WO2011026421A1 - 模块化冷水机组及其智能控制方法 - Google Patents

模块化冷水机组及其智能控制方法 Download PDF

Info

Publication number
WO2011026421A1
WO2011026421A1 PCT/CN2010/076495 CN2010076495W WO2011026421A1 WO 2011026421 A1 WO2011026421 A1 WO 2011026421A1 CN 2010076495 W CN2010076495 W CN 2010076495W WO 2011026421 A1 WO2011026421 A1 WO 2011026421A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
queue
module
temperature
closed
Prior art date
Application number
PCT/CN2010/076495
Other languages
English (en)
French (fr)
Inventor
唐道轲
罗科
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2011026421A1 publication Critical patent/WO2011026421A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler

Definitions

  • the invention belongs to the field of air conditioner chiller control, and particularly relates to a modular chiller and an intelligent control method thereof. Background technique
  • the traditional start-stop mode is likely to cause frequent and long-term operation of the unit with the dialing address, and the starting time of the unit with the dialing address is less.
  • the multi-system unit also has an unbalanced running time of each system, resulting in a short service life of some compressors.
  • the prior art modular control air conditioning unit, start-stop mode, water temperature control unit starts and stops, when the unit starts and stops and the end side load changes, the water temperature is a changing value, and the unit only changes according to the water temperature.
  • the value is used for judgment. This is a method for judging the change of the water system accurately. It may cause some modules to start and stop frequently, and the water temperature of the water system changes drastically.
  • the object of the present invention is to provide a modular chiller and an intelligent control method thereof.
  • the running time of each compressor is relatively balanced, and the service life of each compressor is prolonged.
  • Another object of the present invention is to provide a modular chiller and an intelligent control method thereof that keep the water temperature substantially stable without large fluctuations.
  • the modular chiller includes a control device and more than one outdoor unit module.
  • Each of the outdoor unit modules includes: one or more compressors; wherein the control device encodes each compressor, and each of the units The compressors are respectively provided with identification codes different from each other; the control device includes a reading module, a sorting module and an instruction output module; the reading module reads the identification code of each compressor, and the sorting module outputs The compressor off queue and the number of the opened queue, the command output module instructs each of the compressors to sequentially start or stop running according to the compressor open queue and the closed queue number.
  • the control device includes a temperature change rate calculation module and a determination module, and the control device records a current air conditioner inlet water temperature value according to a temperature of the temperature sensor, and the temperature change rate calculation module calculates The temperature drop rate or the temperature rise rate value; the judging module instructs each of the compressors to start or stop according to the current air conditioner inlet water temperature value and the temperature drop rate or the temperature rise rate value.
  • the intelligent control method of the above-mentioned modular chiller wherein the control device performs the numbering of the queue and the open queue for the compressor in the start and stop sequence during operation, according to the compressor "first stop first, first stop first"
  • the start-stop method controls each of the compressors to start or stop in sequence.
  • the control device encodes each compressor, and each compressor is provided with different identification codes;
  • the control device comprises a reading module, a sorting module and an instruction output a module;
  • the reading module reads the identification code of each of the compressors, and the sorting module codes out the number of the compressor closed queue and the opened queue, and the command output module is configured according to the compressor open queue and the closed queue.
  • the numbering commands each of the compressors to start or stop in sequence; and the control device includes a temperature change rate calculation module and a determination module.
  • the running device controls the number of the queue and the open queue of the compressor in the start and stop sequence during operation, and controls the compressors according to the compressor's first opening and stopping, first stopping first, and starting and stopping.
  • the running time of each module will be more balanced, which can extend the average service life of each compressor.
  • the temperature drop (liter) rate of water temperature is used as an auxiliary reference, and the real change of the water system is the end. Real load status to accurately control the start and stop of the unit.
  • the judgment can be controlled by the actual change of the water system, that is, the average temperature change rate of the water temperature is determined for a period of time, and the temperature drop rate is different in different temperature ranges. Taking refrigeration as an example, when the water temperature is high, but the temperature drop rate is large, the subsequent units will not be turned on. In the traditional control mode, the subsequent units will be turned on and then turned off. There will be no frequent start and stop of some units, and the water temperature fluctuation of the water system is small and controlled within a reasonable range.
  • FIG. 1 is a flow chart of an intelligent control method of a modular chiller of the present invention
  • FIG. 2 is a flow chart showing the queue and the closed queue of the open method of the intelligent control method of the modular chiller of the present invention
  • Figure 3 is a graph showing the temperature variation of the intelligent control method of the modular chiller of the present invention. detailed description
  • the invention discloses a modular chiller comprising a control device and more than one outdoor unit module.
  • Each of the outdoor unit modules comprises: one or more compressors; wherein the control device is for each of the compressors Encoding, each of the compressors is provided with different identification codes; the control device includes a reading module and a sorting module And an instruction output module; the reading module reads the identification code of each compressor, and the sorting module codes the queue of the compressor and the number of the opened queue, and the command output module is based on the queue of the compressor The number of the queues that are closed and the instructions of each of the compressors are sequentially started or stopped.
  • the modular chiller further includes a temperature sensor, an air-cooled heat exchanger, and a water-side heat exchanger, the temperature sensor being located at a water inlet of the water-side heat exchanger.
  • the control device includes a temperature change rate calculation module and a determination module, and the control device records the current inlet temperature value of the water-side heat exchanger of the air-conditioning unit according to the temperature of the temperature sensor, and calculates the temperature change rate.
  • the module calculates a temperature drop rate or a temperature rise rate value; the determining module instructs each of the compressors to start or stop according to a current air conditioner inlet water temperature value and a temperature drop rate or a temperature rise rate value.
  • the intelligent control method of the above-mentioned modular chiller wherein the control device performs the numbering of the queue and the open queue for the compressor in the start and stop sequence during operation, according to the compressor "first stop first, first stop first"
  • the start-stop method controls each of the compressors to start or stop in sequence.
  • the intelligent control method of the modular chiller comprising the following steps:
  • Step 1 The control device arranges the queue of the compressor off, and the open queue is none;
  • Step 2 The control device determines whether the compressor is to be started, and if yes, proceeds to step 3, if no, proceeds to step 5; step 3: the first compressor in the closed queue of the modular chiller is turned on, and proceeds to step 4; 4: Move the first compressor in the closed queue from the closed queue to the last sequence of the opened queue; Step 5: The control device determines whether to close the compressor, and if yes, proceeds to step 6, if no, Go to step 2; Step 6: Close the first compressor in the open queue and proceed to step 7;
  • Step 7 Move the first compressor in the open queue to the last sequence of the closed queue.
  • first open first, first stop first, first open is achieved by: assigning a number to each compressor, and setting up a queue for compressor shut-off and a queue for compressor opening, each time you need to open the compressor, let The first compressor in the closed queue is turned on, and then the compressor is moved from the queue head of the closed queue to the tail of the open queue; each time the compressor needs to be turned off, it is the first in the queue that is opened. The compressors are turned off and the compressor is then moved from the head of the open queue to the end of the closed queue.
  • the queuing process of the queue and the closed queue in the intelligent control method of the modular chiller is as follows: First, the number of the queue and the open queue that the control device turns off the compressor number, for example, the entire system has 32. The machine, the closed queue 0.1.2.3.4....31, the open queue: no, or the closed queue 10.11.12.13...31 open queue
  • compressor start and stop are: First turn on the compressor, turn off 5 compressors, turn on 1 compressor, turn off 1 compressor, open 26 compressors, and then shut down 28 compressors.
  • the implementation process is as follows:
  • Each compressor has a certain number through the hardware of the motherboard.
  • the corresponding relationship is as follows:
  • Module 1 compressor 1, module 1 compressor 2, module 2 compressor 1, module 2 compressor 2... module 16 compressor 1, module 16 compressor 2 correspond to 0, 1, 2, 3, .. respectively. .30, 31.
  • the compressor needs to be opened, and the first compressor in the queue of the compressor off (in this case, the compressor No. 0) is turned on, and after the opening, the compressor is moved from the closed queue to the open queue.
  • the two queues are as follows:
  • the closed queue is 1, 2...31 in order; the open queue has a compressor, which is 0.
  • the compressors that are turned on in sequence are 1, 2, 3, 4, 5, 6, and the two queues are as follows:
  • the closed queues are 7, 8, 9...31 in order; the open queues are 0, 1, 2, 3, 4, 5, 6;
  • the first compressor in the open queue ie, compressor No. 0
  • the queue is as follows:
  • the closed queues are 7, 8, 9...31, 0; the queues are 1, 2, 3, 4, 5, 6;
  • the queue is as follows: The closed queues are 7, 8, 9...31, 0 in order. 1, 2, 3, 4; and the queue is 5, 6;
  • the closed queues are 8, 9...31, 0, 1, 2, 3, 4; and the open queue is 5, 6, 7;
  • the closed queues are 8, 9...31, 0, 1, 2, 3, 4, 5; the queue is 6, 7;
  • 26 compressors need to be opened, which are 8, 9...31, 0, 1, respectively.
  • the queue is as follows: The closed queue is in order of 2, 3, 4, 5; The queue is 6, 7, 8, 9...31, 0, 1;
  • the closed queues are in order of 2, 3, 4, 5, 6, 7, 8, 9...31, 0, 1; and the open queue has no compressor.
  • Example 2
  • the method of "starting first, stopping first, first stopping first” is to start and stop control with three modules, two compressors per module as an example:
  • the first order of opening of the compressor is:
  • Module 1 press 1 start ⁇ ⁇ module 1 press 2 start ⁇ ⁇ module 2 press 1 start ⁇ ⁇ module 2 press 2 start ⁇ ⁇ module 3 press 1 start ⁇ ⁇ module 3 press 2 start ⁇ ⁇ module 1 Press 1 stop
  • the second boot sequence is:
  • the intelligent control method of the modular chiller, and the water temperature drop or rise rate control method is as follows: The temperature is collected by the temperature sensor, and the temperature value is recorded at a specific time interval At, and the corresponding calculation is performed: T1 is the last recorded value, T2 is the recorded value of the current time, then the temperature drop rate at this moment is (T1-T2) /At or the temperature rise rate is (T2-Tl) /At; after the interval At time, then record again Temperature value, re-recording temperature, and calculating the rate of change again; the control device records the current air-conditioning inlet water temperature value according to the temperature of the temperature sensor, and the temperature change rate calculation module calculates the temperature drop rate or temperature The rising rate value; the determining module instructs each of the compressors to start or stop according to a current air conditioning inlet water temperature value and a temperature drop rate or a
  • the intelligent control method of the modular chiller further includes a water temperature temperature drop or a rising rate control judging method: if the water inlet temperature is higher than a set value, if the temperature drop rate is greater than a judgment standard value, the control device commands It is no longer necessary to open other compressors that are still closed.
  • the intelligent control method of the modular chiller is mainly controlled by the water temperature and temperature range, and the temperature drop (liter) rate is auxiliary control, which can more accurately adapt to the end side load change, keep the water temperature basically stable, and avoid the water temperature fluctuation being severe. happening.
  • the specific implementations listed above are non-limiting, and various modifications and changes made by those skilled in the art without departing from the scope of the invention are within the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Description

模块化冷水机组及其智能控制方法
技术领域
本发明属于空调冷水机组控制领域, 尤其涉及一种模块化冷水机组及其智能控制方 法。 背景技术
现有技术中的模块化控制的空调机组,在多模块同时使用时,传统的启停方式易导致 拨码地址靠前的机组频繁且长期运行,拨码地址靠后的机组启动运行时间较少,多系统的 机组也存在各系统运行时间不均衡的情况, 从而导致部分压缩机使用寿命较短。
且现有技术的模块化控制的空调机组,启停方式釆用水温控制机组启停,在机组启停 及末端侧负荷变化时,水温是一个变化的值,机组只是按水温变化中的一个瞬时值来进行 判断, 这是不能准确反映水系统变化的判断方法, 可能会导致部分模块频繁启停, 且使得 水系统的水温变化剧烈。
因此, 上述控制方法达不到保护压缩机和节约能源的效果。 发明内容
本发明的目的在于提供一种模块化冷水机组及其智能控制方法,在多个模块机组同时 运行时, 使得各压缩机的运行时间相对均衡, 延长各压缩机使用寿命。
本发明的另一个目的在于,提供一种模块化冷水机组及其智能控制方法,保持水温基 本稳定, 不会出现较大波动。
本发明是通过以下技术方案来实现的:
模块化冷水机组, 包括有控制装置、一个以上的室外机模块所述每个室外机模块均包 括有: 一台以上的压缩机; 其中, 控制装置对每台压缩机进行编码, 各台所述压缩机均设 置有互不相同的识别编码; 所述控制装置包括有读码模块、排序模块和指令输出模块; 所 述读码模块读取各台所述压缩机的识别编码,排序模块编排出所述压缩机关的队列和开的 队列的编号,指令输出模块根据所述压缩机开的队列和关的队列的编号指令各台所述压缩 机按顺序启动或停止运行。
所述控制装置包括有温度变化速率计算模块和判断模块,所述控制装置根据温度传感 器釆集温度的温度,记录当前的空调进水温度值,并且所述温度变化速率计算模块计算出 温降速率或温升速率值;所述判断模块根据当前的空调进水温度值和温降速率或温升速率 值指令各台所述压缩机启动或停止运行。
上述模块化冷水机组的智能控制方法,所述控制装置在运行中对压缩机按启停顺序进 行关的队列和开的队列的编号,按压缩机"先开先停,先停先开"的启停方法控制各台所述 压缩机按顺序启动或停止运行。 本发明的有益效果如下:
本发明的模块化冷水机组及其智能控制方法,控制装置对每台压缩机进行编码,各台 压缩机均设置有互不相同的识别编码;控制装置包括有读码模块、排序模块和指令输出模 块;读码模块读取各台所述压缩机的识别编码,排序模块编排出所述压缩机关的队列和开 的队列的编号,指令输出模块根据所述压缩机开的队列和关的队列的编号指令各台所述压 缩机按顺序启动或停止运行;且控制装置包括有温度变化速率计算模块和判断模块。所述 控制装置在运行中对压缩机按启停顺序进行关的队列和开的队列的编号, 按压缩机'先开 先停, 先停先开,的启停方法控制各台所述压缩机按顺序启动或停止运行。 因此, 各模块 运行时间将更为均衡, 可延长各压缩机平均使用寿命; 另, 在不同的温度区间, 以水温的 温降 (升)速率为辅助参考, 以水系统的真实变化即末端的真实负荷状态, 来准确控制机组 的启停。且能以水系统的真实变化情况进行判断控制, 即取一段时间内的水温平均变化速 率来进行判断, 温降速率在不同的温度区间取值不同。 以制冷为例, 在水温较高, 但温降 速率较大的时候,后续机组不会开启,传统控制方式下,后续机组则会短暂开启后再关闭。 不会出现部分机组频繁启停的现象, 水系统的水温波动较小, 并控制在合理范围内。 附图说明
图 1是本发明模块化冷水机组的智能控制方法的流程图;
图 2是本发明模块化冷水机组的智能控制方法实施例 1的开的队列和关的队列排序流 程图;
图 3是本发明模块化冷水机组的智能控制方法的温度变化曲线图。 具体实施方式
本发明公开一种模块化冷水机组, 包括有控制装置、一个以上的室外机模块所述每个 室外机模块均包括有: 一台以上的压缩机; 其中, 控制装置对每台所述压缩机进行编码, 各台所述压缩机均设置有互不相同的识别编码; 所述控制装置包括有读码模块、排序模块 和指令输出模块; 所述读码模块读取各台所述压缩机的识别编码,排序模块编排出所述压 缩机关的队列和开的队列的编号,指令输出模块根据所述压缩机开的队列和关的队列的编 号指令各台所述压缩机按顺序启动或停止运行。
所述模块化冷水机组还包括温度传感器、风冷换热器和水侧换热器,所述温度传感器 位于水侧换热器的进水口处。所述控制装置包括有温度变化速率计算模块和判断模块,所 述控制装置根据温度传感器釆集温度的温度, 记录当前的空调机组水侧换热器进水温度 值,并且所述温度变化速率计算模块计算出温降速率或温升速率值;所述判断模块根据当 前的空调进水温度值和温降速率或温升速率值指令各台所述压缩机启动或停止运行。
上述模块化冷水机组的智能控制方法,所述控制装置在运行中对压缩机按启停顺序进 行关的队列和开的队列的编号,按压缩机"先开先停,先停先开"的启停方法控制各台所述 压缩机按顺序启动或停止运行。
请见图 1 , 所述模块化冷水机组的智能控制方法, 包括如下步骤:
步骤一: 控制装置排列出压缩机关的队列, 开的队列为无;
步骤二: 控制装置判断是否要启动压缩机, 如是, 进入步骤三, 如否, 进入步骤五; 步骤三: 模块化冷水机组的关的队列中的第一台压缩机开启, 进入步骤四; 步骤四: 将该关的队列中的第一台压缩机从关的队列中移到开的队列的最后序位; 步骤五: 控制装置判断是否要关闭压缩机, 如是, 进入步骤六, 如否, 进入步骤二; 步骤六: 关闭开的队列中的第一台压缩机, 进入步骤七;
步骤七: 将开的队列中的第一台压缩机移到关的队列的最后序位。
即"先开先停, 先停先开"实现方法为: 给每台压缩机编一个号, 并设立一个压缩机关 的队列和一个压缩机开的队列,每一次需要开压缩机,都是让关的队列中第一个压缩机开 启, 然后将该压缩机从关的队列的队头, 移到开的队列的队尾; 每一次需要关压缩机, 都 是让开的队列中的第一个压缩机关闭,然后将该压缩机从开的队列的队头移到关的队列的 队尾。
实施例 1:
请见图 2 , 所述模块化冷水机组的智能控制方法中开的队列和关的队列排序流程为: 首先控制装置对压缩机编号进行关的队列和开的队列的编号,例如整个系统有 32台机 子,关的队列 0.1.2.3.4....31 , 开的队列:无,或者 关的队列 10.11.12.13...31 开的队列
0.1.2.3....9. 将该信息存储到控制装置 CPU的存储器中:
下面举例说明一下实现过程:
压缩机启停例子为: 先开启 Ί台压缩机, 关 5台压缩机, 开 1台压缩机, 再关 1台压缩机, 再开 26台压 缩机, 然后关闭 28台压缩机。
实现过程如下:
每台压缩机通过主板的硬件有一个确定的编号, 对应关系如下:
模块 1压缩机 1、 模块 1压缩机 2、 模块 2压缩机 1、 模块 2压缩机 2...模块 16压缩 机 1、 模块 16压缩机 2分别对应为 0、 1、 2、 3、 ...30、 31。
刚开始压缩机关的队列为 32台压缩机, 按顺序为 0, 1, 2...31; 而压缩机开的队列 为 0台压缩机;
第一步, 需要开压缩机, 让压缩机关的队列中的第一台压缩机(此时为 0号压缩机) 开启, 开启后将该压缩机从关的队列中移到开的队列中, 两队列如下所示:
关的队列按顺序为 1, 2...31; 而开的队列有一个压缩机, 为 0。
第二步, 需要再开 6台压缩机, 则按顺序开启的压缩机为 1, 2, 3, 4, 5, 6, 两队 列 ^下所示:
关的队列按顺序为 7, 8, 9...31; 而开的队列为 0, 1, 2, 3, 4, 5, 6;
第三步, 需要关压缩机, 则关闭开的队列中的第一台压缩机(即 0号压缩机), 关闭 后, 队列如下所示:
关的队列按顺序为 7, 8, 9...31, 0; 而开的队列为 1, 2, 3, 4, 5, 6;
第四步, 需要再关 4台压缩机, 则按顺序关闭 1, 2, 3, 4, 关闭后, 队列如下所示: 关的队列按顺序为 7, 8, 9...31, 0, 1, 2, 3, 4; 而开的队列为 5, 6;
第五步, 需要开压缩机, 开启 7, 开启后, 队列如下所示:
关的队列按顺序为 8, 9...31, 0, 1, 2, 3, 4; 而开的队列为 5, 6, 7;
第六步, 需要关压缩机, 关闭 5, 关闭后, 队列如下所示:
关的队列按顺序为 8, 9...31, 0, 1, 2, 3, 4, 5; 而开的队列为 6, 7;
第七步, 需要开 26台压缩机, 分别为 8, 9...31, 0, 1, 开启后, 队列如下所示: 关的队列按顺序为 2, 3, 4, 5; 而开的队列为 6, 7, 8, 9...31, 0, 1;
第八步, 需要关 28台压缩机, 分别为 6, 7, 8, 9...31, 0, 1, 关闭后, 队列如下所 示:
关的队列按顺序为 2, 3, 4, 5, 6, 7, 8, 9...31, 0, 1; 而开的队列没有压缩机。 实施例 2:
"先开先停, 先停先开"启停控制的方法以 3个模块, 每台模块两个压缩机为例: 压缩机第一次开启顺序为:
模块 1压机 1启动→►模块 1压机 2启动→►模块 2压机 1启动→►模块 2压机 2启 动→►模块 3压机 1启动→►模块 3压机 2启动→►模块 1压机 1停机
则随后压缩机关闭顺序为:
模块 1压机 2停机→►模块 2压机 1停机→ 模块 2压机 2停机→ 模块 3压机 1 停机—►模块 3压机 2停机
第二次开机顺序为:
模块 1压机 2启动→►模块 2压机 1启动 →►模块 2压机 2启动→►模块 3压机 1 启动 模块 3压机 2启动 —►模块 1压机 1启动
此后的停机顺序依次按 '先开先停, 先停先开' 原则进行启停控制。 请见图 3 , 模块化冷水机组的智能控制方法, 还包括水温温降或升速率控制方法为: 通过温度传感器釆集温度, 每间隔特定时间 At记录一下温度值, 并做相应的计算: 其中 T1 为上一个记录值, T2为当前时刻的记录值, 则此刻的温降速率为 (T1-T2 ) /At 或温升速率为 (T2-Tl ) /At; 间隔 At时间后, 然后再次记录温度值, 重新记录温度, 并 再次计算变化率; 所述控制装置根据温度传感器釆集温度的温度,记录当前的空调进水温 度值,并且所述温度变化速率计算模块计算出温降速率或温升速率值;所述判断模块根据 当前的空调进水温度值和温降速率或温升速率值指令各台所述压缩机启动或停止运行。
所述模块化冷水机组的智能控制方法,还包括水温温降或升速率控制判断方法为:在 进水温度高于设定值的情况下,如温降速率大于判断标准值,则控制装置指令无须再开启 尚处于关闭状态的其他压缩机。
所述模块化冷水机组的智能控制方法, 以水温温度区间为主要控制, 温降(升)速率 为辅助控制, 能更准确地适应末端侧负荷变化, 保持水温基本稳定,避免出现水温波动剧 烈的情况。 例: 设制冷时空调进水温度设定值为 7 °C , 在进水温度 10°C ~ 12°C时, 如温降 速率大于 1.0°C/min, 则后续压缩机不再开启; 在此控制方式下, 系统不止单以温度为判 断条件, 辅以温降速率为判断条件; 即使在进水温度较高的情况下, 如温降速率较大, 说 明此时机组输出负荷较末端负荷大, 后续无须再开启其他压缩机。 上述所列具体实现方式为非限制性的,对本领域的技术人员来说,在不偏离本发明范 围内, 进行的各种改进和变化, 均属于本发明的保护范围。

Claims

权利要求
1. 模块化冷水机组, 包括有控制装置、 一个以上的室外机模块,所述每个室外机模块 均包括有: 一台以上的压缩机; 其特征在于: 控制装置可对每台所述压缩机进行编码, 各 台所述压缩机均设置有互不相同的识别编码; 所述控制装置包括有读码模块、排序模块和 指令输出模块; 所述读码模块读取各台所述压缩机的识别编码,排序模块编排出所述压缩 机关的队列和开的队列的编号,指令输出模块根据所述压缩机开的队列和关的队列的编号 指示所述压缩机按顺序启动或停止运行。
2. 如权利要求 1所述的模块化冷水机组, 其特征在于: 所述控制装置包括有温度变 化速率计算模块和判断模块,所述控制装置根据温度传感器釆集温度的温度,记录当前的 空调进水温度值,并且所述温度变化速率计算模块计算出温降速率或温升速率值;所述判 断模块根据当前的空调进水温度值和温降速率或温升速率值指令各台所述压缩机启动或 停止运行。
3. 如权利要求 1或 2所述的模块化冷水机组的智能控制方法, 其特征在于: 所述控 制装置在运行中对压缩机按启停顺序进行关的队列和开的队列的编号, 按压缩机"先开先 停, 先停先开"的启停方法控制各台所述压缩机按顺序启动或停止运行。
4. 如权利要求 3所述的模块化冷水机组的智能控制方法, 其特征在于: 所述模块化 冷水机组的智能控制方法, 包括如下步骤:
步骤一: 控制装置排列出压缩机关的队列, 开的队列为无;
步骤二: 控制装置判断是否要启动压缩机, 如是, 进入步骤三, 如否, 进入步骤五; 步骤三: 模块化冷水机组的关的队列中的第一台压缩机开启, 进入步骤四; 步骤四: 将该关的队列中的第一台压缩机从关的队列中移到开的队列的最后序位; 步骤五: 控制装置判断是否要关闭压缩机, 如是, 进入步骤六, 如否, 进入步骤二; 步骤六: 关闭开的队列中的第一台压缩机, 进入步骤七;
步骤七: 将开的队列中的第一台压缩机移到关的队列的最后序位。
5. 如权利要求 4所述的模块化冷水机组的智能控制方法, 其特征在于: 所述模块化 冷水机组的智能控制方法中开的队列和关的队列排序流程为:
首先控制装置对压缩机编号进行关的队列和开的队列的编号,整个系统有 32 台机子, 关的队列 0.1.2.3.4....31 , 开的队列:无, 或者关的队列 10.11.12.13...31 , 开的队列 0.1.2.3....9. 将该信息存储到控制装置 CPU的存储器中: 实现过程如下:
每台压缩机通过主板的硬件有一个确定的编号, 对应关系如下:
模块 1压缩机 1、 模块 1压缩机 2、 模块 2压缩机 1、 模块 2压缩机 2...模块 16压缩 机 1、 模块 16压缩机 2分别对应为 0、 1、 2、 3、 ...30、 31;
刚开始压缩机关的队列为 32台压缩机, 按顺序为 0, 1 , 2...31; 而压缩机开的队列 为 0台压缩机;
第一步, 需要开压缩机, 让压缩机关的队列中的第一台压缩机(此时为 0号压缩机) 开启, 开启后将该压缩机从关的队列中移到开的队列中, 两队列如下所示:
关的队列按顺序为 1 , 2...31; 而开的队列有一个压缩机, 编号为 0;
第二步, 需要再开 6台压缩机, 则按顺序开启的压缩机为 1 , 2, 3, 4, 5, 6, 两队 列 ^下所示:
关的队列按顺序为 7, 8, 9...31; 而开的队列为 0, 1 , 2, 3, 4, 5, 6;
第三步, 需要关压缩机, 则关闭开的队列中的第一台压缩机(即 0号压缩机), 关闭 后, 队列如下所示:
关的队列按顺序为 7, 8, 9...31 , 0; 而开的队列为 1 , 2, 3, 4, 5, 6;
第四步, 需要再关 4台压缩机, 则按顺序关闭 1 , 2, 3, 4, 关闭后, 队列如下所示: 关的队列按顺序为 7, 8, 9...31 , 0, 1 , 2, 3, 4; 而开的队列为 5, 6;
第五步, 需要开压缩机, 开启 7, 开启后, 队列如下所示:
关的队列按顺序为 8, 9...31 , 0, 1 , 2, 3, 4; 而开的队列为 5, 6, 7;
第六步, 需要关压缩机, 关闭 5, 关闭后, 队列如下所示:
关的队列按顺序为 8, 9...31 , 0, 1 , 2, 3, 4, 5; 而开的队列为 6, 7;
第七步, 需要开 26台压缩机, 分别为 8, 9...31 , 0, 1 , 开启后, 队列如下所示: 关的队列按顺序为 2, 3, 4, 5; 而开的队列为 6, 7, 8, 9...31 , 0, 1;
第八步, 需要关 28台压缩机, 分别为 6, 7, 8, 9...31 , 0, 1 , 关闭后, 队列如下所 示:
关的队列按顺序为 2, 3, 4, 5, 6, 7, 8, 9...31 , 0, 1; 而开的队列没有压缩机。
6. 如权利要求 3所述的模块化冷水机组的智能控制方法, 其特征在于: 还包括水温 温降或升速率控制方法为: 通过温度传感器釆集温度, 每间隔特定时间 At记录一下温度 值, 并 4故相应的计算: 其中 T1为上一个记录值, T2为当前时刻的记录值, 则此刻的温降 速率为( T1-T2 ) /At或温升速率为( T2-T1 ) /At; 间隔 At时间后, 然后再次记录温度值, 重新记录温度, 并再次计算变化率; 所述控制装置根据温度传感器釆集温度的温度, 记录 当前的空调进水温度值, 并且所述温度变化速率计算模块计算出温降速率或温升速率值; 所述判断模块根据当前的空调进水温度值和温降速率或温升速率值指令各台所述压缩机 启动或停止运行。
7. 如权利要求 6所述的模块化冷水机组的智能控制方法, 其特征在于: 水温温降或 升速率控制判断方法为: 在进水温度高于设定值的情况下, 如温降速率大于判断标准值, 则控制装置指令无须再开启尚处于关闭状态的其他压缩机。
PCT/CN2010/076495 2009-09-01 2010-08-31 模块化冷水机组及其智能控制方法 WO2011026421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910042335.9 2009-09-01
CN2009100423359A CN102003748A (zh) 2009-09-01 2009-09-01 模块化冷水机组及其智能控制方法

Publications (1)

Publication Number Publication Date
WO2011026421A1 true WO2011026421A1 (zh) 2011-03-10

Family

ID=43648898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076495 WO2011026421A1 (zh) 2009-09-01 2010-08-31 模块化冷水机组及其智能控制方法

Country Status (2)

Country Link
CN (1) CN102003748A (zh)
WO (1) WO2011026421A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106969473A (zh) * 2017-04-26 2017-07-21 青岛海尔空调电子有限公司 一种空调机组控制方法
EP3540321A4 (en) * 2016-11-14 2019-11-20 Gree Electric Appliances, Inc. of Zhuhai METHOD AND SYSTEM FOR CONTROLLING AN AIR-CONDITIONING, WATER COIL UNIT AND AIR CONDITIONER THEREFOR

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927657B (zh) * 2012-11-28 2015-03-11 机械工业第三设计研究院 空调温变速度法变水温控制方法
CN104807136B (zh) * 2014-01-27 2018-02-13 珠海格力电器股份有限公司 压缩机运行调度方法、系统及空调机组
CN103868300B (zh) * 2014-03-24 2016-06-01 南京酷冷节能科技有限公司 一种双制冷控制系统的节能恒温水冷机控制方法
CN104315754A (zh) * 2014-11-07 2015-01-28 北京矿大节能科技有限公司 一种涡旋并联热泵机组及其启动方式
CN105258289B (zh) * 2015-10-15 2018-04-17 珠海格力电器股份有限公司 控制压缩机运行的方法、装置和系统
CN106403484B (zh) * 2015-12-04 2019-11-26 苏州新亚科技有限公司 一种智能模块化控制系统及其控制方法
CN106288175B (zh) * 2016-08-12 2019-02-05 珠海格力电器股份有限公司 模块化组合空调系统及其压缩机控制装置及方法
CN106766214B (zh) * 2016-11-11 2019-11-01 广东芬尼克兹节能设备有限公司 一种水温调频控制方法
CN108731195A (zh) * 2017-04-19 2018-11-02 广州市华德工业有限公司 一种水温控制方法及装置
CN107024003A (zh) * 2017-05-09 2017-08-08 珠海格力电器股份有限公司 热水机组控制方法、装置、系统和热水机组
CN107576106B (zh) * 2017-08-17 2019-12-27 广东美的暖通设备有限公司 冷热水机组及其启动控制方法和装置
CN109945426B (zh) * 2019-03-12 2020-10-09 珠海格力电器股份有限公司 模块机运行控制方法、装置、模块机设备和空调系统
CN110360727B (zh) * 2019-07-22 2020-08-21 珠海格力电器股份有限公司 机组的控制器、方法、装置、多机联机设备和存储介质
CN110425697A (zh) * 2019-08-19 2019-11-08 广东美的暖通设备有限公司 空调器的控制方法及装置、计算机可读存储介质、空调器
CN110542188A (zh) * 2019-09-12 2019-12-06 广东美的暖通设备有限公司 空调器的群控方法及系统、计算机可读存储介质
CN112556113B (zh) * 2020-11-30 2021-12-03 珠海格力电器股份有限公司 一种多模块机组及其控制方法、装置、存储介质及处理器
CN113790542B (zh) * 2021-09-06 2023-03-24 珠海格力节能环保制冷技术研究中心有限公司 多模块冷水机组及其调度控制方法
CN114135988A (zh) * 2021-11-15 2022-03-04 珠海格力电器股份有限公司 模块化空调系统的控制方法、装置、控制器和空调系统
CN114294789B (zh) * 2021-12-23 2022-12-13 珠海格力电器股份有限公司 空调系统的控制方法、空调系统以及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510607A (ja) * 1991-06-28 1993-01-19 Toshiba Corp 空気調和機
JPH10220896A (ja) * 1997-02-06 1998-08-21 Sanyo Electric Co Ltd 空気調和装置
JP2001041528A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd マルチ形空気調和機
CN1782573A (zh) * 2004-12-02 2006-06-07 Lg电子株式会社 多单元空调系统的控制方法
CN101315560A (zh) * 2008-07-10 2008-12-03 四川长虹电器股份有限公司 提高冷水机组系统运行寿命的控制方法
CN101393426A (zh) * 2008-10-09 2009-03-25 南京五洲制冷集团有限公司 模块化螺杆压缩机组的能量调节方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510607A (ja) * 1991-06-28 1993-01-19 Toshiba Corp 空気調和機
JPH10220896A (ja) * 1997-02-06 1998-08-21 Sanyo Electric Co Ltd 空気調和装置
JP2001041528A (ja) * 1999-07-28 2001-02-16 Hitachi Ltd マルチ形空気調和機
CN1782573A (zh) * 2004-12-02 2006-06-07 Lg电子株式会社 多单元空调系统的控制方法
CN101315560A (zh) * 2008-07-10 2008-12-03 四川长虹电器股份有限公司 提高冷水机组系统运行寿命的控制方法
CN101393426A (zh) * 2008-10-09 2009-03-25 南京五洲制冷集团有限公司 模块化螺杆压缩机组的能量调节方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540321A4 (en) * 2016-11-14 2019-11-20 Gree Electric Appliances, Inc. of Zhuhai METHOD AND SYSTEM FOR CONTROLLING AN AIR-CONDITIONING, WATER COIL UNIT AND AIR CONDITIONER THEREFOR
US10899199B2 (en) 2016-11-14 2021-01-26 Gree Electric Appliances, Inc. Of Zhuhai Control method and system for air-conditioner water chilling units and air conditioning system
CN106969473A (zh) * 2017-04-26 2017-07-21 青岛海尔空调电子有限公司 一种空调机组控制方法

Also Published As

Publication number Publication date
CN102003748A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2011026421A1 (zh) 模块化冷水机组及其智能控制方法
CN107504640A (zh) 空调系统、空调器及冷媒回收控制方法
CN108895567B (zh) 室外机、多联机系统及控制方法、装置、计算机存储介质
CN105864971B (zh) 一种四通阀故障检测方法、系统和空调
CN112178872B (zh) 一种冷水机组控制方法、装置及冷水机组
CN108895719B (zh) 一种热泵机组及其供暖控制方法
CN109084443A (zh) 一种空调室外机冷凝器结霜抑制方法及空调
CN102365509B (zh) 对冷冻液冷却系统中的变速压缩机进行排列以提高能效
CN102032649A (zh) 空调系统的除霜控制方法
JP6225776B2 (ja) マルチタイプ空気調和機
CN104728989A (zh) 空调器除霜控制方法及执行该除霜控制方法的空调器
CN113654193B (zh) 用于空调除霜控制的方法及装置、空调器
CN105805904B (zh) 一种机房的制冷控制系统和方法
CN110579010A (zh) 一种多联机内机电子膨胀阀控制方法、控制装置及空调器
CN112628942B (zh) 一种化霜控制方法、装置、存储介质及终端
CN112050378B (zh) 一种化霜控制方法、化霜控制装置、空调及计算机设备
CN103398516A (zh) 一种空调保压启动系统及其控制方法
CN112283878B (zh) 一种空调控制方法、装置、存储介质及空调
CN107726536A (zh) 空调及其室外机除霜方法
CN110173821A (zh) 一种能够改善除霜效果的多联机系统及其控制方法
CN110469991B (zh) 用于空调除霜的控制方法、装置及空调
CN105650825B (zh) 制热模式下的空调控制方法和装置
CN105091437A (zh) 一种风冷冰箱的自动化霜系统及其控制方法
JP5414598B2 (ja) 空気調和機
CN109237725A (zh) 空调除霜的电路、方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813343

Country of ref document: EP

Kind code of ref document: A1