WO2011023303A1 - Verfahren zur herstellung von schallabsorbierenden weichformschäumen - Google Patents

Verfahren zur herstellung von schallabsorbierenden weichformschäumen Download PDF

Info

Publication number
WO2011023303A1
WO2011023303A1 PCT/EP2010/004965 EP2010004965W WO2011023303A1 WO 2011023303 A1 WO2011023303 A1 WO 2011023303A1 EP 2010004965 W EP2010004965 W EP 2010004965W WO 2011023303 A1 WO2011023303 A1 WO 2011023303A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
polyurethane
mold
reactive mixture
solid particles
Prior art date
Application number
PCT/EP2010/004965
Other languages
English (en)
French (fr)
Inventor
Frithjof Hannig
Thomas Gross
Stephan Schleiermacher
Hans-Guido Wirtz
Heike Niederelz
Roger Scholz
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CN2010800380138A priority Critical patent/CN102712115A/zh
Priority to JP2012525906A priority patent/JP2013503210A/ja
Priority to US13/392,430 priority patent/US20120161353A1/en
Priority to EP10743049A priority patent/EP2470342A1/de
Publication of WO2011023303A1 publication Critical patent/WO2011023303A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • B29C44/083Increasing the size of the cavity after a first part has foamed, e.g. substituting one mould part with another
    • B29C44/086Increasing the size of the cavity after a first part has foamed, e.g. substituting one mould part with another and feeding more material into the enlarged cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/088Removal of water or carbon dioxide from the reaction mixture or reaction components
    • C08G18/0885Removal of water or carbon dioxide from the reaction mixture or reaction components using additives, e.g. absorbing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3271Hydroxyamines
    • C08G18/3278Hydroxyamines containing at least three hydroxy groups
    • C08G18/3281Hydroxyamines containing at least three hydroxy groups containing three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4816Two or more polyethers of different physical or chemical nature mixtures of two or more polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6677Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6688Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3271
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/045Condition, form or state of moulded material or of the material to be shaped cellular or porous with open cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0001Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties
    • B29K2995/0002Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular acoustical properties insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2350/00Acoustic or vibration damping material

Definitions

  • the invention relates to a process for the production of sound-absorbing polyurethane flexible foam moldings.
  • Flexible polyurethane foams are also used in the area of sound absorption, among other things. Due to the open-cell nature of the foams, the so-called airborne sound is transmitted
  • mass and spring are made of two polyurethanes which do not differ in the underlying polyether formulation and the isocyanate, but only in their mixing ratio.
  • mass a lower polyol content is used than in the spring and the polyol in the mass is additionally mixed with heavy materials.
  • Disadvantage of the method is that in the production of three instead of two mold halves are necessary.
  • Mass is the foaming, filled polyurethane system by two mold halves (A) and (B) so compressed that there is little or no room for foaming and therefore the polyurethane reacted to a compact layer.
  • This is disadvantageous, the increased closing forces are required.
  • a mold half (C) By replacing the mold half (B) with a mold half (C), a new cavity is created which is bounded on the side of the mold half (A) by the compact layer and on the opposite side by the mold half (C) itself.
  • the cavity is filled with the polyurethane system so that it can still expand in the remaining free volume of the cavity during foaming and results in a foam.
  • DE-A 101 61 600 and DE-A 10 2004 039 438 describe a method in which a mass layer is sprayed onto a three-dimensionally shaped surface.
  • polyol and isocyanate are first mixed and then sprayed.
  • the heavy material preferably barium sulfate, is metered into the free jet.
  • the disadvantage of this method is that either two different polyurethane systems are required to achieve a compact
  • the wetting of fillers is incomplete when the filler is metered in large quantities into the spray jet outside the mixing head.
  • many filler particles are in the shadow of other filler particles, so that they are not or only insufficiently wetted by droplets of the polyurethane reaction mixture.
  • the wetting is incomplete because the wetting process in the spray is hardly promoted by turbulence.
  • Adjacent droplets of the spray jet and filler particles although following the pulse sets, change altered trajectories and may cause slight turbulence by collision with neighboring particles while the trajectory is still unchanged, but the nature of the expanding spray jet rapidly reduces the likelihood of such collisions because of the tapering spray move all adjacent particles away from each other.
  • DE-A 10 2004 039 438 additionally mentions the idea of metering fillers into the mixing head. However, there is no further explanation as to how this should be done.
  • the present invention has for its object to provide a sound-absorbing and sound-absorbing panel, the production of which only two mold halves are required and for which only a polyurethane system is required, which consists of a polyol formulation and an isocyanate formulation, so that the investment costs for molds low can be kept, storage space for liquids is saved and the logistics of liquid raw materials are simplified.
  • the object is achieved according to the invention by mixing a high-density solid substance (A) together with a second substance (B) and / or a third substance (C) in a mixing head with an isocyanate component (E) and a polyol component (D) and this mixture is sprayed onto a mold half 1 to form a mass layer.
  • the substances (B) and (C) reduce or prevent the foaming of the reactive polyurethane reactive mixture.
  • a mold half can be saved, which otherwise prevents the polyurethane from foaming by forming a correspondingly small cavity and by forming high clamping forces of the mold carrier.
  • the isocyanate component (E) and the polyol component (D) without the materials (A), (B) and (C) are mixed to prepare the spring layer, wherein more isocyanate is used in relation to polyol than in the preparation of ground layer.
  • the polyurethane fills the cavity between the mass layer and a mold half 2 foaming.
  • the invention relates to a process for producing a flexible polyurethane foam from a layer of solid polyurethane containing solid particles and a second layer of foamed polyurethane, which comprises a) a gas stream containing solid particles in a liquid jet of a polyurethane reactive mixture in a mixing chamber b) spraying the solid particle-containing spray from a) into a first mold half of an open mold from two mold halves, c) closing the open mold by means of a second mold half, d) after reacting the polyurethane reactive mixture injected second liquid spray of the polyurethane reactive mixture without solid particles in the closed mold and thus to the fully reacted layer, e) after reaction of the second polyurethane reactive mixture opens the mold and the
  • Preferred fillers (A) are substances having a density greater than 2000 kg / m 3 , preferably greater than 3000 kg / m 3 , particularly preferably greater than 4000 kg / m 3 .
  • Materials suitable for metal powders include, but are not limited to, hematite, ilmenite, cassiterite, molybdenite, scheelite, wolframite, sand, chrome ore castings, olivine, chrome ore, chromite, zirconium silicate, and zinc blende, and especially magnetite, fluorspar, barite, and barium sulfate.
  • the filler (A) preferably contains particles with a diameter of 4 microns to 5 mm.
  • the filler (A) contains no fine particles under 40 microns in diameter and only particles up to a diameter of 2 mm. Particular preference is given to particles having a diameter of from 100 ⁇ m to 1000 ⁇ m.
  • the latter fillers can be obtained, for example, as a sieve fraction from commercially available solids.
  • the fabric (B) is a desiccant used to form the bulk layer. It removes the water from the freshly mixed liquid isocyanate component (E) and the polyol component (D) and prevents the foaming reaction, because the water is removed from the two liquid components of the reaction mixture. In the mass layer, relatively speaking, a larger amount of polyol will be at a given level
  • Amount of isocyanate reacted as in the feather layer with the same amount of isocyanate For the mass layer, it is assumed that the water is partially or completely removed by the desiccant. Dehydration reduces the OH number of the polyol formulation. At a constant isocyanate index, less isocyanate is required for the polyol formulation to achieve the same percentage of sales as in the feather layer.
  • the isocyanate index is the ratio of the amount of isocyanate used and the amount of isocyanate required stoichiometrically for quantitative conversion with the polyol formulation multiplied by a factor of 100.
  • an isocyanate index I F or I M between 70 to 130 is set for the spring layer (F) and the ground layer (M).
  • the isocyanate index I M for the mass layer (M) corresponds to the isocyanate index I F of the spring layer (F):
  • the isocyanate index I M of the mass layer (M) may also have a value which is closer to 100 than the isocyanate index Ip of the spring layer (F): From Table 1 in the Examples section, it is possible to take various proportions in which the liquid isocyanate component (E) and the polyol component (D) are mixed in order to prepare the spring or the mass layer, the isocyanate index being 100 for both layers.
  • a substance (B) desiccant such as silica gel, calcined alumina, calcium chloride, calcium oxide, magnesium chloride, magnesium sulfate, magnesium oxide, sodium sulfate, potassium carbonate, copper sulfate, barium oxide, dry clay, aluminosilicates, in particular molecular sieves are based on zeolite such as UOP ® powder, whether known under the synonym Baylith ® (Manufacturer UOP MSSrl), alumina, superabsorbers such as kalilaugenneutralInstitute polyacrylic acid, bentonite, montmorillonite and mixtures of the aforementioned substances. Particular preference is given to zeolite-based molecular sieves.
  • the amount of drying agent (B) is preferably 0.5 to 50 wt .-%, based on the polyurethane reactive mixture, preferably 2 to 40 weight percent, particularly preferably 10 to 30 weight percent.
  • the fabric (C) may be a defoaming agent with which the fabric (B) and / or the fabric (A), e.g. may be wetted to a level of preferably up to 1% by weight.
  • the substance (C) can also be metered into the mixing head feed line of the isocyanate component (E) or the polyol component (D), for example via a seed block.
  • Substance (C) get over the mixing head recirculation in the day containers, so that could be produced with the raw materials no foamed spring layer more. Therefore, a dosage in the mixing head is preferable.
  • amounts of from 0.1 to 25 percent by weight, based on the total amount of polyol component (D) and isocyanate component (E), are preferred; amounts of from 1 to 20 are particularly preferred
  • Weight percent most preferably amounts of 5 to 15 weight percent.
  • substance (C) substances which either displace surface-active foaming agents from the interface without themselves producing foam or which reduce the surface tension between gas, filler particles and the polyurethane reaction mixture are suitable.
  • These include natural fats and oils, aromatic and aliphatic mineral oils, polybutadienes,
  • polyethylene / propylene glycol such as Pluronic ® products
  • mixed ethers or end phenomenonver closed (usually etherified) alkyl polyethylene glycol ethers and especially silicone-based defoamers such as polydimethylsiloxanes and otherwise organically modified or functionalized polysiloxanes.
  • components (D) and (E) for producing the flexible polyurethane foam of the spring layer (F) and the mass layer (M) well-known polyol components and isocyanate components are used in the prior art.
  • the polyol component it has been found possible to use a part of the polyol by renewable raw materials, such as castor oil or other known vegetable oils, their chemical reaction products or
  • the polyol component can also be used in addition to the known polyols (for example polyester polyols, polyether polyols, polycarbonate diols, polyetherester polyols) and chain extenders and / or crosslinking agents further known per se and additives, such as catalysts, activators, stabilizers.
  • the isocyanate component may be an organic isocyanate, modified isocyanate or prepolymer.
  • the solid (s) containing gas stream (s) is / are not introduced into the already dispersed spray jet of the reaction mixture but into the still liquid non-dispersed jet in the mixing chamber. Here is still a substantially laminar flow of the reaction mixture before.
  • a "liquid jet of a PUR reaction mixture” is understood according to the invention to mean such a fluid jet of a PUR material, in particular in the region of a mixing chamber for mixing the reaction components in liquid form, which is not yet in the form of fine reaction mixture droplets dispersed in a gas stream. ie in particular in a liquid viscous phase.
  • the process of the present invention is characterized in that solids-containing gas stream is used in a spray mixing nozzle for atomizing a liquid jet of a PUR reaction mixture at the exit from the mixing chamber.
  • solids-containing gas stream is used in a spray mixing nozzle for atomizing a liquid jet of a PUR reaction mixture at the exit from the mixing chamber.
  • the process according to the invention is characterized in that solids are passed through a conveying gas stream into a mixing chamber where they encounter a liquid jet of a PUR reaction mixture. Preference is given to gas flows with solids in the mixing chamber meet by the gas flows over two or more points enter the mixing chamber and are particularly preferably opposite each other.
  • the gas streams can also be introduced tangentially.
  • the particles can not dodge each other or move away from each other because they are prevented by the walls of the mixing chamber.
  • solids are forcibly wetted with the PUR reaction mixture inside the mixing chamber without loss and become part of a homogeneous gas / solid / PUR material mixture. It is preferred to further increase the mixing quality of the resulting gas / solid / PUR material mixture in the mixing chamber by additional air swirls.
  • the air swirls are generated by tangential air nozzles and the circular surfaces enclosed by them form a right angle with the axis of the main flow direction in the mixing chamber.
  • the solids-containing gas stream is preferably produced by passing a gas stream over solids-containing metering cells of a cell wheel metering device.
  • the solid Due to the overflow of the cell spaces, the solid is entrained by the compressed air flow and transported as FeststoffTLuft- or gas mixture to the mixing chamber / mixing head.
  • the channel should be designed in the interior of the metering device of the diameter such that a positive overlap can be excluded. This embodiment further ensures that even with a shutdown or speed changes of the Zellraddostechnik a quantitatively unchanged air flow rate for spraying the PUR reaction mixture is available and thus can be sprayed optionally without or with variable amounts of solids.
  • pressure equalization prevents partial streams of the transport air from escaping via the metering unit (metering cells and gap tolerances) back into the storage container. Especially with abrasive solids larger gap dimensions are unavoidable by design.
  • the maximum possible volume ratio of gas to solid when entering the spray mixing nozzle is preferably in the range from 20: 1 to 200: 1, particularly preferably 50: 1 to 100: 1.
  • nitrogen or in particular air as the gas. These gases are particularly cost-effective and thus contribute to a corresponding cost reduction of the method according to the invention.
  • the polyol component and the isocyanate component were first mixed dynamically, then the solid / gas stream was introduced into the reaction mixture, the mixture of polyurethane reaction mixture, solid and gas was mixed in an air vortex and then sprayed through a spray nozzle.
  • experiment 1 the procedure was as described, but unlike the other experiments, no stream of solid / gas was introduced into the mixing chamber.
  • Polvol 1 A commercially available tri-functional propylene oxide / ethylene oxide polyether with 14 wt .-% ethylene oxide content, an average of 88% primary OH groups and an OH number of 28.
  • Polvol 2 A commercial di-functional propylene oxide polyether having an OH number of 56.
  • Polvol 3 A commercially available tri-functional propylene oxide / ethylene oxide polyether with 71 wt .-% ethylene oxide content, an average of 83% primary OH groups and an OH number of 37.
  • Chain extender 1,4-butanediol crosslinker 1: glycerol
  • Crosslinker 2 triethanolamine
  • Color paste Isopur black paste N, carbon black-polyol blend from ISL-Chemie GmbH
  • Stabilizer Tegostab B4690 from Evonik Goldschmidt GmbH, polysiloxane-polyether copolymer
  • Catalyst 1 Polycat 15 from Air Products, tetramethylimino-bis (propylamine)
  • Catalyst 2 Jeffcat DPA from Huntsman, N- (3-dimethylaminopropyl) -N, N-diisopropanolamine
  • Catalyst 3 DABCO NE 1060 from Air Products, 3- (dimethylamino) propylurea
  • Baylith ® L powder sodium-potassium-calcium-A zeolite with a pore size of about 3 ⁇
  • Baryt flour C901 Barium sulphate with a particle size distribution of 5 to 80 ⁇ m
  • Polyisocyanate An isocyanate with an NCO content of about 32.1%, prepared on the basis of 2-kerne-MDI (methylenediphenylene diisocyanate) and its higher homologues

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von schallabsorbierenden Polyurethan-Weichschaumformteilen.

Description

Verfahren zur Herstellung von schallabsorbierenden Weichformschäumen
Die Erfindung betrifft ein Verfahren zur Herstellung von schallabsorbierenden Polyurethan- Weichschaumformteilen.
Polyurethanweichformschäume werden unter anderem auch im Bereich der Schallabsorption ein- gesetzt. Durch die offenzellige Natur der Schäume wird der sogenannte Luftschall durch
Absorption reduziert. Es ist Stand der Technik einen solchen Schaum, in diesem Zusammenhang auch Feder genannt, mit einem schwereren Material, in diesem Zusammenhang auch Masse genannt, zu kombinieren, um neben dem Luft- auch den Körperschall zu reduzieren. Optimale Schallabsorption erhält man, wenn eine möglichst dichte und dünne Masseschicht mit einer möglichst dicken Federschicht kombiniert wird.
In DE 10 2004 054 646 werden Masse und Feder aus zwei Polyurethanen gefertigt, die sich in der zugrunde liegenden Polyetherformulierung und dem Isocyanat nicht unterscheiden, sondern nur in deren Mischungsverhältnis. In der Masse wird ein niedrigerer Polyolanteil verwendet als in der Feder und das Polyol in der Masse ist zusätzlich mit Schwerstoffen versetzt. Nachteil des Ver- fahrens ist, dass bei der Herstellung drei statt zwei Formhälften nötig sind. Zur Ausbildung der
Masse wird das schäumende, gefüllte Polyurethansystem durch zwei Formhälften (A) und (B) so komprimiert, dass kein oder kaum Platz zum Aufschäumen besteht und das Polyurethan daher zu einer kompakten Schicht ausreagiert. Hierbei ist nachteilig, das erhöhte Schließkräfte erforderlich sind. Indem die Formhälfte (B) durch eine Formhälfte (C) ersetzt wird, wird eine neue Kavität erzeugt, die auf der Seite der Formhälfte (A) durch die kompakte Schicht begrenzt wird und auf der Gegenseite durch die Formhälfte (C) selbst. Die Kavität wird mit dem Polyurethansystem so befüllt, dass es sich während des Aufschäumens noch in verbliebenes freies Volumen der Kavität ausdehnen kann und einen Schaum ergibt.
M. Taverna („Hochgefüllte PU-Formulierungen - Innovative Technologie für Stirnwände" PU Magazin Juni/Juli 2009 Jahrgang 09) berichtet über ein Verfahren, bei dem der Füllstoff im Polyol dispergiert wird, mit dem Isocyanat in einem Mischkopf vermischt wird und sprühend ausgetragen wird, um die Masse zu erzeugen. Die Feder wird wie bereits zuvor beschrieben in einem angeschlossenen Reaction Injection Molding Prozess (RIM-Verfahren) erzeugt. Nachteilig ist, dass Maschinenteile, die mit dem gefüllten Polyol in Kontakt kommen, stark verschleißen und daher gegen Abrasion geschützt werden müssen. Weiterhin müssen die Rohstoffe zur Viskositätssenkung stark erwärmt werden mit den Nachteilen, dass der technische Aufwand für die Rohstofftemperierung erhöht ist und die Rohstoffe in den Tagesbehältern der Dosiermaschine einer hohen thermischen Belastung ausgesetzt sind. Ein weiterer Nachteil ist, dass bei diesem Verfahren zwei Polyurethansysteme benötigt werden, um eine kompakte Masse und eine geschäumte Feder herzu- stellen. Weiterhin besteht nicht die Möglichkeit, den Füllstoffgehalt in der Sprühfläche entsprechend lokalen Erfordernissen zu verändern, da Polyol und Füllstoff in einem festen Mischungsverhältnis dispergiert vorliegen. Einzig eine Variation des Mischungsverhältnisses zwischen Polyol und Isocyanat ist möglich, würde allerdings zu lokal variierenden mechanischen Eigenschaften der Matrix in der gesprühten Masseschicht führen.
DE-A 101 61 600 und DE-A 10 2004 039 438 beschreiben ein Verfahren bei dem eine Masseschicht auf eine dreidimensional geformte Oberfläche aufgesprüht wird. Hierbei werden Polyol und Isocyanat erst vermischt und dann versprüht. Außerhalb des Sprühkopfes wird in den Freistrahl der Schwerstoff, bevorzugt Bariumsulfat zudosiert. Der Nachteil dieses Verfahrens liegt darin, dass entweder zwei verschiedene Polyurethansysteme erforderlich sind, um eine kompakte
Masseschicht und eine Federschicht herzustellen, oder die Fertigungsschritte mit drei statt mit zwei Formhälften durchgeführt werden müssten, wie bereits zuvor im Zusammenhang mit DE-A 10 2004 054 646 erläutert.
Des Weiteren ist nach dem Konzept von DE-A 101 61 600 die Benetzung von Füllstoffen unvoll- ständig, wenn der Füllstoff in hohen Mengen in den Sprühstrahl außerhalb des Mischkopfes dosiert wird. Bei hohen Füllstoffanteilen befinden sich viele Füllstoffpartikel im Flugschatten anderer Füllstoffpartikel, so dass sie nicht oder nur unzureichend durch Tröpfchen des Polyurethanreaktionsgemisches benetzt werden. Weiterhin ist die Benetzung unvollständig, weil der Benetzungsprozess im Sprühstrahl kaum durch Turbulenzen gefördert wird. Aufeinandertreffende Tröpfchen des Sprühstrahls und der Füllstoffpartikel nehmen zwar den Impulssätzen folgend geänderte resultierende Flugbahnen an und können durch Kollisionen mit Nachbarteilchen in noch unveränderter Flugbahn leichte Turbulenzen auslösen, jedoch verringert die Natur des sich aufweitenden Sprühstrahls rasch die Wahrscheinlichkeit solcher Kollisionen, weil sich im kegelförmig verbreiternden Sprühstrahl alle benachbarten Partikel relativ voneinander wegbewegen. Folglich nehmen die Turbulenzen sehr schnell ab, so dass letztendlich die Partikelbenetzung unzureichend bleibt. DE-A 10 2004 039 438 erwähnt zusätzlich die Idee, Füllstoffe in den Mischkopf zu dosieren. Es findet sich allerdings keine weitere Erklärung, in welcher Art und Weise dies erfolgen soll.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine schalldämmende sowie schall- dämpfende Verkleidung bereitzustellen, zu deren Herstellung nur zwei Formhälften erforderlich sind und für das nur ein Polyurethansystem benötigt wird, welches aus einer Polyolformulierung und einer Isocyanatformulierung besteht, so dass die Investitionskosten für Formen niedrig gehalten werden können, Lagerplatz für Flüssigkeiten eingespart wird und die Logistik der Flüssigrohstoffe vereinfacht wird. Die Aufgabe wird erfindungsgemäß gelöst, indem ein fester Stoff (A) mit hoher Dichte gegebenenfalls zusammen mit einem zweiten Stoff (B) und/oder einem dritten Stoff (C) in einem Mischkopf mit einer Isocyanatkomponente (E) und einer Polyolkomponente (D) vermischt wird und diese Mischung auf eine Formhälfte 1 aufgesprüht wird, um eine Masseschicht auszubilden. Die Stoffe (B) und (C) vermindern bzw. verhindern das Aufschäumen des reagierenden Polyurethanreaktivgemisches. So lässt sich eine Formhälfte einsparen, die ansonsten durch Bildung einer entsprechend geringen Kavität und durch Ausbildung hoher Zuhaltekräfte des Formträgers das Polyurethan daran hindert aufzuschäumen. In einem zweiten Schritt werden die Isocyanatkomponente (E) und die Polyolkomponente (D) ohne die Stoffe (A), (B) und (C) zur Herstellung der Federschicht vermischt, wobei mehr Isocyanat im Verhältnis zu Polyol eingesetzt wird als bei der Herstellung der Masseschicht. Das Polyurethan füllt die Kavität zwischen der Masseschicht und einer Formhälfte 2 schäumend aus.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Polyurethan-Weichformschaumes aus einer Schicht aus massivem Polyurethan enthaltend Feststoffpartikel und einer zweiten Schicht aus geschäumtem Polyurethan, welches dadurch gekennzeichnet ist, dass man a) einen Feststoffpartikel enthaltenden Gasstrom in einen flüssigen Strahl eines Polyurethanreaktivgemisches in einer Mischkammer (z.B. einer Sprüh-Mischdüse der Kammer) einbringt, b) den Feststoffpartikel enthaltenden Sprühstrahl aus a) in eine erste Formhälfte einer offenen Form aus zwei Formhälften sprüht, c) die offene Form mittels einer zweiten Formhälfte schließt, d) nach Ausreagieren des Polyurethanreaktivgemisches einen zweiten flüssigen Sprühstrahl des Polyurethanreaktivgemisches ohne Feststoffpartikel in die geschlossene Form und somit auf die ausreagierte Schicht injiziert, e) nach Ausreaktion des zweiten Polyurethanreaktivgemisches die Form öffnet und das
Formteil aus der Form entfernt.
Als Füllstoffe (A) eignen sich bevorzugt Stoffe mit einer Dichte größer 2000 kg/m3, bevorzugt größer 3000 kg/m3, besonders bevorzugt größer 4000 kg/m3. Neben Metallpulvern geeignete Materialien sind unter anderem Hämatit, Ilmenit, Kassiterit, Molybdänit, Scheelit, Wolframit, Sand, Chromerzsand-Verwurf (Abfall aus Gießereien), Olivin, Chromerzsand, Chromit, Zirkonsilikat und Zinkblende sowie insbesondere Magnetit, Flussspat, Baryt und Bariumsulfat. Der Füllstoff (A) enthält bevorzugt Teilchen mit einem Durchmesser von 4 μm bis 5 mm. In einer bevorzugten Ausfuhrungsform enthält der Füllstoff (A) keine feinkörnigen Teilchen unter 40 μm Durchmesser und nur Teilchen bis zu einem Durchmesser von 2 mm. Besonders bevorzugt sind Teilchen mit einem Durchmesser von 100 μm bis 1000 μm. Letztgenannte Füllstoffe lassen sich beispielsweise als Siebfraktion aus im Handel erhältlichen Feststoffen erhalten.
Der Stoff (B) ist ein Trockenmittel, das zur Ausbildung der Masseschicht eingesetzt wird. Es entzieht der frisch vermischten flüssigen Isocyanatkomponente (E) und der Polyolkomponente (D) das Wasser und verhindert die Schäumreaktion, weil das Wasser aus den beiden flüssigen Komponenten des Reaktionsgemisches entzogen wird. In der Masseschicht wird relativ gesehen eine größere Menge an Polyol mit einer bestimmten
Menge an Isocyanat umgesetzt als in der Federschicht mit derselben Menge an Isocyanat. Für die Masseschicht wird angenommen, dass das Wasser teilweise oder vollständig durch das Trockenmittel entfernt ist. Durch den Wasserentzug sinkt die OH-Zahl der Polyolformulierung. Bei einem konstanten Isocyanatindex wird für die Polyolformulierung weniger Isocyanat benötigt, um pro- zentual denselben Umsatz zu erzielen wie in der Federschicht. Der Isocyanatindex ist das Verhältnis eingesetzter Isocyanatmenge und stöchiometrisch benötigter Isocyanatmenge zur quantitativen Umsetzung mit der Polyolformulierung multipliziert mit dem Faktor 100.
In einer bevorzugten Ausfuhrungsform wird für die Federschicht (F) und die Masseschicht (M) ein Isocyanatindex IF bzw. IM zwischen 70 bis 130 eingestellt. Vorzugsweise entspricht der Isocyanat- index IM für die Masseschicht (M) dem Isocyanatindex IF der Federschicht (F):
IM = IF
Der Isocyanatindex IM der Masseschicht (M) kann auch einen Wert aufweisen, der näher an 100 liegt als der Isocyanatindex Ip der Federschicht (F):
Figure imgf000005_0001
I Aus Tabelle 1 im Beispielteil kann man verschiedene Mengenverhältnisse, in der die flüssige Isocyanatkomponente (E) und die Polyolkomponente (D) gemischt werden, um die Feder- bzw. die Masseschicht herzustellen, entnehmen, wobei der Isocyanatindex für beide Schichten 100 beträgt.
Als Stoff (B) eignen sich Trockenmittel wie beispielsweise Silikagel, kalzinierte Tonerde, Calciumchlorid, Calciumoxid, Magnesiumchlorid, Magnesiumsulfat, Magnesiumoxid, Natrium- sulfat, Kaliumcarbonat, Kupfersulfat, Bariumoxid, Trockenton, Alumosilikate, inbesondere Molekularsiebe auf Zeolithbasis wie z.B. UOP® Pulver, auch unter dem Synonym Baylith® bekannt (Hersteller UOP M. S. S.r.l.), Aluminiumoxid, Superabsorber wie z.B. kalilaugenneutralisierte Polyacrylsäure, Bentonit, Montmorillonit und Mischungen der vorgenannten Stoffe. Besonders bevorzugt sind Molekularsiebe auf Zeolithbasis. Die Menge an Trockenmittel (B) beträgt vorzugsweise 0,5 bis 50 Gew.-%, bezogen auf das Polyurethanreaktivgemisch, bevorzugt 2 bis 40 Gewichtsprozent, besonders bevorzugt 10 bis 30 Gewichtsprozent.
Der Stoff (C) kann ein Entschäumungsmittel sein, mit dem der Stoff (B) und/oder der Stoff (A), z.B. zu einem Anteil von vorzugsweise bis zu 1 Gewichtsprozent benetzt sein kann. Der Stoff (C) kann aber auch in die Mischkopfzuleitung der Isocyanatkomponente (E) oder der Polyolkompo- nente (D) beispielsweise über einen Impfblock dosiert werden. Bei diesem Verfahren besteht aller- dings das Risiko, dass bei einer Umstellung von Schussbetrieb auf Kreislauffahrt Teilmengen des
Stoffes (C) über die Mischkopfrückleitungen in die Tagesbehälter gelangen, so dass sich mit den Rohstoffen keine geschäumte Federschicht mehr herstellen ließe. Deshalb ist eine Dosierung in den Mischkopf zu bevorzugen. Bei der Dosierung in Zuleitungen oder in den Mischkopf sind Mengen von 0,1 bis zu 25 Gewichtsprozent, bezogen auf die Gesamtmenge an Polyolkomponente (D) und Isocyanatkomponente (E), bevorzugt, besonders bevorzugt sind Mengen von 1 bis zu 20
Gewichtsprozent, ganz besonders bevorzugt sind Mengen von 5 bis zu 15 Gewichtsprozent.
Als Stoff (C) kommen Substanzen in Betracht, die entweder grenzflächenaktive Schaumbildner aus der Grenzfläche verdrängen, ohne selbst Schaum zu erzeugen, oder die die Oberflächenspannung zwischen Gas, Füllstoffpartikeln und der Polyurethanreaktionsmischung reduzieren. Hierzu zählen natürliche Fette und Öle, aromatische und aliphatische Mineralöle, Polybutadiene,
Fettalkohole, langkettige Seifen, wie z. B. Natriumbehenat (Natriumsalz der Docosansäure), PoIy- ethylen/propylenglykolether, wie z.B. Pluronic®-Produkte, sowie Mischether oder endgruppenver- schlossene (meist veretherte) Alkylpolyethylenglykolether und insbesondere Entschäumer auf Silicon-Basis, wie z.B. Polydimethylsiloxane sowie anderweitig organisch modifizierte bzw. funktionalisierte Polysiloxane.
Als Komponenten (D) und (E) zur Herstellung des Polyurethan-Weichformschaumes der Federschicht (F) und der Masseschicht (M) kommen aus dem Stand der Technik hinlänglich bekannte Polyolkomponenten und Isocyanatkomponenten zum Einsatz. Im Rahmen der Polyol-Komponente hat es sich als möglich erwiesen, einen Teil des Polyols durch nachwachsende Rohstoffe, wie zum Beispiel Rizinusöl oder andere bekannte Pflanzenöle, deren chemische Umsetzungsprodukte oder
Derivate, zu ersetzen. Ein solcher Ersatz ist mit keiner Verschlechterung der Eigenschaften des fertigen Polyurethan- Weichformschaumkörpers verbunden und ist insofern von Vorteil, als solche Schaumstoffkörper einen erheblichen Beitrag zur Nachhaltigkeit leisten. Im übrigen kann die Polyolkomponente neben den bekannten Polyolen (z.B. Polyesterpolyole, Polyetherpolyole, PoIy- carbonatdiole, Polyetheresterpolyole) sowie Kettenverlängerern und/oder Vernetzungsmitteln auch weitere an sich bekannte Hilfs- und Zusatzmittel, wie z.B. Katalysatoren, Aktivatoren, Stabilisatoren enthalten. Die Isocyanatkomponente kann ein organisches Isocyanat, modifiziertes Isocyanat oder Prepolymer sein.
Der/die Feststoff enthaltende(n) Gasstrom/ströme wird/werden nicht in den bereits dispergierten Sprühstrahl des Reaktionsgemisches, sondern in den noch flüssigen nicht dispergierten Strahl in der Mischkammer eingetragen. Hier liegt noch eine im Wesentlichen laminare Strömung des Reaktionsgemisches vor.
Unter einem„flüssigen Strahl eines PUR- Reaktionsgemisches" wird erfindungsgemäß ein solcher Fluid-Strahl eines PUR-Materials, insbesondere im Bereich einer Mischkammer zur Vermischung des Reaktionskomponenten in flüssiger Form verstanden, welcher noch nicht in Form feiner, in einem Gasstrom dispergierter Reaktionsgemischtröpfchen vorliegt, d. h. insbesondere in einer flüssigen viskosen Phase.
Während die Verfahren des Standes der Technik im Wesentlichen einen Gasstrom oder eine entsprechende Düse zur Zerstäubung eines PUR-Reaktionsgemisches verwenden und in einen solchen zerstäubten PUR-Sprühstrahl ein Feststoff-enthaltender Gasstrom eingeblasen wird, kennzeichnet sich das Verfahren der vorliegenden Erfindung dadurch aus, dass ein feststoffenthaltender Gasstrom in einer Sprüh-Mischdüse zur Zerstäubung eines flüssigen Strahls eines PUR-Reaktionsgemisches beim Austritt aus der Mischkammer eingesetzt wird. Für jeden Sprühstrahl gilt wie auch in diesem Fall, das der Abstand zwischen benachbarten Sprühpartikeln orthogonal zur Hauptsprüh- richtung eines Sprühstrahls mit zunehmender Entfernung zur Sprühdüse wächst. Zwangsläufig verringert sich rasch die Wahrscheinlichkeit, das Feststoffpartikel mit Polyurethantröpfchen oder bereits benetzten Füllstoffpartikeln kollidieren und so benetzt werden. Die Verhältnisse ändern sich, wenn gemäß dem erfindungsgemäßen Verfahren die Vermischung von Füllstoffen und Polyurethan in einer Mischkammer erfolgt. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass Feststoffe durch einen Fördergasstrom in eine Mischkammer geleitet werden und dort auf einen flüssigen Strahl eines PUR- Reaktionsgemisches treffen. Bevorzugt lässt man Gasströme mit Feststoffen in der Mischkammer aufeinandertreffen, indem die Gasströme über zwei oder mehr Punkte in die Mischkammer eintreten und besonders bevorzugt einander gegenüber liegen. Die Gasströme können auch tangential eingeleitet werden. Bei dem erfindungsgemäßen Verfahren können die Partikel einander nicht ausweichen oder sich voneinander entfernen, weil sie durch die Wände der Mischkammer daran gehindert werden. Deshalb werden in dem erfindungsgemäßen Verfahren Feststoffe verlustfrei mit dem PUR-Reaktionsgemisch im Inneren der Mischkammer zwangsbenetzt und Teil eines homogenen Gas/Feststoff/PUR-Material-Gemisches. Es ist bevorzugt, die Vermischungsqualität des resultierenden Gas/Feststoff/PUR-Material-Ge- misches in der Mischkammer durch zusätzliche Luftwirbel nochmals zu steigern. Die Luftwirbel werden durch tangentiale Luftdüsen erzeugt und die von ihnen eingeschlossenen Kreisflächen bilden mit der Achse der Hauptströmungsrichtung in der Mischkammer einen rechten Winkel. Der feststoffenthaltende Gasstrom wird bevorzugt dadurch hergestellt, dass man einen Gasstrom über feststoffenthaltende Dosierzellen einer Zellraddosiereinrichtung leitet. Durch das Überströmen der Zellräume wird der Feststoff vom Druckluftstrom mitgerissen und als FeststoffTLuft- oder Gasgemisch zur Mischkammer/Mischkopf transportiert. Zur Vermeidung von Pulsation sollte der Kanal im Inneren der Dosiereinrichtung vom Durchmesser derart ausgelegt werden, dass eine positive Überdeckung ausgeschlossen werden kann. Diese Ausführungsform gewährleistet weiterhin, dass auch bei einer Abschaltung bzw. Drehzahländerungen der Zellraddosierung ein quantitativ unveränderter Luftdurchsatz zum Sprühen des PUR- Reaktionsgemisches zur Verfügung steht und somit wahlweise ohne oder mit variablen Feststoffmengen gesprüht werden kann.
Durch die differenzdruckfreie Vorlage der Feststoffe wird ein Verdichten der Feststoffschüttung bei Eintritt in den Gasstrom verhindert.
Weiterhin wird über den Druckausgleich verhindert, dass Teilströme der Transportluft über das Dosieraggregat (Dosierzellen und Spalttolleranzen) zurück in den Vorratsbehälter entweichen. Gerade bei abrasiven Feststoffen sind konstruktionsbedingt größere Spaltmaße unvermeidbar.
Bei der Dichtstrom- wie auch bei der Flugförderung liegt das maximal mögliche Volumenverhält- nis Gas zu Feststoff bei Eintritt in die Sprüh- Mischdüse bevorzugt im Bereich von 20: 1 bis 200: 1, besonders bevorzugt 50: 1 bis 100: 1.
Erreicht werden kann dies zum Beispiel durch die Veränderung der Feststoffförderrate.
Weiterhin ist es bevorzugt, als Gas Stickstoff oder insbesondere Luft einzusetzen. Diese Gase sind besonders kostengünstig und tragen somit zu einer entsprechenden Kostenreduzierung des erfin- dungsgemäßen Verfahrens bei.
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden. Beispiele:
Für die Versuche und die Messungen wurden lediglich die Masseschichten (M) hergestellt.
Im Mischkopf (Mischkammer) wurden zunächst die Polyolkomponente und die Isocyanatkompo- nente dynamisch vermischt, dann der Feststoff/Gas-Strom in die Reaktionsmischung eingeleitet, die Mischung aus Polyurethanreaktionsgemisch, Feststoff und Gas in einem Luftwirbel nachvermischt und anschließend über eine Sprühdüse versprüht.
Im Versuch 1 wurde wie beschrieben verfahren, allerdings abweichend von den anderen Versuchen kein Strom aus Feststoff/Gas in die Mischkammer eingeleitet.
Tabelle 1; Eingesetzte Polyurethanreaktivgemische und Füllstoffe
Figure imgf000009_0001
-Vergleich Das mit Stern * gekennzeichnete Wasser wurde in der Berechnung des Massenverhältnisses, in dem Polyol und Isocyanat gemischt werden, nicht berücksichtigt, da es quantitativ durch das Trockenmittel absorbiert wird und in absorbierter Form nicht mehr mit dem Isocyanat unter Bildung von Kohlendioxid reagiert.
Beschreibung der Ausgangsstoffe:
Polvol 1 : Ein handelsüblicher tri-funktioneller Propylenoxid/Ethylenoxid-Polyether mit 14 Gew.-% Ethylenoxid-Anteil, im Mittel 88 % primären OH-Gruppen und einer OH-Zahl von 28.
Polvol 2: Ein handelsüblicher di-funktioneller Propylenoxid-Polyether mit einer OH- Zahl von 56.
Polvol 3: Ein handelsüblicher tri-funktioneller Propylenoxid/Ethylenoxid-Polyether mit 71 Gew.-% Ethylenoxid-Anteil, im Mittel 83 % primären OH-Gruppen und einer OH-Zahl von 37.
Kettenverlängerer: 1,4-Butandiol Vernetzer 1 : Glyzerin
Vernetzer 2: Triethanolamin
Farbpaste: Isopur Schwarzpaste N, Ruß-Polyol-Abmischung der ISL-Chemie GmbH
& Co. KG
Stabilisator: Tegostab B4690 der Firma Evonik Goldschmidt GmbH, Polysiloxan-Poly- ether-Copolymer
Katalysator 1 : Polycat 15 der Firma Air Products, Tetramethylimino-bis(propylamin) Katalysator 2: Jeffcat DPA der Firma Huntsman, N-(3-dimethylaminopropyl)-N,N- diiso- propanolamin
Katalysator 3: DABCO NE 1060 der Firma Air Products, 3-(Dimethylamino)propylharn- stoff
Baylith® L-Pulver: Natrium-Kalium-Kalzium-A-Zeolith mit einer Porenweite von ca. 3 Ä von
UOP M.S. S.r.l.
Barytmehl C901 : Bariumsulfat mit einer Korngrößenverteilung von 5 bis 80 μm Polyisocyanat: Ein Isocyanat mit einem NCO-Gehalt von etwa 32,1%, hergestellt auf der Basis von 2-K.ern-MDI (Methylendiphenylendiisocyanat) und dessen höheren Homologen
Tabelle 2: Versuchsdaten
Figure imgf000011_0001
-Vergleich

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Polyurethan-Weichformschaumes aus einer Schicht aus massivem Polyurethan enthaltend Feststoffpartikel und einer zweiten Schicht aus geschäumtem Polyurethan, dadurch gekennzeichnet, dass man a) einen Feststoffpartikel enthaltenden Gasstrom oder mehrere Feststoffpartikel enthaltende Gasströme in einen flüssigen Strahl eines Polyurethanreaktivgemisches in einer Mischkammer einbringt, b) den Feststoffpartikel enthaltenden Sprühstrahl aus a) in eine erste Hälfte einer offenen Form aus zwei Formhälften sprüht, c) die offene Form mittels einer zweiten Formhälfte schließt, d) nach Ausreaktion des Polyurethanreaktivgemisches einen zweiten flüssigen Sprühstrahl desselben Polyurethanreaktivgemisches ohne die Feststoffpartikel in die geschlossene Form injiziert, e) nach Ausreaktion des zweiten Polyurethanreaktivgemisches die Form öffnet und das Formteil aus der Form entfernt.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das eingesetzte Polyurethanreaktivgemisch unter Schritt a) und unter Schritt d) dieselbe Zusammensetzung aufweist und folgende Komponenten enthält i) eine organische Isocyanatkomponente und ii) eine Polyolkomponente.
3. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Feststoffpartikeln um
A) einen ersten festen Stoff mit einer hohen Dichte von > 2000 kg/m3 als Füllstoff,
B) einen zweiten festen Stoff als Trockenmittel und gegebenenfalls C) einen dritten festen Stoff als Entschäumungsmittel handelt.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Feststoffpartikeln um
A) einen ersten festen Stoff mit einer hohen Dichte von > 2000 kg/m3 als Füllstoff, der gegebenenfalls mit einem Entschäumungsmittel benetzt ist, und B) einen zweiten festen Stoff als Trockenmittel, der gegebenenfalls mit einem Entschäumungsmittel benetzt ist, handelt.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass zusätzlich zum Polyurethanreaktivgemisch ein Entschäumungsmittel in die Mischkammer eingeleitet wird.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Feststoffpartikel enthaltende Gasstrom die Partikel in einem Volumenverhältnis Gas zu Feststoff im Bereich von 20: 1 bis 200: 1 enthält.
7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die Feststoffpartikel des Füllstoffes (A) einen Durchmesser von 4 μm bis 5 mm aufweisen, bevorzugt 40 μm bis 2 mm und besonders bevorzugt 100 μm und 1000 μm.
8. Verfahren gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Trockenmittel (B) zu einem Anteil von 0,5 bis 50 Gewichtsprozent in Bezug auf das Polyurethanreaktivgemisch dosiert wird, bevorzugt zu einem Anteil von 2 bis 40 Gewichtsprozent, besonders bevorzugt zu einem Anteil von 10 bis 30 Gewichtsprozent.
PCT/EP2010/004965 2009-08-26 2010-08-13 Verfahren zur herstellung von schallabsorbierenden weichformschäumen WO2011023303A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800380138A CN102712115A (zh) 2009-08-26 2010-08-13 生产吸声柔性成型泡沫的方法
JP2012525906A JP2013503210A (ja) 2009-08-26 2010-08-13 吸音軟質成形フォームの製造方法
US13/392,430 US20120161353A1 (en) 2009-08-26 2010-08-13 Method for producing sound-absorbing flexible moulded foams
EP10743049A EP2470342A1 (de) 2009-08-26 2010-08-13 Verfahren zur herstellung von schallabsorbierenden weichformschäumen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009038886 2009-08-26
DE102009038886.9 2009-08-26

Publications (1)

Publication Number Publication Date
WO2011023303A1 true WO2011023303A1 (de) 2011-03-03

Family

ID=43382462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/004965 WO2011023303A1 (de) 2009-08-26 2010-08-13 Verfahren zur herstellung von schallabsorbierenden weichformschäumen

Country Status (6)

Country Link
US (1) US20120161353A1 (de)
EP (1) EP2470342A1 (de)
JP (1) JP2013503210A (de)
KR (1) KR20120050459A (de)
CN (1) CN102712115A (de)
WO (1) WO2011023303A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092800A1 (en) * 2018-10-31 2020-05-07 H.B. Fuller Company Two component polyurethane system for liquid applied sound deadener

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2887457C (en) 2012-10-10 2021-01-19 Basf Se Viscoelastic polyurethane foam
WO2016091897A1 (de) * 2014-12-10 2016-06-16 Covestro Deutschland Ag Verfahren zur herstellung von viskoelastischen polyurethanschaumstoffen
CN204616023U (zh) * 2015-04-21 2015-09-02 珠海卓力声科技有限公司 耳套及耳塞

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882561A1 (de) * 1997-06-06 1998-12-09 Centre D'etudes Et Recherche Pour L'automobile ( Cera) Herstellungsverfahren für eine Schalldämpfungsplatte
US6100363A (en) * 1998-03-13 2000-08-08 Basf Corporation Energy absorbing elastomers
DE10161600A1 (de) 2001-12-14 2003-07-03 Stankiewicz Gmbh Verfahren zum Aufsprühen von Kunststoffschichten
DE102004039438A1 (de) 2004-08-13 2006-02-23 Stankiewicz Gmbh Verfahren zum Herstellen eines Schallisolations-Formteils mit Masse und Feder
DE102004054646A1 (de) 2004-11-11 2006-06-01 Carcoustics Tech Center Gmbh Leichte schallisolierende Verkleidung für ein Karosserieteil eines Kraftfahrzeuges und Verfahren zu ihrer Herstellung
US20070164131A1 (en) * 2005-12-15 2007-07-19 Bayer Materialscience Ag & Hennecke Gmbh Process and apparatus for producing structural elements
US20090098302A1 (en) * 2007-10-11 2009-04-16 Tse Industries, Inc. Method For Spray Forming High Modulus Polyurethane Structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195725B2 (en) * 2004-08-04 2007-03-27 Lear Corporation Method of making an integrated door inner panel and an article made thereby

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882561A1 (de) * 1997-06-06 1998-12-09 Centre D'etudes Et Recherche Pour L'automobile ( Cera) Herstellungsverfahren für eine Schalldämpfungsplatte
US6100363A (en) * 1998-03-13 2000-08-08 Basf Corporation Energy absorbing elastomers
DE10161600A1 (de) 2001-12-14 2003-07-03 Stankiewicz Gmbh Verfahren zum Aufsprühen von Kunststoffschichten
US20050202181A1 (en) * 2001-12-14 2005-09-15 Maik Grossmann Method for the spray application of plastic layers
DE102004039438A1 (de) 2004-08-13 2006-02-23 Stankiewicz Gmbh Verfahren zum Herstellen eines Schallisolations-Formteils mit Masse und Feder
DE102004054646A1 (de) 2004-11-11 2006-06-01 Carcoustics Tech Center Gmbh Leichte schallisolierende Verkleidung für ein Karosserieteil eines Kraftfahrzeuges und Verfahren zu ihrer Herstellung
US20070164131A1 (en) * 2005-12-15 2007-07-19 Bayer Materialscience Ag & Hennecke Gmbh Process and apparatus for producing structural elements
US20090098302A1 (en) * 2007-10-11 2009-04-16 Tse Industries, Inc. Method For Spray Forming High Modulus Polyurethane Structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092800A1 (en) * 2018-10-31 2020-05-07 H.B. Fuller Company Two component polyurethane system for liquid applied sound deadener
CN112969735A (zh) * 2018-10-31 2021-06-15 H.B.富乐公司 用于液体施加型消声剂的双组分聚氨酯体系
CN112969735B (zh) * 2018-10-31 2023-03-10 H.B.富乐公司 用于液体施加型消声剂的双组分聚氨酯体系

Also Published As

Publication number Publication date
KR20120050459A (ko) 2012-05-18
US20120161353A1 (en) 2012-06-28
CN102712115A (zh) 2012-10-03
EP2470342A1 (de) 2012-07-04
JP2013503210A (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
EP2268729B1 (de) Partikuläre wachskomposite mit kern/hülle-struktur und verfahren zu deren herstellung sowie deren verwendung
DE2603534C2 (de) Verfahren zur Herstellung von Hohlkügelchen
EP1683831A1 (de) Nanopartikel für die Herstellung von Polyurethanschaum
WO2011023303A1 (de) Verfahren zur herstellung von schallabsorbierenden weichformschäumen
WO2009098226A1 (de) Polyharnstoff-nanodispersionspolyole und verfahren zu ihrer herstellung
EP1787957A1 (de) Trockene Flüssigkeiten, Verfahren und Vorrichtung zu ihrer Herstellung
EP2300208A1 (de) Herstellung eines feststoff-enthaltenden pur-sprühstrahls
EP2329948B1 (de) Materialien zur Herstellung lichtdurchlässiger Hitzeschutzelemente und mit solchen Materialien hergestellte Lichtschutzelemente sowie Verfahren zu deren Herstellung
EP1142943A2 (de) Werkstoff aus einem Polyurethan-Gel
WO2011023328A1 (de) Verfahren zur herstellung von schallabsorbierenden polyurethanschichten
EP2643434B1 (de) Verfahren zum mahlen von wachsen unter verwendung von mahlhilfemitteln in einer strahlmühle, verwendung von polyolen als mahlhilfsmittel und wachs-pulver enthaltend polyole
DE19653992A1 (de) Verfahren zum Deaggregieren von Kieselsäure
DE2945818A1 (de) Verfahren und vorrichtung zum reaktionsspritzgiessen
WO2003016370A1 (de) Verfahren zur herstellung von kieselsäure/polyurethan-nanokompositen
DE112013005360T5 (de) Behälter und Verfahren zur Abmilderung der Verunreinigung von Polysilicium durch Metallkontakt
WO2018019907A1 (de) System und verfahren zur herstellung eines geschäumten polymers
DE19601401C1 (de) Verfahren zur kontinuierlichen Herstellung von Span- oder Faserplatten
WO2019162172A1 (de) Verbindung von körpern durch thermoplastisches elastomer mittels hochfrequenzstrahlung
EP2570451B1 (de) Verfahren zum Herstellen von Polymeren in mikrofeiner Form, insbesondere Faktis, vorzugsweise auf Basis nachwachsender Rohstoffe
DE1629495A1 (de) Verfahren zur Herstellung von aufgeschaeumtem Polyurethanharz
DE4231074A1 (de) Verwendung von Kunststoffpulvern als Füllstoff in sprüh- und spritzfähigen Beschichtungsmassen, Lacken und Dichtmassen
EP1832337A1 (de) Verfahren zur Beschichtung von Pulvern
DE102010018946A1 (de) Verfahren zur Herstellung eines Feststoff enthaltenden Sprühstrahls
DE10008150A1 (de) Wasserdispergierbare Isocyanate zur Herstellung ultraphober Beschichtungen
AT401932B (de) Formteil aus kunststoffschaum, insbesondere kunststoffweichschaum sowie verfahren und vorrichtung zur herstellung dieses formteiles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038013.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743049

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010743049

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127004860

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012525906

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13392430

Country of ref document: US