WO2019178719A1 - 活塞式内燃机 - Google Patents

活塞式内燃机 Download PDF

Info

Publication number
WO2019178719A1
WO2019178719A1 PCT/CN2018/079450 CN2018079450W WO2019178719A1 WO 2019178719 A1 WO2019178719 A1 WO 2019178719A1 CN 2018079450 W CN2018079450 W CN 2018079450W WO 2019178719 A1 WO2019178719 A1 WO 2019178719A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
combustion engine
internal combustion
transmission gear
type internal
Prior art date
Application number
PCT/CN2018/079450
Other languages
English (en)
French (fr)
Inventor
赵军
Original Assignee
赵军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵军 filed Critical 赵军
Priority to PCT/CN2018/079450 priority Critical patent/WO2019178719A1/zh
Priority to CN201880000668.2A priority patent/CN108513598A/zh
Publication of WO2019178719A1 publication Critical patent/WO2019178719A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/047Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft with rack and pinion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the present disclosure relates to a piston type internal combustion engine.
  • the piston type internal combustion engine except for the Wankel rotary internal combustion engine, is a reciprocating linear motion of the piston in the cylinder.
  • the circulation form has two strokes and two strokes, which are applied according to different use requirements.
  • the linear motion of the piston needs to be converted into a rotational motion of the crankshaft by the piston-link mechanism.
  • the force of the connecting rod acting against the piston is large in the direction of the vertical cylinder axis, which increases the friction loss of the piston-cylinder; and the explosive force of the high-temperature and high-pressure gas in the expansion stroke is transmitted to the connecting rod through the connecting rod.
  • the crankshaft is used, the arm is small, which affects the external work.
  • the present disclosure provides a piston type internal combustion engine including a cylinder, a piston movable in the cylinder, a connecting rod connected to the piston, and a transmission gear forming a unidirectional energy transmission path with the connecting rod .
  • a piston type internal combustion engine includes an internal combustion engine unit including a first cylinder and a second cylinder disposed opposite to each other, a first piston and a second piston coupled to the first piston and the second piston The connecting rod, the first transmission gear and the second transmission gear.
  • the first piston is movable within the first cylinder and the second piston is movable within the second cylinder; the first transmission gear forms a first unidirectional energy transfer path with the connecting rod, and the second transmission gear forms a second with the connecting rod
  • the unidirectional energy transfer path, and the first unidirectional energy transfer path is opposite to the second unidirectional energy transfer path.
  • the cyclical form of the piston internal combustion engine is two strokes.
  • the transmission gear has a ratchet mechanism.
  • the first transfer gear and the second transfer gear are disposed on both sides of the link.
  • the first transfer gear and the second transfer gear are separately connected to the load.
  • the first transmission gear and the second transmission gear perform coupling output of kinetic energy through a power coupled output device.
  • the power coupled output device includes a transmission coupled to the first transmission gear and an output shaft coupled to the second transmission gear and the transmission, and the output shaft is selectively coupled by the second transmission gear or Drive drive.
  • the transmission includes three intermeshing gears.
  • the ratchet mechanism includes a ratchet and a pawl.
  • FIG. 1 is a schematic structural view of a single cylinder piston type internal combustion engine in accordance with at least one embodiment of the present disclosure.
  • FIG. 2 is a schematic structural view of a two-cylinder piston type internal combustion engine in accordance with at least one embodiment of the present disclosure.
  • FIG 3 is a schematic structural view of a transmission gear according to at least one embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a power coupling device in accordance with at least one embodiment of the present disclosure.
  • the piston type internal combustion engine of the present disclosure includes a cylinder, a piston movable in the cylinder, a connecting rod connected to the piston, and a transmission gear that forms a unidirectional energy transmission path with the connecting rod.
  • the cyclic form of the piston type internal combustion engine according to at least one embodiment of the present disclosure may be two strokes.
  • a piston type internal combustion engine may include a cylinder 101 having a scavenging port and an exhaust port. At this time, the piston type internal combustion engine adopts a single cylinder operation mode.
  • the piston type internal combustion engine may include a piston 102 that is movable within the cylinder 101.
  • Link 104 is coupled to piston 102.
  • the transmission gear 103 and the connecting rod 104 form a unidirectional energy transfer path.
  • the transmission gear 103 can have a ratchet mechanism.
  • the ratchet mechanism includes a ratchet 8 and a pawl 9. Although two pawls 9 are shown in FIG. 3, those skilled in the art will appreciate that the ratchet mechanism can include a greater or lesser number of pawls 9.
  • the drive gear 103 can be connected to the load outward.
  • the piston type internal combustion engine may include a cylinder 101 to reduce the axial dimension.
  • the piston 102 in the cylinder 101 receives a rightward force, and the link 104 is moved to the right, and the transmission gear 103 is pushed counterclockwise by the engagement of the rack on the link 104 with the teeth on the transmission gear 103.
  • the compression stroke can be completed by an external force.
  • the connecting rod 104 pushes the piston 102 to the left, and the cylinder 101 is in the intake compression stroke after the expansion stroke. Since the gear 103 does not form an effective engagement, it continues to rotate counterclockwise under the inertia of the previous stroke.
  • the piston 102 of the cylinder 101 reaches the top dead center, and the cylinder 101 is controlled to inject fuel combustion by the controller.
  • the cylinder 101 opens the expansion work stroke, pushes the link 104 to the right, and drives the transmission gear 103 to continue to rotate counterclockwise, thereby repeating.
  • a piston type internal combustion engine may include a first cylinder 201 and a second cylinder 205 that are disposed opposite each other.
  • the first cylinder 201 and the second cylinder 205 each have a scavenging port and an exhaust port.
  • the piston type internal combustion engine forms a double-acting mode of operation.
  • the piston type internal combustion engine may further include two pairs of oppositely disposed cylinders, which constitute a four-cylinder piston type internal combustion engine; may also include three pairs of cylinders, constitute a six-cylinder piston type internal combustion engine, and so on.
  • the piston internal combustion engine may include a first piston 202 and a second piston 206, the first piston 202 being movable within the first cylinder 201 and the second piston 206 being movable within the second cylinder 205.
  • the link 204 is coupled between the first piston 202 and the second piston 206.
  • the piston type internal combustion engine may include a first transmission gear 203 and a second transmission gear 207.
  • the first transmission gear 203 and the connecting rod 204 form a first unidirectional energy transmission path; the second transmission gear 207 and the connecting rod 204 form a second unidirectional energy transmission path, and the first unidirectional energy transmission path and the second unidirectional energy
  • the transfer path is in the opposite direction.
  • the first transfer gear 203 and the second transfer gear 207 may be disposed on both sides of the link 204 and connected to the load separately.
  • the first transmission gear 203 and the second transmission gear 207 can perform coupling output of kinetic energy through the power coupling output device. As shown in FIG.
  • a power coupled output device may include a transmission 10 coupled to a first transmission gear 203 and an output shaft 14 coupled to a second transmission gear 207 and transmission 10, and The output shaft 14 is selectively driven by the second transfer gear 207 or the transmission 10.
  • Transmission 10 can include three intermeshing gears 11, 12 and 13. As shown in FIG. 3, the first transfer gear 203 and the second transfer gear 207 may have a ratchet mechanism.
  • the ratchet mechanism includes a ratchet 8 and a pawl 9. Similarly, the ratchet mechanism can also include a greater or lesser number of pawls 9.
  • the fuel injection is expanded to perform a power stroke, and the first piston 202 of the first cylinder 201 is forced to move to the right, and the link 204 is moved to the right through the link 204.
  • the engagement of the rack with the teeth on the first transmission gear 203 pushes the first transmission gear 203 to rotate counterclockwise, and the second transmission gear 207 also has a tendency to rotate clockwise, but the ratchet mechanism causes the interior to slip and does not form an effective engagement.
  • the first piston 202 simultaneously pushes the second piston 206 of the second cylinder 205 to the right during the movement to the right, at which time the second cylinder 205 is in the intake compression phase.
  • the second piston 206 of the second cylinder 205 can reach the top dead center, the second cylinder 205 is injected with oil, and the high temperature and high pressure gas pushes the second piston 206 to the left.
  • the ratchet mechanism of the transmission gear 203 is substantially unaffected, and the first transmission gear 203 continues to rotate counterclockwise under the inertia of the previous stroke.
  • the second transmission gear 207 is effectively engaged, and the rack on the link 204 meshes with the teeth on the second transmission gear 207 to push the second transmission gear 207 to rotate counterclockwise, while the link 204 drives the first piston 202 to The left motion coincides with the intake compression stroke after the expansion stroke of the first cylinder 201, and this thrust acts as the power for the first cylinder 201 to compress the air.
  • the first piston 202 of the first cylinder 201 reaches the top dead center, the second cylinder 205 is at the end of the expansion stroke, and the second piston 206 of the second cylinder 205 is at the bottom dead center.
  • the first cylinder 201 is injected with oil, the first cylinder 201 is opened to expand the power stroke, the first transmission gear 203 is driven to continue to rotate counterclockwise, and the second transmission gear 207 is in an inactive engagement state, and the counterclockwise rotation is continued under the action of inertia.
  • the expansion force of the first cylinder 201 pushes the second piston 206 to the right, and the second cylinder 205 opens the compression phase, thereby repeating the cycle.
  • the first transmission gear 203 and the second transmission gear 207 can be continuously and stably rotated counterclockwise. If the output load requires it to rotate clockwise, adjusting the ratchet mechanism of the first transmission gear 203 and the second transmission gear 207 and changing the meshing state thereof in different directions can be realized.
  • Both the first transmission gear 203 and the second transmission gear 207 form a transmission path for receiving only one-way energy with the rack on the connecting rod 204, which can reduce the side thrust of the first piston 202 and the second piston 206 and the internal friction of the piston internal combustion engine. The loss, thereby increasing the efficiency of the transmission of the burst energy absorbed by the first piston 202 and the second piston 206 to the output shaft.
  • the double-acting working mode can improve the power density of the piston internal combustion engine.
  • the piston type internal combustion engine may include a plurality of pairs of oppositely disposed first cylinders 201 and second cylinders 205, which operate in a similar manner to the two cylinders, and are omitted here.
  • the first transmission gear 203 and the second transmission gear 207 may be disposed on both sides of the link 204 and serve as an output device for the rotational kinetic energy of the piston type internal combustion engine, which may be connected to the load alone or through the transmission.
  • the device performs power output.
  • a piston type internal combustion engine may employ the power coupling device illustrated in FIG.
  • the link 204 moves to the right, the second transmission gear 207 is ineffectively engaged, the first transmission gear 203 is effectively meshed and rotated counterclockwise, and the gears 11, 12 and 13 in the transmission 10 are driven to rotate, wherein the gears 11 and 13 are reversed.
  • the gear 12 rotates clockwise, and finally the gear 13 drives the output shaft 14 to rotate counterclockwise to output power;
  • the link 204 moves to the left, the first transmission gear 203 is ineffectively engaged, and the second transmission gear 207 is effectively meshed and reversed.
  • the second transmission gear 207 drives the output shaft 14 to rotate counterclockwise. This achieves a one-way output of power. If the output load needs to be rotated clockwise, the ratchet mechanism of the first transmission gear 203 and the second transmission gear 207 can be adjusted to change the meshing state in different directions.
  • the piston type internal combustion engine according to the present disclosure has higher energy transfer efficiency by adjusting the transmission mode of the linear motion energy of the piston.
  • the thermal efficiency of the existing two-stroke piston type internal combustion engine is generally 51%, and the two-stroke piston type internal combustion engine according to the embodiment of the present disclosure can improve the thermal efficiency of the whole machine to 56%, and can be used as a ship power or a ground power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)

Abstract

一种活塞式内燃机,其包括气缸(101),能够在气缸(101)内移动的活塞(102),与活塞(102)相连接的连杆(104)和与连杆(104)形成单向能量传递路径的传动齿轮(103)。

Description

活塞式内燃机 技术领域
本公开涉及一种活塞式内燃机。
背景技术
目前使用的活塞式内燃机,除汪克尔转子内燃机外,都是活塞在气缸内作往复直线运动,循环形式有四冲程和二冲程两种,视不同使用需要而应用。其中活塞的直线运动需要通过活塞-连杆机构转变成曲轴的旋转运动。在大多数的活塞位置情况下,连杆反作用于活塞的力在垂直气缸轴线方向的分量很大,增加了活塞-气缸的摩擦损失;而高温高压的气体在膨胀行程的爆发力通过连杆传递给曲轴时,力臂较小,影响了对外做功。
发明内容
为了解决至少一个上述技术问题,本公开提供了一种活塞式内燃机,其包括气缸,能够在气缸内移动的活塞,与活塞相连接的连杆和与连杆形成单向能量传递路径的传动齿轮。
根据本公开的至少一个实施方式,活塞式内燃机包括内燃机单元,该内燃机单元包括对向设置的第一气缸和第二气缸,第一活塞和第二活塞,连接在第一活塞与第二活塞之间的连杆,第一传动齿轮和第二传动齿轮。其中,第一活塞能够在第一气缸内移动以及第二活塞能够在第二气缸内移动;第一传动齿轮与连杆形成第一单向能量传递路径,第二传动齿轮与连杆形成第二单向能量传递路径,并且第一单向能量传递路径与第二单向能量传递路径方向相反。
根据本公开的一些实施方式,活塞式内燃机的循环形式是二冲程。
根据本公开的一些实施方式,传动齿轮具有棘轮机构。
根据本公开的一些实施方式,第一传动齿轮和第二传动齿轮设置在 连杆两侧。
根据本公开的一些实施方式,第一传动齿轮和第二传动齿轮单独连接负载。
根据本公开的一些实施方式,第一传动齿轮和第二传动齿轮通过动力耦合输出装置进行动能的耦合输出。
根据本公开的一些实施方式,动力耦合输出装置包括与第一传动齿轮相连接的传动装置以及与第二传动齿轮和传动装置相连接的输出轴,并且输出轴选择性地由第二传动齿轮或传动装置驱动。
根据本公开的一些实施方式,传动装置包括三个互相啮合的齿轮。
根据本公开的一些实施方式,棘轮机构包括棘轮和棘爪。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是根据本公开至少一个实施方式的单缸活塞式内燃机结构示意图。
图2是根据本公开至少一个实施方式的双缸活塞式内燃机结构示意图。
图3是根据本公开至少一个实施方式的传动齿轮的结构示意图。
图4是根据本公开至少一个实施方式的动力耦合装置示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开。
本公开的活塞式内燃机包括气缸,能够在气缸内移动的活塞,与活塞相连接的连杆和与连杆形成单向能量传递路径的传动齿轮。
根据本公开至少一个实施方式的活塞式内燃机的循环形式可以是二冲程。
图1示出了根据本公开至少一个实施方式的单缸活塞式内燃机结构示意图。如图1所示,根据本公开至少一个实施方式的活塞式内燃机可以包括气缸101,气缸101具有扫气口和排气口。此时,活塞式内燃机采用单缸工作方式。活塞式内燃机可以包括活塞102,其能够在气缸101内移动。连杆104与活塞102相连。传动齿轮103与连杆104形成单向能量传递路径。如图3所示,传动齿轮103可以具有棘轮机构。该棘轮机构包括棘轮8和棘爪9。虽然图3中示出了两个棘爪9,然而本领域技术人员应理解该棘轮机构可以包括更多或更少数量的棘爪9。传动齿轮103可以向外连接负载。
下面结合附图详细说明图1所示的活塞式内燃机的工作原理。
在图1所示的实施方式中,活塞式内燃机可以包括一个气缸101,以减小轴向的尺寸。在气缸101膨胀做功行程,气缸101中的活塞102受到向右的力,带动连杆104向右移动,通过连杆104上的齿条与传动齿轮103上的齿的啮合推动传动齿轮103逆时针转动。
待活塞102到达下死点时,可借助外力来完成压缩行程。在外力辅助下,连杆104推动活塞102左移,气缸101处于膨胀冲程后的进气压缩冲程。齿轮103由于没有形成有效啮合,在上一个冲程的惯性作用下继续逆时针转动。
接着,气缸101的活塞102到达上死点,通过控制器控制气缸101喷油燃烧,气缸101开启膨胀做功行程,推动连杆104向右移动并带动传动齿轮103继续逆时针转动,由此周而复始。
如果输出负荷需要做顺时针转动,调节传动齿轮103棘轮机构,改变其在不同方向下的啮合状态即可实现。
图2示出了根据本公开至少一个实施方式的双缸活塞式内燃机结构示意图。如图2所示,根据本公开至少一个实施方式的活塞式内燃机可以包括对向布置的第一气缸201和第二气缸205。第一气缸201和第二气 缸205均具有扫气口和排气口。在这种情况下,活塞式内燃机形成双作用式工作方式。在本公开的一些实施方式中,活塞式内燃机还可以包括两对对向布置的气缸,构成四缸活塞式内燃机;也可以包括三对缸,构成六缸活塞式内燃机,以此类推。
如图2所示,活塞式内燃机可以包括第一活塞202和第二活塞206,第一活塞202能够在第一气缸201内移动以及第二活塞206能够在第二气缸205内移动。连杆204连接在第一活塞202与第二活塞206之间。
如图2所示,活塞式内燃机可以包括第一传动齿轮203和第二传动齿轮207。第一传动齿轮203与连杆204形成第一单向能量传递路径;第二传动齿轮207与连杆204形成第二单向能量传递路径,并且第一单向能量传递路径与第二单向能量传递路径方向相反。第一传动齿轮203和第二传动齿轮207可以设置在连杆204两侧,并单独连接负载。另外,第一传动齿轮203和第二传动齿轮207可以通过动力耦合输出装置进行动能的耦合输出。如图4所示,根据本公开一些实施方式的动力耦合输出装置可以包括与第一传动齿轮203相连接的传动装置10以及与第二传动齿轮207和传动装置10相连接的输出轴14,并且输出轴14选择性地由第二传动齿轮207或传动装置10驱动。传动装置10可以包括三个互相啮合的齿轮11、12和13。如图3所示,第一传动齿轮203和第二传动齿轮207可以具有棘轮机构。该棘轮机构包括棘轮8和棘爪9。类似地,棘轮机构还可以包括更多或更少数量的棘爪9。
下面结合附图详细说明图2所示的活塞式内燃机的工作原理。
根据本公开的至少一种实施方式,在第一气缸201喷油燃烧膨胀做功行程,第一气缸201的第一活塞202受力向右移动,带动连杆204向右移动,通过连杆204上的齿条与第一传动齿轮203上的齿啮合推动第一传动齿轮203逆时针转动,第二传动齿轮207也有顺时针转动的趋势,但棘轮机构使其内部打滑,没有形成有效啮合。第一活塞202在向右移动的过程中,同时推动第二气缸205的第二活塞206向右移动,此时第二气缸205处于进气压缩阶段。
待第一活塞202到达下死点时,第二气缸205的第二活塞206可到 达上死点,第二气缸205喷油燃烧,高温高压的燃气推动第二活塞206左移,此时第一传动齿轮203的棘轮机构使其基本不受影响,第一传动齿轮203在上一个冲程的惯性作用下继续逆时针转动。
此时,第二传动齿轮207达到有效啮合,连杆204上的齿条与第二传动齿轮207上的齿啮合推动第二传动齿轮207做逆时针转动,同时连杆204带动第一活塞202向左运动,与第一气缸201膨胀冲程后的进气压缩冲程相吻合,此推力作为第一气缸201压缩空气的动力。
接下来,第一气缸201的第一活塞202到达上死点,第二气缸205处于膨胀行程的末期,第二气缸205的第二活塞206位于下死点。然后第一气缸201喷油,第一气缸201开启膨胀做功行程,推动第一传动齿轮203继续逆时针转动,而第二传动齿轮207处于无效啮合状态,会在惯性作用下继续逆时针转动,同时第一气缸201的膨胀力推动第二活塞206向右移动,第二气缸205开启压缩阶段,由此周而复始。
通过此种方式,第一传动齿轮203和第二传动齿轮207能够连续稳定的作逆时针的转动。如果输出负荷需要其做顺时针转动,调节第一传动齿轮203和第二传动齿轮207的棘轮机构,改变其在不同方向下的啮合状态即可实现。
第一传动齿轮203和第二传动齿轮207均与连杆204上齿条构成只承接单向能量的传递路径,能降低第一活塞202和第二活塞206的侧推力及活塞式内燃机的内部摩擦损失,由此提高第一活塞202和第二活塞206吸收到的爆发能量向输出轴的传递效率。同时采用双作用式工作方式,能提高活塞式内燃机的功率密度。
根据本公开的至少一种实施方式,活塞式内燃机可以包括多对对向布置的第一气缸201和第二气缸205,其工作原理与双缸工作方式类似,此处略去不述。
根据本公开的至少一种实施方式,第一传动齿轮203和第二传动齿轮207可以设置在连杆204两侧,并作为活塞式内燃机转动动能的输出装置,可以单独接负载,也可以经过传动装置进行动力的输出。
根据本公开的至少一种实施方式,活塞式内燃机可采用图4所示的动力耦合装置。当连杆204向右移动时,第二传动齿轮207无效啮合, 第一传动齿轮203有效啮合并逆时针转动,且带动传动装置10中的齿轮11、12和13转动,其中齿轮11和13逆时针转动,齿轮12顺时针转动,最后齿轮13带动输出轴14逆时针转动,以输出动力;当连杆204向左移动时,第一传动齿轮203无效啮合,第二传动齿轮207有效啮合且逆时针转动,第二传动齿轮207带动输出轴14做逆时针转动。由此实现了动力的单向输出。如果输出负荷需要做顺时针转动,调节第一传动齿轮203和第二传动齿轮207的棘轮机构,改变其在不同方向下的啮合状态即可实现。
本公开涉及的活塞式内燃机,通过调整活塞直线运动能量的传递方式,使其能量传递效率更高。同时,通过降低气缸-活塞之间的压力,改善活塞式内燃机的气缸磨损,能够提高气缸和活塞的寿命;降低活塞式内燃机的摩擦损失,进而可以提高热效率,由此达到同时提高活塞式内燃机的整机寿命、可靠性以及热效率。具体地,现有的二冲程活塞式内燃机的热效率一般为51%,根据本公开实施方式的二冲程活塞式内燃机能够提高整机热效率到56%,可作为船舶动力,亦可用于地面发电。用于发电时较传统的燃煤蒸汽轮机转换效率(一般为40%)要高。并且本公开的活塞式内燃机造价要比燃气轮机-蒸汽轮机联合循环的发电装置低得多。后者现在只能依赖进口,且采购价格昂贵,同时后期的维护费用也居高不下。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (10)

  1. 一种活塞式内燃机,其特征在于,所述活塞式内燃机包括:
    气缸;
    活塞,能够在所述气缸内移动;
    连杆,与所述活塞相连接;以及
    传动齿轮,与所述连杆形成单向能量传递路径。
  2. 一种活塞式内燃机,其特征在于,所述活塞式内燃机包括内燃机单元,所述内燃机单元包括:
    对向设置的第一气缸和第二气缸;
    第一活塞和第二活塞,所述第一活塞能够在所述第一气缸内移动以及所述第二活塞能够在所述第二气缸内移动;
    连杆,连接在所述第一活塞与所述第二活塞之间;以及
    第一传动齿轮和第二传动齿轮,所述第一传动齿轮与所述连杆形成第一单向能量传递路径,所述第二传动齿轮与所述连杆形成第二单向能量传递路径,并且所述第一单向能量传递路径与所述第二单向能量传递路径方向相反。
  3. 根据权利要求1或2所述的活塞式内燃机,其特征在于,所述活塞式内燃机的循环形式是二冲程。
  4. 根据权利要求1或2所述的活塞式内燃机,其特征在于,所述传动齿轮具有棘轮机构。
  5. 根据权利要求2所述的活塞式内燃机,其特征在于,所述第一传动齿轮和所述第二传动齿轮设置在所述连杆两侧。
  6. 根据权利要求5所述的活塞式内燃机,其特征在于,所述第一传动齿轮和所述第二传动齿轮单独连接负载。
  7. 根据权利要求2所述的活塞式内燃机,其特征在于,所述第一传动齿轮和所述第二传动齿轮通过动力耦合输出装置进行动能的耦合输出。
  8. 根据权利要求7所述的活塞式内燃机,其特征在于,所述动力耦合输出装置包括:
    传动装置,所述传动装置与所述第一传动齿轮相连接;以及
    输出轴,所述输出轴与所述第二传动齿轮和所述传动装置相连接,所述输出轴选择性地由所述第二传动齿轮或所述传动装置驱动。
  9. 根据权利要求8所述的活塞式内燃机,其特征在于,所述传动装置包括三个互相啮合的齿轮。
  10. 根据权利要求4所述的活塞式内燃机,其特征在于,所述棘轮机构包括:棘轮和棘爪。
PCT/CN2018/079450 2018-03-19 2018-03-19 活塞式内燃机 WO2019178719A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/079450 WO2019178719A1 (zh) 2018-03-19 2018-03-19 活塞式内燃机
CN201880000668.2A CN108513598A (zh) 2018-03-19 2018-03-19 活塞式内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079450 WO2019178719A1 (zh) 2018-03-19 2018-03-19 活塞式内燃机

Publications (1)

Publication Number Publication Date
WO2019178719A1 true WO2019178719A1 (zh) 2019-09-26

Family

ID=63404331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079450 WO2019178719A1 (zh) 2018-03-19 2018-03-19 活塞式内燃机

Country Status (2)

Country Link
CN (1) CN108513598A (zh)
WO (1) WO2019178719A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513598A (zh) * 2018-03-19 2018-09-07 赵军 活塞式内燃机
CN109268137A (zh) * 2018-10-29 2019-01-25 龚勇辉 发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20304487U1 (de) * 2003-03-20 2003-07-10 Afanassev Sergei Zweitakt-Boxermotor ohne Kurbeltrieb
CN102061983A (zh) * 2010-11-30 2011-05-18 徐广平 二冲程对爆直喷发动机
CN201963401U (zh) * 2011-02-01 2011-09-07 梁振勇 高效内燃机传动机构
CN106812603A (zh) * 2017-01-11 2017-06-09 浙江大学 一种水平对置式发动机
CN108513598A (zh) * 2018-03-19 2018-09-07 赵军 活塞式内燃机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201865756U (zh) * 2010-11-30 2011-06-15 徐广平 二冲程对爆直喷发动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20304487U1 (de) * 2003-03-20 2003-07-10 Afanassev Sergei Zweitakt-Boxermotor ohne Kurbeltrieb
CN102061983A (zh) * 2010-11-30 2011-05-18 徐广平 二冲程对爆直喷发动机
CN201963401U (zh) * 2011-02-01 2011-09-07 梁振勇 高效内燃机传动机构
CN106812603A (zh) * 2017-01-11 2017-06-09 浙江大学 一种水平对置式发动机
CN108513598A (zh) * 2018-03-19 2018-09-07 赵军 活塞式内燃机

Also Published As

Publication number Publication date
CN108513598A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
US4010611A (en) Compression-expansion power device
CN102434279A (zh) 无曲轴连杆的内燃机
CN101709671B (zh) 对称摆杆式大扭矩输出发动机
CN202628275U (zh) 直轴驱动内燃机装置
CN102661199A (zh) 直轴驱动内燃机方法和装置
US20200072133A1 (en) Cam rotary engine power system of internal combustion type
WO2019178719A1 (zh) 活塞式内燃机
JP5904686B2 (ja) 内燃機関のための可変行程機構
CN102418601B (zh) 一种高速自由活塞直线发电机
WO2011044748A1 (zh) 一缸双连杆双曲轴内置型内燃机
CN110296197A (zh) 活塞直轴内燃机连杆机构
JP2015524039A (ja) ヒートエンジン用のエキスパンダー
CN107304710A (zh) 往复活塞式转子发动机
US11616420B2 (en) Free piston generator based on split thermodynamic cycle
CN102359416B (zh) 一种逆向对冲内燃机
WO2005111375A1 (fr) Convertisseur de mouvement rotatif et reciproque de type sans manivelle et moteur dote d'un tel convertisseur et compresseur dote d'un tel convertisseur
CN106870123B (zh) 一种内腔凸轮转子内燃发动机动力系统
WO2011029221A1 (zh) 活塞式大扭矩输出发动机
CN113323737B (zh) 正时连杆组件及水平对置式发动机
US11831225B2 (en) Free piston generator based on rigid synchronous transmission system
WO2009143672A1 (zh) 直线往复式四行程引擎的复循环动力系统
CN212130616U (zh) 一种压爆内燃式高副传动发电机构
WO2009079687A1 (en) A four-stroke free piston internal combustion engine
CN106894890B (zh) 一种摆块配合内腔凸轮转子内燃发动机动力系统
RU2138656C1 (ru) Способ преобразования химической энергии топливно-воздушной смеси в механическую и устройство для его реализации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911132

Country of ref document: EP

Kind code of ref document: A1