WO2011024506A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2011024506A1
WO2011024506A1 PCT/JP2010/056431 JP2010056431W WO2011024506A1 WO 2011024506 A1 WO2011024506 A1 WO 2011024506A1 JP 2010056431 W JP2010056431 W JP 2010056431W WO 2011024506 A1 WO2011024506 A1 WO 2011024506A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit
antenna element
capacitance
detection circuit
Prior art date
Application number
PCT/JP2010/056431
Other languages
English (en)
French (fr)
Inventor
南雲正二
▲高▼田政明
植木紀行
小山展正
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011528673A priority Critical patent/JP5370488B2/ja
Priority to CN201080037709.9A priority patent/CN102484316B/zh
Publication of WO2011024506A1 publication Critical patent/WO2011024506A1/ja
Priority to US13/404,039 priority patent/US10084229B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Definitions

  • the present invention relates to an antenna device provided in, for example, a mobile phone terminal.
  • Patent Documents 1, 2, and 3 disclose sensing of an ambient condition in order to correct an antenna characteristic that changes depending on the ambient condition such as the proximity of a human body by feedback.
  • Patent Document 1 directly measures the input impedance (return loss, VSWR) of an antenna that has fluctuated due to a change in ambient conditions.
  • a directional coupler is installed on the line between the RF circuit and the antenna, and the power in the direction from the RF circuit to the antenna (input direction) and in the direction from the antenna to the RF circuit (reflection direction) is monitored, and the current input impedance To figure out.
  • Patent Document 2 directly measures changes in the amount of electromagnetic waves radiated from an antenna. Changes in the electric field radiated from the antenna due to the influence of the surroundings are detected using a sensor such as a Hall element. Whether this change is a change in input impedance or an increase in loss due to absorption of radiated electromagnetic waves by the proximity medium, the cause of which cannot be determined, but a change in the radiated electric field as a total result is detected.
  • Patent Document 3 measures the distance to the approaching human body. Using a light emitting / receiving element, distance measurement is performed by light reflected by a proximity body.
  • the antenna device includes an antenna 18, a high-frequency circuit 26 that inputs a radio frequency signal to the antenna 18, and several network elements.
  • a first signal path is provided between the antenna 18 and the high-frequency circuit 26. It includes a matching circuit 24, a controller 28, and a detector 10 that detects the electromagnetic field radiated by the antenna 18.
  • the control device 28 performs matching control of the antenna 18 based on the detected electric field.
  • a device that uses reflection of light, infrared rays, sound waves, etc. has no diffractive properties [strongly going straight], and the detection direction and angle are limited. Therefore, it is not sufficient to detect the proximity of a human body or the like from any direction of the terminal. Alternatively, a plurality of distance measuring sensors are required.
  • an object of the present invention is to provide an antenna apparatus that detects the ambient environment that changes the antenna characteristics, corrects the antenna characteristics as appropriate, and maintains stable antenna characteristics at all times.
  • An antenna device comprising: an antenna element; and an antenna matching circuit connected between the antenna element and a power feeding unit, A capacitance detection circuit connected to the antenna element and detecting stray capacitance of the antenna element; A feedback control circuit for controlling the antenna matching circuit according to an output signal of the capacitance detection circuit; Is provided.
  • the detection direction and angle are not limited, and changes in antenna characteristics can be accurately detected.
  • a reactance element that prevents an inflow of a sensing signal detected by the capacitance detection circuit is provided in a wireless communication signal path that is a transmission path between the antenna element and the power feeding unit.
  • a reactance element that prevents a wireless communication signal that is fed to or transmitted from the antenna element in a sensing signal path that is a transmission path between the antenna element and the capacitance detection circuit Provide. With this configuration, since the capacitance detection circuit does not affect the antenna element in the communication signal frequency band, the antenna characteristics are hardly deteriorated.
  • the capacitance detection circuit is a capacitance-voltage conversion amplifier circuit that includes a feedback capacitor in the feedback circuit of the inverting amplifier circuit and outputs a voltage that is substantially proportional to the ratio of the change rate of the detection target capacitance to the feedback capacitance. .
  • the antenna element is almost the same, and it is only necessary to add a capacitance-voltage conversion amplifier circuit as an accessory, so that there is little influence on the design of an electronic device incorporating the antenna device, and it can be easily applied to a plurality of models.
  • the capacitance-voltage conversion amplifier circuit includes an AC signal source that generates an AC signal having a frequency sufficiently lower than a resonance frequency of the antenna element at an input portion of the inverting amplifier circuit.
  • a detection circuit for detecting the output signal of the inverting amplifier circuit is provided at the output section of the inverting amplifier circuit.
  • An integrating circuit for integrating the output voltage of the inverting amplifier circuit is provided at the output of the inverting amplifier circuit.
  • the antenna element is a single antenna element that has a good radiation Q among a plurality of types of antenna elements that can be connected to the antenna connection portion of the antenna matching circuit.
  • the selection conditions for the plurality of types of antenna elements include a position of a feeding point with respect to the antenna element and a connection position of the capacitance detection circuit with respect to the antenna element.
  • the present invention it is possible to detect the ambient environment of the antenna without being limited to transmission and correct the antenna characteristics by feedback. Moreover, since members other than those required for radiation are not required, the antenna characteristics are not deteriorated. Furthermore, since reflection of light, infrared rays, sound waves, etc. is not used, the detection direction and angle are not limited, and changes in antenna characteristics can be accurately detected.
  • FIG. 2A is a diagram schematically showing the electric field formed between the antenna element electrode 21 and the ground electrode 51 of the substrate by lines of electric force.
  • FIG. 2B is a diagram illustrating a state in which a part of the human body is close to the antenna device. It is a figure which shows two structures of the antenna device which concerns on 1st Embodiment. It is a figure which shows about the effect
  • FIG. 5A and FIG. 5B are exploded perspective views showing specific structures of the two antenna devices according to the first embodiment.
  • FIG. 10A is a circuit diagram of a capacitance detection circuit provided in the antenna device according to the third embodiment
  • FIG. 10B is a waveform diagram showing its operation.
  • FIG. 12A is a circuit diagram of a capacitance detection circuit configured based on the circuit shown in FIG. 11, and FIG. 12B is a voltage output waveform diagram obtained by capacitance-voltage conversion. It is a figure which shows two structures of the antenna device which concerns on 5th Embodiment.
  • the antenna element electrode 21 and the ground electrode 51 of the substrate can be regarded as opposing conductors in the capacitor connected by the lines of electric force, and the capacitance is also a so-called stray capacitance that determines the resonance frequency.
  • FIG. 2B shows a state in which a part of the human body is close to the antenna device.
  • the human body palm or finger
  • the electric field lines enter (terminate) so as to be attracted to the human body, and the antenna element electrode 21
  • the capacitance floating capacitance
  • a dielectric is inserted between the capacitor electrodes.
  • the present invention is characterized in that this relationship is used for sensing the proximity of a human body, and that the antenna element is used for two functions (transmitting / receiving electromagnetic waves of a wireless communication signal and detecting the proximity of a human body). .
  • FIG. 3 is a diagram illustrating two configurations of an antenna device including a capacitance detection circuit 60 that detects the stray capacitance or a change thereof.
  • a variable matching circuit 30 is provided in a wireless communication signal path that is a transmission path between the antenna element electrode 21 and the power feeding circuit 40.
  • the wireless communication signal path is provided with a reactance element X1 that blocks inflow of a sensing signal detected by the capacitance detection circuit 60.
  • a sensing signal path which is a transmission path between the antenna element electrode 21 and the capacitance detection circuit 60, prevents a wireless communication signal fed to the antenna element electrode 21 or transmitted from the antenna element electrode 21.
  • a reactance element X2 is provided.
  • the capacitance detection circuit 60 constitutes a capacitance-voltage conversion circuit (CV conversion circuit), which converts a change in stray capacitance caused by the proximity of the human body into a change in voltage value and outputs it.
  • the feedback control circuit 70 gives a control signal to the variable matching circuit 30 based on the voltage output from the capacitance detection circuit 60.
  • the variable matching circuit 30 is a reconfigurable matching circuit that matches two frequency bands, a low band and a high band.
  • the insertion position of the reactance element X2 is different between the antenna device shown in FIG. 3 (A) and the antenna device shown in FIG. 3 (B).
  • the insertion position of the reactance element X ⁇ b> 2 may be a position that prevents the wraparound of the wireless communication signal that is fed to the antenna element electrode 21 or transmitted from the antenna element electrode 21. Therefore, the insertion position of the reactance element X2 is not limited to the position shown in FIG. 3A, and may be, for example, the position shown in FIG.
  • FIG. 4 is a diagram illustrating the operation of the capacitance detection circuit 60, the feedback control circuit 70, and the variable matching circuit 30.
  • the horizontal axis represents frequency and the vertical axis represents return loss.
  • the antenna device performs communication in one of two frequency bands, a low band and a high band, and a low frequency signal near frequency 0 (electrostatic field) or frequency 0 is used to detect stray capacitance.
  • the capacitance detection circuit 60 outputs a voltage corresponding to the increase in the stray capacitance, and the feedback control circuit 70 applies a control voltage corresponding to the increase in the stray capacitance to the variable matching circuit 30.
  • the variable matching circuit 30 changes its circuit constant and returns to an appropriate matching state (an appropriate matching state is maintained).
  • a low-band return loss waveform RLL0 is adjusted as a return loss waveform RLL1 by appropriate matching.
  • a high-band return loss waveform RLH0 is adjusted as a return loss waveform RLH1 by appropriate matching. .
  • FIGS. 5A and 5B are exploded perspective views showing specific structures of the two antenna devices.
  • the three-dimensionality of the arrangement of the component parts of the antenna device may cause the need to connect with an interface such as a spring terminal or a contact pin.
  • FIGS. 5A and 5B show examples thereof. .
  • an antenna element 20A obtained by bending a metal plate is used, and this is soldered to the antenna connection portion 32 formed on the substrate 31A or brought into spring contact, and the upper portion thereof is the casing 50. It is covered with.
  • the end portions of the antenna element 20 ⁇ / b> A and the substrate 31 ⁇ / b> A are shaped so as not to create a useless space in accordance with the shape of the housing 50.
  • an antenna matching module 80 obtained by modularizing the capacitance detection circuit 60, the feedback control circuit 70, the reactance element X1, and the variable matching circuit 30 is mounted on the substrate 31A.
  • a pin-shaped antenna connection portion 32B is attached to the substrate 31B, the antenna element electrode 21B is provided on the inner surface of the housing 50, and the housing 50 is covered with the substrate 31B.
  • the antenna connection portion 32B is spring-connected to the antenna element electrode 21B. In this way, the present invention can also be applied to an antenna element provided in a part of a housing.
  • the antenna element electrode may be directly formed in the non-ground region of the substrate to configure the antenna element on the substrate side.
  • the present invention can be applied regardless of whether the antenna element is disposed within the ground electrode formation region or outside the ground electrode formation region (ground electrode non-formation region) of the substrate.
  • the antenna element is expressed as a plain plate, but it does not matter whether patterning is performed. Since the frequency band used for sensing is far from the frequency band for wireless communication, even if a tuning pattern is applied to the antenna element electrode, the antenna element only acts as a counter conductor of stray capacitance in the frequency band used for sensing. is there.
  • a slit is formed or a branched shape is used to resonate with both the fundamental wave and the harmonic, and a plurality of reactance elements are inserted into the antenna element.
  • the band may have a resonance point, or may be divided into a feeding element and a parasitic element.
  • connection target of the capacitance detection circuit can be widely applied to a parasitic element, a diversity antenna, an antenna corresponding to a different frequency band of the system (for example, Bluetooth or WLAN antenna).
  • variable matching circuit adjusts the matching in accordance with the surrounding environment while having a broadband two-resonance characteristic in two frequency bands, but the present invention is not limited to this.
  • One resonance (2) A circuit configuration such as ⁇ -type / T-type that includes a variable reactance element (without a Reconfigure viewpoint), (3) A plurality of matching circuits are prepared in advance, and the matching circuits are switched by route selection according to the degree of proximity to the human body. You may apply to.
  • the target of reconfiguration is not limited to a low band [eg GSM800 / 900] and a high band [eg DCS / PCS / UMTS]. It may cover another system (WLAN / Bluetooth / Wimax, etc.), and may cover five bands (Pentaband) with finer division (capacity value to be prepared at this time is set finely) Will be done).
  • a low band eg GSM800 / 900
  • a high band eg DCS / PCS / UMTS.
  • It may cover another system (WLAN / Bluetooth / Wimax, etc.), and may cover five bands (Pentaband) with finer division (capacity value to be prepared at this time is set finely) Will be done).
  • FIG. 6 is a diagram illustrating a configuration of another antenna device according to the first embodiment.
  • a housing dipole is formed of a folding type (clamshell type) mobile phone terminal.
  • the right side of FIG. 6 shows that a pseudo dipole is configured by the ground electrode 51 on the first substrate side and the ground electrode 52 on the second substrate side.
  • the first substrate is built in a first housing in which operation keys and the like are provided
  • the second substrate is built in a second housing in which a liquid crystal display panel and a speaker are provided.
  • a pseudo dipole may be configured by the ground electrodes of the two substrates.
  • the present invention can be similarly applied to a mobile phone terminal such as a slide type or a swivel type. All or part of the capacitance detection circuit, the feedback control circuit, and the variable matching circuit may be provided on the substrate on the liquid crystal display panel side.
  • FIG. 7 shows an example different from the example already shown with respect to the position of the substrate in the mobile phone terminal and the positional relationship between the substrate and the antenna element.
  • 7A and 7B, a substrate ground electrode 51, a capacitance detection circuit 60, and an antenna element electrode 21 are provided in a single casing.
  • a substrate ground electrode 51, a capacitance detection circuit 60, and an antenna element electrode 21 are provided in one of the clamshell type housings.
  • the antenna element electrode 21 is provided above the ground electrode 51 of the substrate.
  • the antenna element electrode 21 is provided below the ground electrode 51 of the substrate.
  • the antenna structure is almost unchanged, and it is only necessary to add a capacitance-voltage conversion circuit as an accessory. There is little influence on the structural design of the mobile phone terminal, and it can be easily deployed to multiple models.
  • the wireless communication signal path and the sensing signal path can coexist as being connected to the same antenna element. That is, it is possible to reduce the influence of the loading of the capacitance-voltage conversion circuit on the wireless communication signal side characteristics (matching characteristics, etc.), and vice versa.
  • variable matching circuit can be optimally designed in the matching state that is variable according to the surrounding conditions, and the antenna efficiency can be maximized.
  • Second Embodiment a reactance element provided in a wireless communication signal path that is a transmission path between the antenna element and the power supply unit, and a reactance provided in a sensing signal path that is a transmission path between the antenna element and the capacitance detection circuit. Specific examples of the element are shown.
  • FIG. 8 is a diagram illustrating two configurations of the antenna device according to the second embodiment.
  • a capacitor C is provided in a wireless communication signal path PW1 that is a transmission path between the antenna element electrode 21 and the power feeding circuit 40.
  • an inductor L is provided in a sensing signal path PW2 that is a transmission path between the antenna element electrode 21 and the capacitance detection circuit 60.
  • the capacitor C provided in the wireless communication signal path PW1 passes the wireless communication signal, but cuts off a low-frequency signal that is direct current or close to direct current. Therefore, the sensing signal detected by the capacitance detection circuit 60 To prevent the inflow.
  • the inductor L provided in the sensing signal path PW2 passes a direct current or a low frequency signal close to direct current, but has a high impedance in the frequency band of the wireless communication signal. It does not affect the matching of the variable matching circuit 30).
  • the insertion position of the inductor L may be a position that prevents the wireless communication signal that is fed to the antenna element electrode 21 or transmitted from the antenna element electrode 21 from wrapping around. Therefore, the insertion position of the inductor L is not limited to the position shown in FIG. 8A, and may be the position shown in FIG. 8B, for example.
  • FIG. 9 is a diagram illustrating another configuration example of the antenna device according to the second embodiment.
  • the wireless communication signal path PW1 is connected to the port P3 of the antenna element electrode 21, and the sensing signal path PW2 is connected to the port P4 of the antenna element electrode 21.
  • the branch pattern of the wireless communication signal path PW1 and the sensing signal path PW2 is configured by an electrode pattern on the substrate.
  • the branching of the wireless communication signal path and the sensing signal path is not limited to between the antenna element electrode and the substrate, but may be on the antenna element side or the substrate side.
  • FIG. 10A is a circuit diagram of a capacitance detection circuit provided in the antenna device according to the third embodiment
  • FIG. 10B is a waveform diagram showing its operation.
  • the capacitance-voltage conversion circuit includes an inverting amplification circuit using an operational amplifier OP1, a detection target capacitance Cs, and a feedback capacitance Cf.
  • a reference potential Vref1 is applied to the non-inverting input terminal of the operational amplifier OP1.
  • a resistor Rf is connected in parallel to the feedback capacitor Cf.
  • the resistor Rf is also a factor that determines the cut-off frequency.
  • the value of the resistance Rf requires a very large value in consideration of the time response of “capacitance change due to proximity of human body” which is an event to be handled and how much holdability of the state is required.
  • the capacity detection circuit according to the third embodiment is premised on that there is no AC signal source such as a local oscillator. Therefore, an integrating circuit using an operational amplifier is provided after the Cs-Cf feedback circuit. That is, an inverting amplifier circuit using the operational amplifier OP2, a feedback circuit using the capacitor Ci, and the resistor R constitute an integrating circuit. The integration time constant is determined by connecting a resistor Ri in parallel with the capacitor Ci. The reference potential Vref2 is applied to the non-inverting input terminal of the operational amplifier OP2.
  • the output voltage Va of the capacitance-voltage conversion circuit becomes a voltage that is substantially proportional to the rate of change of the capacitance C to be detected. Further, since the output voltage Vout of the integration circuit is a voltage obtained by integrating the voltage Va, the voltage corresponds to the approach distance of the hand.
  • the capacitance detection circuit shown in the third embodiment since a signal source such as a local oscillator is not required, the capacitance detection circuit can be simplified. Moreover, there is an advantage that the signal source does not become a noise source.
  • the fourth embodiment shows a specific example of a capacitance-voltage conversion circuit using an AC signal source.
  • FIG. 11 is a diagram showing a basic form of the capacitance-voltage conversion circuit.
  • a local oscillator OSC is connected in series with the detection target capacitor Cs.
  • a reference potential Vref1 is applied to the non-inverting input terminal of the operational amplifier OP. Therefore, the potential at the connection point P5 between the detection target capacitor Cs and the feedback capacitor Cf (the input voltage of the operational amplifier OP) is a stable potential corresponding to the detection target capacitor.
  • the oscillation frequency of the local oscillator OSC is a low frequency almost close to direct current as compared with the frequency band of the wireless communication signal.
  • FIG. 12A is a circuit diagram of a capacitance detection circuit configured based on the circuit shown in FIG. FIG. 12B is a voltage output waveform diagram obtained by the capacitance-voltage conversion.
  • the local oscillator OSC is connected to the non-inverting input terminal of the operational amplifier.
  • a resistor Rf is connected in parallel with the feedback capacitor Cf.
  • a detection circuit including a diode Di, a capacitor Cd, and a resistor Rd is provided at the output of the operational amplifier OP so that an envelope is taken out as an output.
  • the amplitude of the voltage Va increases as the capacitance value of the detection target capacitance Cs increases. Therefore, the output voltage Vout of the detection circuit increases.
  • the amplitude of the voltage Va decreases as the capacitance value of the detection target capacitor Cs decreases, and the output voltage Vout decreases.
  • capacitance detection circuit is not restricted to FIG. Further, since the output signal is not limited to the one that is taken out as an AC voltage signal, the detection circuit also has various circuits corresponding to the output signal.
  • a low-pass filter that blocks AC components may be provided.
  • the position of the AC signal source is not limited to that shown in FIGS.
  • a part of the high-frequency circuit unit may be used as an AC signal source. That is, some AC signal may be extracted from the high frequency circuit.
  • the efficiency of the antenna device of the present invention depends on the radiation Q of the antenna element alone (an antenna as a pseudo dipole including the antenna element and a ground electrode that contributes to radiation).
  • the single antenna element includes a loading reactance that sets a resonance frequency in a desired frequency band.
  • the capacity detection circuit is loaded.
  • the antenna element should have a radiation Q as good as possible (small value). As a result, the antenna efficiency and the frequency bandwidth can be maximized under the condition where the structure space is limited.
  • Selection here refers to not only examining the characteristics of the radiation Q of the antenna, but also including noting that the installation of the sensing signal path does not adversely affect the radiation Q of the antenna.
  • FIG. 13 is a configuration diagram of the two types of antenna devices.
  • FIG. 13A shows the antenna device already shown in the first embodiment.
  • FIG. 13B shows an example in which the sensing signal path PW2 is arranged at a position far away from the wireless communication signal path PW1.
  • the capacitance detection circuit 60 becomes an obstacle placed at the radiation destination to the outside world.
  • the sensing signal path PW2 is integral with the wireless communication signal path (therefore, the wireless communication signal path PW1 and the sensing signal path PW2 are branched in the middle. Or a structure in which the wireless communication signal path PW1 and the sensing signal path PW2 are close to each other so that they appear to be almost integrated with respect to the wavelength.

Abstract

 アンテナ特性を変化させる周囲環境を検出し、アンテナ特性を適宜補正して、常に安定したアンテナ特性を維持する。 アンテナ素子電極(21)と基板のグランド電極(51)とによる擬似ダイポールの電界中に人体(掌や指)が近接すると、電気力線は人体に引き寄せられるように入射[終端]し、アンテナ素子電極(21)と基板のグランド電極(51)との間の容量(浮遊容量)は増加する。本発明は、アンテナ素子を無線通信信号の電磁波の送受と人体近接の検知の2つの機能のために用い、人体の近接度と浮遊容量の変化との関係を利用して人体近接のセンシングを行う。そして、人体近接によるアンテナ特性の変化を適宜補正して安定したアンテナ特性を維持する。

Description

アンテナ装置
 この発明は、例えば携帯電話端末に備えられるアンテナ装置に関するものである。
 人体近接などの周囲状況によって変わるアンテナ特性をフィードバックにより補正するために、周囲状況をセンシングするものが特許文献1,2,3に開示されている。
 特許文献1は、周囲状況の変化によって変動したアンテナの入力インピーダンス(リターンロス,VSWR)を直接的に計測するものである。RF回路とアンテナ間の線路に方向性結合器を設置し、RF回路からアンテナへの方向(入力方向)、アンテナからRF回路への方向(反射方向)の電力をモニタリングし、現状態の入力インピーダンスを把握する。
 特許文献2は、アンテナから放射される電磁波量の変化を直接計測するものである。周囲の影響によってアンテナからの放射電界の変化を、ホール素子のようなセンサを用いて検出する。この変化は、入力インピーダンスの変化であるか、近接媒体による放射電磁波の吸収による損失増大であるか、その要因は切分けられないが、その総合結果としての放射電界の変化を検出する。
 特許文献3は、接近する人体までの距離を計測するものである。発光・受光素子を用い、近接体で反射された光によって距離計測を行う。
 ここで、特許文献2に示されているアンテナ装置の構成を、図1を基に説明する。
 アンテナ装置は、アンテナ18、無線周波数信号をアンテナ18に入力する高周波回路26、及びいくつかのネットワーク素子から成っていて、アンテナ18と高周波回路26との間で信号路に設けられた第1の整合回路24、制御装置28、アンテナ18によって放射される電磁界を検出する検出器10を含む。制御装置28は、検出された電界に基づいて、アンテナ18の整合制御を行う。
米国特許出願公開第2009/0046030号明細書 国際出願第2009/033510号パンフレット 米国特許出願公開第2004/0217909号明細書
 ところが、特許文献1に開示されているアンテナ装置では、入力インピーダンスの把握のために、アンテナに電力を投入する必要があり、送信周波数帯のインピーダンス変化しか把握できない。特定周波数の入力インピーダンスの変化というより「アンテナ共振系が外部影響によってどういう状態にあるのか」の把握が好ましい。
 特許文献2に開示されているアンテナ装置では、放射とは関係のない部材を設けることになるので、アンテナ特性を劣化させる懸念がある。また、アンテナとセンサの一体化という観点にしても、これらが単なる組み合わせで、別体として存在し、どちらかが他方の占有空間に包含されるという構成では、近接部品が特性に悪影響を与えてしまう。
 特許文献3に開示されているアンテナ装置のように、光・赤外線・音波などの反射を利用するものは、回折性がなく[直進性が強く]、検知方向・角度が限定される。そのため、端末のあらゆる方向からの人体等の近接を検知するには十分ではない。あるいは測距センサが複数必要となってしまう。
 したがって、アンテナ特性を安定化させるために周囲状況をセンシングするとしても、上記の何れの構成も好ましいとは言えない。
 そこで、この発明の目的は、アンテナ特性を変化させる周囲環境を検出し、アンテナ特性を適宜補正して、常に安定したアンテナ特性を維持するアンテナ装置を提供することにある。
 上記課題を解決するために、この発明は次のように構成する。
(1)アンテナ素子と、前記アンテナ素子と給電部との間に接続されるアンテナ整合回路と、を備えたアンテナ装置であって、
 前記アンテナ素子に接続され、前記アンテナ素子の浮遊容量を検出する容量検出回路と、
 前記容量検出回路の出力信号に応じて前記アンテナ整合回路を制御するフィードバック制御回路と、
を備える。
 上記構成により、送信時に限らずにアンテナの周囲環境を検出してフィードバックによりアンテナ特性を補正できる。また、放射に要する部材以外の部材を必要としないので、アンテナ特性を劣化させることがない。さらに、光・赤外線・音波などの反射を利用するわけでもないので、検知方向や角度が限定されず、アンテナ特性の変化を的確に検出できる。
(2)前記アンテナ素子と前記給電部との間の伝送経路である無線通信信号経路に、前記容量検出回路が検出するセンシング信号の流入を阻止するリアクタンス素子を設ける。
 この構成により、無線通信信号にセンシング信号が回り込まず、アンテナ特性を殆ど劣化させることがない。
(3)前記アンテナ素子と前記容量検出回路との間の伝送経路であるセンシング信号経路に、前記アンテナ素子に給電される又は前記アンテナ素子から伝送される無線通信信号の回り込みを阻止するリアクタンス素子を設ける。
 この構成により、通信信号周波数帯で容量検出回路がアンテナ素子に影響を及ぼさないので、アンテナ特性を殆ど劣化させることがない。
(4)前記容量検出回路は、反転増幅回路の帰還回路に帰還容量を含み、前記帰還容量に対する検出対象容量の変化率の比にほぼ比例する電圧を出力する、容量-電圧変換増幅回路とする。
 この構成により、アンテナ素子はほぼそのままで、付属物として容量-電圧変換増幅回路など加える程度で済むため、アンテナ装置を組み込む電子機器の設計上の影響が少なく複数のモデルへ適用が容易となる。
(5)前記容量-電圧変換増幅回路は、前記反転増幅回路の入力部に、前記アンテナ素子の共振周波数より充分に低い周波数の交流信号を発生する交流信号源を備える。
 この構成により、同一アンテナ素子に接続される無線通信信号経路とセンシング信号経路とを併存させることができる。
(6)前記反転増幅回路の出力部に前記反転増幅回路の出力信号を検波する検波回路を備える。
 この構成により、検出対象である、微小な容量変化に対して安定した検出値が見込める。
(7)前記反転増幅回路の出力に、前記反転増幅回路の出力電圧を積分する積分回路を備える。
 この構成により、局部発振器などのセンシング用の信号源を省略することができ、容量検出回路が簡易化できる。
(8)前記アンテナ素子は、前記アンテナ整合回路のアンテナ接続部に接続可能な複数種のアンテナ素子のうち、前記アンテナ素子の単体で放射Qの良好なアンテナ素子とする。
 この構成により、放射Qの良好なアンテナを前記アンテナ整合回路に接続することによって、効率の高いアンテナ装置が構成できる。
(9)前記複数種のアンテナ素子の選択条件は、前記アンテナ素子に対する給電点の位置、及び前記アンテナ素子に対する前記容量検出回路の接続位置を含む。
 これにより、放射Qの良好なアンテナ素子を容易且つ確実に選定でき、高効率なアンテナ装置が構成できる。
 この発明によれば、送信時に限らずにアンテナの周囲環境を検出してフィードバックによりアンテナ特性を補正できる。また、放射に要する部材以外の部材を必要としないので、アンテナ特性を劣化させることがない。さらに、光・赤外線・音波などの反射を利用するわけでもないので、検知方向や角度が限定されず、アンテナ特性の変化を的確に検出できる。
特許文献2に示されているアンテナ装置の構成を示す図である。 図2(A)はアンテナ素子電極21と基板のグランド電極51との間に形成される電界を電気力線で模式的に表した図である。図2(B)はアンテナ装置に人体の一部が近接した状態を示す図である。 第1の実施形態に係るアンテナ装置の二つの構成を示す図である。 第1の実施形態に係るアンテナ装置を構成する、容量検出回路60、フィードバック制御回路70、及び可変マッチング回路30の作用について示す図である。 図5(A),図5(B)は、第1の実施形態に係る二つのアンテナ装置の具体的な構造を示す分解斜視図である。 第1の実施形態に係る別のアンテナ装置の構成を示す図である。 第1の実施形態に係る携帯電話端末内の基板の位置、及び基板とアンテナ素子との位置関係について、幾つかの構成例を示す図である。 第2の実施形態に係るアンテナ装置の二つの構成を示す図である。 第2の実施形態に係るアンテナ装置の別の構成例を示す図である。 図10(A)は第3の実施形態に係るアンテナ装置に備える容量検出回路の回路図、図10(B)は、その動作を示す波形図である。 第4の実施形態に係るアンテナ装置に備える容量-電圧変換回路の基本形を示す図である。 図12(A)は、図11に示した回路を基礎にして構成した容量検出回路の回路図、図12(B)はその容量-電圧変換した電圧出力波形図である。 第5の実施形態に係るアンテナ装置の二つの構成を示す図である。
《第1の実施形態》
 第1の実施形態に係るアンテナ装置について、図2~図7を参照して説明する。
 アンテナ素子電極21と基板のグランド電極51との間には、図2(A)中に電気力線で模式的に表わされるように電界が形成される。無線通信信号のような高周波では前記電界が交番することで電磁波が外界に放射される。直流ではいわゆる静電界を形づくる。
 図2(A)の右側には、アンテナ素子電極21と基板のグランド電極51とによって擬似ダイポールが構成されていることを表している。
 アンテナ素子電極21と基板のグランド電極51とは、前記電気力線で繋がれたコンデンサにおける対向導体とみなせ、その容量は共振周波数を決定する、いわゆる浮遊容量でもある。
 図2(B)は前記アンテナ装置に人体の一部が近接した状態を示している。このように電界中に人体(掌や指)が近接すると、(人体は高抵抗率の誘電体であるため)電気力線は人体に引き寄せられるように入射[終端]し、アンテナ素子電極21と基板のグランド電極51との間(図2(B)中の端子P1-P2間)の容量(浮遊容量)は増加することになる。等価的には、コンデンサ電極間に誘電体を挿入した状態である。
 従って、人体の近接度と浮遊容量の変化との間には密接な関係がある。本発明は、この関係を人体近接のセンシングに用いること、且つ、アンテナ素子を、無線通信信号の電磁波の送受と人体近接の検知の2つの機能のために用いる(兼用する)ことに特徴がある。これにより、前述の課題は解消される。
 図3は、前記浮遊容量又はその変化を検出する容量検出回路60を備えたアンテナ装置の二つの構成を示す図である。
 図3(A)において、アンテナ素子電極21と給電回路40との間の伝送経路である無線通信信号経路に可変マッチング回路30が設けられている。また、前記無線通信信号経路には、容量検出回路60が検出するセンシング信号の流入を阻止するリアクタンス素子X1が設けられている。また、アンテナ素子電極21と容量検出回路60との間の伝送経路であるセンシング信号経路には、アンテナ素子電極21に給電される又は前記アンテナ素子電極21から伝送される無線通信信号の回り込みを阻止するリアクタンス素子X2が設けられている。
 図3(A)において、容量検出回路60は容量-電圧変換回路(C-V変換回路)を構成していて、人体近接により生じた浮遊容量の変化を電圧値変化に変換して出力する。フィードバック制御回路70は容量検出回路60から出力される電圧に基づいて可変マッチング回路30に制御信号を与える。可変マッチング回路30はローバンドとハイバンドの二つの周波数帯域についてマッチングするReconfigurableなマッチング回路である。
 図3(A)に示すアンテナ装置と図3(B)に示すアンテナ装置とは、リアクタンス素子X2の挿入位置が異なる。リアクタンス素子X2の挿入位置は、アンテナ素子電極21に給電される又は前記アンテナ素子電極21から伝送される無線通信信号の回り込みを阻止する位置であればよい。そのため、リアクタンス素子X2の挿入位置は、図3(A)の位置に限らず、例えば図3(B)に示す位置であってもよい。
 図4は、前記容量検出回路60、フィードバック制御回路70、及び可変マッチング回路30の作用について示す図である。図4において横軸は周波数、縦軸はリターンロスである。この例では、ローバンドとハイバンドの2つの周波数帯の何れかで通信を行うアンテナ装置であり、周波数0(静電界)又は周波数0付近の低周波信号を浮遊容量の検出のために使用する。
 アンテナ装置に人体が近接して浮遊容量が変化(増大)すると、ローバンド及びハイバンドでのアンテナマッチングが不整合状態になろうとする(リターンロスが悪化する)。しかし、前記容量検出回路60は前記浮遊容量の増大に応じた電圧を出力し、フィードバック制御回路70は前記浮遊容量の増大に応じた制御電圧を可変マッチング回路30へ与える。これにより、可変マッチング回路30はその回路定数が変化して、適正なマッチング状態に戻る(適正なマッチング状態が維持される)。
 図4において、ローバンドのリターンロス波形RLL0は適正なマッチングによりリターンロス波形RLL1のようにAdjustされ、同様に、ハイバンドのリターンロス波形RLH0は適正なマッチングによりリターンロス波形RLH1のようにAdjustされる。
 図5(A),図5(B)は二つのアンテナ装置の具体的な構造を示す分解斜視図である。アンテナ装置の構成部品の配置の立体性からバネ端子や接触ピンなどのインターフェースで繋ぐ必要性が生じる可能性があるが、図5(A),図5(B)はその例を示すものである。
 図5(A)の例では、金属板を折り曲げ加工したアンテナ素子20Aを用い、これを、基板31Aに形成したアンテナ接続部32に半田付けし、あるいはバネ性接触させ、その上部を筐体50で覆うようにしている。アンテナ素子20A及び基板31Aの端部は、筐体50の形状に合わせて無駄な空間が生じないような形状にしている。なお、この例では、前記容量検出回路60、フィードバック制御回路70、リアクタンス素子X1、及び可変マッチング回路30をモジュール化したアンテナマッチングモジュール80が基板31Aに実装されている。
 図5(B)の例では、基板31Bに対してピン状のアンテナ接続部32Bを取り付け、筐体50の内面にアンテナ素子電極21Bを設け、基板31Bに対して筐体50を被せた状態でアンテナ接続部32Bがアンテナ素子電極21Bにバネ性接続されるようにしている。このようにしてアンテナ素子を筐体の一部に設けたものにも適用できる。
 その他にも、基板の非グランド領域にアンテナ素子電極を直接形成して、基板側にアンテナ素子を構成するようにしてもよい。
 なお、アンテナ素子の配置位置が基板のグランド電極形成領域内とグランド電極形成領域外(グランド電極非形成領域)のどちらであっても、本発明は適用できる。
 また、以上に示した例ではアンテナ素子をプレーンな板として表現したが、パターニングの有無は問わない。センシングに使用する周波数帯は無線通信の周波数帯からかけ離れているため、アンテナ素子電極にチューニングパターンなどを施しても、センシングに使用する周波数帯ではアンテナ素子は浮遊容量の対向導体として作用するだけである。
 前記アンテナ素子電極のパターニングとしては、例えばスリットを形成したり、分岐形状にしたりすることによって、基本波と高調波の両方で共振させるようにしたもの、アンテナ素子中にリアクタンス素子を挿入して複数のバンドに共振点を有させたもの、給電素子と無給電素子とに分割したものなどであってよい。
 容量検出回路の接続対象は、無給電素子や、ダイバーシチ用アンテナ、システムの異なる周波数帯に対応するアンテナ(例えばBluetoothやWLAN用アンテナ)、という具合に広く応用が可能である。
 前記可変マッチング回路は、二つの周波数帯で広帯域な2共振特性を有しつつ、周囲環境に応じてマッチングを調整するものであったが、本発明はこれに限らない。例えば、
 (1)1共振であるもの、
 (2)π型/T型のような回路構成で可変リアクタンス素子を包含するもの(Reconfigureの観点がないもの)、
 (3)複数のマッチング回路を予め準備しておき、人体近接の程度に対応して、経路選択でマッチング回路を切り替える、
 などに適用してもよい。
 また、Reconfigure対象はローバンド[例えばGSM800/900]とハイバンド[例えばDCS/PCS/UMTS]の場合に限らない。もっと別のシステム(WLAN/Bluetooth/Wimaxなど)をカバーしたものであってもよいし、五つのバンド(Pentaband)をもっと細かい分割でカバーする場合もあり得る(このとき準備する容量値は細かく設定されることとなる)。
 図6は、第1の実施形態に係る別のアンテナ装置の構成を示す図である。この例は、折畳みタイプ(クラムシェル型)の携帯電話端末で筐体ダイポールを構成したものである。図6の右側には、第1の基板側のグランド電極51と第2の基板側のグランド電極52とによって擬似ダイポールが構成されていることを表している。
 図6に示す例では、操作キーなどが設けられる第1の筐体内に第1の基板が内蔵され、液晶表示パネルやスピーカが設けられる第2の筐体内に第2の基板が内蔵されている。このようにして、二つの基板のグランド電極で擬似ダイポールを構成してもよい。
 また、クラムシェル型以外にも、スライド型やスイーベル型などの携帯電話端末にも同様に適用できる。
 また、容量検出回路、フィードバック制御回路、可変マッチング回路のすべてまたは一部が液晶表示パネル側の基板に設けられていてもよい。
 図7は、携帯電話端末内の基板の位置、及び基板とアンテナ素子との位置関係について、既に示した例とは異なる例を示すものである。
 図7(A),図7(B)の例では、何れも単一の筐体内に基板のグランド電極51、容量検出回路60、及びアンテナ素子電極21が設けられている。
 図7(C),図7(D)の例では、クラムシェル型筐体のうち一方の筐体内に基板のグランド電極51、容量検出回路60、及びアンテナ素子電極21が設けられている。
 図7(A),図7(C)の例では、基板のグランド電極51の上部にアンテナ素子電極21が設けられている。
 図7(B),図7(D)の例では、基板のグランド電極51の下部にアンテナ素子電極21が設けられている。
 以上に示した実施形態によれば、アンテナ構造体はほぼそのままに、付属物として容量-電圧変換回路など加える程度で済む。携帯電話端末の構造設計に対する影響が少なく、複数のモデルへ容易に展開できる。
 また、同一のアンテナ素子に接続するものとして、無線通信信号経路とセンシング信号経路とを併存させることができる。すなわち、容量-電圧変換回路の装荷が無線通信信号側の特性(整合特性など)に与える影響を軽減でき、またその逆も影響を軽減できる。
 さらに、周囲状況に応じて可変したマッチング状態において、可変マッチング回路を最適設計でき、アンテナ効率を最大限引きだすことができる。
《第2の実施形態》
 第2の実施形態では、アンテナ素子と給電部との間の伝送経路である無線通信信号経路に設けるリアクタンス素子、及びアンテナ素子と容量検出回路との間の伝送経路であるセンシング信号経路に設けるリアクタンス素子の具体例を示す。
 図8は、第2の実施形態に係るアンテナ装置の二つの構成を示す図である。
 図8(A)において、アンテナ素子電極21と給電回路40との間の伝送経路である無線通信信号経路PW1にキャパシタCが設けられている。また、アンテナ素子電極21と容量検出回路60との間の伝送経路であるセンシング信号経路PW2にインダクタLが設けられている。
 図8(A)において、無線通信信号経路PW1に設けられているキャパシタCは、無線通信信号を通すが、直流又は直流に近い低周波信号を遮断するので、容量検出回路60が検出するセンシング信号の流入を阻止する。また、センシング信号経路PW2に設けられているインダクタLは、直流又は直流に近い低周波信号を通過させるが、無線通信信号の周波数帯では高インピーダンスになるので、容量検出回路が(容量検出回路が装荷されていることが)可変マッチング回路30のマッチングに影響を与えない。
 図8(A)に示すアンテナ装置と図8(B)に示すアンテナ装置とは、インダクタLの挿入位置が異なる。インダクタLの挿入位置は、アンテナ素子電極21に給電される又は前記アンテナ素子電極21から伝送される無線通信信号の回り込みを阻止する位置であればよい。そのため、インダクタLの挿入位置は、図8(A)の位置に限らず、例えば図8(B)に示す位置であってもよい。
 図9は第2の実施形態に係るアンテナ装置の別の構成例を示す図である。
 図9(A)の例では、アンテナ素子電極21のポートP3に無線通信信号経路PW1が接続され、アンテナ素子電極21のポートP4にセンシング信号経路PW2が接続されている。
 図9(B)の例では、無線通信信号経路PW1とセンシング信号経路PW2との分岐パターンを基板上の電極パターンで構成されている。
 このように、無線通信信号経路とセンシング信号経路の分岐はアンテナ素子電極と基板との間に限らず、アンテナ素子側又は基板側であってもよい。
《第3の実施形態》
 第3の実施形態では、容量検出回路の具体的な構成例の一つについて示す。
 図10(A)は第3の実施形態に係るアンテナ装置に備える容量検出回路の回路図、図10(B)は、その動作を示す波形図である。
 ここでは、出力信号を電圧信号として取り出すこと、増幅を行うこと、という二つの観点からオペアンプを用いる。容量-電圧変換回路は、オペアンプOP1による反転増幅回路と、検出対象容量Cs及び帰還容量Cfとで構成される。オペアンプOP1の非反転入力端子には基準電位Vref1が印加される。この容量-電圧変換回路の動作原理は、検出対象容量Csの容量変化によるCs-Cf間の電荷の出入りによる変化電圧(V=Q/C)を増幅することである。
 前記Cs-Cfのみの帰還回路では動作が不安定となるため、帰還容量Cfに対して並列に抵抗Rfが接続されている。抵抗Rfはカットオフ周波数を決めるファクタでもあり、言い換えれば、Cs-Cf間の電荷の出入りの緩やか度=時定数のファクタでもある。この抵抗Rfの値は、扱う事象である「人体近接による容量変化」の時間応答や、その状態のホールド性をどの程度必要とするか、を考慮すると非常に大きな値を要する。
 第3の実施形態に係る容量検出回路は、局部発振器など交流信号源がないことが前提である。そのため、Cs-Cf帰還回路の後段に、オペアンプによる積分回路を設けている。すなわち、オペアンプOP2による反転増幅回路、キャパシタCiによる帰還回路及び抵抗Rで積分回路が構成される。なお、キャパシタCiに対して並列に抵抗Riを接続して積分時定数を定めている。オペアンプOP2の非反転入力端子には基準電位Vref2が印加される。
 図10(B)に表れているように、手との距離が変化したとき、容量-電圧変換回路の出力電圧Vaは、検出対象である容量Cの変化率にほぼ比例した電圧となる。また前記積分回路の出力電圧Voutは電圧Vaを積分した電圧であるので、手の接近距離に応じた電圧となる。
 第3の実施形態で示した容量検出回路によれば、局部発振器などの信号源を必要としないので、容量検出回路が簡易化できる。また、信号源がノイズ源になることもない、という利点がある。
《第4の実施形態》
 第4の実施形態では、交流信号源を用いた容量-電圧変換回路の具体例を示す。
 図11は容量-電圧変換回路の基本形を示す図である。検出対象容量Csに対して局部発振器OSCが直列接続されている。オペアンプOPの非反転入力端子には基準電位Vref1が印加される。そのため、検出対象容量Csと帰還容量Cfとの接続点P5の電位(オペアンプOPの入力電圧)は、検出対象容量に応じた安定した電位となる。局部発振器OSCの発振周波数は、無線通信信号の周波数帯に比較すれば殆ど直流に近い低周波である。
 図12(A)は、図11に示した回路を基礎にして構成した容量検出回路の回路図である。図12(B)はその容量-電圧変換した電圧出力波形図である。
 図12(A)の例では、オペアンプの非反転入力端子に局部発振器OSCを接続している。また帰還容量Cfに対して並列に抵抗Rfを接続している。オペアンプOPの出力にはダイオードDi、キャパシタCd及び抵抗Rdによる検波回路を設けて、包絡線を出力として取りだすように構成している。
 図12(B)に表れているように、手が接近したとき、検出対象容量Csの容量値の増大に伴って電圧Vaの振幅が増大する。したがって、検波回路の出力電圧Voutが上昇する。手が遠ざかったときは、検出対象容量Csの容量値の減少に伴って電圧Vaの振幅が減少し、出力電圧Voutは下降する。
 なお、交流信号源により交流信号を入力し、容量検出回路の交流出力信号として取りだす回路は図11・図12に限らない。また、出力信号が交流電圧信号として取り出されるものに限らないので、検波回路もそれに応じた種々の回路となる。
 また、検波回路以外にも、交流成分をブロックするローパスフィルタを設けてもよい。
 さらに、交流信号源の位置は図11・図12に限るものではない。また別体の局部発振器OSCを設けなくとも、高周波回路部の一部を交流信号源としてもよい。すなわち高周波回路から何らかの交流信号を取り出すようにしてもよい。
《第5の実施形態》
 第5の実施形態では、放射Qの良いアンテナの選択について示す。
 結論としては、この発明のアンテナ装置の効率は、アンテナ素子の単体(アンテナ素子と輻射に寄与するグランド電極とを含んだ、擬似ダイポールとしてのアンテナ)での放射Qに依存する。但し、前記アンテナ素子単体には、共振周波数を所望の周波数帯に定める装荷リアクタンスは含む。また、容量検出回路が装荷された状態である。
 前記アンテナ素子にはできる限り放射Qの良いもの(値の小さなもの)を選択すべきである。そのことにより、構造体スペースの限られた条件下でアンテナ効率及び周波数帯域幅を最大限に引き出すことができる。
 ここでいう「選択」とは、アンテナの放射Qの素性を吟味することは勿論であるが、センシング信号経路の設置がアンテナの放射Qに悪影響を与えないよう留意することも含んでいる。
 第5の実施形態では、この効果を実験的に検証するものである。
 図13はその2種類のアンテナ装置の構成図である。図13(A)は第1の実施形態で既に示したアンテナ装置である。図13(B)は、センシング信号経路PW2を無線通信信号経路PW1から大きく離れた位置に配置した例である。
 図13(B)のような配置では、容量検出回路60は外界への放射先に置かれた阻害物となる。結局のところ、放射Qが最適に設定された擬似ダイポールの構成において、センシング信号経路PW2が無線通信信号経路と一体である(したがって、無線通信信号経路PW1とセンシング信号経路PW2とが途中で分岐される構造)か、波長に比してほぼ一体に見えるくらいに、無線通信信号経路PW1とセンシング信号経路PW2とが近接している構造が好ましい。
Cs…検出対象容量
Cf…帰還容量
OSC…局部発振器
PW1…無線通信信号経路
PW2…センシング信号経路
X1…リアクタンス素子
X2…リアクタンス素子
20A…アンテナ素子
21…アンテナ素子電極
21B…アンテナ素子電極
30…可変マッチング回路
31A,31B…基板
32…アンテナ接続部
32B…アンテナ接続部
40…給電回路
50…筐体
51,52…グランド電極
60…容量検出回路
70…フィードバック制御回路
80…アンテナマッチングモジュール

Claims (9)

  1.  アンテナ素子と、前記アンテナ素子と給電部との間に接続されるアンテナ整合回路と、を備えたアンテナ装置であって、
     前記アンテナ素子に接続され、前記アンテナ素子の浮遊容量を検出する容量検出回路と、
     前記容量検出回路の出力信号に応じて前記アンテナ整合回路を制御するフィードバック制御回路と、
    を備えたアンテナ装置。
  2.  前記アンテナ素子と前記給電部との間の伝送経路である無線通信信号経路に、前記容量検出回路が検出するセンシング信号の流入を阻止するリアクタンス素子が設けられた、請求項1に記載のアンテナ装置。
  3.  前記アンテナ素子と前記容量検出回路との間の伝送経路であるセンシング信号経路に、前記アンテナ素子に給電される又は前記アンテナ素子から伝送される無線通信信号の回り込みを阻止するリアクタンス素子が設けられた、請求項1又は2に記載のアンテナ装置。
  4.  前記容量検出回路は、反転増幅回路の帰還回路に帰還容量を含み、前記帰還容量に対する検出対象容量の変化率の比にほぼ比例する電圧を出力する、容量-電圧変換増幅回路である請求項1~3のいずれかに記載のアンテナ装置。
  5.  前記容量-電圧変換増幅回路は、前記反転増幅回路の入力部に、前記アンテナ素子の共振周波数より充分に低い周波数の交流信号を発生する交流信号源を備えた、請求項4に記載のアンテナ装置。
  6.  前記反転増幅回路の出力部に前記反転増幅回路の出力信号を検波する検波回路を備えた、請求項5に記載のアンテナ装置。
  7.  前記反転増幅回路の出力に、前記反転増幅回路の出力電圧を積分する積分回路を備えた、請求項4に記載のアンテナ装置。
  8.  前記アンテナ素子は、前記アンテナ整合回路のアンテナ接続部に接続可能な複数種のアンテナ素子のうち、前記アンテナ素子の単体で放射Qの良好なアンテナ素子である、請求項1~7のいずれかに記載のアンテナ装置。
  9.  前記複数種のアンテナ素子の選択条件は、前記アンテナ素子に対する給電点の位置、及び前記アンテナ素子に対する前記容量検出回路の接続位置を含む、請求項8に記載のアンテナ装置。
PCT/JP2010/056431 2009-08-25 2010-04-09 アンテナ装置 WO2011024506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011528673A JP5370488B2 (ja) 2009-08-25 2010-04-09 アンテナ装置
CN201080037709.9A CN102484316B (zh) 2009-08-25 2010-04-09 天线装置
US13/404,039 US10084229B2 (en) 2009-08-25 2012-02-24 Antenna apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009194738 2009-08-25
JP2009-194738 2009-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/404,039 Continuation US10084229B2 (en) 2009-08-25 2012-02-24 Antenna apparatus

Publications (1)

Publication Number Publication Date
WO2011024506A1 true WO2011024506A1 (ja) 2011-03-03

Family

ID=43627620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056431 WO2011024506A1 (ja) 2009-08-25 2010-04-09 アンテナ装置

Country Status (4)

Country Link
US (1) US10084229B2 (ja)
JP (1) JP5370488B2 (ja)
CN (1) CN102484316B (ja)
WO (1) WO2011024506A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066838A1 (ja) * 2010-11-18 2012-05-24 株式会社村田製作所 アンテナ装置
CN102590867A (zh) * 2012-02-03 2012-07-18 华为终端有限公司 接近检测装置及移动终端
CN102904014A (zh) * 2011-07-27 2013-01-30 三星电子株式会社 用于便携式无线终端设备的集成式天线和传感器元件设备
WO2013132972A1 (ja) * 2012-03-05 2013-09-12 株式会社村田製作所 アンテナ装置
JP5473093B1 (ja) * 2012-12-18 2014-04-16 パナソニック株式会社 携帯端末装置
JP2014082735A (ja) * 2012-09-26 2014-05-08 Panasonic Corp 通信機器及び電子機器
JP2016122636A (ja) * 2014-12-25 2016-07-07 シャープ株式会社 静電容量検出装置及び携帯情報端末

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5679921B2 (ja) * 2011-07-01 2015-03-04 株式会社東芝 アンテナ装置および無線通信装置
US9363350B2 (en) * 2012-07-05 2016-06-07 Blackberry Limited Methods and devices for detecting a hand
CN103545619B (zh) * 2012-07-13 2016-03-30 联想(北京)有限公司 天线装置和调节天线装置的辐射的方法
US9407335B2 (en) * 2013-08-06 2016-08-02 Google Technology Holdings LLC Method and wireless communication device for using an antenna as a sensor device in guiding selection of optimized tuning networks
US9846252B2 (en) 2016-02-25 2017-12-19 Asustek Computer Inc. Proximity sensor and mobile communication device thereof
CN105871407B (zh) * 2016-03-25 2019-03-08 联想(北京)有限公司 一种电子设备
WO2018233837A1 (en) * 2017-06-22 2018-12-27 Epcos Schweiz Gmbh PROTECTION AGAINST LIVE OBJECTS AND PROTECTION AGAINST FOREIGN BODIES FOR A WIRELESS POWER TRANSMISSION SYSTEM AND METHOD FOR OPERATING A WIRELESS POWER TRANSMISSION SYSTEM
CN107607131B (zh) * 2017-09-22 2020-09-25 联想(北京)有限公司 一种电子设备及信息处理方法
CN107948353A (zh) * 2017-11-22 2018-04-20 广东欧珀移动通信有限公司 电子装置及电子设备
JP6658975B1 (ja) * 2018-07-13 2020-03-04 株式会社村田製作所 無線通信デバイス
US11831090B2 (en) * 2020-06-16 2023-11-28 Apple Inc. Electronic devices with display-overlapping antennas
CN112018501B (zh) * 2020-08-31 2024-02-27 广东小天才科技有限公司 一种应用于可穿戴设备的电源装置及便携设备
CN114339509A (zh) * 2020-09-30 2022-04-12 南京矽力微电子(香港)有限公司 无线耳机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266043A (ja) * 1988-04-16 1989-10-24 Mazda Motor Corp 車両用ウインドの曇り検出装置
JP2004312157A (ja) * 2003-04-03 2004-11-04 Toshiba Corp 無線通信機および無線通信方法
JP2006222798A (ja) * 2005-02-10 2006-08-24 Sony Corp アンテナ装置
JP2007536797A (ja) * 2004-05-03 2007-12-13 ソニー エリクソン モバイル コミュニケーションズ, エービー 移動体通信装置のためのインピーダンス整合回路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3381222A (en) * 1964-06-12 1968-04-30 John L. Gray Radio telephone with automatically tuned loaded antenna
US3919644A (en) * 1970-02-02 1975-11-11 Gen Dynamics Corp Automatic antenna coupler utilizing system for measuring the real part of the complex impedance or admittance presented by an antenna or other network
JP3347967B2 (ja) * 1996-03-13 2002-11-20 モトローラ・インコーポレイテッド アンテナ作動スイッチを備えた無線通信装置
US6219532B1 (en) * 1997-10-28 2001-04-17 Nec Corporation Movable radio terminal device capable of precisely matching impedances
JP2002076750A (ja) * 2000-08-24 2002-03-15 Murata Mfg Co Ltd アンテナ装置およびそれを備えた無線機
US6690251B2 (en) * 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US6608603B2 (en) * 2001-08-24 2003-08-19 Broadcom Corporation Active impedance matching in communications systems
US6657595B1 (en) * 2002-05-09 2003-12-02 Motorola, Inc. Sensor-driven adaptive counterpoise antenna system
EP1453136A1 (en) 2003-02-26 2004-09-01 Nokia Corporation A radio apparatus with a planar antenna
JP3931163B2 (ja) * 2003-08-14 2007-06-13 松下電器産業株式会社 アンテナ整合装置
JP4469632B2 (ja) * 2004-02-24 2010-05-26 富士通株式会社 アンテナ整合回路用制御装置
KR100677370B1 (ko) * 2004-10-26 2007-02-02 엘지전자 주식회사 이동 통신 단말기의 안테나 매칭 장치 및 그 방법
JP4373994B2 (ja) * 2006-05-31 2009-11-25 株式会社東芝 可変容量装置および携帯電話
US7764236B2 (en) * 2007-01-04 2010-07-27 Apple Inc. Broadband antenna for handheld devices
US8095085B2 (en) * 2007-06-08 2012-01-10 Arizona Board Of Regents For And On Behalf Of Arizona State University Automatic antenna tuning unit for software-defined and cognitive radio
WO2009003510A1 (de) 2007-06-29 2009-01-08 Osram Gesellschaft mit beschränkter Haftung Objektiv für laserprojektion
US7746290B2 (en) * 2007-09-13 2010-06-29 Sony Ericsson Mobile Communications Ab Adaptive antenna matching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266043A (ja) * 1988-04-16 1989-10-24 Mazda Motor Corp 車両用ウインドの曇り検出装置
JP2004312157A (ja) * 2003-04-03 2004-11-04 Toshiba Corp 無線通信機および無線通信方法
JP2007536797A (ja) * 2004-05-03 2007-12-13 ソニー エリクソン モバイル コミュニケーションズ, エービー 移動体通信装置のためのインピーダンス整合回路
JP2006222798A (ja) * 2005-02-10 2006-08-24 Sony Corp アンテナ装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066838A1 (ja) * 2010-11-18 2012-05-24 株式会社村田製作所 アンテナ装置
US9231293B2 (en) 2011-07-27 2016-01-05 Samsung Electronics Co., Ltd. Integrated antenna and sensor element apparatus for a portable wireless terminal
CN102904014A (zh) * 2011-07-27 2013-01-30 三星电子株式会社 用于便携式无线终端设备的集成式天线和传感器元件设备
JP2013031150A (ja) * 2011-07-27 2013-02-07 Samsung Electronics Co Ltd アンテナ及びセンサ用部材として兼用する金属体と連動する装置
KR101801117B1 (ko) * 2011-07-27 2017-11-27 삼성전자주식회사 휴대용 무선 단말기에서 안테나와 센서용 부재로 병행하는 금속체 및 이와 연동하는 장치
US9590662B2 (en) 2011-07-27 2017-03-07 Samsung Electronics Co., Ltd. Integrated antenna and sensor element apparatus for a portable wireless terminal
CN102904014B (zh) * 2011-07-27 2017-03-01 三星电子株式会社 用于便携式无线终端设备的集成式天线和传感器元件设备
CN102590867A (zh) * 2012-02-03 2012-07-18 华为终端有限公司 接近检测装置及移动终端
JP2014515093A (ja) * 2012-02-03 2014-06-26 ファーウェイ デバイス カンパニー リミテッド 近接検出装置および携帯端末
CN104137332A (zh) * 2012-03-05 2014-11-05 株式会社村田制作所 天线装置
JPWO2013132972A1 (ja) * 2012-03-05 2015-07-30 株式会社村田製作所 アンテナ装置
CN104137332B (zh) * 2012-03-05 2016-04-20 株式会社村田制作所 天线装置
US9748917B2 (en) 2012-03-05 2017-08-29 Murata Manufacturing Co., Ltd. Antenna device
WO2013132972A1 (ja) * 2012-03-05 2013-09-12 株式会社村田製作所 アンテナ装置
US9866195B2 (en) 2012-03-05 2018-01-09 Murata Manufacturing Co., Ltd. Antenna device
JP2014082735A (ja) * 2012-09-26 2014-05-08 Panasonic Corp 通信機器及び電子機器
JP5473093B1 (ja) * 2012-12-18 2014-04-16 パナソニック株式会社 携帯端末装置
JP2016122636A (ja) * 2014-12-25 2016-07-07 シャープ株式会社 静電容量検出装置及び携帯情報端末

Also Published As

Publication number Publication date
CN102484316B (zh) 2014-04-09
JPWO2011024506A1 (ja) 2013-01-24
CN102484316A (zh) 2012-05-30
US20120154245A1 (en) 2012-06-21
US10084229B2 (en) 2018-09-25
JP5370488B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5370488B2 (ja) アンテナ装置
JP5534027B2 (ja) アンテナ装置
JP5790869B2 (ja) アンテナ装置
US10158384B1 (en) Electronic devices with indirectly-fed adjustable slot elements
KR101737274B1 (ko) 슬롯들 및 모노폴들을 갖는 전자 디바이스 캐비티 안테나들
KR101801503B1 (ko) 슬롯 안테나 및 근접 센서를 구비한 전자 디바이스
EP3117485B1 (en) Antennas for near-field and non-near-field communications
US10490881B2 (en) Tuning circuits for hybrid electronic device antennas
CN109586048A (zh) 包括带近场和非近场通信的共享结构的多天线的电子设备
JP6724087B2 (ja) 近距離通信及び非近距離通信のための共有構造を有する電子デバイスアンテナ
CN106663159A (zh) 具有指纹传感器和可调谐混合天线的电子设备
WO2016111897A1 (en) Electronic device having antenna tuning integrated circuits with sensors
US8145258B2 (en) Radio communication apparatus
JP2009027617A (ja) 方向性結合器及びこれを用いた高周波回路
JP7029040B2 (ja) シールドされたケーブルを介して共振器コンデンサに結合されるセンサインダクタを備えるセンサ共振器を用いる遠隔検知
EP4236115A1 (en) Electronic device and method with output load independent detection capabilities
JP2006279530A (ja) アンテナ装置及び該アンテナ装置を備えた携帯型電子機器
JP4853368B2 (ja) 無線通信機
JPH08222943A (ja) 小型アンテナ及びそのアンテナを用いた送受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037709.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528673

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811559

Country of ref document: EP

Kind code of ref document: A1