WO2011024781A1 - 波長変換素子及びその製造方法 - Google Patents

波長変換素子及びその製造方法 Download PDF

Info

Publication number
WO2011024781A1
WO2011024781A1 PCT/JP2010/064230 JP2010064230W WO2011024781A1 WO 2011024781 A1 WO2011024781 A1 WO 2011024781A1 JP 2010064230 W JP2010064230 W JP 2010064230W WO 2011024781 A1 WO2011024781 A1 WO 2011024781A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
single crystal
wavelength conversion
conversion element
ferroelectric single
Prior art date
Application number
PCT/JP2010/064230
Other languages
English (en)
French (fr)
Inventor
学示 安西
昌史 井出
Original Assignee
シチズンファインテックミヨタ株式会社
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインテックミヨタ株式会社, シチズンホールディングス株式会社 filed Critical シチズンファインテックミヨタ株式会社
Priority to JP2011528788A priority Critical patent/JPWO2011024781A1/ja
Priority to EP10811831.6A priority patent/EP2472314A4/en
Priority to US13/391,851 priority patent/US8817363B2/en
Publication of WO2011024781A1 publication Critical patent/WO2011024781A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital

Definitions

  • the present invention relates to a wavelength conversion element and a manufacturing method thereof.
  • a periodic polarization inversion region (a polarization inversion structure) can be formed inside the ferroelectric material. It is disclosed that the polarization inversion region formed in this way is used for an optical frequency modulator using surface acoustic waves, an optical wavelength conversion element using polarization inversion of nonlinear polarization, and the like.
  • FIG. 1 is a perspective view of a wavelength conversion element (four are collectively formed) disclosed in Patent Document 1
  • FIG. 2 is an enlarged perspective view showing a part thereof.
  • Voltage application electrode 8A includes a rectangular main body portion 8A 1, includes a plurality of branch portions 8A 2 which extends along the body portion 8A 1 in the -X direction.
  • the voltage application electrode 8B includes a plurality of branch portions 8B 2 extending from the main body portion 8B 1 in the + X direction, and is arranged so that both the branch portions 8A 2 and 8B 2 are engaged with each other, and the branch portion 8A 2.
  • , 8B 2 are arranged alternately along the Z-axis direction. From one of the branch portions 8B 2 comprises a plurality of Hosoeda portion 8B 3 extending along the (the direction along the surface of the substrate perpendicular to the X-axis) substantially -Z direction on the substrate surface.
  • the voltage V 1 is set to a DC voltage of 500 V
  • V 2 is set to a pulse voltage, but is set to 200 V to 800 V.
  • the voltage required for polarization inversion differs depending on the off angle ⁇ .
  • 5 degrees
  • the intermediate of this wavelength conversion element is diced (chip processed) after polarization inversion.
  • the dicing line is set inside the main body portions 8A 1 and 8B 1 and perpendicular to the X axis.
  • a lower insulating layer 5 made of SiO 2 is provided on the lower surface of the ferroelectric single crystal substrate 6 as an undercladding layer for forming a waveguide.
  • the refractive index of the lower insulating film 5 is 90% or less of the refractive index of the ferroelectric single crystal substrate 6, and the thickness D5 of the lower insulating film 5 is 0.5 ⁇ m to 1.0 ⁇ m.
  • the lower insulating film 5 made of SiO 2 is formed in advance on the bonding surface of the ferroelectric single crystal substrate 6, and this is bonded to the base substrate 2 via the bonding layer 4.
  • a metal film 3 is formed in advance on the adherend surface of the base substrate 2 as an electrode for performing polarization inversion.
  • the material of the metal film 3 is preferably Ta, Al, Ti, Au / Cr, or the like for adhesion and stability to the base substrate 2, but for example, Au (200 nm) / Cr (50 nm) can be used. .
  • the difference between the thermal expansion coefficient and the ferroelectric single crystal substrate 6 is 5% or less. That is, the value of the thermal expansion coefficient in each horizontal plane direction of the ferroelectric single crystal substrate 6 is a value within the range of 95% to 105% of the thermal expansion coefficient in each horizontal plane direction of the base substrate 2. Since these thermal expansion coefficients substantially coincide, an increase in substrate peeling and transmission loss due to a difference in thermal expansion coefficient is suppressed.
  • the material constituting the ferroelectric single crystal substrate 6 is preferably a lithium niobate single crystal to which magnesium oxide is added. Since this substrate is known to be resistant to optical damage, it can perform wavelength conversion for high-intensity light.
  • the thickness D 2 of the base substrate 2 made of non-doped LN substrate is 0.5 mm, preferably at 0.1mm or more, parallelism (step surface) is a 0.2 [mu] m, 0 It is preferable that it is 3 ⁇ m or less.
  • the thickness D 6 of the MgO-added ferroelectric single crystal substrate 6 is also 0.5 mm, but it is 0.1 mm or more and the parallelism is 0.2 ⁇ m, but preferably 0.3 ⁇ m or less. In order to maintain element strength and flatness during polishing, the thicknesses D 2 and D 6 are more preferably 0.2 mm or more.
  • the crystal orientations of the base substrate 2 and the ferroelectric single crystal substrate 6 are the same.
  • an upper insulating film 7 made of SiO 2 is provided on the upper surface of the ferroelectric single crystal substrate 6 as an overcoat layer constituting the upper clad of the waveguide.
  • the refractive index of the upper insulating film 7 is 90% or less of the refractive index of the ferroelectric single crystal substrate 6, and the thickness D 7 of the upper insulating film 7 is 0.2 ⁇ m to 0.5 ⁇ m.
  • the spacing (period) X 2 and the width X 1 between the centers of the electrode branch portions 8B 3 formed on the upper insulating film 7 are the spacing and the width between the centers along the X direction of the polarization inversion region PR, respectively. Equally, 6.62 ⁇ m and 0.5 ⁇ m. At this time, it functions as an SHG element with respect to a wavelength of infrared laser light of 1.064 ⁇ m.
  • the Z-direction separation distance W 3 between the electrode branch portions 8A 2 and 8B 2 on the substrate surface is set to 150 ⁇ m.
  • These electrodes are produced by metal sputtering and subsequent photolithography. For example, Au (200 nm) / Cr (50 nm) is used as the material for the voltage application electrodes 8A and 8B.
  • a voltage application method when performing polarization reversal is shown. Since the spontaneous polarization of the ferroelectric single crystal substrate 6 is aligned in the Z-axis direction of the crystal, the direction of polarization inversion is the opposite direction, and therefore the electrode 8A is positive and the electrode 8B and the metal film 3 are negative.
  • the voltages V 1 and V 2 are applied as follows. As a result, electric fields E Z and E Y are generated inside the material between the electrode 8A and the electrode 8B and between the electrode 8A and the metal film 3, respectively.
  • E S electric field coercive field value of E S is a ferroelectric single crystal, the polarization inversion occurs.
  • a pair of voltage application electrodes 8A and 8B are formed on the upper insulating layer 7, but the Z axis of the ferroelectric single crystal substrate 6 has an angle ⁇ with respect to the plane direction of the substrate.
  • This angle ⁇ is determined by applying voltages V 1 and V 2 between both voltage application electrodes 8A and 8B and between the metal film 3 and one voltage application electrode 8A.
  • the direction of the electric field E S formed in the substrate 6 is set such Z axes coincide.
  • the coercive electric field value of the ferroelectric single crystal is about 4 to 5 kV / mm. In order for polarization reversal to occur, it is necessary to apply an electric field larger than this value inside the material.
  • voltage is applied to a bulk crystal wafer having a thickness of 0.5 mm to 1 mm, and both V 1 and V 2 require voltages of several kV to several tens of kV.
  • the ferroelectric single crystal substrate 6 is attached to the base substrate 2 and then thinly polished, and then voltage application is performed. Therefore, the horizontal internal electric field E Z does not change greatly, but the vertical internal electric field E Y becomes 100 times larger than the conventional one. Therefore, the internal electric field E Y The vertical polarization inversion direction becomes large contribution to the electric field E S, consequently it is possible to both reduce the bidirectional voltage.
  • a voltage is applied to form a periodic domain-inverted structure PPS composed of a plurality of domain-inverted regions PR, and then, using wet etching or the like, two grooves GR 1 and GR 2 extending in the X-axis direction are It is formed so as to cross a plurality of domain-inverted regions PR.
  • a so-called ridge-type waveguide core is formed.
  • Patent Document 1 describes as described above.
  • a metal film for example, Ta is formed on the adherend surface of the base substrate 2 as an electrode 3 for performing polarization reversal.
  • the wavelength conversion element is inspected, and the laser is assembled.
  • the laser beam is irradiated onto the electrode (metal film) 3 when the position of the wavelength conversion element is shifted from the laser incident position during the alignment operation for adjusting the incident position of the laser, the energy of the laser is absorbed by the metal film.
  • the adhesive 4 is broken and the thin ferroelectric single crystal substrate 6 is peeled off.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a wavelength conversion element that can prevent the substrate from being peeled even if the laser incident position is deviated, and to manufacture such a wavelength conversion element. It aims at providing the manufacturing method suitable for.
  • One embodiment of the present invention is a wavelength conversion element, in which a base substrate having a transparent electrode formed on one surface, an optical waveguide is formed, and an insulating film is formed on one surface, the insulating film is A ferroelectric single crystal substrate bonded to the base substrate so as to face the transparent electrode.
  • the optical waveguide is a ridge type.
  • the transparent electrode is an ITO film or an InTiO film.
  • a method of manufacturing a wavelength conversion element the step of forming a transparent electrode on a base substrate, and the step of forming an insulating film on one surface of a ferroelectric single crystal substrate
  • a voltage is also applied to the transparent electrode so as to have the same potential as the opposing electrode.
  • the transparent electrode is an ITO film or an InTiO film.
  • the electrode for performing polarization inversion formed on the adherend surface of the base substrate a transparent electrode
  • the ITO film or InTiO film is excellent in transparency and conductivity, so that particularly preferable results are obtained.
  • the presence of bubbles can be confirmed because the bonding surface can be seen when the base substrate is bonded to the polishing substrate during grinding and polishing.
  • the peeling can be performed while confirming the peeling state, thereby improving workability.
  • the transparent electrode is an oxide transparent electrode
  • the adhesive strength with the ferroelectric single crystal substrate is much higher than that of the metal electrode, and the base substrate and the ferroelectric single crystal substrate are separated even by ultrasonic cleaning after chip formation. Peeling is suppressed. Furthermore, heat resistance is also improved by increasing the adhesive strength.
  • FIG. 1 is a perspective view of a conventional wavelength conversion element (four are collectively formed).
  • FIG. 2 is a partially enlarged perspective view of a conventional wavelength conversion element.
  • 3A to 3M are process diagrams showing the wavelength conversion element manufacturing process according to the embodiment of the present invention.
  • 4A and 4B are top views of the comb electrode shape of the wavelength conversion element according to the embodiment of the present invention.
  • 5A and 5C are state diagrams of voltage application for polarization inversion of the wavelength conversion element according to the embodiment of the present invention, and FIGS. 5B and 5D are equivalent circuit diagrams thereof.
  • FIG. 6 is a perspective view of the wavelength conversion element according to the embodiment of the present invention.
  • 7A and 7B are schematic views in which laser light is incident on the wavelength conversion element according to the embodiment of the present invention.
  • FIGS. 3A to 3M are block diagrams showing a wavelength conversion element manufacturing process according to an embodiment of the present invention.
  • FIGS. 4A and 4B are top views of a comb electrode shape
  • FIGS. 5A and 5C are voltages of polarization inversion.
  • FIG. 5B and FIG. 5D are equivalent circuit diagrams thereof
  • FIG. 6 is a perspective view of the wavelength conversion element
  • FIGS. 7A and 7B are schematic diagrams in which laser light is incident on the wavelength conversion element.
  • FIG. 3A to 3M are process diagrams and side views for explaining a method of manufacturing a wavelength conversion element according to an embodiment of the present invention.
  • the process of FIG. 3A prepares a ferroelectric single crystal substrate 11 having a thickness of 0.5 mm (for example, a LiNbO 3 5-degree off-Y plate doped with MgO).
  • an insulating film 13 is formed on the surface of the ferroelectric single crystal substrate 11.
  • SiO 2 is deposited by 0.1 to 1.0 ⁇ m, preferably 0.5 ⁇ m.
  • the base substrate 12 is prepared.
  • the base substrate 12 is selected from those having a thermal expansion coefficient close to that of the ferroelectric single crystal substrate 11 (for example, a Y plate of LiNbO 3 ) and has a thickness of 1 mm.
  • the transparent electrode 14 is formed on the surface of the base substrate 12.
  • the transparent electrode 14 is a transparent conductive film, such as ITO, InTiO, ZnO, AZO, GZO, etc., but an ITO film or InTiO film excellent in transparency and conductivity is preferable, for example, 0.02 to 1.0 ⁇ m.
  • the film is formed to a thickness of 0.05 ⁇ m by vapor deposition, ion plating, or sputtering.
  • the InTiO film is a film obtained by adding Ti to indium oxide, and in particular, an SHG type that converts near-infrared light having a wavelength longer than 1.2 ⁇ m, for example, 1.26 ⁇ m, into a visible light of 0.63 ⁇ m.
  • an ITO film can be applied.
  • a higher transmittance and a lower absorption rate in the long wavelength region than the ITO film can be obtained. This is preferable because it is possible.
  • the InTiO film can increase the mobility ⁇ of electrons that are carriers of the n-type degenerate semiconductor than the ITO film, and therefore the conductivity ⁇ determined by the relationship shown in the equation (1). This is because the carrier concentration n can be relatively reduced.
  • e is the charge of electrons. It is the plasma oscillation of the carriers in the conductive film that determines the reflection / absorption characteristics of the transparent conductive film in the near infrared region.
  • the plasma frequency ⁇ p is defined as in Expression (2).
  • is a dielectric constant
  • m * is an effective mass of carriers (electrons in this case).
  • the plasma frequency is determined by the carrier concentration (in this case, electron concentration) n.
  • the carrier concentration in this case, electron concentration
  • the plasma frequency is low, that is, the wavelength ⁇ p corresponding to the plasma frequency can be shifted to the longer wavelength side, so that reflection / absorption in the near infrared region is further reduced compared to ITO. be able to.
  • the ferroelectric single crystal substrate 11 and the base substrate 12 are bonded to each other through the adhesive layer 15 with the transparent electrode 14 and the insulating film 13 formed facing each other.
  • the adhesive layer 15 is, for example, a polyimide adhesive, and the thickness of the adhesive layer is, for example, 0.2 to 1.0 ⁇ m, preferably 0.5 ⁇ m.
  • the base substrate 12 is bonded to a polishing substrate (not shown), and the ferroelectric single crystal substrate 11 is ground and polished (FIG. 3F).
  • the thin ferroelectric single crystal substrate 11 ′ is, for example, 2.5 to 5.0 ⁇ m, and the thickness is appropriately determined depending on the application.
  • a comb electrode 16 for polarization inversion is formed on the surface of a thin ferroelectric single crystal substrate 11 '.
  • Ta is uniformly deposited on the surface of the ferroelectric single crystal substrate 11 ′ to a thickness of 0.01 to 2.0 ⁇ m, preferably 0.1 ⁇ m to form a mask film, and a desired comb-shaped electrode for polarization inversion.
  • a mask is formed and etched so that can be formed.
  • FIG. 3H is a comb electrode forming process.
  • FIG. 4A is a plan view of a comb electrode
  • FIG. 4B is a plan view showing a polarization region after polarization.
  • a plurality of comb electrode branch portions 17 ⁇ / b> A are formed in the comb electrode body portion 17.
  • the dimensions of the comb electrode branch width X1, the comb electrode branch length Y1, and the distance X2 between the comb electrode branches 17A are appropriately determined according to the desired polarization inversion shape and phase matching conditions.
  • the width X3 of the domain-inverted region 18 is wider than the comb-teeth electrode width X1, but the conditions for domain-inverted are set so that the width X3 of the domain-inverted region and the width X4 between domain-inverted regions are the same.
  • 3I is a periodic polarization inversion process.
  • 5A and 5C are schematic diagrams of voltage application for periodic polarization reversal, and FIGS. 5B and 5D are equivalent circuit diagrams thereof.
  • Reference numeral 19 represents a comb electrode
  • 16 represents a counter-application electrode
  • 14 represents a transparent electrode.
  • FIG. 5A a negative side of DC 250 to 600 V is connected to the counter application electrode 16 and the transparent electrode 14, and a positive side of DC is connected to the comb electrode 19.
  • a pulse voltage of 100 to 500 V is applied to each.
  • FIG. 5C the negative side of DC 250 to 600 V is connected to the counter application electrode 16, and the positive side of DC is connected to the comb electrode 19.
  • a pulse voltage of 100 to 500 V is applied to each. No voltage is applied to the transparent electrode 14.
  • the step of FIG. 3J is a step of removing the comb electrode 19 for application and the counter application electrode 16.
  • FIG. 3K is a ridge formation process, and the grooves GR 1 and GR 2 shown in FIG. 2 are formed by dry etching, dicing or laser processing.
  • FIG. 6 is a perspective view of the completed wavelength conversion element, in which grooves as shown in the figure are formed.
  • 3L is an end polishing process.
  • the comb electrode main body of the four-chip chip as shown in FIG. 1 is cut and removed, and the end face on which the laser beam is incident and the end face on which the laser beam is emitted are polished.
  • FIG. 3M The process of FIG. 3M is a single piece dividing step, and a four-chip chip is divided into single pieces as shown in FIG.
  • FIG. 7A and 7B are schematic views in which laser light is incident on the wavelength conversion element.
  • FIG. 7A shows an example in which the laser beam 21 and the laser beam incident position 22 coincide with each other
  • FIG. 7B shows an example in which the laser beam 21 is out of alignment.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 波長変換素子は、ベース基板(12)と強誘電体単結晶基板(11')とを備えている。ベース基板(12)の一方面には透明電極(14)が形成されている。強誘電体単結晶基板(11')には、光導波路が形成されるとともに、一方面に絶縁膜(13)が形成されている。この絶縁膜(13)が透明電極(14)と相対向するように、ベース基板(12)と強誘電体単結晶基板(11')とが接着されている。すなわち、ベース基板(12)の被接着面に、強誘電体単結晶基板(11')の分極反転を行うための電極として、透明電極(14)が形成されている。このため、波長変換素子の検査等に際して、波長変換素子の位置とレーザーの入射位置がずれることにより、レーザーが電極に照射されることがあっても、基板の温度上昇が抑えられるので、基板間の剥離を防ぐことができる。

Description

波長変換素子及びその製造方法
 本発明は波長変換素子及びその製造方法に関するものである。
 強誘電体の分極を強制的に反転させる分極反転現象を利用すると、強誘電体の内部に周期的な分極反転領域(分極反転構造)を形成することができる。このようにして形成された分極反転領域は、表面弾性波を利用した光周波数変調器や、非線形分極の分極反転を利用した光波長変換素子などに利用されることが開示されている。(特許文献1)
 図1は、特許文献1で開示された波長変換素子(4つが集合形成されている)の斜視図であり、図2はその一部を示す拡大斜視図である。その開示によると、上部絶縁層7の上には櫛歯電極8A、8Bが形成されている。電圧印加用電極8Aは、矩形状の本体部8Aと、本体部8Aから-X方向に沿って延びた複数の枝部8Aを備えている。電圧印加用電極8Bは、本体部8Bから+X方向に沿って延びた複数の枝部8Bを備えており、双方の枝部8A2、8Bが噛み合うように配置され、枝部8A、8BはZ軸方向に沿って交互に並んでいる。一方の各枝部8Bからは基板表面上をほぼ-Z方向(X軸に垂直で基板表面に沿った方向)に沿って延びた複数の細枝部8Bを備えている。
 電圧V,Vの印加によって、分極反転を行うため、電圧Vは直流電圧500Vとし、Vはパルス電圧とするが200V~800Vとする。オフ角θによって分極反転に必要な電圧は異なり、θ=5度の場合、V=V=500Vである。この波長変換素子の中間体は、分極反転後にダイシング(チップ加工)される。ダイシングラインは、本体部8A,8Bの内側であってX軸に垂直に設定する。
 接着層4に起因する光の吸収損失を低減するため、導波路を形成するアンダークラッド層として、強誘電体単結晶基板6の下面にSiOからなる下部絶縁層5が設けられている。下部絶縁膜5の屈折率は、強誘電体単結晶基板6の屈折率の90%以下であり、下部絶縁膜5の厚みDは0.5μm~1.0μmである。本例では、強誘電体単結晶基板6の接着面に予めSiOからなる下部絶縁膜5を形成しておき、これをベース基板2に接着層4を介して貼り付けることとしてある。
 分極反転を行うための電極として、ベース基板2の被接着面に予め金属膜3が形成されている。金属膜3の材料は、ベース基板2との付着力及び安定性のためには、Ta、Al、Ti、Au/Crなど望ましいが、例えば、Au(200nm)/Cr(50nm)用いることができる。
 ベース基板2と強誘電体単結晶基板6を接着する時の変形を出来るだけ小さくするため、その熱膨張係数は強誘電体単結晶基板6との差は5%以下としてある。すなわち、強誘電体単結晶基板6の水平面各方向における熱膨張係数の値は、ベース基板2の水平面各方向における熱膨張係数の95%~105%の範囲内の値である。これらの熱膨張係数は略一致しているため、熱膨張係数差に起因する基板剥離や伝送損失の増加が抑制される。なお、強誘電体単結晶基板6を構成する材料は、酸化マグネシウムを添加したニオブ酸リチウム単結晶であることが好ましい。この基板は、光損傷に強いことが知られているため、高強度の光に対する波長変換を行うことができる。
 すなわち、ノンドープのLN基板からなるベース基板2の厚さDは0.5mmであるが、0.1mm以上であることが好ましく、平行度(面の段差)は0.2μmであるが、0.3μm以下であることが好ましい。また、MgO添加の強誘電体単結晶基板6の厚さDも0.5mmであるが、0.1mm以上、平行度は0.2μmであるが、0.3μm以下であることが好ましい。なお、素子強度及び研磨の時の平坦性を保つため、厚さD,Dは0.2mm以上が更に好ましい。
 なお、ベース基板2と強誘電体単結晶基板6の結晶方位は同一である。
 接着層4に起因する光の吸収損失を低減するため、導波路の上部クラッドを構成するオーバーコート層として、強誘電体単結晶基板6の上面にSiOからなる上部絶縁膜7が設けられている。上部絶縁膜7の屈折率は、強誘電体単結晶基板6の屈折率の90%以下であり、上部絶縁膜7の厚みDは0.2μm~0.5μmである。
 上部絶縁膜7上に形成される電極の細枝部8Bの中心間の間隔(周期)X及び幅Xは、それぞれ分極反転領域PRのX方向に沿った中心間の間隔及び幅に等しく、6.62μm及び0.5μmである。このとき、1.064μmの赤外レーザー光の波長に対して、SHG素子として機能する。なお、基板表面の電極の枝部8A、8B間のZ方向離隔距離Wは150μmに設定する。これらの電極は、金属のスパッタと、その後のフォトリソグラフィによって作製する。電圧印加用電極8A,8Bの材料としては、例えば、Au(200nm)/Cr(50nm)を用いる。
 分極反転を行う時の電圧印加方法を示している。強誘電体単結晶基板6の自発分極は結晶のZ軸方向に揃っているため、分極反転の方向はその逆方向であり、従って、電極8Aがプラス、電極8B及び金属膜3がマイナスになるように電圧V,Vを印加する。これにより、電極8Aと電極8B、電極8Aと金属膜3の間の材料内部に、それぞれ電界EとEが発生する。一Z方向の合成電界Eが強誘電体単結晶の抗電界値より大きい時に、分極反転が生じる。
 要するに、上部絶縁層7上には、一対の電圧印加用電極8A,8Bが形成されているが、強誘電体単結晶基板6のZ軸は基板の面方向に対して角度θを有しており、この角度θは、双方の電圧印加用電極8A,8B間、及び金属膜3と一方の電圧印加用電極8Aとの間に電圧V,Vを印加することで強誘電体単結晶基板6内に形成される電界Eの向きに、Z軸が一致するように設定されている。電圧V,Vを印加した場合には、強誘電体単結晶基板6のZ軸に沿って分極反転が進行するため、合成電界Eの向きをZ軸に一致させることで、分極反転に必要な電圧値を低下させることができる。
 上記強誘電体単結晶の抗電界値は約4~5kV/mmである。分極反転が発生するためには、材料内部にこの値より大きな電界を印加する必要がある。なお、従来の分極反転プロセスは、厚さ0.5mm~1mmのバルク結晶ウェハに対して電圧印加を行うため、VとVが共に数kVから数十kVの電圧を要していた。
 本実施形態では、強誘電体単結晶基板6を、ベース基板2に貼り付けた後、薄く研磨処理してから、電圧印加を実行する。したがって、水平方向の内部電界Eは大きくは変化しないが、垂直方向の内部電界Eは従来の100倍以上に大きくなる。このため、垂直方向の内部電界Eは分極反転方向の電界Eへの寄与分が大きくなり、結果的に両方向の電圧を共に小さくにすることができる。本例では、強誘電体単結晶基板6を厚さD=5μmまで研磨してから、分極反転を行った。
電圧印加を行って、複数の分極反転領域PRからなる周期状分極反転構造PPSを形成し、続いて、ウェットエッチング等を用いて、X軸方向に延びる2本の溝GR,GRを、複数の分極反転領域PRを横切るように形成する。所謂リッジ型導波路のコアを形成する。
特許文献1には、以上のように記載されている。
特開2007-183316号公報
 ベース基板2の被接着面には分極反転を行うための電極3として金属膜(例えばTa)が形成されているが、波長変換素子が完成してから波長変換素子の検査、更に組立時のレーザーの入射位置を調整するための調芯作業時に、波長変換素子の位置とレーザーの入射位置がずれてレーザーが前記電極(金属膜)3に照射されると、レーザーのエネルギーが金属膜で吸収され温度が上昇し、接着剤4が破壊され薄板化されている強誘電体単結晶基板6が剥離してしまう。本発明は上記の問題点に鑑みてなされたもので、レーザーの入射位置にずれが生じても基板の剥離が抑制される波長変換素子を提供することを目的とし、さらにかかる波長変換素子の製造に適した製造方法を提供することを目的とする。
 本発明の一態様に係るものは、波長変換素子であって、一方面に透明電極が形成されたベース基板と、光導波路が形成されるとともに一方面に絶縁膜が形成され、当該絶縁膜が前記透明電極と相対向するように前記ベース基板に接着されている強誘電体単結晶基板と、を備えるものである。
 好ましくは、前記光導波路はリッジ型である。
 好ましくは、前記透明電極はITO膜またはInTiO膜である。
 本発明の別の一態様に係るものは、波長変換素子の製造方法であって、ベース基板上に透明電極を形成する工程と、強誘電体単結晶基板の一方面に絶縁膜を形成する工程と、前記ベース基板の透明電極形成面と前記強誘電体単結晶基板の絶縁膜形成面を接着する貼付工程と、前記強誘電体単結晶基板の他方面を研磨して薄板化する研磨工程と、薄型化された強誘電体単結晶基板上に電極膜を形成する工程と、該電極膜を櫛歯電極及び、該櫛歯電極に対向する電極にパターニングする工程と、前記対向する電極と前記櫛歯電極との間に電圧を印加する工程とを備える波長変換素子の製造方法とする。
 好ましくは、前記電圧を印加する工程は、前記対向する電極と同電位となるよう前記透明電極にも電圧を印加するものである。
 好ましくは、前記透明電極はITO膜またはInTiO膜である。
 ベース基板の被接着面に形成する分極反転を行うための電極を透明電極にすることで、波長変換素子が完成してから波長変換素子の検査、更に組立時のレーザーの入射位置を調整するための調芯作業時に、波長変換素子の位置とレーザーの入射位置がずれてレーザーが前記電極に照射されても、レーザーのエネルギーは透明電極で吸収されることはないので、金属電極のように温度が上昇し強誘電体単結晶基板が剥離してしまうことが防止できる。透明電極の中でもITO膜またはInTiO膜は透明性、導電性に優れているため特に好ましい結果が得られる。透明電極とすることで、研削、研磨する際にベース基板を研磨用基板に接着するとき接着面が見えるため気泡の存在が確認できる。また研磨終了後に研磨用基板からベース基板を剥離するときも剥離状況を確認しながら剥離することができ作業性が向上する。透明電極が酸化物透明電極の場合は、強誘電体単結晶基板との接着強度が金属電極と比べてはるかに上がり、チップ化した後の超音波洗浄でもベース基板と強誘電体単結晶基板が剥離することが抑制される。さらに接着強度が増すことで、耐熱性も向上する。
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
図1は従来の波長変換素子(4つが集合形成されている)の斜視図である。 図2は従来の波長変換素子の一部拡大斜視図である。 図3A~図3Mは本発明の実施の形態による波長変換素子製造工程を示す工程図である。 図4A及び図4Bは本発明の実施の形態による波長変換素子の櫛歯電極形状の上面図である。 図5A及び図5Cは本発明の実施の形態による波長変換素子の分極反転の電圧印加の状態図であり、図5B及び図5Dはそれらの等価回路図である。 図6は本発明の実施の形態による波長変換素子の斜視図である。 図7A及び図7Bは本発明の実施の形態による波長変換素子にレーザー光が入射する模式図である。
 図3A~図3Mは本発明の一実施の形態による波長変換素子製造工程を示すブロック図であり、図4A及び図4Bは櫛歯電極形状の上面図、図5A及び図5Cは分極反転の電圧印加の状態図、図5B及び図5Dはそれらの等価回路図、図6は波長変換素子の斜視図、図7A及び図7Bは波長変換素子にレーザー光が入射する模式図である。
 図3A~図3Mは本発明の一実施の形態による波長変換素子の製造方法を説明するための工程図であり、側面図である。図3Aの工程は、厚さ0.5mmの強誘電体単結晶基板11(例えばMgOをドープしたLiNbOの5度オフY板)を準備する。図3Bの工程は、強誘電体単結晶基板11の表面に絶縁膜13を形成する。絶縁膜13としては例えばSiOを0.1~1.0μm好ましくは0.5μm蒸着する。
図3Cの工程は、ベース基板12を準備する。ベース基板12は、強誘電体単結晶基板11と熱膨張係数が近いものから選出(例えばLiNbOのY板)し、厚さは1mmとする。図3Dの工程は、ベース基板12の表面に透明電極14を形成する。透明電極14は透明な導電膜であり、ITO、InTiO、ZnO、AZO、GZO等々があるが、透明性、導電性に優れたITO膜またはInTiO膜が好ましく、例えば、0.02~1.0μm好ましくは0.05μmの厚みに蒸着、イオンプレーティング、またはスパッタ法で成膜する。
 ここで、InTiO膜は、酸化インジウムにTiを添加した膜であり、特に1.2μmより長波長側の近赤外光、例えば1.26μmを波長変換し可視光0.63μmに変換するSHG型の波長変換素子に適用する場合は、ITO膜も適用可能であるが、ITO膜と同程度の導電性を保ったまま長波長領域でITO膜よりさらに高透過率且つ低吸収率とすることができるため好ましい。これは、InTiO膜がITO膜よりn型の縮退半導体のキャリアとなる電子の移動度μを大きくできるため、式(1)で示すような関係で決まる導電率σ
Figure JPOXMLDOC01-appb-I000001
において、相対的にキャリア濃度nを小さくすることが可能となるためである。ここで、eは電子の電荷である。近赤外領域で透明導電膜の反射・吸収特性を決めているのは、導電膜中キャリアのプラズマ振動である。ここで、プラズマ周波数ωpは、式(2)のように定義される。
Figure JPOXMLDOC01-appb-I000002
 式(2)において、εは、誘電率、mはキャリア(この場合電子)の有効質量である。式(2)からわかるようにプラズマ周波数は、キャリア濃度(この場合電子濃度)nによってきまる。このため、キャリア濃度を小さくできるInTiOでは、プラズマ周波数を低く、すなわちプラズマ周波数に対応する波長λpを長波長側にシフトできるため、ITOと比較し近赤外領域での反射・吸収をさらに小さくすることができる。
 図3Eの工程は、前記強誘電体単結晶基板11とベース基板12を、それぞれに形成された透明電極14と絶縁膜13を合対向させて、接着層15を介して接着する。接着層15は例えばポリイミド系の接着剤であり、接着層の厚さは例えば、0.2~1.0μm好ましくは0.5μmとする。
 次に、ベース基板12を研磨用基板(不図示)に接着し、強誘電体単結晶基板11を研削、研磨する(図3F)。薄板化された強誘電体単結晶基板11’は例えば2.5~5.0μmであり、厚さは用途によって適宜決定する。
 図3Gの工程は、薄板化した強誘電体単結晶基板11’の表面に分極反転用の櫛歯電極16を形成する。例えば、強誘電体単結晶基板11’の表面に一様にTaを0.01~2.0μm好ましくは0.1μm蒸着し、マスク用の膜を形成し、所望の分極反転用の櫛歯電極が形成できるようマスクを形成してエッチングする。
 図3Hの工程は櫛歯電極形成工程である。図4Aは櫛歯電極の平面図であり、図4Bは分極後の分極領域を示す平面図である。櫛歯電極本体部17には複数の櫛歯電極枝部17Aが形成されている。櫛歯電極枝部幅X1、櫛歯電極枝部長さY1、櫛歯電極枝部17A間距離X2の寸法は所望の分極反転形状及び位相整合条件により適宜決定される。分極反転領域18の幅X3は櫛歯枝部電極幅X1より広くなるが、分極反転領域の幅X3と分極反転領域間幅X4が同一になるよう分極反転の条件出しをする。
 図3Iの工程は、周期分極反転処理工程である。図5A及び図5Cは、周期分極反転の電圧印加の模式図であり、図5B及び図5Dは、それらの等価回路図である。符号19は櫛歯電極を表し、16は対向印加電極、14は透明電極を表している。図5Aでは、対向印加電極16と透明電極14に直流250~600Vのマイナス側が接続され、櫛歯電極19に直流のプラス側が接続されている。そしてパルス電圧100~500Vがそれぞれに印加されている。図5Cでは、対向印加電極16に直流250~600Vのマイナス側が接続され、櫛歯電極19に直流のプラス側が接続されている。そしてパルス電圧100~500Vがそれぞれに印加されている。透明電極14には電圧が印加されていない。図5Aまたは図5Cの状態で電圧を印加することにより、周期分極反転構造が得られる。
 図3Jの工程は、印加用の櫛歯電極19と対向印加電極16を除去する工程である。
 図3Kの工程はリッジ形成工程であり、図2に示す溝GR、GRをドライエッチング、ダイシングまたはレーザー加工により形成する。図6は、完成した波長変換素子の斜視図であるが、図に示すような溝が形成される。
 図3Lの工程は端面研磨工程である。この工程は、図1に示すような4個取りのチップの櫛歯電極本体部を切断して除去し、レーザー光が入射する端面と出射する端面を研磨する。
 図3Mの工程は単個分割工程であり、4個取りのチップを図6に示す単個に分割する。
 図7A及び図7Bは波長変換素子にレーザー光が入射する模式図である。図7Aは、レーザー光21とレーザー光入射位置22が一致している例を示しており、図7Bは、はずれている例を示している。
 本出願は、2009年8月25日に日本国に本出願人により出願された特願2009-194416号に基づくものであり、その全内容は参照により本出願に組み込まれる。さらに、本発明の背景技術として引用した日本国特許公開公報である特開2007-183316号の全内容は、参照により本出願に組み込まれる。
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。
 2    ベース基板
 3    金属膜
 4    接着層
 5    下部絶縁膜
 6    強誘電体単結晶基板
 7    上部絶縁膜
 8A   櫛歯電極
 8A   本体部
 8A   枝部
 8B   櫛歯電極
 8B   本体部
 8B   枝部
 8B   細枝部
11    強誘電体単結晶基板
11’   薄板化した強誘電体単結晶基板
11’A  リッジ
12    ベース基板
13    絶縁膜
14    透明電極
15    接着層
16    対向印加電極
17    櫛歯電極本体部
17A   櫛歯電極枝部
18    分極反転領域
19    櫛歯電極
20    レンズ
21    レーザー光
22    レーザー光入射位置
PR    分極反転領域
     -Z方向の合成電界
     垂直方向の内部電界
     水平方向の内部電界
PPS   周期状分極反転構造
GR    溝
GR    溝

Claims (6)

  1.  一方面に透明電極が形成されたベース基板と、
     光導波路が形成されるとともに一方面に絶縁膜が形成され、当該絶縁膜が前記透明電極と相対向するように前記ベース基板に接着されている強誘電体単結晶基板と、を備える波長変換素子。
  2.  前記光導波路がリッジ型である請求項1記載の波長変換素子。
  3.  前記透明電極がITO膜またはInTiO膜である請求項1または2記載の波長変換素子。
  4.  ベース基板上に透明電極を形成する工程と、
     強誘電体単結晶基板の一方面に絶縁膜を形成する工程と、
     前記ベース基板の透明電極形成面と前記強誘電体単結晶基板の絶縁膜形成面を接着する貼付工程と、
     前記強誘電体単結晶基板の他方面を研磨して薄板化する研磨工程と、
     薄板化された強誘電体単結晶基板上に電極膜を形成する工程と、
     該電極膜を櫛歯電極及び、該櫛歯電極に対向する電極にパターニングする工程と、
     前記対向する電極と前記櫛歯電極との間に電圧を印加する工程とを備える波長変換素子の製造方法。
  5.  前記電圧を印加する工程は、前記対向する電極と同電位となるよう前記透明電極にも電圧を印加する請求項4記載の波長変換素子の製造方法。
  6.  前記透明電極がITO膜またはInTiO膜である請求項4または5記載の波長変換素子の製造方法。
PCT/JP2010/064230 2009-08-25 2010-08-24 波長変換素子及びその製造方法 WO2011024781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011528788A JPWO2011024781A1 (ja) 2009-08-25 2010-08-24 波長変換素子及びその製造方法
EP10811831.6A EP2472314A4 (en) 2009-08-25 2010-08-24 WAVE LENGTH CONVERTING ELEMENT AND METHOD OF MANUFACTURING THE SAME
US13/391,851 US8817363B2 (en) 2009-08-25 2010-08-24 Wavelength conversion device and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009194416 2009-08-25
JP2009-194416 2009-08-25

Publications (1)

Publication Number Publication Date
WO2011024781A1 true WO2011024781A1 (ja) 2011-03-03

Family

ID=43627886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064230 WO2011024781A1 (ja) 2009-08-25 2010-08-24 波長変換素子及びその製造方法

Country Status (4)

Country Link
US (1) US8817363B2 (ja)
EP (1) EP2472314A4 (ja)
JP (1) JPWO2011024781A1 (ja)
WO (1) WO2011024781A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017216B1 (fr) * 2014-01-31 2017-05-26 Univ De Franche-Comte Methode de fabrication d'un guide d'onde optique a structure "ridge" a faibles pertes de couplage entre le guide d'onde optique a structure "ridge" et une fibre optique, et guide d'onde optique a structure "ridge" fabrique par cette methode
EP3091103A1 (en) * 2015-05-04 2016-11-09 Centre National De La Recherche Scientifique Process for obtaining patterned metal-oxide thin films deposited onto a substrate, filmed substrates obtained thereof, and semiconductor nanodevices comprising them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220578A (ja) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd 分極反転領域の製造方法ならびにそれを利用した光波長変換素子及びその製造方法
JP2007183316A (ja) 2006-01-04 2007-07-19 Precise Gauges Co Ltd 波長変換導波路素子及びその製造方法
JP2009194416A (ja) 2008-02-12 2009-08-27 Sony Corp 再生システム、制御装置および制御方法、再生装置および再生方法、並びにプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69026766T2 (de) * 1989-05-18 1996-11-28 Sony Corp Verfahren zur Kontrolle der ferroelektrischen Domänen eines nichtlinearen optischen Substrates
EP0699934B1 (en) 1994-08-31 2003-10-15 Matsushita Electric Industrial Co., Ltd. Method of manufacturing domain-inverted regions and an optical wavelength conversion device with the same
US6002515A (en) * 1997-01-14 1999-12-14 Matsushita Electric Industrial Co., Ltd. Method for producing polarization inversion part, optical wavelength conversion element using the same, and optical waveguide
JP4545380B2 (ja) * 2003-01-16 2010-09-15 パナソニック株式会社 光導波路デバイスならびにそれを用いたコヒーレント光源およびそれを備えた光学装置
WO2007049793A1 (ja) * 2005-10-25 2007-05-03 National Institute For Materials Science 分極反転領域を形成する方法、その装置およびそれを用いたデバイス
JP5074436B2 (ja) * 2009-03-06 2012-11-14 日本碍子株式会社 高調波発生素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220578A (ja) * 1994-08-31 1996-08-30 Matsushita Electric Ind Co Ltd 分極反転領域の製造方法ならびにそれを利用した光波長変換素子及びその製造方法
JP2007183316A (ja) 2006-01-04 2007-07-19 Precise Gauges Co Ltd 波長変換導波路素子及びその製造方法
JP2009194416A (ja) 2008-02-12 2009-08-27 Sony Corp 再生システム、制御装置および制御方法、再生装置および再生方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472314A4 *

Also Published As

Publication number Publication date
EP2472314A4 (en) 2013-08-28
US20120195546A1 (en) 2012-08-02
US8817363B2 (en) 2014-08-26
EP2472314A1 (en) 2012-07-04
JPWO2011024781A1 (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP4825847B2 (ja) 光学素子およびその製造方法
JP5083865B2 (ja) 光導波路基板および高調波発生デバイス
JP5672529B2 (ja) 電気光学素子及びその製造方法、並びに、電気光学素子を用いた光偏向装置
JPH10503602A (ja) パターン付分極化誘電構造体と装置の製造
US7643205B2 (en) Harmonics generating devices
WO2019180922A1 (ja) 電気光学素子のための複合基板
JP4174377B2 (ja) 光学素子
JP4803546B2 (ja) 波長変換導波路素子及びその製造方法
CN102841481A (zh) 光学器件以及光学器件的制造方法
CN112955811B (zh) 电光元件用的复合基板及其制造方法
US8101099B2 (en) Optical waveguide substrate manufacturing method
US7710638B2 (en) Wavelength conversion devices
WO2011024781A1 (ja) 波長変換素子及びその製造方法
US7633672B2 (en) Wavelength conversion devices
US7931831B2 (en) Optical waveguide substrate manufacturing method
US7875146B2 (en) Method of producing harmonics generating device
JP4806424B2 (ja) 高調波発生素子
JP2008209451A (ja) 波長変換素子
JP2011048010A (ja) 波長変換素子の製造方法及び波長変換素子
JP2016024423A (ja) 波長変換素子の製造方法および波長変換素子
JP2009192588A (ja) Shg素子およびこの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528788

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010811831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010811831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391851

Country of ref document: US