WO2011021494A1 - Work glove - Google Patents

Work glove Download PDF

Info

Publication number
WO2011021494A1
WO2011021494A1 PCT/JP2010/062999 JP2010062999W WO2011021494A1 WO 2011021494 A1 WO2011021494 A1 WO 2011021494A1 JP 2010062999 W JP2010062999 W JP 2010062999W WO 2011021494 A1 WO2011021494 A1 WO 2011021494A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
composite
filament
conductive fiber
glove
Prior art date
Application number
PCT/JP2010/062999
Other languages
French (fr)
Japanese (ja)
Inventor
英敏 岸原
Original Assignee
ショーワグローブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ショーワグローブ株式会社 filed Critical ショーワグローブ株式会社
Priority to KR1020117030009A priority Critical patent/KR101682429B1/en
Priority to JP2011527625A priority patent/JP5762290B2/en
Priority to EP10809839A priority patent/EP2468120A1/en
Priority to CN201080028336.9A priority patent/CN102469838B/en
Publication of WO2011021494A1 publication Critical patent/WO2011021494A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • A41D19/0065Three-dimensional gloves with a textile layer underneath
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/26Electrically protective, e.g. preventing static electricity or electric shock
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/106Radiation shielding agents, e.g. absorbing, reflecting agents
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties

Definitions

  • the present invention relates to a composite yarn used in a field where conductivity and low dust generation are required, such as a semiconductor manufacturing process, a painting process, or a work in a clean room, a manufacturing method thereof, a work glove obtained from the composite yarn, and
  • the present invention relates to a fabric, a working glove, and a method for manufacturing the fabric.
  • Conductive work gloves are used in the semiconductor manufacturing process, painting process or clean room work.
  • conductive fibers obtained by kneading carbon into polyester or nylon fibers are used.
  • composite fibers obtained by weaving conductive fibers obtained by dyeing acrylic fibers with copper sulfide or coating with polypyrrole into filament yarns such as wooly nylon and wooly polyester. Yarns are also used.
  • a work glove in which the fingertip part and palm part of such a glove are covered with polyurethane resin or synthetic rubber is also used.
  • JP2009-102779A discloses a glove in which a conductive thread material having a metallic coating layer formed on the surface of a synthetic fiber is sewn on the finger or the back of the hand.
  • the yarn material made of electromagnetic fiber and the material made of copper ionic fiber which are obtained from a material containing platinum as a main component and minerals such as silica and alumina, are woven together. Conductive fiber fabrics are described. Further, gloves and fabrics manufactured from the conductive fiber fabric are disclosed.
  • JP 2006-63456A discloses a glove using conductive yarn. Japanese Utility Model Registration Publication No.
  • 6-54720 discloses that a conductive yarn having an electric resistance value of 10 9 ⁇ / cm or less is used for a part forming a finger of a glove. In any of the above-described gloves, a certain level of conductivity and low dust generation are obtained.
  • the known glove described above uses a composite fiber obtained by knitting a conductive fiber into a filament yarn as it is. Such a glove was not able to obtain the elasticity which has a sufficient fit at the time of wear due to the physical property of the conductive fiber.
  • conductive fibers are expensive, there is a problem of cost increase in the obtained composite yarns and gloves.
  • covering is a method of obtaining a composite yarn by winding a winding yarn around an outer periphery of a core yarn at regular intervals.
  • the cover ring is expected to have a cost advantage because the required yarn length is short.
  • the cover ring machine is more widely available on the market than the combined combustion machine and is widely used, so it is also effective from the viewpoint of productivity.
  • conductive fibers in the glove are detached is estimated as follows.
  • Conventional anti-static gloves typically have a crimped filament yarn (e.g., woolly nylon) with a stretch recovery rate of 20% to 50% as measured according to Japan Industrial Standard L 1013 to increase the fit of the glove. Thread) is used for the core thread, and conductive fibers are used for the wound thread.
  • a filament yarn is used, when obtaining a composite yarn by covering or manufacturing a glove from the composite yarn, it is necessary to perform an operation while applying tension to the yarn in the process. . This tension is removed after the work. Then, as the filament yarn returns to its original state, the covered conductive fiber with a small return jumps out from the surface of the composite yarn.
  • the conductive fiber which jumped out becomes easy to detach
  • the thickness of the conductive fiber is smaller than the thickness of the filament yarn, the phenomenon of the conductive fiber jumping out from the surface of the composite yarn becomes more remarkable.
  • an object of the present invention is to provide a composite yarn that is prevented from detaching conductive fibers over a long period of time and has both conductivity and low dust generation, and a work glove and a fabric obtained from the composite yarn. It is to provide.
  • the present inventor has found that the recoverability (restorability) of the conductive fiber and the recoverability of the filament yarn that is combined with the conductive fiber to constitute the composite yarn ( It was found that the resiliency was close. As a result, it has been found that it is possible to obtain a composite yarn in which the detachment of the conductive fibers is prevented and a working glove and fabric obtained from the composite yarn, and the present invention has been completed.
  • the filament yarn includes a covering yarn wound around a conductive fiber as a core yarn, a core yarn wound around a conductive fiber as a covering yarn, a spliced yarn attached to the conductive fiber as a core yarn, a conductive yarn A yarn that is twisted together with a fiber to form a combustible yarn.
  • the gist of the present invention is the following (1) to (16).
  • the glove is entirely or partially knitted with a composite yarn including a filament yarn and a conductive fiber, and the expansion / contraction recovery rate of the entire filament yarn included in the composite yarn is 0 to 10%.
  • the work gloves (2) The work glove according to (1), wherein the filament yarn is a core yarn, and the conductive fiber is a covering yarn wound around the core yarn.
  • the filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn ( 1) Work gloves.
  • the filament yarn is a core yarn
  • the conductive fiber is a spliced yarn attached to the core yarn
  • the core yarn and the spliced yarn are covered with a covering yarn
  • Composite yarn (12)
  • the composite yarn according to (9), wherein the filament yarn and the conductive fiber are twisted together.
  • a method for producing a composite yarn comprising: (16) A fabric characterized in that the whole or a part thereof is formed by any one of the composite yarns of (9) to (15).
  • the expansion / contraction restoration ratio measured by the Japan Industrial Standard L 1013 of the filament yarn that is combined with the conductive fiber to constitute the composite yarn is defined as 0 to 10%.
  • the recoverability (restorability) of the conductive fiber and the recoverability (restorability) of the filament yarn that is combined therewith to form the composite yarn can be substantially matched.
  • the conductive fiber is used as a core yarn, when used as a covering yarn, or when used as a splicing yarn for the core yarn, there is little return when removing tension after covering.
  • the conductive fiber is prevented from jumping out. As a result, detachment of the conductive fibers due to friction and wear can be suppressed.
  • the detachment of the conductive fibers can be effectively suppressed even in actual use over a long period of time. Therefore, it is possible to obtain a composite yarn having both conductivity and low dust generation, and a working glove and a fabric made of the composite yarn.
  • the work gloves of the present invention are knitted in whole or in part with a composite yarn.
  • the composite yarn includes a conductive fiber and a yarn combined with the conductive fiber (that is, a covering yarn wound around the conductive fiber as the core yarn, a core yarn around which the conductive fiber as the covering yarn is wound, A splicing yarn attached to the conductive fiber as a core yarn, a yarn that is twisted with the conductive fiber to become a combusting yarn, and the like.
  • the conductive fibers used in the present invention are preferably filament yarns (that is, long fibers) from the viewpoint of low dust generation.
  • Examples of conductive fibers include metal fibers such as stainless steel (for example, metal fibers having a diameter of 20 to 50 ⁇ m), fibers obtained by polymerizing pyrrole on the surface of synthetic fibers such as acrylic fibers, and fibers obtained by coating the surfaces of acrylic fibers with copper sulfide or the like. And a fiber obtained by kneading carbon into polyester fiber or nylon fiber.
  • fibers in which synthetic fiber surfaces such as acrylic fibers are coated with copper sulfide or the like, and fibers in which carbon is kneaded into polyester fibers or nylon fibers are preferable.
  • the conductive fiber is preferably a twisted yarn from the viewpoint of reducing the dust generation amount and the detachment amount.
  • the conductive fiber and the nonconductive fiber may be twisted, or only the conductive fiber may be twisted.
  • the conductive fiber is a twisted yarn of conductive fiber and non-conductive fiber
  • the filament yarn and the conductive fiber having a stretch recovery rate of 0-10% as measured by Japan Industrial Standard L 1013 are combined.
  • those obtained by twisting are preferred, and those obtained by twisting a filament yarn having a stretch recovery rate of 0 to 7% and a conductive fiber are more preferred.
  • the expansion / contraction recovery rate of the filament yarn to be twisted with the conductive fiber exceeds 10%, the amount of dust generation and the amount of desorption may increase, which is not preferable. Further, there is substantially no filament yarn having an expansion / contraction recovery rate of less than 0%.
  • the expansion / contraction restoration rate in the present invention is used as an index of yarn recoverability (restorability), and the measurement method will be described later in Examples.
  • a twisted yarn formed by twisting 50 to 700 times per meter is preferable, and a twisted yarn formed by twisting 100 to 500 times is more preferable. If the number of times of twisting is less than 50, the flexibility as a yarn is inferior, and further, twisting cannot be satisfactorily performed by a twisting machine, and productivity may be lowered. On the other hand, when the number of times of twisting exceeds 700 times, the resulting twisted yarn may become too hard and impractical.
  • the yarn constituting the composite yarn by being composited with the conductive fiber needs to be a filament yarn, that is, a long fiber from the viewpoint of preventing the yarn end portion from jumping out from the composite yarn.
  • a fiber formed from polyester, acrylic, reinforced polyethylene, aramid, nylon or the like may be used alone, or two or more types may be used in combination.
  • the thickness is preferably 50d to 450d, more preferably 50d to 200d.
  • the thickness is less than 50d, the stability and strength may be inferior when the core yarn or the splicing yarn is used.
  • the thickness exceeds 450d, the yarn becomes too hard and the composite yarn is used. The texture and feel may be inferior.
  • the thickness is preferably 2d to 5d, more preferably 1.3d to 2.9d.
  • the thickness is less than 2d, the dust generation amount and the desorption amount may increase.
  • the thickness exceeds 5d, the texture may deteriorate.
  • the expansion / contraction restoration rate of the filament yarn is usually about 20 to 50% if the yarn is obtained by crimping or the like. In the present invention, it is necessary to bring the expansion / contraction recovery rate of the conductive fiber close to the value of the expansion / contraction recovery rate of the filament yarn combined with the conductive fiber. By doing so, it is essential to suppress the detachment of the conductive fibers in the case of a composite yarn. Since the expansion / contraction recovery rate of the conductive fiber is usually about 1 to 5%, the expansion / contraction recovery rate of the combined filament yarn needs to be 0 to 10%, preferably 0.1 to 10%, 1 to 7% is more preferable. When the filament yarn is composed of a plurality of yarns having different expansion / contraction recovery rates, the expansion / contraction recovery rate of the entire filament yarn needs to satisfy the above range.
  • the fiber may be crimped.
  • the conductive fiber is a copper-dyed fiber or carbon kneaded, it is difficult to perform crimping to give stretchability due to the nature of the material. Even if stretchability is obtained, the stretch recovery rate is a low value of about 2 to 3%, and it is not practical because a fit feeling when used as a work glove cannot be obtained. Therefore, as in the present invention, it is necessary to set the expansion / contraction recovery rate of the entire filament yarn used in combination with the conductive fiber to 0 to 10%.
  • the filament yarn even if it is in the raw yarn state, it can be used if the expansion / contraction recovery rate satisfies the above range. However, it is preferable to use it as a filament yarn by reducing the expansion / contraction restoration rate of the crimped yarn, because the fit feeling when it is made into a glove is improved if it is slightly stretchable.
  • the filament yarn may be a commercially available product having an expansion / contraction recovery rate within the above range, or the expansion / contraction recovery rate of the filament yarn having an expansion / contraction recovery rate exceeding the above range is reduced to be within the above range. May be used. Examples of the method for reducing the expansion / contraction restoration rate of the filament yarn include the following.
  • the filament yarn is softly wound around a bobbin so that the winding density is 0.2 to 0.3 g / cm 3, and is washed with hot water at about 70 to 100 ° C. for 0.17 to 1 hour.
  • dehydration is performed for 1 to 30 minutes, and drying is performed at 60 to 100 ° C. for 40 to 300 minutes.
  • the expansion / contraction restoration rate of the filament yarn can be reduced.
  • Such a process can be performed, for example, using a known dyeing machine.
  • the covering yarn used for the cover ring for example, the conductive fibers described above may be used, polyester, reinforced polyethylene, aramid, nylon, raw fibers of acrylic fibers, or crimps obtained by crimping these.
  • a processed yarn or the like may be used.
  • FIG. 1 (a) shows a composite yarn having the configuration (i). That is, the composite yarn obtained by using the filament yarn 1 as a core yarn and covering the core yarn with the conductive fiber 2 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
  • the filament yarn is a core yarn
  • the conductive fiber is a spliced yarn attached to the core yarn
  • the core yarn and the spliced yarn are covered with a covering yarn.
  • FIG. 2 (a) shows a composite yarn having the configuration (ii). That is, a composite yarn obtained by using the filament yarn 1 as the core yarn, the conductive fiber 2 as the accessory yarn, and covering the core yarn and the accessory yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, as shown in FIG. 2B, the conductive fiber 2 with a small return is prevented from jumping to the outside.
  • FIG. 3A shows the configuration of (iii). That is, a composite yarn obtained by aligning a plurality of filament yarns 1 to form a core yarn and covering the core yarn with conductive fibers 2 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
  • FIG. 4A shows a composite yarn having the configuration (iv). That is, the composite yarn obtained by using the conductive fiber 2 as a core yarn and covering the core yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
  • FIG. 5 (a) shows a composite yarn having the configuration (v). That is, a composite yarn obtained by drawing a plurality of conductive fibers 2 into a core yarn and covering the core yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
  • the composite yarn having the configuration (i) is most preferable from the viewpoint of effectively suppressing the detachment of the conductive fibers.
  • the number of times of covering is preferably about 50 to 700 times per 1 m of core, more preferably 100 to 500 times, and further preferably 200 to 400 times.
  • the number of times of covering exceeds 700 times, the composite yarn becomes hard, difficult to knit, and the texture as a glove may be deteriorated.
  • the number of times of covering is less than 50, it is impossible to cover with a known and common covering device, and composite yarn may not be produced.
  • examples of winding method include S-shaped winding and Z-shaped winding.
  • reverse winding of the core yarn that is, winding the covering yarn around the Z winding if the core yarn is S winding, winding the covering yarn around the S winding if the core yarn is Z winding
  • the composite yarn and the knitted product are not twisted and a good finish is obtained.
  • the conductive fiber or its twisted yarn when used as the covering yarn, the area where the conductive fiber is exposed on the composite yarn surface or the glove surface becomes large. As a result, the effect of reducing the surface resistivity is improved.
  • the conductive fibers or their twisted yarns are preferably not used as covering yarns, but as core yarns, spliced yarns, and twisted yarns.
  • the composite yarn having the above configuration can be obtained by the following method.
  • the step of reducing the expansion / contraction restoration rate of the filament yarn to 0 to 10% by the above-described method, and the filament yarn having the reduced expansion / contraction restoration rate is contained at least in part, and the overall expansion / contraction restoration rate is 0 to It is obtained by going through a step of obtaining a filament yarn of 10% as necessary and a step of obtaining a composite yarn by covering, twisting or the like using the filament yarn and conductive fiber.
  • the working gloves and fabric of the present invention can be obtained by knitting the composite yarn obtained as described above.
  • the fabric refers to a knitted fabric, a woven fabric, a non-woven fabric, or the like.
  • the method of knitting the composite yarn may be a method of knitting the entire glove with only the above-mentioned composite yarn using a known and conventional method or apparatus, or a part of the glove, for example, a fingertip is selected and knitted with the composite yarn. It may be a method.
  • a part of a work glove is knitted with the above-described composite yarn, for example, the composite yarn and the filament yarn are knitted in a 1: 1 to 1:10 course (that is, one-step knitting with the composite yarn, followed by the first to tenth steps). It is also preferred to knit the step with filament yarn.
  • the composite yarn contains conductive fibers, so that the stretchability is lowered as compared with the case where the composite yarns are not included.
  • a portion to be knitted only with a filament yarn or polyurethane elastic yarn having a high expansion / contraction recovery rate (for example, about 50%) can be selectively included. It can. As a result, it is possible to improve the fit and texture of working gloves and fabrics. In addition, uniform chargeability can be imparted to the work gloves and the entire fabric.
  • the surface resistance value is 1 ⁇ 10 5 to 1 ⁇ 10 10 ⁇ / seq. And more preferably 1 ⁇ 10 6 to 1 ⁇ 10 8 ⁇ / seq. It is. A surface resistance value within this range is preferable because static electricity can be diffused gently.
  • the surface resistance value is 1 ⁇ 10 5 ⁇ / seq. If it is less than the range, when the conductive fiber is detached, an electric shock or a short circuit may occur. On the other hand, the surface resistance value is 1 ⁇ 10 10 ⁇ / seq. Exceeding this may cause dielectric breakdown due to electrostatic discharge.
  • the surface resistance value is adjusted as described above. Can be controlled within the range.
  • the fingertip part, palm part, or the entire surface is synthesized. Processing for the purpose of preventing slipping may be performed using rubber or resin.
  • the anti-slip process for example, a process of forming a non-slip film with polyurethane resin or synthetic rubber on the fingertip part or palm part, or forming an anti-slip convex part with synthetic rubber or PVC polymer, etc.
  • the obtained glove is put on a dipping mold in the shape of a hand, dipped in a polyurethane resin solution, etc., replaced with water and dried.
  • an anti-slip film can be formed on the fingertip part or palm part with polyurethane resin, synthetic rubber or the like, or an anti-slip convex part can be formed with synthetic rubber or PVC polymer.
  • FIG. 6 is a view of the glove subjected to the above-described anti-slip processing as seen from the upper part.
  • (B) of FIG. 6 is the figure which looked at the glove in which the slip prevention process was performed from the palm part.
  • the palm portion of the glove 3 is covered with the resin 4.
  • Examples of the synthetic rubber include NBR, chloroprene, acrylic, polyurethane, vinyl acetate-PVC copolymer, PVC homopolymer, and the like.
  • a convex stencil may be printed and anti-slip processed by squeezing a synthetic rubber compound, vinyl acetate-PVC copolymer, or PVC homopolymer at the palm of the glove.
  • sealing may be performed to prevent the resin or the like from being excessively immersed in the surface of the glove.
  • the filler can be sealed by dipping a hand mold attached to a calcium nitrate coagulant into a synthetic rubber gond compound such as NBR, chloroprene, acrylic, polyurethane, etc., drying, leaching and curing.
  • a method of releasing, dehydrating, and curing the product after immersion and drying may be used.
  • the composite yarn of the present invention and the work gloves and fabric obtained from the composite yarn are particularly suitably used in fields where conductivity and low dust generation are required, such as semiconductor manufacturing processes, painting processes, and clean room operations.
  • Stretching Restoration Rate A stretching / restoring rate measuring method defined by Japan Industrial Standard L 1013 will be described below with reference to FIG.
  • Filament yarns are collected from the composite yarns constituting the gloves obtained in the examples and comparative examples, wound around the hooks 5, applied with a load of (0.176 mN ⁇ number of displayed tex), a skein length of about 40 cm, A small skein with 10 windings was made, and a sample 6 having a total of 20 yarn bundles was obtained. Subsequently, it was immersed in water at 60 ° C. for 20 minutes, drained, and naturally dried on a filter paper for 24 hours. As shown in FIG. 7, this sample 6 is subjected to a load 7 of (0.176 mN ⁇ 20 ⁇ display tex number) and a load 8 of (8.82 mN ⁇ 20 ⁇ display tex number).
  • the stretching / restoration rate was reduced to 7% by performing dehydration for 15 minutes and drying at 70 ° C. for 200 minutes.
  • ⁇ (A-3) Polyester yarn (50d-36f raw yarn, stretch recovery rate 1.5%) (KB Seiren) ⁇ (A-4) Woolley nylon (70d-24f, stretch recovery rate 10.0%) Woolley nylon (A-1) was softly wound around a bobbin and the winding density was adjusted to 0.2 to 0.3 g / cm 3 .
  • Woolley nylon (A-1) softly wound on a bobbin was placed in a dyeing machine (trade name “LLCD-50 / 90” manufactured by Nisaka Seisakusho Co., Ltd.), washed with hot water at about 75 ° C.
  • Example 4 (A-2) One yarn was used as the core, (B-1) one yarn was used as a spliced yarn, and these two (A-2) yarns were wrapped at 300 T / M and covered to obtain a composite yarn. .
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.1%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 5 A composite yarn was obtained by covering four cores and winding (B-2) one at 300 T / M. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.3%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 6 (A-2) Two cores, (B-2) one spliced yarn, and these two (A-2) two are wound at 300 T / M and covered to obtain a composite yarn It was.
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.3%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 7 (A-2) Using three strands as cores, pre-twisting one (B-1) and one (A-3) at 200 T / M and winding at 300 T / M Covering yielded a composite yarn.
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 6.3%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 8 A composite yarn was obtained in the same manner as in Example 7 except that one (B-2) was used instead of (B-1). The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 6.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 9 (A-2) One twisted yarn obtained by pre-twisting one (B-1) and one (A-3) at 200 T / M with a core as one core (stretching and restoring rate 2.9% ) As a spun yarn, and these two (A-1) pieces were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 5.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 10 A composite yarn was obtained in the same manner as in Example 9 except that one (B-2) was used instead of (B-1).
  • the expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 5.7%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 11 (B-1) A twisted yarn obtained by twisting three pieces at 200 T / M was used as a core, and (A-2) two pieces were wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.5%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 12 (A-2) One core, and two (B-1) two yarns pre-twisted at 200 T / M are used as splicing yarns, and these are (A-2) two at 300 T / M A composite yarn was obtained by winding and covering. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 6.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 13 (B-1) Two twisted yarns obtained by twisting two yarns at 300 T / M and two (A-2) two yarns were further twisted at 300 T / M to obtain a composite yarn.
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.9%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 14 (B-1) One and (A-2) one are twisted together at 300 T / M, and the twisted yarn obtained by twisting at 300 T / M is used as the core yarn, and (A-2) one is covered at 300 T / M. Ringing yielded a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 6.9%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 15 A glove obtained in Example 1 was placed on a metal immersion mold, and a solution (solid content concentration: 10 mass) in which polyurethane (manufactured by DIC, trade name “Chrisbon MP-812”) was dissolved in N, N ′ dimethylformamide. %), Only the palm was immersed, and warm water substitution was performed at 50 ° C. for 1 hour. Then, it dried at 100 ° C. for 30 minutes to obtain a glove having a palm portion covered with a polyurethane resin.
  • Example 16 (A-4) Two strands were used as cores, and (B-1) one strand was wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 8.5%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 17 (A-6) Two cores and (B-1) one piece wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 2.2%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 18 (A-7) Two yarns as cores and (B-1) one wire wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 2.7%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 19 (A-8) One core was cored and wound at 300 T / M in (B-1) and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 3.2%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 20 (Example 20) (B-3) 1 and (A-6) 2 were used as cores, and (B-1) was wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 2.2%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 21 (A-5) Four yarns were cored and one (B-4) was wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.0%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 22 (A-5) Four cores and (B-5) one were wound at 300 T / M and covered to obtain a composite yarn.
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 5.2%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Tricot knitted fabric (fabric) was obtained with a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d.
  • a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d.
  • the entire tricot knitted fabric is 1 cm using a single-needle lockstitch electronic zigzag automatic thread trimming machine (trade name “LZ2-B856E-301” manufactured by Brother). A sewing machine was applied at intervals. Then, it cut into a glove shape and sewed.
  • Comparative Example 6 A composite yarn was obtained in the same manner as in Comparative Example 5 except that (B-2) was used instead of (B-1).
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 23.4%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 8 A composite yarn was obtained in the same manner as in Example 13 except that (A-1) was used instead of (A-2).
  • the expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 15.8%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Example 9 A composite yarn was obtained in the same manner as in Example 14 except that (A-1) was used instead of (A-2).
  • the expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 13.1%.
  • the obtained composite yarn was used for the entire glove, and the glove was knitted.
  • Tricot knitted fabric (fabric) was obtained with a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d.
  • a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d.
  • Using the composite thread obtained in Comparative Example 1 for the entire tricot knitted fabric using a single-needle lockstitch electronic zigzag automatic thread trimming machine (trade name “LZ2-B856E-301” manufactured by Brother) Sewing machines were applied at 1 cm intervals. After that, it was cut into a glove shape and tried to sew. However, the composite yarn was transmitted and could not be sewn.
  • the physical properties of the gloves obtained in the examples and comparative examples were tested.
  • the evaluation results of Examples 1 to 12 are shown in Table 1
  • the evaluation results of Examples 13 to 23 are shown in Table 2
  • the evaluation results of Comparative Examples 1 to 13 are shown in Table 3.
  • the expansion / contraction recovery rate of the core yarn, the attached yarn, or the yarn to be twisted around the conductive fiber is set to 0 to It is essential to set it to 10%.
  • the effect of setting the expansion / contraction restoration rate to 0% to 10% is clear compared with the comparative example.
  • the work gloves according to the present invention satisfy the demands for countermeasures against static electricity and low dust generation, and are useful for use in semiconductor manufacturing processes, painting processes, clean room work, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gloves (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

Disclosed is a work glove which has been entirely or partly knitted from a composite yarn comprising a filament yarn and a conductive fiber, characterized in that the filament yarn contained in the composite yarn has a recovery from stretch of 0-10%.

Description

作業用手袋Work gloves
 本発明は、半導体製造工程、塗装工程またはクリーンルーム内作業など、導電性と低発塵性とが要求される分野において使用される複合糸とその製造方法、該複合糸から得られる作業用手袋および布帛、該作業用手袋および布帛の製造方法に関するものである。 The present invention relates to a composite yarn used in a field where conductivity and low dust generation are required, such as a semiconductor manufacturing process, a painting process, or a work in a clean room, a manufacturing method thereof, a work glove obtained from the composite yarn, and The present invention relates to a fabric, a working glove, and a method for manufacturing the fabric.
 半導体製造工程、塗装工程またはクリーンルーム内作業などにおいては、導電性を有する作業用手袋が用いられている。このような作業用手袋には、カーボンをポリエステルやナイロン繊維に練り込んで得られた導電性繊維が用いられている。また、このような作業用手袋には、アクリル繊維を硫化銅で染色したりポリピロールで被覆したりして得られた導電性繊維をウーリーナイロン、ウーリーポリエステル等のフィラメント糸に編み込んで得られた複合糸なども用いられている。さらに、滑り防止を目的として、このような手袋の指先部分や掌部分を、ポリウレタン樹脂もしくは合成ゴムなどで被覆した作業用手袋なども使用されている。 Conductive work gloves are used in the semiconductor manufacturing process, painting process or clean room work. In such work gloves, conductive fibers obtained by kneading carbon into polyester or nylon fibers are used. Also, in such work gloves, composite fibers obtained by weaving conductive fibers obtained by dyeing acrylic fibers with copper sulfide or coating with polypyrrole into filament yarns such as wooly nylon and wooly polyester. Yarns are also used. Furthermore, for the purpose of preventing slipping, a work glove in which the fingertip part and palm part of such a glove are covered with polyurethane resin or synthetic rubber is also used.
 例えば、JP2009-102779Aには、合成繊維の表面に金属性皮膜層が形成された導電性糸材が、手指部や手背部に縫い付けられた手袋が開示されている。日本国実用新案登録3042096号には、プラチナを主成分にシリカやアルミナなどの鉱物を配合した材料から得られる電磁波繊維製の糸素材と銅イオン性繊維製の糸素材とを互いに絡ませながら織り込まれた導電性繊維生地が記載されている。さらに該導電性繊維生地から製造された手袋や布帛などが開示されている。JP2006-63456Aには、導電性糸が用いられた手袋が開示されている。日本国実用新案登録公開平6-54720号公報には、電気抵抗値が10Ω/cm以下である導電性糸条が、手袋の指を形成する部分に用いられることが開示されている。上記したいずれの手袋においても、一定レベルの導電性と低発塵性が得られている。 For example, JP2009-102779A discloses a glove in which a conductive thread material having a metallic coating layer formed on the surface of a synthetic fiber is sewn on the finger or the back of the hand. In Japanese Utility Model Registration No. 3042096, the yarn material made of electromagnetic fiber and the material made of copper ionic fiber, which are obtained from a material containing platinum as a main component and minerals such as silica and alumina, are woven together. Conductive fiber fabrics are described. Further, gloves and fabrics manufactured from the conductive fiber fabric are disclosed. JP 2006-63456A discloses a glove using conductive yarn. Japanese Utility Model Registration Publication No. 6-54720 discloses that a conductive yarn having an electric resistance value of 10 9 Ω / cm or less is used for a part forming a finger of a glove. In any of the above-described gloves, a certain level of conductivity and low dust generation are obtained.
 しかしながら、上述した公知の手袋には、導電性繊維をフィラメント糸にそのまま編み込んで得られた複合繊維が用いられている。このような手袋は、導電性繊維の物性に起因して、着用時に十分なフィット感を有するほどの伸縮性を得ることができなかった。また、導電性繊維が高価であるため、得られた複合糸や手袋などにおいても、コストアップの問題が存在していた。 However, the known glove described above uses a composite fiber obtained by knitting a conductive fiber into a filament yarn as it is. Such a glove was not able to obtain the elasticity which has a sufficient fit at the time of wear due to the physical property of the conductive fiber. In addition, since conductive fibers are expensive, there is a problem of cost increase in the obtained composite yarns and gloves.
 静電気の防止または抑制、あるいはコストダウンを目的として、ウーリーナイロン繊維やウーリーポリエステル繊維などのフィラメント糸に導電性繊維をカバーリングすることによって得られた複合糸や、該複合糸が用いられた作業用手袋が提案されている。カバーリングとは、芯となる糸の外周に巻き糸となる糸を一定の間隔で巻いていき複合糸を得る方法である。カバーリングは、合撚などにより複合糸を得る場合と比較すると、必要とされる糸の長さが短いので、コスト的なメリットが期待できる。また、カバーリングの機械は、合燃機械と比較すると広く市場に出回っており汎用されているため、生産性の観点からも有効である。 For the purpose of prevention or suppression of static electricity or cost reduction, composite yarn obtained by covering conductive fibers on filament yarn such as wooly nylon fiber and woolly polyester fiber, and work using the composite yarn Gloves have been proposed. Covering is a method of obtaining a composite yarn by winding a winding yarn around an outer periphery of a core yarn at regular intervals. Compared to the case where the composite yarn is obtained by twisting or the like, the cover ring is expected to have a cost advantage because the required yarn length is short. In addition, the cover ring machine is more widely available on the market than the combined combustion machine and is widely used, so it is also effective from the viewpoint of productivity.
 ところが、このような複合糸からなる手袋を着用して作業を行う場合には、作業中の摩擦や摩耗によって、該手袋中の導電性繊維が脱離するという問題があった。そのため、例えば、半導体製造工程などにおいて、脱離した導電性繊維に起因する半導体基板の絶縁破壊などのトラブルが発生する場合があった。 However, when the work is performed while wearing a glove made of such a composite yarn, there is a problem that the conductive fibers in the glove are detached due to friction and wear during the work. Therefore, for example, troubles such as dielectric breakdown of the semiconductor substrate due to the detached conductive fibers may occur in the semiconductor manufacturing process or the like.
 手袋中の導電性繊維が脱離する原因は、以下の通りであると推測される。従来の静電気対策用手袋は、手袋のフィット性を増すために、通常、Japanese Industrial Standard L 1013に従って測定される伸縮復元率が20%~50%の捲縮加工されたフィラメント糸(例えば、ウーリーナイロン糸など)を芯糸に使用し、導電性繊維を巻き糸に使用している。このようなフィラメント糸を用いた場合には、カバーリングにより複合糸を得る際や、該複合糸から手袋を製造する際には、工程上、糸に張力を付与しながらの作業が必要となる。この張力は作業後に取除かれる。すると、該フィラメント糸が元に戻るに伴い、カバーリングした戻りの小さい導電性繊維が、複合糸の表面から外に飛び出してしまう。そして、外に飛び出した導電性繊維が、摩擦や磨耗により脱離し易くなると推測される。特に、導電性繊維の太さがフィラメント糸の太さよりも細い場合は、導電性繊維が複合糸の表面から飛び出す現象がより顕著なものとなる。 The reason why the conductive fibers in the glove are detached is estimated as follows. Conventional anti-static gloves typically have a crimped filament yarn (e.g., woolly nylon) with a stretch recovery rate of 20% to 50% as measured according to Japan Industrial Standard L 1013 to increase the fit of the glove. Thread) is used for the core thread, and conductive fibers are used for the wound thread. When such a filament yarn is used, when obtaining a composite yarn by covering or manufacturing a glove from the composite yarn, it is necessary to perform an operation while applying tension to the yarn in the process. . This tension is removed after the work. Then, as the filament yarn returns to its original state, the covered conductive fiber with a small return jumps out from the surface of the composite yarn. And it is estimated that the conductive fiber which jumped out becomes easy to detach | leave by friction and wear. In particular, when the thickness of the conductive fiber is smaller than the thickness of the filament yarn, the phenomenon of the conductive fiber jumping out from the surface of the composite yarn becomes more remarkable.
 従って、作業時の摩擦や磨耗による導電性繊維の脱離を防止するために、カバーリング後や手袋の製造後に張力を除いた後においても、戻りの小さい導電性繊維が外側に飛び出すことを抑制することが必要であった。 Therefore, in order to prevent detachment of conductive fibers due to friction and wear during work, even after removing the tension after covering or glove manufacture, the conductive fibers with small return are prevented from jumping out. It was necessary to do.
 本発明の課題は、上記問題に鑑み、導電性繊維の脱離が長期にわたって防止され、導電性と低発塵性を兼ね備えた複合糸、および該複合糸から得られた作業用手袋および布帛を提供することにある。 In view of the above problems, an object of the present invention is to provide a composite yarn that is prevented from detaching conductive fibers over a long period of time and has both conductivity and low dust generation, and a work glove and a fabric obtained from the composite yarn. It is to provide.
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、導電性繊維の回復性(復元性)と、該導電性繊維に組み合わせられて複合糸を構成するフィラメント糸の回復性(復元性)とを近づけることを見出した。その結果、導電性繊維の脱離が防止された複合糸や、該複合糸から得られる作業用手袋および布帛を得ることが可能であることを見出し、本発明を完成するに至った。なお、フィラメント糸は、芯糸としての導電性繊維に巻きつけられるカバーリング糸、カバーリング糸としての導電性繊維が巻き付けられる芯糸、芯糸としての導電性繊維に添えられる添え糸、導電性繊維と撚り合わせられて合燃糸となる糸などとなるものである。 As a result of intensive research in order to solve the above problems, the present inventor has found that the recoverability (restorability) of the conductive fiber and the recoverability of the filament yarn that is combined with the conductive fiber to constitute the composite yarn ( It was found that the resiliency was close. As a result, it has been found that it is possible to obtain a composite yarn in which the detachment of the conductive fibers is prevented and a working glove and fabric obtained from the composite yarn, and the present invention has been completed. The filament yarn includes a covering yarn wound around a conductive fiber as a core yarn, a core yarn wound around a conductive fiber as a covering yarn, a spliced yarn attached to the conductive fiber as a core yarn, a conductive yarn A yarn that is twisted together with a fiber to form a combustible yarn.
 すなわち、本発明は、以下の(1)~(16)を要旨とするものである。
(1)フィラメント糸と導電性繊維とを含む複合糸によって手袋の全体または一部分が編まれたものであり、前記複合糸に含まれるフィラメント糸全体の伸縮復元率が0~10%であることを特徴とする作業用手袋。
(2)フィラメント糸が芯糸であり、導電性繊維が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする(1)の作業用手袋。
(3)フィラメント糸が芯糸であり、導電性繊維が前記芯糸に添えられた添え糸であり、これら芯糸と添え糸とがカバーリング糸でカバーリングされていることを特徴とする(1)の作業用手袋。
(4)導電性繊維が芯糸であり、フィラメント糸が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする(1)の作業用手袋。
(5)複合糸は、フィラメント糸と導電性繊維とが合撚されたものであることを特徴とする(1)の作業用手袋。
(6)導電性繊維は、合撚糸の形態であることを特徴とする(1)から(5)までのいずれかの作業用手袋。
(7)指先部分、掌部分、または表面の全体が、合成ゴムまたは樹脂で被覆されていることを特徴とする(1)から(6)までのいずれの作業用手袋。
(8)捲縮加工糸の伸縮復元率を低下させる工程と、
 伸縮復元率を低下させた捲縮加工糸を少なくとも一部に含有し、全体の伸縮復元率が0~10%であるフィラメント糸を得る工程と、
 前記フィラメント糸と導電性繊維と用いて複合糸を得る工程と、
 前記複合糸を手袋に編み上げる工程と、
を有することを特徴とする作業用手袋の製造方法。
(9)フィラメント糸と導電性繊維とを含む複合糸であって、前記複合糸に含まれるフィラメント糸全体の伸縮復元率が0~10%であることを特徴とする複合糸。
(10)フィラメント糸が芯糸であり、導電性繊維が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする(9)の複合糸。
(11)フィラメント糸が芯糸であり、導電性繊維が前記芯糸に添えられた添え糸であり、これら芯糸と添え糸とがカバーリング糸でカバーリングされていることを特徴とする(9)の複合糸。
(12)導電性繊維が芯糸であり、フィラメント糸が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする(9)の複合糸。
(13)フィラメント糸と導電性繊維とが合撚されたものであることを特徴とする(9)の複合糸。
(14)導電性繊維は、合撚糸の形態であることを特徴とする(9)から(13)までのいずれかの複合糸。
(15)捲縮加工糸の伸縮復元率を低下させる工程と、
 伸縮復元率を低下させた捲縮加工糸を少なくとも一部に含有し、全体の伸縮復元率が0~10%であるフィラメント糸を得る工程と、
 前記フィラメント糸と導電性繊維と用いて複合糸を得る工程と、
を有することを特徴とする複合糸の製造方法。
(16)(9)から(15)までのいずれかの複合糸によって全体または一部分が形成されていることを特徴とする布帛。
That is, the gist of the present invention is the following (1) to (16).
(1) The glove is entirely or partially knitted with a composite yarn including a filament yarn and a conductive fiber, and the expansion / contraction recovery rate of the entire filament yarn included in the composite yarn is 0 to 10%. Features work gloves.
(2) The work glove according to (1), wherein the filament yarn is a core yarn, and the conductive fiber is a covering yarn wound around the core yarn.
(3) The filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn ( 1) Work gloves.
(4) The working glove according to (1), wherein the conductive fiber is a core yarn, and the filament yarn is a covering yarn wound around the core yarn.
(5) The working glove according to (1), wherein the composite yarn is a filament yarn and a conductive fiber twisted together.
(6) The working gloves according to any one of (1) to (5), wherein the conductive fiber is in the form of a twisted yarn.
(7) The work gloves according to any one of (1) to (6), wherein the fingertip portion, palm portion, or entire surface is covered with synthetic rubber or resin.
(8) reducing the expansion / contraction restoration rate of the crimped yarn;
A step of obtaining a filament yarn containing at least a portion of the crimped yarn having a reduced expansion / contraction recovery rate and having an overall expansion / contraction recovery rate of 0 to 10%;
Obtaining a composite yarn using the filament yarn and conductive fiber;
Knitting the composite yarn into a glove,
The manufacturing method of the work glove characterized by having.
(9) A composite yarn comprising a filament yarn and a conductive fiber, wherein the expansion / contraction recovery rate of the entire filament yarn contained in the composite yarn is 0 to 10%.
(10) The composite yarn according to (9), wherein the filament yarn is a core yarn, and the conductive fiber is a covering yarn wound around the core yarn.
(11) The filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn ( 9) Composite yarn.
(12) The composite yarn according to (9), wherein the conductive fiber is a core yarn, and the filament yarn is a covering yarn wound around the core yarn.
(13) The composite yarn according to (9), wherein the filament yarn and the conductive fiber are twisted together.
(14) The composite yarn according to any one of (9) to (13), wherein the conductive fiber is in the form of a twisted yarn.
(15) reducing the expansion / contraction restoration rate of the crimped yarn;
A step of obtaining a filament yarn containing at least a portion of the crimped yarn having a reduced expansion / contraction recovery rate and having an overall expansion / contraction recovery rate of 0 to 10%;
Obtaining a composite yarn using the filament yarn and conductive fiber;
A method for producing a composite yarn, comprising:
(16) A fabric characterized in that the whole or a part thereof is formed by any one of the composite yarns of (9) to (15).
 本発明においては、導電性繊維に組み合わせられて複合糸を構成するフィラメント糸のJapanese Industrial Standard L 1013にて測定される伸縮復元率を0~10%に規定する。その結果、導電性繊維の回復性(復元性)とそれに組み合わせられて複合糸を構成するフィラメント糸の回復性(復元性)を、ほぼ一致させることが可能となる。これにより、導電性繊維を芯糸として用いた場合、カバーリング糸として用いた場合、芯糸の添え糸として用いた場合のいずれの場合においても、カバーリング後に張力を除く際に、戻りの小さい導電性繊維が外に飛び出すことが防止される。その結果、摩擦や磨耗による導電性繊維の脱離を抑制することができる。加えて、長期間にわたる実使用においても、導電性繊維の脱離を効果的に抑制することが可能である。従って、導電性と低発塵性とを兼ね備えた複合糸、該複合糸よりなる作業用手袋および布帛を得ることが可能となる。 In the present invention, the expansion / contraction restoration ratio measured by the Japan Industrial Standard L 1013 of the filament yarn that is combined with the conductive fiber to constitute the composite yarn is defined as 0 to 10%. As a result, the recoverability (restorability) of the conductive fiber and the recoverability (restorability) of the filament yarn that is combined therewith to form the composite yarn can be substantially matched. As a result, when the conductive fiber is used as a core yarn, when used as a covering yarn, or when used as a splicing yarn for the core yarn, there is little return when removing tension after covering. The conductive fiber is prevented from jumping out. As a result, detachment of the conductive fibers due to friction and wear can be suppressed. In addition, the detachment of the conductive fibers can be effectively suppressed even in actual use over a long period of time. Therefore, it is possible to obtain a composite yarn having both conductivity and low dust generation, and a working glove and a fabric made of the composite yarn.
芯糸がフィラメント糸でありカバーリング糸が導電性繊維である複合糸と、該複合糸にかかる張力が除かれた場合の対比を示す概略図である。It is the schematic which shows the contrast when the tension | tensile_strength which remove | eliminates the tension | tensile_strength applied to the composite yarn which a core yarn is a filament yarn, and a covering yarn is an electroconductive fiber. フィラメント糸である芯糸と導電性繊維である添え糸がフィラメント糸でカバーリングされている複合糸と、該複合糸にかかる張力が除かれた場合の対比を示す概略図である。It is the schematic which shows the contrast when the tension | tensile_strength concerning this composite yarn is removed with the composite yarn by which the core yarn which is a filament yarn, and the splicing yarn which is electroconductive fiber are covered with the filament yarn. フィラメント糸が複数本引き揃えられてなる芯糸が導電性繊維でカバーリングされた複合糸と、該複合糸にかかる張力が除かれた場合の対比を示す概略図である。It is the schematic which shows the contrast at the time of the tension | tensile_strength remove | excluded from the composite thread | yarn with which the core thread | yarn by which the filament thread | yarn was arranged all by a conductive fiber was covered. 芯糸である導電性繊維がフィラメント糸でカバーリングされた複合糸と、該複合糸にかかる張力が除かれた場合の対比を示す概略図である。It is the schematic which shows the contrast when the tension | tensile_strength applied to the composite yarn by which the conductive fiber which is a core yarn was covered with the filament yarn was removed. 導電性繊維が複数本引き揃えられてなる芯糸が導電性繊維でカバーリングされた複合糸と、該複合糸にかかる張力が除かれた場合の対比を示す概略図である。It is the schematic which shows the contrast at the time of the tension | tensile_strength remove | excluded from the composite thread | yarn with which the core thread | yarn by which multiple conductive fibers were arranged and covered with the conductive fiber was removed. 掌部分が樹脂により被覆された本発明の作業用手袋を示す概略図である。It is the schematic which shows the work gloves of this invention by which the palm part was coat | covered with resin. フィラメント糸の伸縮復元率を測定するに際し、(0.176mN×20×表示テックス数)の荷重7と(8.82mN×20×表示テックス数)の荷重8とをかけた試料6を、水10中に垂下する状態を示す概略図である。When measuring the expansion / contraction recovery rate of the filament yarn, a sample 6 applied with a load 7 of (0.176 mN × 20 × display tex number) and a load 8 of (8.82 mN × 20 × display tex number) was added to water 10 It is the schematic which shows the state which hangs down inside.
 本発明の作業用手袋は、複合糸によって手袋の全体または一部分が編まれたものである。該複合糸は、導電性繊維と、該導電性繊維と組み合わせられる糸(すなわち、芯糸としての導電性繊維に巻きつけられるカバーリング糸、カバーリング糸としての導電性繊維が巻き付けられる芯糸、芯糸としての導電性繊維に添えられる添え糸、導電性繊維と撚り合わせられて合燃糸となる糸など)を含むものである。 The work gloves of the present invention are knitted in whole or in part with a composite yarn. The composite yarn includes a conductive fiber and a yarn combined with the conductive fiber (that is, a covering yarn wound around the conductive fiber as the core yarn, a core yarn around which the conductive fiber as the covering yarn is wound, A splicing yarn attached to the conductive fiber as a core yarn, a yarn that is twisted with the conductive fiber to become a combusting yarn, and the like.
 本発明に用いられる導電性繊維は、低発塵性の観点から、フィラメント糸(つまり、長繊維)であることが好ましい。 The conductive fibers used in the present invention are preferably filament yarns (that is, long fibers) from the viewpoint of low dust generation.
 導電性繊維としては、ステンレスなどの金属繊維(例えば、直径が20~50μmの金属繊維)、アクリル繊維などの合成繊維表面にピロールなどを重合した繊維、アクリル繊維表面に硫化銅などを被覆した繊維、カーボンをポリエステル繊維やナイロン繊維へ練り込んで得られた繊維などが挙げられる。 Examples of conductive fibers include metal fibers such as stainless steel (for example, metal fibers having a diameter of 20 to 50 μm), fibers obtained by polymerizing pyrrole on the surface of synthetic fibers such as acrylic fibers, and fibers obtained by coating the surfaces of acrylic fibers with copper sulfide or the like. And a fiber obtained by kneading carbon into polyester fiber or nylon fiber.
 なかでも、手袋としての風合いの向上や静電気対策上の要望の観点からは、アクリル繊維などの合成繊維表面に硫化銅などを被覆した繊維、カーボンをポリエステル繊維やナイロン繊維へ練り込んだ繊維が好ましい。 Among these, from the viewpoint of improving the texture as a glove and the demand for countermeasures against static electricity, fibers in which synthetic fiber surfaces such as acrylic fibers are coated with copper sulfide or the like, and fibers in which carbon is kneaded into polyester fibers or nylon fibers are preferable. .
 導電性繊維は、発塵量と脱離量を低減する観点から、合撚糸であることが好ましい。かかる場合は、導電性繊維と非導電性繊維とを合撚してなるものであってもよいし、導電性繊維のみを合撚してなるものであってもよい。なかでも、導電性繊維と非導電性繊維とを合撚してなるものであれば、脱離しても絶縁破壊を生じず安全であるため好ましい。 The conductive fiber is preferably a twisted yarn from the viewpoint of reducing the dust generation amount and the detachment amount. In such a case, the conductive fiber and the nonconductive fiber may be twisted, or only the conductive fiber may be twisted. In particular, it is preferable that a conductive fiber and a non-conductive fiber are twisted together because it is safe without causing dielectric breakdown even if it is detached.
 導電性繊維が導電性繊維と非導電性繊維との合撚糸である場合には、Japanese Industrial Standard L 1013にて測定される伸縮復元率が0~10%であるフィラメント糸と導電性繊維を合撚してなるものが好ましく、伸縮復元率が0~7%であるフィラメント糸と導電性繊維を合撚してなるものがより好ましい。導電性繊維と合撚されるフィラメント糸の伸縮復元率が10%を超えると、発塵量と脱離量が多くなる場合があるため好ましくない。また、伸縮復元率が0%未満であるフィラメント糸は、実質的には存在しない。 When the conductive fiber is a twisted yarn of conductive fiber and non-conductive fiber, the filament yarn and the conductive fiber having a stretch recovery rate of 0-10% as measured by Japan Industrial Standard L 1013 are combined. Those obtained by twisting are preferred, and those obtained by twisting a filament yarn having a stretch recovery rate of 0 to 7% and a conductive fiber are more preferred. When the expansion / contraction recovery rate of the filament yarn to be twisted with the conductive fiber exceeds 10%, the amount of dust generation and the amount of desorption may increase, which is not preferable. Further, there is substantially no filament yarn having an expansion / contraction recovery rate of less than 0%.
 本発明における伸縮復元率は、糸の回復性(復元性)の指標として用いられるものであり、その測定方法は、実施例において後述する。 The expansion / contraction restoration rate in the present invention is used as an index of yarn recoverability (restorability), and the measurement method will be described later in Examples.
 導電性繊維とフィラメント糸を合撚して合撚糸を得る場合は、1mあたり50回から700回合撚してなる合撚糸が好ましく、100~500回合撚してなる合撚糸がより好ましい。合撚回数が50回未満であると、糸としての屈曲性に劣り、さらに合撚機械で良好に合撚できず、生産性が低下する場合がある。一方、合撚回数が700回を超えると、得られる合撚糸が硬くなりすぎ実用的でない場合がある。 When the conductive fiber and the filament yarn are twisted to obtain a twisted yarn, a twisted yarn formed by twisting 50 to 700 times per meter is preferable, and a twisted yarn formed by twisting 100 to 500 times is more preferable. If the number of times of twisting is less than 50, the flexibility as a yarn is inferior, and further, twisting cannot be satisfactorily performed by a twisting machine, and productivity may be lowered. On the other hand, when the number of times of twisting exceeds 700 times, the resulting twisted yarn may become too hard and impractical.
 導電性繊維に複合されて複合糸を構成する糸は、糸端部の複合糸からの飛び出しを防止する観点から、フィラメント糸、すなわち長繊維であることが必要である。フィラメント糸としては、ポリエステル、アクリル、強化ポリエチレン、アラミド、ナイロンなどから形成された繊維を、単独で使用したものでもよいし、もしくは二種以上を併用したものでもよい。 The yarn constituting the composite yarn by being composited with the conductive fiber needs to be a filament yarn, that is, a long fiber from the viewpoint of preventing the yarn end portion from jumping out from the composite yarn. As the filament yarn, a fiber formed from polyester, acrylic, reinforced polyethylene, aramid, nylon or the like may be used alone, or two or more types may be used in combination.
 該フィラメント糸を、複合糸の芯糸や添え糸として用いる場合は、その太さは1本あたり50d~450dが好ましく、50d~200dがより好ましい。太さが50d未満である場合は、芯糸や添え糸とした場合の安定感や強度に劣る場合がある、一方、太さが450dを超えると、硬くなり過ぎて、複合糸とした場合の風合いや触感に劣る場合がある。 When the filament yarn is used as a core yarn or a splicing yarn of a composite yarn, the thickness is preferably 50d to 450d, more preferably 50d to 200d. When the thickness is less than 50d, the stability and strength may be inferior when the core yarn or the splicing yarn is used. On the other hand, when the thickness exceeds 450d, the yarn becomes too hard and the composite yarn is used. The texture and feel may be inferior.
 該フィラメント糸を、複合糸のカバーリング糸として用いる場合には、その太さは1本あたり2d~5dが好ましく、1.3d~2.9dがより好ましい。太さが2d未満である場合は、発塵量と脱離量が多くなる場合があり、一方、太さが5dを超えると、風合いが悪くなる場合がある。 When the filament yarn is used as a covering yarn of a composite yarn, the thickness is preferably 2d to 5d, more preferably 1.3d to 2.9d. When the thickness is less than 2d, the dust generation amount and the desorption amount may increase. On the other hand, when the thickness exceeds 5d, the texture may deteriorate.
 フィラメント糸の伸縮復元率は、捲縮加工などにより得られた糸であれば、通常、20~50%程度である。本発明においては、導電性繊維の伸縮復元率と、該導電性繊維と複合されるフィラメント糸の伸縮復元率の値とを近づけることが必要である。このようにすることにより、複合糸とした場合の導電性繊維の脱離を抑制することが必須である。導電性繊維の伸縮復元率は、通常1~5%程度であるため、複合されるフィラメント糸の伸縮復元率は0~10%であることが必要であり、0.1~10%が好ましく、1~7%がより好ましい。なお、このフィラメント糸が、伸縮復元率の異なる複数の糸から構成される場合は、フィラメント糸全体の伸縮復元率が上記範囲を満たすことが必要である。 The expansion / contraction restoration rate of the filament yarn is usually about 20 to 50% if the yarn is obtained by crimping or the like. In the present invention, it is necessary to bring the expansion / contraction recovery rate of the conductive fiber close to the value of the expansion / contraction recovery rate of the filament yarn combined with the conductive fiber. By doing so, it is essential to suppress the detachment of the conductive fibers in the case of a composite yarn. Since the expansion / contraction recovery rate of the conductive fiber is usually about 1 to 5%, the expansion / contraction recovery rate of the combined filament yarn needs to be 0 to 10%, preferably 0.1 to 10%, 1 to 7% is more preferable. When the filament yarn is composed of a plurality of yarns having different expansion / contraction recovery rates, the expansion / contraction recovery rate of the entire filament yarn needs to satisfy the above range.
 一般的には、導電性繊維と、該導電性繊維と組み合わせて用いられる(すなわち、複合される)その他の糸との回復性(復元性)をほぼ一致させるためには、たとえば、該導電性繊維を捲縮加工すればよいと考えられる。しかしながら、銅染色繊維やカーボンを練り込んだ導電性繊維であると、素材の性質上、伸縮性を持たせる捲縮加工を行うことが困難である。たとえ伸縮性が得られたとしても、その伸縮復元率は2~3%程度の低い値となってしまい、作業用手袋とした際のフィット感が得られなくなるため実用的ではない。従って、本発明のように、導電性繊維と組み合わせて用いられるフィラメント糸全体の伸縮復元率を0~10%とすることが必要なのである。 In general, in order to make the recoverability (restorability) of the conductive fiber and other yarns used in combination with the conductive fiber (that is, combined) substantially match, for example, the conductive fiber It is thought that the fiber may be crimped. However, if the conductive fiber is a copper-dyed fiber or carbon kneaded, it is difficult to perform crimping to give stretchability due to the nature of the material. Even if stretchability is obtained, the stretch recovery rate is a low value of about 2 to 3%, and it is not practical because a fit feeling when used as a work glove cannot be obtained. Therefore, as in the present invention, it is necessary to set the expansion / contraction recovery rate of the entire filament yarn used in combination with the conductive fiber to 0 to 10%.
 フィラメント糸としては、生糸の状態であっても、伸縮復元率が上記の範囲を満足していれば利用できる。しかしながら、わずかに伸縮性がある方が手袋にした時のフィット感が向上するので、捲縮加工糸の伸縮復元率を低下させて、フィラメント糸として用いることが好ましい。 As the filament yarn, even if it is in the raw yarn state, it can be used if the expansion / contraction recovery rate satisfies the above range. However, it is preferable to use it as a filament yarn by reducing the expansion / contraction restoration rate of the crimped yarn, because the fit feeling when it is made into a glove is improved if it is slightly stretchable.
 フィラメント糸は、伸縮復元率が上記の範囲内である市販品を用いてもよいし、伸縮復元率が上記の範囲を超えるフィラメント糸の伸縮復元率を低下させて、上記の範囲内としたものを用いてもよい。フィラメント糸の伸縮復元率を低下させる方法としては、たとえば、以下のようなものが挙げられる。 The filament yarn may be a commercially available product having an expansion / contraction recovery rate within the above range, or the expansion / contraction recovery rate of the filament yarn having an expansion / contraction recovery rate exceeding the above range is reduced to be within the above range. May be used. Examples of the method for reducing the expansion / contraction restoration rate of the filament yarn include the following.
 まず、フィラメント糸を巻き密度0.2~0.3g/cmとなるようにボビンにソフト巻きし、約70~100℃で0.17~1時間の湯洗いを行う。次いで、1~30分間脱水し、60~100℃で40~300分間の乾燥を行う。このように熱処理することにより、フィラメント糸の伸縮復元率を低下させることができる。このような処理は、例えば、公知の染色機を流用して行うことができる。 First, the filament yarn is softly wound around a bobbin so that the winding density is 0.2 to 0.3 g / cm 3, and is washed with hot water at about 70 to 100 ° C. for 0.17 to 1 hour. Next, dehydration is performed for 1 to 30 minutes, and drying is performed at 60 to 100 ° C. for 40 to 300 minutes. By performing the heat treatment in this manner, the expansion / contraction restoration rate of the filament yarn can be reduced. Such a process can be performed, for example, using a known dyeing machine.
 なお、上記の条件は、フィラメント糸を構成する材質などにより、適宜調整することが可能である。 It should be noted that the above conditions can be appropriately adjusted depending on the material constituting the filament yarn.
 カバーリングに用いられるカバーリング糸としては、たとえば、上記の導電性繊維が用いられてもよいし、ポリエステル、強化ポリエチレン、アラミド、ナイロン、アクリル製繊維の生糸、もしくはこれらを捲縮加工した捲縮加工糸などが用いられてもよい。 As the covering yarn used for the cover ring, for example, the conductive fibers described above may be used, polyester, reinforced polyethylene, aramid, nylon, raw fibers of acrylic fibers, or crimps obtained by crimping these. A processed yarn or the like may be used.
 本発明における複合糸の構成としては、以下の(i)~(v)が挙げられる。複合糸の構成(i)~(v)を、図1~図5を用いて説明する。 The following (i) to (v) are mentioned as the composition of the composite yarn in the present invention. The configurations (i) to (v) of the composite yarn will be described with reference to FIGS.
 (i)フィラメント糸を芯糸とし、導電性繊維が、カバーリング糸として、前記芯糸の周囲に巻き付けられた構成である。図1の(a)は、(i)の構成を有する複合糸を示すものである。すなわち、フィラメント糸1を芯糸とし、この芯糸を導電性繊維2でカバーリングすることにより得られた複合糸を示している。カバーリング後や手袋などを製造した後に、張力を除いた場合であっても、図1の(b)に示すように、戻りの小さい導電性繊維2が外側に飛び出すことが抑制されている。 (I) The filament yarn is used as the core yarn, and the conductive fiber is wound around the core yarn as the covering yarn. FIG. 1 (a) shows a composite yarn having the configuration (i). That is, the composite yarn obtained by using the filament yarn 1 as a core yarn and covering the core yarn with the conductive fiber 2 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
 (ii)フィラメント糸を芯糸とし、導電性繊維を前記芯糸に添えられた添え糸とし、これら芯糸と添え糸とがカバーリング糸でカバーリングされている構成である。図2の(a)は、(ii)の構成を有する複合糸を示すものである。すなわち、フィラメント糸1を芯糸とし、導電性繊維2を添え糸とし、前記芯糸と添え糸をフィラメント糸1でカバーリングすることにより得られた複合糸を示している。カバーリング後や手袋などを製造した後に、張力を除いた場合であっても、図2の(b)に示すように、戻りの小さい導電性繊維2が外側に飛び出すことが抑制されている。 (Ii) The filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn. FIG. 2 (a) shows a composite yarn having the configuration (ii). That is, a composite yarn obtained by using the filament yarn 1 as the core yarn, the conductive fiber 2 as the accessory yarn, and covering the core yarn and the accessory yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, as shown in FIG. 2B, the conductive fiber 2 with a small return is prevented from jumping to the outside.
 (iii)フィラメント糸を複数本引き揃えたものを芯糸とし、導電性繊維が、カバーリング糸として前記芯糸の周囲に巻き付けられた構成である。つまり、上記構成(i)の場合において、芯糸が複数本である構成である。図3の(a)は、(iii)の構成を示すものである。すなわち、フィラメント糸1を複数本引き揃えて芯糸とし、前記芯糸を導電性繊維2でカバーリングすることにより得られた複合糸を示している。カバーリング後や手袋などを製造した後に、張力を除いた場合であっても、図3の(b)に示すように、戻りの小さい導電性繊維2が外側に飛び出すことが抑制されている。 (Iii) A configuration in which a plurality of filament yarns arranged together is used as a core yarn, and a conductive fiber is wound around the core yarn as a covering yarn. That is, in the case of the above configuration (i), there are a plurality of core yarns. FIG. 3A shows the configuration of (iii). That is, a composite yarn obtained by aligning a plurality of filament yarns 1 to form a core yarn and covering the core yarn with conductive fibers 2 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
 (iv)導電性繊維と芯糸とし、フィラメント糸が、カバーリング糸として、前記芯糸の周囲に巻きつけられた構成である。図4の(a)は、(iv)の構成を有する複合糸を示すものである。すなわち、導電性繊維2を芯糸とし、前記芯糸をフィラメント糸1でカバーリングすることにより得られた複合糸を示している。カバーリング後や手袋などを製造した後に、張力を除いた場合であっても、図4の(b)に示すように、戻りの小さい導電性繊維2が外側に飛び出すことが抑制されている。 (Iv) A structure in which a conductive fiber and a core yarn are used, and a filament yarn is wound around the core yarn as a covering yarn. FIG. 4A shows a composite yarn having the configuration (iv). That is, the composite yarn obtained by using the conductive fiber 2 as a core yarn and covering the core yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
 (v)導電性繊維を複数本引き揃えたものを芯糸とし、導電性繊維が、カバーリング糸として前記芯糸の周囲に巻き付けられた構成である。つまり、上記(iv)の場合において、芯糸が複数本である構成である。図5の(a)は、(v)の構成を有する複合糸を示すものである。すなわち、導電性繊維2を複数本引き揃えて芯糸とし、前記芯糸をフィラメント糸1でカバーリングすることにより得られた複合糸を示している。カバーリング後や手袋などを製造した後に、張力を除いた場合であっても、図5の(b)に示すように、戻りの小さい導電性繊維2が外側に飛び出すことが抑制されている。 (V) A structure in which a plurality of conductive fibers are arranged together is used as a core yarn, and the conductive fiber is wound around the core yarn as a covering yarn. That is, in the case of the above (iv), there is a configuration in which the core yarn is plural. FIG. 5 (a) shows a composite yarn having the configuration (v). That is, a composite yarn obtained by drawing a plurality of conductive fibers 2 into a core yarn and covering the core yarn with the filament yarn 1 is shown. Even when the tension is removed after the cover ring or the glove is manufactured, the conductive fiber 2 with a small return is prevented from jumping to the outside as shown in FIG.
 複合糸中のフィラメント糸全体の伸縮復元率が10%を超えると、図1の(b)、図2の(b)、図3の(b)、図4の(b)、図5の(b)と比較して、導電性繊維が複合糸表面または手袋表面から飛び出す現象が顕著となる。すなわち、本発明においては、複合糸中のフィラメント糸全体の伸縮復元率を0~10%に規定しているため、導電性繊維の複合糸表面または手袋表面からの飛び出しを抑制できるのである。 When the expansion / contraction recovery rate of the entire filament yarn in the composite yarn exceeds 10%, (b) in FIG. 1, (b) in FIG. 2, (b) in FIG. 3, (b) in FIG. Compared with b), the phenomenon that the conductive fiber jumps out of the surface of the composite yarn or the surface of the glove becomes remarkable. That is, in the present invention, since the expansion / contraction recovery rate of the entire filament yarn in the composite yarn is defined as 0 to 10%, it is possible to suppress the jumping of the conductive fiber from the composite yarn surface or the glove surface.
 上記のなかでも、導電性繊維の脱離を効果的に抑制する観点から、(i)の構成を有する複合糸が最も好ましい。 Among the above, the composite yarn having the configuration (i) is most preferable from the viewpoint of effectively suppressing the detachment of the conductive fibers.
 カバーリング回数は芯1mあたり50~700回程度が好ましく、より好ましくは、100~500回であり、さらに好ましくは200~400回である。カバーリング回数が700回を超えると、複合糸が硬くなり、編みにくく、手袋としての風合いが悪くなる場合がある。カバーリング回数が50回未満であると、公知慣用のカバーリング用機器ではカバーリングが不可能であり、複合糸の生産ができない場合がある。 The number of times of covering is preferably about 50 to 700 times per 1 m of core, more preferably 100 to 500 times, and further preferably 200 to 400 times. When the number of times of covering exceeds 700 times, the composite yarn becomes hard, difficult to knit, and the texture as a glove may be deteriorated. When the number of times of covering is less than 50, it is impossible to cover with a known and common covering device, and composite yarn may not be produced.
 カバーリングするに際し、その巻き方としては、S字巻きやZ字巻きなどが挙げられる。なお、カバーリングする際には、芯糸の逆巻き(つまり、芯糸がS巻きならZ巻きにカバーリング糸を巻く巻き方、芯糸がZ巻きならS巻きにカバーリング糸を巻く巻き方)をすることにより、複合糸および編み製品の撚りがなくなり、良好な仕上がりとなるため好ましい。 When covering, examples of winding method include S-shaped winding and Z-shaped winding. When covering, reverse winding of the core yarn (that is, winding the covering yarn around the Z winding if the core yarn is S winding, winding the covering yarn around the S winding if the core yarn is Z winding) It is preferable that the composite yarn and the knitted product are not twisted and a good finish is obtained.
 なお、導電性繊維あるいはその合撚糸をカバーリング糸として用いると、導電性繊維が複合糸表面や手袋表面に露出する面積が大きくなる。その結果、表面抵抗率を下げる効果が向上する。しかしながら、その一方で、導電性繊維が複合糸表面や手袋表面に露出する面積が大きくなるため、導電性繊維の脱離量が多くなる。したがって、導電性繊維の脱離量を抑える観点からは、導電性繊維あるいはその合撚糸は、カバーリング糸としては用いず、芯糸、添え糸、撚り合わせる糸に用いることが好ましい。 In addition, when the conductive fiber or its twisted yarn is used as the covering yarn, the area where the conductive fiber is exposed on the composite yarn surface or the glove surface becomes large. As a result, the effect of reducing the surface resistivity is improved. However, on the other hand, since the area where the conductive fibers are exposed on the composite yarn surface or the glove surface is increased, the amount of the conductive fibers detached is increased. Therefore, from the viewpoint of suppressing the amount of the conductive fibers detached, the conductive fibers or their twisted yarns are preferably not used as covering yarns, but as core yarns, spliced yarns, and twisted yarns.
 上記のような構成を有する複合糸は、以下のような方法により得られる。 The composite yarn having the above configuration can be obtained by the following method.
 すなわち、フィラメント糸の伸縮復元率を、上述のような方法により0~10%に低下させる工程と、伸縮復元率を低下させたフィラメント糸を少なくとも一部に含有し全体の伸縮復元率が0~10%であるフィラメント糸を必要に応じて得る工程と、前記フィラメント糸と導電性繊維と用いて、カバーリングや合撚などにより複合糸を得る工程とを経ることにより得られる。 That is, the step of reducing the expansion / contraction restoration rate of the filament yarn to 0 to 10% by the above-described method, and the filament yarn having the reduced expansion / contraction restoration rate is contained at least in part, and the overall expansion / contraction restoration rate is 0 to It is obtained by going through a step of obtaining a filament yarn of 10% as necessary and a step of obtaining a composite yarn by covering, twisting or the like using the filament yarn and conductive fiber.
 上述のようにして得られた複合糸を編むことにより、本発明の作業用手袋や布帛を得ることができる。なお、本発明において、布帛とは、編物、織物、不織布などを称する。 The working gloves and fabric of the present invention can be obtained by knitting the composite yarn obtained as described above. In the present invention, the fabric refers to a knitted fabric, a woven fabric, a non-woven fabric, or the like.
 複合糸の編み方としては、公知慣用の方法や装置を用いて、手袋全体を上述の複合糸だけで編む方法であってもよいし、もしくは手袋の一部分たとえば指先を選択して複合糸で編む方法であってもよい。作業用手袋の一部分を上述の複合糸で編む場合には、例えば、複合糸とフィラメント糸を1:1~1:10コースで編む(すなわち、複合糸で1段編み、それに続く1段~10段をフィラメント糸で編む)ことも好ましい。複合糸は、導電性繊維を含むことで導電性繊維を含まない場合に比べて伸縮性が低下する。従って、複合糸とフィラメント糸を1:1~1:10コースで編むことにより、伸縮復元率の高い(たとえば50%程度の)フィラメント糸やポリウレタン弾性糸のみで編む部分を選択的に含めることができる。その結果、作業用手袋や布帛などとしてのフィット感や風合いを向上させることができる。加えて、作業用手袋や布帛全体に、均一な帯電性を付与することが可能となる。 The method of knitting the composite yarn may be a method of knitting the entire glove with only the above-mentioned composite yarn using a known and conventional method or apparatus, or a part of the glove, for example, a fingertip is selected and knitted with the composite yarn. It may be a method. When a part of a work glove is knitted with the above-described composite yarn, for example, the composite yarn and the filament yarn are knitted in a 1: 1 to 1:10 course (that is, one-step knitting with the composite yarn, followed by the first to tenth steps). It is also preferred to knit the step with filament yarn. The composite yarn contains conductive fibers, so that the stretchability is lowered as compared with the case where the composite yarns are not included. Therefore, by knitting the composite yarn and the filament yarn on a 1: 1 to 1:10 course, a portion to be knitted only with a filament yarn or polyurethane elastic yarn having a high expansion / contraction recovery rate (for example, about 50%) can be selectively included. it can. As a result, it is possible to improve the fit and texture of working gloves and fabrics. In addition, uniform chargeability can be imparted to the work gloves and the entire fabric.
 複合糸を用いて、本発明の作業用手袋や布帛を得る場合、その表面抵抗値は、1×10~1×1010Ω/seq.であることが好ましく、より好ましくは1×10~1×10Ω/seq.である。表面抵抗値がこの範囲であると、静電気を緩やかに拡散することができるため好ましい。表面抵抗値が1×10Ω/seq.未満であると、導電性繊維が脱離する場合に、感電したりショートしたりする場合がある。一方、表面抵抗値が1×1010Ω/seq.を超えると、静電気放電による絶縁破壊が発現する場合がある。複合糸を編む場合の編み方(つまり、複合糸とフィラメント糸のコース数の割合)や、複合糸中の導電性繊維とフィラメント糸の混繊率を適宜調整することにより、表面抵抗値を上記の範囲に制御することができる。 When the composite yarn is used to obtain the working glove or fabric of the present invention, the surface resistance value is 1 × 10 5 to 1 × 10 10 Ω / seq. And more preferably 1 × 10 6 to 1 × 10 8 Ω / seq. It is. A surface resistance value within this range is preferable because static electricity can be diffused gently. The surface resistance value is 1 × 10 5 Ω / seq. If it is less than the range, when the conductive fiber is detached, an electric shock or a short circuit may occur. On the other hand, the surface resistance value is 1 × 10 10 Ω / seq. Exceeding this may cause dielectric breakdown due to electrostatic discharge. By appropriately adjusting the knitting method (that is, the ratio of the number of courses of the composite yarn and the filament yarn) when the composite yarn is knitted, and the mixing ratio of the conductive fiber and the filament yarn in the composite yarn, the surface resistance value is adjusted as described above. Can be controlled within the range.
 複合糸を編むことにより得られた作業用手袋、または複合糸を編むことにより得られた布帛を縫製して得られた作業用手袋においては、指先部分、掌部分、もしくは全体の表面を、合成ゴムあるいは樹脂などを用いて滑り防止を目的とした加工が施されていてもよい。 In work gloves obtained by knitting composite yarn, or work gloves obtained by sewing fabric obtained by knitting composite yarn, the fingertip part, palm part, or the entire surface is synthesized. Processing for the purpose of preventing slipping may be performed using rubber or resin.
 滑り防止加工としては、たとえば、指先部分もしくは掌部分に、ポリウレタン樹脂や合成ゴム等で滑り止め皮膜を形成したり、合成ゴムやPVC系重合体等で滑り止め凸部を形成したりする加工が挙げられる。たとえば、得られた手袋を手の形をした浸漬型に被せ、ポリウレタン製樹脂溶液などに浸漬し、水置換、乾燥する。このような方法により、指先部分もしくは掌部分に、ポリウレタン樹脂や合成ゴム等で滑り止め皮膜を形成したり、合成ゴムやPVC系重合体等で滑り止め凸部を形成したりすることができる。 As the anti-slip process, for example, a process of forming a non-slip film with polyurethane resin or synthetic rubber on the fingertip part or palm part, or forming an anti-slip convex part with synthetic rubber or PVC polymer, etc. Can be mentioned. For example, the obtained glove is put on a dipping mold in the shape of a hand, dipped in a polyurethane resin solution, etc., replaced with water and dried. By such a method, an anti-slip film can be formed on the fingertip part or palm part with polyurethane resin, synthetic rubber or the like, or an anti-slip convex part can be formed with synthetic rubber or PVC polymer.
 図6の(a)は、上記のような滑り防止加工が施された手袋を甲部分から見た図である。図6の(b)は、滑り防止加工が施された手袋を掌部分から見た図である。手袋3において掌部分は、樹脂4により被覆されている。 (A) in FIG. 6 is a view of the glove subjected to the above-described anti-slip processing as seen from the upper part. (B) of FIG. 6 is the figure which looked at the glove in which the slip prevention process was performed from the palm part. The palm portion of the glove 3 is covered with the resin 4.
 合成ゴムとしては、NBR、クロロプレン、アクリル、ポリウレタン、酢酸ビニル-PVC共重合体、PVC単独重合体などが挙げられる。 Examples of the synthetic rubber include NBR, chloroprene, acrylic, polyurethane, vinyl acetate-PVC copolymer, PVC homopolymer, and the like.
 また、合成ゴムコンパウンドや酢酸ビニル-PVC共重合体、PVC単独重合体を、手袋の掌部において、スキージーすることにより、凸状の孔版が印刷して滑り止め加工が施されていてもよい。 In addition, a convex stencil may be printed and anti-slip processed by squeezing a synthetic rubber compound, vinyl acetate-PVC copolymer, or PVC homopolymer at the palm of the glove.
 また、得られた手袋に上記の滑り防止加工を施す際には、樹脂等が手袋表面に浸漬しすぎることを防止するため、目止めを行ってもよい。具体的には、硝酸カルシウム凝固剤につけた手型をNBR、クロロプレン、アクリル、ポリウレタンなどの合成ゴムゴンパウンドに浸漬し、乾燥し、リーチング、キュアをすることにより、目止めを行うことができる。または、目止めの他の方法としては、浸漬・乾燥後、製品を離型して、リーチング、脱水、キュアをする方法であってもよい。 In addition, when the above-mentioned anti-slip processing is performed on the obtained glove, sealing may be performed to prevent the resin or the like from being excessively immersed in the surface of the glove. Specifically, the filler can be sealed by dipping a hand mold attached to a calcium nitrate coagulant into a synthetic rubber gond compound such as NBR, chloroprene, acrylic, polyurethane, etc., drying, leaching and curing. Alternatively, as another method of sealing, a method of releasing, dehydrating, and curing the product after immersion and drying may be used.
 本発明の複合糸、該複合糸から得られる作業用手袋や布帛は、半導体製造工程、塗装工程またはクリーンルーム内作業など、導電性と低発塵性が要求される分野において、特に好適に使用される。 The composite yarn of the present invention and the work gloves and fabric obtained from the composite yarn are particularly suitably used in fields where conductivity and low dust generation are required, such as semiconductor manufacturing processes, painting processes, and clean room operations. The
 以下、実施例を挙げて本発明をより詳細に説明する。これらの実施例は本発明を限定する意図のものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. These examples are not intended to limit the invention.
 実施例および比較例に用いられる評価方法を下記に示す。
1.表面抵抗値
 実施例および比較例にて得られた手袋から、直径約8cmの円状の編地を切り出し試験片とした。該試験片を表面抵抗値測定装置(MONROE ELECTRONICS社製、「272A型」)(印加電圧:10V)にセットし、15秒後の値を読み取って表面抵抗値とした。15秒後の値を読み取る場合、EN1149-1に一部準拠した。測定条件は、室温23℃、湿度45%とした。
2.導電性繊維の脱離量
2.1 発塵性試験
 実施例および比較例で得られた手袋を、各々1000枚準備した。準備した手袋を、50gのノニオン系活性剤(ゲンブ社製、商品名「スーパーL」)を純水113Lに入れた洗液で15分間洗い、次いで、超純水で3回すすいでクリーン洗浄を行った。クリーン洗浄後、Japanese Industrial Standard B 9923(タンブリング法)に従って、10枚の手袋から発塵した1cft3当たりに気中に浮遊している0.5μm以上のパーティクルの個数(手袋10枚分のパーティクルの個数)を測定した。測定値を繊維の脱離量に対応するとして評価した。
Evaluation methods used in Examples and Comparative Examples are shown below.
1. Surface Resistance Value A circular knitted fabric having a diameter of about 8 cm was cut out from the gloves obtained in the examples and comparative examples, and used as a test piece. The test piece was set on a surface resistance measuring device (MONROE ELECTRONICS, “272A type”) (applied voltage: 10 V), and the value after 15 seconds was read to obtain a surface resistance value. When reading the value after 15 seconds, it was partially compliant with EN1149-1. The measurement conditions were a room temperature of 23 ° C. and a humidity of 45%.
2. 2. Detachment amount of conductive fibers 2.1 Dust generation test 1000 gloves each obtained in Examples and Comparative Examples were prepared. Wash the prepared gloves with a washing solution of 50 g of nonionic activator (Genbu Co., Ltd., trade name “Super L”) in pure water 113 L for 15 minutes, and then rinse with ultrapure water three times for clean cleaning. went. After clean cleaning, in accordance with Japan Industrial Standard B 9923 (tumbling method), the number of particles of 0.5 μm or more floating in the air per 1 cft 3 generated from 10 gloves (the number of particles for 10 gloves) Number). The measured value was evaluated as corresponding to the amount of detached fibers.
 本発明においては、浮遊しているパーティクルの個数が、10個未満であるものが実用に耐えうるものであるとする。
2.2 粘着テープ強制剥離試験
 実施例および比較例で得られた手袋を、各々3枚準備した。準備した手袋のうち、1枚を綿白布で100回摩擦し、別の1枚を綿白布で300回摩擦した。次いで、学振型染色堅ろう度試験機(大栄科学精器製作所社製、商品名「RT-200」)を用い、摩擦していない手袋、100回摩擦した手袋、300回摩擦した手袋に、それぞれ粘着テープ(ニチバン社製、「セロハンテープ」)(サイズ:20mm×20mm)を、荷重300gにて5秒かけて貼り付けた後剥がす、という操作を、同一の粘着テープを用いて5回繰り返した。その後、粘着テープ表面をマイクロスコープ(KEYENCE社製、商品名「VHX-900」)で観察して、付着した導電性繊維の本数をカウントした。この本数の測定値を、繊維の脱離量に対応するものとして評価した。
In the present invention, it is assumed that the number of floating particles is less than 10 and can withstand practical use.
2.2 Forced peeling test of adhesive tape Three gloves each obtained in the examples and comparative examples were prepared. Of the prepared gloves, one piece was rubbed 100 times with a cotton white cloth, and another piece was rubbed 300 times with a cotton white cloth. Next, using a Gakushin type dyeing fastness tester (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd., trade name “RT-200”) The operation of adhering an adhesive tape (manufactured by Nichiban Co., Ltd., “Cellophane tape”) (size: 20 mm × 20 mm) over a period of 5 seconds at a load of 300 g was repeated 5 times using the same adhesive tape. . Thereafter, the surface of the adhesive tape was observed with a microscope (manufactured by KEYENCE, trade name “VHX-900”), and the number of attached conductive fibers was counted. The measured value of this number was evaluated as corresponding to the amount of detached fibers.
 本発明においては、付着した導電性繊維の本数が10本未満であるものが実用に耐えうるものであるとする。
3.伸縮復元率
 Japanese Industrial Standard L 1013にて定義される伸縮復元率測定法を、図7を用いて以下に説明する。
In the present invention, it is assumed that a conductive fiber having less than 10 conductive fibers can withstand practical use.
3. Stretching Restoration Rate A stretching / restoring rate measuring method defined by Japan Industrial Standard L 1013 will be described below with reference to FIG.
 実施例および比較例で得られた手袋を構成する複合糸から、フィラメント糸を採取して、フック5に巻きかけ、(0.176mN×表示テックス数)の荷重7をかけ、かせ長約40cm、巻き数10回の小かせを作り、合計で20本の糸束となる試料6とした。次いで、60℃の水に20分間漬浸してから水切りし、ろ紙上で24時間自然乾燥させた。この試料6を、図7にて示すように、(0.176mN×20×表示テックス数)の荷重7に、さらに(8.82mN×20×表示テックス数)の荷重8をかけた状態で、温度20±2℃の水9の中に静かに垂下して2分間浸漬した。その後、水中から取り出してかせ長を測り、直ちに、荷重取り外し用リング10を用いて、(8.82mN×20×表示テックス数)の荷重8を除き、2分間放置した後、再びかせ長を測った。そして次式によって伸縮復元率Er(%)を算出した。 Filament yarns are collected from the composite yarns constituting the gloves obtained in the examples and comparative examples, wound around the hooks 5, applied with a load of (0.176 mN × number of displayed tex), a skein length of about 40 cm, A small skein with 10 windings was made, and a sample 6 having a total of 20 yarn bundles was obtained. Subsequently, it was immersed in water at 60 ° C. for 20 minutes, drained, and naturally dried on a filter paper for 24 hours. As shown in FIG. 7, this sample 6 is subjected to a load 7 of (0.176 mN × 20 × display tex number) and a load 8 of (8.82 mN × 20 × display tex number). It was dripped gently in water 9 at a temperature of 20 ± 2 ° C. and immersed for 2 minutes. After that, take out the water and measure the skein length. Immediately measure the skein length using the load removal ring 10 after removing the load 8 (8.82 mN x 20 x number of displayed tex) and letting it stand for 2 minutes. It was. The expansion / contraction restoration ratio Er (%) was calculated by the following equation.
   Er=[(a-b)/a]×100
 a:(0.176mN×20×表示テックス数)の荷重7に、更に(8.82mN×20×表示テックス数)の荷重8を加えたときのかせ長(mm)
 b:(0.176mN×20×表示テックス数)の荷重7をかけたときのかせ長(mm)
 なお、測定は5回行い、その平均値を伸縮復元率とした。
Er = [(ab) / a] × 100
a: Skein length (mm) when load 8 of (8.82 mN × 20 × number of displayed tex) is further applied to load 7 of (0.176 mN × 20 × number of displayed tex)
b: Skein length (mm) when a load of 7 (0.176 mN × 20 × display tex number) is applied
In addition, the measurement was performed 5 times and the average value was made into the expansion-contraction restoration rate.
 次に、実施例および比較例に用いられる材料を下記に示す。
(A)フィラメント糸
・(A-1)ウーリーナイロン(70d-24f、伸縮復元率24%)(東レ社製)
・(A-2)ウーリーナイロン(70d-24f、伸縮復元率7%)
 ウーリーナイロン(A-1)をボビンにソフト巻きし、巻き密度を0.2~0.3g/cmに調整した。次いで、ボビンにソフト巻きしたウーリーナイロン(A-1)を、染色機(日阪製作所社製、商品名「LLCD-50/90」)に入れ、約90℃×約1時間の湯洗いを経て、脱水15分間、乾燥70℃×200分間を行うことにより、伸縮復元率を7%に低下させて用いた。
・(A-3)ポリエステル糸(50d-36f生糸、伸縮復元率1.5%)(KBセーレン社製)
・(A-4)ウーリーナイロン(70d-24f、伸縮復元率10.0%)
 ウーリーナイロン(A-1)をボビンにソフト巻きし、巻き密度を0.2~0.3g/cmに調整した。次いで、ボビンにソフト巻きしたウーリーナイロン(A-1)を染色機(日阪製作所社製、商品名「LLCD-50/90」)に入れ、約75℃×約1時間の湯洗いを経て、脱水15分間、乾燥70℃×200分間を行うことにより、伸縮復元率を10.0%に低下させて用いた。
・(A-5)ウーリーナイロン(70d-24f、伸縮復元率5%)
 ウーリーナイロン(A-1)をボビンにソフト巻きし、巻き密度を0.2~0.3g/cmに調整した。次いで、ボビンにソフト巻きしたウーリーナイロン(A-1)を染色機(日阪製作所社製、商品名「LLCD-50/90」)に入れ、約100℃×約1時間の湯洗いを経て、脱水15分間、乾燥70℃×200分間を行うことにより、伸縮復元率を5%に低下させて用いた。
・(A-6)ウーリーポリエステル(75d-36f、伸縮復元率1.2%)
 ウーリーポリエステル(300d-144f、伸縮復元率20%)をボビンにソフト巻きし、巻き密度を0.2~0.3g/cmに調整した。次いで、ボビンにソフト巻きした前記のウーリーナイロンを染色機(日阪製作所社製、商品名「LLCD-50/90」)に入れ、約95℃×約1時間の湯洗いを経て、脱水15分間、乾燥70℃×200分間を行うことにより、伸縮復元率を1.2%に低下させて用いた。
・(A-7)高強度ポリエチレン(100d-36f、伸縮復元率2%)(東洋紡社製)
・(A-8)アラミド繊維(200d生糸、伸縮復元率2.5%)
(B)導電性繊維
・(B-1)銅染色繊維糸(50d-30f、伸縮復元率3.0%)(日本蚕毛社製、商品名「サンダーロン」)
・(B-2)カーボン繊維糸(20d-3f、伸縮復元率2.9%)(KBセーレン製、商品名「9R1」)
・(B-3)ステンレス繊維(32.7d、伸縮復元率1.2%)(日本精線製、商品名「ナスロン」)
・(B-4)銅染色繊維糸(75d-18f、伸縮復元率3.0%)(ショーワグローブ社製、商品名「硫化銅複合繊維」)
・(B-5)銅染色繊維糸(40d-13f、伸縮復元率2.5%)(日本蚕毛社製、商品名「サンダーロン」)
・(B-6)銅染色繊維糸(40d-13f、伸縮復元率3.0%)(日本蚕毛社製、商品名「サンダーロン」)
 (実施例1)
 (A-2)4本を芯にして(B-1)1本を300T/Mで巻いてカバーリングして複合糸を得た。カバーリング(および後述する合燃)は、錘-ダブルカバーリング機(カキノキ社製、商品名「KC5D108」)で行った。得られた複合糸を手袋全体(指先から裾まで)に用いて手袋を編んだ。手袋の編製は13G編機(島精機社製、商品名「New SFG」)にて行った。
Next, materials used in Examples and Comparative Examples are shown below.
(A) Filament yarn (A-1) Woolley nylon (70d-24f, expansion / contraction recovery rate 24%) (manufactured by Toray Industries, Inc.)
・ (A-2) Woolley nylon (70d-24f, stretch recovery rate 7%)
Woolley nylon (A-1) was softly wound around a bobbin and the winding density was adjusted to 0.2 to 0.3 g / cm 3 . Next, Woolley nylon (A-1) softly wound on a bobbin was placed in a dyeing machine (trade name “LLCD-50 / 90” manufactured by Nisaka Seisakusho Co., Ltd.) and washed with hot water at about 90 ° C. for about 1 hour. The stretching / restoration rate was reduced to 7% by performing dehydration for 15 minutes and drying at 70 ° C. for 200 minutes.
・ (A-3) Polyester yarn (50d-36f raw yarn, stretch recovery rate 1.5%) (KB Seiren)
・ (A-4) Woolley nylon (70d-24f, stretch recovery rate 10.0%)
Woolley nylon (A-1) was softly wound around a bobbin and the winding density was adjusted to 0.2 to 0.3 g / cm 3 . Next, Woolley nylon (A-1) softly wound on a bobbin was placed in a dyeing machine (trade name “LLCD-50 / 90” manufactured by Nisaka Seisakusho Co., Ltd.), washed with hot water at about 75 ° C. for about 1 hour, By performing dehydration for 15 minutes and drying at 70 ° C. for 200 minutes, the expansion / contraction recovery rate was reduced to 10.0%.
・ (A-5) Woolley nylon (70d-24f, stretch recovery rate 5%)
Woolley nylon (A-1) was softly wound around a bobbin and the winding density was adjusted to 0.2 to 0.3 g / cm 3 . Next, Woolley nylon (A-1) softly wound on a bobbin was placed in a dyeing machine (trade name “LLCD-50 / 90” manufactured by Nisaka Seisakusho Co., Ltd.), washed with hot water at about 100 ° C. for about 1 hour, By performing dehydration for 15 minutes and drying at 70 ° C. for 200 minutes, the expansion / contraction recovery rate was reduced to 5%.
・ (A-6) Woolley polyester (75d-36f, stretch recovery rate 1.2%)
Woolley polyester (300d-144f, expansion / contraction recovery rate 20%) was softly wound around a bobbin, and the winding density was adjusted to 0.2 to 0.3 g / cm 3 . Next, the wooly nylon softly wound on the bobbin is placed in a dyeing machine (trade name “LLCD-50 / 90” manufactured by Nisaka Seisakusho Co., Ltd.), washed with hot water at about 95 ° C. for about 1 hour, and dehydrated for 15 minutes. By performing drying at 70 ° C. for 200 minutes, the expansion / contraction recovery rate was reduced to 1.2%.
・ (A-7) High-strength polyethylene (100d-36f, stretch recovery rate 2%) (Toyobo Co., Ltd.)
・ (A-8) Aramid fiber (200d raw silk, stretch recovery rate 2.5%)
(B) Conductive fiber / (B-1) Copper dyed fiber yarn (50d-30f, stretch recovery rate 3.0%)
・ (B-2) Carbon fiber yarn (20d-3f, expansion / contraction recovery rate 2.9%) (product name “9R1” manufactured by KB Seiren)
・ (B-3) Stainless steel fiber (32.7d, expansion / contraction recovery rate 1.2%) (manufactured by Nippon Seisen, trade name “Naslon”)
(B-4) Copper dyed fiber yarn (75d-18f, stretch recovery rate 3.0%) (manufactured by Showa Grove, trade name “copper sulfide composite fiber”)
・ (B-5) Copper dyed fiber yarn (40d-13f, stretch recovery rate 2.5%)
・ (B-6) Copper dyed fiber yarn (40d-13f, expansion / contraction recovery rate 3.0%) (Nippon Kashiwa Co., Ltd., trade name "Sunderron")
Example 1
(A-2) Four yarns as a core and (B-1) one yarn was wound at 300 T / M and covered to obtain a composite yarn. Covering (and combustion described later) was performed with a weight-double covering machine (manufactured by Kakinoki, trade name “KC5D108”). The obtained composite yarn was used for the entire glove (from the fingertip to the hem) to knit the glove. The knitting of gloves was performed with a 13G knitting machine (manufactured by Shima Seiki Co., Ltd., trade name “New SFG”).
 (実施例2)
 実施例1にて得られた複合糸と(A-1)を用いて、複合糸:(A-1)=1:2のコース割合で手袋を編んだ。
(Example 2)
Using the composite yarn obtained in Example 1 and (A-1), gloves were knitted at a course ratio of composite yarn: (A-1) = 1: 2.
 (実施例3)
 実施例1にて得られた複合糸と(A-1)を用いて、複合糸:(A-1)=1:10のコース割合で手袋を編んだ。
(Example 3)
Using the composite yarn obtained in Example 1 and (A-1), gloves were knitted at a course ratio of composite yarn: (A-1) = 1: 10.
 (実施例4)
 (A-2)1本を芯にし、(B-1)1本を添え糸とし、これらを(A-2)2本を用いて300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は7.1%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
Example 4
(A-2) One yarn was used as the core, (B-1) one yarn was used as a spliced yarn, and these two (A-2) yarns were wrapped at 300 T / M and covered to obtain a composite yarn. . The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.1%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例5)
 (A-2)4本を芯にして、(B-2)1本を300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は7.3%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 5)
(A-2) A composite yarn was obtained by covering four cores and winding (B-2) one at 300 T / M. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.3%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例6)
 (A-2)2本を芯にして、(B-2)1本を添え糸とし、これらを(A-2)2本を用いて300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は7.3%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 6)
(A-2) Two cores, (B-2) one spliced yarn, and these two (A-2) two are wound at 300 T / M and covered to obtain a composite yarn It was. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 7.3%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例7)
 (A-2)3本を芯にして、予め(B-1)1本と(A-3)1本とを200T/Mで合撚して得られた合撚糸を300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は6.3%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 7)
(A-2) Using three strands as cores, pre-twisting one (B-1) and one (A-3) at 200 T / M and winding at 300 T / M Covering yielded a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 6.3%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例8)
 (B-1)に代えて(B-2)1本を用いたこと以外は実施例7と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は6.7%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 8)
A composite yarn was obtained in the same manner as in Example 7 except that one (B-2) was used instead of (B-1). The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 6.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例9)
 (A-2)1本を芯にし、予め(B-1)1本と(A-3)1本とを200T/Mで合撚して得られた合撚糸(伸縮復元率2.9%)を添え糸とし、これらを(A-1)2本を用いて300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
Example 9
(A-2) One twisted yarn obtained by pre-twisting one (B-1) and one (A-3) at 200 T / M with a core as one core (stretching and restoring rate 2.9% ) As a spun yarn, and these two (A-1) pieces were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 5.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例10)
 (B-1)に代えて(B-2)1本を用いたこと以外は実施例9と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.7%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 10)
A composite yarn was obtained in the same manner as in Example 9 except that one (B-2) was used instead of (B-1). The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 5.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例11)
 (B-1)3本を200T/Mで合撚して得られた合撚糸を芯にし、(A-2)2本を300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.5%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 11)
(B-1) A twisted yarn obtained by twisting three pieces at 200 T / M was used as a core, and (A-2) two pieces were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.5%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例12)
 (A-2)1本を芯にし、予め(B-1)2本を200T/Mで合撚してある糸を添え糸とし、これらを(A-2)2本を300T/Mを用いて巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は6.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 12)
(A-2) One core, and two (B-1) two yarns pre-twisted at 200 T / M are used as splicing yarns, and these are (A-2) two at 300 T / M A composite yarn was obtained by winding and covering. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 6.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例13)
 (B-1)2本を300T/Mで合撚して得られた合撚糸と、(A-2)2本とをさらに300T/Mで合撚して複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.9%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 13)
(B-1) Two twisted yarns obtained by twisting two yarns at 300 T / M and two (A-2) two yarns were further twisted at 300 T / M to obtain a composite yarn. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.9%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例14)
 (B-1)1本と(A-2)1本とを300T/Mで合撚して得られた合撚糸を芯糸とし、(A-2)1本を用いて300T/Mでカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は6.9%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 14)
(B-1) One and (A-2) one are twisted together at 300 T / M, and the twisted yarn obtained by twisting at 300 T / M is used as the core yarn, and (A-2) one is covered at 300 T / M. Ringing yielded a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 6.9%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例15)
 実施例1で得られた手袋を金属製浸漬型に被せ、ポリウレタン(DIC社製、商品名「クリスボンMP-812」)をN,N‘ジメチルホルムアミドに溶解させた溶液(固形分濃度:10質量%)に、掌のみ浸漬し、50℃×1時間で温水置換した。その後、100℃×30分間乾燥して、掌部分がポリウレタン樹脂で被覆された手袋を得た。
(Example 15)
A glove obtained in Example 1 was placed on a metal immersion mold, and a solution (solid content concentration: 10 mass) in which polyurethane (manufactured by DIC, trade name “Chrisbon MP-812”) was dissolved in N, N ′ dimethylformamide. %), Only the palm was immersed, and warm water substitution was performed at 50 ° C. for 1 hour. Then, it dried at 100 ° C. for 30 minutes to obtain a glove having a palm portion covered with a polyurethane resin.
 (実施例16)
 (A-4)2本を芯にし、(B-1)1本を300T/Mで巻いてカバーリングし、複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は8.5%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 16)
(A-4) Two strands were used as cores, and (B-1) one strand was wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 8.5%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例17)
 (A-6)2本を芯にし、(B-1)1本を300T/Mで巻いてカバーリングし、複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は2.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 17)
(A-6) Two cores and (B-1) one piece wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 2.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例18)
 (A-7)2本を芯にして(B-1)1本を300T/Mで巻いてカバーリングし、複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は2.7%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 18)
(A-7) Two yarns as cores and (B-1) one wire wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 2.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例19)
 (A-8)1本を芯にし、(B-1)で300T/Mで巻いてカバーリングし複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は3.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 19)
(A-8) One core was cored and wound at 300 T / M in (B-1) and covered to obtain a composite yarn. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 3.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例20)
 (B-3)1本と(A-6)2本を芯にし、(B-1)で300T/Mで巻いてカバーリングして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は2.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 20)
(B-3) 1 and (A-6) 2 were used as cores, and (B-1) was wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 2.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例21)
 (A-5)4本を芯にして、(B-4)1本を300T/Mで巻いてカバーリングし複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.0%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 21)
(A-5) Four yarns were cored and one (B-4) was wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 5.0%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例22)
 (A-5)4本を芯にして、(B-5)1本を300T/Mで巻いてカバーリングし複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は5.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Example 22)
(A-5) Four cores and (B-5) one were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 5.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (実施例23)
 ウーリーナイロン30d、1本にて丸編機(八田縦編社製、商品名「MA100」)によりトリコット編み生地(布帛)を得た。該トリコット編み生地全体に、実施例1で得られた複合糸を用いて一本針本縫い電子千鳥縫い自動糸切りミシン(ブラザー社製、商品名「LZ2-B856E-301」)を用い、1cm間隔でミシンをかけた。その後、手袋形状にカットし、縫製した。
(Example 23)
Tricot knitted fabric (fabric) was obtained with a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d. Using the composite yarn obtained in Example 1, the entire tricot knitted fabric is 1 cm using a single-needle lockstitch electronic zigzag automatic thread trimming machine (trade name “LZ2-B856E-301” manufactured by Brother). A sewing machine was applied at intervals. Then, it cut into a glove shape and sewed.
 (比較例1)
 (A-1)3本を芯にして、(B-1)1本を300T/Mで巻いてカバーリングし複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は20.5%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 1)
(A-1) Three (B-1) cores and one (B-1) core were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 20.5%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例2)
 (A-1)4本を芯にして、(B-1)に代えて(B-2)を用いた以外は比較例1と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は23.2%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 2)
(A-1) A composite yarn was obtained in the same manner as in Comparative Example 1 except that (B-2) was used in place of (B-1) with 4 cores. The expansion / contraction recovery rate of the whole filament yarn in the obtained composite yarn was 23.2%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例3)
 (A-1)1本を芯にし、(B-1)1本を添え糸とし、これらを(A-2)2本で300T/Mにて巻いてカバーリングし複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は11.7%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 3)
(A-1) One core was used, (B-1) one was used as a spliced yarn, and two (A-2) were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 11.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例4)
 (B-1)に代えて(B-2)1本を添え糸とした複合糸を用いた以外は、比較例3と同様にして手袋を編んだ。得られた複合糸中のフィラメント糸全体の伸縮復元率は12.6%であった。
(Comparative Example 4)
A glove was knitted in the same manner as in Comparative Example 3 except that instead of (B-1), (B-2) a composite yarn with one spliced yarn was used. The expansion / contraction recovery rate of the entire filament yarn in the obtained composite yarn was 12.6%.
 (比較例5)
 (A-1)2本を芯にし、(B-1)1本にて300T/Mで巻き、その上を(A-1)1本で300T/Mで逆まきにて巻き、更にその上を(A-1)1本で300T/Mで逆まきにて巻いて、導電性繊維が隠れるようにした複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は21.7%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 5)
(A-1) 2 cores, (B-1) 1 roll at 300 T / M, (A-1) 1 roll at 300 T / M, reverse winding, and further (A-1) was wound by reverse winding at 300 T / M to obtain a composite yarn in which the conductive fibers were hidden. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 21.7%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例6)
 (B-1)に代えて(B-2)を用いた以外は、比較例5と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は23.4%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 6)
A composite yarn was obtained in the same manner as in Comparative Example 5 except that (B-2) was used instead of (B-1). The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 23.4%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例7)
 (A-1)4本を合撚して得た糸を、手袋全体に用いて手袋を編んだ。得られた複合糸中のフィラメント糸全体の伸縮復元率は24.5%であった。
(Comparative Example 7)
(A-1) A glove was knitted by using a yarn obtained by twisting four pieces as a whole. The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 24.5%.
 (比較例8)
 (A-2)に代えて(A-1)を用いた以外は、実施例13と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は15.8%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 8)
A composite yarn was obtained in the same manner as in Example 13 except that (A-1) was used instead of (A-2). The expansion / contraction restoration rate of the whole filament yarn in the obtained composite yarn was 15.8%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例9)
 (A-2)に代えて(A-1)を用いた以外は、実施例14と同様にして複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は13.1%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 9)
A composite yarn was obtained in the same manner as in Example 14 except that (A-1) was used instead of (A-2). The expansion / contraction restoration rate of the entire filament yarn in the obtained composite yarn was 13.1%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例10、11)
 比較例1、2にて得られた手袋を用いたこと以外は、実施例15と同様にして、掌部分がポリエステル樹脂にて被覆された手袋を得た。
(Comparative Examples 10 and 11)
A glove having a palm portion coated with a polyester resin was obtained in the same manner as in Example 15 except that the gloves obtained in Comparative Examples 1 and 2 were used.
 (比較例12)
 (B-6)3本を芯にし、(A-1)2本を300T/Mにて巻いてカバーリングし、複合糸を得た。得られた複合糸中のフィラメント糸全体の伸縮復元率は14.8%であった。得られた複合糸を手袋全体に用いて手袋を編んだ。
(Comparative Example 12)
(B-6) Three cores and (A-1) two cores were wound at 300 T / M and covered to obtain a composite yarn. The expansion / contraction restoration ratio of the entire filament yarn in the obtained composite yarn was 14.8%. The obtained composite yarn was used for the entire glove, and the glove was knitted.
 (比較例13)
 ウーリーナイロン30d、1本にて丸編機(八田縦編社製、商品名「MA100」)によりトリコット編み生地(布帛)を得た。該トリコット編み生地全体に、比較例1で得られた複合糸を用いて、一本針本縫い電子千鳥縫い自動糸切りミシン(ブラザー社製、商品名「LZ2-B856E-301」)を用い、1cm間隔でミシンをかけた。その後、手袋形状にカットし、縫製しようとしたが、複合糸が伝線してしまい、縫製することができなかった。
(Comparative Example 13)
Tricot knitted fabric (fabric) was obtained with a circular knitting machine (trade name “MA100” manufactured by Hatta Warp Knitting Co., Ltd.) with one wooly nylon 30d. Using the composite thread obtained in Comparative Example 1 for the entire tricot knitted fabric, using a single-needle lockstitch electronic zigzag automatic thread trimming machine (trade name “LZ2-B856E-301” manufactured by Brother) Sewing machines were applied at 1 cm intervals. After that, it was cut into a glove shape and tried to sew. However, the composite yarn was transmitted and could not be sewn.
 実施例および比較例にて得られた手袋の物性を試験した。実施例1~12の評価結果を表1に、実施例13~23の評価結果を表2に、比較例1~13の評価結果を表3に示す。 The physical properties of the gloves obtained in the examples and comparative examples were tested. The evaluation results of Examples 1 to 12 are shown in Table 1, the evaluation results of Examples 13 to 23 are shown in Table 2, and the evaluation results of Comparative Examples 1 to 13 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~23の結果から明らかなように、導電性繊維の脱離量を低減させるためには、導電性繊維を巻きつける芯糸、添え糸、あるいは撚り合わせる糸の伸縮復元率を0~10%とすることが必須である。伸縮復元率を0%~10%とすることによる効果は、比較例と比べると明らかである。 As is apparent from the results of Examples 1 to 23, in order to reduce the amount of the conductive fibers detached, the expansion / contraction recovery rate of the core yarn, the attached yarn, or the yarn to be twisted around the conductive fiber is set to 0 to It is essential to set it to 10%. The effect of setting the expansion / contraction restoration rate to 0% to 10% is clear compared with the comparative example.
 また、実施例21、22から明らかなように、導電性繊維は、1フィラメントあたりのデニール数が多いほど脱離量が少なくなる傾向にあることがわかった。また、実施例9と実施例10の対比から明らかなように、カーボン繊維での脱離量は銅染色繊維での脱離量よりも少なくなっていることがわかった。 Further, as is clear from Examples 21 and 22, it was found that the conductive fibers tend to decrease in amount as the denier per filament increases. Further, as is clear from the comparison between Example 9 and Example 10, it was found that the amount of desorption with the carbon fiber was smaller than the amount of desorption with the copper dyed fiber.
 さらにまた、実施例7~14の結果から、以下のことが明らかである。つまり、カーボン繊維、銅染色繊維の双方とも、導電性繊維同士もしくはポリエステル糸などと合撚することによって、テープ強制剥離試験においてより脱離しにくくなることがわかった。また、芯に導電性繊維を用いる場合、導電性繊維どうしを合撚して用いると、導電性繊維の脱離量を低減できることがわかった。さらに導電性繊維と、他繊維、すなわち生糸や伸縮復元率が10%以下であるポリエステル・強化ポリエチレン・アラミド・ナイロン・アクリル製繊維とを合撚した場合であっても、導電性繊維の脱離量を低減できることがわかった。 Furthermore, the following is clear from the results of Examples 7 to 14. That is, it was found that both the carbon fiber and the copper dyed fiber are more difficult to be detached in the tape forced peel test by twisting together with conductive fibers or polyester yarn. Moreover, when using electroconductive fiber for the core, it turned out that the amount of detachment | desorption of electroconductive fiber can be reduced when electroconductive fibers are twisted and used. Furthermore, even when conductive fibers and other fibers, that is, raw silk or polyester / reinforced polyethylene / aramid / nylon / acrylic fibers with a stretch recovery rate of 10% or less are twisted, the conductive fibers are detached. It was found that the amount could be reduced.
 比較例5から明らかなように、導電性繊維を用いた手袋では、導電性繊維が隠れるようにしても脱離量に変化がないことがわかった。 As is clear from Comparative Example 5, it was found that in the gloves using conductive fibers, there was no change in the amount of detachment even if the conductive fibers were hidden.
 本発明の作業用手袋は、静電気対策と低発塵性の要望を充たすものであり、半導体製造工程、塗装工程、クリーンルーム内作業などでの使用に有用である。 The work gloves according to the present invention satisfy the demands for countermeasures against static electricity and low dust generation, and are useful for use in semiconductor manufacturing processes, painting processes, clean room work, and the like.

Claims (16)

  1.  フィラメント糸と導電性繊維とを含む複合糸によって手袋の全体または一部分が編まれたものであり、前記複合糸に含まれるフィラメント糸全体の伸縮復元率が0-10%であることを特徴とする作業用手袋。 The entire or part of a glove is knitted with a composite yarn including a filament yarn and a conductive fiber, and the expansion / contraction recovery rate of the entire filament yarn included in the composite yarn is 0-10%. Work gloves.
  2.  フィラメント糸が芯糸であり、導電性繊維が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする請求項1記載の作業用手袋。 2. The work glove according to claim 1, wherein the filament yarn is a core yarn and the conductive fiber is a covering yarn wound around the core yarn.
  3.  フィラメント糸が芯糸であり、導電性繊維が前記芯糸に添えられた添え糸であり、これら芯糸と添え糸とがカバーリング糸でカバーリングされていることを特徴とする請求項1記載の作業用手袋。 The filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn. Work gloves.
  4.  導電性繊維が芯糸であり、フィラメント糸が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする請求項1記載の作業用手袋。 2. The work glove according to claim 1, wherein the conductive fiber is a core yarn, and the filament yarn is a covering yarn wound around the core yarn.
  5.  複合糸は、フィラメント糸と導電性繊維とが合撚されたものであることを特徴とする請求項1記載の作業用手袋。 2. The work glove according to claim 1, wherein the composite yarn is a filament yarn and a conductive fiber twisted together.
  6.  導電性繊維は、合撚糸の形態であることを特徴とする請求項1から5までのいずれか1項記載の作業用手袋。 The work gloves according to any one of claims 1 to 5, wherein the conductive fiber is in the form of a twisted yarn.
  7.  指先部分、掌部分、または表面の全体が、合成ゴムまたは樹脂で被覆されていることを特徴とする請求項1から6までのいずれか1項記載の作業用手袋。 The work glove according to any one of claims 1 to 6, wherein the fingertip portion, palm portion, or entire surface is covered with synthetic rubber or resin.
  8.  捲縮加工糸の伸縮復元率を低下させる工程と、
     伸縮復元率を低下させた捲縮加工糸を少なくとも一部に含有し、全体の伸縮復元率が0~10%であるフィラメント糸を得る工程と、
     前記フィラメント糸と導電性繊維と用いて複合糸を得る工程と、
     前記複合糸を手袋に編み上げる工程と、
    を有することを特徴とする作業用手袋の製造方法。
    A step of reducing the expansion / contraction restoration rate of the crimped yarn,
    A step of obtaining a filament yarn containing at least a portion of the crimped yarn having a reduced expansion / contraction recovery rate and having an overall expansion / contraction recovery rate of 0 to 10%;
    Obtaining a composite yarn using the filament yarn and conductive fiber;
    Knitting the composite yarn into a glove,
    The manufacturing method of the work glove characterized by having.
  9.  フィラメント糸と導電性繊維とを含む複合糸であって、前記複合糸に含まれるフィラメント糸全体の伸縮復元率が0-10%であることを特徴とする複合糸。 A composite yarn comprising a filament yarn and a conductive fiber, wherein the entire filament yarn contained in the composite yarn has an expansion / contraction recovery rate of 0 to 10%.
  10.  フィラメント糸が芯糸であり、導電性繊維が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする請求項9記載の複合糸。 10. The composite yarn according to claim 9, wherein the filament yarn is a core yarn, and the conductive fiber is a covering yarn wound around the core yarn.
  11.  フィラメント糸が芯糸であり、導電性繊維が前記芯糸に添えられた添え糸であり、これら芯糸と添え糸とがカバーリング糸でカバーリングされていることを特徴とする請求項9記載の複合糸。 10. The filament yarn is a core yarn, the conductive fiber is a spliced yarn attached to the core yarn, and the core yarn and the spliced yarn are covered with a covering yarn. Composite yarn.
  12.  導電性繊維が芯糸であり、フィラメント糸が前記芯糸の周囲に巻き付けられたカバーリング糸であることを特徴とする請求項9記載の複合糸。 The composite yarn according to claim 9, wherein the conductive fiber is a core yarn, and the filament yarn is a covering yarn wound around the core yarn.
  13.  フィラメント糸と導電性繊維とが合撚されたものであることを特徴とする請求項9記載の複合糸。 The composite yarn according to claim 9, wherein the filament yarn and the conductive fiber are twisted together.
  14.  導電性繊維は、合撚糸の形態であることを特徴とする請求項9から13までのいずれか1項記載の複合糸。 The composite yarn according to any one of claims 9 to 13, wherein the conductive fiber is in the form of a twisted yarn.
  15.  捲縮加工糸の伸縮復元率を低下させる工程と、
     伸縮復元率を低下させた捲縮加工糸を少なくとも一部に含有し、全体の伸縮復元率が0~10%であるフィラメント糸を得る工程と、
     前記フィラメント糸と導電性繊維と用いて複合糸を得る工程と、
    を有することを特徴とする複合糸の製造方法。
    A step of reducing the expansion / contraction restoration rate of the crimped yarn,
    A step of obtaining a filament yarn containing at least a portion of the crimped yarn having a reduced expansion / contraction recovery rate and having an overall expansion / contraction recovery rate of 0 to 10%;
    Obtaining a composite yarn using the filament yarn and conductive fiber;
    A method for producing a composite yarn, comprising:
  16.  請求項9から15までのいずれか1項に記載の複合糸によって全体または一部分が形成されていることを特徴とする布帛。 A fabric characterized in that the whole or part of the composite yarn according to any one of claims 9 to 15 is formed.
PCT/JP2010/062999 2009-08-19 2010-08-02 Work glove WO2011021494A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117030009A KR101682429B1 (en) 2009-08-19 2010-08-02 Work glove
JP2011527625A JP5762290B2 (en) 2009-08-19 2010-08-02 Work gloves
EP10809839A EP2468120A1 (en) 2009-08-19 2010-08-02 Work glove
CN201080028336.9A CN102469838B (en) 2009-08-19 2010-08-02 Work glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009189627 2009-08-19
JP2009-189627 2009-08-19

Publications (1)

Publication Number Publication Date
WO2011021494A1 true WO2011021494A1 (en) 2011-02-24

Family

ID=43606949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062999 WO2011021494A1 (en) 2009-08-19 2010-08-02 Work glove

Country Status (5)

Country Link
EP (1) EP2468120A1 (en)
JP (1) JP5762290B2 (en)
KR (1) KR101682429B1 (en)
CN (1) CN102469838B (en)
WO (1) WO2011021494A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194347A (en) * 2012-03-23 2013-09-30 Du Pont-Toray Co Ltd Glove and method for producing the same
WO2015008545A1 (en) * 2013-07-19 2015-01-22 ショーワグローブ株式会社 Glove
WO2021215190A1 (en) * 2020-04-23 2021-10-28 セーレン株式会社 Conductive yarn and article having wiring line that is formed of conductive yarn
JP2022109899A (en) * 2021-01-15 2022-07-28 ユニチカトレーディング株式会社 Electroconductive composite yarn

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113074A (en) * 2015-09-10 2015-12-02 南通强生安全防护科技有限公司 Environment-friendly yarn, and manufacturing method and use thereof
CN105113076A (en) * 2015-09-17 2015-12-02 南通强生安全防护科技有限公司 Preparation method of anti-static yarn and gloves
CN105342040B (en) * 2015-11-19 2016-11-30 国家电网公司 A kind of antistatic gloves for electric power apparatus examination
CN105305293B (en) * 2015-11-19 2017-05-17 国家电网公司 Antistatic protection plate for electric power overhauling
CN106124568A (en) * 2016-08-29 2016-11-16 广州市博顿运动装备有限公司 A kind of method testing glove touch-control performance
CN107268131A (en) * 2017-06-07 2017-10-20 丹阳市斯鲍特体育用品有限公司 A kind of fencing metallic plastron fabric is twisted thread with conductive silver fiber
KR102242101B1 (en) * 2020-10-13 2021-04-20 현대글러브 주식회사 Manufacturing method of coated gloves for touch screen and the coated gloves thereof
KR102228734B1 (en) 2021-01-12 2021-03-18 주식회사 베스트모카 Manufacturing method of gloves work

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167425A (en) * 1981-04-03 1982-10-15 Kanebo Ltd Production of bulky yarn with silk like feeling
JPS62170717U (en) * 1986-04-18 1987-10-29
JPS6324221U (en) * 1986-07-29 1988-02-17
JPH03829A (en) * 1989-05-30 1991-01-07 Unitika Ltd Dyed yarn of synthetic fiber and production thereof
JPH0342096A (en) 1989-04-21 1991-02-22 Shigenobu Kasamatsu Method for removing phosphate ion and sulfate ion in water
JPH0654720U (en) 1993-01-11 1994-07-26 東洋紡績株式会社 Conductive gloves
JPH108340A (en) * 1996-06-22 1998-01-13 Shimono Shikimono Kk Antistatic pile yarn
JP2006063456A (en) 2004-08-24 2006-03-09 Morito Co Ltd Electrostatic charge eliminating glove
JP2007039839A (en) * 2005-08-03 2007-02-15 Du Pont Toray Co Ltd Composite yarn and woven or knitted fabric using the same
JP2009046785A (en) * 2007-08-22 2009-03-05 Toray Ind Inc Crimped conductive yarn
JP2009102779A (en) 2007-10-25 2009-05-14 Fellenca Ltd Glove

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136603A (en) * 1992-10-22 1994-05-17 Keitaro Yamanaka Production of glove having antibacterial and deodorizing functions
JP3000829B2 (en) * 1993-08-11 2000-01-17 サンケン電気株式会社 DC-DC converter parallel connection device
TW307802B (en) * 1995-06-07 1997-06-11 Hoechst Celanese Corp
KR100497179B1 (en) * 2002-12-31 2005-06-23 주식회사 메스토 Core yarn containing silver yarn and fabric woven thereby and towel manufactured thereby
US7135227B2 (en) * 2003-04-25 2006-11-14 Textronics, Inc. Electrically conductive elastic composite yarn, methods for making the same, and articles incorporating the same
CN1280940C (en) * 2004-08-12 2006-10-18 河北工业大学 Lithium/polyparrole secondary button cell and its preparation method
CN2909876Y (en) * 2006-01-25 2007-06-13 黄建华 Conducting gloves contg. silver fiber
JP4923174B2 (en) * 2006-07-05 2012-04-25 ユニチカトレーディング株式会社 Conductive composite yarn and conductive fabric
CN201073012Y (en) * 2007-08-31 2008-06-18 中国石油天然气股份有限公司 Gloves capable of releasing electrostatic

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167425A (en) * 1981-04-03 1982-10-15 Kanebo Ltd Production of bulky yarn with silk like feeling
JPS62170717U (en) * 1986-04-18 1987-10-29
JPS6324221U (en) * 1986-07-29 1988-02-17
JPH0342096A (en) 1989-04-21 1991-02-22 Shigenobu Kasamatsu Method for removing phosphate ion and sulfate ion in water
JPH03829A (en) * 1989-05-30 1991-01-07 Unitika Ltd Dyed yarn of synthetic fiber and production thereof
JPH0654720U (en) 1993-01-11 1994-07-26 東洋紡績株式会社 Conductive gloves
JPH108340A (en) * 1996-06-22 1998-01-13 Shimono Shikimono Kk Antistatic pile yarn
JP2006063456A (en) 2004-08-24 2006-03-09 Morito Co Ltd Electrostatic charge eliminating glove
JP2007039839A (en) * 2005-08-03 2007-02-15 Du Pont Toray Co Ltd Composite yarn and woven or knitted fabric using the same
JP2009046785A (en) * 2007-08-22 2009-03-05 Toray Ind Inc Crimped conductive yarn
JP2009102779A (en) 2007-10-25 2009-05-14 Fellenca Ltd Glove

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194347A (en) * 2012-03-23 2013-09-30 Du Pont-Toray Co Ltd Glove and method for producing the same
WO2015008545A1 (en) * 2013-07-19 2015-01-22 ショーワグローブ株式会社 Glove
JPWO2015008545A1 (en) * 2013-07-19 2017-03-02 ショーワグローブ株式会社 gloves
US10349691B2 (en) 2013-07-19 2019-07-16 Showa Glove Co. Glove
WO2021215190A1 (en) * 2020-04-23 2021-10-28 セーレン株式会社 Conductive yarn and article having wiring line that is formed of conductive yarn
CN115427619A (en) * 2020-04-23 2022-12-02 世联株式会社 Conductive yarn and article having wiring formed by conductive yarn
JP2022109899A (en) * 2021-01-15 2022-07-28 ユニチカトレーディング株式会社 Electroconductive composite yarn
JP7419410B2 (en) 2021-01-15 2024-01-22 ユニチカトレーディング株式会社 conductive composite yarn

Also Published As

Publication number Publication date
EP2468120A1 (en) 2012-06-27
JPWO2011021494A1 (en) 2013-01-24
JP5762290B2 (en) 2015-08-12
CN102469838B (en) 2015-06-17
KR20120052195A (en) 2012-05-23
KR101682429B1 (en) 2016-12-05
CN102469838A (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5762290B2 (en) Work gloves
CA2493145C (en) Electrically conductive yarn
KR100688899B1 (en) Electric conduction strong metal complex thread manufacturing method and electric conduction strong metal complex thread using the method
TW201441439A (en) Stretch yarns and fabrics with multiple elastic yarns
TW201000704A (en) Stretch wovens with separated elastic yarn system
JP2009167538A (en) Method for sewing conductive woven fabric, and conductive garment made using the same
EP2633108B1 (en) An elastic yarn, a method for making said yarn and elastic fabric made therefrom
TW200304516A (en) Stretch fabrics with improved chemical resistance and durability
JP6752755B2 (en) Polyamide-based conductive composite fiber
JP2017106134A (en) Conductive composite textured yarn and conductive woven fabric
CN111051588B (en) Double-sided knitted fabric
WO2021186943A1 (en) Conductive textured composite yarn, and fabric and clothing
JP2003213541A (en) Pollen adhesion-preventing woven fabric and product of the pollen adhesion-preventing woven fabric
CN211947456U (en) Elastic conductive wire
JP7419410B2 (en) conductive composite yarn
WO2022215289A1 (en) Antistatic warp knitted fabric
CN212175124U (en) Metallic yarn conductive blended yarn
JP2022061122A (en) Woven knit
JP2813368B2 (en) Antistatic composite fiber
JP2002294529A (en) Covered filament yarn including metallized raw yarn and fabric comprising the covered filament yarn
JP2021088799A (en) Textile product capable of static electricity removal and antibacterial treatment of washing
JP2021161578A (en) Woven fabric and clothing
JP2023068667A (en) Weft double woven fabric
JP2020059960A (en) Cloth and clothing using the cloth
JPH07166470A (en) Production of antistatic water-repellent knitted fabric

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028336.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527625

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117030009

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010809839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010809839

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE