WO2011027686A1 - レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話 - Google Patents

レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話 Download PDF

Info

Publication number
WO2011027686A1
WO2011027686A1 PCT/JP2010/064311 JP2010064311W WO2011027686A1 WO 2011027686 A1 WO2011027686 A1 WO 2011027686A1 JP 2010064311 W JP2010064311 W JP 2010064311W WO 2011027686 A1 WO2011027686 A1 WO 2011027686A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
main shaft
optical axis
peripheral surface
axis direction
Prior art date
Application number
PCT/JP2010/064311
Other languages
English (en)
French (fr)
Inventor
傑 大石
博司 山下
三生 中島
正剛 山中
和昭 染矢
浩司 西川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011027686A1 publication Critical patent/WO2011027686A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a lens driving device that moves a lens module in the optical axis direction by guiding the shaft disposed in the optical axis direction, a camera module equipped with the lens driving device, and a mobile phone.
  • a lens driving device is used to perform auto focus of the camera module.
  • a structure for driving the lens unit of the lens driving device for example, a structure using a moving magnet type linear drive system as in Patent Document 1 is adopted. It is known that the structure using this moving magnet type linear drive system can generally simplify the structure as compared with the structure using a stepping motor, so that the lens drive device can be miniaturized.
  • a magnet 120 is mounted on a holder 110 that holds the lens unit 113.
  • a coil 160 is mounted on a base 130 fixed to the camera module body.
  • the magnet 120 mounted on the holder 110 receives a force in the optical axis direction by an electromagnetic driving force generated by applying a current to the coil 160, so that the holder 110 moves in the optical axis direction of the lens unit 113.
  • the shaft 151 and the shaft 152 are respectively held by the base 131 of the base 130 along the optical axis direction.
  • the holder 110 is provided with a shaft hole 115 that is a through hole corresponding to the shaft 151 and a shaft hole 116 that is a through hole corresponding to the shaft 152 in the optical axis direction.
  • the holder 110 is held in a manner slidable in the optical axis direction with respect to the shaft 151 and the shaft 152.
  • the lens module 101a including the holder 110 and the shaft 151 is guided by the shaft 151 and the shaft 152 and moves in the optical axis direction.
  • the lens module 101a moves in the optical axis direction while being guided by the shaft 151 and the shaft 152, the friction between the inner peripheral surface 115a of the shaft hole 115 and the outer peripheral surface 151a of the shaft 151, The friction between the inner peripheral surface 116a of the shaft hole 116 and the outer peripheral surface 152a of the shaft 152 hinders the movement of the lens module 101a.
  • the friction is particularly increased and the above problem is increased.
  • a measure to reduce the area where the inner peripheral surface 115a and the inner peripheral surface 116a come into contact with the outer peripheral surface 151a and the outer peripheral surface 152a, respectively, can be considered.
  • Such measures can reduce dynamic friction generated between the inner peripheral surface 115a and the inner peripheral surface 116a and the outer peripheral surface 151a and the outer peripheral surface 152a when the lens module 101a is moved.
  • the contact area with the inner peripheral surface of the shaft is simply reduced, it will be difficult to sufficiently perform the function of the shaft as a guide for moving the lens module 101a in the optical axis direction. Problems such as being held in an inclined state with respect to the axial direction, problems of not moving correctly in the optical axis direction, and the like may occur.
  • the present invention has been made in view of the above circumstances, and provides a lens driving device that suppresses the movement load of the lens module as compared with the conventional one while suppressing an insufficient guide function of the shaft. For the purpose. It is another object of the present invention to provide a camera module equipped with such a lens driving device and to provide a mobile phone equipped with the camera module.
  • a lens driving device includes a holder for holding a lens unit, a plurality of shafts arranged in the optical axis direction of the lens, and the plurality of shafts, each inserted into an outer peripheral surface of the plurality of shafts.
  • a plurality of shaft holes which are through-holes in the optical axis direction, provided in the holder for moving the holder in the optical axis direction by bringing the inner peripheral surfaces into sliding contact with each other.
  • the plurality of shafts includes a main shaft that is one of the plurality of shafts and a secondary shaft that is a shaft other than the main shaft, and the plurality of shaft holes are inserted into the main shaft into which the main shaft is inserted.
  • the main shaft hole It consists of a shaft hole and a sub shaft hole into which the sub shaft is inserted. Further, the area of the inner peripheral surface of the sub shaft hole that is in sliding contact with the outer peripheral surface of the sub shaft is smaller than the area of the inner peripheral surface of the main shaft hole that is in sliding contact with the outer peripheral surface of the main shaft. It is characterized by that.
  • the area in sliding contact with the outer peripheral surface of the sub shaft among the inner peripheral surface of the sub shaft hole is smaller than the area in sliding contact with the outer peripheral surface of the main shaft in the inner peripheral surface of the main shaft hole.
  • Dynamic friction generated between the inner peripheral surface of the auxiliary shaft hole and the outer peripheral surface of the auxiliary shaft can be suppressed. Therefore, it is possible to reduce the friction during the movement of the holder, and the movement load of the holder can be reduced as compared with the conventional case.
  • the area of the inner peripheral surface of the main shaft hole that is in sliding contact with the outer peripheral surface of the main shaft is about the same as the conventional one, it is suppressed that the guide function of the shaft is insufficient.
  • the area of the inner peripheral surface of the sub shaft hole that is in sliding contact with the outer peripheral surface of the sub shaft may be determined in a suitable manner. From the viewpoint of reducing dynamic friction, the smaller the area, the better. However, the area may be appropriate in consideration of the strength of the sliding contact portion, design and work problems, and the like.
  • a lens driving device includes a base fixed to an apparatus, a main shaft support extending from the base in the optical axis direction and supporting one end of the main shaft, and an optical axis from the base.
  • a secondary shaft support portion that extends and supports one end of the secondary shaft.
  • the length of the sub shaft support portion in the optical axis direction is larger than the length of the main shaft support portion in the optical axis direction.
  • the auxiliary shaft support portion has a length in the optical axis direction larger than that of the main shaft support portion, so that it is easy to support the auxiliary shaft so as to be disposed in the optical axis direction. Further, as described above, since the area of the inner peripheral surface of the sub shaft hole that is in sliding contact with the outer peripheral surface of the sub shaft can be made smaller than that of the main shaft hole, the sub shaft support portion is more in the optical axis direction than the main shaft support portion. It is easy to secure a space for increasing the length.
  • the lens driving device further includes a main shaft auxiliary support portion that extends from the base portion and supports the other end of the main shaft.
  • a main shaft auxiliary support portion that extends from the base portion and supports the other end of the main shaft.
  • the camera module according to the present invention is characterized by mounting the above-described lens driving device. Since the lens driving device described above is a lens driving device in which the friction generated between the shaft and the shaft hole is reduced as compared with the conventional lens driving device, it can be a lens driving device with high driving accuracy. Therefore, a camera module equipped with this lens driving device can be a highly accurate camera module.
  • the mobile phone according to the present invention is characterized by mounting the above-described camera module. Since the above-described camera module can be a small and highly accurate camera module, it is suitable as a camera module mounted on a mobile phone.
  • the present invention it is possible to provide a lens driving device in which the movement load of the lens module is suppressed as compared with the conventional one while suppressing the insufficient guide function of the shaft.
  • FIG. 1 shows a folded state, and a cover glass 9 which is a part of the camera module is exposed on the front surface.
  • FIG. 2A is a diagram in which the mobile phone is opened and the display unit 81 and the operation unit 82 are in front.
  • FIG. 2B is a view of the opened mobile phone as viewed from the back. The photographer turns the shutter by operating the operation unit 82 while confirming the image on the display unit 81 toward the object for which the cover glass 9 is to be photographed with the mobile phone opened in this manner. You can shoot.
  • a filter 2 and an image sensor 3 are disposed on the base 30 side of the lens driving device 1.
  • the Hall element 4 is disposed as a position detection element. Based on the signal from the Hall element 4, the position of the lens module 1a is detected.
  • a CPU Central Processing Unit
  • the driver 6 controls the driver 6 to move the lens module 1a upward from the home position to a preset position in the optical axis direction.
  • a position detection signal from the Hall element 4 is input to the CPU 5.
  • the CPU 5 processes a signal input from the image sensor 3 to obtain a contrast value of the captured image. Such an operation is repeated, and the position of the lens module 1a having the best contrast value is acquired as the in-focus position.
  • the CPU 5 drives the lens module 1a to such a focus position. Specifically, the CPU 5 monitors the signal from the hall element 4 and drives the lens module 1a until the signal from the hall element 4 is in a state corresponding to the in-focus position. With this operation, the lens module 1a moves to the in-focus position.
  • the lens driving device 1 includes a lens module 1a that can move in the optical axis direction, and a fixed body 1b that applies driving force to the lens module 1a and is fixed to a device on which the lens driving device 1 is mounted. Yes.
  • the lens driving device 1 moves the lens module 1a in the optical axis direction to realize autofocus.
  • the lens driving device 1 of the present embodiment is formed in a square of about 8.5 mm in a plan view in the optical axis direction, and the height of the lens driving device 1 in the optical axis direction is formed to be about 3 mm. ing.
  • the lens module 1a includes a lens unit 13 including a plurality of optical lenses 11 shown in FIG. 3 and a lens barrel 12 that holds the plurality of optical lenses 11, a holder 10 that is formed of a resin that holds the lens unit 13, and A plurality of magnets 20 are fixed to the holder 10.
  • the holder 10 is formed by injection molding a resin material.
  • a magnet 20 is mounted in advance on a mold for forming the holder 10, and the holder and the magnet are integrally formed simultaneously with the injection molding.
  • the bonding strength between the magnet 20 and the holder 10 can be improved as compared with the case where the magnet 20 and the holder 10 are bonded with an adhesive.
  • the magnet attachment process can be omitted, which contributes to cost reduction.
  • the holder 10 is provided with a main shaft hole 15 which is a through hole in the optical axis direction for inserting the main shaft 51 and a sub shaft hole 16 which is a through hole in the optical axis direction for inserting the sub shaft 52. Yes.
  • a main shaft hole 15 which is a through hole in the optical axis direction for inserting the main shaft 51
  • a sub shaft hole 16 which is a through hole in the optical axis direction for inserting the sub shaft 52.
  • the area of the inner peripheral surface 16 a of the sub shaft hole 16 that is in sliding contact with the outer peripheral surface 52 a of the sub shaft 52 is larger than the area of the inner peripheral surface 15 a of the main shaft hole 15 that is in contact with the outer peripheral surface 51 a of the main shaft 51. And it is getting smaller. More specifically, the axial length 16L of the auxiliary shaft hole 16 is made shorter than the axial length 15L of the main shaft hole 15, and an outer peripheral surface is formed in the radial direction of the auxiliary shaft hole 16. By not doing so, the area in sliding contact with the outer peripheral surface 52a of the sub shaft 52 is reduced.
  • the area in sliding contact with the outer peripheral surface 52a of the sub shaft 52 By reducing the area in sliding contact with the outer peripheral surface 52a of the sub shaft 52, it is possible to reduce the friction generated between the sub shaft 52 and the outer peripheral surface 52a of the sub shaft 52 as compared with the conventional case. Even if the main shaft 51 and the sub shaft 52 are not completely parallel, the influence of the sub shaft 52 on the holder is small, so that the lens module 1a is inclined with respect to the optical axis direction. It is possible to suppress the holding and the incorrect movement in the optical axis direction.
  • the area of the inner peripheral surface 15a of the main shaft hole 15 that is in sliding contact with the outer peripheral surface 51a of the main shaft 51 is approximately the same as that of the conventional one, and thus the main shaft 51 disposed in the optical axis direction of the lens unit 13.
  • the lens module 1a By moving the inner peripheral surface 15a of the main shaft hole 15 in sliding contact with the outer peripheral surface 51a, the lens module 1a can be moved in the optical axis direction as in the conventional case. Further, since the number of shafts and shaft holes is not reduced, the accuracy in the circumferential direction is not lowered.
  • the area of the inner peripheral surface 16a of the sub shaft hole 16 that is in sliding contact with the outer peripheral surface 52a of the sub shaft 52 may be appropriately determined. From the viewpoint of reducing dynamic friction, the smaller the area, the better. However, considering the strength of the sliding contact part, design and work problems, whether the auxiliary shaft 52 needs to have a certain guide function, etc. And it is good as an appropriate area.
  • the fixed body 1b is fixed to the base 30 and the case 40 constituting the outer frame of the lens driving device 1 and the base 30, and guides the movement of the holder 10 in the optical axis direction.
  • a magnetic plate 70 which is a rectangular plate-like magnetic member formed of a magnetic steel plate, is fixed to the base 30 on the outer side in the radial direction of the coil 60.
  • the base 30 is provided with a base portion 31 constituting the lower surface of the outer frame of the lens driving device 1 and a support column 32 extending from the base portion 31 along the optical axis direction. Yes.
  • the base 31 is formed in a square shape in a plan view in the optical axis direction.
  • the support columns 32 are provided at the four corners of the base 31.
  • An opening 33 that is a circular through hole is formed at the center of the base 31.
  • the base portion 31 includes a main shaft support portion 34m extending from the base portion 31 in the optical axis direction and a sub shaft support portion 34s extending from the base portion 31 in the optical axis direction.
  • the main shaft support portion 34m supports the lower end of the main shaft 51
  • the sub shaft support portion 34s supports the lower end of the sub shaft 52.
  • the main shaft support portion 34m and the sub shaft support portion 34s are substantially cylindrical members extending from the base portion 31 in the optical axis direction.
  • the main shaft 51 and the sub shaft 52 By inserting the main shaft 51 and the sub shaft 52 into the inner peripheral surface, the main shaft 51 and The sub shaft 52 can be supported in the optical axis direction.
  • the length Ls of the auxiliary shaft support portion 34s in the optical axis direction is larger than the length Lm of the main shaft support portion 34m in the optical axis direction. Since the length of the auxiliary shaft support portion 34s in the optical axis direction is large, the auxiliary shaft 52 can be accurately supported in the optical axis direction only by the auxiliary shaft support portion 34s.
  • the sub shaft support portion 34s is changed to the main shaft support portion 34m. In comparison, a space for enlarging in the optical axis direction can be easily secured. More specifically, since the axial length 16L of the auxiliary shaft hole 16 is shorter than the axial length 15L of the main shaft hole 15, the length Ls of the auxiliary shaft support portion 34s in the optical axis direction is increased. However, the auxiliary shaft support portion 34 s does not interfere with the auxiliary shaft hole 16.
  • the space is generated by shortening the auxiliary shaft hole 16 as compared with the conventional case, it is possible to increase the length Ls in the optical axis direction of the auxiliary shaft support portion 34s that supports the auxiliary shaft 52, The auxiliary shaft 52 can be accurately supported in the optical axis direction only by the auxiliary shaft support portion 34s.
  • the lens driving device 1 is also characterized by further including a main shaft sub-supporting portion 38 that extends from the base portion 31 and supports the upper end of the main shaft 51.
  • the main shaft sub-supporting portion 38 is a planar member and has a through hole 38a into which the main shaft 51 can be fitted, and the upper end of the main shaft 51 is fitted into the through hole 38a. Thus, the upper end portion of the main shaft 51 is supported.
  • the main shaft sub-supporting portion 38 is extended from the upper end portion of the support column 32 extended from the base portion 31.
  • the main shaft 51 is supported at the lower end in the axial direction by the main shaft support portion 34m, and the upper end in the axial direction is supported by the main shaft sub-support portion 38, so that the main shaft 51 is more accurate.
  • the main shaft 51 is more accurate.
  • the case 40 constituting the outer side surface and the upper surface of the lens driving device 1 is attached to the base 30 so as to surround the outer side in the radial direction of the coil 60.
  • the upper surface of the case 40 has a plurality of through holes 41 for inserting upper end portions 32a in the optical axis direction of the plurality of support columns 32, and the corresponding end portions 32a are inserted.
  • the lower part of the case 40 is fixed to the base 31.
  • the case 40 protects the upper part of the lens driving device 1.
  • the lens driving device 1 of the present embodiment According to the lens driving device 1 of the present embodiment, the following effects can be obtained.
  • the area of the inner peripheral surface 16 a of the sub shaft hole 16 that is in sliding contact with the outer peripheral surface of the sub shaft 52 is in sliding contact with the outer peripheral surface of the main shaft 51 among the inner peripheral surface of the main shaft hole 15. Small compared to the area. Therefore, dynamic friction generated between the inner peripheral surface 16a of the sub shaft hole 16 and the outer peripheral surface 52a of the sub shaft 52 can be suppressed. Therefore, it becomes possible to reduce the friction at the time of the movement of the holder 10, and the movement load of the holder 10 can be reduced compared with the said conventional.
  • the area of the inner peripheral surface of the main shaft hole 15 that is in sliding contact with the outer peripheral surface 51a of the main shaft 51 is about the same as the conventional one, it is suppressed that the guide function of the shaft becomes insufficient.
  • the length Ls of the auxiliary shaft support portion 34s in the optical axis direction is larger than the length Lm of the main shaft support portion 34m in the optical axis direction, so that the auxiliary shaft 52 is reliably supported. It becomes possible to do. Further, as described above, since the area of the inner peripheral surface 16a of the sub shaft hole 16 that is in sliding contact with the outer peripheral surface 52a of the sub shaft 52 can be made smaller than that of the main shaft hole 15, the sub shaft support portion 34s is changed to the main shaft support portion 34m. In comparison, it is possible to easily secure a space for enlarging in the optical axis direction.
  • the main shaft 51 is further provided in the optical axis direction because the main shaft 51 is further provided with a main shaft auxiliary support portion 38 that extends from the base portion 31 and supports the upper end portion of the main shaft 51. It becomes possible to do. Since the main shaft 51 mainly performs the function of guiding the movement in the optical axis direction, the accuracy of the lens driving device 1 is further improved by arranging the main shaft 51 accurately in the optical axis direction.
  • the camera module of this embodiment is equipped with the lens driving device 1 described above. Since the lens driving device 1 described above is a lens driving device in which the friction generated between the shaft and the shaft hole is reduced as compared with the conventional one, it is a lens driving device with high driving accuracy. Therefore, a camera module equipped with this lens driving device can be a highly accurate camera module.
  • the mobile phone of this embodiment is equipped with the camera module described above. Since this camera module is a small and highly accurate camera module as described above, it is suitable as a camera module mounted on a mobile phone.
  • the present invention is not limited to the embodiment exemplified above, and can be modified as follows.
  • the main shaft sub-supporting portion 38 that extends from the base portion 31 and supports the upper end portion of the main shaft 51 is provided, but other configurations may be used.
  • the main shaft 51 can be accurately arranged in the optical axis direction by another method, or if it can be accurately arranged in the optical axis direction only by the main shaft support portion 34m,
  • the main shaft sub-supporting portion 38 may be omitted.
  • the length Ls in the optical axis direction of the auxiliary shaft support portion 34s is larger than the length Lm in the optical axis direction of the main shaft support portion 34m, but other configurations may be used.
  • the length Ls of the sub shaft support portion 34s in the optical axis direction is set to the optical axis of the main shaft support portion 34m. It is not necessary to make it larger in the optical axis direction than the length Lm in the direction.
  • only one sub shaft 52 is used, but a plurality of sub shafts 52 may be used. Increasing the number of sub-shafts can suppress the inclination of the lens module 1a with respect to the optical axis direction. Further, as described above, the area of the inner peripheral surface of the sub shaft hole 16 that is in sliding contact with the outer peripheral surface of the sub shaft 52 is the area of the inner peripheral surface of the main shaft hole 15 that is in sliding contact with the outer peripheral surface of the main shaft 51. Therefore, even if the auxiliary shaft is increased, the friction generated between the inner peripheral surface 16a of the auxiliary shaft hole 16 and the outer peripheral surface 52a of the auxiliary shaft 52 does not increase greatly.
  • the lens driving device is mounted on the camera module, but may have other configurations.
  • an autofocus function can be added to such an optical device.
  • the camera module is mounted on the mobile phone, but other configurations may be used. It may be a compact digital camera, a digital single-lens reflex camera, or a camera for silver salt photography. Further, it may be mounted on a digital video camera or a film camera for moving image shooting.
  • SYMBOLS 1 Lens drive device, 1a ... Lens module, 1b ... Fixed body, 2 ... Filter, 3 ... Image sensor, 4 ... Hall element, 6 ... Driver, 9 ... Cover glass, 10 ... Holder, 11 ... Optical lens, 12 ... Lens barrel, 13 ... lens unit, 15 ... main shaft hole, 15a ... inner peripheral surface of main shaft hole, 15L ... length of main shaft hole in optical axis direction, 16 ... sub shaft hole, 16a ... inside of sub shaft hole Peripheral surface, 16L: length of sub shaft hole in optical axis direction, 20: magnet, 30 ... base, 31 ... base, 32 ... column, 32a ... end, 33 ... opening, 34m ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

【課題】シャフトのガイド機能が不十分となることを抑制しつつ、レンズモジュールの移動負荷を上記従来に比して抑制したレンズ駆動装置を提供することを目的とする。 【解決手段】複数のシャフトが、前記複数のシャフトのうちの1のシャフトである主シャフト51と該主シャフト以外シャフトである副シャフト52からなり、前記複数のシャフト孔が、前記主シャフト51が挿入される主シャフト孔15と、前記副シャフト52が挿入される副シャフト孔16からなり、前記副シャフト孔16の内周面16aのうち前記副シャフト52の外周面52aと摺接する面積は、前記主シャフト孔15の内周面15aのうち前記主シャフト51の外周面51aと摺接する面積に比して、小さいことを特徴とするレンズ駆動装置。

Description

レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
 本発明は、光軸方向に配設されたシャフトにガイドさせてレンズモジュールを光軸方向に移動させるレンズ駆動装置、およびレンズ駆動装置を搭載したカメラモジュール、携帯電話に関する。
 近年、携帯電話にカメラモジュールが搭載されることが一般化している。かかるカメラモジュールの焦点合わせを手動で行うことは困難であるため、自動合焦機能(オートフォーカス)が必須の機能となっている。そこで、このカメラモジュールのオートフォーカスを行うためにレンズ駆動装置が使用されている。一方、携帯電話の薄型化および小型化に伴い、レンズ駆動装置に与えられるスペースを縮小する要求が高まっている。この要求に対応するため、レンズ駆動装置のレンズユニットを駆動させる構造としては、例えば、特許文献1のようなムービングマグネット型リニア駆動方式を用いた構造が採用されている。このムービングマグネット型リニア駆動方式を用いた構造は、一般に、ステッピングモータを用いた構造と比較して、構成を簡略化できるため、レンズ駆動装置の小型化を達成できることが知られている。ムービングマグネット型リニア駆動方式を用いたレンズ駆動装置の一例を図7および図8に示す。
 図7および図8に示すように、レンズユニット113を保持するホルダ110に磁石120が装着されている。一方、カメラモジュール本体に固定されるベース130に、コイル160が装着されている。コイル160に電流を印加することで生じる電磁駆動力によって、ホルダ110に装着された磁石120が光軸方向に力を受けることにより、ホルダ110がレンズユニット113の光軸方向に移動する。
 より具体的には、図9も併せて参照し、シャフト151とシャフト152とが、ベース130の基部131に光軸方向に沿うように各々保持されている。一方、ホルダ110にはシャフト151に対応する貫通孔であるシャフト孔115と、シャフト152に対応する貫通孔であるシャフト孔116とが、光軸方向に設けられている。シャフト孔115にシャフト151が挿入され、シャフト孔116にシャフト152が挿入されることにより、ホルダ110がシャフト151およびシャフト152に対して光軸方向に摺動可能な態様で保持される。この状態において、ホルダ110およびシャフト151からなるレンズモジュール101aが、シャフト151およびシャフト152にガイドされて、光軸方向に移動する。
特開2008-185749号公報
 上述のように、シャフト151およびシャフト152にガイドされて、レンズモジュール101aが光軸方向に移動するのであるから、シャフト孔115の内周面115aとシャフト151の外周面151aとの間の摩擦、およびシャフト孔116の内周面116aとシャフト152の外周面152aとの間の摩擦が、レンズモジュール101aの移動の妨げとなる。シャフト151およびシャフト152のいずれかが、光軸方向と完全に平行になっていない場合には、特に上記摩擦が大きくなり上記問題が大きくなる。
 そこで、内周面115aおよび内周面116aが、各々外周面151aおよび外周面152aへの各々接触する面積を小さくする措置が考えられる。かかる措置により、レンズモジュール101aの移動時に、内周面115aおよび内周面116aと外周面151aおよび外周面152aとの間に各々発生する動摩擦を小さくすることが可能となる。しかし単純にシャフトの内周面への接触面積を小さくすると、レンズモジュール101aを光軸方向に移動させるためのガイドとしてのシャフトの機能を十分に果たすことが困難となり、例えば、レンズモジュール101aが光軸方向に対して傾いた状態で保持される問題や、光軸方向に正しく移動しない問題等が生じうる。
 本発明は、上記実情に鑑みてなされたものであり、シャフトのガイド機能が不十分となることを抑制しつつ、レンズモジュールの移動負荷を上記従来に比して抑制したレンズ駆動装置を提供することを目的とする。また、かかるレンズ駆動装置を搭載したカメラモジュールを提供すること、および同カメラモジュールを搭載した携帯電話を提供することを目的とする。
 本発明にかかるレンズ駆動装置は、レンズユニットを保持するホルダと、前記レンズの光軸方向に配設された複数のシャフトと、前記複数のシャフトが各々挿入され、該複数のシャフトの外周面に内周面を各々摺接させることにより該ホルダを光軸方向に移動させるための、前記ホルダに設けられた光軸方向の貫通孔である複数のシャフト孔とを備える。
また、前記複数のシャフトが、前記複数のシャフトのうちの1のシャフトである主シャフトと該主シャフト以外シャフトである副シャフトからなり、前記複数のシャフト孔が、前記主シャフトが挿入される主シャフト孔と、前記副シャフトが挿入される副シャフト孔からなる。更に、前記副シャフト孔の内周面のうち前記副シャフトの外周面と摺接する面積は、前記主シャフト孔の内周面のうち前記主シャフトの外周面と摺接する面積に比して、小さいことを特徴とする。
 上記構成によると、副シャフト孔の内周面のうち副シャフトの外周面と摺接する面積は、主シャフト孔の内周面のうち主シャフトの外周面と摺接する面積に比して小さいため、副シャフト孔の内周面と副シャフトの外周面との間に生ずる動摩擦を抑制できる。その為、ホルダ移動時の摩擦を減少させることが可能となり、ホルダの移動負荷を上記従来に比して減少させることができる。一方で、主シャフト孔の内周面のうち主シャフトの外周面と摺接する面積は上記従来と同程度であるため、シャフトのガイド機能が不十分となることが抑制されている。
 また、副シャフト孔の内周面のうち副シャフトの外周面と摺接する面積については、合目的的に決定してよい。動摩擦を減少させる観点からは、かかる面積は小さいほど良いが、摺接部分の強度や、設計上、工作上の問題等を考慮して適正な面積としてよい。
 本発明にかかるレンズ駆動装置は、機器に固定される基部と、前記基部より光軸方向に延設され、前記主シャフトの一方端を支持する主シャフト支持部と、前記基部より光軸方向に延設され、前記副シャフトの一方端を支持する副シャフト支持部とを更に備える。また、前記副シャフト支持部の光軸方向の長さが、主シャフト支持部の光軸方向の長さに比して大きいことを特徴とすることが好ましい。
 上記構成によると、副シャフト支持部は、主シャフト支持部に比して光軸方向の長さが大きいため、副シャフトを光軸方向に配設するように支持することが容易となる。また、上述のように、副シャフトの外周面と摺接する副シャフト孔の内周面の面積を主シャフト孔より小さく出来るため、副シャフト支持部を主シャフト支持部に比して光軸方向の長さを大きくするためのスペースを確保することが容易にできる。
 本発明にかかるレンズ駆動装置は、前記基部より延設され、前記主シャフトの他方端を支持する主シャフト副支持部を更に備えることが好ましい。上記構成によると、基部より延設され、主シャフトの他方端を支持する主シャフト副支持部を更に備えるため、主シャフトを一層正確に光軸方向に配設することが可能となる。また、本発明において、光軸方向への移動をガイドする機能は主シャフトが主として果たすため、主シャフトを正確に光軸方向に配設することで、レンズ駆動装置の精度が一層向上する。
 本発明にかかるカメラモジュールは、上述のレンズ駆動装置を搭載したことを特徴とする。上述のレンズ駆動装置は上記従来に比してシャフトとシャフト孔との間に生ずる摩擦を減少させたレンズ駆動装置であるため、駆動精度の高いレンズ駆動装置となりうる。従って、このレンズ駆動装置を搭載したカメラモジュールは、精度の高いカメラモジュールとなりうる。
 本発明にかかる携帯電話は、上述のカメラモジュールを搭載したことを特徴とする。上述のカメラモジュールは小型かつ高精度のカメラモジュールとなりうるため、携帯電話に搭載するカメラモジュールとして好適である。
 本発明によれば、シャフトのガイド機能が不十分となることを抑制しつつ、レンズモジュールの移動負荷を上記従来に比して抑制したレンズ駆動装置を提供することができる。
本発明にかかる携帯電話の一実施形態について説明する図面であって、携帯電話の閉じた状態を示す模式図である。 本発明にかかる携帯電話の一実施形態について説明する図面であって、携帯電話の開いた状態を示す模式図であるとともに、(a)は内面を示す斜視図であり、(b)は背面を示す斜視図である。 本発明にかかる携帯電話の一実施形態について説明する図面であって、カメラモジュールの構成を示す模式図である。 本発明にかかる携帯電話の一実施形態について説明する図面であって、携帯電話が搭載するカメラモジュールのレンズ駆動装置の分解斜視図である。 本発明にかかる携帯電話の一実施形態について説明する図面であって、(a)はホルダの斜視図であり、(b)は主シャフト孔近傍の拡大図であり、(c)は副シャフト孔近傍の拡大図である。 本発明にかかる携帯電話の一実施形態について説明する図面であって、ベースの斜視図である。 従来のレンズ駆動装置について説明する図面であって、カバーを外した状態を示す斜視図である。 従来のレンズ駆動装置について説明する図面であって、分解斜視図である。 従来のレンズ駆動装置について説明する図面であって、レンズ駆動装置の一部断面図である。
 以下、本発明の携帯電話を具体化した携帯電話の一実施形態を図面を用いて説明する。図1に示すように、係る携帯電話はヒンジHを中心に折り畳む構成の電話である。図1は折り畳んだ状態を示す図であり前面にはカメラモジュールの一部であるカバーガラス9が露出している。図2(a)は、この携帯電話を開いて表示部81、操作部82を前面にした図である。図2(b)は、開いた携帯電話を背面から見た図である。撮影者は、このように携帯電話を開いた状態でカバーガラス9を撮影したい対象に向けて、表示部81で画像を確認しつつ、操作部82を操作することによりシャッターを切り、対象物を撮影することができる。
 次に、図3を参照して、本実施形態のレンズ駆動装置1をカメラに搭載する場合のカメラモジュールの構成について説明する。
 図3に示すように、レンズ駆動装置1のベース30側には、フィルタ2とイメージセンサ3とが配置されている。ベース30には、位置検出素子としてホール素子4が配置される。そして、ホール素子4からの信号に基づいて、レンズモジュール1aの位置検出が行われる。
 合焦動作時、CPU(Central Processing Unit)5は、ドライバ6を制御して、レンズモジュール1aをホームポジションから予め設定された位置まで光軸方向において上方に移動させる。このとき、ホール素子4からの位置検出信号がCPU5に入力される。同時に、CPU5は、イメージセンサ3から入力される信号を処理して撮像画像のコンストラスト値を取得する。かかる動作を繰り返し、コンストラスト値が最良となるレンズモジュール1aの位置を合焦位置として取得する。
 その後、CPU5は、かかる合焦位置まで、レンズモジュール1aを駆動する。具体的には、CPU5は、ホール素子4からの信号をモニタし、ホール素子4からの信号が合焦位置に対応する状態になるまで、レンズモジュール1aを駆動する。かかる動作により、レンズモジュール1aが合焦位置に移動する。
 次に、図4を参照して、レンズモジュール1aを駆動するレンズ駆動装置1の全体構成について具体的に説明する。レンズ駆動装置1は、光軸方向に移動可能なレンズモジュール1aと、レンズモジュール1aに駆動力を与えるとともに、このレンズ駆動装置1が搭載される機器に固定される固定体1bとにより構成されている。このレンズ駆動装置1により、レンズモジュール1aを光軸方向の移動させることにより、オートフォーカスが実現される。また、本実施形態のレンズ駆動装置1は、光軸方向の平面視において、約8.5mmの正方形に形成されており、レンズ駆動装置1の光軸方向の高さが、約3mmに形成されている。
 レンズモジュール1aは、図3に示した複数の光学レンズ11およびこの複数の光学レンズ11を保持する鏡筒12からなるレンズユニット13、同レンズユニット13を保持する樹脂によって形成されたホルダ10、およびホルダ10に固定される複数の磁石20により構成されている。なお、本実施形態の磁石20は、互いに周方向に一定の距離を介して、レンズユニット13を径方向外方より周方向に取り囲むようにホルダ10に4個固定されている。このホルダ10は樹脂材料を射出成形することにより形成されている。その際、ホルダ10を形成するための金型には予め磁石20が装着されており、射出成型と同時に、ホルダを磁石とが一体的に成形される。かかる製法を用いることにより、磁石20とホルダ10とを接着剤にて接合した場合に比して、磁石20とホルダ10との接合強度を向上させることができる。また、磁石の取り付け工程が割愛でき、コストダウンにも資する。
 このホルダ10には主シャフト51を挿入する光軸方向の貫通孔である主シャフト孔15と、副シャフト52を挿入するための光軸方向の貫通孔である副シャフト孔16とが備えられている。図5(a)~(c)に示すように、主シャフト51および副シャフト52はレンズユニット13の光軸方向に配設されているため、主シャフト孔15の内周面15aを主シャフト51の外周面51aに摺接させるとともに、副シャフト孔16の内周面16aを副シャフト52の外周面52aに摺接させた状態でホルダ10を移動させることにより、レンズモジュール1aを光軸方向に移動させることができる。更に、副シャフト孔16の内周面16aのうち副シャフト52の外周面52aに摺接する面積は、主シャフト孔15の内周面15aのうち主シャフト51の外周面51aに摺接する面積に比して、小さくなっている。より具体的には、主シャフト孔15の軸方向の長さ15Lより副シャフト孔16の軸方向の長さ16Lを短くし、更に副シャフト孔16の径方向において外方の内周面を形成しないことにより、副シャフト52の外周面52aに摺接する面積を小さくしている。
 副シャフト52の外周面52aに摺接する面積を小さくすることにより、上記従来に比して副シャフト52と副シャフト52の外周面52aとの間に生ずる摩擦を減少させることができる。また、主シャフト51と副シャフト52とが完全に平行となっていない場合であっても、副シャフト52がホルダに与える影響が小さいため、レンズモジュール1aが光軸方向に対して傾いた状態で保持されることや、光軸方向に正しく移動しないことを抑制できる。一方で、主シャフト孔15の内周面15aのうち主シャフト51の外周面51aに摺接する面積は上記従来と同程度であるため、レンズユニット13の光軸方向に配設された主シャフト51の外周面51aに主シャフト孔15の内周面15aを摺接させて移動させることにより、レンズモジュール1aを従来と同様に光軸方向に移動させることができる。またシャフトやシャフト孔の数は減少させていないため、周方向の精度が低下することもない。
 なお、副シャフト孔16の内周面16aのうち副シャフト52の外周面52aと摺接する面積については、合目的的に決定してよい。動摩擦を減少させる観点からは、かかる面積は小さいほど良いが、摺接部分の強度や、設計上、工作上の問題、副シャフト52にも一定のガイド機能を持たす必要があるかどうか等を考慮して適正な面積としてよい。
 再度図4を参照して、固定体1bは、レンズ駆動装置1の外枠を構成するベース30およびケース40と、ベース30に固定されて、ホルダ10の光軸方向への移動をガイドす
る上述の主シャフト51および副シャフト52からなるシャフトと、電流が印加されることにより磁場を形成するコイル60とを備えている。また、コイル60の径方向の外側には、磁性体の鋼板によって形成された長方形の板状の磁性部材である磁性板70がベース30に固定されている。
 図6を合わせて参照して、ベース30には、レンズ駆動装置1の外枠の下面を構成する基部31と、基部31より光軸方向に沿って延設される支柱32とが設けられている。基部31は、光軸方向の平面視において、正方形に形成される。また、支柱32は、基部31の四隅にそれぞれ設けられている。基部31の中央位置には、円形の貫通孔である開口部33が形成されている。
 ベース30には更にレンズユニット13の光軸方向に延設された上述の主シャフト51および副シャフト52が固定される。具体的には基部31より光軸方向に延設された主シャフト支持部34mと、基部31より同じく光軸方向に延設された副シャフト支持部34sとを基部31は備えている。この主シャフト支持部34mにより主シャフト51の下方端を支持するとともに、副シャフト支持部34sにより副シャフト52の下方端を支持する。主シャフト支持部34mおよび副シャフト支持部34sは基部31から光軸方向に延設された略円筒状の部材であり、内周面に主シャフト51および副シャフト52を差し込むことにより主シャフト51および副シャフト52を光軸方向に支持することができる。
ここで、副シャフト支持部34sの光軸方向の長さLsは、主シャフト支持部34mの光軸方向の長さLmに比して大きいことを特徴とする。副シャフト支持部34sの光軸方向の長さが大きいため、副シャフト支持部34sのみで副シャフト52を光軸方向に正確に支持することが可能となる。ところで、上述のように、副シャフト52の外周面52aと摺接する副シャフト孔16の内周面16aの面積を主シャフト孔15より小さく出来るため、副シャフト支持部34sを主シャフト支持部34mに比して光軸方向において大きくするためのスペースを容易に確保することができる。より具体的には、主シャフト孔15の軸方向の長さ15Lより副シャフト孔16の軸方向の長さ16Lを短くしたため、副シャフト支持部34sの光軸方向の長さLsを長くしても、副シャフト支持部34sが副シャフト孔16と干渉することはない。言い換えると、副シャフト孔16を上記従来に比して短くすることによりスペースが生じたため、副シャフト52を支持する副シャフト支持部34sの光軸方向の長さLsを長くすることが可能となり、副シャフト支持部34sのみで副シャフト52を光軸方向に正確に支持することが可能となっている。
 一方、基部31より延設され、主シャフト51の上方端を支持する主シャフト副支持部38を更に備えることも、このレンズ駆動装置1は特徴としている。具体的には、主シャフト副支持部38は平面状の部材であるとともに、主シャフト51をはめ込むことができる貫通孔38aを有しており、この貫通孔38aに主シャフト51の上方端をはめ込むことにより、主シャフト51の上方の端部を支持する。また、主シャフト副支持部38は基部31より延設された支柱32の上端部から延設されている。従って、主シャフト51は軸方向において下方の端部を主シャフト支持部34mにおいて支持され、軸方向において上方の端部を主シャフト副支持部38によって支持されることにより、主シャフト51は一層正確に光軸方向に配設される。
 更に、図4に示すようにレンズ駆動装置1の外側の側面および上面を構成しているケース40は、コイル60の径方向の外側を外囲するようにベース30に取り付けられる。また、ケース40の上面には、複数の支柱32の光軸方向において上方の端部32aを挿入するための複数の貫通孔41を有し、各々に対応する端部32aを挿入された状態でケース40の下部が基部31に固定される。このケース40によりレンズ駆動装置1の上部が保護される。
 本実施形態のレンズ駆動装置1によれば、以下に示す効果を奏することができる。
 (1)本実施形態において、副シャフト孔16の内周面16aのうち副シャフト52の外周面と摺接する面積は、主シャフト孔15の内周面のうち主シャフト51の外周面と摺接する面積に比して小さい。従って、副シャフト孔16の内周面16aと副シャフト52の外周面52aとの間に生ずる動摩擦を抑制できる。よって、ホルダ10の移動時の摩擦を減少させることが可能となり、ホルダ10の移動負荷を上記従来に比して減少させることができる。一方で、主シャフト孔15の内周面のうち主シャフト51の外周面51aと摺接する面積は上記従来と同程度であるため、シャフトのガイド機能が不十分となることが抑制されている。
 (2)本実施形態において、副シャフト支持部34sの光軸方向の長さLsは、主シャフト支持部34mの光軸方向の長さLmに比して大きいため、副シャフト52を確実に支持することが可能となる。また、上述のように、副シャフト52の外周面52aと摺接する副シャフト孔16の内周面16aの面積を主シャフト孔15より小さく出来るため、副シャフト支持部34sを主シャフト支持部34mに比して光軸方向において大きくするためのスペースを容易に確保することができる。
 (3)本実施形態では、基部31より延設され、主シャフト51の上方の端部を支持する主シャフト副支持部38を更に備えるため、主シャフト51を一層正確に光軸方向に配設することが可能となる。光軸方向への移動をガイドする機能は主シャフト51が主として果たすため、主シャフト51を正確に光軸方向に配設することで、レンズ駆動装置1の精度が一層向上する。
 (4)本実施形態のカメラモジュールは、上述のレンズ駆動装置1を搭載している。上述のレンズ駆動装置1は上記従来に比してシャフトとシャフト孔との間に生ずる摩擦を減少させたレンズ駆動装置であるため、駆動精度の高いレンズ駆動装置である。従って、このレンズ駆動装置を搭載したカメラモジュールは、精度の高いカメラモジュールとなりうる。
 (5)本実施形態の携帯電話は、上述のカメラモジュールを搭載している。このカメラモジュールは上述のように小型かつ高精度のカメラモジュールであるため、携帯電話に搭載するカメラモジュールとして好適である。
 本発明は、上記に例示した実施形態に限定されることなく、以下のように変更することもできる。
 ・上記実施形態において、基部31より延設され、主シャフト51の上方の端部を支持する主シャフト副支持部38を備えるが、他の構成であっても良い。例えば主シャフト51を光軸方向に正確に配設することが他の方法により可能な場合や、主シャフト支持部34mのみで光軸方向に正確に配設することが可能な場合であれば、主シャフト副支持部38を割愛しても良い。
 ・上記実施形態において、副シャフト支持部34sの光軸方向の長さLsは、主シャフト支持部34mの光軸方向の長さLmに比して大きいが、他の構成であっても良い。例えば副シャフト52を正確に光軸方向に配設することが他の方法により可能な場合であれば、副シャフト支持部34sの光軸方向の長さLsを、主シャフト支持部34mの光軸方向の長さLmより光軸方向において大きくしなくても良い。
 ・上記実施形態において、副シャフト52を1本のみ用いているが、複数用いても良い。副シャフト数を増やすことにより光軸方向に対するレンズモジュール1aの傾きを抑制しうる。また、上述のように、副シャフト孔16の内周面のうち副シャフト52の外周面と摺接する面積は、主シャフト孔15の内周面のうち主シャフト51の外周面と摺接する面積に比して小さいため、副シャフトを増加させても、副シャフト孔16の内周面16aと副シャフト52の外周面52aとの間に生ずる摩擦は大きく増加することはない。
 ・上記実施形態においてレンズ駆動装置は、カメラモジュールに搭載したが、他の構成であっても良い。例えば、望遠鏡、顕微鏡、双眼鏡等の他の光学機器に搭載することにより、かかる光学機器にオートフォーカス機能を付加することが可能となる。
 ・上記実施形態においてカメラモジュールは携帯電話に搭載したが、他の構成であっても良い。コンパクトデジタルカメラ、デジタル一眼レフカメラであってもよいし、銀塩写真用のカメラに搭載しても良い。また、動画撮影用のデジタルビデオカメラやフィルムカメラに搭載しても良い。
 1…レンズ駆動装置、1a…レンズモジュール、1b…固定体、2…フィルタ、3…イメージセンサ、4…ホール素子、6…ドライバ、9…カバーガラス、10…ホルダ、11…光学レンズ、12…鏡筒、13…レンズユニット、15…主シャフト孔、15a…主シャフト孔の内周面、15L…主シャフト孔の光軸方向の長さ、16…副シャフト孔、16a…副シャフト孔の内周面、16L…副シャフト孔の光軸方向の長さ、20…磁石、30…ベース、31…基部、32…支柱、32a…端部、33…開口部、34m…主シャフト支持部、34s…副シャフト支持部、38…主シャフト副支持部、38a…貫通孔、40…ケース、41…貫通孔、51…主シャフト、51a…主シャフトの外周面、52…副シャフト、52a…副シャフトの外周面、60…コイル、70…磁性板、81…表示部、82…操作部、110…ホルダ、113…レンズユニット、115…シャフト孔、115a…内周面、116…シャフト孔、116a…内周面、120…磁石、130…ベース、131…基部、151…シャフト、151a…外周面、152…シャフト、152a…外周面、160…コイル、H…ヒンジ、Lm…長さ、Ls…長さ。

Claims (5)

  1.  レンズユニットを保持するホルダと、
     前記レンズユニットの光軸方向に配設された複数のシャフトと、
     前記複数のシャフトが各々挿入され、該複数のシャフトの外周面に内周面を各々摺接させることにより該ホルダを光軸方向に移動させるための、前記ホルダに設けられた光軸方向の貫通孔である複数のシャフト孔とを備えたレンズ駆動装置において、
     前記複数のシャフトが、前記複数のシャフトのうちの1のシャフトである主シャフトと該主シャフト以外のシャフトである副シャフトからなり、
     前記複数のシャフト孔が、前記主シャフトが挿入される主シャフト孔と、前記副シャフトが挿入される副シャフト孔からなり、
     前記副シャフト孔の内周面のうち前記副シャフトの外周面と摺接する面積は、前記主シャフト孔の内周面のうち前記主シャフトの外周面と摺接する面積に比して、小さいことを特徴とするレンズ駆動装置。
  2.  機器に固定される基部と、
     前記基部より光軸方向に延設され、前記主シャフトの一方端を支持する主シャフト支持部と、
     前記基部より光軸方向に延設され、前記副シャフトの一方端を支持する副シャフト支持部とを更に備え、
     前記副シャフト支持部の光軸方向の長さが、主シャフト支持部の光軸方向の長さに比して大きいことを特徴とする請求項1に記載のレンズ駆動装置。
  3.  前記基部より延設され、前記主シャフトの他方端を支持する主シャフト副支持部を更に備える請求項2に記載のレンズ駆動装置。
  4.  請求項1~請求項3のいずれか一項に記載のレンズ駆動装置が搭載されていることを特徴とするカメラモジュール。
  5.  請求項4に記載のカメラモジュールが搭載されていることを特徴とする携帯電話。
PCT/JP2010/064311 2009-09-01 2010-08-24 レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話 WO2011027686A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009201862A JP2012225948A (ja) 2009-09-01 2009-09-01 レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
JP2009-201862 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011027686A1 true WO2011027686A1 (ja) 2011-03-10

Family

ID=43649225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064311 WO2011027686A1 (ja) 2009-09-01 2010-08-24 レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話

Country Status (2)

Country Link
JP (1) JP2012225948A (ja)
WO (1) WO2011027686A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119306A (ja) * 1990-09-10 1992-04-20 Sony Corp カメラ用レンズ鏡筒
JPH0829657A (ja) * 1994-07-11 1996-02-02 Canon Inc レンズ鏡筒
JP2003338069A (ja) * 2002-05-21 2003-11-28 Toshiba Corp 光ヘッド装置
JP2006162876A (ja) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd 駆動装置およびそれを用いたレンズ駆動装置
JP2009069611A (ja) * 2007-09-14 2009-04-02 Sanyo Electric Co Ltd レンズ駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119306A (ja) * 1990-09-10 1992-04-20 Sony Corp カメラ用レンズ鏡筒
JPH0829657A (ja) * 1994-07-11 1996-02-02 Canon Inc レンズ鏡筒
JP2003338069A (ja) * 2002-05-21 2003-11-28 Toshiba Corp 光ヘッド装置
JP2006162876A (ja) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd 駆動装置およびそれを用いたレンズ駆動装置
JP2009069611A (ja) * 2007-09-14 2009-04-02 Sanyo Electric Co Ltd レンズ駆動装置

Also Published As

Publication number Publication date
JP2012225948A (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
KR100935312B1 (ko) 초소형 카메라 모듈용 손떨림 보정장치
JP6138969B2 (ja) カメラモジュール
WO2009142149A1 (ja) レンズ駆動装置
US11988888B2 (en) Lens actuator
WO2011068115A1 (ja) レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
JP2019502940A (ja) レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
WO2011027685A1 (ja) レンズ駆動装置及びこのレンズ駆動装置を搭載したカメラモジュール、携帯電話
JP2007155801A (ja) カメラモジュール
US11567291B2 (en) Optical system
JP2009251031A (ja) レンズ駆動装置
KR20070041341A (ko) 촬상 장치
JP2010160435A (ja) レンズ駆動装置及びこのレンズ駆動装置を搭載したカメラモジュール
JP6730646B2 (ja) レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
KR20170120112A (ko) 렌즈 구동장치, 카메라 모듈, 및 카메라 탑재 장치
JP6207955B2 (ja) カメラモジュール、およびカメラモジュールの製造方法
JP2017076135A (ja) レンズ駆動装置、カメラモジュール、及びカメラ付き携帯端末
KR20090105811A (ko) 렌즈 구동장치
KR101068124B1 (ko) 카메라 모듈용 보이스 코일 모터
US11422357B2 (en) Optical system
JP2011112933A (ja) レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
EP2919051A2 (en) Actuator
WO2011027686A1 (ja) レンズ駆動装置およびレンズ駆動装置を搭載したカメラモジュール、携帯電話
WO2010058637A1 (ja) レンズ駆動装置及びレンズ駆動装置を搭載したカメラモジュール
JP7401746B2 (ja) レンズ駆動装置、カメラモジュール、及びカメラ搭載装置
JP2007121849A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP