WO2011027515A1 - シリコン含有膜のエッチング方法 - Google Patents
シリコン含有膜のエッチング方法 Download PDFInfo
- Publication number
- WO2011027515A1 WO2011027515A1 PCT/JP2010/005234 JP2010005234W WO2011027515A1 WO 2011027515 A1 WO2011027515 A1 WO 2011027515A1 JP 2010005234 W JP2010005234 W JP 2010005234W WO 2011027515 A1 WO2011027515 A1 WO 2011027515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- silicon
- film
- volume
- oxygen
- Prior art date
Links
- 238000005530 etching Methods 0.000 title claims abstract description 294
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 81
- 239000010703 silicon Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 176
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 95
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 69
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 61
- 239000011737 fluorine Substances 0.000 claims abstract description 61
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 60
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000001301 oxygen Substances 0.000 claims abstract description 55
- 239000000463 material Substances 0.000 claims abstract description 32
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 16
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 50
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 41
- 239000002994 raw material Substances 0.000 claims description 38
- 229910052757 nitrogen Inorganic materials 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 229910004205 SiNX Inorganic materials 0.000 claims description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 172
- 210000002381 plasma Anatomy 0.000 description 59
- 239000010410 layer Substances 0.000 description 21
- 239000000758 substrate Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000001020 plasma etching Methods 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 4
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical compound FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical compound OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- -1 amorphous silicon Chemical compound 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/2406—Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32816—Pressure
- H01J37/32825—Working under atmospheric pressure or higher
Definitions
- the present invention relates to a method for etching a silicon-containing film such as silicon nitride using an etching gas obtained by converting a gas containing a fluorine-based component into plasma.
- HF silicon-containing film etching using atmospheric pressure plasma
- a technique is known in which HF is generated by adding water (H 2 O) to a fluorine-based raw material such as CF 4 , and etching is performed using HF
- a silicon film such as amorphous silicon or crystalline silicon is oxidized with ozone to form silicon oxide (Formula 1), and water is added to a fluorine-based raw material such as CF 4 to generate plasma near atmospheric pressure.
- HF is generated (Formula 2), and the silicon oxide is etched by this HF or its aqueous solution (Formula 3).
- COF 2 and the like are generated in addition to HF.
- COF 2 reacts with water to form HF (formula 4) and is used for etching silicon oxide (formula 3).
- Si + 2O 3 ⁇ SiO 2 + 2O 2 (Formula 1) CF 4 + 2H 2 O ⁇ 4HF + CO 2 (Formula 2) SiO 2 + 4HF ⁇ SiF 4 + 2H 2 O (Formula 3) COF 2 + H 2 O ⁇ CO 2 + 2HF (Formula 4)
- HF gas or HF aqueous solution has the property of penetrating and permeating many organic compounds. Therefore, in the case where an organic film such as a photoresist for pattern formation is provided on the substrate to be etched in addition to the silicon-containing film to be etched, plasma is obtained by adding water to a fluorine-based raw material such as CF 4. When etching is performed with the etched etching gas, HF permeates and permeates through the organic film. For this reason, the interfacial adhesion of the organic film is reduced, and in some cases, the organic film may float or peel off.
- Silicon-containing materials such as silicon oxide, silicon nitride, and silicon (amorphous silicon, single crystal silicon, polysilicon) are not only HF but also carbonyl fluoride (COF 2 ), oxygen fluoride (OF 2 , O 2 F 2). Etching reaction is also caused by oxygen-containing fluorine-based active species such as). The reaction rate is usually higher for silicon oxide than for other silicon inclusions. Furthermore, silicon nitride other than silicon oxide and silicon-containing materials of silicon can be oxidized by nitrogen oxide.
- the present invention has been made on the basis of the above knowledge, and in an etching method for etching the silicon-containing film in an object to be processed including a silicon-containing film that can be oxidized with nitrogen oxide (NOx) and an organic film, A generation step of generating an etching gas by introducing an etching source gas substantially free of hydrogen atoms into a plasma space near atmospheric pressure; An etching reaction step of bringing the etching gas into contact with the object to be processed; And the etching source gas contains 7 to 80% by volume of a fluorine-based source containing no hydrogen atom, 7 to 80% by volume of nitrogen (N 2 ), and 5 to 60% by volume of oxygen (O 2 ). It is characterized by.
- the etching source gas having the above composition is converted into plasma (including decomposition, excitation, activation, and ionization), thereby containing oxygen-containing fluorine-based active species and nitrogen oxide (NOx), and almost or no HF.
- Etching gas which does not contain at all can be generated.
- an etching reaction of the silicon-containing film can be caused by oxygen-containing fluorine-based active species.
- the silicon-containing film is oxidized with nitrogen oxide and converted into silicon oxide, and the etching rate for the oxygen-containing fluorine-based active species can be increased. Since the etching gas contains little or no HF, there is little or no penetration of HF into the organic film.
- the etching rate can be reliably increased by setting the flow ratio of each component of the etching raw material gas within the above range. Therefore, the shortening of the etching process time can reduce the chance that the moisture in the atmospheric gas is adsorbed to the object to be processed. Therefore, coupled with the action of the etching raw material gas not containing hydrogen atoms, Floating and peeling can be more reliably suppressed or prevented.
- the silicon-containing film includes any one of silicon (Si), silicon nitride (SiNx), silicon carbide (SiC), silicon oxynitride (SiON), silicon oxide carbide (SiOC), and silicon carbonitride (SiCN). It is preferable.
- These silicon-containing materials Si, SiNx, SiC, SiON, SiOC, SiCN) usually have an etching reaction rate due to oxygen-containing fluorine-based active species smaller than that of silicon oxide, and can be oxidized with nitric oxide.
- Silicon (Si) may be amorphous silicon, single crystal silicon, or polycrystalline silicon.
- the volume flow ratio of nitrogen to the total of the fluorine source and oxygen in the etching source gas is 70:30 to 20:80, and the volume flow ratio of the fluorine source to oxygen is 75:25 to 40: 60 may be sufficient.
- the volume flow ratio of the fluorine source material and oxygen in the etching source gas to nitrogen is preferably 60:40 to 30:70, and more preferably 50:50 to 40:60.
- the volume flow rate ratio of the fluorine-based material and oxygen in the etching material gas is preferably 60:40 to 40:60, more preferably about 50:50. Accordingly, the etching rate can be reliably improved particularly when the silicon-containing film is made of silicon nitride.
- the nitrogen content in the etching raw material gas is too high, the fluorine raw material and oxygen content will be too low, so the amount of oxygen-containing fluorine-based active species will be reduced and the etching rate will decrease. It is done. If the nitrogen content in the etching source gas is too low, the amount of nitrogen oxide produced is reduced, the oxidizing action of the silicon-containing film is weakened, and the etching rate is considered to decrease. Even if the content of the fluorine-based material in the etching material gas is too low or the content of oxygen is too low, the production rate of the oxygen-containing fluorine-based active species is reduced, so that the etching rate is considered to decrease.
- the etching source gas may contain 20 to 80% by volume of the fluorine-based material, 7 to 60% by volume of nitrogen, and 5 to 60% by volume of oxygen, and 40 to 80% by volume of the fluorine-based material. %, Nitrogen 7 to 40% by volume, and oxygen 5 to 40% by volume.
- a high etching rate can be ensured particularly when the silicon-containing film is made of silicon such as amorphous silicon.
- the etching source gas contains 30% by volume or more, further 50% by volume or more of the fluorine-based material, and the remainder of the etching source gas contains nitrogen and oxygen.
- N 2 : O 2 may be contained in a volume ratio of 10:90 to 90:10.
- the temperature of the object to be processed is 50 ° C. or higher, preferably about 50 ° C. to 120 ° C., more preferably about 50 ° C. to 100 ° C.
- the moisture in atmospheric gas such as air
- sucks to a to-be-processed object. Therefore, it is possible to prevent HF from being generated by moisture and oxygen-containing fluorine-based active species in the etching gas on the surface of the object to be processed. Therefore, the floating and peeling of the organic film can be reliably suppressed or prevented.
- the temperature of the object to be processed is preferably as high as possible within a range not exceeding the heat resistance capability of the organic film or the like constituting the object to be processed, and is about 100 ° C. Or may be heated to about 120 ° C. depending on the heat resistance of the organic film.
- the organic film can be prevented from being denatured (changes in physical properties such as shrinkage).
- the temperature at which the organic film is denatured is generally 100 ° C. to 200 ° C. or more although it depends on the components of the organic film.
- the temperature of the object to be processed is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C. in the temperature adjustment step.
- the etching rate of amorphous silicon or the like can be increased (see Example 8 and FIG. 7).
- a processing object to be a TFT (Thin Film Transistor) used as a switching element of each pixel of a flat panel display includes an amorphous silicon film, a metal film, and an organic film that are sequentially stacked. Impurities are doped in the film portion of the amorphous silicon film on the metal film side.
- the organic film serves as a mask when etching a portion of the metal film and the amorphous silicon film doped with the impurity (impurity doped amorphous silicon film).
- the etching gas may be used when etching the impurity-doped amorphous silicon film.
- the etching gas source gas contains 7 to 80% by volume of a fluorine-based material not containing hydrogen atoms, 7 to 80% by volume of nitrogen (N 2 ), and 5 to 60% by volume of oxygen (O 2 ).
- the etching gas source gas contains 20 to 80% by volume of the fluorine-based source, 7 to 60% by volume of nitrogen (N 2 ), and 5 to 60% by volume of oxygen (O 2 ).
- the source gas of the etching gas contains 40 to 80% by volume of the fluorine-based material, 7 to 40% by volume of nitrogen (N 2 ), and 5 to 40% by volume of oxygen (O 2 ).
- the temperature of the object to be treated is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C.
- the impurity-doped amorphous silicon film can be reliably etched, and the channel portion of the TFT can be formed.
- the etching gas contains little or no HF and H 2 O, it is possible to prevent fluorine from being ionized and penetrating into the organic film. Therefore, it is possible to avoid a decrease in the interfacial adhesion of the organic film. Therefore, the floating and peeling of the organic film can be prevented, and the adhesion state between the organic film and the metal film can be maintained.
- the metal film can be prevented from being dissolved (etched) by HF. As a result, a good channel portion can be formed.
- the etching source gas may contain moisture with a dew point temperature of ⁇ 40 ° C. or less, more preferably ⁇ 60 ° C. or less, and the moisture content of the etching source gas at this dew point temperature is substantially zero. Within the range, the etching source gas does not substantially contain hydrogen atoms.
- the etching source gas may contain a diluent gas such as Ar or He in addition to the fluorine-based source, oxygen (O 2 ), and nitrogen (N 2 ). Air may be used as a substitute for at least part of oxygen and nitrogen.
- fluorine-based raw materials not containing hydrogen atoms in addition to perfluorocarbons (PFC) such as CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , F 2 , SF 6 , NF 3 , XeF 2, etc. Is mentioned.
- PFC perfluorocarbons
- the oxygen-containing fluorine-based active species COF 2, OF 2, O 2 F 2 and the like.
- the vicinity of atmospheric pressure refers to a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and 1.333 ⁇ 10 4 to 10.664 considering the ease of pressure adjustment and the simplification of the apparatus configuration.
- ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.397 ⁇ 10 4 Pa is more preferable.
- the organic film may be a film that is coated and finally removed (for example, a mask layer) in a manufacturing process of a liquid crystal display device or a semiconductor device, and finally constitutes a part of the liquid crystal display device or the semiconductor device.
- a mask layer for example, an insulating layer or a protective layer.
- the organic film may be laminated on the front side of the silicon-containing film to be etched, or may constitute the immediate lower layer of the silicon-containing film. Examples of the organic film laminated on the front side of the silicon-containing film include a mask layer, an insulating layer, and a protective layer.
- An insulating layer is an example of the organic film that forms the immediate lower layer of the silicon-containing film.
- the mask layer is made of, for example, a photoresist.
- an organic film which comprises an insulating layer and a protective layer an epoxy resin, an acrylic resin, a polyimide resin, a novolak resin etc. are mentioned, for example.
- the silicon-containing film can be etched while suppressing or preventing the floating or peeling of the organic film to be processed.
- 1 is a schematic configuration diagram of a plasma etching apparatus according to a first embodiment of the present invention. It is a schematic block diagram which shows 2nd Embodiment of this invention.
- 3 is a graph showing measurement results of etching rates of Example 1, Comparative Example 1-1, and Comparative Example 1-2.
- 6 is a graph showing measurement results of the etching rate of a silicon nitride film with respect to the nitrogen content in an etching source gas in Example 2.
- 10 is a graph showing measurement results of the etching rate of a silicon nitride film with respect to the flow rate ratio of CF 4 and oxygen in an etching raw material gas in Example 4.
- FIG. 1 shows a first embodiment of the present invention.
- the workpiece 90 is, for example, a liquid crystal display device or a semiconductor device, but is not limited thereto.
- the substrate 91 of the workpiece 90 is not particularly limited, and may be glass, a semiconductor wafer, or a continuous or single-wafer resin film.
- a silicon-containing film 92 to be etched is coated on the upper surface of the base material 91.
- the silicon-containing film 92 is made of, for example, silicon nitride.
- An organic film 93 is stacked on the silicon-containing film 92 (front side).
- the organic film 93 is made of, for example, a patterned photoresist. A portion of the silicon-containing film 92 that is not coated with the photoresist 93 becomes a portion to be etched.
- the organic film 93 is not limited to a mask layer such as a photoresist, and may be an insulating layer or a protective layer made of an epoxy resin, an acrylic resin, a polyimide resin, a novolac resin, or the like.
- the organic film 93 is not limited to being laminated on the front side of the silicon-containing film 92, and may constitute a layer immediately below the silicon-containing film 92.
- the atmospheric pressure plasma etching apparatus 1 performs plasma etching on the workpiece 90 under atmospheric pressure.
- the plasma etching apparatus 1 includes a support part 2 and an etching gas supply system 3.
- a workpiece 90 is supported on the support 2.
- the support part 2 is comprised with the stage, it is not limited to this, A roller conveyor and a belt conveyor may be sufficient, a some guide roll may be sufficient, and a manipulator (robot arm) may be sufficient.
- a transport mechanism (not shown) may be connected to the stage 2 so that the workpiece 90 is transported.
- the temperature of the workpiece 90 on the stage 2 is adjusted by the temperature adjusting means 4.
- the temperature adjusting means 4 is incorporated in the stage 2, but may be arranged outside the stage 2.
- the temperature adjusting means 4 may be an electric heater, a radiant heater, or a heat exchanger including a passage through which a temperature adjusting liquid is circulated.
- the etching gas supply system 3 includes an etching source gas supply system 10 and a plasma generation unit 20.
- the etching source gas supply system 10 includes a fluorine-based source supply unit 11, an oxygen supply unit 12, and a nitrogen supply unit 13.
- the etching source gas supply system 10 plasmas an etching source gas containing a fluorine source, oxygen (O 2 ), and nitrogen (N 2 ). It supplies to the production
- the fluorine-based material supply unit 11 supplies a fluorine-based material that does not contain hydrogen atoms.
- the fluorine-based material is, for example, CF 4 .
- fluorine-based raw material other perfluorocarbons (PFC) such as C 2 F 6 , C 3 F 6 , C 3 F 8 may be used instead of CF 4 , and SF 6 , NF 3 , XeF 2 and the like may be used. It may be used.
- the oxygen supply unit 12 supplies oxygen (O 2 ).
- the nitrogen supply unit 13 supplies nitrogen (N 2 ).
- the etching source gas supply system 10 does not have a water (H 2 O) supply unit.
- the etching source gas contains substantially (nearly or not at all) a hydrogen atom-containing substance such as water or a hydrogen-containing component.
- the plasma generator 20 has a pair of electrodes 21 and 21 that face each other.
- the electrodes 21 and 21 are constituted by parallel plate electrodes, but are not limited thereto, and may be coaxial cylindrical electrodes, a pair of roll electrodes, a roll electrode and a flat plate electrode or a cylindrical concave electrode. It may be a combination.
- a solid dielectric layer (not shown) is provided on the opposing surface of at least one of the electrodes 21.
- One of these electrodes 21 and 21 is connected to the power source 22 and the other is electrically grounded.
- the supply voltage from the power supply 22 may be an intermittent wave such as a pulse or a continuous wave such as a sine wave.
- An etching source gas supply system 10 is connected to the upstream end of the plasma space 23.
- a connecting portion between the etching source gas supply system 10 and the plasma space 23 may be provided with a rectifier (not shown) for uniformly introducing the gas into the plasma space 23.
- An ejection nozzle 24 is connected to the downstream end of the plasma space 23.
- the ejection nozzle 24 is provided with a rectifying unit for uniformly blowing gas from the plasma space 23.
- the nozzle 24 faces the workpiece 90 on the support unit 2.
- the nozzle 24 may be integrated with the plasma generation unit 20.
- a suction part (not shown) that sucks and discharges the processed gas into the nozzle 24 may be provided.
- the plasma generator 20 and thus the nozzle 24 may be stationary with respect to the workpiece 90 or may be moved relative to the workpiece 90.
- the plasma generation unit 20 and the nozzle 24 move relative to the workpiece 90, they may reciprocate between both ends of the workpiece 90 one or more times, or may move once in one direction in one way. .
- CF 4 in the fluorine-based raw material supply unit 11, O 2 in the oxygen supply unit 12, and N 2 in the nitrogen supply unit 13 are mixed together at a predetermined flow ratio, and an etching raw material gas is mixed.
- the volume content of each component of the etching source gas may be set in the range of CF 4 7% to 80%, N 2 7% to 80%, and O 2 5% to 60%.
- the O 2 volume content of the etching source gas is preferably 45% or less, more preferably 30% or less, and even more preferably 20% or less.
- the etching source gas (CF 4 + O 2 + N 2 ) is introduced into the plasma space 23 of the plasma generation unit 20 by the gas supply system 10 and is turned into plasma.
- the following reactive species generation reaction occurs by plasma formation (generation process).
- CF 4 + O 2 ⁇ COF 2 + F 2 (Formula 11)
- CF 4 + O 2 ⁇ O 2 F 2 + CO 2 (Formula 12)
- N 2 + O 2 ⁇ NOx (Formula 13)
- the coefficients of the terms in the above formulas 11 to 13 are ignored (the same applies to formulas 21, 22, 31, and 41 to 45 described later).
- an etching gas containing oxygen-containing fluorine-based active species such as carbonyl difluoride (COF 2 ), oxygen fluoride (OF 2 , O 2 F 2 ), and nitrogen oxide (NOx) is generated.
- the etching gas contains little or no HF and water (H 2 O).
- the etching gas is blown out from the blowing portion 24 and blown onto the workpiece 90.
- each component of the etching gas comes into contact with a portion of the silicon-containing film 92 made of silicon nitride that is not covered with the organic film 93, and the following etching reaction occurs.
- SiNx + COF 2 ⁇ SiF 4 + CO + N 2 (Formula 21)
- SiNx + O 2 F 2 ⁇ SiF 4 + NOx (Formula 22)
- the silicon-containing film 92 can be etched. Since the etching gas contains little or no HF and H 2 O, the penetration or permeation of HF into the organic film 93 does not occur at all. Therefore, it can avoid that the interface adhesive force of the organic film 93 falls, and can suppress or prevent that the organic film 93 floats or peels off. Therefore, only the portion to be etched of the silicon-containing film 92 can be etched cleanly.
- the workpiece 90 is heated to 50 ° C. or more by the temperature adjusting means 4 in parallel with the etching gas spraying.
- the temperature adjusting means 4 in parallel with the etching gas spraying.
- a part of silicon nitride constituting the silicon-containing film 92 is oxidized by contact with NOx generated in Expression 13 (Expression 31), and becomes silicon oxide.
- This silicon oxide is etched by reacting with an oxygen-containing fluorine-based active species (carbonyl difluoride, oxygen fluoride) (Formula 32 and Formula 33).
- SiNx + NOx ⁇ SiO 2 + N 2 (Formula 31) SiO 2 + 2COF 2 ⁇ SiF 4 + 2CO 2 (Formula 32) SiO 2 + 2O 2 F 2 ⁇ SiF 4 + 3O 2 (Formula 33)
- the etching reaction rate of silicon oxide represented by the formulas 32 and 33 is higher than the etching reaction rate of silicon nitride represented by the above-described formulas 21 and 22. Therefore, the etching rate of the silicon-containing film 92 can be increased by going through the oxidation reaction (Formula 31) with NOx. Since silicon nitride has a relatively high rate of the oxidation reaction (formula 31) with NOx, the effect of improving the etching rate is great. Thereby, the etching processing time can be shortened. Therefore, the opportunity for the moisture of the atmospheric gas to be adsorbed on the workpiece 90 during etching can be reduced, and the floating or peeling of the organic film can be more reliably suppressed or prevented.
- the etching gas contains little or no HF and H 2 O, it is possible to avoid a partial condensation layer of water on the surface of the workpiece 90. Therefore, it is possible to avoid the oxidation reaction and thus the etching reaction from being hindered by the condensed layer. Furthermore, it is possible to avoid variations in the etching rate between the place where the condensed layer is formed and the place where the condensed layer is not formed. Therefore, surface roughness of the workpiece 90 can be prevented.
- the silicon-containing film 92 to be etched is silicon nitride.
- the silicon-containing film 92 is not limited to silicon nitride, and may be a silicon-containing material that can be oxidized by nitrogen oxide (NOx). It may be silicon such as amorphous silicon or polysilicon, and may be silicon carbide, silicon nitride oxide, silicon oxide carbide, silicon nitride carbide, or the like. Regardless of the film quality of the etching target, the volume content of each component of the etching source gas is set within the range of 7-80% fluorine-based material (CF 4 etc.), 7-80% N 2 and 5-60% O 2 Good.
- the volume content of each component of the etching source gas is preferably CF 4 20% to 80%, N 2 7% to 60%, O 2 is 5% to 60%, more preferably CF 4 is 40% to 80%, N 2 is 7% to 40%, and O 2 is 5% to 40%.
- the set temperature of the workpiece 90 is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C.
- the silicon-containing film 92 is made of silicon such as amorphous silicon (a-Si)
- the following etching reaction occurs by contact with the etching gas.
- Si + 2COF 2 ⁇ SiF 4 + 2CO (Formula 23)
- Si + 2O 2 F 2 ⁇ SiF 4 + 2O 2 (Formula 24)
- the rate of etching reaction of silicon nitride represented by the above-mentioned formulas 21 and 22 and the rate of etching reaction of silicon represented by formulas 23 and 24 are such that the former becomes larger or smaller than the latter depending on the processing conditions. To do. For example, when the processing temperature is about 100 ° C., the etching reaction rate of silicon nitride is higher than the etching reaction rate of silicon. When the processing temperature is about 60 ° C., the etching reaction rate of silicon is higher than the etching reaction rate of silicon nitride.
- silicon such as amorphous silicon is oxidized by reacting with NOx as shown in the following formula to be silicon oxide.
- Si + NOx ⁇ SiO 2 + N 2 This silicon oxide is etched by reacting with oxygen-containing fluorine-based active species (COF 2 , OF 2 , O 2 F 2, etc.) (Formula 32 and Formula 33).
- the silicon-containing film 92 is made of silicon carbide (SiC), silicon oxynitride (SiON), silicon oxycarbide (SiOC), or silicon carbonitride (SiCN), as shown in the following formulas 42 to 45, respectively. It reacts with NOx and is oxidized to silicon oxide. This silicon oxide is etched by reacting with oxygen-containing fluorine-based active species (COF 2 , OF 2 , O 2 F 2, etc.) (Formula 32 and Formula 33).
- SiC silicon carbide
- SiON silicon oxynitride
- SiOC silicon oxycarbide
- SiCN silicon carbonitride
- the etching reaction rate of silicon oxide represented by the formula 32 and the formula 33 is determined depending on the oxygen-containing fluorine-based active species when each of the silicon-containing materials (Si, SiC, SiON, SiOC, SiCN, etc.) is processed under the processing conditions of the embodiment. Greater than the reaction rate etched directly. Therefore, the etching rate can be reliably increased even in these silicon-containing films (Si, SiC, SiON, SiOC, SiCN, etc.). Therefore, the etching processing time can be shortened, and the opportunity for the moisture of the atmospheric gas to be adsorbed to the object 90 during etching can be reduced. As a result, combined with the effect that the etching source gas does not substantially contain hydrogen atoms, it is possible to more reliably suppress or prevent the organic film from floating or peeling off.
- FIG. 2 shows a second embodiment of the present invention.
- the second embodiment relates to channel etching of TFTs for flat panel displays.
- the object to be processed 90A to be a TFT includes a glass substrate 91. On the glass substrate 91, a gate wiring 94, a gate insulating film 95, a semiconductor film 96, a metal film 97, and an organic film 93 are sequentially stacked from the substrate 91 side.
- the gate wiring 94 is made of a refractory metal such as Cr or Ta.
- the gate insulating film 95 is made of, for example, SiN.
- the semiconductor film 96 is made of, for example, amorphous silicon.
- the semiconductor film 96 includes a film portion 96a on the substrate 91 side and a film portion 96b on the metal film 97 side.
- the film portion 96a is undoped amorphous silicon that is not doped with impurities.
- the film portion 96b is n-type amorphous silicon doped with an impurity such as P.
- the thickness of the semiconductor film 96 is, for example, about 200 nm to 300 nm.
- the film thickness of the n-type amorphous silicon 96b is, for example, about 60 nm to 100 nm.
- the metal film 97 serves as a TFT signal wiring.
- the metal film 97 is made of a metal such as Ta or Al.
- the organic film 93 is made of a photoresist. A portion of the metal film 97 corresponding to the channel portion is etched using the organic film 93 as a mask. As a result, the n-type amorphous silicon film 96b in the channel portion is exposed. In the second embodiment, the n-type amorphous silicon film 96b in the channel portion is a silicon-containing film to be etched.
- an etching raw material gas containing CF 4 (fluorine raw material), O 2 , and N 2 is introduced into the discharge space 23 to be converted into plasma, thereby generating an etching gas.
- the volume content of each component of the etching source gas is preferably CF 4 20% to 80%, N 2 7% to 60%, O 2 5% to 60%, and more preferably CF 4 40% to 80%. N 2 7% to 40% and O 2 5% to 40%.
- the set temperature of the workpiece 90 is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C.
- the etching source gas contains little or no water (H 2 O). Therefore, the etching gas contains little or no HF and water (H 2 O).
- This etching gas is sprayed on the workpiece 90A.
- the etching gas contacts the exposed portion of the n-type amorphous silicon film 96b.
- an etching reaction of the amorphous silicon constituting the film 96b occurs (Formula 23, Formula 24, Formula 41, Formula 32, Formula 33).
- the etching is stopped. Thereby, the n-type amorphous silicon film 96b in the channel portion can be etched, and the non-doped amorphous silicon film 96a can be left.
- the temperature of the workpiece 90A during the etching of the amorphous silicon film 96b is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C. Thereby, the etching rate of amorphous silicon can be increased (see Example 8 and FIG. 7). In addition, the organic film 93 can be prevented from being thermally denatured.
- the selection ratio of amorphous silicon to SiN can be increased by setting the temperature of the object to be processed 90A and the flow ratio of each component of the etching raw material gas within the above-described preferable range for amorphous silicon. Therefore, the SiN film 95 can be suppressed from being etched during channel etching.
- the etching gas contains little or no HF and H 2 O, it can be avoided that fluorine is ionized and penetrates into the organic film 93, and the interface adhesion force of the organic film 93 is prevented from being lowered. Therefore, the organic film 93 can be prevented from floating and peeling off, and the adhesion state between the organic film 93 and the metal film 97 can be maintained. Further, the metal film 97 can be prevented from being dissolved (etched) by HF. Thereby, a good channel portion can be formed.
- the present invention is not limited to the above-described embodiment, and various modifications can be made without changing the gist of the invention.
- the organic film 93 may constitute the base material 91 of the workpiece 90. By drying the atmospheric gas around the workpiece 90, the moisture in the atmospheric gas may be suppressed or prevented from adsorbing on the workpiece 90.
- the plasma etching apparatus 1 shown in FIG. 1 is a so-called remote type plasma processing apparatus in which the workpiece 90 is disposed outside the interelectrode space 23, but the workpiece 90 is disposed in the interelectrode space 23.
- a so-called direct plasma processing apparatus in which plasma is directly irradiated onto the workpiece 90 may be used.
- Example 1 the etching rate of the silicon nitride film was examined using a mixed gas of CF 4 , oxygen (O 2 ), and nitrogen (N 2 ) as an etching source gas.
- the flow rate of each component of the etching source gas was as follows. CF 4 : 0.2 SLM O 2 : 0.2 SLM N 2 : 0.4 SLM Accordingly, the content of each component in the etching source gas, CF 4 25vol%, O 2 25vol%, was N 2 50 vol%.
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the etching raw material gas (CF 4 + O 2 + N 2 ) was converted into plasma at atmospheric pressure by the plasma generator 20 to generate an etching gas.
- the opening width of the ejection nozzle 24 (the dimension in the direction perpendicular to the paper surface of FIG. 1) was 100 mm.
- Example 1-1 As a comparative example, an etching raw material gas in which CF 4 , oxygen (O 2 ), and argon (Ar) are mixed is turned into plasma under the same plasma processing conditions as in Example 1, and the same fixing processing method, processing time as in Example 1, An etching reaction process was performed on the workpiece 90 having the same structure as in Example 1 under temperature conditions.
- the flow rate of each component of the etching raw material gas was as follows. CF 4 : 0.2 SLM O 2 : 0.2 SLM Ar: 0.4 SLM
- ozone (O 3 ) was further added to the etching gas.
- Ozone was generated by an ozonizer using oxygen (O 2 ) as a raw material.
- the flow rate of the output gas (O 2 + O 3 ) from the ozonizer was 0.2 SLM, and the ozone concentration was 200 g / m 3 .
- an etching source gas (CF 4 : 0.2 SLM, O 2 : 0.2 SLM, Ar: 0.4 SLM) having the same composition as in Comparative Example 1-1 is used under the same plasma processing conditions as in Example 1, and the plasma generation unit 20 It turned into plasma.
- the gas from the plasma generation unit 20 and the gas (O 2 + O 3 ) from the ozonizer are mixed, and this mixed gas is sprayed on the object 90 to be processed, and the same fixing treatment method, treatment time, and temperature conditions as in the first embodiment. Then, an etching reaction process was performed on the workpiece 90 having the same structure as that of Example 1.
- FIG. 3 compares the etching rates of Example 1 and the above two Comparative Examples 1-1 and 1-2. According to Example 1, a high-speed etching rate about 25 times as large as that of Comparative Examples 1-1 and 1-2 could be obtained. It was confirmed that the effect of improving the etching rate was much greater when passing through the oxidizing action of nitrogen oxide (NOx) in Example 1 than via the oxidizing action of ozone in Comparative Example 1-2.
- NOx nitrogen oxide
- Example 2 the etching rate of the silicon nitride film was examined by changing the flow rate of nitrogen while changing the flow rates of CF 4 and O 2 in the etching source gas as follows.
- the flow rate of each component of the etching source gas was as follows. CF 4 : 0.2 SLM O 2 : 0.2 SLM N 2 : 0 to 1.5 SLM That is, the content of each component of the etching source gas (CF 4 + O 2 + N 2 ) was adjusted in the range of CF 4 about 10 vol% to 50 vol%, O 2 about 10 vol% to 50 vol%, N 2 0 to about 80 vol%. .
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the etching source gas was converted into plasma at atmospheric pressure by the plasma generator 20 to generate an etching gas.
- the opening width of the ejection nozzle 24 (the dimension in the direction perpendicular to the paper surface of FIG. 1) was 100 mm.
- Example 2 The results of Example 2 are shown in FIG.
- the content ratio of each component of the etching source gas CF 4 + O 2 + N 2
- the etching rate of the same length could be obtained.
- a relatively high etching rate could be obtained when CF 4 was about 10 vol% to 35 vol%, O 2 was about 10 vol% to about 35 vol%, and N 2 was about 30 vol% to about 80 vol%.
- the etching rate was sufficiently high when the nitrogen content was in the range of about 40 vol% to 70 vol%. The etching rate could be maximized when the nitrogen content was in the range of about 50 vol% to 60 vol%.
- Example 3 the object 90 including the organic film 93 was subjected to an etching process, and the influence on the organic film 93 was examined.
- the silicon-containing film 92 was a silicon nitride film
- the organic film 93 was an acrylic resin film.
- the flow rate of each component of the etching source gas was as follows. CF 4 : 0.2 SLM O 2 : 0.2 SLM N 2 : 0.4 SLM Accordingly, the content of each component in the etching source gas, CF 4 25vol%, O 2 25vol%, was N 2 50 vol%.
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the etching raw material gas (CF 4 + O 2 + N 2 ) was converted into plasma at atmospheric pressure by the plasma generator 20 to generate an etching gas.
- the opening width of the ejection nozzle 24 (the dimension in the direction perpendicular to the paper surface of FIG. 1) was 100 mm.
- Table 1 summarizes the inspection results of the floating state and peeling state of the organic film 93 at each processing time and each object temperature.
- the organic film was not lifted or peeled off even when the spraying time was about 10 seconds.
- the etching reaction (formula 2 and formula 3) using HF generated by adding H 2 O to CF 4 and making it into plasma, even if the addition amount of H 2 O is about 0 ° C. at the dew point temperature, HF The organic film floats within a few seconds after the start of the etching gas spraying.
- Example 4 the etching rate of silicon nitride was examined by changing the flow rate ratio of CF 4 and O 2 while keeping the overall flow rate of the etching source gas (CF 4 + O 2 + N 2 ) and the N 2 flow rate constant.
- the total flow rate of the etching source gas was 8 SLM.
- the total flow rate of CF 4 and O 2 was 0.4 SLM (constant).
- the flow rate of N 2 was 0.4 SLM (constant).
- the content of each component of the etching source gas was adjusted in the range of CF 4 about 12 vol% to about 45 vol%, O 2 about 5 vol% to about 38 vol%, and N 2 50 vol% (constant).
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the etching source gas was converted into plasma at atmospheric pressure by the plasma generator 20 to generate an etching gas.
- the opening width of the ejection nozzle 24 (the dimension in the direction perpendicular to the paper surface of FIG. 1) was 100 mm.
- FIG. 5 shows the measurement result of the etching rate with the flow rate ratio of CF 4 and O 2 as the horizontal axis.
- a certain etching rate could be obtained within all the flow rate ratio ranges of Example 4.
- Ratio of O 2 to the sum of CF 4 and O 2 could be obtained a relatively high etching rate in a range of 25vol% ⁇ 60vol%.
- the etching rate was sufficiently high when the O 2 ratio was in the range of 40 vol% to 60 vol%. That is, a relatively high etching rate could be obtained in the range of about CF 4 20 vol% to 38 vol% and O 2 12 vol% to 30 vol% with respect to the total flow rate of the etching raw material gas.
- the etching rate could be sufficiently increased in the range of about CF 4 20 vol% to 30 vol% and O 2 20 vol% to 30 vol% with respect to the total flow rate of the etching raw material gas.
- the etching rate was relatively low. This is presumably because the production amount of oxygen-containing fluorine-based active species such as COF 2 , OF 2 and O 2 F 2 is reduced.
- Example 5 silicon nitride was used as an etching target.
- a sample 90 having a glass substrate 91 coated with silicon nitride was prepared. The size of the sample 90 was 50 mm ⁇ 50 mm. This sample 90 was placed on the stage 2 of the plasma etching apparatus 1 and an etching gas was sprayed thereon. The temperature of the sample 90 was 90 degreeC.
- the flow rate of each component of the etching source gas was as follows. CF 4 : 0.3 SLM O 2 : 0.1 SLM N 2 : 0.2 SLM
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the etching time was 60 seconds, and the etching was stopped when the film 92 was not completely removed.
- the composition of the surface of the sample 90 before and after the etching treatment was analyzed by XPS (X-ray photoelectron spectroscopy). As XPS, model number AXIS-165 manufactured by Kratos was used.
- FIG. 6 shows the measurement results of the XPS spectrum before and after the processing of the sample of Example 5.
- the Si—N bond peak appeared remarkably before the treatment, but the Si—N bond peak almost disappeared after the treatment. Instead, the Si—O bond peak appeared remarkably. From the above results, it became clear that an oxidation reaction of silicon nitride occurred during etching.
- Example 6 the relationship between the flow rate ratio of each component of the etching source gas (CF 4 + O 2 + N 2 ) and the etching rate was examined using silicon nitride (SiNx) as an etching target.
- SiNx silicon nitride
- the flow rates of the three components of the etching source gas were adjusted to each other as shown in Table 3 so that the total flow rate of the etching source gas was 1 SLM.
- the dew point temperature of the etching source gas was ⁇ 45 ° C. or lower, and the moisture content of the etching source gas was substantially zero.
- the set temperature of sample 90 was 100 ° C.
- the relative moving speed between the plasma generation unit 20 and the sample substrate 90 was 10 mm / sec.
- the plasma conditions of the plasma generation unit 20 were as follows.
- Thickness of interelectrode gap 23 1 mm
- Applied voltage and frequency between electrodes 21 and 21: Vpp 15 kV, 40 kHz
- the opening width of the ejection nozzle 24 was 100 mm.
- the measurement results of the etching rate of Example 6 are shown in Table 3.
- the etching rates in Table 3 are the etching amounts when the sample 90 is moved one way in the left-right direction in FIG.
- SiNx can be etched at a certain etching rate if CF 4 in the etching raw material gas is 7 to 80% by volume, N 2 is 7 to 80% by volume, and O 2 is 5 to 60% by volume.
- a high etching rate could be secured if O 2 in the etching source gas was 45% by volume or less, preferably 30% by volume or less, more preferably 20% by volume or less.
- Example 7 the relationship between the flow rate ratio of each component of the etching source gas (CF 4 + O 2 + N 2 ) and the etching rate was examined using amorphous silicon (a-Si) as an etching target.
- a-Si amorphous silicon
- Table 4 shows the measurement results of the etching rate of Example 7.
- the etching rates in Table 4 are the etching amounts when the sample 90 is moved once in the left-right direction in FIG.
- Example 8 amorphous silicon (a-Si) was used as an etching target.
- This sample 90 was placed on the stage 2 of the plasma etching apparatus 1 and an etching gas was sprayed thereon. The temperature of the sample 90 was adjusted in the range of 30 ° C. to 100 ° C. by the heater 4.
- the flow rate of each component of the etching source gas was as follows. CF 4 : 0.2 SLM O 2 : 0.2 SLM N 2 : 0.2 SLM
- the dew point temperature of the etching source gas was ⁇ 45 ° C.
- FIG. 7 shows the measurement results of the etching rate under each temperature condition. It was confirmed that the amorphous silicon can be etched even near room temperature (about 30 ° C.). When it exceeded 50 degreeC, the etching rate improved greatly. In particular, the etching rate was sufficiently high in the temperature range of 60 ° C. to 80 ° C. A sufficient etching rate was obtained even at temperatures exceeding 80 ° C. and 100 ° C. Therefore, when the silicon-containing film 92 to be etched is amorphous silicon, the temperature of the object to be processed is preferably more than 50 ° C. to 100 ° C., more preferably 60 ° C. to 80 ° C. in the temperature adjustment step. Furthermore, the floating and peeling of the mask 93 were hardly confirmed under any temperature condition.
- the present invention can be applied, for example, to the manufacture of a polarizing film for a liquid crystal display device or a semiconductor device.
- Plasma etching apparatus Support part 3 Etching gas supply system 4 Temperature control means 10 Etching raw material gas supply system 11 Fluorine raw material supply part 12 Oxygen supply part 13 Nitrogen supply part 20 Plasma generation part 21 Electrode 22 Power supply 23 Plasma space between electrodes 24 jet nozzles 90, 90A workpiece 91 substrate 92 silicon-containing film 93 organic film 94 gate gate wiring 95 gate insulating film 96 amorphous silicon film (silicon-containing film) 96a Non-doped amorphous silicon film 96b Impurity-doped amorphous silicon film 97 Metal film
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
例えば、特許文献1では、アモルファスシリコンや結晶シリコン等のシリコン膜をオゾンにて酸化して酸化シリコンとし(式1)、かつCF4等のフッ素系原料に水を添加して大気圧近傍のプラズマ空間に通すことにより、HFを生成し(式2)、このHFやその水溶液によって酸化シリコンをエッチングしている(式3)。上記プラズマ空間では、HFの他、COF2等が生成される。COF2は、水と反応させてHFとし(式4)、酸化シリコンのエッチングに供される(式3)。
Si+2O3 → SiO2+2O2 (式1)
CF4+2H2O → 4HF+CO2 (式2)
SiO2+4HF→SiF4+2H2O (式3)
COF2+H2O → CO2+2HF (式4)
本発明は、上記の知見に基づいてなされたものであり、酸化窒素(NOx)にて酸化可能なシリコン含有膜及び有機膜を含む被処理物における前記シリコン含有膜をエッチングするエッチング方法において、
水素原子を実質的に含有しないエッチング原料ガスを大気圧近傍のプラズマ空間に導入してエッチングガスを生成する生成工程と、
前記エッチングガスを前記被処理物に接触させるエッチング反応工程と、
を備え、前記エッチング原料ガスが、水素原子を含有しないフッ素系原料を7~80体積%、窒素(N2)を7~80体積%、酸素(O2)を5~60体積%含有することを特徴とする。
前記エッチング反応工程では、酸素含有フッ素系活性種にて前記シリコン含有膜のエッチング反応を起こすことができる。更に、酸化窒素にて前記シリコン含有膜を酸化して酸化シリコンに変換し、酸素含有フッ素系活性種に対するエッチングレートを高くすることができる。エッチングガスにはHFが殆ど又はまったく含まれていないから、有機膜中へのHFの浸透、透過現象が殆ど又はまったく起きない。したがって、有機膜の界面密着力が低下するのを回避でき、有機膜の浮きや剥がれを抑制又は防止することができる。更に、上記酸化窒素による酸化作用ひいてはエッチングレート向上作用に加え、エッチング原料ガスの各成分の流量比を上記の範囲内にすることでエッチングレートを確実に高くできる。したがって、エッチング処理時間の短縮により、雰囲気ガス中の水分が被処理物に吸着する機会を減らすことができるため、エッチング原料ガスが水素原子を含有しないことの作用と相俟って、有機膜の浮きや剥がれをより確実に抑制又は防止できる。また、被処理物の表面に部分的に水の凝縮層が形成されるのを回避できる。したがって、酸化反応ひいてはエッチング反応が凝縮層により妨げられるのを回避できる。さらには、凝縮層が形成された箇所と凝縮層が形成されなかった箇所との間にエッチングレートのバラツキが生じるのを回避できる。よって、被処理物の表面荒れを防止できる。
エッチング原料ガスが、フッ素系原料、酸素(O2)、窒素(N2)の他、Ar、He等の希釈ガスを含んでいてもよい。酸素と窒素の少なくとも一部の代用として、空気を用いてもよい。
酸素含有フッ素系活性種としては、COF2、OF2、O2F2等が挙げられる。
図1は、本発明の第1実施形態を示したものである。被処理物90は、例えば液晶表示装置や半導体装置であるが、これらに限定されるものではない。被処理物90の基材91は、特に限定がなく、ガラスでもよく、半導体ウェハでもよく、連続状又は枚葉状の樹脂フィルムでもよい。基材91の上面には、エッチング対象のシリコン含有膜92が被膜されている。シリコン含有膜92は、例えば窒化シリコンにて構成されている。
有機膜93は、フォトレジスト等のマスク層に限定されるものではなく、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ノボラック樹脂等からなる絶縁層や保護層であってもよい。有機膜93は、シリコン含有膜92の表側に積層されるのに限られず、シリコン含有膜92の直下層を構成していてもよい。
ノズル24が、プラズマ生成部20と一体になっていてもよい。ノズル24に処理済みのガスを吸い込んで排出する吸引部(図示省略)が設けられていてもよい。
CF4+O2 → COF2+F2 (式11)
CF4+O2 → O2F2+CO2 (式12)
N2+O2 → NOx (式13)
上記式11~13の各項の係数は無視している(後記の式21、22、31、41~45において同じ)。
これにより、2フッ化カルボニル(COF2)、フッ化酸素(OF2、O2F2)等の酸素含有フッ素系活性種、及び酸化窒素(NOx)を含むエッチングガスが生成される。エッチングガスにはHF及び水(H2O)が殆ど又はまったく含まれていない。
SiNx+COF2 → SiF4+CO+N2 (式21)
SiNx+O2F2 → SiF4+NOx (式22)
SiNx+NOx → SiO2+N2 (式31)
SiO2+2COF2 → SiF4+2CO2 (式32)
SiO2+2O2F2→ SiF4+3O2 (式33)
Si+2COF2 → SiF4+2CO (式23)
Si+2O2F2 → SiF4+2O2 (式24)
上述した式21及び式22で表される窒化シリコンのエッチング反応の速度と、式23及び式24で表されるシリコンのエッチング反応速度とは、処理条件によって前者が後者より大きくなったり小さくなったりする。例えば処理温度が100℃程度のときは、窒化シリコンのエッチング反応の速度がシリコンのエッチング反応速度より大きい。処理温度が60℃程度のときは、シリコンのエッチング反応の速度が窒化シリコンのエッチング反応速度より大きい。
Si+NOx →SiO2+N2 (式41)
この酸化シリコンが酸素含有フッ素系活性種(COF2、OF2、O2F2等)と反応してエッチングされる(式32及び式33)。
SiC+NOx →SiO2+N2+CO2 (式42)
SiON+NOx → SiO2+N2 (式43)
SiOC+NOx → SiO2+N2+CO2 (式44)
SiCN+NOx → SiO2+N2+CO2 (式45)
例えば、有機膜93が被処理物90の基材91を構成していてもよい。
被処理物90の周辺の雰囲気ガスを乾燥させることで、雰囲気ガス中の水分が被処理物90に吸着するのを抑制又は防止してもよい。
実施例1では、CF4、酸素(O2)、窒素(N2)の混合ガスをエッチング原料ガスとして、窒化シリコン膜のエッチングレートを調べた。エッチング原料ガスの各成分の流量は以下の通りとした。
CF4 : 0.2SLM
O2 : 0.2SLM
N2 : 0.4SLM
したがって、エッチング原料ガスの各成分の含有率は、CF4 25vol%、O2 25vol%、N2 50vol%であった。エッチング原料ガスの露点温度は-45℃以下であり、エッチング原料ガスの水分含有量は実質ゼロであった。
上記のエッチング原料ガス(CF4+O2+N2)をプラズマ生成部20によって大気圧下においてプラズマ化し、エッチングガスを生成した。プラズマ生成部20のプラズマ放電条件は以下の通りであった。
電極間空間23の厚さ: 1mm
電極21,21間の印加電圧: Vpp=13kV、40kHz、パルス波
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
5cm角のガラス基材91上に窒化シリコン膜92が被膜された被処理物90を、ステージ2に載せて噴出部24の下方へ移動させた後、静止させた状態(固定処理方法)で、噴出部24から上記エッチングガスを吹き付けた。処理時間は1分とした。被処理物90の温度は室温とした。
図3に示すように、窒化シリコン膜のエッチングレートを測定したところ、280nm/minになった。半導体装置や液晶表示装置の製造工程において十分に実用可能なエッチングレートであった。
比較例として、CF4、酸素(O2)、アルゴン(Ar)を混合したエッチング原料ガスを、実施例1と同じプラズマ処理条件でプラズマ化し、かつ実施例1と同じ固定処理方法、処理時間、温度条件で実施例1と同一構造の被処理物90に対しエッチング反応工程を行なった。エッチング原料ガスの各成分の流量は以下の通りであった。
CF4 : 0.2SLM
O2 : 0.2SLM
Ar : 0.4SLM
他の比較例として、エッチングガスに更にオゾン(O3)を添加した。オゾンは、酸素(O2)を原料としてオゾナイザーにて生成した。オゾナイザーからの出力ガス(O2+O3)の流量は、0.2SLMであり、そのオゾン濃度は、200g/m3であった。別途、上記比較例1-1と同じ組成のエッチング原料ガス(CF4:0.2SLM、O2:0.2SLM、Ar:0.4SLM)を実施例1と同じプラズマ処理条件でプラズマ生成部20にてプラズマ化した。そして、プラズマ生成部20からのガスとオゾナイザーからのガス(O2+O3)とを混合し、この混合ガスを被処理物90に吹き付け、実施例1と同じ固定処理方法、処理時間、温度条件で実施例1と同一構造の被処理物90に対しエッチング反応工程を行なった。
CF4 : 0.2SLM
O2 : 0.2SLM
N2 : 0~1.5SLM
すなわち、エッチング原料ガス(CF4+O2+N2)の各成分の含有率をCF4 約10vol%~50vol%、O2 約10vol%~50vol%、N2 0~約80vol%の範囲で調節した。エッチング原料ガス中のCF4と酸素の体積流量比は、CF4:O2=1:1であった。エッチング原料ガスの露点温度は-45℃以下であり、エッチング原料ガスの水分含有量は実質ゼロであった。
上記エッチング原料ガスをプラズマ生成部20によって大気圧下においてプラズマ化し、エッチングガスを生成した。プラズマ生成部20のプラズマ放電条件は以下の通りであった。
電極間空間23の厚さ: 1mm
電極21,21間の印加電圧: Vpp=13kV、40kHz、パルス波
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
5cm角のガラス基材91上に窒化シリコン膜92が被膜された被処理物90をステージ2に載せ、噴出部24の下方を複数回往復して通過させながら(スキャン処理方法)、噴出部24から上記エッチングガスを吹き付けた。被処理物90の搬送速度は、4m/minとした。被処理物90の温度は室温とした。
エッチング原料ガス(CF4+O2+N2)の各成分の含有率をCF4 10vol%~40vol%程度、O2 10vol%~40vol%程度、N2 20vol%~80vol%程度にすると、ある程度の大きさのエッチングレートを得ることができた。CF4 10vol%~35vol%程度、O2 10vol%~35vol%程度、N2 30vol%~80vol%程度にすると比較的高いエッチングレートを得ることができた。さらに、窒素含有率が40vol%~70vol%程度の範囲でエッチングレートを十分に高くできた。窒素含有率が50vol%~60vol%程度の範囲でエッチングレートを最大にすることができた。
CF4 : 0.2SLM
O2 : 0.2SLM
N2 : 0.4SLM
したがって、エッチング原料ガスの各成分の含有率は、CF4 25vol%、O2 25vol%、N2 50vol%であった。エッチング原料ガスの露点温度は-45℃以下であり、エッチング原料ガスの水分含有量は実質ゼロであった。
上記のエッチング原料ガス(CF4+O2+N2)をプラズマ生成部20によって大気圧下においてプラズマ化し、エッチングガスを生成した。プラズマ生成部20のプラズマ放電条件は以下の通りであった。
電極間空間23の厚さ: 1mm
電極21,21間の印加電圧: Vpp=13kV、40kHz、パルス波
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
窒化シリコン膜が被膜された被処理物90を、ステージ2に載せて噴出部24の下方へ移動させた後、静止させた状態(固定処理方法)で、噴出部24から上記エッチングガスを吹き付けた。処理時間は、以下の6通りとした。
処理時間 : 5秒、10秒、20秒、60秒、90秒、120秒.
被処理物90の温度は、以下の3通りとした。被処理物90の加熱は、ステージ2を介して行なった。
被処理物温度 : 室温(RT)、50℃、80℃
上記エッチング原料ガスをプラズマ生成部20によって大気圧下においてプラズマ化し、エッチングガスを生成した。プラズマ生成部20のプラズマ放電条件は以下の通りであった。
電極間空間23の厚さ: 1mm
電極21,21間の印加電圧: Vpp=13kV、40kHz、パルス波
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
5cm角のガラス基材91上に窒化シリコン膜92が被膜された被処理物90を、ステージ2に載せて噴出部24の下方へ移動させた後、静止させた状態(固定処理方法)で、噴出部24から上記エッチングガスを吹き付け、エッチングレートを測定した。処理時間は1分とした。被処理物90の温度は室温とした。
サンプル90の温度は、90℃とした。
エッチング原料ガスの各成分の流量は以下の通りとした。
CF4 : 0.3SLM
O2 : 0.1SLM
N2 : 0.2SLM
エッチング原料ガスの露点温度は-45℃以下であり、エッチング原料ガスの水分含有量は実質ゼロであった。
電極間ギャップ23の厚さ: 1mm
投入電力: 325W(直流130V、2.5Aをパルス変換)
電極21,21間の印加電圧及び周波数: Vpp=15kV、40kHz
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
エッチング処理前と処理後のサンプル90の表面の組成をXPS(X-ray photoelectron Spectroscopy)にて分析した。XPSとして、Kratos社製、型番AXIS-165を用いた。
処理前はSi-N結合のピークが顕著に現れていたが、処理後はSi-N結合のピークが殆どなくなり、これに代えて、Si-O結合のピークが顕著に現れた。
以上の結果より、エッチング時に窒化シリコンの酸化反応が起きていることが明らかになった。
サンプル90の設定温度は、100℃とした。
プラズマ生成部20とサンプル基板90との相対移動速度は、10mm/secとした。
プラズマ生成部20のプラズマ条件は以下の通りであった。
電極間ギャップ23の厚さ: 1mm
投入電力: 325W(直流130V、2.5Aをパルス変換)
電極21,21間の印加電圧及び周波数: Vpp=15kV、40kHz
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
エッチング原料ガスの各成分の流量は以下の通りとした。
CF4 : 0.2SLM
O2 : 0.2SLM
N2 : 0.2SLM
エッチング原料ガスの露点温度は-45℃以下であり、エッチング原料ガスの水分含有量は実質ゼロであった。
プラズマ生成部20のプラズマ放電条件は以下の通りであった。
電極間ギャップ23の厚さ: 1mm
投入電力: 325W(直流130V、2.5Aをパルス変換)
電極21,21間の印加電圧及び周波数: Vpp=15kV、40kHz
噴出ノズル24の開口幅(図1の紙面と直交する方向の寸法)は、100mmであった。
常温近く(30℃程度)でも、アモルファスシリコンをエッチングできることが確認された。
50℃を超えると、エッチングレートが大きく向上した。特に60℃~80℃の温度範囲ではエッチングレートを十分に高くできた。
80℃を超え、100℃でも、十分なエッチングレートが得られた。
よって、エッチング対象のシリコン含有膜92がアモルファスシリコンである場合、温調工程において被処理物の温度を50℃超~100℃にすることが好ましく、60℃~80℃にすることがより好ましい。
さらに、何れの温度条件においても、マスク93の浮き及び剥がれは殆ど確認されなかった。
2 支持部
3 エッチングガス供給系
4 温度調節手段
10 エッチング原料ガス供給系
11 フッ素系原料供給部
12 酸素供給部
13 窒素供給部
20 プラズマ生成部
21 電極
22 電源
23 電極間のプラズマ空間
24 噴出ノズル
90,90A 被処理物
91 基材
92 シリコン含有膜
93 有機膜
94 ゲートゲート配線
95 ゲート絶縁膜
96 アモルファスシリコン膜(シリコン含有膜)
96a ノンドープアモルファスシリコン膜
96b 不純物ドープアモルファスシリコン膜
97 金属膜
Claims (16)
- 酸化窒素(NOx)にて酸化可能なシリコン含有膜及び有機膜を含む被処理物における前記シリコン含有膜をエッチングするエッチング方法において、
水素原子を実質的に含有しないエッチング原料ガスを大気圧近傍のプラズマ空間に導入してエッチングガスを生成する生成工程と、
前記エッチングガスを前記被処理物に接触させるエッチング反応工程と、
を備え、前記エッチング原料ガスが、水素原子を含有しないフッ素系原料を7~80体積%、窒素(N2)を7~80体積%、酸素(O2)を5~60体積%含有することを特徴とするシリコン含有膜のエッチング方法。 - 前記エッチング原料ガスが、酸素を45体積%以下含有することを特徴とする請求項1に記載のエッチング方法。
- 前記エッチング原料ガスが、酸素を30体積%以下含有することを特徴とする請求項1又は2に記載のエッチング方法。
- 前記フッ素系原料及び酸素の合計と窒素の体積流量比が、70:30~20:80であり、かつ前記フッ素系原料と酸素の体積流量比が、75:25~40:60であることを特徴とする請求項1~3の何れか1項に記載のエッチング方法。
- 前記エッチング原料ガスの前記フッ素系原料及び酸素の合計と窒素の体積流量比が、60:40~30:70であることを特徴とする請求項4に記載のエッチング方法。
- 前記エッチング原料ガスの前記フッ素系原料及び酸素の合計と窒素の体積流量比が、50:50~40:60であることを特徴とする請求項4又は5に記載のエッチング方法。
- 前記エッチング原料ガスの前記フッ素系原料と酸素の体積流量比が、60:40~40:60であることを特徴とする請求項4~6の何れか1項に記載のエッチング方法。
- 前記エッチング原料ガスが、前記フッ素系原料を20体積%以上、窒素を60体積%以下含有することを特徴とする請求項1に記載のエッチング方法。
- 前記エッチング原料ガスが、前記フッ素系原料を40体積%以上、窒素を40体積%以下、酸素を40体積%以下含有することを特徴とする請求項8に記載のエッチング方法。
- 前記シリコン含有膜が、シリコン(Si)、窒化シリコン(SiNx)、炭化シリコン(SiC)、酸化窒化シリコン(SiON)、酸化炭化シリコン(SiOC)、炭化窒化シリコン(SiCN)の何れか1つを含むことを特徴とする請求項1~9の何れか1項に記載のエッチング方法。
- 前記シリコン含有膜が、窒化シリコン(SiNx)からなることを特徴とする請求項1~7の何れか1項に記載のエッチング方法。
- 前記シリコン含有膜が、アモルファスシリコンからなることを特徴とする請求項1、8又は9に記載のエッチング方法。
- 前記被処理物の温度を50℃~120℃にする温調工程を、更に備えたことを特徴とする請求項1~12の何れか1項に記載のエッチング方法。
- 前記被処理物の温度を50℃超~100℃にすることを特徴とする請求項12に記載のエッチング方法。
- 前記被処理物の温度を60℃~80℃にすることを特徴とする請求項12又は14に記載のエッチング方法。
- 前記被処理物が、順次積層されたアモルファスシリコンからなる前記シリコン含有膜と金属膜と前記有機膜を含み、前記シリコン含有膜の前記金属膜側の膜部分に不純物がドープされており、前記膜部分を前記エッチングガスにてエッチングすることを特徴とする請求項12、14又は15に記載のエッチング方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080041037.9A CN102498550B (zh) | 2009-09-02 | 2010-08-25 | 用于蚀刻含硅膜的方法 |
JP2011529785A JP5002073B2 (ja) | 2009-09-02 | 2010-08-25 | シリコン含有膜のエッチング方法 |
KR1020127008237A KR101200139B1 (ko) | 2009-09-02 | 2010-08-25 | 실리콘 함유막의 에칭 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203000 | 2009-09-02 | ||
JP2009-203000 | 2009-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011027515A1 true WO2011027515A1 (ja) | 2011-03-10 |
Family
ID=43649073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/005234 WO2011027515A1 (ja) | 2009-09-02 | 2010-08-25 | シリコン含有膜のエッチング方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5002073B2 (ja) |
KR (1) | KR101200139B1 (ja) |
CN (1) | CN102498550B (ja) |
TW (1) | TWI430367B (ja) |
WO (1) | WO2011027515A1 (ja) |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015529405A (ja) * | 2012-09-20 | 2015-10-05 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 炭窒化ケイ素の選択的エッチング |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
CN112921326A (zh) * | 2021-01-22 | 2021-06-08 | 王修强 | 一种汽车零件压铸铝合金表面处理工艺 |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9711359B2 (en) * | 2015-08-13 | 2017-07-18 | Lam Research Corporation | Shadow trim line edge roughness reduction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07331449A (ja) * | 1994-06-06 | 1995-12-19 | Yuzo Mori | プラズマcvmにおける残留不純物の低減法 |
JP2004319285A (ja) * | 2003-04-16 | 2004-11-11 | Matsushita Electric Works Ltd | プラズマ処理装置及びプラズマ処理方法 |
JP2009099880A (ja) * | 2007-10-19 | 2009-05-07 | Sekisui Chem Co Ltd | プラズマエッチング装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6780782B1 (en) * | 2003-02-04 | 2004-08-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bi-level resist structure and fabrication method for contact holes on semiconductor substrates |
US8524112B2 (en) * | 2007-12-21 | 2013-09-03 | Solvay Fluor Gmbh | Process for the production of microelectromechanical systems |
-
2010
- 2010-08-25 KR KR1020127008237A patent/KR101200139B1/ko active IP Right Grant
- 2010-08-25 CN CN201080041037.9A patent/CN102498550B/zh active Active
- 2010-08-25 WO PCT/JP2010/005234 patent/WO2011027515A1/ja active Application Filing
- 2010-08-25 JP JP2011529785A patent/JP5002073B2/ja active Active
- 2010-08-27 TW TW099128944A patent/TWI430367B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07331449A (ja) * | 1994-06-06 | 1995-12-19 | Yuzo Mori | プラズマcvmにおける残留不純物の低減法 |
JP2004319285A (ja) * | 2003-04-16 | 2004-11-11 | Matsushita Electric Works Ltd | プラズマ処理装置及びプラズマ処理方法 |
JP2009099880A (ja) * | 2007-10-19 | 2009-05-07 | Sekisui Chem Co Ltd | プラズマエッチング装置 |
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
JP2015529405A (ja) * | 2012-09-20 | 2015-10-05 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 炭窒化ケイ素の選択的エッチング |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
CN112921326A (zh) * | 2021-01-22 | 2021-06-08 | 王修强 | 一种汽车零件压铸铝合金表面处理工艺 |
Also Published As
Publication number | Publication date |
---|---|
TW201133619A (en) | 2011-10-01 |
KR101200139B1 (ko) | 2012-11-13 |
KR20120058595A (ko) | 2012-06-07 |
TWI430367B (zh) | 2014-03-11 |
CN102498550A (zh) | 2012-06-13 |
CN102498550B (zh) | 2014-07-16 |
JPWO2011027515A1 (ja) | 2013-01-31 |
JP5002073B2 (ja) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5002073B2 (ja) | シリコン含有膜のエッチング方法 | |
JP5476152B2 (ja) | 窒化シリコンのエッチング方法及び装置 | |
US5620559A (en) | Hydrogen radical processing | |
JP5167430B2 (ja) | エッチング方法及び装置 | |
JP4153961B2 (ja) | シリコンのエッチング方法 | |
WO2009113402A1 (ja) | シリコン含有膜のエッチング方法および装置 | |
CN102834902B (zh) | 蚀刻方法及装置 | |
US20090325388A1 (en) | Method of semiconductor processing | |
WO2010035522A1 (ja) | シリコン含有膜のエッチング方法および装置 | |
EP2618367A1 (en) | Silicon etching fluid and method for producing transistor using same | |
JP2010062433A (ja) | シリコン含有膜のエッチング方法および装置 | |
JP2009094209A (ja) | シリコンのエッチング方法 | |
JP2005347278A (ja) | 放電プラズマ処理装置 | |
JPS6286731A (ja) | レ−ザ−ビ−ム照射Si表面処理装置 | |
JP5276223B2 (ja) | エッチング方法及び装置 | |
JP2010245405A (ja) | シリコンの表面粗化方法 | |
JP2012216582A (ja) | シリコン含有物のエッチング方法 | |
KR100212014B1 (ko) | 반도체 소자의 비피에스지막 형성방법 | |
JP2003197593A (ja) | 基板処理方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080041037.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10813470 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011529785 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127008237 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10813470 Country of ref document: EP Kind code of ref document: A1 |