретением, работает на двух полных оборотах, т.е. 720o, однако наилучшее конструктивное решение предусматривает 5 или 6 тактов:
1) Впуск
2) Сжатие
3) (с остановленным поршнем) Зажигание и полное сгорание
4) Полное расширение
5) (с остановленным поршнем) Открытие выпускного клапана
6) Выпуск
В описанном четырехтактном двигателе такты 5 и 6 могут также быть объединены. В двухтактном двигателе, реализованном в соответствии с изобретением, вместо этого выгодно использовать позицию поршня, приостанавливающегося в НМТ, для такта выпуска (или перепуска), поскольку такое усовершенствование увеличивает объем "временного сечения", что улучшает рабочую характеристику двигателя.
Также в соответствии с изобретением, колесо и эксцентрик изготовлены из такого материала, который позволяет сохранять напряжения сжатия, возникающие в результате работы колеса, в пределах предела упругости материалов.
Всегда в соответствии с изобретением могут быть обеспечены средства, поддерживающие контакт между колесом и эксцентриком.
В соответствии с первым вариантом конструктивного решения, упомянутые средства соединения состоят из маленького соединительного стержня, свободно качающегося на той же оси колеса и снабженного в нижней части выступом, соединенным с профилем, концентрическим относительно внешнего профиля эксцентрика и точно воспроизводящим его.
В другом конструктивном решении указанные средства могут состоять из зафиксированного на поршне одним концом стержня с одной или более степенями свободы и с другим концом, зафиксированным на упругой системе, поглощающей инерцию такта от Нижней Мертвой Точки до Верхней Мертвой Точки и отдающей эту же энергию в процессе первой части такта от Верхней Мертвой Точки до Нижней Мертвой Точки.
Упомянутая упругая система в соответствии с изобретением может быть заменена гидравлической системой, в конечном счете управляемой микропроцессором.
Кривошипная система в соответствии с изобретением может быть использована в многоцилиндровых двигателях, в варианте одного кривошипа на все цилиндры или одного кривошипа для каждого цилиндра.
Настоящее изобретение будет далее описано и пояснено, но не в целях ограничения, в соответствии с предпочтительными конструктивными решениями и особой ссылкой на прилагаемые чертежи, в которых:
фиг. 1 - схематическое изображение известной конструкции;
фиг. 2 - диаграмма цикла Отто;
фиг. 3 - схематическое изображение конструкции, соответствующей изобретению;
фиг. 4a, 4b, 4c и 4d показывают различные такты четырехтактного двигателя, имеющего кривошипную систему, соответствующую изобретению;
фиг. 5 - показывает один из оптимальных профилей в соответствии с изобретением;
фиг. 6 - дает схему эксцентрика фиг. 5;
фиг. 7 - разрез кривошипной системы в соответствии с изобретением, представляющий средство поддержания постоянного контакта между колесом и эксцентриком;
фиг. 8 - схематическое изображение второго примера воплощения для средства поддержания контакта между колесом и эксцентриком; и
фиг. 9 - показывает пример профиля эксцентрика, обеспечивающего постоянный объем сгорания.
Прежде чем подробно описывать решение, соответствующее изобретению, хотелось бы отметить, что будет проведено сравнение с известным конструктивным решением, уже упомянутое во вводной части описания, и сделать предварительное заявление, что настоящее качественное рассмотрение основано на сравнительной оценке двух двигателей, один из которых решен в соответствии с настоящим изобретением, а другой - в соответствии с известным, но оба имеют одинаковые ходы поршня, диаметр и такт, одинаковый цикл (двух- или четырехтактный), работают на одинаковом горючем, при одинаковой компрессии, с одинаковой камерой сгорания, одинаковым количеством и размером впускных и выпускных клапанов, одинаковой системой впуска и выхлопа, причем изготовление осуществлялось одинаковыми техническими средствами с использованием одинаковых материалов, использована одинаковая система зажигания (искра или компрессия).
Ссылаясь на фиг. 3, система в соответствии с изобретением состоит из набора деталей, заменяющих известный кривошипно-шатунный механизм, показанный на фиг. 1.
В частности, она содержит эксцентрик 1, объединенный с выходным валом, свободно вращающееся и потому свободное колесо 2 на поршневом пальце 3 и один элемент, ограничивающий свободу поршня 4 в движении вдоль оси цилиндра 5, что будет более подробно описано ниже.
Позиция 6 показывает выходной вал.
Обозначены также центры кривизны эксцентрика C1, C2, C3 и соответствующие плечи b1, b2, b3, величина которых будет ниже использована в расчетах формулы вращающего момента.
Работа двигателя будет описана со ссылкой на четырехтактный двигатель с контролируемым зажиганием, причем нужно заметить, что изобретение с соответствующими изменениями работает и для двухтактного двигателя. В обоих случаях (двухтактный и четырехтактный двигатели) с компрессионным зажиганием и с любым типом горючего.
Далее, на чертеже показаны только три центра кривизны, чтобы не усложнять излишне чертеж.
На фиг. 4 показана работа системы в соответствии с изобретением для такта расширения продукта сгорания после ВМТ.
На днище поршня 4 действует давление сгоревших газов, это давление обозначено буквой p. Оно определяет силу, передаваемую к пальцу 3 поршня, на колесо 2, кромка которого приводит в движение эксцентрик 1.
Движение колеса 2 вдоль эксцентрика 1, профиль которого сконструирован для оптимизации такта, является чистым качением, т.е. без проскальзывания и, следовательно, без трения, все, что требуется - обеспечить, чтобы напряжения сжатия, вносимые в систему колесом 2, находились в пределах упругости материалов, из которых выполнено колесо 2 и эксцентрик 1.
Из фиг. 5, показывающей схематично один из бесконечного множества возможных профилей эксцентрика 1, видно, что поворот колеса 2 происходит благодаря контакту с профилем эксцентрика 1 согласно центру кривизны этого профиля, который в этот конкретный момент был в контакте с колесом 2.
На фиг. 5 центры профиля для расчета обозначены как C1, C2, C3 и расстояния между указанными центрами кривизны и осью двигателя обозначены как b1, b2, b3, ось двигателя обозначена буквой A. Расстояния b1, b2, b3 являются параметрами, которые следует подставить в упомянутую выше формулу, дающую значение текущего вращающего момента в соответствии с углом α вращения выходного вала, отсчитанным от ВМТ, вместо величины r, т.е. радиуса кривошипа.
Переходя теперь к рассмотрению фиг. 6, можно видеть, что рабочий такт поршня 4 вдоль оси цилиндра 5 получается из соотношения C + rt - rb, где C = C1 - расстояние между осью двигателя A и центром кривизны головки эксцентрика 1, rt есть радиус кривизны профиля головки эксцентрика 1 (определяющий ВМТ), и rb есть центр кривизны базы эксцентрика 2 (определяющий НМТ).
Легко видеть, что перемещение двигателя получается путем умножения площади поршня на его ход. Ход поршня, как описано ранее для кривошипно-шатунного механизма, равен 2r и является постоянным параметром в формуле вращающего момента.
Расстояния b1, b2, b3 и т.д. могут быть выбраны соответствующим образом и умножены на r, в то время как перемещение двигателя сохраняется равным a произведению площади поршня на 2r.
Полагая для примера r = 26 мм, таким образом 2r = ход = 52 мм, и выбирая rt = rb = 16 мм, мы должны получить: ход = 52 мм = C + rt - rb = C + 16 - 16 = 52 и, следовательно, C = b1.
Если, например, rt = 16, rb = 26, то получим b1 = 62, где b1 больше, чем ход.
Рассматривая вновь формулу вращающего момента, мы можем видеть, что
Figure 00000003

Пренебрегая членом λ2sin2αo, и таким образом предполагая член
Figure 00000004
равным 1 с силой F, воздействующей на поршень, равно как и в случае уже рассмотренной кривошипно-шатунной системы или в системе в соответствии с настоящим изобретением, мгновенное значение Mm является функцией f = r·[sinα + λ/2 ·sinα], где r = ход = постоянная величина, а l - постоянная длина соединительного стержня для рассматриваемого двигателя.
λ = r/l (в соответствии с известным уровнем техники равно приблизительно 0,25).
В системе в соответствии с изобретением r = b1, b2, b3 и т.д., величина которых получается путем сложения плеча колеса 2 (которое постоянно в настоящем примере, поскольку колесо 2 предполагается круглым) и плеча кривизны некоторой длины профиля эксцентрика 1.
Исследуя значение упомянутой выше функции f для двигателя в соответствии с настоящим конструктивным решением и в соответствии с настоящим изобретением с одинаковым ходом = 52 мм и длиной соединительного стержня l = 110 мм для известного решения и рассматривая эксцентрик 1, показанный на фиг. 6, с колесом 2, имеющим диаметр 76 мм, значения функции f для двух рассматриваемых случаев в хорошем приближении приведены в таблице 1 для одинакового хода поршня.
Даже принимая во внимание, что для системы в соответствии с изобретением за счет большого наклона осевой директрисы нагрузки, вносимой колесом 2 профиля эксцентрика 1 по отношению к оси цилиндра, имеет место большая потеря при относительном перемещении юбки поршня и цилиндра, преимущества новой системы значительны, поскольку в известном решении цикл расширения прерывается, в то время как предлагаемое решение позволяет его завершить.
В заключении отметим, что цикл расширения и активная часть цикла заканчиваются со значительным приращением мощности по сравнению с величинами, получаемыми в известном решении, и это является или следствием увеличения термодинамической эффективности, вытекающей из постоянного объема сгорания, или полного сгорания, или снижения потерь на трение по сравнению с кривошипно-шатунным механизмом.
Решение в соответствии с настоящим изобретением может быть эффективно использовано для многоцилиндровых двигателей, при условии единственного эксцентрика 1 для всех цилиндров или ряд эксцентриков 1, соответствующих ряду цилиндров.
На фиг. 4b показан такт выпуска. Поршень 4 упирается в профиль посредством колеса 2 для того, чтобы осуществить подъем от НМТ к ВМТ, используя накопленную маховиком энергию.
Когда выходной вал 6 совершает определенный поворот из положения НМТ, колесо 2 имеет тенденцию к утрате контакта с эксцентриком.
Следовательно, должно быть обеспечено устройство, сохраняющее энергию, передаваемую эксцентриком 1 для передачи поршню 4 и поддерживающее контакт с колесом 2.
Конструктивное решение устройства такого типа показано на фиг. 7, причем необходимо понимать, что это - просто иллюстрация, поскольку можно приспособить много иных эквивалентных решений.
Устройство по фиг. 7 содержит небольшой соединительный стержень 7, посаженный коаксиально за колесом 2 и имеющий в нижней части выступ 8, связанный с профилем качения 9 эксцентрика 1, каковой профиль качения 9 точно воспроизводит внешний профиль эксцентрика 1.
Выше указанного выступа находится колесо или элемент скольжения 10 для того, чтобы обеспечивать скольжение малого соединительного стержня 7 по профилю 9 таким образом, чтобы это совершенно не влияло на движение эксцентрика 1.
Как уже указано, малый соединительный стержень имеет только цель поддержания постоянного расстояния между центром колеса 2 и внешним профилем эксцентрика 1.
Другой пример воплощения средства поддержания упомянутого постоянного расстояния показан на фиг. 8.
В этом случае устройство содержит стержень 11, зафиксированный с одной или более степенями свободы на поршне 4, например на нижней части того же поршня 4 (на чертеже стержень 11 закреплен на пальце 3 поршня 4). Другой конец стержня 11 прикреплен к упругому элементу 12, служащему для поглощения энергии инерционного движения поршня 4 в процессе такта от НМТ до ВМТ, отдавая ее обратно в первой части цикла от ВМТ к НМТ.
Как уже упоминалось, упругий элемент может быть заменен гидравлической системой с микропроцессорным контролем.
На фиг. 4c показан такт впуска. В этом случае поршень 4 должен быть понужден к движению по профилю эксцентрика 1 и таким образом устройство с необходимостью заставляет поршень 4 покинуть положение, соответствующее НМТ. После определенного поворота выходного вала 6 действие устройства перестает быть необходимым, поскольку инерция поршня 4 позволяет возобновить контакт между колесом 2 и эксцентриком 1, последний противодействует инерции поршня, прекращая ее в НМТ.
На фиг. 4d показан такт сжатия. Как в такте выпуска, имеет место разделенное положение колеса 2 и эксцентрика 1 (хотя отрицательная работа поршня 4 в процессе такта сжатия предполагает в некоторых инерциальных случаях обнуление этой величины) и таким образом в этом случае также необходима работа упомянутого приспособления.
На фиг. 9 показан пример профиля многоцентрового эксцентрика, позволяющего поддерживать постоянный объем в процессе сгорания.
Показанный пример был реализован для хода поршня, равного 56 мм.
На чертеже C1, C2, C3, C4, C5, C6, C7 определяют многоцентровой профиль, r1,...,r7 радиусы кривой и A, B, C, D, E, F, G - точки касания.
Вращение эксцентрика 1 происходит против часовой стрелки и ход поршня подсчитывается как C4 + C5 + r1 - r4 = 56 мм.
Диаметр вращающегося соединительного стержня 2 равен 70 мм.
Плечо A-B-C-D соответствует плечу тактов расширения и впуска, на плече D-E поршень останавливается в соответствии с НМЦ, плечо E-F-G соответствует плечу тактов выпуска и сжатия, а на плече G-A поршень останавливается в соответствии с ВМС.
Именно в соответствии с последним плечом, которое в этом примере является дугой 30o, происходит сгорание при постоянном объеме.
Время остановки рассчитано как t = 0,001 сек с периферийной скоростью эксцентрика 4500 об/мин.
Настоящее изобретение описано для иллюстрации, но не ограничения в соответствии с предпочтительными вариантами исполнения, и следует понимать, что модификации и/или изменения могут быть внесены специалистами в данной области техники в рамках объема изобретения, сформулированного в прилагаемой формуле изобретения.

Claims (10)

1. Кривошипная система для преобразования возвратно-поступательного движения во вращательное, в частности, для эндотермических возвратно-поступательных двигателей, содержащая колесо, эксцентрик, установленный на выходном валу двигателя и имеющий профиль периметра, включающий два сегмента, и средство поддержания контакта между колесом и эксцентриком, включающие соединительный стержень, причем колесо свободно установлено на поршневом пальце с возможностью вращения вдоль профиля эксцентрика, концентрического оси вращения выходного вала, отличающаяся тем, что первый и второй сегменты эксцентрика очерчены одной или более кривой, причем эксцентрик снабжен другими сегментами.
2. Система по п. 1, отличающаяся тем, что сегменты представляют собой плечи эксцентрика, который снабжен другими плечами.
3. Система по п.2, отличающаяся тем, что другие плечи имеют постоянный радиус кривизны, соответствующий расстоянию между осью двигателя и кривыми, определяющими нижнюю и верхнюю мертвые точки (НМТ и ВМТ) соответственно.
4. Система по п.1, отличающаяся тем, что колесо и эксцентрик выполнены из материала с пределом упругости, не меньшим напряжения сжатия, вносимого колесом.
5. Система по п.1, отличающаяся тем, что стержень выполнен с возможностью свободного качания вокруг оси колеса и снабжен в нижней части выступом, взаимодействующим с профилем эксцентрика, концентрическим относительно его внешнего профиля и точно его повторяющим, с возможностью обеспечения постоянного расстояния между центром колеса и внешним профилем эксцентрика.
6. Система по п.1, отличающаяся тем, что стержень связан одним концом с одной или более степенями свободы с поршнем и соединен другим концом с упругой системой, выполненной с возможностью поглощения инерционной энергии во время такта от НМТ до ВМТ и возвращения этой энергии во время первой части такта от ВМТ к НМТ.
7. Система по п.6, отличающаяся тем, что в качестве упругой системы использована гидравлическая система, управляемая микропроцессором.
8. Система по п.1, отличающаяся тем, что она выполнена с возможностью использования в многоцилиндровых двигателях при условии обслуживания всех цилиндров по меньшей мере одним эксцентриком.
9. Система по п.1, отличающаяся тем, что другие сегменты представляют собой плечи, имеющие постоянный радиус кривизны, соответствующий расстоянию между осью двигателя и кривыми, определяющими НМТ и ВМТ соответственно.
10. Система по п.1, отличающаяся тем, что она выполнена с возможностью обслуживания каждого цилиндра одним эксцентриком для многоцилиндровых двигателей.
RU95115545A 1994-09-13 1995-09-12 Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей RU2125170C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITRM940580A IT1272806B (it) 1994-09-13 1994-09-13 "sistema di manovellismo per la trasformazione del moto rettilineo alternato in moto rotatorio, in particolare adatto per motori endotermici alternativi".
ITRM.94-A/000580 1994-09-13

Publications (2)

Publication Number Publication Date
RU95115545A RU95115545A (ru) 1997-09-20
RU2125170C1 true RU2125170C1 (ru) 1999-01-20

Family

ID=11402722

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95115545A RU2125170C1 (ru) 1994-09-13 1995-09-12 Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей

Country Status (16)

Country Link
US (1) US5647308A (ru)
EP (1) EP0702128B1 (ru)
JP (1) JP3616168B2 (ru)
KR (1) KR960011068A (ru)
CN (1) CN1053491C (ru)
AT (1) ATE180542T1 (ru)
AU (1) AU692578B2 (ru)
CA (1) CA2157991C (ru)
DE (1) DE69509845T2 (ru)
ES (1) ES2136268T3 (ru)
HU (1) HU222393B1 (ru)
IT (1) IT1272806B (ru)
PL (1) PL177464B1 (ru)
RO (1) RO115661B1 (ru)
RU (1) RU2125170C1 (ru)
TW (1) TW309578B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730195C1 (ru) * 2019-11-18 2020-08-19 Андрей Викторович Юндин Двигатель внутреннего сгорания (цикл юндина)
RU207599U1 (ru) * 2020-12-04 2021-11-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Преобразователь энергии газа

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9620227D0 (en) * 1996-09-27 1996-11-13 Galvin George F Energy storage device
US6698394B2 (en) 1999-03-23 2004-03-02 Thomas Engine Company Homogenous charge compression ignition and barrel engines
US6662775B2 (en) 1999-03-23 2003-12-16 Thomas Engine Company, Llc Integral air compressor for boost air in barrel engine
ATE271650T1 (de) 2000-03-15 2004-08-15 Gerhard Lehofer Kolbenmaschine
DE10138837A1 (de) * 2001-08-14 2003-02-27 Helmut Obieglo Hubkolbenaggregat
US8046299B2 (en) 2003-10-15 2011-10-25 American Express Travel Related Services Company, Inc. Systems, methods, and devices for selling transaction accounts
EP1709296B1 (en) 2004-01-12 2018-10-10 LiquidPiston, Inc. Haybrid cycle combustion engine and methods
US7909013B2 (en) 2006-08-02 2011-03-22 Liquidpiston, Inc. Hybrid cycle rotary engine
CA2732810A1 (en) 2008-08-04 2010-02-11 Liquidpiston, Inc. Isochoric heat addition engines and methods
US8281764B2 (en) * 2009-06-25 2012-10-09 Onur Gurler Half cycle eccentric crank-shafted engine
CN102042376A (zh) * 2010-02-07 2011-05-04 福建南安三井机械厂有限公司 凸轮双滚轮机构
CN102606675A (zh) * 2011-01-25 2012-07-25 朱譞晟 内燃机的平衡装置
WO2012135556A2 (en) 2011-03-29 2012-10-04 Liquidpiston, Inc. Cycloid rotor engine
WO2014025613A1 (en) * 2012-08-10 2014-02-13 Barnes Group Inc. Flexible connection rod
SG11201700480XA (en) 2013-01-25 2017-02-27 Liquidpiston Inc Air-cooled rotary engine
US9651133B2 (en) * 2015-02-04 2017-05-16 Google Inc. Phased joint cam
EP3333456B1 (de) * 2016-12-08 2019-08-21 KNAUER Wissenschaftliche Geräte GmbH Kolbenpumpe, kurvengetriebe für die umsetzung eines variablen hubs und verwendung eines kurvengetriebes
CN108019327B (zh) * 2017-12-15 2019-05-03 安徽理工大学 一种凹槽凸轮恒流量钻井往复泵

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806608A (en) * 1931-05-26 John bryant
US629039A (en) * 1898-05-16 1899-07-18 Samuel W Luitwieler Mechanism for producing reciprocating motion.
US1873015A (en) * 1929-06-05 1932-08-23 Frank J Omo Internal combustion engine
US1784902A (en) * 1929-10-22 1930-12-16 Joseph V Maurais Power-shaft connection for internal-combustion engines
FR775940A (fr) * 1934-01-15 1935-01-12 Moteur à explosions ou à combustion interne
US2120657A (en) * 1937-01-06 1938-06-14 Henry R Tucker Internal combustion engine
US2249951A (en) * 1939-12-04 1941-07-22 M S Kingston Energy transmission means
US2417649A (en) * 1943-12-10 1947-03-18 Johansen Carl Steffen Two-stroke internal-combustion engine
US3572209A (en) * 1967-11-28 1971-03-23 Hal F Aldridge Radial engine
DE1776054A1 (de) * 1968-09-12 1970-11-12 Hatz Motoren Kolbenmaschine
US3998200A (en) * 1974-10-16 1976-12-21 Sudholt Kenneth J Reciprocating engine
US4149498A (en) * 1976-11-19 1979-04-17 Ferrell Arthur T Internal combustion engine
DE2908196A1 (de) * 1979-03-02 1980-09-11 Heinrich Schiller Verbrennungs-viertakthubkolbenmotor ohne kurbelwelle der bei einer umdrehung den ganzen arbeitszyklus abschliesst
US4301776A (en) * 1979-06-04 1981-11-24 Fleming Joseph W Crankshaft apparatus
US4493296A (en) * 1981-05-28 1985-01-15 Williams Gerald J Three cycle engine with varying combustion chamber volume
US4489681A (en) * 1981-12-02 1984-12-25 Jackson Francis W Multiple piston expansion chamber engine
US4430967A (en) * 1982-02-08 1984-02-14 Williams Robert H Two cycle diesel engine
US4966067A (en) * 1989-02-27 1990-10-30 Sundstrand Corporation Involute cam actuator with piston drive
FR2655378B1 (fr) * 1989-12-06 1994-04-01 Claude Boulanger Systeme de moteur a 2 temps ayant 4 cycles.
GB2278773B (en) * 1993-06-11 1997-04-09 Clares Equip Ltd Steerable mobile load carrier and swivel castor therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730195C1 (ru) * 2019-11-18 2020-08-19 Андрей Викторович Юндин Двигатель внутреннего сгорания (цикл юндина)
RU207599U1 (ru) * 2020-12-04 2021-11-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чувашский государственный университет имени И.Н. Ульянова" Преобразователь энергии газа

Also Published As

Publication number Publication date
CA2157991A1 (en) 1996-03-14
HUT74302A (en) 1996-11-28
ITRM940580A1 (it) 1996-03-13
ATE180542T1 (de) 1999-06-15
DE69509845D1 (de) 1999-07-01
AU692578B2 (en) 1998-06-11
HU9502675D0 (en) 1995-11-28
CA2157991C (en) 2004-02-10
PL177464B1 (pl) 1999-11-30
ITRM940580A0 (it) 1994-09-13
JPH08100668A (ja) 1996-04-16
PL310427A1 (en) 1996-03-18
HU222393B1 (hu) 2003-06-28
AU3064395A (en) 1996-03-28
ES2136268T3 (es) 1999-11-16
CN1129297A (zh) 1996-08-21
RO115661B1 (ro) 2000-04-28
EP0702128B1 (en) 1999-05-26
JP3616168B2 (ja) 2005-02-02
IT1272806B (it) 1997-06-30
DE69509845T2 (de) 1999-12-30
EP0702128A1 (en) 1996-03-20
US5647308A (en) 1997-07-15
CN1053491C (zh) 2000-06-14
TW309578B (ru) 1997-07-01
KR960011068A (ko) 1996-04-20

Similar Documents

Publication Publication Date Title
RU2125170C1 (ru) Кривошипная система для преобразования возвратно-поступательного линейного движения во вращательное движение, пригодная, в частности, для возвратно-поступательных эндотермических двигателей
US5927236A (en) Variable stroke mechanism for internal combustion engine
JP2532013B2 (ja) 内燃機関
US6526935B2 (en) Cardioid cycle internal combustion engine
US6453869B1 (en) Internal combustion engine with variable ratio crankshaft assembly
US5711267A (en) Internal combustion engine with optimum torque output
KR20150032591A (ko) 내연 엔진을 위한 가변 행정 메커니즘
US5890465A (en) Internal combustion engine with optimum torque output
US6619244B1 (en) Expansible chamber engine
JP5689948B2 (ja) 高速エンジン
US20040016412A1 (en) Expansible chamber engine with undulating flywheel
CN213175834U (zh) 一种固定式连杆组件及曲柄连杆机构
CN113323737B (zh) 正时连杆组件及水平对置式发动机
RU2730195C1 (ru) Двигатель внутреннего сгорания (цикл юндина)
CA2176234C (en) Crank mechanism
RU2028478C1 (ru) Двигатель внутреннего сгорания
RU2035603C1 (ru) Двигатель внутреннего сгорания
KR20010033874A (ko) 피스톤-인-실린더 운동을 변경하는 방법 및 수단
JPS6232331B2 (ru)
RU29963U1 (ru) Импульсивный двигатель внутреннего сгорания
JP3033632U (ja) 内燃機関の伝動装置
RU92015094A (ru) Кривошипно-шатунный двигатель
JPS63182239U (ru)
WO1998021459A1 (en) Offset crankshaft mechanism for an internal combustion engine

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050913