WO2011027738A1 - 膵島イメージング用分子プローブ及びその使用 - Google Patents

膵島イメージング用分子プローブ及びその使用 Download PDF

Info

Publication number
WO2011027738A1
WO2011027738A1 PCT/JP2010/064760 JP2010064760W WO2011027738A1 WO 2011027738 A1 WO2011027738 A1 WO 2011027738A1 JP 2010064760 W JP2010064760 W JP 2010064760W WO 2011027738 A1 WO2011027738 A1 WO 2011027738A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular probe
imaging
islet
seq
Prior art date
Application number
PCT/JP2010/064760
Other languages
English (en)
French (fr)
Inventor
稲垣暢也
佐治英郎
豊田健太郎
木村寛之
小川祐
平尾佳
永川健児
松田洋和
Original Assignee
国立大学法人京都大学
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, アークレイ株式会社 filed Critical 国立大学法人京都大学
Priority to KR1020127005828A priority Critical patent/KR101523686B1/ko
Priority to EP10813687.0A priority patent/EP2474326B1/en
Priority to JP2011504673A priority patent/JP5669725B2/ja
Priority to CN201080039566.5A priority patent/CN102711838B/zh
Publication of WO2011027738A1 publication Critical patent/WO2011027738A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a molecular probe for islet imaging and use thereof.
  • pancreatic islets in the onset of diabetes, the amount of pancreatic islets (especially, the amount of ⁇ -cells in the pancreas) decreases prior to abnormal glucose tolerance, so diabetes is already difficult to treat after reaching the stage of detecting and recognizing dysfunction. It has become a stage.
  • a decrease in the amount of pancreatic islets and / or pancreatic ⁇ cells can be detected at an early stage, diabetes may be prevented or treated. Therefore, a non-invasive islet imaging technique for performing diabetes prevention / diagnosis, in particular, a non-invasive islet imaging technique for measuring the amount of islets and / or pancreatic ⁇ cells is desired.
  • a molecular probe that enables non-invasive imaging of pancreatic islets, preferably pancreatic ⁇ cells and measurement of pancreatic ⁇ cell mass, is particularly desired.
  • GLP-1R glycopeptide 1 receptor
  • Non-Patent Document 1 As a molecular probe for islet ⁇ -cell imaging using GLP-1R as a target molecule, for example, a molecular probe obtained by labeling a derivative of Exendin-4 (9-39), a GLP-1R antagonist, with [ 18 F] fluorine has been investigated. (For example, Non-Patent Document 1).
  • a molecular probe for imaging a GLP-1R positive tumor has been studied.
  • Examples of molecular probes for imaging GLP-1R positive tumors include molecular probes obtained by labeling a derivative of Exendin-4, a GLP-1R agonist, with [ 111 In] indium via diethylenetriaminepentaacetic acid (DTPA), and GLP- A molecular probe in which a derivative of Exendin-4 (9-39), which is a 1R antagonist, is labeled with [ 111 In] indium via DTPA has been studied (for example, Non-Patent Document 2).
  • GLP-1R glucagons-like peptide-1 receptor
  • the present invention provides a molecular probe for islet imaging capable of non-invasive three-dimensional imaging of islets.
  • the present invention is a molecular probe used for imaging of islets, A polypeptide represented by any of the following formulas (1) to (12): A polypeptide in which one to several amino acids have been deleted, added or substituted from a polypeptide of the following formulas (1) to (12), and is a polypeptide capable of binding to islets, or
  • the present invention relates to a molecular probe for islet imaging comprising a polypeptide having 80% or more homology with an amino acid sequence of a polypeptide of the following formulas (1) to (12) and comprising a polypeptide capable of binding to the islet.
  • Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (1) (SEQ ID NO: 1) Z-LSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (2) (SEQ ID NO: 2) Z-SXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (3) (SEQ ID NO: 3) Z-XQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (4) (SEQ ID NO: 4) Z-DLSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH 2 (5) (SEQ ID NO: 5) Z-LSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH 2 (6) (SEQ ID NO: 6) Z-SKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH 2 (7) (SEQ ID NO: 7) Z-KQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH 2 (8) (SEQ ID NO: 8) B-DLSKQ
  • X represents a lysine residue in which the side chain amino group is labeled with a group containing an aromatic ring represented by the following formula (I):
  • B— indicates that the N-terminal ⁇ -amino group is labeled with a group containing an aromatic ring represented by the following formula (I):
  • —NH 2 indicates that the C-terminal carboxyl group is amidated.
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group
  • R 1 represents a substituent containing any one of 123 I, 124 I, 125 I and 131 I.
  • R 2 represents a hydrogen atom or one or more substituents different from R 1
  • R 3 represents any of a bond, a methylene group, and an oxymethylene group.
  • islet imaging preferably islet three-dimensional imaging, more preferably non-invasive islet imaging, such as by positron emission tomography (PET) or single photon radiation computed tomography (SPECT), etc.
  • PET positron emission tomography
  • SPECT single photon radiation computed tomography
  • FIG. 1A and 1B are examples of graphs showing changes over time in the body distribution of the molecular probe for imaging of Example 1.
  • FIG. 2A and 2B are examples of graphs showing changes over time in the biodistribution of the molecular probe of the comparative example.
  • FIG. 3 is a graph showing an example of the results of a blocking experiment using the molecular probe of Example 1.
  • FIG. 4 shows an example of the result of image analysis of islet slices using the molecular probe for imaging of Example 1.
  • 5A and 5B are examples of graphs showing changes over time in the distribution of the molecular probe for imaging in Example 2.
  • FIG. FIG. 6 shows an example of the result of image analysis of a pancreas section using the molecular probe for imaging of Example 2.
  • FIG. 7 is an example of a SPECT image using the molecular probe for imaging of Example 3.
  • the diameter of the islets is, for example, about 50 to 500 ⁇ m for humans.
  • a molecular probe that can specifically accumulate on the pancreatic islets and cause contrast with surrounding organs is required. It is believed that. For this reason, various molecular probes have been researched and developed.
  • Non-Patent Document 2 M. Beche et al.
  • GLP-1R affinity studies of Lys 40 (Ahx-DTPA- 111 In) Exendin (9-39) in GLP-1R positive tumors and islet cells Has been done.
  • the accumulation of Lys 40 (Ahx-DTPA- 111 In) Exendin (9-39) in the islets is about 0.4%, and the accumulation in GLP-1R positive tumor cells is also about 7.5%. That is, Lys 40 (Ahx-DTPA- 111 In) Exendin (9-39) has a low affinity for GLP-1R.
  • Non-Patent Document 3 Non-invasive imaging of pancreatic islets targeting glucagon-like peptide-1 receptors, 44 th EASD Annual Meeting Rome 2008, abstract, Presentation No.359 (hereinafter referred to as “Non-Patent Document 3”).
  • An increase in accumulation in the neck (thyroid) means that radioactive iodine was detached from the administered BH-labeled probe in vivo, and the detached radioactive iodine was accumulated in the thyroid. It is known that radioactive iodine such as 125 I easily accumulates in the thyroid gland, and when accumulated in the thyroid gland causes, for example, thyroid cancer. Therefore, in the molecular probe for imaging using radioiodine as a radionuclide, the accumulation of desorbed radioiodine in the neck (thyroid) is low, that is, the desorption of radioiodine in the living body is low, and the biological stability A molecular probe excellent in the above is preferable.
  • non-invasive islet three-dimensional imaging can be performed by, for example, PET, SPECT, and the like. Based on the finding that the elimination of radioactive iodine is suppressed. That is, the present invention preferably exhibits the effect of enabling non-invasive three-dimensional imaging of pancreatic islets. Moreover, since the present invention can preferably be accumulated more specifically in the islets than the molecular probes described in Non-Patent Documents 1, 2, and 3, it is possible to perform imaging for quantitative determination of islets. It can have the effect.
  • the molecular probe for imaging of the present invention is useful for the prevention / early detection / diagnosis of diabetes, preferably the very early detection / diagnosis of diabetes.
  • a molecular probe used for imaging of pancreatic islets comprising a polypeptide represented by any of the following formulas (1) to (12), one to several from the polypeptide of the following formulas (1) to (12): A polypeptide in which a single amino acid is deleted, added or substituted, and has a homology of 80% or more with the amino acid sequence of a polypeptide that can bind to an islet or a polypeptide of the following formulas (1) to (12)
  • a molecular probe for islet imaging comprising a polypeptide capable of binding to an islet, Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (1) (SEQ ID NO: 1) Z-LSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (2) (SEQ ID NO: 2) Z-SXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH 2 (3) (SEQ ID NO: 3) Z-XQMEEEAVRLFIEWLKNGGP
  • a kit for imaging pancreatic islets comprising the molecular probe for islet imaging according to [1] or [2]; [4] The kit according to [3], comprising the molecular probe for islet imaging in the form of an injection solution; [5] A reagent for imaging pancreatic islets, comprising the molecular probe for pancreatic islet imaging according to [1] or [2]; [6] An islet imaging method, comprising: detecting a signal of the islet imaging molecular probe from a subject administered with the islet imaging molecular probe according to [1] or [2] Method; [7] The method for imaging an islet according to [6], further comprising determining the state of the islet from a result of islet imaging using the molecular probe for islet imaging; [8] Detecting a signal of the islet imaging molecular probe from a subject administered with the islet imaging molecular probe according to [1] or [2], and detecting the detected islet imaging molecular probe signal A
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group
  • R 1 represents a substituent containing any one of 123 I, 124 I, 125 I and 131 I.
  • R 2 represents a hydrogen atom or one or more substituents different from R 1
  • R 3 represents any of a bond, a methylene group, and an oxymethylene group.
  • a labeling method comprising obtaining a peptide to be radiolabeled, radiolabeling the obtained peptide with a labeling compound, and deprotecting a protecting group of the radiolabeled peptide; [13] A method for producing a radiolabeled peptide, wherein the peptide comprises a plurality of amino acids having a radiolabelable functional group in the side chain, the method comprising an N-terminal ⁇ -amino group and Synthesize a peptide to be radiolabeled using a protected amino acid whose side chain functional group is protected by a protecting group, among the functional groups of the side chain of the radiolabelable amino acid of the synthesized peptide, a functional group that is not radiolabeled Deprotecting the protective group of the amino acid, reprotecting the functional group of the side chain of the deprotected amino acid with a protective group different from the protective group before the deprotection, the side of the amino acid that has been reprotected Obtaining a peptide to
  • pancreatic islet imaging is molecular imaging of an islet and includes imaging the spatial and / or temporal distribution of the islet in vivo.
  • pancreatic islet imaging is preferably performed using pancreatic ⁇ cells as a target molecule, more preferably using a GLP-1 receptor of the pancreatic islet as a target molecule from the viewpoint of prevention, treatment, and diagnosis related to diabetes. is there.
  • islet imaging is preferably non-invasive three-dimensional imaging from the viewpoint of quantitative determination of islet amount and application to humans. The imaging method is not particularly limited as long as non-invasive islet imaging is possible.
  • PET positron emission tomography
  • SPECT single photon radiation computed tomography
  • PET and SPECT are preferable from the viewpoint of quantifying the amount of islets using the molecular probe of the present invention.
  • the molecular probe for imaging of the present invention is a polypeptide used for islet imaging, and is a molecular probe for islet imaging including a polypeptide represented by any one of the above formulas (1) to (12), preferably A polypeptide represented by any one of the above formulas (1) to (12), or a polypeptide in which one to several amino acids have been deleted, added or substituted from the polypeptides of the above formulas (1) to (12).
  • a polypeptide capable of binding to the islet, or a polypeptide having a homology of 80% or more with the amino acid sequence of the polypeptide of the above formulas (1) to (12) and comprising the polypeptide capable of binding to the islet This is a molecular probe for imaging.
  • the amino acid sequences of the polypeptides of the above formulas (1) to (12) are the amino acid sequences described in SEQ ID NOs: 1 to 12 in the sequence listing, respectively.
  • the amino group of the side chain of the first lysine of the polypeptide of the above formula (4) is a group containing an aromatic ring represented by the above formula (I) It is labeled with.
  • the amino group of the side chain of the 19th lysine of the polypeptide of the above formula (5), the amino group of the side chain of the 18th lysine of the polypeptide of the above formula (6), the polypeptide of the above formula (7) And the amino group of the side chain of the 16th lysine of the polypeptide of the above formula (8) is a group containing an aromatic ring represented by the above formula (I) It is labeled with.
  • the ⁇ -amino group at the N-terminus of the polypeptides of the above formulas (9) to (12) is labeled with a group containing an aromatic ring represented by the above formula (I).
  • the ⁇ -amino group at the N-terminal of the polypeptides of the above formulas (1) to (8) is unmodified or modified with a modifying group having no charge.
  • the C-terminal carboxyl group of the polypeptides of the above formulas (1) to (12) is amidated with an amino group from the viewpoint of improving the binding property to pancreatic ⁇ cells.
  • amino acid sequences of the above formula (1) (SEQ ID NO: 1 in the sequence listing) and the above formula (5) (SEQ ID NO: 5 in the sequence listing) are bound to the amino group of the side chain of lysine.
  • the amino acid sequence of Exendin (9-39) is the same except for the group containing an aromatic ring and the modifying group capable of binding to the N-terminal ⁇ -amino group.
  • the amino acid sequence of the above formula (9) (SEQ ID NO: 9 in the sequence listing) is exendin (excluding the group containing an aromatic ring represented by the above formula (I) bonded to the N-terminal ⁇ -amino group. It matches the amino acid sequence of 9-39).
  • Exendin (9-39) is known to bind to GLP-1R (glucagon-like peptide-1 receptor) expressed on pancreatic ⁇ cells.
  • GLP-1R glucagon-like peptide-1 receptor
  • the molecular probe for imaging of the present invention can also bind to pancreatic islets, preferably pancreatic ⁇ cells.
  • “capable of binding to islets” preferably means that the molecular probe for imaging of the present invention can bind to pancreatic ⁇ -cells, from the viewpoint of quantitative determination of islet amount and use for examination / diagnosis. It is more preferable to be specific to pancreatic ⁇ cells, and it is more preferable to be specific to the extent that signals do not overlap with other organs / tissues at least in signal detection in noninvasive imaging for humans.
  • the molecular probe for imaging of the present invention is a polypeptide used for islet imaging, wherein one to several amino acids are deleted from, added to, or added to the polypeptides of the above formulas (1) to (12).
  • Substituted polypeptides can include polypeptides that can bind to islets.
  • the one to several pieces are 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, and one piece. Can be included.
  • the polypeptide when the polypeptide is one in which one to several amino acids are deleted, added or substituted from the polypeptide of the above formulas (1) to (8), It preferably contains one lysine labeled with a group containing an aromatic ring represented by I) and includes amidation of the C-terminal carboxyl group. Also, the N-terminal ⁇ -amino group may be unmodified or may be modified with a modifying group having no charge. In the case of a polypeptide in which one to several amino acids have been deleted, added or substituted from the polypeptides of the above formulas (9) to (12), the N-terminal ⁇ -amino group is represented by the above formula (I).
  • polypeptides in which one to several amino acids are deleted, added or substituted from the polypeptides of the above formulas (1) to (12) have the same effects as the polypeptides of the above formulas (1) to (12). More preferably, it has the same effect as the polypeptide of the above formula (1) or the polypeptide of the above formula (9).
  • the molecular probe for imaging of the present invention is a polypeptide used for islet imaging as still another embodiment, and has 80% or more homology with the amino acid sequence of the polypeptide of the above formulas (1) to (12). And a polypeptide capable of binding to an islet.
  • the homology may be calculated by an algorithm usually used by those skilled in the art, for example, BLAST or FASTA.
  • the number of identical amino acid residues of two polypeptides to be compared is determined as one polypeptide. It may be based on the number obtained by dividing by the total length.
  • the homology may include 85% or more, 90% or more, or 95% or more.
  • the molecular probe for imaging of this embodiment of the present invention when it is a polypeptide having 80% or more homology with the polypeptides of the above formulas (1) to (8), it is represented by the above formula (I). It is preferable to include one lysine labeled with a group containing an aromatic ring and to include amidation of the C-terminal carboxyl group.
  • the N-terminal ⁇ -amino group may be unmodified or may be modified with a modifying group having no charge.
  • the N-terminal ⁇ -amino group is an aromatic ring represented by the above formula (I) It is preferably labeled with a group containing and not containing any other labeling group. Further, it preferably includes amidation of the C-terminal carboxyl group.
  • the polypeptide having 80% or more homology with the amino acid sequence of the polypeptide of the above formulas (1) to (12) preferably has the same action and effect as the polypeptide of the above formulas (1) to (12). More preferably, it has the same effect as the polypeptide of the above formula (1) or the polypeptide of the above formula (9).
  • the molecular probe for imaging of the present invention is used for islet imaging, and is preferably used for noninvasive islet imaging from the viewpoint of human examination / diagnosis, and more preferably non-islet imaging. It is used for invasive pancreatic ⁇ cell imaging, and more preferably used for GLP-1 receptor imaging of pancreatic ⁇ cells. Further, the molecular probe for imaging of the present invention is preferably used for islet imaging for quantifying the amount of islets from the same viewpoint, more preferably used for pancreatic ⁇ cell imaging for quantifying the amount of islets. More preferably, it is used for GLP-1 receptor imaging of pancreatic ⁇ cells for quantifying the amount of islets. Furthermore, the molecular probe for imaging of the present invention is preferably used for islet imaging for the prevention, treatment or diagnosis of diabetes. These islet imaging may be performed by, for example, PET or SPECT.
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms, such as a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,4-xylyl group, p- Cumenyl group, mesityl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 9-phenanthryl group, 1-acenaphthyl group, 2-azurenyl group 1-pyrenyl group, 2-triphenylenyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, terphenyl group and the like.
  • the aromatic heterocyclic group has 1 or 2 nitrogen atoms, oxygen atoms or sulfur atoms, and is preferably a 5- to 10-membered heterocyclic group.
  • R 1 represents a substituent containing any one of 123 I, 124 I, 125 I and 131 I.
  • R 1 for example, [ 123 I] iodine atom, [ 124 I] iodine atom, [ 125 I] iodine atom, [ 131 I] iodine atom, C 1 -C 3 alkyl substituted with [ 123 I] iodine group, [124 I] C 1 -C 3 alkyl group substituted with iodine, [125 I] C 1 -C 3 alkyl group substituted with iodine, [131 I] C 1 -C 3 substituted with iodine alkyl group, [123 I] C 1 -C 3 alkoxy group substituted with iodine, [124 I] C 1 -C 3 alkoxy group substituted with iodine, [125 I] C 1 -C substituted with iodine 3 alkoxy
  • C 1 -C 3 alkyl group means an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • C 1 -C 3 alkyl group substituted by [ 123 I] iodine, [ 124 I] iodine, [ 125 I] iodine or [ 131 I] iodine means 1 to 3 carbon atoms.
  • one hydrogen atom is an alkyl group substituted by [ 123 I] iodine atom, [ 124 I] iodine atom, [ 125 I] iodine atom or [ 131 I] iodine atom.
  • the “C 1 -C 3 alkoxy group” means an alkoxy group having 1 to 3 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
  • C 1 -C 3 alkoxy group substituted with [ 123 I] iodine, [ 124 I] iodine, [ 125 I] iodine or [ 131 I] iodine means 1 to 3 carbon atoms.
  • one hydrogen atom is an alkoxy group substituted by [ 123 I] iodine atom, [ 124 I] iodine atom, [ 125 I] iodine atom or [ 131 I] iodine atom.
  • R 1 is preferably a substituent containing 124 I that releases positron.
  • R 1 is preferably a substituent containing 123 I or 125 I that emits ⁇ rays, and more preferably a substituent containing 123 I from the viewpoint of the amount of energy to be released.
  • R 1 represents [ 123 I] iodine atom, [ 124 I] iodine atom, [ 123 I] methyl iodide group, [ 124 I] methyl iodide group, [ 123 I] iodine methoxy group and [ 124 I] iodine group.
  • a methoxy group is preferable, and [ 123 I] iodine atom and [ 124 I] iodine atom are more preferable.
  • R 1 is preferably substituted at any of the ortho, meta, and para positions, more preferably at either the meta position or the para position, from the viewpoint of quantitativeness. is there.
  • R 2 represents a hydrogen atom or one or more substituents different from R 1 .
  • R 2 may be a hydrogen atom or a substituent, but is preferably a hydrogen atom. That is, in the above formula (I), A is preferably not substituted with a substituent other than R 1 .
  • R 2 is a plurality of substituents, they may be the same or different. Examples of the substituent include a hydroxyl group, an electron withdrawing group, an electron donating group, a C 1 -C 6 alkyl group, a C 2 -C 6 alkenyl group, a C 2 -C 6 alkynyl group, and the like.
  • Examples of the electron withdrawing group include a cyano group, a nitro group, a halogen atom, a carbonyl group, a sulfonyl group, an acetyl group, and a phenyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the “C 1 -C 6 alkyl group” means an alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl.
  • C 2 -C 6 alkenyl group refers to an alkenyl group having 2 to 6 carbon atoms, such as a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group. 1-butenyl group, 2-butenyl group and 3-butenyl group.
  • C 2 -C 6 alkynyl group refers to an alkynyl group having 2 to 6 carbon atoms, such as an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1-butynyl group.
  • the substituent is preferably a hydroxyl group or an electron withdrawing group.
  • R 3 represents any one of a bond, a methylene group and an oxymethylene group, and among these, a bond and a methylene group are preferable, and a bond is more preferable.
  • the group containing an aromatic ring represented by the above formula (I) is preferably a group represented by the following formula (II).
  • R 1 is as described above.
  • the ⁇ -amino group at the N-terminus in the polypeptides of the above formulas (1) to (8) cancels the positive charge of the ⁇ -amino group at the N-terminus
  • it may be modified with a modifying group having no charge.
  • the modifying group having no charge include 9-fluorenylmethyloxycarbonyl group (Fmoc), tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), 2,2,2-trichloroethoxy.
  • the modifying group is acetyl group, benzyl group, benzyloxymethyl group, o-bromobenzyloxycarbonyl group, t-butyl group, t-butyldimethylsilyl group, 2-chlorobenzyl group, 2,6-dichlorobenzyl group.
  • a cyclohexyl group, a cyclopentyl group, an isopropyl group, a pivalyl group, a tetrahydropyran-2-yl group, a tosyl group, a trimethylsilyl group and a trityl group are preferable, and an acetyl group is more preferable.
  • the present invention relates to a method for imaging pancreatic islets including imaging pancreatic islets using the molecular probe for imaging of the present invention.
  • the present invention includes detecting the signal of the molecular probe for imaging of the present invention that has been administered to the subject in advance or the signal of the molecular probe for imaging of the present invention that has been previously bound to the islet.
  • the present invention relates to an islet imaging method.
  • the imaging method the signal of the molecular probe of the present invention or a sufficient amount for imaging is previously bound to the pancreatic islet from a subject administered with a sufficient amount of the molecular probe of the present invention for imaging. It is preferable to detect the signal of the molecular probe for imaging.
  • Islet imaging is as described above.
  • the imaging method of the present invention is preferably a pancreatic ⁇ cell imaging method from the viewpoint of examination / diagnosis applications.
  • the detection of the signal of the molecular probe for imaging of the present invention can be performed, for example, by measurement using PET and / or measurement using SPECT.
  • the measurement using PET and the measurement using SPECT include, for example, taking an image and measuring the amount of islet.
  • the imaging method of the present invention may include a step of reconstructing the detected signal, converting it into image data, and displaying it.
  • Measurement using SPECT is performed, for example, by measuring a gamma ray emitted from a subject in which the molecular probe for imaging of the present invention is previously bound to an islet / a subject to which the molecular probe for imaging of the present invention has been administered in advance. Including doing.
  • the measurement by the gamma camera includes, for example, measuring the radiation ( ⁇ rays) emitted from the radioactive iodine used for labeling the molecular probe for imaging of the present invention in a unit of time, and preferably the radiation is emitted. Including measuring the direction and quantity of radiation in fixed time units.
  • the imaging method of the present invention further includes representing the measured distribution of the molecular probe for imaging of the present invention obtained by measurement of radiation as a cross-sectional image, and reconstructing the obtained cross-sectional image. May be.
  • Examples of the subject (subject) include humans and / or mammals other than humans.
  • the measurement using PET is generated by, for example, binding of a positron and an electron from a subject in which the molecular probe for imaging of the present invention is previously bound to an islet / a subject to which the molecular probe for imaging of the present invention has been previously administered. It may include co-counting a pair of annihilation radiation with a PET detector, and may further include depicting a three-dimensional distribution of radioactive iodine positions emitting positrons based on the measured results.
  • X-ray CT or MRI measurement may be performed together with SPECT measurement or PET measurement.
  • SPECT or PET functional image
  • CT or an image obtained by MRI morphological image
  • the imaging method of the present invention may further include determining the state of the islets from the results of islet imaging using the molecular probe for imaging of the present invention. Determining the state of islets from the results of islet imaging using a molecular probe includes, for example, determining the presence or absence of islets by analyzing an image of islet imaging, determining increase or decrease in the amount of islets.
  • the imaging method of the present invention may comprise administering to the subject the molecular probe for imaging of the present invention, and a sufficient amount of the molecular probe for imaging of the present invention to obtain a desired contrast for imaging. Is preferably administered.
  • the signal detection of the molecular probe for imaging of the present invention is preferably performed after a lapse of a certain time from the administration of the molecular probe.
  • Administration subjects include humans and / or mammals other than humans. Administration to the subject may be local or systemic.
  • the administration route can be appropriately determined according to the condition of the subject, and examples thereof include intravenous, arterial, intradermal, intraperitoneal injection or infusion.
  • the molecular probe for imaging of the present invention is preferably administered together with a carrier.
  • an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent include potassium phosphate buffer, physiological saline, Ringer's solution, distilled water and the like.
  • the non-aqueous solvent include polyethylene glycol, vegetable oil, ethanol, glycerin, dimethyl sulfoxide, propylene glycol and the like.
  • the dose of the molecular probe for imaging of the present invention for islet imaging or islet amount measurement can be, for example, 1 ⁇ g or less.
  • the time from administration to measurement can be appropriately determined according to, for example, the binding time of the molecular probe to the islet, the type of the molecular probe, the decomposition time of the molecular probe, and the like.
  • the present invention provides a method for measuring the amount of islet, wherein the signal of the molecular probe for imaging of the present invention previously bound to the islet is detected, and the amount of islet is detected from the detected signal of the molecular probe. It is related with the measuring method of the amount of islets including calculating.
  • the method for measuring the amount of islets according to the present invention may include performing islet imaging using the molecular probe for imaging according to the present invention. Islet imaging is as described above. The calculation of the amount of islets from the result of islet imaging using a molecular probe can be performed, for example, by analyzing an image of islet imaging.
  • the method for measuring the amount of pancreatic islets according to the present invention is preferably a method for measuring the amount of pancreatic ⁇ cells from the viewpoint of use for examination and diagnosis.
  • the present invention provides a method for measuring the amount of pancreatic islets, the signal of the molecular probe for imaging of the present invention administered to a subject in advance and / or the molecular probe for imaging of the present invention previously bound to the pancreatic islet. And a method for measuring the amount of islet including calculating the amount of islet from the detected signal of the molecular probe for imaging.
  • the method for measuring the amount of islet according to the present invention may further include presenting the calculated amount of islet.
  • Presenting the calculated amount of islets includes, for example, storing or outputting the calculated amount of islets to the outside.
  • Outputting to the outside includes, for example, displaying on a monitor and printing.
  • the present invention relates to a method for preventing or treating or diagnosing diabetes.
  • the amount of pancreatic islets decreases prior to abnormal glucose tolerance, but diabetes has already been treated after dysfunction is detected and recognized. Is at a difficult stage.
  • a decrease in the amount of pancreatic islets and / or pancreatic ⁇ cells can be detected at an early stage.
  • Preventive, therapeutic and diagnostic methods can be established.
  • the target of diabetes prevention / treatment / diagnosis includes humans and / or mammals other than humans.
  • the method for diagnosing diabetes according to the present invention includes imaging pancreatic islets using the molecular probe for imaging according to the present invention, and determining the state of the pancreatic islets based on the obtained islet image and / or islet amount, Furthermore, diagnosis of diabetes may be included based on the determination result.
  • the determination of the islet state is performed by, for example, comparing the obtained islet image with the reference islet image, comparing the obtained islet amount with the reference islet amount, and the like. Including determining an increase or decrease or change.
  • the state of the islets may be determined using an information processing apparatus. When it is determined that the amount of islets is decreasing, the information is presented and it is determined that the amount of islets is increased or maintained. Sometimes it is preferable to present that information. Diagnosis of diabetes based on the determination result includes, for example, determining the risk of developing diabetes, determining diabetes, and determining the degree of progression of diabetes.
  • the method for treating diabetes according to the present invention comprises performing islet imaging using the molecular probe for imaging according to the present invention, and diagnosing diabetes by determining the state of the islets based on the obtained islet image and / or islet amount. And treating diabetes based on the diagnosis.
  • the determination of the islet state and the diagnosis of diabetes can be performed in the same manner as in the method for diagnosing diabetes of the present invention.
  • the method for treating diabetes according to the present invention can include evaluating a therapeutic effect including medication and diet therapy performed on a subject by paying attention to a change in islet amount.
  • the method for preventing diabetes according to the present invention comprises imaging the pancreatic islet using the molecular probe for imaging according to the present invention, and determining the state of the pancreatic islet based on the obtained islet image and / or amount of islet. Including determining the risk.
  • the method for preventing diabetes according to the present invention can include, for example, periodically measuring the amount of islets and checking for a tendency to decrease the amount of islets.
  • the present invention relates to a method for ultra-early diagnosis of diabetes as another preferred embodiment.
  • the ultra-early diagnosis method for diabetes according to the present invention is based on, for example, Ningen Dock, imaging of islets and / or measurement of islet amount by the method of the present invention in a health checkup, and the obtained islet image and / or islet amount. Determining the state of the islets can be included.
  • the method for treating diabetes according to the present invention comprises performing islet imaging and / or measurement of the amount of islets by the method of the present invention, and evaluating the functional recovery of the islets based on the obtained islet image and / or islet amount. Can be included.
  • the present invention relates to a kit including the molecular probe for imaging of the present invention.
  • the kit of the present embodiment include a kit for performing the imaging method of the present invention, a kit for performing the method for measuring an islet amount of the present invention, a kit for preventing or treating or diagnosing diabetes of the present invention, and the like. It is done.
  • the molecular probe for imaging of the present invention is preferably included in the form of an injection solution. Therefore, the kit of the present invention preferably includes an injection solution containing the molecular probe for imaging of the present invention.
  • the injection solution contains the molecular probe for imaging of the present invention as an active ingredient, and may further contain a pharmaceutical additive such as a carrier.
  • a pharmaceutical additive refers to a compound that has been approved as a pharmaceutical additive in the Japanese Pharmacopoeia, the American Pharmacopoeia, the European Pharmacopoeia, and the like.
  • the carrier include an aqueous solvent and a non-aqueous solvent.
  • kits of the present invention may further include a container for containing the molecular probe for imaging of the present invention, and the injection liquid containing the molecular probe for imaging of the present invention and / or the molecular probe for imaging of the present invention comprises The container may be filled.
  • the container include a syringe and a vial.
  • the kit of the present invention can further include, for example, components for preparing a molecular probe such as a buffer and an osmotic pressure regulator, and instruments used for administration of the molecular probe such as a syringe.
  • components for preparing a molecular probe such as a buffer and an osmotic pressure regulator
  • instruments used for administration of the molecular probe such as a syringe.
  • the present invention relates to an imaging reagent including the molecular probe for imaging of the present invention.
  • the imaging reagent of the present invention contains the molecular probe for imaging of the present invention as an active ingredient, and may further contain, for example, a pharmaceutical additive such as a carrier.
  • the carrier is as described above.
  • the molecular probe for imaging of the present invention comprises a molecular probe precursor containing a polypeptide represented by any of the following formulas (13) to (24), a group containing an aromatic ring represented by the above formula (I). It can be prepared by carrying out labeling using the labeling compound it has and then deprotecting the protecting group. By labeling, the amino group of the side chain of lysine to which no protecting group is bound, or the N-terminal ⁇ -amino group to which the protecting group and the modifying group are not bound can be labeled.
  • the above molecular probe precursor can be synthesized by, for example, peptide synthesis according to a conventional method such as Fmoc method, and the peptide synthesis method is not particularly limited.
  • the protecting group protects other amino groups of the molecular probe precursor while labeling a specific amino group of the molecular probe for imaging of the present invention, and is a known protecting group capable of performing such a function. Can be used.
  • the protecting group is not particularly limited, and for example, 9-fluorenylmethyloxycarbonyl group (Fmoc), tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), 2,2,2-trichloroethoxy Carbonyl group (Troc), allyloxycarbonyl group (Alloc), 4-methoxytrityl group (Mmt), amino group, alkyl group having 3 to 20 carbon atoms, 9-fluoreneacetyl group, 1-fluorenecarboxylic acid group , 9-fluorenecarboxylic acid group, 9-fluorenone-1-carboxylic acid group, benzyloxycarbonyl group, xanthyl group (Xan
  • Labeling can be performed using a labeling compound having a group containing an aromatic ring represented by the above formula (I).
  • the labeling compound used for labeling is preferably a succinimidyl ester compound in which the group represented by the above formula (I) is bound to succinimide via an ester bond, and more preferably represented by the following formula (III).
  • the succinimidyl ester compound is more preferably a succinimidyl ester compound represented by the following formula (IV).
  • A, R 1 , R 2 and R 3 are the same as in the above formula (I).
  • R 1 is the same as in the above formula (I).
  • R 1 is [123 I] iodine atom in the formula (IV), a [124 I] iodine atom or [131 I] iodine atom, [123 I] N-succinimidyl 3 -iodobenzoate, [124 I] N- succinimidyl 3-iodobenzoate, [131 I] N-succinimidyl 3-iodobenzoate are preferred.
  • the present invention relates to a method for producing an imaging molecular probe of the present invention, which comprises labeling and deprotecting the imaging molecular probe precursor.
  • the molecular probe precursor for imaging is a polypeptide represented by any one of the above formulas (13) to (24), or any one of the above formulas (13) to (24).
  • polypeptide in which one to several amino acids have been deleted, added or substituted from the polypeptide and can bind to the islet after labeling and deprotection or a polypeptide of the above formulas (13) to (24) It is preferable that the polypeptide consists of a polypeptide having 80% or more homology with the amino acid sequence and capable of binding to the islet after labeling and deprotection.
  • the labeling of the molecular probe precursor for imaging may include labeling with a labeling compound having a group containing an aromatic ring represented by the following formula (I). preferable.
  • the labeling compound having a group containing an aromatic ring represented by the above formula (I) is a succinimidyl ester compound in which the group represented by the above formula (I) is bonded to succinimide via an ester bond.
  • the succinimidyl ester compound represented by the above formula (III) is more preferred, and the succinimidyl ester compound represented by the above formula (IV) is more preferred.
  • the synthesis of a labeled compound having a group containing an aromatic ring represented by the above formula (I) may be carried out using an automatic synthesizer.
  • Synthesis of a labeled compound having a group containing an aromatic ring represented by I), and labeling and deprotection of a molecular probe precursor for imaging using the labeled compound may be performed by one automatic synthesizer .
  • the molecular probe precursor is a polypeptide in which one to several amino acids are deleted, added or substituted from the polypeptides of the above formulas (13) to (24), and can bind to the islets after labeling and deprotection.
  • the molecular probe precursor for imaging which can become the precursor of the molecular probe for imaging of this invention is included.
  • the present invention provides, as another aspect, a precursor of a molecular probe for islet imaging, wherein the polypeptide of the above formulas (13) to (24), the polypeptide of the above formulas (13) to (24), A polypeptide in which several amino acids have been deleted, added or substituted, and capable of binding to the islet after labeling and deprotection, or the amino acid sequence of the polypeptide of the above formulas (13) to (24)
  • a molecular probe precursor for islet imaging comprising a polypeptide having a homology of 80% or more and capable of binding to the islet after labeling and deprotection can be provided. According to the molecular probe precursor for imaging of the present invention containing the polypeptides of the above formulas (13) to (24), the imaging molecular probe of the present invention can be easily provided.
  • kits of the present invention relate to a kit including the above-described molecular probe precursor for imaging.
  • kits containing the molecular probe precursor for imaging of the present invention include a kit for preparing the molecular probe for imaging of the present invention, a kit for performing the imaging method of the present invention, and measurement of the amount of islets of the present invention.
  • a kit for performing the method, a kit for prevention or treatment or diagnosis of diabetes of the present invention, and the like can be mentioned.
  • the kit containing the molecular probe precursor for imaging according to the present invention preferably includes an instruction manual according to each form.
  • the kit containing the molecular probe precursor for imaging includes, for example, a compound used for labeling the molecular probe precursor for imaging, and a labeled compound having a group containing an aromatic ring represented by the above formula (I) You may go out.
  • the labeling compound having a group containing an aromatic ring represented by the above formula (I) is preferably a succinimidyl ester compound in which the group represented by the above formula (I) is bonded to succinimide via an ester bond. More preferably, it is a succinimidyl ester compound represented by the above formula (III), and further preferably a succinimidyl ester compound represented by the above formula (IV).
  • the kit of the embodiment may contain [ 123 I] N-succinimidyl 3-iodobenzoate, [ 124 I] N-succinimidyl 3-iodobenzoate, [ 131 I] N-succinimidyl 3-iodobenzoate, and the like as labeling compounds.
  • the kit of this embodiment may further include, for example, an instruction manual describing a method for labeling the molecular probe precursor for imaging of the present invention using the labeling compound.
  • the kit containing the molecular probe precursor for imaging preferably further contains a starting material for the labeled compound.
  • the starting material include 2,5-dioxopyrrolidin-1-yl 3- (tributylstannyl) benzoate.
  • the kit containing the molecular probe precursor for imaging may further contain, for example, a reagent used for deprotecting the molecular probe precursor for imaging and / or a reagent used for labeling.
  • the kit containing the molecular probe precursor for imaging further has, for example, an automatic synthesis apparatus for a labeled compound and a group containing an aromatic ring represented by the above formula (I) using the automatic synthesis apparatus for the labeled compound.
  • An instruction manual describing the method for synthesizing the labeled compound may be included.
  • the automatic synthesizer may be, for example, an automatic synthesizer capable of labeling and deprotecting a molecular probe precursor for imaging using the synthesized labeled compound in addition to the synthesis of the labeled compound.
  • the kit may further contain a reagent containing radioactive iodine used for the synthesis of the labeled compound. Examples of the reagent containing radioactive iodine include a reagent containing a radioisotope such as 123 I, 124 I, 125 I or 131 I.
  • the present invention provides an automatic peptide synthesizer for synthesizing a molecular probe precursor for imaging, and a labeled compound and / or a label having a group containing an aromatic ring represented by the above formula (I)
  • the present invention relates to a kit including an automatic compound synthesizer.
  • the automatic synthesizer may be, for example, an automatic synthesizer capable of labeling and deprotecting a molecular probe precursor for imaging using the synthesized labeled compound in addition to the synthesis of the labeled compound.
  • the kit may include an instruction manual describing a method for synthesizing a molecular probe precursor for imaging.
  • the instruction manual further describes, for example, a method for synthesizing a labeled compound having a group containing an aromatic ring represented by the above formula (I), a labeling method using the same, and a deprotection method. It may be.
  • the kit may further contain a reagent containing radioactive iodine used for the synthesis of the labeled compound.
  • the present invention provides, as still another aspect, an automatic synthesizer that synthesizes a molecular probe precursor for imaging, synthesizes the labeled compound, labels and deprotects the molecular probe precursor for imaging using the labeled compound
  • the present invention relates to a kit including an instruction manual describing a method for producing the molecular probe for imaging of the present invention using the automatic synthesizer.
  • the instruction manual describes, for example, a method for synthesizing a molecular probe precursor for imaging, a method for synthesizing the labeled compound, a method for labeling and deprotecting a molecular probe precursor for imaging using the labeled compound, and the like. It is preferable.
  • the kit may further contain a reagent containing radioactive iodine used for the synthesis of the labeled compound.
  • the present invention relates to a peptide labeling method.
  • the labeling method of the peptodo of the present invention is a method for radiolabeling a peptide having a plurality of amino acids having a radiolabelable functional group in the side chain, wherein the N-terminal ⁇ -amino group and the side chain functional group are protected.
  • the functional group of the side chain of the deprotected amino acid is protected again by a protective group different from the protective group before deprotection, and the functional group other than the functional group of the side chain of the amino acid subjected to the reprotection is protected.
  • the peptide labeling method of the present invention relates to a peptide labeling method comprising a peptide synthesis step, a protecting group substitution step, a protecting group deprotection step, and a radiolabeling step.
  • the peptide synthesis step includes synthesizing the peptide using a protected amino acid.
  • the protected amino acid includes a protected amino acid in which the N-terminal ⁇ -amino group is protected by a protecting group X, and the N-terminal ⁇ -amino group is Protected amino acid protected by protecting group X and side chain functional group a protected by protecting group Y1, N-terminal ⁇ -amino group protected by protecting group X and side chain functional group b protected by protecting group Y2 It is selected from the group consisting of protected protected amino acids and protected amino acids in which the N-terminal ⁇ -amino group is protected by a protecting group X and the side chain functional group c is protected by a protecting group Y3.
  • the functional group a is a functional group of a side chain of an amino acid to be radiolabeled
  • the functional group b is a functional group of a side chain of an amino acid that can be radiolabeled and is not subjected to radiolabeling
  • a functional group c Is a functional group of a side chain of an amino acid other than the functional groups a and b.
  • the protecting group substitution step includes deprotecting the protecting group Y2 of the functional group b, and then protecting the functional group b with a protecting group Z different from the protecting group Y2, preferably of the functional group a and the functional group c. This includes deprotecting the protecting group Y2 of the functional group b without deprotecting, and then protecting the functional group b with a protecting group Z different from the protecting group Y2.
  • the deprotecting step of the protecting group includes deprotecting the protecting group Y1 of the functional group a and the protecting group Y3 of the functional group c, and preferably the protecting group Y1 of the functional group a without deprotecting the functional group b. And deprotecting the protecting group Y3 of the functional group c.
  • the functional group a of the peptide after the deprotection step is radiolabeled with a radiolabeled compound, and the protective group Z of the functional group b and the protective group X of the ⁇ -amino group at the N-terminus are deprotected. Including doing.
  • the labeling is performed in a state in which the functional group (functional group b) of the side chain of the radiolabelable amino acid other than the functional group to be radiolabeled (functional group a) is protected by the protecting group (protecting group Z). Radiolabeling of the peptide with the compound is performed. More specifically, in the labeling method of the present invention, the functional group b is protected again by the protective group Z after the deprotection of the protective group Y2, and the radiolabeled functional group a is deprotected by the labeled compound. Radiolabeling of the peptide is performed.
  • the labeling method of the present invention for example, only a desired functional group (functional group a) can be selectively labeled. Therefore, according to the labeling method of the present invention, for example, the labeling efficiency can be improved, and the yield of the desired radiolabeled peptide can be improved.
  • the peptide is synthesized by a peptide synthesis method using a protected amino acid in which the N-terminal ⁇ -amino group and / or the side chain functional groups (functional groups a, b, and c) are protected by a protecting group.
  • Peptide synthesis can be performed using, for example, a known organic chemical peptide synthesis method.
  • a known organic chemical peptide synthesis method For example, “Biochemistry Experiment Course” edited by the Japanese Biochemical Society, Volume 1, “Protein IV”, 207- 495 (published by Tokyo Kagaku Dojin in 1977), edited by The Japan Biochemical Society, “New Chemistry Laboratory”, Volume 1, “Protein VI”, pages 3-74 (1992, published by Tokyo Kagaku Doujin) This can be done based on the description.
  • Examples of the organic chemical peptide synthesis method include a peptide solid phase synthesis method and a peptide liquid phase synthesis method, and a peptide solid phase synthesis method is preferable.
  • the “peptide solid-phase synthesis method” refers to a method in which the C-terminal of an amino acid or peptide is fixed to a solid-phase carrier via a linker, and the amino acids are sequentially extended to the N-terminal side.
  • Examples of the peptide solid phase synthesis method include the Fmoc method and the Boc method, and the Fmoc method is preferred.
  • the “Fmoc method” is a method of synthesizing a peptide by using amino acids in which the N-terminal ⁇ -amino group is protected by Fmoc (9-fluorenylmethyloxycarbonyl group) and condensing them. I mean.
  • an amino acid corresponding to the C-terminus of each peptide to be synthesized or a peptide containing an amino acid corresponding to the C-terminus is bound to a solid phase carrier such as a resin, which is a protective group for the ⁇ -amino group at the N-terminus
  • a solid phase carrier such as a resin
  • the peptide of interest can be synthesized by repeatedly deprotecting and washing the Fmoc group and condensing and washing the protected amino acid to elongate the peptide chain and finally carry out a final deprotection reaction.
  • the “Boc method” refers to a method of synthesizing a peptide by using an amino acid whose N-terminal ⁇ -amino group is protected by Boc (tert-butoxycarbonyl group) and condensing them.
  • Peptide synthesis may be performed using, for example, an automatic peptide synthesizer.
  • the peptide automatic synthesizer include A443A type (Applied Biosystems), PSSM8 (Shimadzu Corporation), and the like.
  • Examples of the protected amino acid include a protected amino acid in which the N-terminal ⁇ -amino group is protected by the protective group X, the N-terminal ⁇ -amino group is protected by the protective group X, and the side chain functional group a is the protective group Y1.
  • an N-terminal ⁇ -amino group protected by a protecting group Protected amino acids selected from the group consisting of protected amino acids protected by X and having a side chain functional group c protected by a protecting group Y3.
  • Functional group a is a functional group on the side chain of an amino acid that performs radiolabeling.
  • Examples of the functional group a include an amino group or a group having an amino group.
  • the functional group b is a functional group that does not perform radiolabeling among functional groups on the side chain of an amino acid that can be radiolabeled.
  • the functional group b is, for example, the same type of functional group as the functional group a, and is preferably a side chain functional group of the same amino acid as the amino acid of the functional group a.
  • Functional group c is a functional group on the side chain of an amino acid other than functional groups a and b.
  • the protecting group X is a protecting group for the N-terminal ⁇ -amino group of amino acids used for peptide synthesis.
  • Examples of the protecting group X include the protecting groups described above, and can be appropriately determined according to the peptide synthesis method.
  • the peptide synthesis method is the Fmoc method
  • the protecting group X is usually Fmoc
  • the peptide synthesis method is the Boc method
  • the protecting group X is usually Boc.
  • the protecting groups Y1 to Y3 are protecting groups for the functional group of the side chain of the amino acid used for peptide synthesis
  • the functional group Y1 is a protecting group for the functional group a
  • the protecting group Y2 is a protecting group for the functional group b
  • the protecting group Y3 is a protecting group for the functional group c.
  • Examples of the protecting groups Y1 to Y3 include the protecting groups described above, and can be determined as appropriate according to the type of functional group and the peptide synthesis method.
  • the protecting group for the N-terminal ⁇ -amino group (protecting group X) is Using different protecting groups.
  • the protecting group Y2 is preferably different from the protecting group Y1 of the functional group a from the viewpoint of selective deprotection, that is, deprotecting only the protecting group Y2 of the functional group b without deprotecting the functional group a. It is more preferable that the protecting group Y1 of the functional group a and the protecting group Y3 of the functional group c are different from the point of deprotecting only the protecting group Y2 of the functional group b without deprotecting the group a and the functional group c.
  • the protective group Y2 of the functional group b is preferably a trityl-type protective group from the viewpoint of selective deprotection.
  • the protecting group Y2 of the functional group b is a trityl-type protecting group
  • the protecting group Y1 of the functional group a is a carbamate-based protecting group.
  • the trityl-type protecting group include Mmt, Trt, Mtt, Mtr and the like. From the viewpoint of more selective deprotection, Mmt and Mtt are preferable.
  • the carbamate-based protecting group include Fmoc, Boc, Cbz, Alloc, and Troc. Among them, Boc is preferable.
  • the replacement of the protective group is to replace the protective group of the functional group b, and after the protective group Y2 of the functional group b is deprotected, the functional group b is protected with a protective group Z different from the protective group Y2. including.
  • the deprotection of the protecting group Y2 can be appropriately determined according to the type of the protecting group Y2.
  • the deprotection of the protective group Y2 is preferably performed by deprotecting the protective group Y2 of the functional group b without deprotecting the functional group a and the functional group c from the viewpoint of selective labeling.
  • the protecting group Z is a protecting group for protecting the functional group b after deprotecting the protecting group Y2 of the functional group b, and is a protecting group different from the protecting group Y2.
  • the protecting group Z can be appropriately selected from the protecting groups described above, and is preferably the same as the protecting group for the N-terminal ⁇ -amino group (protecting group X) in peptide synthesis.
  • the protective group Z is preferably Fmoc.
  • the protecting group deprotecting step includes deprotecting a protecting group of a functional group other than the functional group b of the side chain of the amino acid that has been protected again to obtain a peptide for radiolabeling. Deprotecting the protecting group Y1 of the group a and the protecting group Y3 of the functional group c. This gives a peptide that is radiolabeled. In the peptide, the functional group b is protected by a protecting group Z.
  • the deprotection of the protective group Y1 of the functional group a and the protective group Y3 of the functional group c can be appropriately determined according to the type of the protective group.
  • the deprotection of the protective group Y1 of the functional group a and the protective group Y3 of the functional group c may be performed together with the excision of the peptide from the solid phase carrier.
  • a step of washing and / or isolating and purifying the obtained peptide may be included. Isolation and purification can be performed using, for example, a known separation operation for purifying a peptide or protein. Examples of the separation operation include ion exchange chromatography, hydrophobic chromatography, reverse phase chromatography, high performance liquid chromatography (HPLC) and the like, and these may be combined as necessary. Depending on the final form, the purified peptide may be isolated, for example, by concentration and / or lyophilization.
  • the labeling is performed using a peptide in which the functional group b is protected with a protective group Z and the protective group Y1 of the functional group a is deprotected.
  • the peptide to be labeled is a peptide in which the functional group b is protected with the protective group Z and the protective group Y1 of the functional group a and the protective group Y3 of the functional group c are deprotected from the point of selective labeling. More preferably, the functional group b is protected with a protecting group Z, the N-terminal ⁇ -amino group is protected with a protecting group X, and the protecting group Y1 of the functional group a and the protecting group Y3 of the functional group c are deprotected. Peptide. Thereby, selective labeling can be performed.
  • the labeling compound known compounds used for radiolabeling can be used, and examples thereof include those described above.
  • Examples of the peptide to be synthesized include a peptide having two or more amino acids having an amino group in the side chain.
  • Examples of amino acids having an amino group in the side chain include lysine.
  • the length of the peptide to be synthesized is not particularly limited, but is, for example, 5 amino acid residues or more, preferably 10 to 150 amino acid residues, more preferably 20 to 80 amino acid residues.
  • the peptide to be synthesized may have, for example, one amino acid having the functional group a in the side chain, and may contain, for example, two, three or more.
  • the peptide to be synthesized is, for example, a polypeptide represented by any of the following formulas (25) to (28) from the viewpoint of obtaining a molecular probe for imaging GLP-1R, preferably the molecular probe of the present invention.
  • DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS (25) (SEQ ID NO: 25)
  • LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 26)
  • SKQMEEEAVRLFIEWLKNGGPSSGAPPPS (27) (SEQ ID NO: 27)
  • KQMEEEAVRLFIEWLKNGGPSSGAPPPS KQMEEEAVRLFIEWLKNGGPSSGAPPPS (28) (SEQ ID NO: 28)
  • the labeling method of the present invention relates to a radiolabeling method of a peptide in which the functional group to be labeled is an N-terminal ⁇ -amino group, as another embodiment.
  • the peptide synthesis step is carried out in such a way that the amino acid located at the N-terminus is a protected amino acid in which the ⁇ -amino group at the N-terminus is protected by a protecting group Y4, Protected amino acid protected by Y4 and side chain functional group b protected by protecting group Y2 or N-terminal ⁇ -amino group protected by protecting group Y4 and side chain functional group c protected by protecting group Y3
  • the other amino acids are protected amino acids in which the N-terminal ⁇ -amino group is protected by the protecting group X, the N-terminal ⁇ -amino group is protected by the protecting group X, and the side chain A protected amino acid in which the functional group b is protected by the protective group Y
  • the protecting group Y4 is a protecting group for the ⁇ -amino group of the amino acid located at the N-terminus of the peptide, and is preferably different from the protecting group X and the protecting group Y2.
  • the protecting group deprotecting step preferably includes deprotecting the protecting group Y4 of the ⁇ -amino group at the N-terminal and the protecting group Y3 of the functional group c without deprotecting the functional group b.
  • the present invention provides a method for producing a radiolabeled peptide, the peptide having a plurality of amino acids having a radiolabelable functional group in the side chain, and an ⁇ -terminal N-terminus.
  • the protective group of the functional group not deprotected, the functional group of the side chain of the deprotected amino acid was protected again with a protective group different from the protective group before the deprotection, and the protective group was re-protected.
  • the protecting group of sex labeled peptide relates to a manufacturing method comprising deprotecting.
  • the method for producing a radiolabeled peptide of the present invention includes performing peptide synthesis, deprotection of a protecting group, and radiolabeling using the above-described labeling method of the present invention.
  • the method for producing a peptide of the present invention for example, since only a desired functional group can be selectively labeled, a desired peptide that is radiolabeled can be produced in a higher yield. Furthermore, according to the method for producing a peptide of the present invention, for example, the molecular probe for imaging of the present invention can be efficiently produced, and preferably the molecular probe for imaging of the present invention having high purity can be produced.
  • the functional group and the protecting group are the same as in the labeling method of the present invention, and the peptide synthesis, deprotection, radiolabeling and the like are performed in the same manner as the above-described labeling method of the present invention. be able to.
  • the labeling method of the present invention and the method for producing the peptide of the present invention will be described by taking as an example the case where the peptide to be labeled is a polypeptide of the above formula (25) and peptide synthesis is performed using the peptide solid phase synthesis method.
  • the functional groups a and b are amino groups
  • the amino acid having a functional group to be labeled (functional group a) in the side chain is the fourth lysine
  • the functional group not to be labeled (functional group b) is a side chain.
  • the amino acid provided for is the 19th lysine
  • the amino acids provided with the functional group c are aspartic acid, serine, glycine, glutamine, arginine, asparagine, and tryptophan.
  • the following description is merely an example, and it goes without saying that the present invention is not limited to this.
  • a peptide is synthesized using a protected amino acid in which the N-terminal ⁇ -amino group and the side chain functional group are protected by a protecting group.
  • Peptide synthesis can be performed using, for example, the Fmoc method. Specifically, it can be synthesized by fixing the carboxyl group of serine, which is the C-terminal amino acid, to a resin via a linker, and binding amino acids one by one from the C-terminal side to the N-terminal side.
  • Fmoc-amino acid derivatives used in usual Fmoc-peptide synthesis methods can be used.
  • amino acids Asp, Ser, Lys, Gln, Glu, Arg, Asn, Trp
  • the functional group is protected by a protective group according to the type of the functional group
  • An amino acid whose N-terminal ⁇ -amino group is protected by Fmoc can be used, and for other amino acids, an amino acid whose N-terminal ⁇ -amino group is protected by Fmoc can be used.
  • the protecting group for the functional group a (protecting group Y1) and the protecting group for the functional group c protecting group Y3
  • the 19th lysine not subjected to radiolabeling is a protecting group different from the protecting group Y1 of the amino group (functional group a) of the side chain of the 4th lysine that is the radiolabeling site, from the point of selective deprotection. It is preferable to use lysine in which the side chain amino group (functional group b) is protected by Y2.
  • a lysine whose side chain amino group is protected by a carbamate-based protecting group other than Fmoc is used, and as the 19th lysine, the side chain amino group is protected by a trityl-type protecting group. Lysine may be used.
  • the protecting group Y2 of the amino group (functional group b) of the 19th lysine side chain is deprotected and protected by the protecting group Z.
  • Deprotection removes the protecting group Y2 of the amino group (functional group b) of the 19th lysine side chain without deprotecting the amino group (functional group a) and functional group c of the 4th lysine side chain. It is preferable to protect. Deprotection can be appropriately performed according to the kind of the protecting group Y2 of the functional group b.
  • the protecting group is a trityl-type protecting group, it can be deprotected, for example, under mildly acidic conditions.
  • the reagent under weakly acidic conditions include a reagent containing trifluoroacetic acid.
  • the protecting group Z is a protecting group for the amino group (functional group b) on the side chain of the 19th lysine that has been deprotected, and is a protecting group different from the protecting group before the deprotection (protecting group Y2).
  • the protecting group Z is not particularly limited as long as it is a protecting group different from the protecting group (protecting group Y2) before deprotection, but Fmoc which is a protecting group (protecting group X) of the ⁇ -amino group at the N-terminus is preferable.
  • Fmoc can be introduced into the functional group b, for example, by reacting with N- (fluorenylmethoxycarbonyloxy) succinimide (FmocOSu) in the presence of an amine.
  • Deprotection can be performed according to a known method depending on the type of protecting group to be deprotected.
  • the deprotection is performed together with the excision of the peptide from the solid phase carrier.
  • the protecting group may be deprotected under the conditions for excision from the solid phase carrier.
  • the amino group (functional group a) on the side chain of the fourth lysine to be radiolabeled is deprotected, and the amino group (functional group b) on the side chain of the 19th lysine that is not radiolabeled.
  • the protecting group Y is protected by the protecting group Z, and the protecting group Y3 of the functional group c and the protecting group Y1 of the functional group a are deprotected, and the functional group b is protected by the protecting group Z. It is preferably protected.
  • Radiolabeling can be performed according to a known method according to the target radiolabeled peptide. Although it does not restrict
  • bond with the labeled compound which has group represented by the said Formula (I), and a metal radioisotope (metal nuclide) are mentioned.
  • the metal nuclide include 64 Cu, 67 Ga, 68 Ga, 82 Rb, 99m Tc, 111 In, and 186 Re.
  • chelate compound examples include diethylenetriaminepentaacetic acid (DTPA), 6-hydrazinopyridine-3-carboxylic acid (HYNIC), tetraazacyclododecanetetraacetic acid (DOTA), dithisosemicarbazone (DTS), diaminedithiol (DADT), mercaptoacetylglycylglycylglycine ( MAG3), monoamidemonoaminedithiol (MAMA), diamidedithiol (DADS), propylene diamine dioxime (PnAO) and the like.
  • DTPA diethylenetriaminepentaacetic acid
  • HYNIC 6-hydrazinopyridine-3-carboxylic acid
  • DTS dithisosemicarbazone
  • DADT diaminedithiol
  • MAG3 monoamidemonoaminedithiol
  • MAMA monoamidemonoaminedithiol
  • DADS diamidedithiol
  • PnAO
  • a labeled compound having a group represented by the above formula (I) is preferable, and a succinimidyl ester compound represented by the above formula (III) is more preferable. More preferably, it is a succinimidyl ester compound represented by the above formula (IV).
  • the remaining protecting groups attached to the peptide that is, the protecting group of the N-terminal amino group and the amino group (functional group b) of the side chain of the 19th lysine without radiolabeling are removed.
  • Deprotection can be carried out according to a known method depending on the kind of the protecting group.
  • the protecting group is Fmoc
  • the deprotection can be performed, for example, under piperidine conditions. Thereby, the molecular probe of the present invention can be produced.
  • a purification step or the like may be further included.
  • the purification step can be performed, for example, between the deprotection in (3) above and the radioactive label in (4) above.
  • it may include a step of modifying the N-terminal ⁇ -amino group with a non-charged modifying group and a step of amidating the C-terminal carboxyl group.
  • Binding Assay A molecular probe of the following formula (29) (SEQ ID NO: 29) in which the side chain amino group of the fourth lysine residue is labeled with [ 127 I] 3-iodobenzoyl group, and the N-terminal ⁇ -amino group is [ Binding assay was performed using a molecular probe (SEQ ID NO: 30) of the following formula (30) labeled with 127 I] 3-iodobenzoyl group.
  • the islets isolated from the mice were collected in a 50 ml tube, centrifuged (2000 rpm, 2 minutes), and then washed once with 20 ml of cold PBS.
  • Add 15 mL trypsin-EDTA (3 mL trypsin-EDTA (0.05% / 0.53 mM) plus 12 mL 0.53 mM EDTA (pH 7.4 (NaOH)) containing PBS) and shake at 37 ° C. Incubate for 1 minute and place immediately on ice. Then, after pipetting vigorously 20 times without foaming with a 10 mL pipette with a dropper, cold PBS was added to a final volume of 30 mL.
  • the plate was washed twice with 30 mL of cold PBS. The supernatant was removed to obtain a pancreatic islet cell sample. The obtained islet cell sample was stored at ⁇ 80 ° C.
  • the islet cell sample was suspended in Buffer (20 mM HEPES (pH 7.4), 1 mM MgCl 2 , 1 mg / ml bacitracin, 1 mg / ml BSA) so as to be 100 ⁇ L / tube.
  • Buffer (20 mM HEPES (pH 7.4), 1 mM MgCl 2 , 1 mg / ml bacitracin, 1 mg / ml BSA) so as to be 100 ⁇ L / tube.
  • the final concentration of [ 125 I] -labeled Bolton-HunterExendin (9-39) was 0.05 ⁇ Ci / tube.
  • a suction device in which a pre-moistened glass fiber filter (Whatman GF / C filter) was set, B / F separation was performed by suction, and then the filter was washed three times with 5 ml of ice-cold PBS. The filter was placed in a tube and the radioactivity was measured with a ⁇ counter.
  • All of the molecular probes of the following formula (30) labeled with an iodobenzoyl group inhibited the binding between the GLP-1 receptor and [ 125 I] Bolton-Hunter labeled Exendin (9-39) in a concentration-dependent manner.
  • the IC 50 of the molecular probe of the above formula (29) was 1.6 ⁇ 10 ⁇ 9 M
  • the IC 50 of the molecular probe of the above formula (30) was 1.4 ⁇ 10 ⁇ 9 M.
  • Example 1 The amino group on the side chain of the fourth lysine residue of SEQ ID NO: 1 is labeled with a [ 125 I] 3-iodobenzoyl group (hereinafter also referred to as “[ 125 I] IB label”), and Using a molecular probe (SEQ ID NO: 31) of the following formula (31) in which the carboxyl group is amidated, the distribution in the mouse was measured. First, a molecular probe of the following formula (31) was prepared as follows.
  • the side chain protecting group (the 19th lysine residue) of the 19 th lysine residue was first obtained by a conventional treatment using 1.5% TFA-5% TIS-93.55% CH 2 Cl 2. Mmt group) was removed, and the amino group in the side chain of the released 19th lysine residue was converted to Fmoc. Subsequently, removal of all protecting groups other than the Fmoc group of the 19th lysine residue and excision of the peptide from the resin were performed using 92.5% TFA-2.5% TIS-2.5% H 2 O-2. It was carried out by a conventional method using 5% ethanedithiol.
  • the obtained molecular probe precursor (950 ⁇ g) of the above formula (33) was dissolved in Borate Buffer (pH 7.8), and [ 125 I] N-succinimidyl 3-iodobenzoate (SIB) was added thereto, and the reaction solution was adjusted to pH 8. The labeling was carried out after adjusting to 5 to 9.0. Then, deprotection reaction was performed by adding Piperidine to obtain the target molecular probe of the above formula (31) (the molecular probe labeled with the fourth lysine residue of SEQ ID NO: 1). In the molecular probe of the above formula (31), the N-terminal ⁇ -amino group is unmodified.
  • FIG. 1A is a graph showing a change with time of accumulation of molecular probes in each organ
  • FIG. 1B is an enlarged graph of FIG. 1A.
  • the accumulation of the molecular probe of the formula (31) in the pancreas was 17.5% dose / g 5 minutes after administration and 25.4% dose 15 minutes after administration. / g, 45.4% dose / g 30 minutes after administration.
  • the molecular probe of the above formula (31) accumulates most in the pancreas, except for the lungs, in a time period of 15 to 120 minutes after administration, and the accumulation in the pancreas is maintained at a level exceeding 20% dose / g. It was.
  • the accumulation amount in the pancreas is more than 4.5 times the accumulation amount in the stomach, and the accumulation amount in the pancreas is more than 9 times the accumulation amount in the intestine.
  • the amount accumulated in the liver was 2.5 times or more.
  • the amount accumulated in the pancreas relative to the amount accumulated in the liver was 6.5 times or more. That is, it can be said that the molecular probe of the above formula (31) is specifically accumulated in the pancreas.
  • the molecular probe of the above formula (31) did not undergo deiodination metabolism in vivo. Thereby, it is considered that the molecular probe of the above formula (31) is suitable for pancreatic ⁇ cell imaging, in particular, noninvasive imaging of pancreatic ⁇ cells.
  • Bolton-Hunter-labeled Exendin (9-39) manufactured by Perkin Elmer is similar to the molecular probe represented by the above formula (34) in the 12th lysine residue (4 in the amino acid sequence of SEQ ID NO: 1).
  • the side chain amino group of lysine is known to be labeled (Suleiman Al-Sabah et al., The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists, FEBS Letters 553 (2003) 342-346).
  • the molecular probe of the above formula (31) of Example 1 labeled with [ 125 I] 3-iodobenzoyl group is represented by [ 125 I] 3-
  • the molecular probe of the above formula (34) of the comparative example labeled with a (3-iodo-4-hydroxyphenyl) propanoyl group accumulation in the pancreas was greater in all time zones.
  • the accumulation amount of the molecular probe of the formula (31) in the pancreas 30 minutes after administration was approximately twice the accumulation amount of the molecular probe of the formula (34) of the comparative example in the pancreas.
  • the molecular probe of the above-described formula (34) of the comparative example increases accumulation in the thyroid with time, and deiodinating metabolism is observed in vivo.
  • the molecular probe of the above formula (31) as shown in Table 1 and FIGS. 1A and B, increase in accumulation in the thyroid gland, that is, deiodinating metabolism in vivo was not observed.
  • the molecular probe of the above formula (31) labeled with [ 125 I] 3-iodobenzoyl group is the same as that of the comparative example labeled with [ 125 I] 3- (3-iodo-4-hydroxyphenyl) propanoyl group.
  • pancreas / liver ratio (the accumulation amount of the pancreas / the accumulation amount of the liver) for each probe is shown in Table 3 below.
  • the pancreas / kidney ratio (the amount of pancreas accumulated / the amount of kidney accumulated) is shown in Table 4 below.
  • the molecular probe of Example 1 (the molecular probe of the above formula (31)) has a significantly increased pancreas / liver ratio and pancreas / kidney ratio over time as compared with the molecular probe of Comparative Example. It became high.
  • the molecular probe of Example 1 (the molecular probe of the above formula (31)) exhibited a pancreas / liver ratio exceeding 6 times that of the molecular probe of the comparative example. .
  • FIG. 3 is a graph showing the amount of accumulation (% dose / g) with pre-administration and the amount of accumulation (% dose / g) of control (without pre-administration).
  • pre-administration of a cold probe to inhibit binding to the GLP-1 receptor inhibited the uptake of the molecular probe of the formula (31) into the pancreas by about 92.2%. It was observed. Therefore, it can be said that the molecular probe of the above formula (31) specifically binds to the GLP-1 receptor, particularly the islet GLP-1 receptor.
  • MIP-GFP mouse human insulin I gene promoter
  • a DPP (dipeptidyl peptidase) IV inhibitor was administered intravenously to an unanesthetized MIP-GFP mouse (male, body weight 20 g) (6 mg / mL 0.1 mL).
  • GLP-1 was administered (0.5 mg / mL was 0.1 mL), and immediately thereafter, the molecular probe (1 ⁇ Ci) of the above formula (31) was administered by intravenous injection.
  • An example of the results of Controls 1-1 and 1-2 is shown in FIG. 4 together with the results of Example 1 above.
  • FIG. 4 shows an example of the result of image analysis of an islet section of a MIP-GFP mouse administered with the molecular probe of the above formula (31).
  • a section 30 minutes after administration of the molecular probe of the above formula (31), 31 is an image showing fluorescence signals (a) and radioactive signals (b) of a section 60 minutes after administration of the molecular probe, a section of control 1-1, and a section of control 1-2.
  • a fluorescent GFP signal was observed by the image analysis apparatus in the pancreas section of any MIP-GFP mouse.
  • FIG. 4 (b) from the section of control 1-1 administered with the cold probe and the section of control 1-2 administered with GLP-1 before the molecular probe of the above formula (31) was administered, Little signal was detected. From this, it was observed that the uptake of the molecular probe of the formula (31) was inhibited by administering the cold probe or GLP-1 to inhibit the binding to the receptor. Further, as shown in FIGS. 4 (a) and (b), the localization of the radioactive signal detected from the labeled molecular probe of the formula (31) was consistent with the GFP signal. From this, it was confirmed that the molecular probe of the formula (31) was specifically accumulated in pancreatic ⁇ cells.
  • 125 I, 123 I and 131 I are all ⁇ -ray emitting nuclides. Furthermore, 125 I and 123 I have the same nuclear spin number. Therefore, even when the radioactive iodine atom ( 125 I) used for labeling the molecular probe of the formula (31) is 123 I or 131 I, the molecular probe of the formula (31) It is estimated that the behavior is almost the same. Even if it is 124 I, it is estimated that the behavior is almost the same as that of the molecular probe of the above formula (31).
  • 125 I of the molecular probe of formula (31) is 123 I, 124 I, or 131 I, for example, non-invasive three-dimensional pancreatic ⁇ cells in SPECT, PET, etc. It was suggested that imaging, preferably pancreatic ⁇ -cell quantification, is possible.
  • Example 2 A molecular probe of the following formula (35) in which the N-terminal ⁇ -amino group of SEQ ID NO: 5 is labeled with [ 125 I] 3-iodobenzoyl group and the C-terminal carboxyl group is amidated (SEQ ID NO: 35 ) was used to measure the biodistribution of mice.
  • a molecular probe of the following formula (35) was prepared in the same manner as in Example 1 except that the amino group to be labeled was an ⁇ -amino group at the N-terminus.
  • An example of the results is shown in Table 5 below and FIGS.
  • FIG. 5A is a graph showing the change over time of the accumulation of molecular probes in each organ
  • FIG. 5B is an enlarged graph of FIG. 5A.
  • the accumulation amount in the pancreas with respect to the accumulation amount in the stomach was 3 times or more, and the accumulation amount in the pancreas with respect to the accumulation amount in the intestine was 11 times or more. Further, in the time zone of 60 to 120 minutes after administration, the amount of accumulation in the pancreas was more than twice the amount of accumulation in the liver. That is, it can be said that the molecular probe of the above formula (35) is specifically accumulated in the pancreas. Moreover, since there was no significant change in accumulation in the thyroid gland, it was suggested that the molecular probe of the above formula (35) did not undergo deiodination metabolism in vivo. Thereby, it is considered that the molecular probe of the above formula (35) is suitable for imaging of pancreatic ⁇ cells, particularly noninvasive imaging of pancreatic ⁇ cells.
  • the molecular probe of Example 2 (the molecular probe of the above formula (35)) has a significantly increased pancreas / liver ratio and pancreas / kidney ratio over time as compared with the molecular probe of Comparative Example. It became high.
  • the molecular probe of Example 2 in which the ratio of the amount of accumulation in the pancreas to the peripheral organ of the pancreas is high and the accumulation in the peripheral organ of the pancreas is small, a clear pancreas image can be obtained when imaging. It was suggested that
  • FIG. 6 shows an example of the result of image analysis of an islet section of a MIP-GFP mouse administered with the molecular probe of the above formula (35).
  • fluorescence signal (a) and radioactive signal (b) about the section
  • a fluorescent GFP signal was observed by an image analyzer in the pancreas section of any MIP-GFP mouse.
  • FIG. 6 (b) almost no radioactive signal was detected from the section of Control 2 to which the cold probe was administered before the molecular probe of the above formula (35) was administered. From this, it was observed that the uptake of the molecular probe of the formula (35) was inhibited by pre-administering a cold probe to inhibit the binding to the GLP-1 receptor.
  • the localization of the radioactive signal detected from the labeled molecular probe of the formula (35) was consistent with the GFP signal. From this, it was confirmed that the molecular probe of the above formula (35) was specifically accumulated in pancreatic ⁇ cells.
  • 125 I, 123 I and 131 I are all ⁇ -ray emitting nuclides. Furthermore, 125 I and 123 I have the same nuclear spin number. Therefore, even when the radioactive iodine atom ( 125 I) used for labeling the molecular probe of the above formula (35) is 123 I or 131 I, the molecular probe of the above formula (35) It is estimated that the behavior is almost the same. Even if it is 124 I, it is estimated that the behavior is almost the same as the molecular probe of the above formula (35).
  • 125 I of the molecular probe of the above formula (35) is 123 I, 124 I or 131 I, for example, non-invasive three-dimensional pancreatic ⁇ cells in SPECT, PET, etc. It was suggested that imaging, preferably pancreatic ⁇ -cell quantification, is possible.
  • the molecular probe for imaging according to the present invention enables non-invasive three-dimensional imaging of the pancreas, particularly non-invasive pancreatic ⁇ cells.
  • Example 3 The amino group on the side chain of the fourth lysine residue of SEQ ID NO: 1 is labeled with a [ 123 I] 3-iodobenzoyl group (hereinafter also referred to as “[ 123 I] IB label”), and at the C-terminal Using a molecular probe of the following formula (36) (SEQ ID NO: 36) in which the carboxyl group is amidated, the distribution in the mouse was measured. First, the molecular probe of the following formula (36) was obtained by using the molecular probe precursor of the above formula (33) except that [ 123 I] SIB was used instead of [ 125 I] SIB. It was prepared in the same manner as the probe.
  • the mouse was subjected to SPECT imaging using the prepared molecular probe of the above formula (36).
  • the prepared molecular probe of the above formula (36) (498 ⁇ Ci) was administered to anesthetized 5-week-old ddy mice (male, body weight 25 g) by intravenous injection.
  • SPECT imaging was performed.
  • the SPECT imaging was performed using a gamma camera (product name: SPECT2000H-40, manufactured by Hitachi Medical) under the following imaging conditions for 30 to 21 minutes after administration.
  • the obtained image was subjected to reconstruction processing under the following reconstruction conditions.
  • Imaging conditions Collimator LEPH pinhole collimator detector collection angle: 11.25 ° / 360 ° in 40 seconds Collection time: 40 seconds x 32 frames, 21 minutes Reconstruction condition ⁇ br/> Preprocessing filter: Butterworth filter (order: 10, cutoff frequency: 0.12)
  • FIG. 7A is a transverse view
  • FIG. 7B is a coronal view
  • FIG. 7C is a sagittal view.
  • FIGS. 7A-C the position of the pancreas is indicated by an arrow. Note that the contrasts in FIGS. 7A to 7C are the same.
  • the position of the pancreas could be confirmed non-invasively in the mouse by using the molecular probe of the above formula (36). That is, it was confirmed that non-invasive three-dimensional imaging of pancreatic islets is possible with the molecular probe of the present invention.
  • the pancreas size was smaller than that of humans and the position of the pancreas was confirmed non-invasively in a mouse where the organs were densely packed, the pancreas size was larger than that of the mouse, and the organ was It was suggested that a non-congested human can, for example, more clearly determine the position of the islets and the size of the pancreas and further measure the expression level of the probe in the pancreas. Therefore, it was suggested that the molecular probe for imaging of the present invention can perform non-invasive pancreatic three-dimensional imaging, particularly non-invasive pancreatic ⁇ -cell three-dimensional imaging in humans.
  • the present invention is useful in, for example, the medical field, the field of molecular imaging, and the field related to diabetes.
  • SEQ ID NOs: 1-12 Amino acid sequences of molecular probes for imaging of the present invention
  • SEQ ID NOs: 13-24 Amino acid sequences of molecular probe precursors for imaging of the present invention
  • SEQ ID NOs: 25-28 of peptides used in the labeling method of the present invention
  • Amino acid sequence SEQ ID NO: 29 to 30 Amino acid sequence of molecular probe used in Binding Assay
  • SEQ ID NO: 33 Amino acid sequence of the molecular probe precursor used for production of the molecular probe for imaging of Example 1
  • SEQ ID NO: 34 Amino acid sequence of the molecular probe of Comparative Example SEQ ID NO: 35: Molecular for imaging of Example 2
  • Probe amino acid sequence SEQ ID NO: 36 Actual Am

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

膵島イメージング用分子プローブの提供。下記式(1)、(5)及び(9)のいずれかで表されるポリペプチド又は前記ポリペプチドと相同性を有するポリペプチドを含む分子プローブ。 Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2(1) Z-DLSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2(5) B-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2(9) [上記式(1)及び(5)における「X」及び上記式(9)における「B-」は、アミノ基が下記式(I)で表される芳香環を含む基によって標識されていることを示す。][前記式(I)において、Aは芳香族炭化水素基又は芳香族複素環基を示し、Rは放射性ヨウ素を含む置換基を示し、Rは水素原子又はRとは異なる置換基を示し、Rは結合手、メチレン基又はオキシメチレン基を示す。]

Description

膵島イメージング用分子プローブ及びその使用
 本発明は、膵島イメージング用分子プローブ及びその使用に関する。
 現在、日本における2型糖尿病は推定820万人を越えて増加し続けている。この対策として耐糖能検査を基準とした糖尿病発症前の介入が行われているが、充分な成果が得られていない。その原因として、耐糖能検査で機能異常が明らかとなる境界型の段階では膵島の障害はすでに高度に進行しており、介入開始時期としては遅い可能性がある。
 すなわち、糖尿病の発症過程では、膵島量(とりわけ、膵β細胞量)が耐糖能異常に先行して減少するため、機能異常が検出・自覚される段階に至ってからでは、糖尿病はすでに治療が難しい段階となっている。一方、膵島量及び/又は膵β細胞量の減少を早期に発見することができれば、糖尿病を予防・治療できる可能性がある。したがって、糖尿病の予防・診断を行うために非侵襲の膵島イメージング技術、とりわけ膵島量及び又は膵β細胞量を測定するための非侵襲の膵島イメージング技術が望まれている。その中でも、膵島、好ましくは、膵β細胞のイメージングや膵β細胞量の測定を非侵襲的に可能とする分子プローブが特に望まれている。
 膵島のイメージング用分子プローブの設計において、β細胞に特異的な機能性タンパク質を中心に、膵島細胞における様々な標的分子が検討されている。中でも、標的分子として、膵β細胞に分布し、かつ、7回膜貫通型のG-タンパク質共役受容体であるGLP-1R(グルカゴン様ペプチド1受容体)が検討されている。
 GLP-1Rを標的分子とする膵島β細胞のイメージング用分子プローブとして、例えば、GLP-1RアンタゴニストであるExendin-4(9-39)の誘導体を[18F]フッ素で標識した分子プローブが検討されている(例えば、非特許文献1)。
 また、その他にGLP-1Rを標的分子とするイメージング用分子プローブとして、GLP-1R陽性の腫瘍をイメージングするための分子プローブが検討されている。GLP-1R陽性腫瘍のイメージング用分子プローブとしては、例えば、GLP-1RアゴニストであるExendin-4の誘導体をジエチレントリアミン五酢酸(DTPA)を介して[111In]インジウムで標識した分子プローブや、GLP-1RアンタゴニストであるExendin-4(9-39)の誘導体をDTPAを介して[111In]インジウムで標識した分子プローブが検討されている(例えば、非特許文献2)。
 しかしながら、非侵襲的な膵島の三次元イメージングが可能なさらなる膵島イメージング用分子プローブが求められている。
H. Kimura et al. Development of in vivo imaging agents targeting glucagons-like peptide-1 receptor (GLP-1R) in pancreatic islets. 2009 SNM Annual Meeting, abstract, Oral Presentations No.326 M. Beche et al. Are radiolabeled GLP-1 receptor antagonists useful for scintigraphy? 2009 SNM Annual Meeting, abstract, Oral Presentations No.327
 そこで、本発明は、非侵襲的な膵島の三次元イメージングが可能な膵島イメージング用分子プローブを提供する。
 本発明は、膵島のイメージングに用いられる分子プローブであって、
 下記式(1)~(12)のいずれかで表されるポリペプチド、
 下記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチド、又は、
 下記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含む膵島イメージング用分子プローブに関する。
 Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (1)  (配列番号1)
  Z-LSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (2)  (配列番号2)
   Z-SXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (3)  (配列番号3)
    Z-XQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (4)  (配列番号4)
 Z-DLSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (5)  (配列番号5)
  Z-LSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (6)  (配列番号6)
   Z-SKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (7)  (配列番号7)
    Z-KQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (8)  (配列番号8)
 B-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (9)  (配列番号9)
  B-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (10) (配列番号10)
   B-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (11) (配列番号11)
    B-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (12) (配列番号12)
[上記式(1)~(8)において、「Z-」は、N末端のα-アミノ基が、非修飾であるか、又は、電荷を有さない修飾基により修飾されていることを示し、「X」は、側鎖のアミノ基が、下記式(I)で表される芳香環を含む基によって標識されたリジン残基を示し、
上記式(9)~(12)において、「B-」は、N末端のα-アミノ基が、下記式(I)で表される芳香環を含む基によって標識されていることを示し、
上記式(1)~(12)において、「-NH2」は、C末端のカルボキシル基が、アミド化されていることを示す。]
Figure JPOXMLDOC01-appb-C000004
[前記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示し、Rは、水素原子、又は、Rとは異なる1又は複数の置換基を示し、Rは、結合手、メチレン基及びオキシメチレン基のいずれかを示す。]
 本発明によれば、例えば、ポジトロン放射断層撮影法(PET)やシングルフォトン放射線コンピュータ断層撮影法(SPECT)などにより、膵島のイメージング、好ましくは膵島の三次元イメージング、より好ましくは非侵襲の膵島イメージングが可能となる。
図1A及びBは、実施例1のイメージング用分子プローブの体内分布の経時変化を示すグラフの一例である。 図2A及びBは、比較例の分子プローブの体内分布の経時変化を示すグラフの一例である。 図3は、実施例1の分子プローブを用いたblocking実験の結果の一例を示すグラフである。 図4は、実施例1のイメージング用分子プローブを用いた膵島切片のイメージ解析の結果の一例を示す。 図5A及びBは、実施例2のイメージング用分子プローブの体内分布の経時変化を示すグラフの一例である。 図6は、実施例2のイメージング用分子プローブを用いた膵臓切片のイメージ解析の結果の一例を示す。 図7は、実施例3のイメージング用分子プローブを用いたSPECT画像の一例である。
 膵島の直径は、例えば、ヒトの場合、50~500μm程度である。このような膵島を生体内において非侵襲的に画像化又は定量化するためには、例えば、膵島に特異的に集積して周囲臓器とのコントラストを生じさせることが可能な分子プローブが必要であると考えられている。このため、様々な分子プローブの研究・開発が行われている。
 例えば、非特許文献2(M. Beche et al.)では、GLP-1R陽性腫瘍及び膵島細胞における、Lys40(Ahx-DTPA-111In)Exendin(9-39)のGLP-1R親和性の研究が行われている。そして、Lys40(Ahx-DTPA-111In)Exendin(9-39)の膵島への集積は0.4%程度であり、GLP-1R陽性腫瘍細胞への集積でも7.5%程度であり、すなわち、Lys40(Ahx-DTPA-111In)Exendin(9-39)はGLP-1Rへの親和性が低いという結果が得られている。
 また、その他に、市販の[125I]Bolton-Hunter標識Exendin(9-39)(Perkin Elmer社)を用い、GLP-1Rを標的分子として膵β細胞を検出することが試みられている(E. Mukai et al. Non-invasive imaging of pancreatic islets targeting glucagon-like peptide-1 receptors, 44thEASD Annual Meeting Rome 2008, abstract, Presentation No.359(以下、「非特許文献3」という))。[125I]Bolton-Hunter標識Exendin(9-39)(以下、「BH標識プローブ」ともいう)をマウスに尾静脈より投与すると、投与後60分及び120分でのBH標識プローブの膵臓への集積が、肺以外のその他の臓器と比較して最も高いという結果が得られている。一方で、我々の実験によると、[125I]Bolton-Hunter標識Exendin(9-39)を投与後、時間の経過とともにBH標識プローブの首(甲状腺)への集積が増加するという結果が得られている(例えば、本明細書の図2参照)。首(甲状腺)への集積の増加は、投与したBH標識プローブから放射性ヨウ素が生体内で脱離し、脱離した放射性ヨウ素が甲状腺に蓄積したことを意味する。125I等の放射性ヨウ素は、甲状腺に蓄積しやすく、また、甲状腺に蓄積すると、例えば、甲状腺ガン等の原因となることが知られている。このため、放射性ヨウ素を放射性核種として用いたイメージング用分子プローブにおいて、脱離した放射性ヨウ素の首(甲状腺)への集積が低いこと、つまり、生体内における放射性ヨウ素の脱離が低く、生体安定性に優れる分子プローブが好ましい。
 したがって、例えば、膵島に特異的に集積して周囲臓器とのコントラストを生じさせることが可能な新たな分子プローブであって、生体内における放射性ヨウ素の脱離が抑制された分子プローブが求められていることが現状である。
 本発明は、上記式(I)で表される基によって標識されたイメージング用分子プローブによれば、例えば、PETやSPECT等により非侵襲の膵島三次元イメージングが可能になり、かつ、プローブからの放射性ヨウ素の脱離が抑制される、という知見に基づく。すなわち、本発明は、膵島の非侵襲的な三次元イメージングを可能にするという効果を好ましくは奏する。また、本発明は、好ましくは、非特許文献1、2及び3に記載されている分子プローブと比較して膵島により特異的に集積させることができるため、膵島の定量用イメージングを行うことができるという効果を奏しうる。
 また、上記したとおり、糖尿病の発症過程では、耐糖能異常に先行して膵島量が減少することが知られている。このため、膵島イメージング及び又は膵島量の測定を行うことにより、例えば、糖尿病の発症前や初期の状態で、膵島の微小な変化を見つけることができることから、本発明のイメージング用分子プローブによれば、糖尿病の超早期発見・診断が可能になる。このため、本発明のイメージング用分子プローブは、糖尿病の予防・早期発見・診断、好ましくは糖尿病の超早期発見・診断に有用である。
 すなわち、本発明は、
[1] 膵島のイメージングに用いられる分子プローブであって、下記式(1)~(12)のいずれかで表されるポリペプチド、下記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチド、又は、下記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含む膵島イメージング用分子プローブ、
 Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (1)  (配列番号1)
  Z-LSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (2)  (配列番号2)
   Z-SXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (3)  (配列番号3)
    Z-XQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (4)  (配列番号4)
 Z-DLSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (5)  (配列番号5)
  Z-LSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (6)  (配列番号6)
   Z-SKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (7)  (配列番号7)
    Z-KQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (8)  (配列番号8)
 B-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (9)  (配列番号9)
  B-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (10) (配列番号10)
   B-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (11) (配列番号11)
    B-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (12) (配列番号12)
[上記式(1)~(8)において、「Z-」はN末端のα-アミノ基が非修飾であるか又は電荷を有さない修飾基により修飾されていることを示し、「X」は側鎖のアミノ基が下記式(I)で表される芳香環を含む基によって標識されたリジン残基を示し、上記式(9)~(12)において、「B-」はN末端のα-アミノ基が下記式(I)で表される芳香環を含む基によって標識されていることを示し、上記式(1)~(12)において、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。]
Figure JPOXMLDOC01-appb-C000005
[前記式(I)において、Aは芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R123I、124I、125I及び131Iのいずれかを含む置換基を示し、Rは水素原子又はRとは異なる1又は複数の置換基を示し、Rは結合手、メチレン基及びオキシメチレン基のいずれかを示す。];
[2] 前記芳香環を含む基は、下記式(II)で表される基である[1]記載の膵島イメージング用プローブ、
Figure JPOXMLDOC01-appb-C000006
[前記式(II)において、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示す。];
[3] 膵島のイメージングを行うためのキットであって、[1]又は[2]に記載の膵島イメージング用分子プローブを含むキット;
[4] 前記膵島イメージング用分子プローブを注射液の形態で含有する[3]記載のキット;
[5] 膵島のイメージングを行うための試薬であって、[1]又は[2]に記載の膵島イメージング用分子プローブを含む、膵島イメージング用試薬;
[6] 膵島のイメージング方法であって、[1]又は[2]に記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出することを含む膵島のイメージング方法;
[7] さらに、前記膵島イメージング用分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含む[6]記載の膵島のイメージング方法;
[8] [1]又は[2]に記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出すること、及び、検出した膵島イメージング用分子プローブのシグナルから膵島量を算出することを含む膵島量の測定方法;
[9] さらに、算出した膵島量を提示することを含む[8]記載の膵島量の測定方法;
[10] [1]又は[2]に記載の膵島イメージング用分子プローブの製造方法であって、膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含み、前記膵島イメージング用分子プローブ前駆体が、下記式(13)~(24)のいずれかで表されるポリペプチド、下記式(13)~(24)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、下記式(13)~(24)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドを含む膵島イメージング用分子プローブ前駆体である、膵島イメージング用分子プローブの製造方法、
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (13)  (配列番号13)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (14)  (配列番号14)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (15)  (配列番号15)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (16)  (配列番号16)
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (17)  (配列番号17)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (18)  (配列番号18)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (19)  (配列番号19)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (20)  (配列番号20)
   DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (21)  (配列番号21)
    LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (22)  (配列番号22)
     SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (23)  (配列番号23)
      KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (24)  (配列番号24)
[上記式(13)~(20)において、「*-」はN末端のα-アミノ基が保護基により保護されているか又は電荷を有さない修飾基により修飾されていることを示し、上記式(13)~(24)において、「K*」はリジンの側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。];
[11] 前記膵島イメージング用分子プローブ前駆体の標識化が、下記式(I)で表される芳香環を含む基を有する標識化合物により標識化することを含む、[10]記載の膵島イメージング用分子プローブの製造方法、
Figure JPOXMLDOC01-appb-C000007
[前記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示し、Rは、水素原子、又は、Rとは異なる1又は複数の置換基を示し、Rは、結合手、メチレン基及びオキシメチレン基のいずれかを示す。];
[12] 放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有するペプチドを放射性標識する方法であって、N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いてペプチドの合成を行うこと、合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、得られたペプチドを標識化合物を用いて放射性標識すること、及び放射性標識したペプチドの保護基を脱保護することを含む標識方法;
[13] 放射性標識されたペプチドを製造する方法であって、前記ペプチドは、放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有し、前記方法は、N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いて放射性標識するペプチドを合成すること、合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、得られたペプチドを標識化合物を用いて放射性標識すること、及び放射性標識したペプチドの保護基を脱保護することを含む製造方法;
に関する。
 [膵島イメージング]
 本明細書において「膵島イメージング」とは、膵島の分子イメージング(molecular imaging)であって、in vivoの膵島の空間的及び/又は時間的分布を画像化することを含む。また、本発明において、膵島イメージングは、糖尿病に関する予防・治療・診断の観点から、膵β細胞を標的分子とすることが好ましく、より好ましくは膵島のGLP-1受容体を標的分子とすることである。さらに、本発明において、膵島イメージングは、膵島量の定量性及びヒトに適用するという観点から、非侵襲での三次元のイメージングであることが好ましい。イメージングの方法としては、非侵襲の膵島イメージングが可能な方法であれば特に制限されず、例えば、ポジトロン放射断層撮影法(PET)、シングルフォトン放射線コンピュータ断層撮影法(SPECT)などを利用する方法が挙げられる。これらの中でも、本発明の分子プローブを利用し、膵島量の定量を行う観点からはPET及びSPECTが好ましい。
 [本発明のイメージング用分子プローブ]
 本発明のイメージング用分子プローブは、膵島イメージングに用いるポリペプチドであって、上記式(1)~(12)のいずれかで表されるポリペプチドを含む膵島イメージング用分子プローブであり、好ましくは、上記式(1)~(12)のいずれかで表されるポリペプチド、上記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって膵島に結合可能なポリペプチド、又は、上記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって膵島に結合可能なポリペプチドからなる膵島イメージング用分子プローブである。
 上記式(1)~(12)のポリペプチドのアミノ酸配列は、それぞれ、配列表の配列番号1~12に記載のアミノ酸配列である。上記式(1)のポリペプチドの第4番目のリジンの側鎖のアミノ基、上記式(2)のポリペプチドの第3番目のリジンの側鎖のアミノ基、上記式(3)のポリペプチドの第2番目のリジンの側鎖のアミノ基、及び上記式(4)のポリペプチドの第1番目のリジンの側鎖のアミノ基は、上記式(I)で表される芳香環を含む基で標識されている。上記式(5)のポリペプチドの第19番目のリジンの側鎖のアミノ基、上記式(6)のポリペプチドの第18番目のリジンの側鎖のアミノ基、上記式(7)のポリペプチドの第17番目のリジンの側鎖のアミノ基、及び上記式(8)のポリペプチドの第16番目のリジンの側鎖のアミノ基は、上記式(I)で表される芳香環を含む基で標識されている。上記式(9)~(12)のポリペプチドのN末端のα-アミノ基は、上記式(I)で表される芳香環を含む基で標識されている。また、上記式(1)~(8)のポリペプチドのN末端のα-アミノ基は、非修飾であるか又は電荷を有さない修飾基により修飾されている。上記式(1)~(12)のポリペプチドのC末端のカルボキシル基は、膵β細胞との結合性の向上の観点から、アミノ基によりアミド化されている。
 ここで、上記式(1)(配列表の配列番号1)及び上記式(5)(配列表の配列番号5)のアミノ酸配列は、リジンの側鎖のアミノ基に結合する上記式(I)で表される芳香環を含む基及びN末端のα-アミノ基に結合しうる修飾基を除けば、エキセンジン(9-39)のアミノ酸配列と一致する。また、上記式(9)(配列表の配列番号9)のアミノ酸配列は、N末端のα-アミノ基に結合する上記式(I)で表される芳香環を含む基を除けば、エキセンジン(9-39)のアミノ酸配列と一致する。エキセンジン(9-39)は、膵β細胞上に発現するGLP-1R(グルカゴン様ペプチド-1の受容体)に結合することが知られている。このため、本発明のイメージング用分子プローブも、膵島、好ましくは膵β細胞に結合可能である。
 本明細書において「膵島に結合可能」とは、膵島量の定量性及び検査・診断の用途の観点から、本発明のイメージング用分子プローブが膵β細胞に結合可能であることが好ましく、少なくとも膵臓において膵β細胞に特異的であることがより好ましく、少なくともヒトに対する非侵襲的なイメージングにおけるシグナル検出において他の器官・組織とシグナルが重ならない程度に特異的であることがさらに好ましい。
 本発明のイメージング用分子プローブは、その他の実施形態として、膵島イメージングに用いるポリペプチドであって、上記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチドを含み得る。ここで、前記1~数個とは、1~10、1~9、1~8、1~7、1~6、1~5、1~4、1~3、1~2、及び1個を含みうる。この実施形態の本発明のイメージング用分子プローブにおいて、上記式(1)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドである場合は、上記式(I)で表される芳香環を含む基で標識化されるリジンを1つ含み、かつ、C末端のカルボキシル基のアミド化を含むことが好ましい。また、N末端のα-アミノ基が、非修飾であってもよいし、電荷を有さない修飾基により修飾されていてもよい。上記式(9)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドである場合は、N末端のα-アミノ基が上記式(I)で表される芳香環を含む基で標識化され、かつ、その他の標識基を含まないことが好ましい。また、C末端のカルボキシル基のアミド化を含むことが好ましい。上記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドは、上記式(1)~(12)のポリペプチドと同様の作用効果を有することが好ましく、より好ましくは上記式(1)のポリペプチド又は上記式(9)のポリペプチドと同様の作用効果を有することである。
 また、本発明のイメージング用分子プローブは、さらにその他の実施形態として、膵島イメージングに用いるポリペプチドであって、上記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含み得る。ここで、前記相同性とは、当業者が通常用いるアルゴリズム、例えば、BLAST又はFASTAなどで算出されるものでよく、あるいは、比較する2つのポリペプチドの同一アミノ酸残基の数を一方のポリペプチド全長で除して得られる数に基づいてもよい。前記相同性は、85%以上、90%以上、95%以上を含みうる。この実施形態の本発明のイメージング用分子プローブにおいても、上記式(1)~(8)のポリペプチドと80%以上の相同性を有するポリペプチドである場合は、上記式(I)で表される芳香環を含む基で標識化されるリジンを1つ含み、かつ、C末端のカルボキシル基のアミド化を含むことが好ましい。また、N末端のα-アミノ基は、非修飾であってもよいし、電荷を有さない修飾基により修飾されていてもよい。上記式(9)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドである場合は、N末端のα-アミノ基が上記式(I)で表される芳香環を含む基で標識化され、かつ、その他の標識基を含まないことが好ましい。また、C末端のカルボキシル基のアミド化を含むことが好ましい。上記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドは、上記式(1)~(12)のポリペプチドと同様の作用効果を有することが好ましく、より好ましくは上記式(1)のポリペプチド又は上記式(9)のポリペプチドと同様の作用効果を有することである。
 本発明のイメージング用分子プローブは、上記のとおり、膵島イメージングに用いられるものであって、ヒトの検査・診断の用途の観点から非侵襲性の膵島イメージングに用いられることが好ましく、より好ましくは非侵襲性の膵β細胞イメージングに用いられることであり、さらに好ましくは膵β細胞のGLP-1受容体イメージングに用いられることである。また、本発明のイメージング用分子プローブは、同様の観点から膵島量を定量するための膵島イメージングに用いられることが好ましく、より好ましくは膵島量を定量するための膵β細胞イメージングに用いられることであり、さらに好ましくは膵島量を定量するための膵β細胞のGLP-1受容体イメージングに用いられることである。さらに、本発明のイメージング用分子プローブは、糖尿病の予防、治療又は診断のための膵島イメージングに用いられることが好ましい。これらの膵島イメージングは、例えば、PET又はSPECTにより行われてもよい。
 [リジン残基の側鎖のアミノ基又はN末端のα-アミノ基を標識する基]
 本発明のイメージング用分子プローブにおいて、上記式(1)~(8)のポリペプチドのアミノ酸配列においてXで表されるリジン残基の側鎖のアミノ基、及び上記(9)~(12)のポリペプチドにおけるN末端のα-アミノ基は、下記式(I)で表される芳香環を含む基によって標識されている。
Figure JPOXMLDOC01-appb-C000008
 上記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示す。芳香族炭化水素基は、炭素数6~18の芳香族炭化水素基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,4-キシリル基、p-クメニル基、メシチル基、1-ナフチル基、2-ナフチル基、1-アンスリル基、2-アンスリル基、9-アンスリル基、1-フェナンスリル基、9-フェナンスリル基、1-アセナフチル基、2-アズレニル基、1-ピレニル基、2-トリフェニレニル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、ターフェニル基等が挙げられる。芳香族複素環基は、窒素原子、酸素原子又は硫黄原子を1又は2個有し、かつ、5~10員の複素環基が好ましく、例えば、トリアゾリル基、3-オキサジアゾリル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、1-ピローリル基、2-ピローリル基、3-ピローリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、2-オキサゾリル基、3-イソオキサゾリル基、2-チアゾリル基、3-イソチアゾリル基、2-イミダゾリル基、3-ピラゾリル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、2-キノキサリニル基、2-ベンゾフリル基、2-ベンゾチエニル基、N-インドリル基、N-カルバゾリル基等が挙げられる。これらの中でも、Aは、フェニル基、トリアゾリル基、ピリジル基が好ましく、フェニル基がより好ましい。
 上記式(I)において、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示す。Rとしては、例えば、[123I]ヨウ素原子、[124I]ヨウ素原子、[125I]ヨウ素原子、[131I]ヨウ素原子、[123I]ヨウ素で置換されたC-Cアルキル基、[124I]ヨウ素で置換されたC-Cアルキル基、[125I]ヨウ素で置換されたC-Cアルキル基、[131I]ヨウ素で置換されたC-Cアルキル基、[123I]ヨウ素で置換されたC-Cアルコキシ基、[124I]ヨウ素で置換されたC-Cアルコキシ基、[125I]ヨウ素で置換されたC-Cアルコキシ基、及び[131I]ヨウ素で置換されたC-Cアルコキシ基等が挙げられる。本明細書において「C-Cアルキル基」とは、1~3個の炭素原子を有するアルキル基のことをいい、メチル基、エチル基、プロピル基等が挙げられる。本明細書において「[123I]ヨウ素、[124I]ヨウ素、[125I]ヨウ素又は[131I]ヨウ素で置換されたC-Cアルキル基」とは、1~3個の炭素原子を有し、かつ、1個の水素原子が[123I]ヨウ素原子、[124I]ヨウ素原子、[125I]ヨウ素原子又は[131I]ヨウ素原子によって置換されたアルキル基のことをいう。本明細書において「C-Cアルコキシ基」とは、1~3個の炭素原子を有するアルコキシ基のことをいい、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。本明細書において「[123I]ヨウ素、[124I]ヨウ素、[125I]ヨウ素又は[131I]ヨウ素で置換されたC-Cアルコキシ基」とは、1~3個の炭素原子を有し、かつ、1個の水素原子が[123I]ヨウ素原子、[124I]ヨウ素原子、[125I]ヨウ素原子又は[131I]ヨウ素原子によって置換されたアルコキシ基のことをいう。Rは、PETを行う観点からは、ポジトロンを放出する124Iを含む置換基が好ましい。また、SPECTを行う観点からは、Rは、γ線を放出する123I又は125Iを含む置換基が好ましく、放出するエネルギー量の点からは、123Iを含む置換基がより好ましい。Rは、[123I]ヨウ素原子、[124I]ヨウ素原子、[123I]ヨウ化メチル基、[124I]ヨウ化メチル基、[123I]ヨウ化メトキシ基及び[124I]ヨウ化メトキシ基が好ましく、より好ましくは[123I]ヨウ素原子及び[124I]ヨウ素原子である。上記式(I)において、Rは、定量性の観点からは、オルト位、メタ位、パラ位のいずれかで置換されていることが好ましく、より好ましくはメタ位又はパラ位のいずれかである。
 上記式(I)において、Rは、水素原子若しくはRとは異なる1又は複数の置換基を示す。Rは、水素原子であっても、置換基であってもよいが、水素原子であることが好ましい。つまり、上記式(I)において、Aは、R以外の置換基で置換されていないことが好ましい。Rが複数の置換基である場合、それらは、同一であっても良いし、異なっていてもよい。置換基としては、例えば、水酸基、電子求引性基、電子供与性基、C-Cアルキル基、C-Cアルケニル基、C-Cアルキニル基等が挙げられる。電子求引性基としては、シアノ基、ニトロ基、ハロゲン原子、カルボニル基、スルホニル基、アセチル基、フェニル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。本明細書において「C-Cアルキル基」とは、1~6個の炭素原子を有するアルキル基のことをいい、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基が挙げられる。本明細書において「C-Cアルケニル基」とは、2~6個の炭素原子を有するアルケニル基のことをいい、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基が挙げられる。本明細書において「C-Cアルキニル基」とは、2~6個の炭素原子を有するアルキニル基のことをいい、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基が挙げられる。これらの中でも、置換基は、水酸基及び電子求引性基が好ましい。
 上記式(I)において、Rは、結合手、メチレン基及びオキシメチレン基のいずれかを示し、中でも結合手及びメチレン基が好ましく、より好ましくは結合手である。
 本発明のイメージング用分子プローブにおいて、上記式(I)で表される芳香環を含む基は、下記式(II)で表される基が好ましい。下記式(II)において、Rは上記のとおりである。
Figure JPOXMLDOC01-appb-C000009
 [修飾基]
 本発明のイメージング用分子プローブにおいて、上記式(1)~(8)のポリペプチドにおけるN末端のα-アミノ基は、N末端のα-アミノ基の正電荷を打ち消して、本発明のイメージング用分子プローブの腎臓への集積を抑制する点から、電荷を有さない修飾基で修飾されていてもよい。電荷を有さない修飾基としては、例えば、9-フルオレニルメチルオキシカルボニル基(Fmoc)、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、4-メトキシトリチル基(Mmt)、アミノ基、3から20個の炭素原子を有するアルキル基、9-フルオレンアセチル基、1-フルオレンカルボン酸基、9-フルオレンカルボン酸基、9-フルオレノン-1-カルボン酸基、ベンジルオキシカルボニル基、キサンチル基(Xan)、トリチル基(Trt)、4-メチルトリチル基(Mtt)、4-メトキシ2,3,6-トリメチル-ベンゼンスルホニル基(Mtr)、メシチレン-2-スルホニル基(Mts)、4,4-ジメトキシベンゾヒドリル基(Mbh)、トシル基(Tos)、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル基(Pmc)、4-メチルベンジル基(MeBzl)、4-メトキシベンジル基(MeOBzl)、ベンジルオキシ基(BzlO)、ベンジル基(Bzl)、ベンゾイル基(Bz)、3-ニトロ-2-ピリジンスルフェニル基(Npys)、1-(4,4-ジメチル-2,6-ジアキソシクロヘキシリデン)エチル基(Dde)、2,6-ジクロロベンジル基(2,6-DiCl-Bzl)、2-クロロベンジルオキシカルボニル基(2-Cl-Z)、2-ブロモベンジルオキシカルボニル基(2-Br-Z)、ベンジルオキシメチル基(Bom)、シクロヘキシルオキシ基(cHxO)、t-ブトキシメチル基(Bum)、t-ブトキシ基(tBuO)、t-ブチル基(tBu)、アセチル基(Ac)、トリフルオロアセチル基(TFA)o-ブロモベンジルオキシカルボニル基、t-ブチルジメチルシリル基、2-クロロベンジル(Cl-z)基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トリメチルシリル基等が挙げられる。中でも、修飾基は、アセチル基、ベンジル基、ベンジルオキシメチル基、o-ブロモベンジルオキシカルボニル基、t-ブチル基、t-ブチルジメチルシリル基、2-クロロベンジル基、2,6-ジクロロベンジル基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トシル基、トリメチルシリル基及びトリチル基が好ましく、より好ましくはアセチル基である。
 [イメージング方法]
 本発明は、その他の態様として、本発明のイメージング用分子プローブを用いて膵島をイメージングすることを含む膵島のイメージング方法に関する。また、本発明は、さらにその他の態様として、予め被検体に投与された本発明のイメージング用分子プローブのシグナル又は予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出することを含む膵島のイメージング方法に関する。イメージング方法において、イメージングするために十分な量の本発明の分子プローブを投与された被検体から本発明の分子プローブのシグナル、又は、イメージングするために十分な量を予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出することが好ましい。膵島イメージングについては上記のとおりである。本発明のイメージング方法は、検査・診断の用途の観点から、膵β細胞のイメージング方法であることが好ましい。
 本発明のイメージング用分子プローブのシグナルの検出は、例えば、PETを用いた測定及び/又はSPECTを用いた測定等により行うことができる。PETを用いた測定及びSPECTを用いた測定には、例えば、イメージの撮影、膵島量の測定等を含む。本発明のイメージング方法において、検出されたシグナルを再構成処理して画像データに変換し表示する工程を含んでいてもよい。
 SPECTを用いた測定は、例えば、本発明のイメージング用分子プローブを予め膵島に結合させた対象/本発明のイメージング用分子プローブが予め投与された被検体から放出されるγ線をガンマカメラにより測定することを含む。ガンマカメラによる測定は、例えば、本発明のイメージング用分子プローブの標識に使用した上記放射性ヨウ素から放出される放射線(γ線)を一定時間単位で測定することを含み、好ましくは放射線が放出される方向及び放射線数量を一定時間単位で測定することを含む。本発明のイメージング方法は、さらに、放射線の測定により得られた測定された本発明のイメージング用分子プローブの分布を断面画像として表すこと、及び、得られた断面画像を再構成することを含んでいてもよい。対象(被検体)としては、ヒト及び又はヒト以外の哺乳類が挙げられる。
 PETを用いた測定は、例えば、本発明のイメージング用分子プローブを予め膵島に結合させた対象/本発明のイメージング用分子プローブが予め投与された被検体から、ポジトロンと電子との結合により生成する1対の消滅放射線をPET用検出器で同時計数することを含み、さらに、計測した結果に基づきポジトロンを放出する放射性ヨウ素の位置の三次元分布を描写することを含んでいてもよい。
 本発明のイメージング方法において、SPECTの測定又はPETの測定とあわせて、X線CTやMRIの測定を行ってもよい。これにより、例えば、SPECTにより得られた画像又はPETにより得られた画像(機能画像)と、CTにより得られた画像又はMRIにより得られた画像(形態画像)とを融合させた融合画像を得ることができる。
 本発明のイメージング方法は、さらに、本発明のイメージング用分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含んでもよい。分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することは、例えば、膵島イメージングの画像を解析することにより膵島の有無を判断すること、膵島量の増減を判断すること等を含む。
 本発明のイメージング方法は、本発明のイメージング用分子プローブを対象に投与することを含んでいてもよく、画像化のために所望のコントラストを得るために十分な量の本発明のイメージング用分子プローブを投与することが好ましい。本発明のイメージング用分子プローブのシグナル検出は、分子プローブの投与から一定時間経過後行うことが好ましい。投与対象としては、ヒト及び又はヒト以外の哺乳類が挙げられる。対象への投与は、局所的であってもよく、全身的であってもよい。投与経路は、対象の状態等に応じて適宜決定できるが、例えば、静脈、動脈、皮内、腹腔内への注射又は輸液等が挙げられる。本発明のイメージング用分子プローブは、担体とともに投与することが好ましい。担体としては、例えば、水性溶媒及び非水性溶媒が使用できる。水性溶媒としては、例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水等が挙げられる。非水性溶媒としては、例えば、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコール等が挙げられる。膵島のイメージング又は膵島量の測定のための本発明のイメージング用分子プローブの用量は、例えば、1μg以下とすることができる。投与から測定までの時間は、例えば、分子プローブの膵島への結合時間、分子プローブの種類及び分子プローブの分解時間等に応じて適宜決定できる。
 [膵島量の測定方法]
 本発明は、さらにその他の態様として、膵島量の測定方法であって、予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出すること、及び、検出した分子プローブのシグナルから膵島量を算出することを含む膵島量の測定方法に関する。本発明の膵島量の測定方法は、本発明のイメージング用分子プローブを用いて膵島イメージングを行うことを含んでもよい。膵島イメージングは上記のとおりである。分子プローブを用いた膵島イメージングの結果からの膵島量の算出は、例えば、膵島イメージングの画像を解析すること等により行うことができる。また、イメージングの結果からイメージングの対象物の定量を行うことは、当業者であれば、例えば、検量線や適当なプログラムを用いて容易に行うことができる。本発明の膵島量の測定方法は、検査・診断の用途の観点から、膵β細胞量の測定方法であることが好ましい。
 本発明は、さらにその他の態様として、膵島量の測定方法であって、予め被検体に投与された本発明のイメージング用分子プローブのシグナル及び又は予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出すること、及び、検出したイメージング用分子プローブのシグナルから膵島量を算出することを含む膵島量の測定方法に関する。
 本発明の膵島量の測定方法は、さらに、算出した膵島量を提示することを含んでいてもよい。算出した膵島量を提示することは、例えば、算出した膵島量を保存又は外部に出力することを含む。外部に出力することは、例えば、モニタに表示すること、及び、印字すること等を含む。
 [糖尿病の予防、治療、診断方法]
 本発明は、さらにその他の態様として、糖尿病の予防又は治療又は診断方法に関する。上述したとおり、糖尿病の発症過程では、膵島量(とりわけ、膵β細胞量)が耐糖能異常に先行して減少するが、機能異常が検出・自覚される段階に至ってからでは、糖尿病はすでに治療が難しい段階となっている。しかし、本発明のイメージング用分子プローブを用いたイメージング方法及び又は膵島量の測定方法によれば、膵島量及び又は膵β細胞量の減少を早期に発見することができ、ひいては、新たな糖尿病の予防・治療・診断法が構築できる。糖尿病の予防・治療・診断の対象としては、ヒト及び又はヒト以外の哺乳類が挙げられる。
 本発明の糖尿病の診断方法は、本発明のイメージング用分子プローブを用いて膵島のイメージングを行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定することを含み、さらに、判定結果に基づき糖尿病の診断を行うことを含んでいてもよい。膵島の状態の判定は、例えば、得られた膵島の画像と基準となる膵島の画像とを比較すること、得られた膵島量と基準となる膵島量とを比較すること等により、膵島量の増減又は変化を判定することを含む。また、膵島の状態の判定は、情報処理装置を用いて行ってもよく、膵島量が減少していると判定したときには、その情報を提示し、膵島量が増加又は維持されていると判定したときには、その情報を提示することが好ましい。判定結果に基づく糖尿病の診断は、例えば、糖尿病発症のリスクを判定すること、糖尿病と判断すること、糖尿病の進行度合いを判断することを含む。
 本発明の糖尿病の治療方法は、本発明のイメージング用分子プローブを用いて膵島のイメージングを行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定して糖尿病の診断を行うこと、前記診断に基づき糖尿病の治療することを含む。膵島の状態の判定及び糖尿病の診断は、本発明の糖尿病の診断方法と同様に行うことができる。本発明の糖尿病の治療方法は、対象に対して行われる投薬や食事療法を含む治療効果を膵島量の変化に着目して評価することを含むことができる。
 本発明の糖尿病の予防方法は、本発明のイメージング用分子プローブを用いて膵島のイメージングを行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定して糖尿病発症のリスクを判定することを含む。本発明の糖尿病の予防方法は、例えば、定期的に膵島量の測定を行い、膵島量の減少傾向の有無をチェックすることが含むことができる。
 本発明は、好ましいその他の態様として、糖尿病の超早期診断方法に関する。本発明の糖尿病の超早期診断方法は、例えば、人間ドック、健康診断において本発明の方法により膵島のイメージング及び又は膵島量の測定を行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定することを含むことができる。また、本発明の糖尿病の治療方法は、本発明の方法により膵島のイメージング及び又は膵島量の測定を行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の機能回復を評価することを含むことができる。
 [本発明のキット]
 本発明は、さらにその他の態様として、本発明のイメージング用分子プローブを含むキットに関する。本形態のキットの実施形態としては、本発明のイメージング方法を行うためのキット、本発明の膵島量の測定方法を行うためのキット、本発明の糖尿病の予防又は治療又は診断のキットなどが挙げられる。これらの各実施形態において、それぞれの形態に応じた取扱い説明書を含むことが好ましい。
 本発明のキットにおいて、本発明のイメージング用分子プローブは、注射液の形態で含むことが好ましい。したがって、本発明のキットは、本発明のイメージング用分子プローブを含有する注射液を含むことが好ましい。注射液は、有効成分とする本発明のイメージング用分子プローブを含み、さらに、例えば、担体等の医薬品添加物を含んでいてもよい。本明細書において医薬品添加物は、日本薬局方、アメリカ薬局方、ヨーロッパ薬局方等で医薬品添加物として許認可を受けている化合物のことをいう。担体としては、例えば、水性溶媒及び非水性溶媒が挙げられる。水性溶媒としては、例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水等が挙げられる。非水性溶媒としては、例えば、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコール等が挙げられる。また、本発明のキットは、本発明のイメージング用分子プローブを入れるための容器をさらに含んでいてもよく、本発明のイメージング用分子プローブ及び又は本発明のイメージング用分子プローブを含有する注射液が容器に充填されていてもよい。容器としては、例えば、シリンジやバイアル瓶等が挙げられる。
 本発明のキットは、例えば、バッファー、浸透圧調整剤等の分子プローブを調製するための成分や、注射器等の分子プローブの投与に使用する器具等をさらに含むことができる。
 [本発明のイメージング用試薬]
 本発明は、さらにその他の態様として、本発明のイメージング用分子プローブを含むイメージング用試薬に関する。本発明のイメージング用試薬は、有効成分として本発明のイメージング用分子プローブを含み、さらに、例えば、例えば、担体等の医薬品添加物を含んでいてもよい。担体は、上述のとおりである。
 [本発明のイメージング用分子プローブの調製方法]
 本発明のイメージング用分子プローブは、下記式(13)~(24)のいずれかで表されるポリペプチドを含む分子プローブ前駆体を、上記式(I)で表される芳香環を含む基を有する標識化合物を用いて標識化を行い、その後、保護基の脱保護をすることで調製することができる。標識化することにより、保護基が結合していないリジンの側鎖のアミノ基、又は、保護基及び修飾基が結合していないN末端のα-アミノ基が標識化されうる。
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (13)  (配列番号13)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (14)  (配列番号14)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (15)  (配列番号15)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (16)  (配列番号16)
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (17)  (配列番号17)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (18)  (配列番号18)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (19)  (配列番号19)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (20)  (配列番号20)
   DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (21)  (配列番号21)
    LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (22)  (配列番号22)
     SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (23)  (配列番号23)
      KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (24)  (配列番号24)
[上記式(13)~(20)において、「*-」は、N末端のα-アミノ基が保護基により保護されているか又は電荷を有さない修飾基により修飾されていることを示し、上記式(13)~(24)において、「K*」は、リジンの側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
 上記分子プローブ前駆体の合成は、例えば、Fmoc法等の定法に従ったペプチド合成により行うことができ、そのペプチド合成方法は特に制限されない。
 [保護基]
 保護基は、本発明のイメージング用分子プローブの特定のアミノ基を標識化する間に、分子プローブ前駆体のその他のアミノ基を保護するものであって、そのような機能を果たせる公知の保護基を使用できる。保護基としては、特に制限されず、例えば、9-フルオレニルメチルオキシカルボニル基(Fmoc)、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、4-メトキシトリチル基(Mmt)、アミノ基、3から20個の炭素原子を有するアルキル基、9-フルオレンアセチル基、1-フルオレンカルボン酸基、9-フルオレンカルボン酸基、9-フルオレノン-1-カルボン酸基、ベンジルオキシカルボニル基、キサンチル基(Xan)、トリチル基(Trt)、4-メチルトリチル基(Mtt)、4-メトキシ2,3,6-トリメチル-ベンゼンスルホニル基(Mtr)、メシチレン-2-スルホニル基(Mts)、4,4-ジメトキシベンゾヒドリル基(Mbh)、トシル基(Tos)、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル基(Pmc)、4-メチルベンジル基(MeBzl)、4-メトキシベンジル基(MeOBzl)、ベンジルオキシ基(BzlO)、ベンジル基(Bzl)、ベンゾイル基(Bz)、3-ニトロ-2-ピリジンスルフェニル基(Npys)、1-(4,4-ジメチル-2,6-ジアキソシクロヘキシリデン)エチル基(Dde)、2,6-ジクロロベンジル基(2,6-DiCl-Bzl)、2-クロロベンジルオキシカルボニル基(2-Cl-Z)、2-ブロモベンジルオキシカルボニル基(2-Br-Z)、ベンジルオキシメチル基(Bom)、シクロヘキシルオキシ基(cHxO)、t-ブトキシメチル基(Bum)、t-ブトキシ基(tBuO)、t-ブチル基(tBu)、アセチル基(Ac)及びトリフルオロアセチル基(TFA)などが挙げられ、取扱いの点から、Fmoc及びBocが好ましい。これらの保護基の脱保護の方法は、それぞれ公知であって、当業者であれば適宜脱保護できる。
 標識化は、上記式(I)で表される芳香環を含む基を有する標識化合物を用いて行うことができる。標識化に用いる標識化合物は、上記式(I)で表される基が、エステル結合を介してスクシンイミドと結合したスクシンイミジルエステル化合物であることが好ましく、より好ましくは下記式(III)で表されるスクシンイミジルエステル化合物であり、さらに好ましくは下記式(IV)で表されるスクシンイミジルエステル化合物である。下記式(III)において、A、R、R及びRは上記式(I)と同様である。下記式(IV)において、Rは上記式(I)と同様である。
Figure JPOXMLDOC01-appb-C000010
 標識化に用いる標識化合物は、中でも、上記式(IV)においてRが[123I]ヨウ素原子、[124I]ヨウ素原子又は[131I]ヨウ素原子である、[123I]N-succinimidyl 3-iodobenzoate、[124I]N-succinimidyl 3-iodobenzoate、[131I]N-succinimidyl 3-iodobenzoateが好ましい。
 本発明は、その他の態様として、本発明のイメージング用分子プローブの製造方法であって、上記イメージング用分子プローブ前駆体を標識化及び脱保護することを含む製造方法に関する。本発明のイメージング用分子プローブの製造方法において、上記イメージング用分子プローブ前駆体は、上記式(13)~(24)のいずれかで表されるポリペプチド、上記式(13)~(24)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、上記式(13)~(24)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドからなることが好ましい。
 本発明のイメージング用分子プローブの製造方法において、イメージング用分子プローブ前駆体の標識化が、下記式(I)で表される芳香環を含む基を有する標識化合物により標識化することを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(I)において、A、R、R及びRは上述のとおりである。上記式(I)で表される芳香環を含む基を有する標識化合物は、上記式(I)で表される基が、エステル結合を介してスクシンイミドと結合したスクシンイミジルエステル化合物であることが好ましく、より好ましくは上記式(III)で表されるスクシンイミジルエステル化合物であり、さらに好ましくは上記式(IV)で表されるスクシンイミジルエステル化合物である。
 本発明のイメージング用分子プローブの製造方法において、上記式(I)で表される芳香環を含む基を有する標識化合物の合成は、自動合成装置を用いて行ってもよく、また、上記式(I)で表される芳香環を含む基を有する標識化合物の合成、及び、該標識化合物を用いたイメージング用分子プローブ前駆体の標識化及び脱保護を、1つの自動合成装置によって行ってもよい。
 上記分子プローブ前駆体は、上記式(13)~(24)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、上記式(13)~(24)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドからなり、本発明のイメージング用分子プローブの前駆体となりうるイメージング用分子プローブ前駆体を含む。
 したがって、本発明は、その他の態様として、膵島イメージング用分子プローブの前駆体であって、上記式(13)~(24)のポリペプチド、上記式(13)~(24)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、上記式(13)~(24)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドからなる、膵島イメージング用分子プローブ前駆体を提供しうる。上記式(13)~(24)のポリペプチドを含む本発明のイメージング用分子プローブ前駆体によれば、上記本発明のイメージング用分子プローブを容易に提供できるという効果を奏する。
 [本発明のキットのさらなる態様]
 本発明は、さらにその他の態様として、上述のイメージング用分子プローブ前駆体を含むキットに関する。本発明のイメージング用分子プローブ前駆体を含むキットの実施形態としては、本発明のイメージング用分子プローブを調製するためのキット、本発明のイメージング方法を行うためのキット、本発明の膵島量の測定方法を行うためのキット、本発明の糖尿病の予防又は治療又は診断のキットなどが挙げられる。本発明のイメージング用分子プローブ前駆体を含むキットは、これらの各実施形態において、それぞれの形態に応じた取扱い説明書を含むことが好ましい。
 イメージング用分子プローブ前駆体を含むキットは、例えば、イメージング用分子プローブ前駆体の標識化に使用する化合物であって、上記式(I)で表される芳香環を含む基を有する標識化合物を含んでいてもよい。上記式(I)で表される芳香環を含む基を有する標識化合物は、上記式(I)で表される基がエステル結合を介してスクシンイミドと結合したスクシンイミジルエステル化合物であることが好ましく、より好ましくは上記式(III)で表されるスクシンイミジルエステル化合物、さらに好ましくは上記式(IV)で表されるスクシンイミジルエステル化合物である。該実施形態のキットは、中でも、標識化合物として[123I]N-succinimidyl 3-iodobenzoate、[124I]N-succinimidyl 3-iodobenzoate、[131I]N-succinimidyl 3-iodobenzoate等を含むことがより好ましい。該実施形態のキットは、さらに、例えば、上記標識化合物を用いた本発明のイメージング用分子プローブ前駆体の標識化方法が記載された取扱い説明書を含んでもよい。
 イメージング用分子プローブ前駆体を含むキットは、さらに、上記標識化合物の出発原料を含むことが好ましい。出発原料としては、例えば、2,5-dioxopyrrolidin-1-yl 3-(tributylstannyl)benzoate等が挙げられる。
 イメージング用分子プローブ前駆体を含むキットは、さらに、例えば、イメージング用分子プローブ前駆体の脱保護に使用する試薬及び/又は標識化に使用する試薬を含んでいてもよい。
 イメージング用分子プローブ前駆体を含むキットは、さらに、例えば、標識化合物の自動合成装置、及び、該標識化合物の自動合成装置を用いた上記式(I)で表される芳香環を含む基を有する標識化合物の合成方法が記載された取扱い説明書を含んでいてもよい。該自動合成装置は、標識化合物の合成に加えて、例えば、合成した標識化合物を用いたイメージング用分子プローブ前駆体の標識化及び脱保護が可能な自動合成装置であってもよい。該キットは、さらに、標識化合物の合成に使用する放射性ヨウ素を含む試薬を含んでいてもよい。放射性ヨウ素を含む試薬としては、例えば、123I、124I、125I又は131Iといった放射性同位元素を含む試薬が挙げられる。
 本発明は、さらにその他の態様として、イメージング用分子プローブ前駆体を合成するための自動ペプチド合成装置、及び、上記式(I)で表される芳香環を含む基を有する標識化合物及び/又は標識化合物の自動合成装置を含むキットに関する。該自動合成装置は、標識化合物の合成に加えて、例えば、合成した標識化合物を用いたイメージング用分子プローブ前駆体の標識化及び脱保護が可能な自動合成装置であってもよい。該キットは、イメージング用分子プローブ前駆体の合成方法が記載された取扱い説明書を含んでいてもよい。該取扱い説明書には、さらに、例えば、上記式(I)で表される芳香環を含む基を有する標識化合物の合成方法、それを用いた標識化方法、及び、脱保護方法等が記載されていてもよい。該キットは、さらに、標識化合物の合成に使用する放射性ヨウ素を含む試薬を含んでいてもよい。
 本発明は、さらにその他の態様として、イメージング用分子プローブ前駆体の合成、上記標識化合物の合成、上記標識化合物を用いたイメージング用分子プローブ前駆体の標識化及び脱保護を行う自動合成装置、及び、該自動合成装置を用いた本発明のイメージング用分子プローブの製造方法が記載された取扱い説明書を含むキットに関する。取扱い説明書には、例えば、イメージング用分子プローブ前駆体の合成方法、上記標識化合物の合成方法、上記標識化合物を用いたイメージング用分子プローブ前駆体の標識化及び脱保護方法等が記載されていることが好ましい。該キットは、さらに、標識化合物の合成に使用する放射性ヨウ素を含む試薬を含んでいてもよい。
 [本発明のペプチドの標識方法]
 本発明は、さらにその他の態様として、ペプチドの標識方法に関する。本発明のペプトドの標識方法は、放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有するペプチドを放射性標識する方法であって、N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いてペプチドの合成を行うこと、合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、得られたペプチドを標識化合物を用いて放射性標識すること、及び放射性標識したペプチドの保護基を脱保護することを含む。
 本発明のペプチドの標識方法は、その他の態様として、ペプチドの合成工程と、保護基の置換工程と、保護基の脱保護工程と、放射性標識工程とを含むペプチドの標識方法に関する。
 ペプチドの合成工程は、保護アミノ酸を用いてペプチドの合成を行うことを含み、保護アミノ酸は、N末端のα-アミノ基が保護基Xによって保護された保護アミノ酸、N末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基aが保護基Y1によって保護された保護アミノ酸、N末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基bが保護基Y2によって保護された保護アミノ酸、及びN末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基cが保護基Y3によって保護された保護アミノ酸からなる群から選択される。官能基aは、放射性標識するアミノ酸の側鎖の官能基であり、官能基bは、放射性標識可能なアミノ酸の側鎖の官能基であって放射性標識を行わない官能基であり、官能基cは、官能基a及びb以外のアミノ酸の側鎖の官能基である。
 保護基の置換工程は、官能基bの保護基Y2を脱保護した後、保護基Y2とは異なる保護基Zで官能基bを保護することを含み、好ましくは官能基a及び官能基cの脱保護を行うことなく官能基bの保護基Y2を脱保護した後、保護基Y2とは異なる保護基Zで官能基bを保護することを含む。
 保護基の脱保護工程は、官能基aの保護基Y1及び官能基cの保護基Y3を脱保護することを含み、好ましくは官能基bの脱保護を行うことなく官能基aの保護基Y1及び官能基cの保護基Y3を脱保護することを含む。
 放射性標識工程は、脱保護工程後のペプチドの官能基aを放射性標識化合物を用いて放射性標識すること、及び官能基bの保護基Z及びN末端のα-アミノ基の保護基Xを脱保護することを含む。
 本発明の標識方法は、放射性標識する官能基(官能基a)以外の放射性標識可能なアミノ酸の側鎖の官能基(官能基b)が保護基(保護基Z)によって保護された状態で標識化合物によるペプチドの放射性標識を行う。より具体的には、本発明の標識方法は、官能基bが保護基Y2の脱保護後再度保護基Zによって保護され、かつ、放射性標識する官能基aが脱保護された状態で標識化合物によるペプチドの放射性標識を行う。このため、本発明の標識方法によれば、例えば、所望の官能基(官能基a)のみを選択的に標識することができる。したがって、本発明の標識方法によれば、例えば、標識効率を向上させることができ、また、放射性標識された所望のペプチドの収率を向上させることができる。
 [ペプチドの合成]
 ペプチドの合成は、N末端のα-アミノ基及び/又は側鎖の官能基(官能基a、b及びc)が保護基によって保護された保護アミノ酸を用いたペプチド合成法を用いて行う。
 ペプチドの合成は、例えば、公知の有機化学的ペプチド合成法を用いて行うことができ、例えば、社団法人日本生化学会編集『生化学実験講座』、第1巻、「タンパク質IV」、第207~495頁(1977年、東京化学同人発行)、及び社団法人日本生化学会編集『新生化学実験講座』、第1巻、「タンパク質VI」、第3~74頁(1992年、東京化学同人発行)等の記載に基づき行うことができる。
 有機化学的ペプチド合成法としては、例えば、ペプチド固相合成法、及びペプチド液相合成法等が挙げられ、好ましくはペプチド固相合成法である。本明細書において「ペプチド固相合成法」とは、固相担体にアミノ酸又はペプチドのC末端をリンカーを介して固定し、N末端側に順次アミノ酸を伸長していく方法のことをいう。ペプチド固相合成法としては、例えば、Fmoc法及びBoc法等が挙げられ、好ましくはFmoc法である。本明細書において「Fmoc法」とは、N末端のα-アミノ基がFmoc(9-フルオレニルメチルオキシカルボニル基)によって保護されたアミノ酸を用い、それらを縮合させることによってペプチドを合成する方法のことをいう。より具体的には、合成する各ペプチドのC末端に相当するアミノ酸又はC末端に相当するアミノ酸を含むペプチドを樹脂等の固相担体に結合させ、N末端のα-アミノ基の保護基であるFmoc基の脱保護及び洗浄と、保護アミノ酸の縮合及び洗浄とを繰り返し行うことによってペプチド鎖を伸長し、最後に最終的な脱保護反応を行うことによって目的のペプチドを合成することができる。本明細書において「Boc法」とは、N末端のα-アミノ基がBoc(tert-ブトキシカルボニル基)によって保護されたアミノ酸を用い、それらを縮合させることによってペプチドを合成する方法のことをいう。ペプチド合成は、例えば、ペプチド自動合成装置を使用して行ってもよい。ペプチド自動合成装置としては、例えば、A443A型(Applied Biosystems社製)、PSSM8(島津製作所製)等が挙げられる。
 保護アミノ酸としては、例えば、N末端のα-アミノ基が保護基Xによって保護された保護アミノ酸、N末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基aが保護基Y1によって保護された保護アミノ酸、N末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基bが保護基Y2によって保護された保護アミノ酸、及びN末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基cが保護基Y3によって保護された保護アミノ酸からなる群から選択される保護アミノ酸が挙げられる。
 官能基aは、放射性標識を行うアミノ酸の側鎖の官能基である。官能基aとしては、例えば、アミノ基又はアミノ基を有する基が挙げられる。
 官能基bは、放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基である。官能基bは、例えば、官能基aと同じ種類の官能基であり、好ましくは官能基aのアミノ酸と同じアミノ酸の側鎖の官能基である。
 官能基cは、官能基a及びb以外のアミノ酸の側鎖の官能基である。
 保護基Xは、ペプチド合成に用いるアミノ酸のN末端のα-アミノ基の保護基である。保護基Xとしては、例えば、上述した保護基が挙げられ、ペプチド合成法に応じて適宜決定することができる。ペプチド合成法がFmoc法である場合、保護基Xは通常Fmocとなり、ペプチド合成法がBoc法である場合、保護基Xは通常Bocとなる。
 保護基Y1~Y3は、ペプチド合成に用いるアミノ酸の側鎖の官能基の保護基であって、官能基Y1は、官能基aの保護基であり、保護基Y2は、官能基bの保護基であり、保護基Y3は、官能基cの保護基である。保護基Y1~Y3としては、上述した保護基が挙げられ、官能基の種類及びペプチド合成法に応じて適宜決定でき、好ましくはN末端のα-アミノ基の保護基(保護基X)とは異なる保護基を用いることである。
 保護基Y2は、選択的な脱保護、すなわち官能基aを脱保護することなく官能基bの保護基Y2のみを脱保護する点から、官能基aの保護基Y1と異なることが好ましく、官能基a及び官能基cを脱保護することなく官能基bの保護基Y2のみを脱保護する点から、官能基aの保護基Y1及び官能基cの保護基Y3と異なることがより好ましい。官能基a及び官能基bがアミノ基である場合、選択的な脱保護の点から、官能基bの保護基Y2はトリチル型の保護基であることが好ましい。より好ましくは官能基bの保護基Y2がトリチル型の保護基であり、官能基aの保護基Y1がカルバメート系の保護基である。トリチル型の保護基としては、例えば、Mmt、Trt、Mtt、Mtr等が挙げられ、より選択的な脱保護の点から、Mmt及びMttが好ましい。カルバメート系の保護基としては、例えば、Fmoc、Boc、Cbz、Alloc、Troc等が挙げられ、中でもBocが好ましい。
 [保護基の置換]
 保護基の置換は、官能基bの保護基を置換することであって、官能基bの保護基Y2を脱保護した後、保護基Y2とは異なる保護基Zで官能基bを保護することを含む。
 保護基Y2の脱保護は、保護基Y2の種類に応じて適宜決定できる。保護基Y2の脱保護は、選択的な標識の点から、官能基a及び官能基cの脱保護を行うことなく官能基bの保護基Y2を脱保護することが好ましい。保護基Zは、官能基bの保護基Y2を脱保護した後、官能基bを保護する保護基であって、保護基Y2とは異なる保護基である。保護基Zは、上述する保護基から適宜選択でき、好ましくはペプチド合成におけるN末端のα-アミノ基の保護基(保護基X)と同じであることが好ましい。ペプチド合成がFmoc法を用いて行われた場合は、保護基ZとしてはFmocが好ましい。
 [保護基の脱保護]
 保護基の脱保護工程は、再度の保護を行ったアミノ酸の側鎖の官能基b以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ることを含み、具体的には官能基aの保護基Y1及び官能基cの保護基Y3を脱保護することを含む。これにより放射性標識を行うペプチドが得られる。当該ペプチドは、官能基bが保護基Zによって保護されている。
 官能基aの保護基Y1及び官能基cの保護基Y3の脱保護は、官能基bを脱保護することなく行うことが好ましい。官能基aの保護基Y1及び官能基cの保護基Y3の脱保護は、保護基の種類に応じて適宜決定できる。また、官能基aの保護基Y1及び官能基cの保護基Y3の脱保護は、ペプチドの固相担体からの切り出しとともに行ってもよい。
 保護基の脱保護後、得られたペプチドの洗浄及び/又は単離精製を行う工程を含んでいてもよい。単離精製は、例えば、ペプチド又はタンパク質を精製するための公知の分離操作を用いて行うことができる。分離操作としては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、逆相クロマトグラフィー、高速液体クロマトグラフィー(HPLC)等が挙げられ、必要に応じてこれらを組み合わせて行ってもよい。また、最終形態に応じて、精製したペプチドを、例えば、濃縮及び/又は凍結乾燥して単離してもよい。
 [ペプチドの標識]
 標識は、官能基bが保護基Zで保護されかつ官能基aの保護基Y1が脱保護されたペプチドを用いて行う。標識を行うペプチドは、選択的な標識の点から、官能基bが保護基Zで保護されかつ官能基aの保護基Y1及び官能基cの保護基Y3が脱保護されたペプチドであることが好ましく、より好ましくは官能基bが保護基Zで保護され、N末端のα-アミノ基が保護基Xで保護されかつ官能基aの保護基Y1及び官能基cの保護基Y3が脱保護されたペプチドである。これにより、選択的な標識を行うことができる。標識化合物としては、放射性標識に用いられる公知の化合物が使用でき、例えば、上述のものが挙げられる。
 合成するペプチドとしては、例えば、側鎖にアミノ基を有するアミノ酸を2個以上有するペプチドが挙げられる。側鎖にアミノ基を有するアミノ酸としては、例えば、リジン等が挙げられる。合成するペプチドの長さは特に制限されないが、例えば、5アミノ酸残基以上であり、好ましくは10~150アミノ酸残基、より好ましくは20~80アミノ酸残基である。合成するペプチドは、官能基aを側鎖に有するアミノ酸を、例えば、1個有しておればよく、例えば、2個、3個以上含んでいてもよい。合成するペプチドは、例えば、GLP-1Rのイメージング用分子プローブ、好ましくは本発明の分子プローブを得る点から、下記式(25)~(28)のいずれかで表されるポリペプチドであることが好ましい。
 DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS   (25)  (配列番号25)
  LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS   (26)  (配列番号26)
   SKQMEEEAVRLFIEWLKNGGPSSGAPPPS   (27)  (配列番号27)
    KQMEEEAVRLFIEWLKNGGPSSGAPPPS   (28)  (配列番号28)
 また、本発明の標識方法は、さらにその他の態様として、標識する官能基がN末端のα-アミノ基であるペプチドの放射性標識方法に関する。本態様の放射性標識方法は、ペプチドの合成工程が、N末端に位置するアミノ酸として、N末端のα-アミノ基が保護基Y4によって保護された保護アミノ酸、N末端のα-アミノ基が保護基Y4によって保護されかつ側鎖の官能基bが保護基Y2で保護された保護アミノ酸、又はN末端のα-アミノ基が保護基Y4によって保護されかつ側鎖の官能基cが保護基Y3によって保護された保護アミノ酸を用いて行われ、その他のアミノ酸が、N末端のα-アミノ基が保護基Xによって保護された保護アミノ酸、N末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基bが保護基Y2によって保護された保護アミノ酸、及びN末端のα-アミノ基が保護基Xによって保護されかつ側鎖の官能基cが保護基Y3によって保護された保護アミノ酸からなる群から選択される保護アミノ酸を用いて行われること、保護基の脱保護工程が、N末端のα-アミノ基の保護基Y4及び官能基cの保護基Y3を脱保護することを含むこと、放射性標識工程が、放射性標識化合物を用いてN末端のα-アミノ基を放射性標識し、官能基bの保護基Zを脱保護することを含む以外は、上記と同様にして行うことができる。保護基Y4は、ペプチドのN末端に位置するアミノ酸のα-アミノ基の保護基であって、保護基X及び保護基Y2と異なることが好ましい。保護基の脱保護工程は、官能基bの脱保護を行うことなくN末端のα-アミノ基の保護基Y4及び官能基cの保護基Y3を脱保護することを含むことが好ましい。
 [本発明のペプチド製造方法]
 本発明は、さらにその他の態様として、放射性標識されたペプチドを製造する方法であって、前記ペプチドは、放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有し、N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いて放射性標識するペプチドを合成すること、合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、得られたペプチドを標識化合物を用いて放射性標識すること、及び、放射性標識したペプチドの保護基を脱保護することを含む製造方法に関する。本発明の放射性標識したペプチド製造方法は、その他の態様として、上述の本発明の標識方法を用いてペプチドの合成、保護基の脱保護及び放射性標識を行うことを含む。
 本発明のペプチドの製造方法によれば、例えば、所望の官能基のみを選択的に標識することができるため、より高い収率で放射性標識された所望のペプチドを製造することができる。さらに、本発明のペプチドの製造方法によれば、例えば、本発明のイメージング用分子プローブを効率よく製造することができ、好ましくは純度の高い本発明のイメージング用分子プローブを製造することができる。
 本発明のペプチドの製造方法において、官能基、及び保護基は本発明の標識方法と同様であり、ペプチドの合成、脱保護、放射性標識等は、上述した本発明の標識方法と同様にして行うことができる。
 本発明の標識方法及び本発明のペプチドの製造方法について、標識するペプチドが上記式(25)のポリペプチドであり、ペプチド合成をペプチド固相合成法を用いて行った場合を例にとり説明する。該ペプチドにおいて、官能基a及びbはアミノ基であり、標識する官能基(官能基a)を側鎖に備えるアミノ酸は4番目のリジンであり、標識しない官能基(官能基b)を側鎖に備えるアミノ酸は19番目のリジンであり、官能基cを備えるアミノ酸は、アスパラギン酸、セリン、グリシン、グルタミン、アルギニン、アスパラギン、及びトリプトファンである。但し、以下の説明は一例に過ぎず、本発明はこれに限定されないことはいうまでもない。
 (1)まず、N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いてペプチドの合成を行う。
 ペプチド合成は、例えば、Fmoc法を用いて行うことができる。具体的には、C末端のアミノ酸であるセリンのカルボキシル基をリンカーを介して樹脂に固定し、C末端側からN末端側へアミノ酸を1個ずつ結合させていくことによって合成できる。
 ペプチド合成に用いる保護アミノ酸としては、通常のFmoc-ペプチド合成法に用いられるFmoc-アミノ酸誘導体が使用できる。具体的には、側鎖に官能基のあるアミノ酸(Asp、Ser、Lys、Gln、Glu、Arg、Asn、Trp)については、官能基の種類に応じて保護基によって官能基が保護され、かつN末端のα-アミノ基がFmocによって保護されたアミノ酸が使用でき、その他のアミノ酸についてはN末端のα-アミノ基がFmocによって保護されたアミノ酸が使用できる。官能基aの保護基(保護基Y1)及び官能基cの保護基(保護基Y3)としては、同じ条件によって脱保護可能な保護基を選択することが好ましい。
 放射性標識を行わない19番目のリジンとしては、選択的な脱保護の点から、放射性標識部位である4番目のリジンの側鎖のアミノ基(官能基a)の保護基Y1とは異なる保護基Y2によって側鎖のアミノ基(官能基b)が保護されたリジンを使用することが好ましい。例えば、4番目のリジンとして側鎖のアミノ基がFmoc以外のカルバメート系の保護基によって保護されたリジンを使用し、19番目のリジンとして側鎖のアミノ基がトリチル型の保護基によって保護されたリジンを使用してもよい。
 (2)つぎに、合成したペプチドにおいて19番目のリジンの側鎖のアミノ基(官能基b)の保護基Y2の脱保護、及び保護基Zによる保護を行う。
 脱保護は、4番目のリジンの側鎖のアミノ基(官能基a)及び官能基cを脱保護することなく19番目のリジンの側鎖のアミノ基(官能基b)の保護基Y2を脱保護することが好ましい。脱保護は、官能基bの保護基Y2の種類に応じて適宜行うことができる。保護基がトリチル型の保護基である場合は、例えば、弱酸性の条件下とすることによって脱保護することができる。弱酸性の条件下とする試薬としては、例えば、トリフルオロ酢酸を含む試薬等が挙げられる。
 保護基Zは、脱保護した19番目のリジンの側鎖のアミノ基(官能基b)の保護基であって、脱保護前の保護基(保護基Y2)とは異なる保護基である。保護基Zとしては、脱保護前の保護基(保護基Y2)とは異なる保護基であれば特に制限されないが、N末端のα-アミノ基の保護基(保護基X)であるFmocが好ましい。Fmocは、例えば、アミン存在下でN-(フルオレニルメトキシカルボニルオキシ)コハク酸イミド(FmocOSu)と反応させることによって官能基bに導入することができる。
 (3)ついで、N末端のα-アミノ基及び19番目のリジンの側鎖のアミノ基(官能基b)以外の脱保護、より具体的には4番目のリジンの側鎖のアミノ基(官能基a)及び官能基cの脱保護を行う。これにより、N末端のα-アミノ基及び19番目のリジンの側鎖のアミノ基(官能基b)が保護基で保護され、かつ4番目のリジンの側鎖のアミノ基(官能基a)が脱保護された状態のペプチドを得ることができる。当該ペプチドは、上述する本発明の分子プローブ前駆体に対応するものである。
 脱保護は、脱保護を行う保護基の種類に応じて公知の方法に準じて行うことができる。また、当該脱保護は、ペプチドの固相担体からの切り出しとともに行い、例えば、固相担体からの切り出しを行う条件で、上記保護基の脱保護を行ってもよい。
 (4)得られたペプチドを、標識化合物を用いて放射性標識する。
 該ペプチドは、放射性標識する4番目のリジンの側鎖のアミノ基(官能基a)が脱保護され、かつ、放射性標識を行わない19番目のリジンの側鎖のアミノ基(官能基b)が保護基Zによって保護されおり、放射性標識後の脱保護操作を軽減する点から、官能基cの保護基Y3及び官能基aの保護基Y1が脱保護され、かつ官能基bが保護基Zによって保護されていることが好ましい。このようなペプチドを用いることによって、目的とする部位(4番目のリジンの側鎖のアミノ基)のみを選択的に放射性標識することができる。
 放射性標識は、目的とする放射性標識されたペプチドに応じて、公知の方法に準じて行うことができる。標識化合物としては特に制限されないが、例えば、上記式(I)で表される基を有する標識化合物や、金属放射性同位元素(金属核種)と結合可能なキレート化合物等が挙げられる。金属核種としては、例えば、64Cu、67Ga、68Ga、82Rb、99mTc、111In、186Reが挙げられる。キレート化合物としては、例えば、ジエチレントリアミン五酢酸(DTPA)、6-ヒドラジノピリジン-3-カルボン酸(HYNIC)、テトラアザシクロドデカン四酢酸(DOTA)、dithisosemicarbazone(DTS)、diaminedithiol(DADT)、mercaptoacetylglycylglycylglycine(MAG3)、monoamidemonoaminedithiol(MAMA)、diamidedithiol(DADS)、propylene diamine dioxime(PnAO)等が挙げられる。本発明のイメージング用分子プローブを製造する点からは、上記式(I)で表される基を有する標識化合物が好ましく、より好ましくは上記式(III)で表されるスクシンイミジルエステル化合物であり、さらに好ましくは上記式(IV)で表されるスクシンイミジルエステル化合物である。
 (5)ついで、放射性標識したペプチドの残りの保護基を脱保護する。これにより、所望の官能基a(4番目のリジンの側鎖のアミノ基)が放射性標識されたペプチドを製造することができる。
 当該工程では、ペプチドに結合している残りの保護基、すなわち、N末端のアミノ基の保護基及び放射性標識を行わない19番目のリジンの側鎖のアミノ基(官能基b)の脱保護を行う。脱保護は、保護基の種類に応じて公知の方法に準じて行うことができる。保護基がFmocである場合は、例えば、ピペリジン条件下とすることで脱保護することができる。これにより、本発明の分子プローブを製造することができる。
 純度の高い放射性標識されたペプチドを製造する点から、さらに、精製工程等を含んでいてもよい。精製工程は、例えば、上記(3)の脱保護と上記(4)の放射性標識の間に行うことができる。
 さらに、N末端のα-アミノ基を電荷を有さない修飾基によって修飾する工程や、C末端のカルボキシル基をアミド化する工程を含んでいてもよい。
 以下に、実施例及び比較例を用いて本発明をさらに説明する。但し、本発明は以下の実施例に限定して解釈されない。
 なお、本明細書の記載において、以下の略語を使用する。
OBu:ブチルエステル基
Boc:ブトキシカルボニル基
Trt:トリチル基
Pdf:2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル基
Mmt:4-メトキシトリチル基
Fmoc:9-フルオレニルメチルオキシカルボニル基
 [Binding Assay]
 第4番目のリジン残基の側鎖のアミノ基が[127I]3-iodobenzoyl基で標識された下記式(29)の分子プローブ(配列番号29)、及びN末端のα-アミノ基が[127I]3-iodobenzoyl基で標識された下記式(30)の分子プローブ(配列番号30)を用いてBinding assay解析を行った。
Figure JPOXMLDOC01-appb-C000012
 上記式(29)の分子プローブ及び上記式(30)の分子プローブは、 [125I]N-succinimidyl 3-iodobenzoateに替えて[127I]N-succinimidyl 3-iodobenzoateを使用した以外は、後述する実施例1及び2と同様の方法を用いて調製した。
 マウスから単離した膵島を50mlチューブに回収し、遠心(2000rpm、2分)した後、冷PBS20mLで1回洗浄した。トリプシン-EDTA(トリプシン-EDTA(0.05%/0.53mM)3mLに、PBSを含む0.53mM EDTA(pH7.4(NaOH))12mLを加えたもの)を15mL加え、37℃で振とうしながら1分間インキュベートした後、直ちに氷上に置いた。ついで、スポイト付10mLピペットで泡立てることなく勢いよく20回ピペッティングした後、冷PBSを最終量が30mLになるように加えた。遠心(3000rpm、2分)した後、冷PBS 30mLで2回洗浄した。上清を除去して膵島細胞サンプルを得た。得られた膵島細胞サンプルは-80℃で保存した。
 100μL/チューブとなるように膵島細胞サンプルをBuffer(20mM HEPES(pH7.4)、1mM MgCl、1mg/ml bacitracin、1mg/ml BSA)で懸濁した。ついでBuffer 880μL、上記式(29)の分子プローブ又は上記式(30)の分子プローブを含む溶液(分子プローブの終濃度:0、1×10-6~1×10-12M)10μL、[125I]Bolton-Hunter標識Exendin(9-39)を含む溶液([125I]Bolton-Hunter標識Exendin(9-39)(製品コード:NEX335、1.85MBq/mL=50μCi/mL,22.73pmol/mL=76.57ng/mL、Perkin Elmer社製)10μLにBuffer90μLを添加したもの)10μLを添加し、室温で60分インキュベーションした。なお、[125I]標識Bolton-HunterExendin(9-39)の終濃度は0.05μCi/チューブとした。ついで予め湿らせたガラス繊維フィルタ(Whatman GF/C filter)をセットした吸引装置を用い、吸引によりB/F分離した後、フィルタを氷冷のPBS5mlで3回洗浄した。フィルタをチューブに入れ、γカウンターにより放射能の測定を行った。
 第4番目のリジン残基の側鎖のアミノ基が[127I]3-iodobenzoyl基で標識された上記式(29)の分子プローブ、及びN末端のα-アミノ基が[127I]3-iodobenzoyl基で標識された下記式(30)の分子プローブはいずれも、GLP-1受容体と[125I]Bolton-Hunter標識Exendin(9-39)との結合を濃度依存的に阻害した。上記式(29)の分子プローブのIC50は1.6×10-9Mであり、上記式(30)の分子プローブのIC50は1.4×10-9Mであった。上記式(29)の分子プローブ及び上記式(30)の分子プローブはいずれも膵島のGLP-1受容体に対して高い親和性を示した。また、上記式(29)の分子プローブのIC50及び上記式(30)の分子プローブのIC50は、いずれもExendin(9-39)(IC50:1.4×10-9M)に近い値である。よって、上記式(29)の分子プローブ及び上記式(30)の分子プローブは、膵島のGLP-1受容体に対してGLP-1受容体拮抗薬であるExendin(9-39)と同程度の親和性を有しているといえる。したがって、第4番目のリジン残基の側鎖のアミノ基が[127I]3-iodobenzoyl基で標識された上記式(29)の分子プローブ、及びN末端のα-アミノ基が[127I]3-iodobenzoyl基で標識された下記式(30)の分子プローブは、GLP-1受容体、特に膵島のGLP-1受容体に対して十分な結合能を有することが確認できた。
 (実施例1)
 配列番号1の第4番目のリジン残基の側鎖のアミノ基が、[125I]3-iodobenzoyl基で標識され(以下、「[125I]IB標識」とも言う)、かつ、C末端のカルボキシル基がアミド化されている下記式(31)の分子プローブ(配列番号31)を用いてマウスの体内分布の測定を行った。まず、下記式(31)の分子プローブは、以下のようにして調製した。
Figure JPOXMLDOC01-appb-C000013
 [分子プローブの調製]
 ポリペプチドの合成は、Applied Biosystems社製ペプチド自動合成機(433A型)を用いて添付のソフトに従って行った。側鎖に官能基のあるアミノ酸は、それぞれ、Asp(OBu)、Ser(OBu)、Lys(Boc)、Gln(Trt)、Glu(OBu)、Arg(Pbf)、Asn(Trt)、Trp(Boc)を用いた。19番目のリジンとしてはLys(Mmt)を使用した。Rink Amide MBHA(0.125mmol、0.34mmol/g)を出発樹脂とし、配列に従って逐次アミノ酸を延長し、下記式(32)の配列を有するポリペプチドを得た。なお、下記式(32)において、Lys(Mmt)以外は側鎖の保護基の表記を省略した。
Fmoc-DLSKQMEEEAVRLFIEWLK(Mmt)NGGPSSGAPPPS-保護ペプチド樹脂  (32)  (配列番号32)
 1.5%TFA-5%TIS-93.55%CHClを用いた定法処理により、上記式(32)のポリペプチドから、まず、19番目のリジン残基の側鎖の保護基(Mmt基)を除去し、遊離した19番目のリジン残基の側鎖のアミノ基をFmoc化した。ついで、19番目のリジン残基のFmoc基以外の全保護基の除去と樹脂からのペプチドの切り出しとを、92.5%TFA-2.5%TIS-2.5%HO-2.5%エタンジチオールを用いた定法処理によって行った。反応終了後、ろ別により担体樹脂を取り除き、乾燥エーテルを加えて粗生成物を沈殿させ、ろ別した。得られた粗生成物は、島津製作所のLC8A分取装置(ODS カラム3cmx25cm)を用い、0.1%TFAを含むCHCN-HOのリニアーグラジエントの系で精製し、フラクションコレクターを用いて目的の画分を集めた後、下記式(33)の分子プローブ前駆体を凍結乾燥白色粉末として得た。
Fmoc-DLSKQMEEEAVRLFIEWLK(Fmoc)NGGPSSGAPPPS-NH2  (33)  (配列番号33)
 得られた上記式(33)の分子プローブ前駆体(950μg)を、Borate Buffer(pH7.8)に溶解させ、それに[125I]N-succinimidyl 3-iodobenzoate(SIB)を加え反応溶液をpH8.5~9.0に調整し標識化を行った。その後、Piperidineを加えることで脱保護反応を行い、目的物である上記式(31)の分子プローブ(配列番号1の第4番目のリジン残基が標識化された分子プローブ)を得た。なお、上記式(31)の分子プローブにおいて、N末端のα-アミノ基は非修飾である。
 [体内分布]
 調製した上記式(31)の分子プローブ(0.57μCi)を無麻酔の6週齢ddYマウス(雄性、体重30g)に静脈注射(尾静脈)により投与した。投与5分後、15分後、30分後、60分後、120分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を下記表1、図1A及びBに示す。図1Aは、各臓器への分子プローブの集積の経時変化を示すグラフであり、図1Bは、図1Aを拡大したグラフである。
Figure JPOXMLDOC01-appb-T000014
 上記表1、図1A及びBに示すとおり、上記式(31)の分子プローブの膵臓への集積は、投与後5分で17.5%dose/g、投与後15分で25.4%dose/g、投与後30分で45.4%dose/gであった。上記式(31)の分子プローブは、投与後15分~120分の時間帯において、肺を除けば、膵臓に最も多く集積し、膵臓への集積が20%dose/gを超えるレベルで維持された。また、投与後15~60分の時間帯では、胃への集積量に対する膵臓への集積量が4.5倍以上であり、腸への集積量に対する膵臓への集積量が9倍以上であり、肝臓への集積量は2.5倍以上であった。特に、投与後30~120分の時間帯では、肝臓への集積量に対する膵臓への集積量は6.5倍以上であった。つまり、上記式(31)の分子プローブは、膵臓に特異的に集積したといえる。また、甲状腺への集積に大きな変化が見られないことから、生体内で上記式(31)の分子プローブが脱ヨウ素代謝を受けていないことが示唆された。これにより、上記式(31)の分子プローブは、膵β細胞のイメージング、とりわけ、膵β細胞の非侵襲的イメージングに適していると考えられる。
 (比較例)
 比較例として、配列番号1の第4番目のリジン残基の側鎖のアミノ基が、[125I]3-(3-iodo-4-hydroxyphenyl)propanoyl基で標識(以下、「[125I]BH標識」ともいう)され、かつ、C末端のカルボキシル基がアミド化されている下記式(34)の分子プローブ(配列番号34)を用いてマウスの体内分布の測定を行った。下記式(34)の分子プローブの調製は、標識化をBolton-Hunter試薬(Perkin Elmer社製)を用いて行った以外は、実施例1と同様に行った。また、体内分布測定は、実施例1と同様に行った。その結果の一例を下記表2、図2A及びBに示す。
Figure JPOXMLDOC01-appb-C000015
 なお、Perkin Elmer社製の[125I]Bolton-Hunter標識Exendin(9-39)は、上記式(34)の分子プローブと同様に、12番目のリジン残基(配列番号1のアミノ酸配列における4番目のリジンの側鎖のアミノ基)が標識されていることが知られている(Suleiman Al-Sabah et al., The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists, FEBS Letters 553 (2003) 342-346)。
Figure JPOXMLDOC01-appb-T000016
 上記表2、図1A及びB、並びに、図2A及びBに示すとおり、[125I]3-iodobenzoyl基で標識した実施例1の上記式(31)の分子プローブは、[125I]3-(3-iodo-4-hydroxyphenyl)propanoyl基で標識した比較例の上記式(34)の分子プローブと比べて、全ての時間帯において、膵臓への集積が多かった。特に、投与後30分における上記式(31)の分子プローブの膵臓への集積量は、比較例の上記式(34)の分子プローブの膵臓への集積量の略2倍であった。
 また、上記表2、図2A及びBに示すように、比較例の上記式(34)の分子プローブは、時間が経過とともに甲状腺への集積が増加し、生体内での脱ヨウ素代謝がみられるのに対し、上記式(31)の分子プローブでは、上記表1、図1A及びBに示すように、甲状腺への集積の増加、つまり、生体内での脱ヨウ素代謝がみられなかった。以上のことから、[125I]3-iodobenzoyl基で標識した上記式(31)の分子プローブは、[125I]3-(3-iodo-4-hydroxyphenyl)propanoyl基で標識した比較例の上記式(34)の分子プローブと比べて、膵β細胞のイメージング、とりわけ、膵β細胞の非侵襲的イメージングにより適しているといえる。
 実施例1の分子プローブ、及び比較例の分子プローブの体内分布実験により得られた集積量に基づき、各プローブについての膵臓/肝臓比(膵臓の集積量/肝臓の集積量)を下記表3に、膵臓/腎臓比(膵臓の集積量/腎臓の集積量)を下記表4に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 上記表3及び4に示すように、実施例1の分子プローブ(上記式(31)の分子プローブ)は、比較例の分子プローブと比較して顕著に膵臓/肝臓比及び膵臓/腎臓比が経時的に高くなった。特に、投与後30分~60分の時間帯では、実施例1の分子プローブ(上記式(31)の分子プローブ)は比較例の分子プローブに対して6倍を超える膵臓/肝臓比を示した。このように膵臓の周辺臓器に対する膵臓への集積量の比率が高く、また膵臓の周辺臓器への集積が少ない本実施例1の分子プローブによれば、イメージングした際に、明瞭な膵臓の画像が得られることが示唆された。
 [blocking実験]
 実施例1で調製した分子プローブ(上記式(31)の分子プローブ)を用い、blocking実験を行った。マウスは、6週齢ddYマウス(雄性、体重約30g)を使用した。
 まず、無麻酔下のマウスに、標識していないExendin(9-39)(コールドプローブ、配列番号37)を静脈注射により前投与した(0.5mg/mLを0.1mL)。前投与から30分後に、調製した上記式(31)の分子プローブ(5μCi)を静脈注射により投与した。分子プローブの投与から30分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を図3に示す。
H2N-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (37)  (配列番号37)
 コントロールとして、コールドプローブを前投与することなく、調製した上記式(31)の分子プローブ(5μCi)を無麻酔下のマウスに静脈注射により投与した。投与から30分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を前投与した結果とあわせて図3に示す。
 図3は、前投与ありの集積量(%dose/g)及びコントロール(前投与なし)の集積量(%dose/g)を示すグラフである。図3に示すように、コールドプローブを前投与してGLP-1受容体への結合を阻害することにより、上記式(31)の分子プローブの膵臓への取り込みが約92.2%阻害されたことが観察された。したがって、上記式(31)の分子プローブは、GLP-1受容体、特に膵島のGLP-1受容体に特異的に結合しているといえる。
 [2次元イメージング解析]
 C57BL/6マウスの遺伝的バックグラウンドを有し、かつ、MIP(mouse insulin I gene promoter)の制御下でGFP(green fluorescent protein)を発現するトランスジェニックマウス(以下、「MIP-GFPマウス」という)を使用し、2次元イメージング解析を行った。まず、調製した上記式(31)の分子プローブ(1μCi)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により投与し、投与30分後及び60分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、切片をスライドガラス上に置き、その上にカバーガラスを載せた。切片の蛍光及び放射能(オートラジオグラフィー)は、画像解析装置(商品名:Typhoon 9410、GEヘルスケア社製)を用いて測定した(露光時間:14時間)。その結果の一例を図4に示す。
 コントロール1-1として、標識化していないexendin(9-39)(コールドプローブ)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により前投与した(0.5mg/mLを0.1mL)。前投与から30分後に上記式(31)の分子プローブ(1μCi)を静脈注射により投与し、上記式(31)の分子プローブの投与から30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、得られた切片について、上記と同様にして蛍光及び放射能の測定を行った。
 また、コントロール1-2として、DPP(ジペプチジルペプチダーゼ)IV阻害薬を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により投与した(6mg/mLを0.1mL)。DPP-IV阻害剤の投与から30分後にGLP-1を投与し(0.5mg/mLを0.1mL)、その直後に上記式(31)の分子プローブ(1μCi)を静脈注射により投与した。上記式(31)の分子プローブの投与から30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、得られた切片について、上記と同様にして蛍光及び放射能の測定を行った。コントロール1-1及び1-2の結果の一例を、上記実施例1の結果とあわせて図4に示す。
 図4は、上記式(31)の分子プローブを投与したMIP-GFPマウスの膵島切片のイメージ解析の結果の一例を示し、上記式(31)の分子プローブ投与後30分の切片、上記式(31)の分子プローブ投与後60分の切片、コントロール1-1の切片及びコントロール1-2の切片についての蛍光シグナル(a)及び放射性シグナル(b)を示す画像である。
 図4(a)に示すように、いずれのMIP-GFPマウスの膵臓切片においても、画像解析装置によって蛍光GFPシグナルが観察された。図4(b)に示すように、上記式(31)の分子プローブを投与する前にコールドプローブを投与したコントロール1-1の切片及びGLP-1を投与したコントロール1-2の切片からは放射性シグナルはほとんど検出されなかった。このことから、コールドプローブ又はGLP-1を投与して受容体への結合を阻害することにより、上記式(31)の分子プローブの取り込みが阻害されたことが観察できた。また、図4(a)及び(b)に示すように、標識化された上記式(31)の分子プローブから検出された放射性シグナルの局在性は、GFPシグナルと一致していた。このことから、上記式(31)の分子プローブが、膵β細胞に特異的に集積することが確認できた。
 ここで、125I、123I及び131Iはいずれもγ線放出核種である。さらに、125I及び123Iは核スピン数も同一である。これらのことから、上記式(31)の分子プローブの標識化に使用する放射性ヨウ素原子(125I)を、123I又は131Iとした場合であっても、上記式(31)の分子プローブとほぼ同様の挙動を示すことが推測される。また、124Iとした場合であっても、上記式(31)の分子プローブとほぼ同様の挙動を示すと推測される。したがって、上記式(31)の分子プローブの125Iを、123I、124I又は131Iとした分子プローブを使用することにより、例えば、SPECTやPET等での膵β細胞の非侵襲の三次元イメージング、好ましくは膵β細胞の定量が可能なことが示唆された。
 (実施例2)
 配列番号5のN末端のα-アミノ基が、[125I]3-iodobenzoyl基で標識され、かつ、C末端のカルボキシル基がアミド化されている下記式(35)の分子プローブ(配列番号35)を用いてマウスの体内分布の測定を行った。下記式(35)の分子プローブは、標識化するアミノ基をN末端のα-アミノ基とした以外は、実施例1と同様に調製した。
Figure JPOXMLDOC01-appb-C000019
 [体内分布]
 調製した上記式(35)の分子プローブ(0.58μCi)を無麻酔の6週齢ddYマウス(雄性、体重30g)に静脈注射(尾静脈)により投与した。投与5分後、15分後、30分後、60分後、120分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を下記表5、図5A及びBに示す。図5Aは、各臓器への分子プローブの集積の経時変化を示すグラフであり、図5Bは、図5Aを拡大したグラフである。
Figure JPOXMLDOC01-appb-T000020
 上記表5、図5A及びBに示すとおり、上記式(35)の分子プローブの膵臓への集積は、投与後5分で14.3%dose/g、投与後15分で22.0%dose/g、投与後30分で27.9%dose/g、投与後60分で27.5%dose/g、投与後120分で29%dose/gであった。上記式(35)の分子プローブは、投与後15分~120分の時間帯において、肺を除けば、膵臓に最も多く集積し、膵臓への集積が20%dose/gを超えるレベルで維持された。また、いずれの時間帯においても、胃への集積量に対する膵臓への集積量が3倍以上であり、腸への集積量に対する膵臓への集積量が11倍以上であった。また、投与後60~120分の時間帯では、肝臓への集積量に対する膵臓への集積量は2倍以上であった。つまり、上記式(35)の分子プローブは、膵臓に特異的に集積したといえる。また、甲状腺への集積に大きな変化が見られないことから、生体内で上記式(35)の分子プローブが脱ヨウ素代謝を受けていないことが示唆された。これにより、上記式(35)の分子プローブは、膵β細胞のイメージング、とりわけ、膵β細胞の非侵襲的イメージングに適していると考えられる。
 上記表3及び4に示すように、実施例2の分子プローブ(上記式(35)の分子プローブ)は、比較例の分子プローブと比較して顕著に膵臓/肝臓比及び膵臓/腎臓比が経時的に高くなった。このように膵臓の周辺臓器に対する膵臓への集積量の比率が高く、また膵臓の周辺臓器への集積が少ない本実施例2の分子プローブによれば、イメージングした際に、明瞭な膵臓の画像が得られることが示唆された。
 [2次元イメージング解析]
 調製した上記式(35)の分子プローブ(0.8μCi)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により投与し、投与30分後及び60分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、切片をスライドガラス上に置き、その上にカバーガラスを載せた。切片の蛍光及び放射能(オートラジオグラフィー)は、画像解析装置(商品名:Typhoon 9410、GEヘルスケア社製)を用いて測定した(露光時間:18時間)。その結果の一例を図6に示す。
 コントロール2として、標識化していないexendin(9-39)(コールドプローブ)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により前投与した(0.5mg/mLを0.1mL)。前投与から30分後に上記式(35)の分子プローブ(0.8μCi)を静脈注射により投与し、上記式(35)の分子プローブの投与から30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、得られた切片について、上記と同様にして蛍光及び放射能の測定を行った。その結果の一例を、上記実施例2の結果とあわせて図6に示す。
 図6は、上記式(35)の分子プローブを投与したMIP-GFPマウスの膵島切片のイメージ解析の結果の一例を示し、上記式(35)の分子プローブ投与後30分の切片、上記式(35)の分子プローブ投与後60分の切片、コントロール2の切片についての蛍光シグナル(a)及び放射性シグナル(b)を示す画像である。
 図6(a)に示すように、いずれのMIP-GFPマウスの膵臓切片においても、画像解析装置によって蛍光GFPシグナルが観察された。図6(b)に示すように、上記式(35)の分子プローブを投与する前にコールドプローブを投与したコントロール2の切片からは放射性シグナルはほとんど検出されなかった。このことから、コールドプローブを前投与してGLP-1受容体への結合を阻害することにより、上記式(35)の分子プローブの取り込みが阻害されたことが観察できた。また、図6(a)及び(b)に示すように、標識化された上記式(35)の分子プローブから検出された放射性シグナルの局在性は、GFPシグナルと一致していた。このことから、上記式(35)の分子プローブが、膵β細胞に特異的に集積することが確認できた。
 ここで、125I、123I及び131Iはいずれもγ線放出核種である。さらに、125I及び123Iは核スピン数も同一である。これらのことから、上記式(35)の分子プローブの標識化に使用する放射性ヨウ素原子(125I)を、123I又は131Iとした場合であっても、上記式(35)の分子プローブとほぼ同様の挙動を示すことが推測される。また、124Iとした場合であっても、上記式(35)の分子プローブとほぼ同様の挙動を示すと推測される。したがって、上記式(35)の分子プローブの125Iを、123I、124I又は131Iとした分子プローブを使用することにより、例えば、SPECTやPET等での膵β細胞の非侵襲の三次元イメージング、好ましくは膵β細胞の定量が可能なことが示唆された。
 これらの結果より、本発明のイメージング用分子プローブであれば、ヒトにおいて非侵襲的膵臓の三次元イメージング、とりわけ非侵襲的膵β細胞の三次元イメージングが可能なことが示唆された。
 (実施例3)
 配列番号1の第4番目のリジン残基の側鎖のアミノ基が、[123I]3-iodobenzoyl基で標識され(以下、「[123I]IB標識」とも言う)、かつ、C末端のカルボキシル基がアミド化されている下記式(36)の分子プローブ(配列番号36)を用いてマウスの体内分布の測定を行った。まず、下記式(36)の分子プローブは、[125I]SIBに替えて[123I]SIBを使用した以外は上記式(33)の分子プローブ前駆体を用いて上記式(31)の分子プローブと同様の方法で調製した。
Figure JPOXMLDOC01-appb-C000021
 [三次元イメージング]
 調製した上記式(36)の分子プローブを用いてマウスのSPECT撮像を行った。調製した上記式(36)の分子プローブ(498μCi)を麻酔した5週齢ddyマウス(雄性、体重25g)に静脈注射により投与した。SPECT撮像を行った。SPECT撮像は、ガンマカメラ(製品名:SPECT2000H-40、日立メディコ製)を用いて、下記の撮像条件で投与後30分から21分間撮像を行った。得られた画像を、下記の再構成条件で再構成処理を行った。
撮像条件
コリメータ   :LEPH pinholeコリメータ
検出器の収集角度:11.25°/40秒で360°
収集時間    :40秒×32フレーム、21分間
再構成条件
前処理フィルタ:Butterworthフィルタ(order:10、cutoff周波数:0.12)
 その結果の一例を図7に示す。画像は分子プローブ投与30分後のものである(積算時間:20分)。図7Aは横断像(transverse view)であり、図7Bは冠状断像(coronal view)であり、図7Cはの矢状断像(sagittal view)である。図7A~Cにおいて膵臓の位置は矢印で示される。なお、図7A~Cのコントラストは同一である。
 図7に示すとおり、上記式(36)の分子プローブを用いることによって、マウスにおいて非侵襲的に膵臓の位置を確認することができた。つまり、本発明の分子プローブによって非侵襲的な膵島の三次元イメージングが可能であることが確認できた。
 このように、ヒトよりも膵臓のサイズが小さく、かつ、臓器が密集しているマウスにおいて非侵襲的に膵臓の位置を確認できたことから、マウスよりも膵臓のサイズが大きく、かつ、臓器が密集していないヒトであれば、例えば、膵島の位置、膵臓のサイズをより明確に判別でき、さらには、膵臓におけるプローブの発現量を測定できることが示唆された。したがって、本発明のイメージング用分子プローブであれば、ヒトにおいて非侵襲的膵臓の三次元イメージング、とりわけ非侵襲的膵β細胞の三次元イメージングが可能なことが示唆された。
 以上説明したとおり、本発明は、例えば、医療分野、分子イメージングの分野、糖尿病に関する分野などで有用である。
配列番号1~12:本発明のイメージング用分子プローブのアミノ酸配列
配列番号13~24:本発明のイメージング用分子プローブ前駆体のアミノ酸配列
配列番号25~28:本発明の標識方法に使用するペプチドのアミノ酸配列
配列番号29~30:Binding Assayに使用した分子プローブのアミノ酸配列
配列番号31:実施例1のイメージング用分子プローブのアミノ酸配列
配列番号32:実施例1のイメージング用分子プローブの製造に用いるポリペプチドのアミノ酸配列
配列番号33:実施例1のイメージング用分子プローブの製造に用いる分子プローブ前駆体のアミノ酸配列
配列番号34:比較例の分子プローブのアミノ酸配列
配列番号35:実施例2のイメージング用分子プローブのアミノ酸配列
配列番号36:実施例3のイメージング用分子プローブのアミノ酸配列
配列番号37:Exendin-(9-39)のアミノ酸配列

Claims (13)

  1.  膵島のイメージングに用いられる分子プローブであって、
     下記式(1)~(12)のいずれかで表されるポリペプチド、
     下記式(1)~(12)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチド、又は、
     下記式(1)~(12)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含む、膵島イメージング用分子プローブ。
     Z-DLSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (1)  (配列番号1)
      Z-LSXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (2)  (配列番号2)
       Z-SXQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (3)  (配列番号3)
        Z-XQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (4)  (配列番号4)
     Z-DLSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (5)  (配列番号5)
      Z-LSKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (6)  (配列番号6)
       Z-SKQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (7)  (配列番号7)
        Z-KQMEEEAVRLFIEWLXNGGPSSGAPPPS-NH2  (8)  (配列番号8)
      B-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (9)  (配列番号9)
      B-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (10) (配列番号10)
       B-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (11) (配列番号11)
        B-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (12) (配列番号12)
    [上記式(1)~(8)において、「Z-」は、N末端のα-アミノ基が、非修飾であるか、又は、電荷を有さない修飾基により修飾されていることを示し、「X」は、側鎖のアミノ基が、下記式(I)で表される芳香環を含む基によって標識されたリジン残基を示し、
    上記式(9)~(12)において、「B-」は、N末端のα-アミノ基が、下記式(I)で表される芳香環を含む基によって標識されていることを示し、
    上記式(1)~(12)において、「-NH2」は、C末端のカルボキシル基が、アミド化されていることを示す。]
    Figure JPOXMLDOC01-appb-C000001
    [前記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示し、Rは、水素原子、又は、Rとは異なる1又は複数の置換基を示し、Rは、結合手、メチレン基及びオキシメチレン基のいずれかを示す。]
  2.  前記芳香環を含む基は、下記式(II)で表される基である、請求項1記載の膵島イメージング用プローブ。
    Figure JPOXMLDOC01-appb-C000002
    [前記式(II)において、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示す。]
  3.  膵島のイメージングを行うためのキットであって、
     請求項1又は2に記載の膵島イメージング用分子プローブを含む、キット。
  4.  前記膵島イメージング用分子プローブを注射液の形態で含有する、請求項3記載のキット。
  5.  膵島のイメージングを行うための試薬であって、
     請求項1又は2に記載の膵島イメージング用分子プローブを含む、膵島イメージング用試薬。
  6.  膵島のイメージング方法であって、
     請求項1又は2に記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出することを含む、膵島のイメージング方法。
  7.  さらに、前記膵島イメージング用分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含む、請求項6記載の膵島のイメージング方法。
  8.  請求項1又は2に記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出すること、及び、
     検出した膵島イメージング用分子プローブのシグナルから膵島量を算出することを含む、膵島量の測定方法。
  9.  さらに、算出した膵島量を提示することを含む、請求項8記載の膵島量の測定方法。
  10.  請求項1又は2に記載の膵島イメージング用分子プローブの製造方法であって、
     膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含み、
     前記膵島イメージング用分子プローブ前駆体が、
     下記式(13)~(24)のいずれかで表されるポリペプチド、
     下記式(13)~(24)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、
     下記式(13)~(24)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチドを含む、膵島イメージング用分子プローブ前駆体である、膵島イメージング用分子プローブの製造方法。
    *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (13)  (配列番号13)
    *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (14)  (配列番号14)
      *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (15)  (配列番号15)
       *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (16)  (配列番号16)
    *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (17)  (配列番号17)
    *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2   (18)  (配列番号18)
      *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (19)  (配列番号19)
       *-KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (20)  (配列番号20)
      DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (21)  (配列番号21)
       LSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (22)  (配列番号22)
        SKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (23)  (配列番号23)
         KQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (24)  (配列番号24)
    [上記式(13)~(20)において、「*-」は、N末端のα-アミノ基が保護基により保護されているか又は電荷を有さない修飾基により修飾されていることを示し、
    上記式(13)~(24)において、「K*」は、リジンの側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
  11.  前記膵島イメージング用分子プローブ前駆体の標識化が、下記式(I)で表される芳香環を含む基を有する標識化合物により標識化することを含む、請求項10記載の膵島イメージング用分子プローブの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [前記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、Rは、123I、124I、125I及び131Iのいずれかを含む置換基を示し、Rは、水素原子、又は、Rとは異なる1又は複数の置換基を示し、Rは、結合手、メチレン基及びオキシメチレン基のいずれかを示す。]
  12.  放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有するペプチドを放射性標識する方法であって、
     N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いてペプチドの合成を行うこと、
     合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、
     脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、
     前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、
     得られたペプチドを標識化合物を用いて放射性標識すること、及び、
     放射性標識したペプチドの保護基を脱保護することを含む、標識方法。
  13.  放射性標識されたペプチドを製造する方法であって、
     前記ペプチドは、放射性標識可能な官能基を側鎖に有するアミノ酸を複数個有し、
     前記方法は、
     N末端のα-アミノ基及び側鎖の官能基が保護基によって保護された保護アミノ酸を用いて放射性標識するペプチドを合成すること、
     合成したペプチドの放射性標識可能なアミノ酸の側鎖の官能基のうち放射性標識を行わない官能基の保護基を脱保護すること、
     脱保護したアミノ酸の側鎖の官能基を、脱保護前の保護基とは異なる保護基によって再度の保護を行うこと、
     前記再度の保護を行ったアミノ酸の側鎖の官能基以外の官能基の保護基を脱保護して放射性標識を行うペプチドを得ること、
     得られたペプチドを標識化合物を用いて放射性標識すること、及び、
     放射性標識したペプチドの保護基を脱保護することを含む、製造方法。
PCT/JP2010/064760 2009-09-04 2010-08-31 膵島イメージング用分子プローブ及びその使用 WO2011027738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127005828A KR101523686B1 (ko) 2009-09-04 2010-08-31 췌도 이미징용 분자 프로브 및 그 사용
EP10813687.0A EP2474326B1 (en) 2009-09-04 2010-08-31 Molecular probe for imaging islets of langerhans, and use therefor
JP2011504673A JP5669725B2 (ja) 2009-09-04 2010-08-31 膵島イメージング用分子プローブ及びその使用
CN201080039566.5A CN102711838B (zh) 2009-09-04 2010-08-31 胰岛成像用分子探针及其使用

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009204769 2009-09-04
JP2009-204769 2009-09-04
US27228209P 2009-09-08 2009-09-08
US61/272282 2009-09-08
JPPCT/JP2010/054450 2010-03-16
PCT/JP2010/054450 WO2011027584A1 (ja) 2009-09-04 2010-03-16 膵島イメージング用分子プローブ及びその使用

Publications (1)

Publication Number Publication Date
WO2011027738A1 true WO2011027738A1 (ja) 2011-03-10

Family

ID=43649136

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2010/054450 WO2011027584A1 (ja) 2009-09-04 2010-03-16 膵島イメージング用分子プローブ及びその使用
PCT/JP2010/064760 WO2011027738A1 (ja) 2009-09-04 2010-08-31 膵島イメージング用分子プローブ及びその使用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054450 WO2011027584A1 (ja) 2009-09-04 2010-03-16 膵島イメージング用分子プローブ及びその使用

Country Status (6)

Country Link
US (2) US8642008B2 (ja)
EP (1) EP2474326B1 (ja)
JP (1) JP5669725B2 (ja)
KR (1) KR101523686B1 (ja)
CN (1) CN102711838B (ja)
WO (2) WO2011027584A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504798A (ja) * 2018-10-12 2022-01-13 ヘプタレス セラピューティクス リミテッド Glp-1受容体アンタゴニスト

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282164B (zh) * 2009-08-10 2015-09-16 国立大学法人京都大学 胰岛成像用分子探针及其前体,以及它们的使用
WO2011027584A1 (ja) * 2009-09-04 2011-03-10 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
US9238083B2 (en) * 2009-09-30 2016-01-19 Kyoto University Molecular probe for imaging of pancreatic islets and use of the same
US9278146B2 (en) * 2010-10-08 2016-03-08 Kyoto University Peptide derivative and use of the same
US20240268768A1 (en) * 2020-01-28 2024-08-15 The Board Of Trustees Of The Leland Stanford Junior University Method of Preventing or Treating Pancreatic Dysfunction or Diabetes by Upregulating Human Cathelicidin LL-37 to Inhibit Islet Amyloid Polypeptide (IAPP) Self-Assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503097A (ja) * 2002-10-18 2006-01-26 モレキュラー インサイト ファーマシューティカルズ,インク 放射線標識した化合物の精製方法
WO2008072973A2 (en) * 2006-12-11 2008-06-19 Ge Healthcare As Radiolabelled peptide based compounds and uses thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284619A (en) * 1978-11-29 1981-08-18 Medi-Physics, Inc. Esters useful as brain imaging agents
WO1994021293A1 (en) * 1993-03-19 1994-09-29 Duke University Method of treatment of tumors with an antibody binding to tenascin
US5753206A (en) * 1995-06-07 1998-05-19 Immunomedics, Inc. Radiometal-binding analogues of luteinizing hormone releasing hormone
JP3768591B2 (ja) * 1996-04-30 2006-04-19 独立行政法人科学技術振興機構 生体組織スライス標本のポジトロン撮影装置
DE102004043153B4 (de) 2004-09-03 2013-11-21 Philipps-Universität Marburg Erfindung betreffend GLP-1 und Exendin
JP4985977B2 (ja) 2005-04-01 2012-07-25 国立大学法人金沢大学 小胞アセチルコリントランスポーターに対するリガンド
JP4642920B2 (ja) * 2008-09-20 2011-03-02 国立大学法人京都大学 膵島イメージング用分子プローブ前駆体及びその使用
WO2011027584A1 (ja) * 2009-09-04 2011-03-10 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
KR101550006B1 (ko) * 2009-12-10 2015-09-03 아크레이 가부시키가이샤 췌도 이미징용 분자 프로브 및 그 사용
US9278146B2 (en) * 2010-10-08 2016-03-08 Kyoto University Peptide derivative and use of the same
JP2014076949A (ja) * 2011-02-09 2014-05-01 Kyoto Univ 放射性標識されたポリペプチドの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503097A (ja) * 2002-10-18 2006-01-26 モレキュラー インサイト ファーマシューティカルズ,インク 放射線標識した化合物の精製方法
WO2008072973A2 (en) * 2006-12-11 2008-06-19 Ge Healthcare As Radiolabelled peptide based compounds and uses thereof

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Seikagaku Jikken Koz4", vol. 1, 1977, TOKYO KAGAKU DOJIN, pages: 207 - 495
"Shin Seikagaku Jikken Koz4", vol. 1, 1992, TOKYO KAGAKU DOJIN, pages: 3 - 74
ARKRAY, INC.: "'Akusei Shuyo To Chiryo Shien Bunshi Imaging Kiki ni Kansuru Sendo Kenkyu/ Hi Shinshuteki Seitai Suito Imaging ni yoru Tonyobyo no Cho Soki Shindanho no Kaihatsu' Heisei 19 Nendo - Heisei 20 Nendo no uchi Heisei 19 Nendo Bun Chukan Nenpo", NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION (NEDO) SEIKA HOKOKUSHO, 19 September 2008 (2008-09-19), pages 1 - 6, XP008150970, Retrieved from the Internet <URL:http://www.tech.nedo.go.jp/PDF/100012702.pdf> [retrieved on 20100525] *
E. MUKAI ET AL.: "Non-invasive imaging of pancreatic islets targeting glucagon-like peptide-1 receptors", 44THEASD ANNUAL MEETING ROME, 2008
H. KIMURA ET AL.: "Development of in vivo imaging agents targeting glucagons-like peptide-1 receptor (GLP-1R) in pancreatic islets", SNM ANNUAL MEETING, ABSTRACT, ORAL PRESENTATIONS NO.326, 2009
M. BECHE ET AL.: "Are radiolabeled GLP-1 receptor antagonists useful for scintigraphy?", SNM ANNUAL MEETING, ABSTRACT, ORAL PRESENTATIONS NO.327, 2009
NOBUYA INAGAKI: "Hi Shinshusei Seitai Suito Imaging ni yoru Tonyobyo no Cho Soki Shindanho no Kaihatsu ni Kansuru Kenkyu", KOSEI RODO KAGAKU KENKYUHI HOJOKIN IRYO KIKI KAIHATSU SUISHIN KENKYU JIGYO, 2008, HEISEI 19 NENDO SOKATSU KENKYU HOKOKUSHO, MINISTRY OF HEALTH, LABOUR AND WELFARE, 2008 NEN 4 GATSU, pages 1 - 25, XP008145775 *
See also references of EP2474326A4 *
SULEIMAN AL-SABAH ET AL.: "The positive charge at Lys-288 of the glucagon-like peptide-1 (GLP-1) receptor is important for binding the N-terminus of peptide agonists", FEBS LETTERS, vol. 553, 2003, pages 342 - 346
VAIDYANATHAN G. ET AL: "Protein radiohalogenation: Observations on the design of N-succinimidyl ester acylation agents", BIOCONJUG. CHEM., vol. 1, no. 4, 1990, pages 269 - 273, XP008162234 *
VAIDYANATHAN G. ET AL: "Radioiodination of proteins using N-succinimidyl 4-hydroxy-3-iodobenzoate", BIOCONJUG. CHEM., vol. 4, no. 1, 1993, pages 78 - 84, XP008162173 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022504798A (ja) * 2018-10-12 2022-01-13 ヘプタレス セラピューティクス リミテッド Glp-1受容体アンタゴニスト
JP7492507B2 (ja) 2018-10-12 2024-05-29 ヘプタレス セラピューティクス リミテッド Glp-1受容体アンタゴニスト

Also Published As

Publication number Publication date
KR20120087898A (ko) 2012-08-07
US20110059483A1 (en) 2011-03-10
CN102711838A (zh) 2012-10-03
JPWO2011027738A1 (ja) 2013-02-04
US8642008B2 (en) 2014-02-04
US20140127128A1 (en) 2014-05-08
CN102711838B (zh) 2015-03-11
EP2474326A4 (en) 2015-11-04
EP2474326B1 (en) 2020-04-08
WO2011027584A1 (ja) 2011-03-10
JP5669725B2 (ja) 2015-02-12
EP2474326A1 (en) 2012-07-11
KR101523686B1 (ko) 2015-06-05

Similar Documents

Publication Publication Date Title
JP5700835B2 (ja) 膵島イメージング用分子プローブ及びその使用
JP5669725B2 (ja) 膵島イメージング用分子プローブ及びその使用
US20150231284A1 (en) Molecular probe for imaging of pancreatic islet and the precursor, and use of the same
JP5608867B2 (ja) 膵島イメージング用分子プローブ及びその使用
JP5669765B2 (ja) ペプチド誘導体及びその使用
WO2012108476A1 (ja) 放射性標識されたポリペプチドの製造方法
US9278146B2 (en) Peptide derivative and use of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039566.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011504673

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005828

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2025/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010813687

Country of ref document: EP