WO2011026442A1 - 光网络中的信息处理方法、光通信装置及系统 - Google Patents

光网络中的信息处理方法、光通信装置及系统 Download PDF

Info

Publication number
WO2011026442A1
WO2011026442A1 PCT/CN2010/076634 CN2010076634W WO2011026442A1 WO 2011026442 A1 WO2011026442 A1 WO 2011026442A1 CN 2010076634 W CN2010076634 W CN 2010076634W WO 2011026442 A1 WO2011026442 A1 WO 2011026442A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
dimension
protection
overhead
channel
Prior art date
Application number
PCT/CN2010/076634
Other languages
English (en)
French (fr)
Inventor
资小兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10813364.6A priority Critical patent/EP2466785B1/en
Priority to ES10813364.6T priority patent/ES2617437T3/es
Publication of WO2011026442A1 publication Critical patent/WO2011026442A1/zh
Priority to US13/410,818 priority patent/US8787750B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an information processing method, an optical communication device, and a system in an optical network.
  • OTN Optical Transport Network
  • Optical networks generally require the reliability of connections within the network, which can be achieved by various protection and recovery techniques.
  • control plane rerouting techniques can be utilized to recover optical network connections.
  • the shared mesh (Mesh) recovery technology provided by the control plane can also be utilized.
  • the shared Mesh recovery technology Take the shared Mesh recovery technology as an example.
  • each shared Mesh service includes a working path and a protection path, and these paths are composed of segments.
  • the signaling protocol of the control plane such as general multi-protocol label switching and resource reservation protocol with traffic engineering (GMPLS RSVP-TE, Generalized Multi-, may be utilized.
  • GPLS RSVP-TE Generalized Multi-
  • the control channel can be provided by overhead bytes.
  • the signaling message of the control plane is transmitted by the control channel.
  • the nodes of the optical network can provide control channels by the overhead of the Optical Supervisory Channel (OSC).
  • OSC Optical Supervisory Channel
  • a control interface is generated between the nodes, and a routing protocol is run on the control interface (for example, the most open The short path priority (OSPF, Open Shortest Path First) protocol can obtain the routing table of the control plane, so that the nodes can transmit signaling protocol messages to each other.
  • OSPF Open Shortest Path First
  • the control channel sends a path (Path) message to another intermediate node (encapsulated in the IP packet).
  • the intermediate node parses the Path message and establishes a connection, and then forwards the Path message to the destination node.
  • the destination node parses the Path message and establishes a connection, and then switches the service to a protection path consisting of the newly created connection.
  • the destination node returns a reservation (Resv, Reservation) message to the first node through the intermediate node, and the first node can switch the service to the protection path formed by the new connection according to the received Resv message, so that the service is restored.
  • the inventor of the present invention finds that: because the service recovery process in the prior art requires the participation of the control plane, the message of the control plane protocol stack such as the GMPLS RSVP-TE signaling protocol is complicated. Therefore, the process of parsing messages to obtain information is also complicated.
  • Embodiments of the present invention provide an information processing method, an optical communication apparatus, and a system in an optical network capable of reducing information processing complexity.
  • An embodiment of the present invention provides an information processing method in an optical network, including:
  • the node receives the first message from the overhead of the first dimension
  • the node searches for the local configuration information, where the local configuration information includes the cost of the first dimension of the protection path, the protection resource of the first dimension of the protection path, the cost of the second dimension of the protection path, and the number of the protection path. a protection resource of the second dimension, determining a protection path associated with the first message according to the local configuration information and the first message, and determining an overhead of the second dimension associated with the first message;
  • the node sends the second message to the node adjacent to the second dimension according to the first message and by the overhead of the second dimension associated with the first message.
  • An embodiment of the present invention provides an information processing method in an optical network, including: The node receives the third message from the overhead of the first dimension;
  • the node searches for the local configuration information, where the local configuration information includes the cost of the first dimension of the protection path, and the protection resource of the first dimension of the protection path, and determines the first according to the local configuration information and the third message.
  • the protection path associated with the three messages;
  • the third message is a protection switching message, establishing a cross-connection for the protection path associated with the third message;
  • the third message is a protection path status message
  • An embodiment of the present invention provides an information processing method in an optical network, including:
  • the node detects a working path failure and determines a protection path
  • the node searches for the local configuration information, where the local configuration information includes the cost of the second dimension of the protection path, and the protection resource of the second dimension of the protection path, and determines the second of the protection path according to the local configuration information.
  • the overhead of the dimension includes the cost of the second dimension of the protection path, and the protection resource of the second dimension of the protection path, and determines the second of the protection path according to the local configuration information.
  • the node sends a fourth message to the node adjacent to the second dimension by using the overhead of the second dimension of the protection path, where the fourth message is a protection switching message.
  • An embodiment of the present invention provides an optical communication apparatus, including:
  • a message receiving unit configured to receive the first message from the overhead of the first dimension
  • a path determining unit configured to search for local configuration information, where the local configuration information includes a cost of a first dimension of the protection path, a protection resource of the first dimension of the protection path, and a second dimension of the protection path, where a protection resource of the second dimension of the protection path, determining, according to the local configuration information and the first message, a protection path associated with the first message, and determining an overhead of the second dimension associated with the first message;
  • the message processing unit is configured to send the second message to the node adjacent to the second dimension according to the first message and by using the overhead of the second dimension associated with the first message.
  • An embodiment of the present invention provides an optical communication apparatus, including:
  • a message receiving unit configured to receive a third message from the overhead of the first dimension
  • a path determining unit configured to search for local configuration information, where the local configuration information includes a cost of a first dimension of the protection path, and a protection resource of the first dimension of the protection path, according to the local configuration information and the third message. Determining, by the protection path associated with the third message;
  • a message processing unit configured to: if the third message is a protection switching message, establish a cross-connection for the protection path associated with the third message, and if the third message is a protection path status message, record the third The state of the protection path associated with the message.
  • An embodiment of the present invention provides an optical communication apparatus, including:
  • a path determining unit configured to detect a working path failure, and determine a protection path
  • An overhead determining unit configured to search for local configuration information, where the local configuration information includes a cost of a second dimension of the protection path, and a protection resource of a second dimension of the protection path, and determining, according to the local configuration information, The overhead of protecting the second dimension of the path;
  • a message sending unit configured to send, by using an overhead of the second dimension of the protection path, a fourth message to a node adjacent to the second dimension, where the fourth message is a protection switching message.
  • An embodiment of the present invention provides an optical communication system, including:
  • a first optical communication device configured to detect a working path failure, determine a protection path, and search for local configuration information, where the local configuration information includes a second dimension of the protection path, and a second dimension of the protection path And determining, according to the local configuration information, an overhead of the protection path in a second dimension of the first optical communication device, and sending a fourth to the overhead of the second optical communication device by using the protection path a node adjacent to the second dimension of the first optical communication device, where the fourth message is a protection switching message;
  • a second optical communication device configured to receive a third message from an overhead of a first dimension of the second optical communication device; to find local configuration information, where the local configuration information includes an overhead of a first dimension of the protection path, and the protection path Determining, by the protection resource of the first dimension, the protection path associated with the third message according to the local configuration information and the third message, where the third message is a protection switching message, and the protection associated with the third message is The path establishes a cross connection.
  • the node is opened from the first dimension.
  • the pin receives the first message, and the node searches for the local configuration information, where the local configuration information includes the cost of the first dimension of the protection path, the protection resource of the first dimension of the protection path, and the cost of the second dimension of the protection path, The protection resource of the second dimension of the protection path, determining the protection path associated with the first message according to the local configuration information and the first message, and determining the cost of the second dimension associated with the first message
  • the node sends the second message to the node adjacent to the second dimension according to the first message and by the overhead of the second dimension associated with the first message. Because the data plane is used to send overhead indication recovery information, the signaling protocol is generally simple, and the local configuration information is locally available, which can be used for searching related information, so that the recovery information can be relatively simple, which reduces the information processing complexity.
  • FIG. 1 is a flowchart of an information processing method in an optical network according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of an information processing method in an optical network according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of an information processing method in an optical network according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a network architecture according to Embodiment 4 and Embodiment 5 of the present invention.
  • FIG. 5 is a schematic structural diagram of protection switching overhead in Embodiment 4 and Embodiment 5 of the present invention
  • FIG. 6 is a flowchart of information processing method in an optical network according to Embodiment 4 of the present invention.
  • FIG. 7 is a flowchart of an information processing method in an optical network according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • FIG. 10 is a third schematic structural diagram of an optical communication device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the structure of an optical communication system according to an embodiment of the present invention.
  • FIG. 12 is a second schematic structural diagram of an optical communication system according to an embodiment of the present invention
  • FIG. 13 is a third schematic structural diagram of an optical communication system according to an embodiment of the present invention
  • FIG. 12 is a second schematic structural diagram of an optical communication system according to an embodiment of the present invention
  • FIG. 13 is a third schematic structural diagram of an optical communication system according to an embodiment of the present invention.
  • FIG. 16 is a flowchart of an information processing method in an optical network according to Embodiment 8 of the present invention.
  • FIG. 17 is a schematic diagram of a network architecture according to Embodiment 9 of the present invention.
  • FIG. 19 is a schematic diagram of a network architecture according to Embodiment 10 of the present invention.
  • 21 is a schematic structural diagram of an optical communication apparatus according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of another optical communication apparatus according to an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of still another optical communication apparatus according to an embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of an optical communication system according to an embodiment of the present invention.
  • Embodiments of the present invention provide an information processing method in an optical network capable of reducing information processing complexity. Embodiments of the present invention also provide corresponding optical communication devices and optical communication systems. The following is a detailed description.
  • the protection information needs to be configured on each node through which the protection path passes.
  • the end node of the protection path needs to be configured with one dimension of protection information, and the end node represents the node that provides protection for the start and end of the service.
  • both end nodes are both the start node and the end node, and the intermediate node is the other node except the end node through which the protection path passes.
  • two levels of protection information need to be configured.
  • an overhead needs to be configured for each protection path, and the overhead is used for transmission protection.
  • the path protection message and protection path status message, etc., the name of the message is just a code name, of course, other names can also be taken.
  • the following is an example of an OTN network and a Synchronous Digital Hierarchy (SDH) network.
  • the protection path may pass through one or more Optical Channel Transport Unit (OTU) links.
  • Each OTU link has a corresponding OTU overhead and an Optical Channel Data Unit (ODU).
  • OTU Optical Channel Transport Unit
  • ODU Optical Channel Data Unit
  • Overhead the specific overhead of the OTU or high-order ODU of the OTU link can be divided into N shares, and each packet can be configured to transmit messages for different protection paths.
  • the protection path of the service passes through one or more Synchronous Transport Module (STM)-N links, and each STM-N link can transmit signals in the STM-N frame format, each STM-N.
  • the frame has a corresponding segment overhead, which includes the regenerative segment and the multiplex segment overhead.
  • the specific overhead of the STM-N link is divided into N shares, and each packet can be configured to transmit messages for different protection paths.
  • the OTU overhead and the high-order ODU overhead are located in the overhead area of the OTU frame, and the overhead resources are exclusive to each protection path. It is possible to configure one RES byte of the ninth column of the OTU frame overhead transmitted in an OTU connection to transmit a shared protection message, and distinguish according to the value of the lowest bit of the MFAS overhead (0 or 1). For two different RES overheads. That is, for the RES byte of the ninth column of the fourth row, when the lowest bit of the MFAS is 0, it represents an overhead; when the lowest bit of the MFAS is 1, it represents another overhead. Thus the overhead of the OTU connection for passing the shared protection has a total of two RES bytes.
  • the two RES bytes can be further divided into 4 shares, and the overhead numbers are 1 to 4, and each half byte can be used to transmit a shared protection message of a certain service.
  • each half byte can be used to transmit a shared protection message of a certain service.
  • four shared protection messages of different services can be transmitted in one OTU link.
  • 4 APS bytes (1-32 bits, 32 bits in total) of the 5th, 6th, 7th, and 8th columns in the 4th row of the OTU frame overhead transmitted in an OTU connection for transmitting the shared protection message.
  • the 32 APS bytes can be further divided into 64 copies, and the overhead numbers are 1 to 64, and each half byte (4 bits) can be used to transmit a shared protection message of a certain service.
  • each half byte (4 bits) can be used to transmit a shared protection message of a certain service.
  • the shared protection message can be transmitted by using the segment overhead of the STM-1 to implement the shared protection function of the VC4 service.
  • the segment overhead is located in the overhead area of the STM-1 frame.
  • the following description takes the K1 byte overhead as an example. Other undefined overheads can also be used.
  • the K1 byte can be divided into two (the cost numbers are 1 and 2 respectively), and each copy can be used for one VC4 service.
  • the protection resource needs to be configured for the protection path, and the protection resource is occupied when the protection path is restored.
  • the allocation unit of the protection resource can be a channel. When one protection path is restored, one channel can be occupied.
  • the allocation unit of the protection resource can also be a time slot. When one protection path is restored, one or more time slots can be occupied.
  • the allocation unit of the protection resource may be a VC4 time slot, and one protection path occupies one VC4 time slot.
  • the recovery of the protection path is automatically completed by the end node, and may also be implemented by the administrator to the end node, that is, the automatic protection switching or the manual protection switching may be performed when transmitting the protection switching message. Automatic protection switching and manual protection switching based on the cost of a number.
  • Embodiment 1 is a flowchart of an information processing method in an optical network according to Embodiment 1 of the present invention, which mainly includes the following steps:
  • Step 101 The service node detects that the sub-automatic protection switching of the first channel changes the sub-APS overhead.
  • Step 102 The service node searches for local configuration information, where the local configuration information includes a service, a channel associated with the service, and a sub-APS cost of the channel, according to the local configuration information and the changed first channel. a sub-APS, determining a to-be-recovered service associated with the changed sub-APS cost of the first channel, and determining a second channel to which the to-be-recovered service is associated; Step 103, modifying the service node and the to-be-recovered Sub-APS of the second channel of the service association Pin and send to a node adjacent to the second channel.
  • the local configuration information includes a service, a channel associated with the service, and a sub-APS cost of the channel, according to the local configuration information and the changed first channel.
  • a sub-APS determining a to-be-recovered service associated with the changed sub-APS cost of the first channel, and determining a second channel to which the to-be-recovered service is associated
  • Step 103 modifying the service node and the to-
  • Determining, according to the local configuration information and the changed sub-APS cost of the first channel, the to-be-recovered service associated with the changed sub-APS cost of the first channel includes: In the information, the sub-APS cost of the first channel that is changed is matched with the first channel associated with the service and the sub-APS cost corresponding to the first channel, and the corresponding service to be restored is determined.
  • the same sub-APS overhead corresponds to the recovery information of different services.
  • the APS overhead of the channel is the APS overhead of a single frame or the APS overhead of a multiframe consisting of at least two frames.
  • the method further includes: establishing, for the to-be-recovered service, a cross-connection between the first channel and the second channel associated with the to-be-recovered service.
  • the method further includes: detecting that the sub-APS overhead of the second channel changes; The sub-APS overhead of the first channel and the second channel is changed, and a step of establishing a cross-connection between the first channel and the second channel associated with the to-be-recovered service is performed for the to-be-recovered service.
  • the detecting the change of the sub-APS overhead of the first channel includes: determining, according to a comparison result between the received sub-APS overhead of the first channel and the saved sub-APS overhead of the first channel, determining a sub- of the first channel APS overhead changes;
  • the detecting the change of the sub-APS overhead of the second channel includes: determining, according to a comparison result between the received sub-APS overhead of the second channel and the saved sub-APS overhead of the second channel, determining the sub- of the second channel The APS overhead has changed.
  • the technical solution of the embodiment of the present invention can find the change after detecting the sub-APS overhead of the sub-automatic protection switching of the first channel.
  • the local configuration information where the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, according to the local configuration information and the sub-APS overhead of the changed first channel,
  • the to-be-recovered service associated with the sub-APS overhead of the changed first channel may be determined, and the second channel associated with the to-be-recovered service is determined.
  • the service node is an intermediate node between the first and last nodes of the to-be-recovered service, and therefore the sub-APS overhead of the second channel associated with the to-be-recovered service may be modified and sent to the Two adjacent nodes to notify the neighboring node to request service recovery.
  • the data plane is used to send sub-APS overhead indication recovery information
  • the signaling protocol is generally simple, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and the information processing complexity is reduced. degree.
  • FIG. 2 is a flowchart of an information processing method in an optical network according to Embodiment 2 of the present invention, which mainly includes the following steps:
  • Step 201 The service node detects that the sub-automatic protection switching sub-APS overhead of the first channel changes.
  • Step 202 The service node searches for local configuration information, where the local configuration information includes a service, a channel associated with the service, and a sub-APS cost of the channel, according to the local configuration information and the changed first channel. a sub-APS overhead, determining a to-be-recovered service associated with the changed sub-APS cost of the first channel, and determining a second channel to be associated with the to-be-recovered service;
  • Step 203 The service node associates the service node with the The second channel bridge associated with the to-be-recovered service is switched to the first channel.
  • the determining, to be restored, the to-be-recovered service associated with the changed sub-APS cost of the first channel according to the local configuration information and the changed sub-APS cost of the first channel includes:
  • the sub-APS cost of the first channel that is changed is matched with the first channel associated with the service and the sub-APS cost corresponding to the first channel, and the corresponding to-be determined is determined.
  • the technical solution of the embodiment of the present invention can search for local configuration information, where the local configuration information includes services,
  • the channel associated with the service and the sub-APS overhead of the channel may be determined according to the local configuration information and the sub-APS overhead of the changed first channel, and the sub-APS of the changed first channel may be determined.
  • the service node is the last node of the service to be restored, so that the second channel associated with the service to be restored of the service node can be bridged to the first channel for service recovery.
  • the data plane is used to send the sub-APS overhead indication recovery information, the signaling protocol is simpler, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and information processing is reduced. the complexity.
  • Embodiment 3 is a flowchart of an information processing method in an optical network according to Embodiment 3 of the present invention, which mainly includes the following steps:
  • Step 301 The service node detects that the working path of the service is faulty, and determines the service to be restored.
  • Step 302 The service node searches for local configuration information, where the local configuration information includes the service, the channel associated with the service, and the channel. And the sub-APS overhead of the channel associated with the to-be-recovered service is determined according to the local configuration information and the to-be-recovered service;
  • Step 303 The service node modifies the sub-APS cost of the channel associated with the to-be-recovered service, and sends the sub-APS overhead to the node adjacent to the channel associated with the to-be-recovered service.
  • the sub-APS cost of the channel associated with the to-be-recovered service is determined according to the local configuration information and the to-be-recovered service, and the determined to-be-recovered service is determined in the local configuration information. Matching the service, the channel associated with the service, and the sub-APS cost of the channel, and determining a sub-APS cost of the channel associated with the to-be-recovered service.
  • the service node is the first node of the service to be restored, and therefore, after detecting that the working path of the service fails, the service to be restored can be determined; the service node detects the sub-automatic protection switching of the first channel.
  • the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, and the determining may be performed according to the local configuration information and the sub-APS overhead of the changed first channel.
  • the to-be-recovered service associated with the sub-APS overhead of the changed first channel is modified, and then the node adjacent to the channel is modified to notify the adjacent node to request service recovery. Because the data plane sends sub-APS overhead indication recovery information, the signaling protocol is generally simple, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and the information processing complexity is reduced. .
  • the embodiments of the present invention are described in more detail below with reference to Embodiment 4 and Embodiment 5.
  • the information in the embodiment of the present invention may be shared Mesh recovery information.
  • the following content is used to share Mesh recovery information.
  • the shared Mesh recovery information is represented by overhead.
  • Embodiment 4 is a schematic diagram of a network architecture according to Embodiment 4 and Embodiment 5 of the present invention.
  • nodes N1 to N8 are included, and ODUk channels are between the nodes (hereinafter referred to as convenience, referred to as channels), and each channel is digitally marked in the figure, such as channel 11, channel 12, and the like.
  • three ODUk shared Mesh services are configured, which are recorded as Service 1, Service 2, and Service 3.
  • each service generally has two channels, which are the first channel and the second channel.
  • the first channel of service 1 of node N1 is channel 11
  • the second channel is channel 2
  • the service of node N1 is The first channel is channel 12
  • the second channel is channel 2
  • channel 2 is the channel that service 1 and service 2 can share.
  • FIG. 5 is a schematic structural diagram of protection switching overhead in Embodiment 4 and Embodiment 5 of the present invention.
  • the APS overhead is a total of 4 bytes. Since the same ODUk channel can be shared by multiple services, it is necessary to distinguish messages of different services in the APS overhead.
  • the 4-byte APS overhead is divided into 8 (8 Sub-APS overheads), which are respectively recorded as 1 # Sub-APS to 8 # Sub-APS, and each overhead is 4 bits.
  • the above is only an example, and the APS overhead may not be divided into only eight. If there are many types of shared Mesh recovery information (more than 16), you can divide it into 6 copies (5 bits per copy, you can take 32 values), 5 copies (6 bits per copy, you can take 64 values) Equal number.
  • the node through which the protection path passes in the network is configured with the configuration information in advance, that is, the local configuration information includes the usage of configuring the Sub-APS overhead, that is, the user who configures the cost of each Sub-APS, as shown in Table 1 to Table 7 below. Shown. The first channel and the second channel in the table below are relative.
  • N1 configuration information The first channel of the first channel
  • Sub-APS overhead Sub-APS overhead Service 1 11 NULL (empty) 2 1 # Sub-APS service 2 12 NULL (empty) 2 2 # Sub-APS Table 1
  • N6 configuration information The first channel of the first channel.
  • the second channel of the second channel The second channel of the second channel
  • Sub-APS Overhead Sub-APS Overhead Service 1 2 1 # Sub-APS 3 1 # Sub-APS Service 2 2 2 # Sub-APS 9 1 # Sub-APS Service 3 3 2 # Sub-APS 9 2 # Sub-APS Table 2
  • N5 configuration information The first channel of the first channel
  • Sub-APS overhead Sub-APS overhead Service 2 52 NULL (empty) 9 1 # Sub-APS service 3 53 NULL (empty) 9 2 # Sub-APS Table 3
  • N7 configuration information The first channel of the first channel.
  • the second channel of the second channel The second channel of the second channel
  • Sub-APS overhead Sub-APS overhead Service 1 4 1 # Sub-APS 5 1 # Sub-APS Service 3 4 2 # Sub-APS 10 1 # Sub-APS Table 5
  • N2 configuration information The first channel of the first channel
  • N3 configuration information The first channel of the first channel
  • the Sub-APS overhead used by the three services is configured for each of the nodes N1, N6, N5, N7, N8, N2, and N3. If the Sub-APS overhead is not configured, it is represented by NULL in the table.
  • the first channel of service 1 configured by node N2 is channel 2, and the second channel is channel 3 (relatively, if channel 2 is used as the second channel, channel 3 is the first channel),
  • the first channel uses 1 # Sub-APS after the APS overhead is divided, the second channel uses 1 # Sub-APS; the first channel of service 2 is channel 2, and the second channel is channel 9, the first channel.
  • the 2 channel is divided into 2 # Sub-APS, the second channel is 1 # Sub-APS; the first channel of service 3 is channel 3, the second channel is channel 9, and the first channel is used.
  • the 2 channel is divided into 2 # Sub-APS, and the second channel is 2 # Sub-APS. It can be seen that service 1 and service 2 can share channel 2, and service 2 and service 3 can share channel 9.
  • the first channel in the table represents "previous channel”
  • the second channel in the table represents "next channel”
  • the following information can be indicated in the sub-APS cost of the protection path: (1) The working path is normal, and the sub-APS cost is 0. (2) The working path is faulty, and the sub-APS cost is 1, that is, the service. Request recovery. If the working path is normal, the sub-APS cost of the protection path corresponding to the service is 0. When the working path is faulty, the sub-APS cost of the protection path corresponding to the service is 1. Therefore, when the working path changes from normal to fault, the sub-APS cost value of the corresponding protection path also changes (from 0 to 1). Of course, the opposite definition value can also be used.
  • a protection path can consist of one or more channels.
  • the sub-APS cost is set to 3
  • the protection path is faulty.
  • the sub-APS cost is 4, indicating that the protection path is normal.
  • the purpose is to maintain the protection path status. In this case, if the working path and the protection path are both normal, the value of the sub-APS overhead sent by the protection path is 4.
  • the sub-APS definition is 0 (the working path is normal) and 1 (the working path is faulty, that is, the service request is restored) is taken as an example to illustrate the solution of the present invention. If other values are also defined, for example, the value is 2, when the value of sub-APS changes from 2 to 1, it also indicates that the corresponding service working path is faulty and requests recovery.
  • the sub-APS cost of the channel corresponding to the service is 0.
  • the service endpoint When the service endpoint detects that the working path is faulty, the service is corresponding to the local configuration information.
  • the sub-APS cost value of the channel is changed from 0 to 1, and the next node can detect the change.
  • the next node can detect the APS cost change sent by the previous channel, and further determine the sub-APS number that changes, and determine the corresponding service according to the changed sub-APS number. Moreover, if the value of sub-APS changes from 0 to 1, it indicates that the service request is restored. Further determining whether the node is an endpoint of the service, if not a service endpoint, modifying a sub-APS value of the next channel in the sending direction of the service is 1 to indicate that the service request is restored, so that the next node can also detect When the service request is restored, the next node is notified of the service recovery request.
  • the other nodes repeat the above process until the service endpoint is reached, the service endpoint performs recovery processing, and the bridge switching between the channels is performed, and the next node is not required to notify the service recovery request.
  • FIG. 6 is a flowchart of an information processing method in an optical network according to Embodiment 4 of the present invention, which mainly includes the following steps:
  • Step 601 After learning the service fault, the node N1 performs the bridge switching of the channel, and changes the 2 # Sub-APS value of the channel 2 sending direction to 1, indicating that the service 2 requests to recover.
  • N1 detects that service 2 is faulty.
  • Look up Table 1. According to the configuration information of N1, determine that the channel of the protection path of service 2 is channel 2, and switch service 2 from channel 6 to the channel. 2 (The signal of channel 12 is sent to channel 6 and channel 2, and selected from channel 2). It is determined that service 2 uses channel 2's 2 # Sub-APS to transmit recovery information, so modify channel 2 transmission direction 2 # Sub- The APS value is 1, that is, 4 bits are taken as 0001 in binary, indicating that service 2 requests recovery.
  • Step 602 The node N6 detects that the APS overhead of the channel 2 receiving direction changes, and further determines that the 2# Sub-APS changes (the value changes from 0 to 1). Therefore, the cross-connection of channel 2 and channel 9 is established, and the 1 # Sub-APS value of the channel 9 transmission direction is modified to be 1.
  • N6 detects that the APS overhead of channel 2 changes and compares it with the last saved APS overhead. It is found that the 2# Sub-APS change (the value changes from 0 to 1). N6 looks up the configuration information of Table 2, because the receiving channel is channel 2, and the protection switching overhead is 2 # Sub-APS, which matches the channel associated with the service to be restored in Table 2 and the sub-APS overhead of the channel, It is the service 2 that finds the matching condition, so it is known that the service 2 requests recovery. After learning that the service 2 request is restored, according to the configuration information, the first channel of the service 2 is 2, and the second channel is the channel 9, establishing the intersection of the first channel to the second channel of the service 2 (ie, the channel 2 is cross-connected to the channel). 9 ).
  • channel 9 uses 1 # Sub-APS, and 1 # Sub-APS can take a value of 1, that is, 4 bits are taken as binary 0001, and 1 # Sub-APS value of channel 9 is changed to 1 to indicate service 2 request. restore.
  • Step 603 The node N5 detects that the APS overhead in the receiving direction of the channel 9 changes, and further confirms that the 1#Sub-APS changes, and it is learned that the service 2 requests to recover. Since N5 is the endpoint of service 2, the service 2 bridge is switched to channel 9, and the service recovery is successful.
  • N5 detects that the APS overhead of channel 9 changes and compares it with the last saved APS overhead. It is found that 1 # Sub-APS changes (from 0 to 1). N5 looks up the configuration information of Table 3, because the receiving channel is channel 9, and the protection switching overhead is 1 # Sub-APS, so it can be found from Table 3 that the matching condition is the service 2, so it is learned that the service 2 requests recovery, and N5 is the endpoint of Service 2.
  • the first channel of the service 2 is the channel 52
  • the second channel is the channel 9, so the service 2 is bridged from the channel 52 to the channel 9 (the channel 52 is dual-transmitted to the channel 6). And channel 9, and select from channel 9). At this point, Business 2 is successfully restored.
  • the technical solution of the embodiment of the present invention uses the APS overhead of the ODUk channel to indicate the recovery information. Then, by using the APS overhead to search for the pre-configured information, the service that needs to be restored can be learned, and then the related recovery operation is performed. Because the sub-APS overhead sent by the data plane indicates the recovery information, the signaling protocol is generally simple, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and corresponding processing is also performed. It can be simpler and does not require the control plane to participate in the recovery process.
  • the APS overhead can be divided into different parts according to the specific situation, that is, divided into different Sub-APSs, which are used for corresponding recovery information of different shared Mesh services, so that it can adapt to the needs of different scenarios, and more shared Mesh services.
  • the recovery information is differentiated.
  • the multi-frame technology may also be used to combine the APS overheads of consecutive N data frames into one whole, that is, one.
  • the APS overhead of the ODUk channel is ⁇ ⁇ 4 bytes.
  • the overall overhead can be used as an APS overhead, and the above N x 4 bytes are divided into multiple Sub-APS overheads, and the principle is the same.
  • the number of bits per Sub-APS can be more. , you can define more kinds of recovery information for shared Mesh services.
  • FIG. 7 is a flowchart of an information processing method in an optical network according to Embodiment 5 of the present invention.
  • the main difference between the fifth embodiment and the fourth embodiment is that the node performs the switching when it detects that the Sub-APS overhead in both directions becomes 1.
  • Step 701 After obtaining the fault of the service 2, the node N1 changes the value of the 2 # Sub-APS in the direction of the channel 2 to 1, indicating that the service 2 requests to recover.
  • N1 detects the service 2 fault, and looks up the table 1. According to the configuration information of the N1, it is determined that the channel of the protection path of the service 2 is the channel 2, and the direction 2 2 of the channel 2 is modified.
  • the APS value is 1, indicating that Service 2 requests recovery.
  • Step 702 The node N6 detects the change of the APS cost in the receiving direction of the channel 2, and further determines that the 2# Sub-APS changes, and it is learned that the service 2 requests the recovery, so the value of the 1# Sub-APS of the modified channel 9 is 1. Indicates that service 2 requests recovery.
  • N6 detects the APS overhead change of the channel 2 receiving direction and compares it with the last saved APS. It is further found that the value of 2 #sub-APS changes from 0 to 1. N6 looks up the configuration information of Table 2, because the receiving channel is channel 2, and is 2 # Sub-APS, and the channel associated with the to-be-recovered service in Table 2 and the sub-APS overhead of the channel are matched, and can be found. It is the service 2 that meets the matching condition, so it is known that the service 2 requests recovery.
  • N6 is the intermediate node of service 2
  • the next channel is channel 9, and the configuration uses 1 # Sub-APS. Therefore, modifying the channel 1's 1 # Sub-APS value to 1 indicates that the service 2 requests recovery.
  • Step 703 The node N5 detects the APS overhead change in the receiving direction of the channel 9, and further determines that the 1#sub-APS overhead changes from 0 to 1, and learns that the service 2 requests recovery. N5 detects the change of the APS cost of the channel 9 and compares it with the last saved APS overhead, and further determines that the value of the l #sub-APS overhead changes from 0 to 1. N5 looks up the configuration information of Table 3. Since the receiving channel is channel 9 and is 1 # Sub-APS, it can be found from Table 3 that the matching condition is the service 2, so it is learned that the service 2 requests recovery, and N1 is the service. The endpoint of 2.
  • Step 704 The node N5 switches the service 2 bridge to the channel 9, and changes the value of the 1 # Sub-APS in the direction of the channel 9 to 1.
  • the node N5 learns that the service 2 requests the recovery, according to the configuration information, the first channel of the service 2 is the channel 52, and the second channel is the channel 9, so the service 2 is bridged from the channel 52 to the channel 9 (the channel 52 is dual-transmitted to Channel 6 and channel 9 are selected from channel 9).
  • the value of 1 # Sub-APS in the transmission direction of channel 9 is changed to 1 to indicate that service 2 requests recovery.
  • Step 705 The node N6 detects that the APS overhead in the receiving direction of the channel 9 changes, and further determines that the 1#sub-APS overhead changes from 0 to 1, and it is learned that the service 2 requests recovery. At this time, N6 receives the information requested by service 2 from channel 2 and channel 9, so the cross-connection of channel 2 to channel 9 is established, and the 2 # Sub-APS in the direction of channel 2 is changed to 1 to indicate the service. 2 request recovery.
  • Step 706 The node N1 detects that the APS overhead of the channel 2 receiving direction changes, and further determines that the 2#sub-APS overhead changes from 0 to 1, and it is learned that the service 2 requests recovery. The service 2 bridge is switched to channel 2, and the service 2 is successfully restored.
  • the node N1 detects the change of the APS overhead of the channel 2, and compares it with the APS overhead of the channel 2 saved last time, and further determines that the 2#sub-APS overhead changes from 0 to 1, that is, the recovery request of the service 2 is received from the channel 2.
  • Message. N1 receives the recovery request of service 2 from channel 2, so the service 2 bridge is switched to channel 2 (channel 12 is dual-transmitted to channel 6 and channel 2, and selected from channel 2), and service 2 is successfully restored.
  • whether the APS overhead changes is determined may be whether the APS overhead content of the continuous N-frame ODU is consistent and compared with the latest stable APS overhead content.
  • N can be 1, 2 or 3.
  • the entire 4-byte APS overhead is received, and it needs to be compared with the saved last received 4-byte APS overhead content to further determine the change.
  • the specific corresponding sub-APS overhead; if the sub-APS overhead is compared, the number of the changed sub-APS can be directly known.
  • the APS overhead of the ODUk channel is used to indicate the recovery information. Then, by using the APS overhead to search for the pre-configured information, the service to be recovered can be learned, and the related recovery operation can be performed. Because the sub-APS overhead sent by the data plane indicates the recovery information, the signaling protocol is generally simple, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and corresponding processing can also be performed. It is simpler and does not require the control plane to participate in the recovery process.
  • the fifth embodiment differs from the fourth embodiment in that, when the intermediate node receives the indication of requesting service recovery from the two directions, the cross-connection between the channels is established, and the service endpoint detects the working path fault downstream in the first node. After the node sends an indication of the service recovery request, and then receives the indication of the service recovery returned by the downstream node, the bridge switching between the channels is performed, so the accuracy of the service recovery is higher.
  • the embodiment of the present invention provides an optical communication device and an optical communication system.
  • FIG. 8 is a schematic diagram showing the structure of an optical communication apparatus according to an embodiment of the present invention.
  • the optical communication device includes:
  • the information learning unit 81 is configured to detect that the sub-automatic protection switching sub-APS overhead of the first channel changes;
  • the service determining unit 82 is configured to search for local configuration information, where the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, according to the local configuration information and the first change a sub-APS overhead of the channel, determining a to-be-recovered service associated with the sub-APS overhead of the changed first channel, and determining a second channel to be associated with the to-be-recovered service; and an information processing unit 83, configured to modify The sub-APS overhead of the second channel associated with the service to be restored is sent to the optical communication device adjacent to the second channel.
  • the optical communication device may further include:
  • the service processing unit 84 is configured to establish, between the first channel and the second channel, associated with the to-be-recovered service, for the to-be-recovered service, after the service determining unit 82 determines the second channel to which the service to be restored is associated. Cross connection.
  • the information learning unit 81 is further configured to detect that the sub-APS overhead of the second channel changes; the service processing unit 84 is further configured to detect, according to the first channel and the second channel, The cost of the sub-APS is changed, and a cross-connection between the first channel and the second channel associated with the to-be-recovered service is established for the to-be-recovered service.
  • the service determining unit 82 determines, according to the local configuration information and the sub-APS cost of the changed first channel, that the to-be-recovered service associated with the changed sub-APS cost of the first channel includes:
  • the sub-APS cost of the first channel that is changed is matched with the first channel associated with the service and the sub-APS cost corresponding to the first channel, and the corresponding to-be determined is determined. Resume business.
  • the detecting the change of the sub-APS overhead of the first channel includes: determining, according to a comparison result between the received sub-APS overhead of the first channel and the saved sub-APS overhead of the first channel, determining a sub- of the first channel APS overhead changes;
  • the detecting the change of the sub-APS overhead of the second channel includes: determining, according to a comparison result between the received sub-APS overhead of the second channel and the saved sub-APS overhead of the second channel, determining the sub- of the second channel
  • the APS overhead has changed.
  • the same sub-APS overhead corresponds to the recovery information of different services.
  • the APS overhead of the channel is the APS overhead of a single frame, or the APS overhead of a multiframe consisting of at least two frames.
  • FIG. 9 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • the optical communication device includes:
  • the information learning unit 91 is configured to detect that the sub-automatic protection switching sub-APS overhead of the first channel changes;
  • the service determining unit 92 is configured to search for local configuration information, where the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, according to the local configuration information and the first change a sub-APS overhead of the channel, determining a to-be-recovered service associated with the changed sub-APS cost of the first channel, and determining a second channel to be associated with the to-be-recovered service; and a service processing unit 93, configured to A second channel bridge associated with the to-be-recovered service of the optical communication device is switched to the first channel.
  • the service determining unit 924 determines, according to the local configuration information and the sub-APS overhead of the changed first channel, that the to-be-recovered service associated with the changed sub-APS cost of the first channel includes:
  • the sub-APS cost of the first channel that is changed is matched with the first channel associated with the service and the sub-APS cost corresponding to the first channel, and the corresponding to-be determined is determined. Resume business.
  • FIG. 10 is a schematic diagram showing the structure of an optical communication device according to an embodiment of the present invention.
  • the optical communication device includes:
  • the service determining unit 1001 is configured to detect that the working path of the service is faulty, and determine the service to be restored;
  • the information determining unit 1002 is configured to search for local configuration information, where the local configuration information includes the service, the channel associated with the service, and the sub-automatic protection switching sub-APS overhead of the channel, according to the local configuration information and the Determining the recovery service, and determining a sub-APS overhead of the channel associated with the to-be-recovered service;
  • the information processing unit 1003 is configured to modify a sub-APS advertisement of the channel associated with the to-be-recovered service and send the optical communication device adjacent to the channel associated with the to-be-recovered service.
  • the information determining unit 1002 determines, according to the local configuration information and the to-be-recovered service, that the sub-APS cost of the channel associated with the to-be-recovered service includes:
  • the determined to-be-recovered service is matched with the service, the channel associated with the service, and the sub-APS cost of the channel, and is determined to be related to the to-be-recovered service.
  • Sub-APS overhead of the connected channel is determined to be related to the to-be-recovered service.
  • FIG. 11 is a schematic diagram showing the structure of an optical communication system according to an embodiment of the present invention.
  • the optical communication system includes:
  • the first optical communication device 1101 is configured to detect that the working path of the service is faulty, and determine the service to be restored; and find local configuration information, where the local configuration information includes the service, the channel associated with the service, and the sub-channel Automatically protecting the sub-APS overhead, determining the sub-APS cost of the channel associated with the to-be-recovered service according to the local configuration information and the to-be-recovered service; and modifying the sub- of the channel associated with the to-be-recovered service APS overhead and send;
  • the second optical communication device 1102 is configured to detect, according to the sub-APS overhead sent by the first optical communication device 1101, a change in the sub-APS overhead of the first channel of the second optical communication device 1102; and find local configuration information, where
  • the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, and determining, according to the local configuration information and a sub-APS overhead of the first channel of the second optical communication device 1102. a service to be restored associated with a sub-APS overhead of the first channel of the second optical communication device 1102, and determining a second channel of the second optical communication device 1102 associated with the to-be-recovered service; modifying and transmitting the device
  • the sub-APS overhead of the second channel associated with the recovery service is described.
  • the first optical communication device 1101 has the configuration shown in Fig. 10 described above, and the second optical communication device 1102 has the configuration shown in Fig. 8 above, and the details are as described above.
  • FIG. 12 is a schematic diagram showing the structure of an optical communication system according to an embodiment of the present invention.
  • the optical communication system includes:
  • the first optical communication device 1201 is configured to detect that the working path of the service is faulty, and determine the service to be restored; and find local configuration information, where the local configuration information includes the service, the channel associated with the service, and the sub-channel Automatically protecting the sub-APS overhead, determining the sub-APS cost of the channel associated with the to-be-recovered service according to the local configuration information and the to-be-recovered service; and modifying the sub- of the channel associated with the to-be-recovered service APS overhead and send;
  • the second optical communication device 1202 is configured to open according to the sub-APS sent by the first optical communication device 1201.
  • the pin detects that the sub-APS overhead of the first channel of the second optical communication device 1202 changes; and searches for local configuration information, where the local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel.
  • the system can also include:
  • the third optical communication device 1203 is configured to detect, according to the sub-APS overhead of the second channel that is sent by the second optical communication device 1202, that the sub-APS overhead of the first channel of the third optical communication device 1203 changes; And the sub-APS overhead of the first channel of the third optical communication device 1203, according to the local configuration information Determining a to-be-recovered service associated with the sub-APS overhead of the first channel of the third optical communication device 1203, and determining a second channel of the third optical communication device 1203 associated with the to-be-recovered service; The second channel associated with the to-be-recovered service of the third optical communication device 1203 is bridge-switched to the first channel of the third optical communication device 1203.
  • the first optical communication device 1201 has the above-described structure shown in FIG. 10
  • the second optical communication device 1202 has the above-described structure shown in FIG. 8
  • the third optical communication device 1203 has the above-described structure shown in FIG. .
  • FIG. 13 is a schematic diagram showing the structure of an optical communication system according to an embodiment of the present invention.
  • the optical communication system includes:
  • the first optical communication device 1301 is configured to detect that the working path of the service is faulty, determine the service to be restored, and find the local configuration information, where the local configuration information includes the service, the channel associated with the service, and the sub-channel Automatically protecting the sub-APS overhead, determining the sub-APS cost of the channel associated with the to-be-recovered service according to the local configuration information and the to-be-recovered service; modifying the sub- of the channel associated with the service to be restored APS overhead and send;
  • the second optical communication device 1302 is configured to detect, according to the sub-APS overhead sent by the first optical communication device 1301, a change in the sub-APS overhead of the first channel of the second optical communication device 1302; and find local configuration information, where The local configuration information includes a service, a channel associated with the service, and a sub-APS overhead of the channel, and determining, according to the local configuration information and a sub-APS overhead of the first channel of the second optical communication device 1302.
  • the second channel associated with the to-be-recovered service of the optical communication device 1302 is bridged to the first channel of the second optical communication device 1302.
  • the first optical communication device 1301 has the above-described structure shown in Fig. 10, and the second optical communication device 1302 has the above-described structure shown in Fig. 9, see the foregoing description.
  • Step 1401 A node receives a first message from an overhead of a first dimension;
  • Step 1402 The node searches for local configuration information, where the local configuration information includes the cost of the first dimension of the protection path, the protection resource of the first dimension of the protection path, the cost of the second dimension of the protection path, and the protection. a protection resource of the second dimension of the path, determining, according to the local configuration information and the first message, a protection path associated with the first message, and determining an overhead of the second dimension associated with the first message;
  • Step 1403 The node sends the second message to the node adjacent to the second dimension according to the first message and by the second dimension of the first message association.
  • the dimensions are relative, and different dimensions represent different directions.
  • the first message and the second message are protection switching messages, or the first message and the second message are protection path status messages.
  • the overhead is a byte in the overhead of the optical network frame, and different overhead is used to transmit messages of different protection paths. Messages corresponding to different protection paths.
  • the method further includes: establishing, for the protection path associated with the first message, a cross-connection between the protection resource of the first dimension and the protection resource of the second dimension.
  • the method further includes: receiving a protection switching message from the overhead of the second dimension associated with the first message.
  • FIG. 15 is a flowchart of an information processing method in an optical network according to Embodiment 7 of the present invention, which mainly includes the following steps:
  • Step 1501 The node receives the third message from the overhead of the first dimension.
  • Step 1502 The node searches for local configuration information, where the local configuration information includes a cost of the first dimension of the protection path, and a protection resource of the first dimension of the protection path, and is determined according to the local configuration information and the third message. a protection path associated with the third message;
  • Step 1503 If the third message is a protection switching message, establish a cross-connection for the protection path associated with the third message; if the third message is a protection path status message, record the third message association The state of the protection path.
  • FIG. 16 is a flowchart of an information processing method in an optical network according to Embodiment 8 of the present invention, which mainly includes the following steps:
  • Step 1601 The node detects a working path failure, and determines a protection path.
  • Step 1602 The node searches for the local configuration information, where the local configuration information includes the cost of the second dimension of the protection path and the protection resource of the second dimension of the protection path, and determines the protection path according to the local configuration information.
  • the overhead of the second dimension includes the cost of the second dimension of the protection path and the protection resource of the second dimension of the protection path, and determines the protection path according to the local configuration information.
  • Step 1603 The node sends a fourth message to the node adjacent to the second dimension by using the cost of the second dimension of the protection path, where the fourth message is a protection switching message.
  • FIG. 17 is a schematic diagram of a network architecture according to Embodiment 9 of the present invention.
  • nodes N1 to N6 and N8 are included. Three protection paths are configured.
  • the protection path 1 passes through N1-N6-N8-N2
  • the protection path 2 passes through N1-N6-N8-N2
  • the protection path 3 passes through N5-N6-N8-N3.
  • the protection information is configured on each of the passed nodes, and one dimension of protection information is configured on the end nodes N1 and N2, and two dimensions of protection information are configured on the intermediate nodes N6 and N8, for example, Configure protection information to the N6 dimension on N1, allocate overhead and protect resources, and configure time slot 1 to protect the protection resources of path 1 in this dimension.
  • the local configuration information on each node is shown in Table 8 to Table 13.
  • the dimensions in the table are relative.
  • Protection resource Cost number Protection resource Cost number Service 3 (0DU1) 30 0DU1 channel 33 0 Protection slot 9/10 1
  • Protection resource Cost number Protection resource Cost number Service 3 (0DU1) 30 0DU1 channel 53 0 Protection slot 7/8 1
  • Step 1801 Node N1 detects a working path failure, and sends a protection switching message.
  • N1 detects that the service 1 is faulty, determines that the protection path 1 needs to be restored, determines that the protection path 1 is in a normal state, and N1 searches for local configuration information (Table 8), and determines the dimension 2 overhead of the protection path 1. If the number is 1, the dimension 2 protection resource of the protection path 1 is the protection time slot 1, the protection time slot 1 is configured as an ODU0 channel, and the service 1 bridge is switched to the ODU0 channel. The message goes to the node adjacent to dimension 2, which is node N6.
  • Step 1802 The node N6 receives the protection switching message from the N1, and forwards the protection switching message.
  • Information see the configuration information of the node N6 (Table 12), and know that the overhead (dimension 1) numbered 1 in the OTU link corresponding to the protection slot 1 is allocated to the protection path 1, so the protection slot 1 is configured.
  • An ODU0 channel is configured, and the protection time slot 3 is configured as an ODU0 channel, and the cross-connection of the two ODU0 channels is established, and the protection switching message is sent by using the overhead of the protection path 1 dimension 2, and the cost is 1;
  • Step 1803 The node N8 receives the protection switching message from the N6, and forwards the protection switching message.
  • Step 1804 The node N2 receives the protection switching message from the N8, and performs protection switching.
  • the protection slot 5 is configured as an ODU0 channel, and the service 1 bridge is switched to the ODU0 channel. At this point, service 1 has been switched to protection path 1 and returned to normal.
  • the N2 can forward the protection switching message in reverse by using the cost corresponding to the protection path 1.
  • the N8 and the N6 sequentially forward the message until the N1 receives the protection switching message corresponding to the protection path 1, and the N1 learns the service 1 The switching is completed.
  • the protection slot 1 is configured as an ODU0 channel, and the step of switching the service 1 bridge to the ODU0 channel may be completed after receiving the protection switching message that the node N6 reversely transmits; step 1802 and step 1803 may also be performed.
  • the same operation is performed, that is, the node establishes a cross-connection after transmitting and receiving the protection switching message in the same dimension, and the recovery is more accurate.
  • N1, N2 When both ends of the service (N1, N2) detect that the service 1 fails, the N1 and N2 can initiate protection switching at the same time.
  • Manual switching is implemented by the administrator to the command of the service endpoint.
  • the protection switching process is similar.
  • the end node of the protection path needs to know the state of the protection path before performing the protection switching.
  • the OUT link between N5 and N8 fails at a certain time, causing the signal to be invalid, that is, the protection time slot. If the 9/10 fails, the two endpoints of the protection path 3 need to be able to know the fault and record the status of the protection path as a signal failure. At this time, the service 3 will be prevented from automatically triggering the protection switching action, that is, the service 3 is disabled when the working path is faulty. The service is switched to protection path 3.
  • N3 searches for the protection configuration table and finds that the protection path of service 3 is invalid.
  • the time slot in the OTU link, and N3 is the endpoint of the protection path 3, thus updating the protection path status of the protection path 3 to "signal failure".
  • Another endpoint of protection path 3 finds that the protection path 3 signal failure method is: N8 detects that the OTU link between N5 and N8 is faulty, and N8 searches for local protection configuration information (Table 8), and finds that the protection path of service 3 is configured with a time slot (dimension 1) in the failed OTU link, and N8 It is not the endpoint of the protection path 3, and the dimension 2 of the protection path 3 is determined to be 3, and the protection path state information is sent to the node adjacent to the dimension 2 by using the overhead of the number 3 in the OTU link to which the slot 3/4 belongs. N6, indicating that the path is invalid.
  • N6 receives the protection path status message from the overhead numbered 3 in the OTU link of the slot 3/4, and checks the configuration information of the node N6 (Table 12), and learns that the number 3 of the OTU link to which the slot 3/4 belongs is 3
  • the overhead (dimension 2) is used for the protection path 3, and N6 is not the endpoint of the protection path 3.
  • the dimension 1 of the protection path 3 is determined to be 1 and the number 1 of the OTU link to which the slot 7/8 belongs is numbered 1.
  • the overhead sends the protection path state information to the node adjacent to the dimension 1, that is, the node N5, indicating that the path is invalid.
  • N5 receives the protection path status message from the overhead numbered 1 in the OTU link to which the slot 7/8 belongs, and checks the configuration information of the node N5 (Table 11), and learns that the number of the OTU link to which the slot 7/8 belongs is 1
  • the overhead is used for protection path 3; since N5 is the endpoint of service 3, the protection path status of protection path 3 is updated to "signal failure".
  • FIG. 19 is a schematic diagram of a network architecture according to Embodiment 10 of the present invention.
  • nodes N1 to N6 and N8 are included.
  • the thin line indicates the working path of each service
  • the thick line indicates an STM-1 link
  • the thick line in the pipe indicates a VC4 protection slot in the STM-1 link.
  • Two protection paths are configured.
  • the protection path 1 passes through N1-N6-N8-N2, and the protection path 2 passes through N5-N6-N8-N3.
  • each node that passes through is configured with protection information.
  • the protection information of one dimension is configured on the nodes N1 and N2, and the protection information of the two dimensions is configured on the intermediate nodes N6 and N8.
  • the protection information of the N6 dimension needs to be configured on the N1, and the allocation overhead and the protection resources are allocated.
  • Gap 1 is a protection resource for protecting path 1 in this dimension.
  • the local configuration information on each node is shown in Table 14 to Table 19.
  • the dimensions in the table are relative.
  • Protection resource Cost number Protection resource Cost number Service 1 (VC4) 10 Time slot 5 1 Time slot 3 1
  • Step 2001 Node N1 detects a working path failure and sends a protection switching message.
  • N1 detects that the service 1 is faulty, and determines that the protection path 1 needs to be restored. N1 searches for local configuration information (Table 14), and determines that the dimension 2 cost number of the protection path 1 is 1, and the protection path 1 The dimension 2 protection resource is slot 1, and the service 1 bridge is switched to the VC4 slot. And using the time slot 1 corresponding to the overhead of the STM-1 link numbered 1 to send the protection switching message to the node adjacent to the dimension 2, that is, the node N6.
  • Step 2002 The node N6 receives the protection switching message from the N1, and forwards the protection switching message.
  • N6 receives the protection switching message from the overhead numbered 1 in the STM-1 link corresponding to the time slot 1, and checks the configuration information of the node N6 (Table 18), and learns that the number of the STM-1 link corresponding to the time slot 1 is
  • Table 18 the configuration information of the node N6
  • the overhead of 1 dimension 1 is allocated for use by the protection path 1, so the cross-connection of the slot 1 of the dimension 1 and the slot 3 of the dimension 2 is established, and the protection switching message is transmitted with the overhead of the protection path 1 dimension 2,
  • the cost is numbered 1;
  • Step 2003 The node N8 receives the protection switching message from the N6, and forwards the protection switching message.
  • N8 receives the protection switching message from the overhead numbered 1 in the STM-1 link corresponding to the time slot 3, and checks the configuration information of the node N8 (Table 19), and learns that the number 1 of the OTU link corresponding to the time slot 3 is 1.
  • the overhead (dimension 2) is allocated for use by the protection path 1, thus establishing a cross-connection of the time slot 5 of the dimension 1 and the time slot 3 of the dimension 2, and transmitting the protection switching message with the overhead of the protection path 1 dimension 1, the overhead Number 1;
  • Step 2004 The node N2 receives the protection switching message from the N8, and performs protection switching.
  • N2 receives the protection switching message from the overhead numbered 1 in the STM-1 link corresponding to the time slot 5, and checks the configuration information of the node N2 (Table 15), and learns that the number of the STM-1 link corresponding to the time slot 5 is The overhead of 1 (dimension 2) is allocated for protection path 1, and N2 is the end node of protection path 1, so service 1 is bridge-switched to the VC4 channel. At this point, service 1 has been switched to protection path 1 and returned to normal.
  • N2 can forward the protection switching message by using the corresponding cost of the protection path 1.
  • N8 and N6 forward the message in turn, until the N1 receives the protection switching message corresponding to the protection path 1, and the N1 learns the service 1 The switching is completed.
  • step 2001 the step of switching the service 1 bridge to the VC4 time slot may be completed after receiving the protection switching message reversely transmitted by the node N6; the same operation may be performed in steps 2002 and 2003, that is, the nodes are in the same dimension. A cross-connection is established after the protection switching message is sent and received.
  • Nl, N2 When both ends of the service (Nl, N2) detect that the service path of the service 1 fails, Nl, N2 can initiate protection switching at the same time.
  • Manual switching is implemented by the administrator to the command of the service endpoint.
  • the protection switching process is similar.
  • FIG. 21 is a schematic structural diagram of an optical communication apparatus according to an embodiment of the present invention.
  • the optical communication apparatus includes: a message receiving unit 2101, configured to receive a first message from an overhead of a first dimension;
  • the path determining unit 2102 is configured to search for local configuration information, where the local configuration information includes an overhead of a first dimension of the protection path, a protection resource of the first dimension of the protection path, and a second dimension of the protection path.
  • the protection resource of the second dimension of the protection path determining the protection path associated with the first message according to the local configuration information and the first message, and determining the cost of the second dimension associated with the first message ;
  • the message processing unit 2103 is configured to send the second message to the node adjacent to the second dimension according to the first message and by the overhead of the second dimension associated with the first message.
  • FIG. 22 is a schematic structural diagram of an optical communication apparatus according to an embodiment of the present invention.
  • the optical communication apparatus includes: a message receiving unit 2201, configured to receive a third message from an overhead of a first dimension;
  • the path determining unit 2202 is configured to search for local configuration information, where the local configuration information includes an overhead of a first dimension of the protection path, and a protection resource of the first dimension of the protection path, according to the local configuration information and the third a message, determining a protection path associated with the third message;
  • the message processing unit 2203 is configured to: if the third message is a protection switching message, establish a cross-connection for the protection path associated with the third message, and if the third message is a protection path status message, record the The state of the protection path associated with the three messages.
  • the optical communication apparatus includes: a path determining unit 2301, configured to detect a working path fault, and determine a protection path; an overhead determining unit 2302, configured to search for local configuration information,
  • the local configuration information includes a cost of the second dimension of the protection path, a protection resource of the second dimension of the protection path, and determining, according to the local configuration information, an overhead of the second dimension of the protection path;
  • the message sending unit 2303 is configured to send, by using an overhead of the second dimension of the protection path, a fourth message to a node adjacent to the second dimension, where the fourth message is a protection switching message.
  • FIG. 24 is a schematic structural diagram of an optical communication system according to an embodiment of the present invention.
  • the optical communication system includes: a first optical communication device 2401, configured to detect a working path fault, determine a protection path, and find local configuration information, where the local configuration information includes The cost of the second dimension of the protection path and the protection resource of the second dimension of the protection path, determining, according to the local configuration information, an overhead of the protection path in the second dimension of the first optical communication device, by using the The overhead of the protection path in the second dimension of the first optical communication device is sent to the node adjacent to the second dimension of the first optical communication device, and the fourth message is a protection switching message;
  • a second optical communication device 2402 configured to receive a third message from an overhead of a first dimension of the second optical communication device; to find local configuration information, where the local configuration information includes a cost of the first dimension of the protection path, and the protection path
  • the first dimension of the protection resource, the protection path associated with the third message is determined according to the local configuration information and the third message, where the third message is a protection switching message, and is associated with the third message.
  • the protection path establishes a cross-connection.
  • the optical communication system further includes:
  • the node adjacent to the second dimension of the first optical communication device is a second optical communication device
  • the third message received by the second optical communication device from the overhead of the first dimension of the second optical communication device is the fourth message sent by the first optical communication device.
  • the optical communication system further includes:
  • a third optical communication device configured to receive a first message from an overhead of a first dimension of the third optical communication device, to search for local configuration information, where the local configuration information includes an overhead of a first dimension of the protection path, and the protection path Determining the first message association according to the local configuration information and the first message, the protection resource of the first dimension, the cost of the second dimension of the protection path, and the protection resource of the second dimension of the protection path a protection path, and determining an overhead of a second dimension of the third optical communication device associated with the first message; an overhead of a second dimension of the third optical communication device associated with the first message and by the first message, Sending a second message to a node adjacent to the second dimension;
  • the node adjacent to the second dimension of the first optical communication device is the third optical communication device, and the node adjacent to the second dimension of the third optical communication device is the second optical communication device;
  • the first message received by the third optical communication device from the overhead of the first dimension of the third optical communication device is a fourth message sent by the first optical communication device, and the first optical communication device is from the first dimension of the second optical communication device
  • the third message received by the overhead is the second message sent by the third optical communication device.
  • the node receives the first message from the overhead of the first dimension, and the node searches for the local configuration information, where the local configuration information includes the cost of the first dimension of the protection path, and the protection path. Determining the first message association according to the local configuration information and the first message, the protection resource of the first dimension, the cost of the second dimension of the protection path, and the protection resource of the second dimension of the protection path a protection path, and determining an overhead of the second dimension associated with the first message; the node sending the second message to be adjacent to the second dimension according to the first message and by the overhead of the second dimension associated with the first message Node. Because the data plane sends sub-APS overhead indication recovery information, the signaling protocol is generally simple, and local configuration information is locally available, which can be used for searching related information, so obtaining recovery information can be relatively simple, and the information processing complexity is reduced. .
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
  • ROM Read Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

光网络中的信息处理方法、 光通信装置及系统 本申请要求了 2009年 9月 4 日提交的, 申请号为 200910168988. 1 , 发明 名称为 "光网络中的信息处理方法、 光通信装置及系统" 的中国申请的优先 权和 2010年 6月 7 日提交的, 申请号为 201010200961. 9 , 发明名称为 "光网 络中的信息处理方法、 光通信装置及系统" 的中国申请的优先权, 其全部内 容通过引用结合在本申请中。
技术领域
本发明涉及光通信技术领域, 具体涉及一种光网络中的信息处理方法、 光通信装置及系统。
背景技术
目前,光网络的应用较为广泛。光传送网( OTN, Optical Transport Network ) 技术是一种新的光传送技术, 能够实现大容量业务的灵活调度和管理, 目前 已经成为骨千传送网的主流技术。
光网络中一般需要在网络内部保证连接的可靠性, 这可以由各种保护和 恢复技术来实现。 例如, 可以利用控制平面的重路由技术来对光网络连接进 行恢复。 另外, 还可以利用控制平面提供的共享网状(Mesh )恢复技术。 以 共享 Mesh恢复技术为例说明,一般每个共享 Mesh业务包括一条工作路径和 一条保护路径, 这些路径由各段连接组成。 现有技术中, 在共享 Mesh业务的 工作路径发生故障的情况下, 可以利用控制平面的信令协议例如通用多协议 标签交换及带流量工程的资源预留协议(GMPLS RSVP-TE, Generalized Multi-Protocol Label Switching Resource Reservation Protocol with TE )建立保护 路径, 并将业务切换到保护路径进传输, 以恢复业务。 OTN网络中, 控制通 道可以由开销字节提供。 控制平面的信令消息由控制通道传送。 光网络的节 点间可以由光监控信道(OSC, Optical Supervisory Channel )的开销提供控制 通道, 此时在节点间生成控制接口, 在控制接口上运行路由协议(如开放最 短路径优先( OSPF , Open Shortest Path First )协议), 则可以得到控制平面的 路由表, 从而节点之间可以相互传送信令协议消息。 例如, 首节点在发现某 一业务的工作路径(该工作路径为首节点和目的节点间建立的路径)发生故 障时, 利用控制通道向另一中间节点发送路径(Path )消息(封装在 IP包中), 中间节点解析 Path消息并建立连接, 然后转发 Path消息到目的节点, 目的节 点解析 Path消息并建立连接,然后将业务切换到由新建连接组成的保护路径。 目的节点通过中间节点返回预留(Resv, Reservation )消息到首节点, 则首节 点根据接收的 Resv消息, 可以将业务切换到新建连接组成的保护路径, 从而 该业务得到恢复。
在对此方法的研究和实践过程中, 本发明的发明人发现: 由于现有技术 中的业务恢复过程需要控制平面参与 , 而控制平面协议栈例如 GMPLS RSVP-TE信令协议的消息较为复杂, 因此对消息进行解析以获得信息的处理 过程也较为复杂。
发明内容
本发明实施例提供一种能够降低信息处理复杂度的光网络中的信息处理 方法、 光通信装置及系统。
本发明实施例提供一种光网络中的信息处理方法 , 包括:
节点从第一维度的开销接收第一消息;
节点查找本地配置信息 , 所述本地配置信息包括保护路径的第一维度的 开销、 所述保护路径的第一维度的保护资源、 所述保护路径的第二维度的开 销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信息和所述第 一消息, 确定所述第一消息关联的保护路径, 并确定所述第一消息关联的第 二维度的开销;
节点根据第一消息并通过所述第一消息关联的第二维度的开销, 发送第 二消息到与第二维度相邻的节点。
本发明实施例提供一种光网络中的信息处理方法 , 包括: 节点从第一维度的开销接收第三消息;
节点查找本地配置信息 , 所述本地配置信息包括保护路径的第一维度的 开销、 所述保护路径的第一维度的保护资源, 根据所述本地配置信息和所述 第三消息, 确定所述第三消息关联的保护路径;
若所述第三消息为保护倒换消息, 则为所述第三消息关联的保护路径建 立交叉连接;
若所述第三消息为保护路径状态消息, 则记录所述第三消息关联的保护 路径的状态。
本发明实施例提供一种光网络中的信息处理方法 , 包括:
节点检测到工作路径故障, 确定保护路径;
节点查找本地配置信息, 所述本地配置信息包括所述保护路径的第二维 度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信息, 确定所述保护路径的第二维度的开销;
节点通过所述保护路径的第二维度的开销 , 发送第四消息到与第二维度 相邻的节点, 所述第四消息为保护倒换消息。
本发明实施例提供一种光通信装置, 包括:
消息接收单元, 用于从第一维度的开销接收第一消息;
路径确定单元, 用于查找本地配置信息, 所述本地配置信息包括保护路 径的第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护路径 的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配 置信息和所述第一消息, 确定所述第一消息关联的保护路径, 并确定所述第 一消息关联的第二维度的开销;
消息处理单元, 用于根据第一消息并通过所述第一消息关联的第二维度 的开销, 发送第二消息到与第二维度相邻的节点。
本发明实施例提供一种光通信装置, 包括:
消息接收单元, 用于从第一维度的开销接收第三消息; 路径确定单元, 用于查找本地配置信息, 所述本地配置信息包括保护路 径的第一维度的开销、 所述保护路径的第一维度的保护资源, 根据所述本地 配置信息和所述第三消息, 确定所述第三消息关联的保护路径;
消息处理单元, 用于若所述第三消息为保护倒换消息, 则为所述第三消 息关联的保护路径建立交叉连接, 若所述第三消息为保护路径状态消息, 则 记录所述第三消息关联的保护路径的状态。
本发明实施例提供一种光通信装置, 包括:
路径确定单元, 用于检测到工作路径故障, 确定保护路径;
开销确定单元, 用于查找本地配置信息, 所述本地配置信息包括所述保 护路径的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述 本地配置信息 , 确定所述保护路径的第二维度的开销;
消息发送单元, 用于通过所述保护路径的第二维度的开销, 发送第四消 息到与第二维度相邻的节点, 所述第四消息为保护倒换消息。
本发明实施例提供一种光通信系统, 包括:
第一光通信装置, 用于检测到工作路径故障, 确定保护路径, 查找本地 配置信息, 所述本地配置信息包括所述保护路径的第二维度的开销、 所述保 护路径的第二维度的保护资源, 根据所述本地配置信息, 确定所述保护路径 在第一光通信装置的第二维度的开销, 通过所述保护路径在第一光通信装置 的第二维度的开销, 发送第四到与第一光通信装置的第二维度相邻的节点, 所述第四消息为保护倒换消息;
第二光通信装置, 用于从第二光通信装置的第一维度的开销接收第三消 息; 查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的开销、 所述保护路径的第一维度的保护资源 , 根据所述本地配置信息和所述第三消 息, 确定所述第三消息关联的保护路径, 所述第三消息为保护倒换消息, 为 所述第三消息关联的保护路径建立交叉连接。
上述技术方案可以看出, 本发明实施例技术方案, 节点从第一维度的开 销接收第一消息, 节点查找本地配置信息, 所述本地配置信息包括保护路径 的第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护路径的 第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配置 信息和所述第一消息, 确定所述第一消息关联的保护路径, 并确定所述第一 消息关联的第二维度的开销; 节点根据第一消息并通过所述第一消息关联的 第二维度的开销, 发送第二消息到与第二维度相邻的节点。 因为利用数据平 面发送开销指示恢复信息, 信令协议一般较为简单, 并且本地设有本地配置 信息, 可以用于相关信息的查找, 因此获得恢复信息可以较为筒单, 降低了 信息处理复杂度。
附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例 , 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下 , 还可以根据这些附图获得其它的附图。
图 1是本发明实施例一的光网络中的信息处理方法流程图;
图 2是本发明实施例二的光网络中的信息处理方法流程图;
图 3是本发明实施例二的光网络中的信息处理方法流程图;
图 4是本发明实施例四和实施例五的网络架构示意图;
图 5是本发明实施例四和实施例五中保护倒换开销的结构示意图; 图 6是本发明实施例四的光网络中的信息处理方法流程图;
图 7是本发明实施例五的光网络中的信息处理方法流程图;
图 8是本发明实施例的光通信装置结构一示意图;
图 9是本发明实施例的光通信装置结构二示意图;
图 10是本发明实施例的光通信装置结构三示意图;
图 11是本发明实施例的光通信系统结构一示意图;
图 12是本发明实施例的光通信系统结构二示意图; 图 13是本发明实施例的光通信系统结构三示意图;
图 14是本发明实施例六的光网络中的信息处理方法流程图;
图 15是本发明实施例七的光网络中的信息处理方法流程图;
图 16是本发明实施例八的光网络中的信息处理方法流程图;
图 17是本发明实施例九的网络架构示意图;
图 18是本发明实施例九的光网络中的信息处理方法流程图;
图 19是本发明实施例十的网络架构示意图;
图 20是本发明实施例十的光网络中的信息处理方法流程图;
图 21是本发明实施例的一种光通信装置结构示意图;
图 22是本发明实施例的另一种光通信装置结构示意图;
图 23是本发明实施例的再一种光通信装置结构示意图;
图 24是本发明实施例的一种光通信系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图 , 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明实施例提供一种能够降低信息处理复杂度的光网络中的信息处理 方法。 本发明实施例还提供相应的光通信装置及光通信系统。 以下分别进行 详细说明。
本发明实施例中, 需要在保护路径经过的每个节点上配置保护信息, 在 保护路径的端节点需要配置一个维度的保护信息, 端节点表示为业务提供保 护的起始和结束的节点, 对于双向业务, 两个端节点都既是起始节点和结束 节点, 中间节点为保护路径经过的除端节点外的其它节点, 在保护路径的中 间节点需要配置两个维度的保护信息。
本发明实施例中, 需要为每条保护路径配置开销, 该开销用于传送保护 路径的保护倒换消息和保护路径状态消息等, 消息的名称只是一个代号, 当 然也可以取其它的名称。以下以 OTN网络和同步数字体系( SDH, Synchronous Digital Hierarchy ) 网络为例进行说明。 对于 OTN网络, 保护路径可能经过一 条或多条光通道传送单元 ( OTU , Optical Channel Transport Unit )链路, 每 条 OTU链路有相应的 OTU开销以及高阶光通道数据单元 ( ODU , Optical Channel Data Unit )开销 , 可以将 OTU链路的 OTU或高阶 ODU的特定开销划分 为 N份, 每份可以配置用于不同保护路径传送消息。 对于 SDH网络, 业务的保 护路径经过一条或多条同步传输模块(Synchronous Transport Module, STM ) -N链路, 每条 STM-N链路可以传送 STM-N帧格式的信号, 每个 STM-N帧都有 对应的段开销, 该段开销包括再生段和复用段开销, 将 STM-N链路的特定开 销划分为 N份, 每份可以配置用于不同保护路径传送消息。
对于 OTN网络, OTU开销以及高阶 ODU开销位于 OTU帧的开销区域, 开 销资源是每条保护路径独享的。 可以配置某 OTU连接中传送的 OTU帧开销中 第 4行的第 9列的 1个 RES字节用于传递共享保护消息, 并且根据 MFAS开销的 最低比特位的取值(0或 1 ), 区分为两份不同的 RES开销。 即对于第 4行的第 9 列的 RES字节来说, MFAS的最低比特位为 0时, 代表一份开销; MFAS的最低 比特位为 1时, 代表另一份开销。 从而该 OTU连接用于传递共享保护的开销总 共有两个 RES字节。 这两个 RES字节又可以继续划分为 4份, 开销编号为 1 ~ 4, 每份半个字节, 可以用于传递某业务的共享保护消息。 按照上述开销的划分 方式, 在业务的共享保护消息占用半个字节的情况下, 一个 OTU链路中可以 传送 4条不同业务的共享保护消息。也可以配置某 OTU连接中传送的 OTU帧开 销中第 4行的第 5、 6、 7、 8列的 4个 APS字节( 1-32比特, 共 32个比特位)用于 传递共享保护消息 , 并且根据 MFAS开销的最低 3个比特位的取值 ( 0 ~ 7 ), 区 分为 8份不同的 4字节 APS开销。从而该 OTU连接用于传递共享保护的开销总共 有 8 4=32个字节。 这 32个 APS字节又可以继续划分为 64份, 开销编号 1 ~ 64, 每份半个字节 (4比特), 可以用于传递某业务的共享保护消息。 按照上述开 销的划分方式, 在业务的共享保护消息占用半个字节的情况下, 一个 OTU链 路中可以传送 64条不同业务的共享保护消息。
对于 SDH网络, 可以采用 STM-1的段开销传递共享保护消息, 实现 VC4 业务的共享保护功能。 段开销位于 STM-1帧的开销区域, 以下描述以 K1字节 开销为例, 也可以使用其它未定义的开销。 可以将 K1字节划分为两份(开销 的编号分别为 1和 2 ), 每份可以给一个 VC4业务使用。
本发明实施例中, 需要为保护路径配置保护资源, 保护路径恢复时占用 该保护资源, 在保护路径的端节点, 只需要配置一个维度的保护资源, 在保 护路径的中间节点, 需要配置两个维度的保护资源。 对于 OTN网络, 保护资 源的分配单位可以为通道, 一条保护路径恢复时可以占用一个通道; 保护资 源的分配单位也可以为时隙 , 一条保护路径恢复时可以占用一个或多个时隙。 对于 SDH网络,保护资源的分配单位可以为 VC4时隙 ,一条保护路径占用一个 VC4时隙。
本发明实施例中, 保护路径的恢复由端节点自动完成, 当然也可以由管 理员向端节点下命令的方式实现, 即可以自动保护倒换也可以手动保护倒换, 在传送保护倒换消息的时候可以根据某一个编号的开销区分自动保护倒换和 手动保护倒换。
图 1是本发明实施例一的光网络中的信息处理方法流程图, 主要包括步 驟:
步驟 101、 业务节点检测到第一通道的子自动保护倒换 sub-APS开销发生 变化;
步驟 102、 业务节点查找本地配置信息, 所述本地配置信息包括业务、 所 述业务关联的通道、 所述通道的 sub-APS开销, 根据所述本地配置信息和所述 发生变化的第一通道的 sub-APS开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述待恢复业务关联的第二通道; 步骤 103、 业务节点修改与所述待恢复业务关联的第二通道的 sub-APS开 销并发送给与所述第二通道相邻的节点。
其中:
所述根据所述本地配置信息和所述发生变化的第一通道的 sub-APS开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务包括: 在所述本地配置信息中, 将所述发生变化的第一通道的 sub-APS开销与所 述业务关联的第一通道及所述第一通道对应的 sub-APS开销进行匹配, 确定对 应的待恢复业务。 同的 sub-APS开销对应不同业务的恢复信息。
所述通道的 APS开销为单帧的 APS开销,或者为由至少两个帧组成的复帧 的 APS开销。
所述确定所述待恢复业务关联的第二通道之后还包括: 为所述待恢复业 务建立与所述待恢复业务关联的第一通道和第二通道间的交叉连接。
所述为所述待恢复业务建立与所述待恢复业务关联的第一通道和第二通 道间的交叉连接之前还包括: 检测到所述第二通道的 sub-APS开销发生变化; 根据检测到所述第一通道和所述第二通道的 sub-APS开销发生变化 , 执行 为所述待恢复业务建立与所述待恢复业务关联的第一通道和第二通道间的交 叉连接的步驟。
所述检测到第一通道的 sub-APS开销发生变化包括: 根据接收的第一通道 的 sub-APS开销与已保存的第一通道的 sub-APS开销的比较结果, 确定第一通 道的 sub-APS开销发生变化;
所述检测到第二通道的 sub-APS开销发生变化包括: 根据接收的第二通道 的 sub-APS开销与已保存的第二通道的 sub-APS开销的比较结果, 确定第二通 道的 sub-APS开销发生变化。
从该实施例可以看出, 从实施例一内容可以看出, 本发明实施例技术方 案在检测到第一通道的子自动保护倒换 sub-APS开销发生变化后, 可以查找本 地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道 的 sub- APS开销, 根据所述本地配置信息和所述发生变化的第一通道的 sub-APS开销 , 就可以确定所述发生变化的第一通道的 sub-APS开销所关联的 待恢复业务, 并确定所述待恢复业务关联的第二通道。 该实施例中, 业务节 点为所述待恢复业务的首、 末节点之间的中间节点, 因此可以修改与所述待 恢复业务关联的第二通道的 sub-APS开销并发送给与所述第二通道相邻的节 点, 以通知所述相邻的节点请求业务恢复。 因为利用数据平面发送 sub-APS开 销指示恢复信息, 信令协议一般较为筒单, 并且本地设有本地配置信息, 可 以用于相关信息的查找, 因此获得恢复信息可以较为简单, 降低了信息处理 复杂度。
图 2是本发明实施例二的光网络中的信息处理方法流程图, 主要包括步 驟:
步骤 201、 业务节点检测到第一通道的子自动保护倒换 sub-APS开销发生 变化;
步骤 202、 业务节点查找本地配置信息, 所述本地配置信息包括业务、 所 述业务关联的通道、 所述通道的 sub-APS开销, 根据所述本地配置信息和所述 发生变化的第一通道的 sub-APS开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述待恢复业务关联的第二通道; 步驟 203、 业务节点将本业务节点的与所述待恢复业务关联的第二通道桥 接倒换到所述第一通道。
其中, 所述根据所述本地配置信息和所述发生变化的第一通道的 sub-APS 开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务包 括:
在所述本地配置信息中, 将所述发生变化的第一通道的 sub-APS开销与所 述业务关联的第一通道及所述第一通道对应的 sub-APS开销进行匹配, 确定对 应的待恢复业务。 从实施例二内可以看出 , 本发明实施例技术方案在检测到第一通道的子 自动保护倒换 sub-APS开销发生变化后, 可以查找本地配置信息, 所述本地配 置信息包括业务、 所述业务关联的通道、 所述通道的 sub-APS开销, 根据所述 本地配置信息和所述发生变化的第一通道的 sub-APS开销, 就可以确定所述发 生变化的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述待恢复业 务关联的第二通道。 该实施例中, 业务节点为待恢复业务的末节点, 因此可 以将本业务节点的与待恢复业务关联的第二通道桥接倒换到第一通道, 以进 行业务恢复。 因为利用数据平面发送 sub-APS开销指示恢复信息, 信令协议一t殳较为简单, 并且本地设有本地配置信息, 可以用于相关信息的查找, 因此 获得恢复信息可以较为简单, 降低了信息处理复杂度。
图 3是本发明实施例三的光网络中的信息处理方法流程图, 主要包括步 驟:
步骤 301、 业务节点检测到业务的工作路径发生故障, 确定待恢复业务; 步驟 302、业务节点查找本地配置信息,所述本地配置信息包括所述业务、 所述业务关联的通道、 所述通道的子自动保护倒换 sub-APS开销, 根据所述本 地配置信息和所述待恢复业务, 确定与所述待恢复业务关联的通道的 sub-APS 开销;
步驟 303、 业务节点修改与所述待恢复业务关联的通道的 sub-APS开销并 发送给与所述待恢复业务关联的通道相邻的节点。
其中, 所述根据所述本地配置信息和所述待恢复业务, 确定与所述待恢 复业务关联的通道的 sub-APS开销包括: 在所述本地配置信息中, 将确定的所 述待恢复业务与所述业务、 所述业务关联的通道、 所述通道的 sub-APS开销进 行匹配, 确定与所述待恢复业务关联的通道的 sub-APS开销。
从该实施例内容可以看出, 业务节点为待恢复业务的首节点, 因此检测 到业务的工作路径发生故障后可以确定待恢复业务; 该业务节点在检测到第 一通道的子自动保护倒换 sub-APS开销发生变化后, 可以查找本地配置信息, 所述本地配置信息包括业务、所述业务关联的通道、所述通道的 sub- APS开销, 根据所述本地配置信息和所述发生变化的第一通道的 sub-APS开销, 就可以确 定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务, 然后修改与 的通道相邻的节点, 以通知所述相邻的节点请求业务恢复。 因为利用数据平 面发送 sub-APS开销指示恢复信息, 信令协议一般较为简单, 并且本地设有本 地配置信息, 可以用于相关信息的查找, 因此获得恢复信息可以较为简单, 降低了信息处理复杂度。
以下结合实施例四和实施例五对本发明实施例进行更详细描述。 本发明 实施例所说的信息可以是共享 Mesh恢复信息 , 以下内容以共享 Mesh恢复信息 举例说明, 共享 Mesh恢复信息通过开销表示。
图 4是本发明实施例四和实施例五的网络架构示意图。
图 4中, 包括节点 N1到 N8, 节点之间为 ODUk通道(后续为描述的方便, 简称通道), 各通道在图中采用数字标记, 例如通道 11、 通道 12等。 图 4中配 置了三条 ODUk共享 Mesh 业务, 分别记为业务 1、 业务 2和业务 3。 对于每个节 点, 每条业务一般有两个通道, 为第一通道和第二通道, 例如节点 N1的业务 1 的第一通道是通道 11 , 第二通道是通道 2, 节点 N1的业务 2的第一通道是通道 12, 第二通道是通道 2, 通道 2是业务 1和业务 2可以共享的通道。
图 5是本发明实施例四和实施例五中保护倒换开销的结构示意图。
APS开销共 4个字节。 由于同一个 ODUk通道可以给多条业务共享, 因此 在 APS开销中需要能区分不同业务的消息。
如图 5所示, 将 4个字节的 APS开销划分为 8份(8个 Sub-APS开销), 分别 记为 1 # Sub-APS到 8 # Sub-APS, 每份开销为 4个比特, 可以取 0 - 15共 16个取 值, 每个取值可以对应 1种共享 Mesh恢复信息, 最多可以定义 16种共享 Mesh 恢复信息。
需要说明的是, 上述只是举例说明, APS开销不一定只能划分成 8份。 如 果共享 Mesh恢复信息种类较多(多于 16个),则可以划分成 6份(每份 5个比特, 可以取 32个值)、 5份(每份 6个比特, 可以取 64个值)等份数。
另外, 在网络中保护路径经过的节点预先设置配置信息, 也即本地配置 信息包括配置 Sub-APS开销的占用情况, 即配置每份 Sub-APS开销的使用者, 具体参见如下表 1到表 7所示。 下表中的第一通道和第二通道是相对而言。
N1配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 1 11 NULL (空 ) 2 1 # Sub-APS 业务 2 12 NULL (空 ) 2 2 # Sub-APS 表 1
N6配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 1 2 1 # Sub-APS 3 1 # Sub-APS 业务 2 2 2 # Sub-APS 9 1 # Sub-APS 业务 3 3 2 # Sub-APS 9 2 # Sub-APS 表 2
N5配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 2 52 NULL (空 ) 9 1 # Sub-APS 业务 3 53 NULL (空 ) 9 2 # Sub-APS 表 3
N7配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 1 3 1 # Sub-APS 4 1 # Sub-APS 业务 3 3 2 # Sub-APS 4 2 # Sub-APS 表 4 N8配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 1 4 1 # Sub-APS 5 1 # Sub-APS 业务 3 4 2 # Sub-APS 10 1 # Sub-APS 表 5
N2配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 1 21 NULL (空) 5 1 # Sub-APS 表 6
N3配置信息 第一通道 第 一 通 道 的 第二通道 第 二 通 道 的
Sub-APS开销 Sub-APS开销 业务 3 33 NULL (空) 10 1 # Sub-APS 表 7
如上各表所示, 在节点 Nl、 N6、 N5、 N7、 N8、 N2、 N3分别配置三条业 务使用的 Sub-APS开销。 如果没有配置 Sub-APS开销, 则在表中以 NULL (空) 表示。
以表 2的配置信息为例, 节点 N2配置的业务 1的第一通道是通道 2, 第二通 道是通道 3 (相对地, 如果通道 2作为第二通道, 则通道 3是第一通道), 第一 通道使用的是 APS开销被划分后的 1 # Sub-APS , 第二通道使用的也是 1 # Sub-APS; 业务 2的第一通道是通道 2, 第二通道是通道 9, 第一通道使用的是 APS开销被划分后的 2 # Sub-APS, 第二通道使用的是 1 # Sub-APS; 业务 3的第 一通道是通道 3, 第二通道是通道 9, 第一通道使用的是 APS开销被划分后的 2 # Sub-APS, 第二通道使用的是 2 # Sub-APS。 可以看出, 业务 1和业务 2可以 共享通道 2, 业务 2和业务 3可以共享通道 9。
另外, 对于某个节点而言, 如果是从第一通道检测到 sub-APS开销变化, 则表中的第一通道表示 "上一通道", 表中的第二通道表示 "下一通道"; 如 果是从第二通道检测到 sub- APS开销变化, 则表中的第二通道表示 "上一通 道", 表中的第一通道表示 "下一通道"。
同时, 通过表中的 sub-APS开销的配置, 可以获知相应节点是否为业务端 点。 即, 当第一通道的 sub-APS开销或第二通道的 sub-APS开销为 NULL时, 表 示该节点是该业务的端点。 对于业务 1 , N1和 N2为业务端点; 对于业务 2, N1 和 N5为业务端点; 对于业务 3 , N5和 N3为业务端点。 对每条业务来说, 业务 端点有两个, 因此工作路径故障发生时, 两个业务端点都可能检测到故障, 都可以会触发本发明实施例的处理过程, 以下内容以描述一个方向的处理过 程为例说明, 另一个方向的处理过程是类似的。
在保护路径发送的 sub-APS开销中可以指示以下信息: (1 ) 工作路径正 常, sub-APS开销的值为 0; ( 2 )工作路径故障, sub-APS开销的值为 1 , 也即 业务请求恢复。 即工作路径正常的情况下, 业务对应的保护路径的 sub-APS开 销值为 0; 在工作路径故障时, 业务对应的保护路径的 sub-APS开销值为 1。 因 此, 在工作路径从正常变为故障时, 相应的保护路径的 sub-APS开销值也发生 变化(从 0变为 1 )。 当然, 也可以采用相反的定义值。 保护路径可以一个或多 个通道组成。
当然, 还可以定义 sub-APS开销的其它取值的意义。 例如, 定义 sub-APS 开销取值为 3,表示保护路径故障; sub-APS开销取值为 4,表示保护路径正常, 目的在于业务端点维护保护路径状态。 此时, 工作路径和保护路径都正常的 情况下, 保护路径发送的 sub-APS开销的值为 4。
以下仅以 sub-APS定义取值为 0 (工作路径正常)和 1 (工作路径故障, 也 即业务请求恢复) 两种情况为例, 来说明本发明方案。 如果还定义其它值, 例如取值为 2, 则在 sub-APS的值由 2变为 1时, 也说明相应业务工作路径故障, 请求恢复。
在工作路径正常时, 该业务对应的通道的 sub-APS开销值为 0。
在业务端点检测到工作路径故障时, 根据本地配置信息, 将该业务对应 的通道的 sub-APS开销值从 0修改为 1 , 下一节点可以检测到该变化。
下一节点可以检测到上一通道发送过来的 APS开销变化,并进一步确定发 生变化的 sub-APS编号, 根据发生变化的 sub-APS编号确定其对应的业务。 并 且, sub-APS的值从 0变为 1 , 则表示业务请求恢复。 进一步判断该节点是否是 该业务的端点, 如果不是业务端点, 则修改该业务对应的下一通道发送方向 的 sub-APS值为 1 , 用于指示该业务请求恢复, 从而下一节点也可以检测到该 业务请求恢复, 再向下一节点通知业务的恢复请求。
其它节点重复上述过程, 直至到达业务端点, 业务端点执行恢复处理, 进行通道间的桥接倒换, 不需要再向下一节点通知业务的恢复请求。
图 6是本发明实施例四的光网络中的信息处理方法流程图, 主要包括步 驟:
步驟 601、 节点 N1在获知业务故障后, 进行通道的桥接倒换, 将通道 2发 送方向的 2 # Sub-APS值改为 1 , 表示业务 2请求恢复。
当业务 2的工作路径发生故障时, N1检测到业务 2发生故障, 查找表 1 , 根 据 N1的配置信息, 确定业务 2的保护路径的通道为通道 2, 将业务 2从通道 6桥 接倒换到通道 2 (通道 12的信号双发到通道 6和通道 2, 并从通道 2选收), 确定 业务 2使用通道 2的 2 # Sub-APS传递恢复信息 , 因此修改通道 2发送方向的 2 # Sub-APS值为 1 , 即 4个比特位按二进制取 0001 , 表示业务 2请求恢复。
步驟 602、 节点 N6检测到通道 2接收方向的 APS开销发生变化, 并进一步 确定是 2 # Sub-APS发生变化(值从 0变为 1 )。 因此建立通道 2与通道 9的交叉连 接 , 并修改通道 9发送方向的 1 # Sub-APS值为 1。
N6检测到通道 2的 APS开销发生变化, 并与上一次保存的 APS开销对比, 发现是 2 # Sub-APS变化(值从 0变为 1 )。 N6查找表 2的配置信息, 因为接收通 道是通道 2, 并且保护倒换开销是 2 # Sub-APS, 与表 2中的待恢复业务关联的 通道及所述通道的 sub- APS开销进行匹配, 可以查找到符合匹配条件的是业务 2, 因此获知是业务 2请求恢复。 在获知是业务 2请求恢复后, 根据配置信息中业务 2的第一通道是 2, 第二 通道是通道 9, 建立业务 2的第一通道到第二通道的交叉(即通道 2交叉连接到 通道 9 )。
确定通道 9使用 1 # Sub-APS , 1 # Sub-APS可以取值为 1 , 即 4个比特位按 二进制取 0001 ,修改通道 9发送方向的 1 # Sub-APS值为 1 ,表示业务 2请求恢复。
步骤 603、 节点 N5检测到通道 9接收方向的 APS开销发生变化, 并进一步 确认是 1 # Sub-APS发生变化,得知是业务 2请求恢复。 由于 N5是业务 2的端点, 因此将业务 2桥接倒换到通道 9, 业务恢复成功。
N5检测到通道 9的 APS开销发生变化, 并与上一次保存的 APS开销对比, 发现是 1 # Sub-APS发生变化(从 0变为 1 )。 N5查找表 3的配置信息, 因为接收 通道是通道 9, 并且保护倒换开销是 1 # Sub-APS , 因此从表 3可以查找到符合 匹配条件的是业务 2, 因此获知是业务 2请求恢复, 且 N5是业务 2的端点。
在获知是业务 2请求恢复后 , 根据配置信息中业务 2的第一通道是通道 52, 第二通道是通道 9, 因此将业务 2从通道 52桥接倒换到通道 9 (通道 52双发到通 道 6和通道 9, 并从通道 9选收)。 此时, 业务 2恢复成功。
从该实施例可以看出 , 本发明实施例技术方案利用 ODUk通道的 APS开销 指示恢复信息, 那么利用该 APS开销查找预先配置的信息,就可以获知需要恢 复的业务, 进而执行相关恢复操作。 因为利用数据平面发送的 sub-APS开销指 示恢复信息, 信令协议一般较为筒单, 并且本地设有本地配置信息, 可以用 于相关信息的查找, 因此获得恢复信息可以较为简单, 相应的处理也可以更 简单, 也不需要控制平面参与恢复过程。 另外, APS开销可以根据具体情况分 为不同份, 即划分为不同的 Sub-APS, 用于对应不同的共享 Mesh业务的恢复 信息, 这样就可以适应不同场景的需要, 对更多的共享 Mesh业务的恢复信息 进行区分。
还需要说明的是,上述是以一个 APS开销举例说明但不局限于此,也可以 利用复帧技术, 将连续的 N个数据帧的 APS 开销组合成一个整体, 即一个 ODUk通道的 APS开销是 Ν χ 4个字节。 那么, 同样可以将该整体开销作为一个 APS开销, 将上述 N x 4个字节划分为多份Sub-APS开销, 其原理是相同的, 此 时每份 Sub-APS 的比特位数可以更多, 也就可以定义更多种类的共享 Mesh业 务的恢复信息。
图 7是本发明实施例五的光网络中的信息处理方法流程图。 实施例五和实 施例四的主要区别在于, 节点在检测到两个方向的 Sub-APS开销变为 1时, 才 进行倒换。
如图 7所示, 主要包括步驟:
步驟 701、 节点 N1在获知业务 2故障后, 将通道 2发送方向的 2 # Sub-APS 值改为 1 , 表示业务 2请求恢复。
当业务 2的工作路径发生故障时, N1检测到业务 2故障, 查找表 1 , 根据 N1的配置信息, 确定业务 2的保护路径的通道为通道 2, 并修改通道 2发送方向 的 2 # Sub-APS值为 1 , 表示业务 2请求恢复。
步驟 702、 节点 N6检测到通道 2接收方向的 APS开销变化, 并进一步确定 是 2 # Sub-APS发生变化, 得知是业务 2请求恢复, 因此修改通道 9的 1 # Sub-APS值为 1 , 表示业务 2请求恢复。
N6检测到通道 2接收方向的 APS开销变化, 并与上一次保存的 APS进行比 较, 进一步发现是 2 # sub-APS的值从 0变为 1。 N6查找表 2的配置信息, 因为是 接收通道是通道 2 , 并且是 2 # Sub-APS , 与表 2中的待恢复业务关联的通道及 所述通道的 sub-APS开销进行匹配, 可以查找到符合匹配条件的是业务 2 , 因 此获知是业务 2请求恢复。
在获知是业务 2请求恢复后, 确定 N6是业务 2的中间节点, 且下一通道是 通道 9 , 配置使用 1 # Sub-APS。 因此修改通道 9的 1 # Sub-APS值为 1 , 表示业 务 2请求恢复。
步驟 703、 节点 N5检测到通道 9接收方向的 APS开销变化, 并进一步确定 是 1 # sub-APS开销从 0变为 1 , 获知是业务 2请求恢复。 N5检测到通道 9的 APS开销变化 , 并与上一次保存的 APS开销进行比较 , 进一步确定是 l # sub-APS开销的值从 0变为 1。 N5查找表 3的配置信息, 因为接 收通道是通道 9 , 并且是 1 # Sub-APS , 因此从表 3可以查找到符合匹配条件的 是业务 2, 因此获知是业务 2请求恢复, 并且 N1是业务 2的端点。
步驟 704、 节点 N5将业务 2桥接倒换到通道 9, 并将通道 9发送方向的 1 # Sub-APS的值改为 1。
节点 N5在获知是业务 2请求恢复后, 根据配置信息中业务 2的第一通道是 通道 52, 第二通道是通道 9, 因此将业务 2从通道 52桥接倒换到通道 9 (通道 52 双发到通道 6和通道 9,并从通道 9选收)。另夕卜,将通道 9发送方向的 1 # Sub-APS 的值改为 1 , 用于指示进行业务 2请求恢复。
步驟 705、 节点 N6检测到通道 9接收方向的 APS开销发生变化, 并进一步 确定是 1 # sub-APS开销从 0变为 1 , 得知是业务 2请求恢复。 此时 N6从通道 2和 通道 9都收到了业务 2请求恢复的信息, 因此建立通道 2到通道 9的交叉连接, 并将通道 2发送方向的 2 # Sub-APS修改为 1 , 用于指示业务 2请求恢复。
步骤 706、 节点 N1检测到通道 2接收方向的 APS开销发生变化, 并进一步 确定是 2 # sub-APS开销从 0变为 1 , 得知是业务 2请求恢复。 将业务 2桥接倒换 到通道 2, 业务 2恢复成功。
节点 N1检测到通道 2的 APS开销变化,并与上一次保存的通道 2的 APS开销 比较, 进一步确定是 2 # sub-APS开销从 0变为 1 , 即从通道 2接收了业务 2的恢 复请求消息。 N1从通道 2接收了业务 2的恢复请求, 因此将业务 2桥接倒换到通 道 2 (通道 12双发到通道 6和通道 2, 并从通道 2选收), 此时业务 2恢复成功。
需要说明的是,上述实施例中判断 APS开销是否发生变化,可以是检测连 续 N帧 ODU的 APS开销内容是否保持一致, 并与最近一次稳定的 APS开销内容 比较是否不一样。 N可以是 1、 2或 3。
对于检测 4字节的 APS开销是否发生变化, 接收的是整个 4字节的 APS开 销, 需要与保存的上次收到的 4字节的 APS开销内容比较, 进一步确定发生变 化的具体对应的 sub-APS开销; 如果比较的是 sub- APS开销, 则直接可以获知 发生变化的 sub-APS的编号。
该实施例也是利用 ODUk通道的 APS开销指示恢复信息 , 那么利用该 APS 开销查找预先配置的信息, 就可以获知需要恢复的业务, 进而执行相关恢复操 作。 因为利用数据平面发送的 sub-APS开销指示恢复信息, 信令协议一般较为 简单, 并且本地设有本地配置信息, 可以用于相关信息的查找, 因此获得恢复 信息可以较为简单, 相应的处理也可以更简单, 也不需要控制平面参与恢复过 程。
实施例五与实施例四所不同的是, 中间节点从两个方向接收到请求业务 恢复的指示时, 才建立通道间的交叉连接, 业务端点在首节点才艮据检测出工 作路径故障向下游节点发送请求业务恢复的指示后, 再收到下游节点返回的 请求业务恢复的指示后, 才进行通道间的桥接倒换, 因此进行业务恢复的准 确性更高。
上述内容详细介绍了发明实施例的光网络中的信息处理方法, 相应的, 本发明实施例提供光通信装置和光通信系统。
图 8是本发明实施例的光通信装置结构一示意图。
如图 8所示, 光通信装置包括:
信息获知单元 81 , 用于检测到第一通道的子自动保护倒换 sub-APS开销发 生变化;
业务确定单元 82, 用于查找本地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道的 sub-APS开销, 根据所述本地配置信息和所 述发生变化的第一通道的 sub-APS开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述待恢复业务关联的第二通道; 信息处理单元 83, 用于修改与所述待恢复业务关联的第二通道的 sub-APS 开销并发送给与所述第二通道相邻的光通信装置。
光通信装置还可以包括: 业务处理单元 84, 用于在所述业务确定单元 82确定所述待恢复业务关联 的第二通道之后 , 为所述待恢复业务建立与所述待恢复业务关联的第一通道 和第二通道间的交叉连接。
所述信息获知单元 81 , 还用于检测到所述第二通道的 sub-APS开销发生变 化; 所述业务处理单元 84, 还用于根据检测到所述第一通道和所述第二通道 的 sub-APS开销发生变化 , 为所述待恢复业务建立与所述待恢复业务关联的第 一通道和第二通道间的交叉连接。
所述业务确定单元 82根据所述本地配置信息和所述发生变化的第一通道 的 sub-APS开销 , 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢 复业务包括:
在所述本地配置信息中, 将所述发生变化的第一通道的 sub-APS开销与所 述业务关联的第一通道及所述第一通道对应的 sub-APS开销进行匹配, 确定对 应的待恢复业务。
所述检测到第一通道的 sub-APS开销发生变化包括: 根据接收的第一通道 的 sub-APS开销与已保存的第一通道的 sub-APS开销的比较结果, 确定第一通 道的 sub-APS开销发生变化;
所述检测到第二通道的 sub-APS开销发生变化包括: 根据接收的第二通道 的 sub-APS开销与已保存的第二通道的 sub-APS开销的比较结果, 确定第二通 道的 sub-APS开销发生变化。 同的 sub-APS开销对应不同业务的恢复信息。 所述通道的 APS开销为单帧的 APS开销 , 或者为由至少两个帧组成的复帧的 APS开销。
图 9是本发明实施例的光通信装置结构二示意图。
如图 9所示, 光通信装置包括:
信息获知单元 91 , 用于检测到第一通道的子自动保护倒换 sub-APS开销发 生变化; 业务确定单元 92, 用于查找本地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道的 sub-APS开销, 根据所述本地配置信息和所 述发生变化的第一通道的 sub-APS开销, 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述待恢复业务关联的第二通道; 业务处理单元 93 , 用于将本光通信装置的与所述待恢复业务关联的第二 通道桥接倒换到所述第一通道。
所述业务确定单元 924艮据所述本地配置信息和所述发生变化的第一通道 的 sub-APS开销 , 确定所述发生变化的第一通道的 sub-APS开销所关联的待恢 复业务包括:
在所述本地配置信息中, 将所述发生变化的第一通道的 sub-APS开销与所 述业务关联的第一通道及所述第一通道对应的 sub-APS开销进行匹配, 确定对 应的待恢复业务。
图 10是本发明实施例的光通信装置结构三示意图。
如图 10所示, 光通信装置包括:
业务确定单元 1001 , 用于检测到业务的工作路径发生故障, 确定待恢复 业务;
信息确定单元 1002, 用于查找本地配置信息, 所述本地配置信息包括所 述业务、 所述业务关联的通道、 所述通道的子自动保护倒换 sub-APS开销, 根 据所述本地配置信息和所述待恢复业务, 确定与所述待恢复业务关联的通道 的 sub-APS开销;
信息处理单元 1003, 用于修改与所述待恢复业务关联的通道的 sub-APS开 销并发送给与所述待恢复业务关联的通道相邻的光通信装置。
所述信息确定单元 1002根据所述本地配置信息和所述待恢复业务, 确定 与所述待恢复业务关联的通道的 sub-APS开销包括:
在所述本地配置信息中, 将确定的所述待恢复业务与所述业务、 所述业 务关联的通道、 所述通道的 sub-APS开销进行匹配, 确定与所述待恢复业务关 联的通道的 sub- APS开销。
图 11是本发明实施例的光通信系统结构一示意图。
如图 11所示, 光通信系统包括:
第一光通信装置 1101 , 用于检测到业务的工作路径发生故障, 确定待恢 复业务; 查找本地配置信息, 所述本地配置信息包括所述业务、 所述业务关 联的通道、 所述通道的子自动保护倒换 sub-APS开销, 根据所述本地配置信息 和所述待恢复业务, 确定与所述待恢复业务关联的通道的 sub-APS开销; 修改 与所述待恢复业务关联的通道的 sub-APS开销并发送;
第二光通信装置 1102 , 用于根据第一光通信装置 1101发送的 sub-APS开 销, 检测到第二光通信装置 1102的第一通道的 sub-APS开销发生变化; 查找本 地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道 的 sub-APS开销, 根据所述本地配置信息和所述第二光通信装置 1102的第一通 道的 sub-APS开销, 确定所述第二光通信装置 1102的第一通道的 sub-APS开销 所关联的待恢复业务, 并确定所述第二光通信装置 1102的与所述待恢复业务 关联的第二通道; 修改并发送与所述待恢复业务关联的第二通道的 sub-APS开 销。
第一光通信装置 1101具有上述图 10所示的结构, 第二光通信装置 1102具 有上述图 8所示的结构, 具体参见前面的描述。
图 12是本发明实施例的光通信系统结构二示意图。
如图 12所示, 光通信系统包括:
第一光通信装置 1201 , 用于检测到业务的工作路径发生故障, 确定待恢 复业务; 查找本地配置信息, 所述本地配置信息包括所述业务、 所述业务关 联的通道、 所述通道的子自动保护倒换 sub-APS开销, 根据所述本地配置信息 和所述待恢复业务, 确定与所述待恢复业务关联的通道的 sub-APS开销; 修改 与所述待恢复业务关联的通道的 sub-APS开销并发送;
第二光通信装置 1202 , 用于根据第一光通信装置 1201发送的 sub-APS开 销, 检测到第二光通信装置 1202的第一通道的 sub-APS开销发生变化; 查找本 地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道 的 sub-APS开销, 根据所述本地配置信息和所述第二光通信装置 1202的第一通 道的 sub-APS开销, 确定所述第二光通信装置 1202的第一通道的 sub-APS开销 所关联的待恢复业务, 并确定所述第二光通信装置 1202的与所述待恢复业务 关联的第二通道; 修改并发送与所述待恢复业务关联的第二通道的 sub-APS开 销。
该系统还可以包括:
第三光通信装置 1203 , 用于根据第二光通信装置 1202发送的第二通道的 sub-APS开销 , 检测到第三光通信装置 1203的第一通道的 sub-APS开销发生变 化; 查找本地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道的 sub-APS开销 , 根据所述本地配置信息和所述第三光通信装置 1203 的第一通道的 sub-APS开销, 确定所述第三光通信装置 1203的第一通道的 sub-APS开销所关联的待恢复业务, 并确定所述第三光通信装置 1203的与所述 待恢复业务关联的第二通道; 将所述第三光通信装置 1203的与所述待恢复业 务关联的第二通道桥接倒换到所述第三光通信装置 1203的第一通道。
第一光通信装置 1201具有上述图 10所示的结构, 第二光通信装置 1202具 有上述图 8所示的结构, 第三光通信装置 1203具有上述图 9所示的结构, 具体 参见前面的描述。
图 13是本发明实施例的光通信系统结构三示意图。
如图 13所示, 光通信系统包括:
第一光通信装置 1301 , 用于检测到业务的工作路径发生故障, 确定待恢 复业务; 查找本地配置信息, 所述本地配置信息包括所述业务、 所述业务关 联的通道、 所述通道的子自动保护倒换 sub-APS开销, 根据所述本地配置信息 和所述待恢复业务, 确定与所述待恢复业务关联的通道的 sub-APS开销; 修改 所述与待恢复业务关联的通道的 sub-APS开销并发送; 第二光通信装置 1302 , 用于根据第一光通信装置 1301发送的 sub-APS开 销, 检测到第二光通信装置 1302的第一通道的 sub-APS开销发生变化; 查找本 地配置信息, 所述本地配置信息包括业务、 所述业务关联的通道、 所述通道 的 sub-APS开销, 根据所述本地配置信息和所述第二光通信装置 1302的第一通 道的 sub-APS开销, 确定所述第二光通信装置 1302的第一通道的 sub-APS开销 所关联的待恢复业务, 并确定所述第二光通信装置 1302的与所述待恢复业务 关联的第二通道; 将所述第二光通信装置 1302的与所述待恢复业务关联的第 二通道桥接倒换到所述第二光通信装置 1302的第一通道。
第一光通信装置 1301具有上述图 10所示的结构, 第二光通信装置 1302具 有上述图 9所示的结构, 具体参见前面的描述。
图 14是本发明实施例六的光网络中的信息处理方法流程图 , 包括步驟: 步驟 1401、 节点从第一维度的开销接收第一消息;
步骤 1402、 节点查找本地配置信息, 所述本地配置信息包括保护路径的 第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护路径的第 二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信 息和所述第一消息, 确定所述第一消息关联的保护路径, 并确定所述第一消 息关联的第二维度的开销;
步驟 1403、 节点根据第一消息并通过所述第一消息关联的第二维度的开 销, 发送第二消息到与第二维度相邻的节点。
本发明实施例中维度是相对的, 不同的维度表示不同的方向。
其中, 第一消息和第二消息为保护倒换消息, 或者, 第一消息和第二消 息为保护路径状态消息。
所述开销为光网络帧的开销中的字节, 不同的开销用于传送不同保护路 径的消息。 对应不同保护路径的消息。 所述确定所述第一消息关联的第二维度的开销之后还包括: 为所述第一消息关联的保护路径建立第一维度的保护资源和第二维度的 保护资源间的交叉连接。
所述为所述第一消息关联的保护路径建立第一维度的保护资源和第二维 度的保护资源间的交叉连接之前还包括: 从第一消息关联的第二维度的开销 接收保护倒换消息。
图 15是本发明实施例七的光网络中的信息处理方法流程图 , 主要包括步 驟:
步驟 1501、 节点从第一维度的开销接收第三消息;
步驟 1502、 节点查找本地配置信息, 所述本地配置信息包括保护路径的 第一维度的开销、 所述保护路径的第一维度的保护资源, 根据所述本地配置 信息和所述第三消息, 确定所述第三消息关联的保护路径;
步骤 1503、 若所述第三消息为保护倒换消息, 则为所述第三消息关联的 保护路径建立交叉连接; 若所述第三消息为保护路径状态消息, 则记录所述 第三消息关联的保护路径的状态。
图 16是本发明实施例八的光网络中的信息处理方法流程图 , 主要包括步 骤:
步驟 1601、 节点检测到工作路径故障, 确定保护路径;
步驟 1602、 节点查找本地配置信息, 所述本地配置信息包括所述保护路 径的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地 配置信息, 确定所述保护路径的第二维度的开销;
步驟 1603、 节点通过所述保护路径的第二维度的开销, 发送第四消息到 与第二维度相邻的节点, 所述第四消息为保护倒换消息。
图 17是本发明实施例九的网络架构示意图。
图 17中, 包括节点 N1到 N6以及 N8。 配置了三条保护路径, 保护路径 1经 过 N1-N6-N8-N2,保护路径 2经过 N1-N6-N8-N2,保护路径 3经过 N5-N6-N8-N3。 针对保护路径 1, 在经过的每个节点上配置有保护信息, 在端节点 N1和 N2上 配置有一个维度的保护信息, 在中间节点 N6和 N8上配置有两个维度的保护信 息, 例如需要在 N1上配置到 N6维度的保护信息, 分配开销和保护资源, 配置 时隙 1为保护路径 1在该维度上的保护资源。
各个节点上的本地配置信息参见表 8到表 13所示, 表中的维度是相对的。
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 1(0DU0) 0DU0通道 11 0 保护时隙 1 1
业务 2(0DU0) 0DU0通道 12 0 保护时隙 2 2
表 8 节点 N1配置信息
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 l(ODUO) 10 0DU0通道 21 0 保护时隙 5 1
业务 2(0DU0) 20 0DU0通道 22 0 保护时隙 6 2
表 9 节点 N2配置信息
优先级 维度 1 维度 2
保护资源 开销编号 保护资源 开销编号 业务 3(0DU1) 30 0DU1通道 33 0 保护时隙 9/10 1
表 10 节点 N3配置信息
优先级 维度 1 维度 2
保护资源 开销编号 保护资源 开销编号 业务 3(0DU1) 30 0DU1通道 53 0 保护时隙 7/8 1
表 11 节点 N5配置信息
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 l(ODUO) 10 保护时隙 1 1 保护时隙 3 1
业务 2(0DU0) 20 保护时隙 2 2 保护时隙 4 2
业务 3(0DU1) 30 保护时隙 7/8 1 保护时隙 3/4 3 表 12 节点 N6配置信息
优先级 维度 1
保护资源 开销编号 保护资源 开销编号 业务 l ( ODUO ) 保护时隙 5 保护时隙 3 1
业务 2( 0DU0 ) 保护吋隙 6 保护吋隙 4 2
业务 3( 0DU1 ) 保护时隙 9/10 保护时隙 3/4 3
表 13 节点 N8配置信息
图 18是本发明实施例九的光网络中的信息处理方法流程图 , 包括步驟: 步驟 1801、 节点 N1检测到工作路径故障, 发送保护倒换消息。
当业务 1的工作路径发生故障时, N1检测到业务 1发生故障, 确定需要恢 复保护路径 1 , 确定保护路径 1状态正常, N1查找本地配置信息(表 8 ), 确定 保护路径 1的维度 2开销编号为 1 , 保护路径 1的维度 2保护资源为保护时隙 1 , 将保护时隙 1配置为一个 ODU0通道, 并将业务 1桥接倒换到该 ODU0通道, 利
Figure imgf000030_0001
消息到维度 2相邻 的节点, 即节点 N6。
步骤 1802、 节点 N6收到来自 N1的保护倒换消息, 转发保护倒换消息。
Figure imgf000030_0002
息, 查 看节点 N6的配置信息(表 12 ),得知保护时隙 1对应的 OTU链路中编号为 1的开 销 (维度 1 )是分配给保护路径 1使用的, 因此将保护时隙 1配置为一个 ODU0 通道,并将保护时隙 3配置为一个 ODU0通道,建立这两个 ODU0通道的交叉连 接, 并利用保护路径 1维度 2的开销发送保护倒换消息, 该开销的编号为 1; 步驟 1803、 节点 N8收到来自 N6的保护倒换消息, 转发保护倒换消息。
Figure imgf000030_0003
息, 查 看节点 N8的配置信息(表 13 ),得知保护时隙 3对应的 OTU链路中编号为 1的开 销 (维度 2 )是分配给保护路径 1使用的, 因此将保护时隙 3配置为一个 ODU0 通道,并将保护时隙 5配置为一个 ODU0通道,建立这两个 ODU0通道的交叉连 接, 并利用保护路径 1维度 1的开销发送保护倒换消息, 该开销的编号为 1; 步驟 1804、 节点 N2收到来自 N8的保护倒换消息, 进行保护倒换。 看节点 N2的配置信息(表 9 ), 得知保护时隙 5对应的 OTU链路中编号为 1的开 销(维度 2 )是分配给保护路径 1使用的, N2是保护路径 1的端节点, 因此将保 护时隙 5配置为一个 ODU0通道, 并将业务 1桥接倒换到该 ODU0通道。 至此业 务 1已经倒换到保护路径 1 , 恢复正常。
在步驟 1804之后, N2可以利用保护路径 1对应的开销, 反向传送保护倒换 消息, N8、 N6依次转发该消息, 直至 N1收到保护路径 1对应的保护倒换消息, 此时 N1得知业务 1倒换完成。
步驟 1801中, 将保护时隙 1配置为一个 ODU0通道, 并将业务 1桥接倒换到 该 ODU0通道的步驟可以在收到节点 N6反向传送的保护倒换消息后完成;步驟 1802和步驟 1803也可以进行同样的操作, 即节点在同一个维度发送且接收了 保护倒换消息后才建立交叉连接, 进行恢复的准确性更高。
在业务两端 (Nl、 N2 ) 同时检测到业务 1工作路径失效的情况下, Nl、 N2可以同时发起保护倒换。
人工倒换由管理员向业务端点下命令实现, 保护倒换过程类似。
本实施例中, 保护路径的端节点在进行保护倒换之前需要知道保护路径 的状态, 如图 17所示, 某时刻 N5和 N8之间的 OUT链路发生故障, 导致信号失 效, 即保护时隙 9/10失效, 保护路径 3的两个端点需要能够知道该故障, 并将 保护路径的状态记录为信号失效, 此时将阻止业务 3自动触发保护倒换动作, 即业务 3工作路径故障时禁止将业务倒换到保护路径 3。
N5与 N8之间的 OTU链路发生故障时 , 链路两端的节点可以检测到该故 障, 即 N3、 N8可以检测到该故障, N3查找保护配置表, 发现为业务 3的保护 路径配置了失效 OTU链路中的时隙, 并且 N3是保护路径 3的端点, 因此将保护 路径 3的保护路径状态更新为 "信号失效"。 保护路径 3的另一个端点发现保护 路径 3信号失效方法为: N8检测到 N5与 N8之间的 OTU链路发生故障, N8查找本地保护配置信息 (表 8 ), 发现为业务 3的保护路径配置了失效 OTU链路中的时隙 (维度 1 ), 并 且 N8不是保护路径 3的端点, 确定保护路径 3的维度 2开销编号为 3, 利用时隙 3/4所属 OTU链路中编号为 3的开销发送保护路径状态信息到维度 2相邻的节 点, 即节点 N6, 表示该路径失效。
N6从时隙 3/4所属 OTU链路中编号为 3的开销收到保护路径状态消息, 查 看节点 N6的配置信息(表 12 ),得知时隙 3/4所属 OTU链路中编号为 3的开销(维 度 2 )是给保护路径 3使用的, 并且 N6不是保护路径 3的端点, 确定保护路径 3 的维度 1开销编号为 1 ,利用时隙 7/8所属 OTU链路中编号为 1的开销发送保护路 径状态信息到维度 1相邻的节点, 即节点 N5, 表示该路径失效。
N5从时隙 7/8所属 OTU链路中编号为 1的开销收到保护路径状态消息 , 查 看节点 N5的配置信息(表 11 ), 得知时隙 7/8所属 OTU链路中编号为 1的开销是 给保护路径 3使用的; 由于 N5是业务 3的端点, 因此将保护路径 3的保护路径状 态更新为 "信号失效"。
图 19是本发明实施例十的网络架构示意图。
图 19中, 包括节点 N1到 N6以及 N8。 其中, 细线表示各业务的工作路径, 粗管道表示一个 STM-1链路, 管道中的粗线条表示 STM-1链路中的一个 VC4 保护时隙。 配置了两条保护路径, 保护路径 1经过 N1-N6-N8-N2, 保护路径 2 经过 N5-N6-N8-N3, 针对保护路径 1 , 在经过的每个节点上配置有保护信息, 在端节点 N1和 N2上配置有一个维度的保护信息,在中间节点 N6和 N8上配置有 两个维度的保护信息, 例如需要在 N1上配置到 N6维度的保护信息, 分配开销 和保护资源, 配置时隙 1为保护路径 1在该维度上的保护资源。
各个节点上的本地配置信息参见表 14到表 19所示, 表中的维度是相对的。
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 1 (VC4) 10 VC4通道 11 0 时隙 1 1 表 14 节点 N1配置信息
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 1 (VC4) 10 VC4通道 21 0 时隙 5 1
表 15 节点 N2配置信息
优先级 维度 1 维度 2
保护资源 开销编号 保护资源 开销编号 业务 2 (VC4) 20 VC4通道 32 0 时隙 9 1
表 16 节点 N3配置信息
优先级 维度 1 维度 2
保护资源 开销编号 保护资源 开销编号 业务 2 (VC4) 20 VC4通道 52 0 时隙 7 1
表 17节点 N5配置信息
优先级 维度 1 维度 2 保护资源 开销编号 保护资源 开销编号 业务 1 (VC4) 10 时隙 1 1 时隙 3 1
业务 2 (VC4) 20 时隙 7 1 时隙 3 2
表 18 节点 N6配置信息
优先级 维度 1 维度 2
保护资源 开销编号 保护资源 开销编号 业务 1 (VC4) 10 时隙 5 1 时隙 3 1
业务 2 (VC4) 20 时隙 9 1 时隙 3 2
表 19 节点 N8配置信息
图 20是本发明实施例十的光网络中的信息处理方法流程图, 包括步驟: 步骤 2001、 节点 N1检测到工作路径故障, 发送保护倒换消息。
当业务 1的工作路径发生故障时, N1检测到业务 1发生故障, 确定需要恢 复保护路径 1 , N1查找本地配置信息 (表 14 ), 确定保护路径 1的维度 2开销编 号为 1 ,保护路径 1的维度 2保护资源为时隙 1 ,将业务 1桥接倒换到该 VC4时隙, 并利用时隙 1对应 STM-1链路中编号为 1的开销发送保护倒换消息到维度 2相邻 的节点, 即节点 N6。
步驟 2002、 节点 N6收到来自 N1的保护倒换消息, 转发保护倒换消息。 N6从时隙 1对应的 STM-1链路中编号为 1的开销收到保护倒换消息, 查看 节点 N6的配置信息(表 18 ),得知时隙 1对应的 STM-1链路中编号为 1的开销(维 度 1 )是分配给保护路径 1使用的, 因此建立维度 1的时隙 1和维度 2的时隙 3的 交叉连接, 并利用保护路径 1维度 2的开销发送保护倒换消息, 该开销的编号 为 1;
步驟 2003、 节点 N8收到来自 N6的保护倒换消息, 转发保护倒换消息。 N8从时隙 3对应的 STM-1链路中编号为 1的开销收到保护倒换消息, 查看 节点 N8的配置信息(表 19 ), 得知时隙 3对应的 OTU链路中编号为 1的开销(维 度 2 )是分配给保护路径 1使用的, 因此建立维度 1的时隙 5和维度 2的时隙 3的 交叉连接, 并利用保护路径 1维度 1的开销发送保护倒换消息, 该开销的编号 为 1;
步骤 2004、 节点 N2收到来自 N8的保护倒换消息, 进行保护倒换。
N2从时隙 5对应的 STM-1链路中编号为 1的开销收到保护倒换消息, 查看 节点 N2的配置信息(表 15 ),得知时隙 5对应的 STM-1链路中编号为 1的开销(维 度 2 )是分配给保护路径 1使用的, N2是保护路径 1的端节点, 因此将业务 1桥 接倒换到该 VC4通道。 至此业务 1已经倒换到保护路径 1 , 恢复正常。
在步驟 2004之后, N2可以利用保护路径 1对应的开销, 反向传送保护倒换 消息, N8、 N6依次转发该消息, 直至 N1收到保护路径 1对应的保护倒换消息, 此时 N1得知业务 1倒换完成。
步驟 2001中,将业务 1桥接倒换到该 VC4时隙的步驟可以在收到节点 N6反 向传送的保护倒换消息后完成; 步骤 2002和步骤 2003也可以进行同样的操作, 即节点在同一个维度发送且接收了保护倒换消息后才建立交叉连接。
在业务两端 (Nl、 N2 ) 同时检测到业务 1工作路径失效的情况下, Nl、 N2可以同时发起保护倒换。
人工倒换由管理员向业务端点下命令实现, 保护倒换过程类似。
图 21是本发明实施例的光通信装置结构示意图, 光通信装置包括: 消息接收单元 2101 , 用于从第一维度的开销接收第一消息;
路径确定单元 2102, 用于查找本地配置信息, 所述本地配置信息包括保 护路径的第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护 路径的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本 地配置信息和所述第一消息, 确定所述第一消息关联的保护路径, 并确定所 述第一消息关联的第二维度的开销;
消息处理单元 2103 , 用于根据第一消息并通过所述第一消息关联的第二 维度的开销 , 发送第二消息到与第二维度相邻的节点。
图 22是本发明实施例的光通信装置结构示意图 , 光通信装置包括: 消息接收单元 2201 , 用于从第一维度的开销接收第三消息;
路径确定单元 2202, 用于查找本地配置信息, 所述本地配置信息包括保 护路径的第一维度的开销、 所述保护路径的第一维度的保护资源, 根据所述 本地配置信息和所述第三消息, 确定所述第三消息关联的保护路径;
消息处理单元 2203 , 用于若所述第三消息为保护倒换消息, 则为所述第 三消息关联的保护路径建立交叉连接, 若所述第三消息为保护路径状态消息 , 则记录所述第三消息关联的保护路径的状态。
图 23是本发明实施例的光通信装置结构示意图 , 光通信装置包括: 路径确定单元 2301 , 用于检测到工作路径故障, 确定保护路径; 开销确定单元 2302, 用于查找本地配置信息, 所述本地配置信息包括所 述保护路径的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据 所述本地配置信息, 确定所述保护路径的第二维度的开销;
消息发送单元 2303 , 用于通过所述保护路径的第二维度的开销, 发送第 四消息到与第二维度相邻的节点, 所述第四消息为保护倒换消息。 图 24是本发明实施例的光通信系统结构示意图, 光通信系统包括: 第一光通信装置 2401 , 用于检测到工作路径故障, 确定保护路径, 查找 本地配置信息, 所述本地配置信息包括所述保护路径的第二维度的开销、 所 述保护路径的第二维度的保护资源, 根据所述本地配置信息, 确定所述保护 路径在第一光通信装置的第二维度的开销, 通过所述保护路径在第一光通信 装置的第二维度的开销, 发送第四到与第一光通信装置的第二维度相邻的节 点, 所述第四消息为保护倒换消息;
第二光通信装置 2402 , 用于从第二光通信装置的第一维度的开销接收第 三消息; 查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的 开销、 所述保护路径的第一维度的保护资源, 根据所述本地配置信息和所述 第三消息, 确定所述第三消息关联的保护路径, 所述第三消息为保护倒换消 息 , 为所述第三消息关联的保护路径建立交叉连接。
其中, 光通信系统还包括:
第一光通信装置的第二维度相邻的节点为第二光通信装置;
第二光通信装置从第二光通信装置的第一维度的开销接收的第三消息 为, 第一光通信装置发送的第四消息。
其中, 光通信系统还包括:
第三光通信装置, 用于从第三光通信装置的第一维度的开销接收第一消 息, 查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护路径的第二维度的开销、 所 述保护路径的第二维度的保护资源, 根据所述本地配置信息和所述第一消息, 确定所述第一消息关联的保护路径 , 并确定所述第一消息关联的第三光通信 装置的第二维度的开销; 根据第一消息并通过所述第一消息关联的第三光通 信装置的第二维度的开销, 发送第二消息到与第二维度相邻的节点;
其中, 第一光通信装置的第二维度相邻的节点为所述第三光通信装置, 第三光通信装置的第二维度相邻的节点为所述第二光通信装置; 第三光通信装置从第三光通信装置的第一维度的开销接收的第一消息 为, 第一光通信装置发送的第四消息, 第二光通信装置从第二光通信装置的 第一维度的开销接收的第三消息为, 第三光通信装置发送的第二消息。
需要说明的是, 上述装置和系统内的各单元之间的信息交互、 执行过程 等内容, 由于与本发明方法实施例基于同一构思, 具体内容可参见本发明方 法实施例中的叙述, 此处不再赘述。
综上所述, 本发明实施例技术方案, 节点从第一维度的开销接收第一消 息, 节点查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的 开销、 所述保护路径的第一维度的保护资源、 所述保护路径的第二维度的开 销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信息和所述第 一消息, 确定所述第一消息关联的保护路径, 并确定所述第一消息关联的第 二维度的开销; 节点根据第一消息并通过所述第一消息关联的第二维度的开 销, 发送第二消息到与第二维度相邻的节点。 因为利用数据平面发送 sub-APS 开销指示恢复信息, 信令协议一般较为简单, 并且本地设有本地配置信息, 可以用于相关信息的查找, 因此获得恢复信息可以较为简单, 降低了信息处 理复杂度。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 驟是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可 读存储介质中,存储介质可以包括: 只读存储器( ROM, Read Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁盘或光盘等。
以上对本发明实施例所提供的一种光网络中的信息处理方法、 装置及系 了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及 应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权利 要求 书
1、 一种光网络中的信息处理方法, 其特征在于, 包括:
节点从第一维度的开销接收第一消息;
节点查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的开 销、 所述保护路径的第一维度的保护资源、 所述保护路径的第二维度的开销、 所述保护路径的第二维度的保护资源 , 根据所述本地配置信息和所述第一消息 , 确定所述第一消息关联的保护路径, 并确定所述第一消息关联的第二维度的开 销;
节点根据第一消息并通过所述第一消息关联的第二维度的开销, 发送第二 消息到与第二维度相邻的节点。
2、 根据权利要求 1所述的光网络中的信息处理方法, 其特征在于: 所述第 一消息和所述第二消息为保护倒换消息。
3、 根据权利要求 1所述的光网络中的信息处理方法, 其特征在于: 所述第 一消息和所述第二消息为保护路径状态消息。
4、 根据权利要求 1所述的光网络中的信息处理方法, 其特征在于: 所述开销为光网络帧的开销中的字节, 不同的开销用于传送不同保护路径 的消息。
5、 根据权利要求 1所述的光网络中的信息处理方法, 其特征在于: 应不同保护路径的消息。
6、 根据权利要求 2所述的光网络中的信息处理方法, 其特征在于: 所述确定所述第一消息关联的第二维度的开销之后还包括:
为所述第一消息关联的保护路径建立第一维度的保护资源和第二维度的保 护资源间的交叉连接。
7、 根据权利要求 6所述的光网络中的信息处理方法, 其特征在于: 所述为所述第一消息关联的保护路径建立第一维度的保护资源和第二维度 的保护资源间的交叉连接之前还包括: 从第一消息关联的第二维度的开销接收 保护倒换消息。
8、 一种光网络中的信息处理方法, 其特征在于, 包括: 节点从第一维度的开销接收第三消息;
节点查找本地配置信息 , 所述本地配置信息包括保护路径的第一维度的开 销、 所述保护路径的第一维度的保护资源, 根据所述本地配置信息和所述第三 消息, 确定所述第三消息关联的保护路径;
若所述第三消息为保护倒换消息, 则为所述第三消息关联的保护路径建立 交叉连接;
若所述第三消息为保护路径状态消息, 则记录所述第三消息关联的保护路 径的状态。
9、 一种光网络中的信息处理方法, 其特征在于, 包括:
节点检测到工作路径故障, 确定保护路径;
节点查找本地配置信息 , 所述本地配置信息包括所述保护路径的第二维度 的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信息, 确定 所述保护路径的第二维度的开销;
节点通过所述保护路径的第二维度的开销, 发送第四消息到与第二维度相 邻的节点, 所述第四消息为保护倒换消息。
10、 根据权利要求 9所述的光网络中的信息处理方法, 其特征在于: 所述确定所述保护路径的第二维度的开销之后还包括:
为所述保护路径建立交叉连接; 或者
从第二维度的开销接收保护倒换消息后, 为所述保护路径建立交叉连接。
11、 一种光通信装置, 其特征在于, 包括:
消息接收单元, 用于从第一维度的开销接收第一消息;
路径确定单元, 用于查找本地配置信息, 所述本地配置信息包括保护路径 的第一维度的开销、 所述保护路径的第一维度的保护资源、 所述保护路径的第 二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地配置信息 和所述第一消息, 确定所述第一消息关联的保护路径, 并确定所述第一消息关 联的第二维度的开销;
消息处理单元, 用于根据第一消息并通过所述第一消息关联的第二维度的 开销, 发送第二消息到与第二维度相邻的节点。
12、 一种光通信装置, 其特征在于, 包括: 消息接收单元, 用于从第一维度的开销接收第三消息;
路径确定单元, 用于查找本地配置信息, 所述本地配置信息包括保护路径 的第一维度的开销、 所述保护路径的第一维度的保护资源, 根据所述本地配置 信息和所述第三消息, 确定所述第三消息关联的保护路径;
消息处理单元, 用于若所述第三消息为保护倒换消息, 则为所述第三消息 关联的保护路径建立交叉连接, 若所述第三消息为保护路径状态消息, 则记录 所述第三消息关联的保护路径的状态。
13、 一种光通信装置, 其特征在于, 包括:
路径确定单元, 用于检测到工作路径故障, 确定保护路径;
开销确定单元, 用于查找本地配置信息, 所述本地配置信息包括所述保护 路径的第二维度的开销、 所述保护路径的第二维度的保护资源, 根据所述本地 配置信息, 确定所述保护路径的第二维度的开销;
消息发送单元, 用于通过所述保护路径的第二维度的开销, 发送第四消息 到与第二维度相邻的节点, 所述第四消息为保护倒换消息。
14、 一种光通信系统, 其特征在于, 包括:
第一光通信装置, 用于检测到工作路径故障, 确定保护路径, 查找本地配 置信息, 所述本地配置信息包括所述保护路径的第二维度的开销、 所述保护路 径的第二维度的保护资源, 根据所述本地配置信息, 确定所述保护路径在第一 光通信装置的第二维度的开销, 通过所述保护路径在第一光通信装置的第二维 度的开销, 发送第四到与第一光通信装置的第二维度相邻的节点, 所述第四消 息为保护倒换消息;
第二光通信装置, 用于从第二光通信装置的第一维度的开销接收第三消息; 查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的开销、 所述 保护路径的第一维度的保护资源, 根据所述本地配置信息和所述第三消息, 确 定所述第三消息关联的保护路径, 所述第三消息为保护倒换消息, 为所述第三 消息关联的保护路径建立交叉连接。
15、 根据权利要求 14所述的光通信系统, 其特征在于, 还包括:
第一光通信装置的第二维度相邻的节点为第二光通信装置;
第二光通信装置从第二光通信装置的第一维度的开销接收的第三消息为, 第一光通信装置发送的第四消息。
16、 根据权利要求 14所述的光通信系统, 其特征在于, 还包括:
第三光通信装置, 用于从第三光通信装置的第一维度的开销接收第一消息, 查找本地配置信息, 所述本地配置信息包括保护路径的第一维度的开销、 所述 保护路径的第一维度的保护资源、 所述保护路径的第二维度的开销、 所述保护 路径的第二维度的保护资源, 根据所述本地配置信息和所述第一消息, 确定所 述第一消息关联的保护路径, 并确定所述第一消息关联的第三光通信装置的第 二维度的开销; 根据第一消息并通过所述第一消息关联的第三光通信装置的第 二维度的开销, 发送第二消息到与第二维度相邻的节点;
其中, 第一光通信装置的第二维度相邻的节点为所述第三光通信装置, 第 三光通信装置的第二维度相邻的节点为所述第二光通信装置;
第三光通信装置从第三光通信装置的第一维度的开销接收的第一消息为, 第一光通信装置发送的第四消息, 第二光通信装置从第二光通信装置的第一维 度的开销接收的第三消息为, 第三光通信装置发送的第二消息。
PCT/CN2010/076634 2009-09-04 2010-09-06 光网络中的信息处理方法、光通信装置及系统 WO2011026442A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10813364.6A EP2466785B1 (en) 2009-09-04 2010-09-06 Method, optical communication device and system for processing information in optical network
ES10813364.6T ES2617437T3 (es) 2009-09-04 2010-09-06 Método, dispositivo de comunicación óptica y sistema para el procesamiento de la información en una red óptica
US13/410,818 US8787750B2 (en) 2009-09-04 2012-03-02 Information processing method in optical network, optical communication apparatus and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910168988 2009-09-04
CN200910168988.1 2009-09-04
CN201010200961.9 2010-06-07
CN201010200961.9A CN102013922B (zh) 2009-09-04 2010-06-07 光网络中的信息处理方法、光通信装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/410,818 Continuation US8787750B2 (en) 2009-09-04 2012-03-02 Information processing method in optical network, optical communication apparatus and system

Publications (1)

Publication Number Publication Date
WO2011026442A1 true WO2011026442A1 (zh) 2011-03-10

Family

ID=43648905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076634 WO2011026442A1 (zh) 2009-09-04 2010-09-06 光网络中的信息处理方法、光通信装置及系统

Country Status (5)

Country Link
US (1) US8787750B2 (zh)
EP (1) EP2466785B1 (zh)
CN (1) CN102013922B (zh)
ES (1) ES2617437T3 (zh)
WO (1) WO2011026442A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013922B (zh) * 2009-09-04 2014-03-12 华为技术有限公司 光网络中的信息处理方法、光通信装置及系统
US9065759B2 (en) * 2011-09-12 2015-06-23 Tellabs Operations, Inc. Architecture and protection method for mesh protection of N services with M shared resources
US8718039B2 (en) * 2011-12-22 2014-05-06 Tt Government Solutions, Inc. Signaling protocol for multi-domain optical networks
CN103812686A (zh) * 2012-11-15 2014-05-21 中兴通讯股份有限公司 一种网状保护的方法和装置
CN103997371B (zh) * 2013-02-18 2018-02-13 中兴通讯股份有限公司 光信号的检测方法、装置和系统
US10122616B2 (en) 2013-07-19 2018-11-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for local path protection
US20150188625A1 (en) * 2013-12-27 2015-07-02 Electronics And Telecommunications Research Institute Method for realizing time reduction in shared mesh network
US9935900B2 (en) * 2014-10-16 2018-04-03 Electronics And Telecommunications Research Institute Method for providing protection switching service in virtual tenant network and controller therefor
CN105721045B (zh) 2016-01-19 2018-08-21 华为技术有限公司 一种保护倒换的方法和节点
CN109155740B (zh) 2016-09-21 2021-07-20 华为技术有限公司 保护倒换方法和节点
US10536216B1 (en) * 2018-07-24 2020-01-14 Ciena Corporation Service synchronization in retain home path scenarios in a control plane network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588890A (zh) * 2004-10-08 2005-03-02 烽火通信科技股份有限公司 Ason网络中控制平面参与保护倒换的方法
CN1984045A (zh) * 2006-06-12 2007-06-20 华为技术有限公司 一种实现弹性分组环上业务保护的方法
CN101447848A (zh) * 2007-11-28 2009-06-03 华为技术有限公司 一种实现环网保护的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1161014A1 (en) * 2000-05-31 2001-12-05 PIRELLI CAVI E SISTEMI S.p.A. Autoprotected optical communication ring network
JP3744362B2 (ja) * 2001-02-21 2006-02-08 日本電気株式会社 ネットワークにおけるリング形成方法及び障害回復方法並びにリング形成時のノードアドレス付与方法
US7277631B1 (en) * 2001-07-20 2007-10-02 Meriton Networks Us Inc. Method and apparatus for processing protection switching mechanism in optical channel shared protection rings
US7145882B2 (en) * 2002-04-04 2006-12-05 Bay Microsystems, Inc. Multiplexed automatic protection switching channels
EP1411665A1 (en) * 2002-10-18 2004-04-21 Alcatel Method and apparatus for shared protection in an optical transport network ring based on the ODU management
US20050088963A1 (en) * 2003-10-24 2005-04-28 Nortel Networks Limited Method and apparatus for protection switch messaging on a shared mesh network
CN100403660C (zh) * 2004-09-04 2008-07-16 华为技术有限公司 双纤光复用段共享保护环的保护方法及其节点装置
US7751705B2 (en) * 2005-02-24 2010-07-06 Tellabs Operations, Inc. Optical channel intelligently shared protection ring
CN1870480B (zh) * 2005-05-29 2011-02-16 华为技术有限公司 一种光传送网的环网保护方法
CN102013922B (zh) * 2009-09-04 2014-03-12 华为技术有限公司 光网络中的信息处理方法、光通信装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588890A (zh) * 2004-10-08 2005-03-02 烽火通信科技股份有限公司 Ason网络中控制平面参与保护倒换的方法
CN1984045A (zh) * 2006-06-12 2007-06-20 华为技术有限公司 一种实现弹性分组环上业务保护的方法
CN101447848A (zh) * 2007-11-28 2009-06-03 华为技术有限公司 一种实现环网保护的方法和装置

Also Published As

Publication number Publication date
US8787750B2 (en) 2014-07-22
EP2466785B1 (en) 2016-12-21
ES2617437T3 (es) 2017-06-19
EP2466785A1 (en) 2012-06-20
EP2466785A4 (en) 2013-01-02
US20120163803A1 (en) 2012-06-28
CN102013922A (zh) 2011-04-13
CN102013922B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2011026442A1 (zh) 光网络中的信息处理方法、光通信装置及系统
US7965938B2 (en) Method for mesh optical network service restoration
JP3900194B2 (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
CN1744479B (zh) 传输网络中设置备份路径的方法以及用于传输网络的网元
JP5319787B2 (ja) 光転送リングネットワークの切替え方法及びノード装置
US7835271B2 (en) Signaling protocol for p-cycle restoration
JP5163479B2 (ja) パス切替え方法
JP2003101559A (ja) リング切替方法及びその装置
WO2007071189A1 (fr) Procede et dispositif de restauration d'un reseau maille partage
JP2002247038A (ja) ネットワークにおけるリング形成方法及び障害回復方法並びにリング形成時のノードアドレス付与方法
JP6269088B2 (ja) 冗長パス提供方法および伝送装置
RU2730086C1 (ru) Способ переключения с совмещением группы резервирования, устройством управления и устройством оптической связи
KR20180102629A (ko) 보호 절체 방법 및 노드
US7411900B2 (en) Fast restoration for virtually-concatenated data traffic
JP2007053793A (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
US9716650B2 (en) Communication system and transfer apparatus
WO2011110112A1 (zh) 业务恢复方法、系统和节点设备
US20160366048A1 (en) Communication system, node and signal path control method in communication system
JP5482102B2 (ja) 信号伝送方法、伝送装置
JP2007129782A (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
WO2010048813A1 (zh) 线路环保护方法、系统和设备
JP2008103893A (ja) 通信システムおよび故障復旧方法
JP2008078940A (ja) 伝送装置
JP2007014031A (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法
JP2007014032A (ja) 通信ネットワークにおけるパスの故障救済を行うための装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010813364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010813364

Country of ref document: EP